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Interaction of Reggeized gluons in the Baxter-Sklyanin representation
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We investigate the Baxter equation for the Heisenberg spin model corresponding to a generalized BFKL
equation describing composite statesnoReggeized gluons in the multi-color limit of QCD. The Sklyanin
approach is used to find a unitary transformation from the impact parameter representation to the representation
in which the wave function factorizes as a product of Baxter functions and a pseudovacuum state. We show
that the solution of the Baxter equation is a meromorphic function with pales) ="~ (r=0,1,...) and
that the intercept for the composite Reggeon states is expressed through the behavior of the Baxter function
around the pole ak=i. The absence of pole singularities in the two dimensioﬁqdlane for the bilinear
combination of holomorphic and antiholomorphic Baxter functions leads to the quantization of the integrals of
motion because the holomorphic energy should be the same for all independent Baxter functions.
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I. INTRODUCTION n

M= My Mi=pd, M =d M =—pidy.
In the leading logarithmic approximatidhLA ) of pertur- k=1
bative QCD the Reggeon&eggeized gluonsmove in the

two-dimensional impact parameter plaﬁ\and interact pair-
wise [1,2]. To unitarize the QCD scattering amplitudes at n
high energies one should take into account the multi- M2=—> pZao,. 4
Reggeon exchanges in thehannel. The composite states of I<r

the Reggeized gluons satisfy a Safirmer-like equatiof3]. o _ _ .

The Reggeon Hamiltonian in the infinite color limit, The Hamiltonianh describes the integrablEXX spin
—oo takes a simple form and can be written as folldw§ model with the spins being the generatbtg of the Mdbius
group[5]. The integrals of motion of this model are gener-
ated by the transfer matrix which is the trace of the mono-
dromy matrix satisfying the Yang-Baxter equatidb].
Therefore, the quantum inverse scattering metf&d] can
where the holomorphic and antiholomorphic Hamiltonians pe applied to find an algebraic solution of the Schinger
equation.

The pair Hamiltoniar(3) can be obtained from the funda-
mental monodromy matrix associated to tK&XX Heisen-
berg spin mod€]l5,8,9]. Notice that the local operatopg , py
are expressed in terms of the pair Balitskadin-Kuraev- act in an infinite dimensional Hilbert space whereas the spin
Lipatov (BFKL) operator{1,4] operators in the usual Heisenberg model are finite dimen-

sional matrices both for integer or half plus an integer spin.

The Casimir operator of this group is

H:%(h+h*), [h,h*]1=0, (1)

n

n
hZE hk,k+1v h*=2 h:,k+17 2
k=1 k=1

_ 1 The auxiliary L-operator for the Heisenberg spin model
Py k+1=10g Pi+10g Py 1 + pk(|09Pk,k+1)pk with s=— 1 is given below[8—10]
1
+ —— (109 pi k+1)Pk+1T27. 3 Lo(u)= U+ PPro ~Px ) )
Phesa ) PiPko U= Pipro)’

Here p s 1=px—pr+1, P=1(d/dpy), px =i(dldpy), and whereon is th rdinate of the composite stat
y=— (1) is the Euler-Mascheroni constant. Erépo IS In€ coordinate of the composite state.

In this context the Pomeron is a compound state of two The auxiliary monodromy matrix for this model can be

Reggeized gluons and the odderon is constructed from threR@rametrized as follows:
Reggeized gluons.

The operatoh is invariant under the Maius transforma- _ _
tions[2] with generators: TW=La(Wkn-(u) .. . Le(W) (

A(u) B(u)

c(u) D(u))’ ©
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wheren is the number of the Reggeized gluons. The transfer

matrix is the trace of the monodromy matrix

t(U)=A(U)+D(U)=Z0 Qu,
<

where

Qj= > Pi,Pi, - - - PiPiji, - - - Pi
J

i1>ip>- >

|1 jPijiy (7)

The eigenvalued (u) of t(u) take the form

A(u)=2u"+qu" %+ qau" 3+ +q,,

whereq;,2=<j=n are eigenvalues of the integrals of motion
Qj [5]. In particular,q,= —m(m—1) is the eigenvalue of
the holomorphic Casimir operat¢t) andm s the conformal

weight.

The operatoC(u) annihilates the pseudovacuum state for

the s=—1 model[9],

n

C(u)Qy=0, Qoerl P (8)

The operator8(u) can be obtained directly from E).
We find forn=2 andn=3,

B("=2)(u)=—u(p;+p2) + P1P2p12

B"=3)(u)=—u?(py+po+pa)

9
TU(P1P2p 121 P1P3P13t+ P2P3p23)
—P1P2P3p12023-
For arbitraryn one obtains
n—-1 n
BM(u)=— >, bu"" "X whereb,=P=>, p,
k=0 i=1
by=- E PiP;pij
1<i<j<n
b2:1<i1<i22<i3<n Pi,Pi,PiPi,i,Piiy
(10)

b=(-1)

Isig<ip<---<ijpgsn PiyPiy - Pi Py
XPisi,Pigig " Pijiy

bro1=(—=1)""p1pys- - - Prp12P23 Pn—1n-
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[B(u),B(v)]=0

and therefore, one can write them in factorized form as a
product of the operator zerds, of B(u):

n—-1

B(u)=— Pkﬂl (=X, [Ny )=[A,P1=0,

following Sklyanin[12].

The wave function describing composite states of
Reggeized gluons in the holomorphic impact parameter
spacep can be written as followf12] (see alsd9)):

w(pli.DZV e aPn;PO)

=Q(A)Q(Ry) .. .Q<anl>£[1 PrEs Pro=Pr—Po-

(11)
The functionQ(\) satisfies the Baxter equati¢th3]
AMNQMN)=(A+D)"QIN+i)+(A—D)"Q(N—1i). (12

For the odderon case, the dependence of the energy from
the eigenvalues of the integrals of motion has been found
with the use of the Baxter equati¢ti4] and of the duality
symmetry[11].

In this paper we systematically develop the construction
of composite Reggeon states using the Baxter-Sklye38)

representation, in which the operator zeigsof B(u) are
diagonal. The matrix elements relating the momentum and
BS representations obey solvable ordinary differential equa-
tions forn=2,3. These matrix elements are elementary func-
tions for the pomeron case and hypergeometric functions for
the odderon case. In the BS representation the wave function
of the composite state is written as a product of the Baxter
functions and the pseudovacuum state.

For the Pomeron, we provide general formulas for the
Baxter function valid in the whole complex plane and
study its analytic properties. It turns out that the most effi-
cient way to solve the Baxter equation in the present context
is to use the pole expansiofiglittag-Loffler).

We show that the Pomeron wave function has no singu-
larities on the real axis as a function @& Re\ and hence it
can be normalized. This corresponds to the single-valuedness
condition in the coordinate representation.

We derive also the analytic Bethe ansatz equations and
construct the Baxter function as an infinite product of Bethe
ansatz roots.

The solutionQ(u) of the Baxter equation for the general
n-Reggeon case is constructed as an infinite sum over poles
of the orders from 1 up ton—1. Their residues satisfy
simple recurrence relations. It is shown, that the quantization

The operator8 with different spectral parameters com- condition for the integrals of motion follows from the con-

mute

dition of the cancellation of the pole singularities in the two
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dimensionalX-plane for the bilinear combination of holo- Here

morphic and antiholomorphic Baxter functio@¢\) and the
hysical requirement, that all Baxter functions with the same 1 n - 1 ..n
physical requirement, m=C+ivts, mM=s+iv—>
integrals of motion yield the same energy. 2 2’ 2 2
For the odderon, we explicitly construct the BS represen-
tation and investigate the properties of the odderon wavare conformal weightgthe quantitiesy and n are corre-
functions in this representation. The completeness and ospondingly real and integer numbers for the principal series
thogonality relations for these functions are discussed. of the unitary representationsThe Casimir operators of the
We derive new formulas for the eigenvalues of theMobius group are given by Ed4).
Reggeon Hamiltonian written through the Baxter function. For example, for the Pomeron and odderon we have re-
These formulas generalize the result for the Pomeron to angpectively[2,4],
number of Reggeons. The energy turns to be expressed in
terms of the behavior of the Baxter function near its poles at m x \m
A=i which are present for arbitrany. q,(zl(,jl,ljz;;,o):( P12 ) (ﬁ) '
The BS representation promises to be an appropriate start- mm P1oP20/ \ piop3o
ing point to find new composite Reggeon statesnor3. In

particular, it will be interesting to generalize the odderon m x \m
i i B ,> = = .>,_|[ Pz P23 -
.;oluuon constructed in Ref[15] to the case of many q)m,a(Pl,Pz,Ps,Po)—( ) ( - *) b i(X.X*),
eggeons. P20P30/ \ p59p3
Il. BS REPRESENTATION FOR THE WAVE FUNCTION where ¢ is a function of the anharmonic ratio,

In order to solve the Baxter equation, one should fix the

class of functions in which the solution is searched. The case X= M_
of integer conformal weightn has been considered in Refs. P1oP32
[9,10,18. It was assumed there that the solutions were entire ) )
functions with the asymptotics Due to the identity

Q(N)~N™"",

n P n n—-1 k =)
Z PkPk=1 Z Pk+2 Pk,k+12 (pr_ﬁ)v
but such functions do not exist for physical values of the k=t k=1 k=t =t
conformal weightsm.

We want to find the conditions which should be satisfied .
by the solutions of the Baxter equation from the known in- P=k21 Pk

formation about the eigenfunctiond of the Schrdinger
equation in the two-dimensional impact parameter sgace \ye can express the quantiB(u) in momentum representa-

[2,16]. For this purpose we perform an unitary transforma-tion in terms ofP, p,— P/n and the operators
tion of the wave functiond to the BS representation in

which the operatoB(u) is diagonal. 9 9 P
To begin with, let us go to the momentum representation Prk+1= —i(—— ): il B e
(with removed gluon propagators 9Pk IP+1 a( S o )
;
r=1

\Pm,ﬁ(ﬁl!ﬁb e vﬁn)

n n dzp k=1,2,...n—1.
- k — -
Zrﬂl (pr)zj kljl [ﬁexmpkﬁko)

It is convenient to introduce the new independent variables

X Py i(p1:p2, - - - PniPO)- (13 n o
- . P=> P, ti=Ing—,
Here @, #(p1,p2, - - - on;po) IS the wave function of the k=1 P—p:
composite state in the two-dimensional impact parameter (14
spaceﬁ. It belongs to the principal series of the unitary rep- pP1t P2 P—p,
resentations of the Mwous group and is an eigenfunction of tZZInm' c+ - tp-1=In Pn

its Casimir operators
44 The quantitieg, take their values in a strip of the complex
M@y, =mm—-1)P 5, plane
(M*)2D , m=m(m—1)Dp, . —o<Ret,<», —a<Imt,<m.
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There is a helpful representation for the operatgrée-
sides that given by Eq10). Namely,

b=(-1)' _ (E prl)
1sip<ip<...<ijsn \rq=1
i2 n |
X 2 prz)"'< 2 er)H siigt 1o
rp=ig+1 MNyp=i+1 =

(15

which is related with the duality transformatighl] consist-
ing of the cyclic permutation

Pk— Pk k+1— Pk+1

and the transposition of the operator multiplication. Note,
that with the use of the duality symmetry the wave function
in the momentum spadd.3) for P=0 is proportional to the
same function in the coordinate spddd]. Furthermore, the
function for arbitraryP can be obtained by an appropriate
Mobius transformation.

In the variablestq, ... t,_
takes the following form:

1 the matrix elementBB(u)

B(u)=

n—-1
_ 2 bkun—l—k
k=0

where the operatons, are given by

k=1

I] (1-et

<lg=n—-1r=1

k
14
r+1 ];[ (?_

S

by

1<ly<l,< .

This representation can be obtained from ELp) for b,
taking into account the formulas

1]

_ @l —
1-en r+1

r+1= 7
(Sl

> Ps

[=-2]

In particular, forn=2,3,4 we obtain

B@(u)=—P| u+i i)

at,

PHYSICAL REVIEW D64 114019

0,0
at, oty

)

B®)(u)=—P|u?+iu

1—ehrt2) — i
~( at, at,

B®(u)y=—P

3
ud+iu2> 9
r=1

—u
1<I,<l,=3

(1- et'1'2)6’|18|2

2

-1l (1—etk,k+1)alaza3} (16)
=1

where

b=t~

2 o=

(9_tr.

Since in the momentum representation the norm of the wave
function is given by

W 12 =

P2,

|2 mm(p1!p2!"'
we obtain after extracting the fact@®(P—=}_,p,) from

Wi in the new variables; ,t7; .. .5t _¢,th_;

n-2

= [ T %I et o) 2wl

The operator8(u) are symmetri® = B' with respect to this
norm with the weight

n—-2

H |1— ets_ts+l| _2_
s=1

The eigenvalues of the operator zérpand\} of B(u)
in the holomorphic and anti-holomorphic space have the
form

Ni

S
A= oy >

)\::O'k_l

K
2 1
where oy is real andN, is integer. The unitary transforma-

tion betweent and\ representations conserves the norm of
the wave function

n—-1 + o
+ oo
O | T i [
r=1 —» N, =—c
Let us introduce the kernel
Ugl _____ gn_l(fl,fz, ce ,fn,l) for the unitary transforma-

tion between thé and A representations. It satisfies the ei-
genvalue equations

114019-4
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tn-1)

BW*Ui, .5, (t1, .t
n-1
=—P[I (u=xoUz 5 (f1, .. fh0) A7)
k=1
and the orthogonality relations
n—1 n-2
d’t,
1] =2) - » *
f Hl (277 H |1 e +1| U)\ ...... )\n,lu)\i _____ )\r’]_l
n—-1
=Spll [8(ow—07) 8y, ;] (18)

Here, \§ ,\ stands for the eigenvalues of the operatogs

andf\’k‘ , respectively and the symbgl, means the sum over

all possible permutationsrq, ...
12,...n-1.

rn_q1 Of the indices

To construct the kernel with the correct normalization, let

us take into account that the Kronecker and Digatunc-

tions appear in the right-hand side of the above equation as a

result of the integration over the region

t2_t1>1, t3 t2>1 . n 1 n,2>1,

corresponding to one of the two possibilities

P1<€po<< ... <Py

or

pl>p2> .. .>pn.

In this region the operatd8(u) simplifies as

n—1

B(u)—>—PkHl (U+idy) (19

PHYSICAL REVIEW D 64 114019

®p mn(P1.P2s - Pn)
4d2%p,
=J H 4eXF(|pk Pro)
k=1 | 7| pyol

n
=kljl P2 Inpyl?, (20)

where we subtracted from the distributify] ~* its singular
part [19]. This function is an eigenfunction of the transfer
matrix with the eigenvalue

A(u)y=(u+i)"+(u—-i)".
In particular, its Mdius conformal weights are
m=m=n

andq,=0 for odd values ok. Notice that the Baxter func-
tion for the pseudovacuum stateuisndependent.

It is important to know the wave function of the pseudo-
vacuum state in the BS representation. We see fron{Hg).

that\, in the new variables for the Pomeron state takes the
simple form

Ry= i
=

and the change of the basis results in

2<&)“‘I ﬁ iNg
P2/ \p3
X 8D(P—pi—py).

One can obtain from Eq920) and (21) the Pomeron
pseudovacuum wave function in the new variables as

7i}\1‘ * —iNg
®O(P, xl)—IPI“de( pp) (:p*)

P A A\F)=
(P1P2 1:AT) D1P,

(21)

XIn|p|?In|1—p|2.

and therefore the kernel for the unitary transformation corrett can be written as follows:

sponds to the Fourier transformation
vtnfl)

n—-1
)\rn—l) EXF{ i kZ]_ (tk)\;.kk‘i‘t:)\rk) ,

.......

where® are some phases.

IIl. BS REPRESENTATION FOR THE PSEUDOVACUUM
STATE

The wave function of the pseudovacuum state in the mo-

mentum representation is

s = Jd d
DO(P,\y) —|P|4I|ma—a— d?p|p| 27

N/2
p*(1-p)
p(1—-p*)
where\ ;=0 +iN/2. The integral is calculated in a closed

form with the use of the anti-Wick rotatiofsee next sec-
tion):

X|1—p|#~

®O(P,N)=47(—1)N|\|?lim —51 (22)
’ (n—0a)*

u—o
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The fact that the wave function for the pomeron pseudo- However, the pseudovacuum state and other solutions
vacuum state turns out to be divergent is connected with theith integer conformal weights do not belong to the space of
fact that such state having the weights=m=2 is outside the physical states. Therefore their unitary transformation to
the space of physical states. However it is important to northe BS representation should be special and the normaliza-
malize correctly the Baxter function. The natural regulariza-tion of the unitary transformation could include only the in-
tion of the Heisenberg model can be provided by changindgegration over the large momenta. In this case it is more
the spin representatis— — 1+ e without losing its integra-  hatural to write for the kernel of this transformation the fol-
bility. It would lead in particular to the modification of the lowing expression:

pseudovacuum stat@0) and to the convergence of integrals

after their analytic continuation.

S - o o (F Ty PS
The above result fod°(P,\) can be obtained in a sim- U, x,(tnte)=cy ;e

(I12)[(A\] +A5)t+ (A + 1)t ,

pler way by taking into account, that in the integral transfor-
mation to the\ representation the large momeptdominate

(I)O([S’X):(_l)N|P|4f d2pe—i()\*/p)e—i()\/p*) |n2|p|2

=(=DNPr e,

where the constarliﬁji2 does not depend oK, .

Let us now consider the-Reggeon case. Again, the large
momentaﬁk, 1<k=n presumably dominate the pseudo-
vacuum wave functiod®(P,X) when expressed as integral
transform of EQ.(20). This large momenta regime corre-
sponds to small,, 1<ksn-—1 according to Eq(14),

where the leading divergent contribution ¢odoes not de-
pend on\. It corresponds to the following simplification of

the operatoB(u) for p>P,

2

ps. d
@)= — LI
B'“/(u) P(u Plap>'

P p \?
Rety=——+0| /— | , Imt=m.

> P > P
r=1 r=1

In the case of three particles we have for laggep,,ps  Since the operatd®(™(u) for small Ret, and Imt, = 7 con-

with fixed P,

BO(uy=-P

2, o J PP
u u——y N o

t=t;+t,=P(p; *—p3 H)<1,

y=t;—t,=P(p; '+p; H<1.

Its eigenvalues and eigenfunctions for smadindy are

B®(u)=—P(u—A})(u—1\3),

Orrny (1y) =PI 1N\ Ty Iny],

(i)Y +A5)t

2
S%p;(t:y):e Y.

Imposing the property of the single-valuedness we can write
the transition amplitude in the two-dimensional space:

U).\'l'):2( fl s fz) = Cil ’):ze(i/z)[()\.]‘: +)\3)t+()\1+ )‘Z)t*]

*

y

(23

tains more derivativeg, than factorstrlr2 compensating

them, we obtain in this regime for an arbitrary numbeof
Reggeons

BM™W(u)=—P[u" 1+u"%i(n—1)g+ -]
n—-1
~_ -1_,n-2 *
~—P|luy" un jzl)\j_l—“.
Wheret=t1++tn,1

Therefore, the transformation kernels far Reggeons
have the larges behavior similar to the case of=2 and 3,

(24)

n—-1
<[] (ei[thllxl*/(n—l)]tkei[Zg;llxs/(n—l)]t:)
k=1

% + —Inly|? where the constarty \pS is fixed by the normalization
1 n—
ASUEID NP condition with the integration over the region of large mo-
menta.
where the constanty . for the normalized functio is Thus the pseudovacuum state in the BS representation can

calculated belowWsee Eq(124)].

be written as follows:

114019-6
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DOUP, Ny, ... Npoy)

n—1 n
; n—1, % gk n—-1 k *
~|P|2”cgl P 1f 1 [dzpke["(”’l)]@l:l"l /zr:lpr+zszlxs/2,:1pr)] T inlp./2.
- k=1 m=1

Using dimensional arguments we can write the result of im  ¢® - —sinH2(2mn,_,)
the integration for the pseudovacuum wave function as Mgy qoi O
n-1  |2(n-1) xsint~2(2mNf_,).  (27)
B N S y~|pl2ngPs .
PPNy, ... Np_1)~|P] i P N
(25) IV. BS WAVE FUNCTION FOR THE POMERON

The wave function of the Pomeron in the momentum rep-

up to a divergenk-independent factor which can be regular- resentation is given by

ized by changing the value of the Heisenberg sgins— 1
+ €.
Ly L. 2
Thqs, providing that. only large momenta are ess.ent|al in V. = (B1iPa) = H (5)? H
the unitary transformation, the pseudovacuum state in the BS ~~ mm(P1.P2)= 11 (Pr
representation is expressed in terms of the normalization

d’p .-
Ll ﬁexp(lpkpko)

ps N ; n—-1 2(n—1) m
constanty = ;| times|[ZZ1A| . For the Pomeron X( 15 )m p% o8
c; does not depend ok [see Eq.(Zl)]. e\s it was ar_gL_Jed p1oP20 |\ p¥ep3s
above, for the kernewg1 ''''' anl(tl’ .. .,th_1), describing

the transition between the momentum and BS representations, corresponds to the contribution of a triangle diagram.

for the pseudovacuum wave function, it is natural to take intoccording to Appendix A the matrix element for this triangle
account in the normalization condition only the contribution diagram in the momentum space is

from large momentdpresumably this is valid also for all
states with integer conformal weights and m). We obtain

. . L. k(P—k) m-1
in this way ¥ (P1.P2) = Cin dzk[—pl_k }
ES - = —
C)\l ..... N1 1 (26) y k*(P* _ k*) m—1 (29)
py —k* ’

up to some\ . independent factor.

The above arguments are in accordance with the Sklyanin
theory in which the pseudovacuum state in the wave functioNvhere
is considered as a multiplier allowing to write the other mul-

tiplier as a product of the Baxter functions. Because, as it imMmT T(1—m)
will be shown below, the Baxter function for tlreReggeon Chm=—(—1)"——= —
composite state contains the po@éx)~(x—ir) ("~ for ' 2mEmt4nLS  T'(m)
r=0,1, ..., itisnatural to expect that the wave function of

the pseudovacuum state cancels some of these poles. More—N te. that the ab int | ovEri t at th
over, since from each solution of the Baxter equation we can. ote, that the above integral ovkris convergent at the
obtain other solutions multiplying it by factors sfifm\), singular p(lmts of the integrand a-md. at the .|nf|n|ty prov@ng
this symmetry should appear as a possibility to multiply thethatm andm correspond to the principal series of the unitary
pseudovacuum state by such factors. Generally, the pseudPresentations

vacuum state is not symmetric under the permutation of the

parameters\i,\so, ... \,_1. In order to find the Hamil- 1 n . 1 n

tonian in the Baxter-Sklyanin representation we show below m=s+tivts, m=s+iv-y.

that in the region wherex,,_1,\;_;—i and Ag—0 (s

=1,2,...n—2) the holomorphic wave function has only a R R

single pole at, ,=i. Therefore, in order to agree with the  Terms proportional ta5®(p;) and 5*)(p,) [17] can be
Baxter representation we should substitute neglected here since they are multiplied ﬁﬁﬁ%
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One can analytically continue it for other valuesnofind
m. In particular, form=m— 2, corresponding to the pseudo-

vacuum state, we obtain that the leading contributions from

two regions: smal|p; —K|

m

j Jor | K (PE+PE k) ml(k(pﬁpz—k)) -
py —k* P1—kK
27| py/?Ipal®
m+m-—4

and largelk|

[K* (p} +p3 —k*)™?

(pi _k*)m+1

pallpl? | 0%

X[k(pﬁpz—k)f"*l
(pi—k)™*?
_ 27T|p1|2|p2|2

m+m-—4

PHYSICAL REVIEW D64 114019

Equation(30) admits a natural interpretation as the Feyn-
man diagram:

The Feynman rule is as follows: a line where a momen-
tum p flows has associated theonforma) “propagator”

pi”*(p*)i” and the anomalous dimensions for other lines are
linear functions ofm andm.

To calculate\lfm,;](ﬁ,)f) we use the anti-Wick rotation
p,— —ipg, kKo=—1ikgy and introducei e to keep the singu-
larities off the integration paths:

p[>=pp*—pi-p5—ie. (3D
Let us concentrate our attention on the integrals &feand
p*. The position of the singularities ik* and p* in the

cancel. The final result turns out to be proportional tointegrand of Eq(30):

|pa/?[p2l? Inlpy? In|pol>. .
Thus, the Pomeron wave functieh, ;,(P,\) in the BS

representation igfor A= —X\;)
d2p ( )i}\*( ) in

flp(l—p)lz
)i)\*

Xq’m,ﬁ‘l(ﬁ!i_ 5)
k*(1—k*

:Cm,ﬁJ
) m—1
pr—k* ]

p*
(30

p*
1-p*

p
1-p

P i(PX)

P&( P* )m

d?p (
Ip(1-p)|?

LN

wherep=p,/P, p*=p7/P*, andk and k* were also re-
scaled byP and P*, respectively. The integrand is a single-
valued function only for the following values of the variable
Al

p
1-p

1-p*

k(1—k)
p—k

N

2

N
_I_

)\1 o+l 2

\i=0

where o and N are correspondingly real and integer num-
bers.

(pp*—ie™ (1-p)(1-p*)—ie] ™
X[(P=k)(p* —k*)—ie]* ™™

depend on the values &fandp. Therefore, the three singu-
larities in p* (or k*) may be on one side of the real axis or
one of them on one side and two others in the other side. In
the first case we can deform the contourpin (or k*) and

the integral vanishes. We obtain for the non-zero contribu-
tions after enclosing contours of integration okérand p*
around the singularities of the integrand

@ i(P.X) = PM(P*)MC, =i sinh(m\)sin(7m) W, +(X),

where
iNF—1 —k 1-m
V0= [Cap——— [ "ok (b
| 0 (1-p)t o Tk(1—K) T
. *\iA—1
xf dp* )—fo dk*
1 (p*_l)l-ﬂ)\ —»
(p*_k*)lfm 1 iNF—1
X 1—m_(_1)n dl 1+iN*
[k*(k*—1)] ° (1-p)
K— 1-m _ A*yin—1
><f1dk (k=p) ~j0 dp*( p*) |
P Tk(1—k)JE ™ e T (1—prttin
° k*_ *\1—m
XJ dk*L- (32)
S e
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The integrals ovep* andk* as well as those over and
k can be transformed using relations of the type
(k—p)t ™

oD (p)= (a2
m (™ L [k(1—k)]* ™

fo (p—kyt=m

= | dk————

—e [—k(1-k)tm
(p—k)Lm

@, _ [P
P (p)—fodk

[k(1—K)J-™

ydkm

. (33
L [k(k=1)m

Each of the two terms in Eq32) factorizes into holomor-
phic and antiholomorphic functions. We can thus write

W n(N) as
N)
Vi (N) =i Sm(“ o LCh (e
+(—1rcPar)cP o,
where
1 i)\*—ldp
cWxy= [P P
m ()\ ) 0 (1_p)1+|)\ m (p)
_sin(@m) o dp(—p)*" "t )
_'sinh(m*) —w (1—p)L+ir* P (P,
in* —ld
C(Z)( N*)= f% (2)(p)
_sin(mm) (= dpp™

_ e
Isinr(m\*) 1(p— 1)”'” m (P)-

(39

PHYSICAL REVIEW D 64 114019
2 1
cR)=CcHA-N)
and therefore

D m(PX)

_mm T Ay *yc@)
P%P*mCm;n sintP(\)[CE (M) CRLY(N)

+(—1)"C(—a*)cB(—N)].

We use the limiting value for the pseudovacuum state
=ﬁ1—>2,

1- \F
I e S L
2—m sinh(7\*)(2—m)
c 1
ot
™ 2m2—m]

to normalize our wave function.
We can write the result in terms of the product of the
Baxter functiongQ(A,m) and the pseudovacuum state:

Dpn(PX) (DA -
_ =— —Q\*,mQ(\,m)
PTP*MC & mm
+(=1)"Q(~\*,mQ(—\,m)], (35)
whereQ(\,m) is defined as
__sinh(m\) (1 p*idp [1(k—p)t Mdk
QUvm==m— o (1-p)t* ™M plk(1-k)Im
o 1 p?tdp (1 (k—p) "dk
=—isinh(7\) o(1—p)1+”‘ p[k(l—k)]l_m.
(36)

These two equivalent integral forms of the Baxter function

The functionsd’(p) and®&)(p) are related to each other are related with integrating by partsjnand using the iden-

as follows:

lim [o%
e—0, p<0

(p—ie)—dL(p+ie)]
= —i sin(#m)®£)(p),

im [@P(p—ie)— @D (p+is)]=i sin(mm) @ (p).
e—0,p>1
Upon changing the integration variables
p—1-p, k—1-k

one verifies from Eq(34) that

tity
d [k(1=k)|"_ k(1=K 1
@[ k—p } M [p(1—p)+(k—p)?].

This corresponds to the fact that the Pomeron wave function
is an eigenfunction of the Casimir operator of the hils

group
p(1- p) q><12>(p) m(1—m)®&?(p).

Using EQ.(36) and the identity
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. A d__ |
AP Lmp) = T N (L) T

we obtain that

,M)=—1msin — =
"oa=py* dp
><fl(k—p)lmdk
plk(1—Kk)Jt—™m
and
i) ix i(n—1)
(L) ol P, L)
1-p 1-p 1-p
B 1 p )i)\
p(l-p)\i-p/ °

The Baxter equation for the Pomer(i®) follows using both
integral representation86) for Q(\,m):

(A—1)?Q(N—i,m)
(37)

It should be noticed that iQ(\,m) is a solution of the
Baxter equation for the Pomeron, th&@{—\,m) is also a
solution.

(N+D)2Q(N+i,m)—2A2Q(\,m) +
=m(1-—m)Q(\,m).

V. ANALYTIC PROPERTIES OF THE BAXTER FUNCTION
FOR THE POMERON

The functions®H(p) and ®{?(p) defined by Eq.(33)

can be written in terms of the hypergeometric function

>F1(a,B;v;z) and the Legendre functioR,,_1(z) [20]
oP(p)=0(1-p)

m(1—m)
WPF(l m,m;2;p)
~ msin(arm) P( p)d_p

XPm-1(1-2p). (39

Therefore, we have for the Baxter function
__ msinh(md) (2 iN—1—iA—1
Q()\,m)——lmﬁ)dp(l—p) P
XPm-1(1-2p) (39
mw’m(1—m)

e — 1 + __ + . .
Sinam aFo(—iIN+1,2-m,1+m;2,2;1),

(40)

where the generalized hypergeometric functigh, is de-
fined as followq 20]:

PHYSICAL REVIEW D64 114019

sFa(ay,az,a3:61,82:2)

I'(a+k)

5 (ap) (@) (ag)y 26
=2 T'(a)

(BB K

One can find for the pseudovacuum statenat 2,

= )=
k=0

2
Q(x,m)zm—f2+0(1). (41)

We thus have the following series representation for the Bax-
ter function:

K[ (m+K)T(1—m+k) T'(k—i\)
(k13 F(1=in)’
(42)

Q\,m)=—7>,
k=1

The late terms in this series behavekas ~'*. Hence, this is
a convergent series for In<0.

In order to analytically continue the Baxter function to the
upper\ plane we insert in Eq39) the series representation
of the Legendre functiof21]

sm27-rm

~, T'(m+K)T
Pm-1(1-2p)= 2 (

I'(i—m+k)
(k!)?
X[2¢p(k+1)—¢p(k+1—m)
—y(k+m)—In(1-p)](1—-p)~.

Integrating term by term in Eq39) yields the series

(43

|7T sinTm

i k['(m+Kk)(1—m+k)
TTariné

(k13
XT(K+iN[24(k+ 1)+ (k) — p(k+1—m)
— (k+m)— P(in+K)]. (44)

The late terms in this series behavekag™'*. Hence, this is
a convergent series for lin>—1. Equation(44) explicitly
display simple poles at

Q(A,m)=

N=0i,2i,3i, ... i,

Actually, the poles ah=+il (I1=1,2,...) arise from the
logarithmic singularity ofP,,_1(1—2p) nearp=1 in the
integral (39) [see Eq.(43)].

Direct calculation yields from Eq44) for the residue at
these points

ri(my=Ilim[A—il JQ(\,m)
A—il

ro(m)=im (45

r(m=—imm(l—m)sF,(—=1+1,2-m,1+m;2,2;1)

sinTm

=————Q(~il,m)

|
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forl=1,2,... . Itisinteresting to notice that the residues of = The asymptotic behavior @(\,m) for largeA is derived
Q(\,m) atAx=+il (I=1,2,...) areexpressed in terms of in Appendix B starting from the integral representati@f),
Q(\,m) atA=—il (I=21,2,...).

In summary, Egs.(42) and (44) explicitly show that 1
Q(\,m) is a meromorphic function of with simple poles at F( m_i) I'(2—m)
A=+il (1=0,1,2...). Theappearance of these poles is Q()\,m)=4\/; (4in)™2
related with the logarithmic singularities of the wave func- I'(m)

tion atp;=0 andp,=0.
The pomeron wave function considered as a function of

real o for evenN may have in principle singularitiegecall +(4i)\)‘1‘mtanwmr(m)r(m+1)
that A=co+i(N/2)). However, we find from Eq(35) for rl m+ 1
nonvanishing\, m 2
Pole ate=0 of [Q(A*,m)Q(\,m)
+(=1)"Q(=A*mQ(—\,m)] O™ AN | (48)

1 -
= —[n(mQ(~il.m)
The Baxter equation for the Pomer@8i7) written in the

—(=1)"Q(—il,m)r;(m)] form
=0 (46) L OEDZQO M)+ (A —1)2Q(—i,m)
wherel =N/2. Here we used Ed45) and the relation Qv m)= 2M%+m(1—m)
sinrm=(—1)"sin7m. would seem to suggest th@(\,m) has singularities at the

It is important to notice that in the wave function the pole atZeros=17m of the denominator where

o=0 andN=0 is also cancelled by the factor corresponding

to the pseudovacuum state, thus allowing to normalize the ~ \/1 \/1 1/ .n

Pomeron eigenfunctions. Analogous cancellations of poles of m= Em(l_ m)=

the Baxter function at reab- for a higher number of

Reggeons lead to the quantization of the integrals of mOtionHowever we know tha®(\,m) is analytic there. Therefore

gy, r>2, as it will shown below. In coordinate space this foIIOV\'/ing relation holds,: '

guantization appears as a consequence of the single-

valuedness conditiofsee[14]). ) .
Notice that both Eqs(42) and (44) exhibit the me1 Qlinm+i,m)

—m symmetry: Q(i py—1i,m)

Q(A,m)=Q(N,1-m). , , , . :
A. Dispersion (Mittag-Lo ffler) representation of the Baxter
Therefore,Q(A\,m) depends omm through the invariant function

combinationm(1—m) as we check explicitly belovsee We obtain from the Baxter equatiof87) a recurrence
Egs.(49) and(50)]. Note, that this combination for the prin- . |ation for the residues (m)

cipal series takes the form

m—1 2

mt 1

L 12 (14 1)r 1 (m)+ (1= 1)%r,_(m)
m(l—m)=Z—(iv+§ : (47) =[212+m(m—1)]r,(m) for I=1,

We see from Eqs(39) and (44) that the functionQ(\,m) ro(m)=m(m—1)rq(m). (49)
obeys the relation

All residues are thus determined in terms of the residue at the
origin ro(m). That is,

Q(\,m)=Q(—\,m).

That is,Q(\,m) is real for purely imaginary. and realm.
We have for reah andm, r{(my=m(m—21)ry(m),

ReQ(—A,m)=+ReQ(\,m),

1
ImQ(—X\,m)=—ImQ(\,m). Fa(m)=zm(m-1)[2+m(m—1)]ro(m),
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1 5 and therefore
r3(m)=§m(m—1) 3+§m(m—1) g
1 —|I|md)\InQ()\ m)= —+2 Y(m)—(1—m)
+Zm2<m—1>2}ro<m>. (50 M
+24(1). (55)

It is easy to check that Eq$42) and (45) agree with these
results. We obtain for the othefindependentsolutionQ(—A,m) of

The asymptotic behavior of the residuggm) follows  the Baxter equation,
from the recursion relatiof49). We find, for largel

d i
r|(m):C(m)|m_2+C(1—m)l_m_l. (51) —i ||m _InQ( )\,m) )\+| 2+l,//(m)+ lfl(l m)

Therefore, we can write the following Mittag-KEter (dis- —24(1). (56)
persion representation for the Baxter function:
- The behavior of the Baxter functio@(\,m) near its
m) = 2 r(m) nearest polex=i can be also computed from the Mittag-
A—il Loffler expansion(52) with the result

)

—iro(my+i>, . (57
= -1

i S|n77m°° Q(—il,m) A=ijrm(1—m)
by Z =il o Qn,m) = N—i
(52)
Equating this result with Eq54) yields the sum rule

The asymptotic behavidb1) guarantees the convergence of
this sum for—1<Rem<2. r

In general, we have fom<p-+2 wherep is a positive —irg(m)+ >, 7=~ Pmm(I-m)[g(m)+ (1 -m)
integer or zerq22] =2

w 1 —-2¢(1)—2].
Q(h,m)=Fp(A,m)+ E r,(m)[ —h P()‘)} For large\ the Mittag-Ldfler series(52) is dominated by
its late terms. Notice that the sum of residues
where .
P ik =
Nt > r(m=0 (58)
Fp(h,m)= 2, %Q(k)(—i.m), =0
vanishes. The sum of late terms can be approximated by an
P 1=k integral. Using Eq(51) we find
_ ik
hi ()= 2 ————= A+~ (53)
k=0 (I1+1) A>1
— H m—2 _
For example, Q(A.m) = c(m) sinwm(”\) +(me1-m)
m(1-m) in perfect agreement with Eg48).

FoA,m)=Q(—i,m)=—m2———,

sinTm
B. Infinite product representation of the Baxter function

FiONm)=Q(—i,m)+(N+i)Q"(—i,m)

As we have seen, the Baxter functiQ{A,m) is a mero-

,m(l-m) i morphic function of A with simple poles at\=+il (I
=T ginam T D =1,2,...).Therefore, the function
S T(m+Kk)T(1-m+k) Q(\,m)
x : T(in)

k=2 (k—1)(k!)?
is an entire function. Entire functions can be represented as
infinite products over their zerd22)].

i Numerical study of the Baxter functio@(\,m) in its
limQ(\,m)=mm(1- m)[— xF2—ym Mittag-Loffler representation showed that all zeros of
Al Q(A,m) are in the positive imaginary axis for Rem<2.

We have in additionp real zeros forp+4>Rem>p+2
- 1//(1—m)+21p(1)} (54)  wherep is a positive integer or zero.

We get from Eq(44) for Q(\,m) in the limit A —1i,
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For large A the imaginary zeros\,, k=1,2,... are * 1
equally spaced and follows for lardethe law: 2 k(1+|)\ FVEEW] =l-y—(l-m)— —— p—l
1
Me=ifk+1-m+O| — a (59 VI. SOLVING THE BAXTER EQUATION
FOR n-REGGEON STATES
for Rem<1/2 and wherea~0.5. The Baxter equation for the odderon takes the form

We assume the infinite product representafid?,
[2\3=m(m—1)A+ix]Q(\;m, )

Mo — (A HDPQ+Tim, )+ (A —1)PQ(N—iim, ),
‘ (62)

Q(\,m) 4
T e [1-

k=1

The asymptotic behavior§69) and (B3) are consistent

provided(see Appendix B where

Qs=ipm, Im(u)=0. (63

- . The reality property ofu is needed to obtain the single-
In addition,B= — 7 according to Eq(52). In summary, valuedness of the odderon wave function in the coordinate
we have space[16].
" Equation(62) can be solved asymptotically for large
Q()\.,m) e ue-m [ ( making the power-like ansatz,
I'(in) k=1

A=—iy(2—m).

A
1— —|eMx, (60
k

A—0

where y(z) is the digamma function. QNim, ) = A®
The Bethe ansatz equations are algebraic equations on

zeros of the Baxter function. They follow from the Baxter Inserting Eq.(64) into Eq. (62) yields two solutions:a.

equation(37) and this infinite product representation. Equa-=m—3 anda_=—m—2 connected by thene1—m sym-

tion (37) can be recast as, metry. The general solution of E¢62) will have thus the

asymptotic behavior
Qixm - QA +im)

b 1
1+X+O(F } (64)

2_ — -
R VTV R TRt NI E
Qn—i.m) TThH * Him— 1)(m 2N IN?
FINN—I)2 S
S PN e e
, _ (m+1))\ \?
Setting heren =\ yields
_ . whereA. are constants.
)\k()\k—l) o202 m)H 2|/>\ )\k_l 61) For the Pomeron case the Baxter function can be ex-
Ati — N ti pressed as a sum of simple poles in the upper plaee Eq.

(52)]. This is not the case for the odderon. If we try an ansatz
We see that the Bethe ansatz equations are here an infinitéth only simple poles in the upper plane,
system of algebraic equations. In the present Reggeon prob-
lem it is more effective to solve the Baxter equations by (M, )
looking at the poles of the Baxter functigsee Eq.(49)] —Ti
rather than to the Bethe ansatz equati®. In customary
cases the Bethe ansatz equations are the more effective tdbke asymptotic behavior of this sum for—« turns out to be
[7].

Since the Baxter function is explicitly known for the

(65)

Pomeron we can find an infinite number of sum rules for the Qo(N)=c/A, C:zo Cr(m,p), (66)
zeros\ just by matching Eqsi42) or (44) with Eq. (60).
For example, fon —i we get from Eq(60), wherec is not zero. Therefor®, does not satisfy the Baxter
equation for the odderon at—oc. In particular the behavior
1 (64) is not fulfilled by Qu(\). Note, that in the case of the
_'i'Tld)\ InQ(x,m)= _+1 v 2 YY) Pomeron the simple pole ansatz indeed satisfies the Baxter
equation at infinity because the sum of residues vanishes
—(2—m). [Eq. (58)].
For the odderon, we have to include in the Ansatz double
Equating with Eq.(55) yields poles. It will be shown below, that in the general casenof
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Reggeons) may contain poles of the order— 1. The odd-
eron Baxter function can be written in the form

ar(mvﬂ) .br(muu)
(A—ri)? '

Q(A;m,u)=20 - (67)

The residues satisfy the recurrence relations
ap(m,u)=—pap(m,u),
8ay(m,u)=[2+m(m—1)—pufay(m,u),

(r+1)%a, o (mp)=[2r3+m(m—1)r— ula,(m,u)

_(r_l)gar_l(m,,u,),

bl(mwu') == lu“bO(m!:U/) +m(m— 1)a0(m11u“)
- 3a1(m1/~L)1

8by(m,u)=[2+m(m—1)—u]bs(m,w)
+[6+m(m—1)]a;(m,u)
—12a5(m, p),

(r+1)30,, 1(m,u)=[2r3+m(m—21)r — x]b,(m,u)bf
—(r=1)%,_q(m,u)
+[6r2+m(m—1)]
Xa,(m,u)—3(r+1)>2
X @y 1(m,u)—3(r—1)%, _y(m,u).

(68)

We can normalize

ag(m,u)=1. (69

In order to satisfy the Baxter equation at infinity and to ob-

tain the asymptotic behavid64), we impose

;0 b,(m,x)=0. (70)

This equation fixes the value df(m, ). Therefore, all co-
efficientsa,(m,«) andb,(m,x) are univocally determined.
We find for larger that botha,(m,x) andb,(m,u) de-

PHYSICAL REVIEW D64 114019

_Q(x,m)

m,0)= N

(71)

whereQ(\,m) is the Pomeron Baxter function.
Equation(71) holds because for small

] i
im QU m) = < +Qo(m).
A—0

To calculateQqy(m) one can use Ed54), the relation

2m(m—l)
sin(7rm)

Q(—i,m=-m (72

and the Baxter equation fa@(\,m) nearA=0. Thus, we
have

a
sin(zrm)

Qo(m)=m +¢(m)+l//(l—m)—2¢(1)}
(73
in an agreement with the asymptoticsnat- 2 [see Eq(41)]
2

Therefore, we obtain the residbg(m, «) of the simple pole
in the odderon solution for=0 as

bo(m,0)= +y(m)+(1-m)—2¢(1) (74

a
sin( wm)
and in particular,

1
bo(z,o) =7—410og2=0.3690@ . .. .
From Eg. (70) one can compute several terms of the

small-w expansion obgy(m,x) atm=1/2

1
E’“) =0.369004-2.835u — 2.74u?— 2.947u%+ - - -

(79

bo

It will be shown in the next sections that the odderon
energy E (related with the intercepA [see EQ.(104)]) is
calculated in terms of the behavior d@(\;m,x) and
Q(N\*;m,— ) at their singular poin=i and \* =i, re-
spectively[see Eq(113]:

crease as™ 3. As in the Pomeron case, the asymptotic be-

havior of the Baxter function for large is governed by the

late terms in the Mittag-Lifler series(67). Evaluating the

sum of such late terms we reproduce the asymptotic behavior

(65). In particular, this gives the possibility to calculate the energy
We see from the recurrence relatiof@8) that for un—0  for m=1/2 as a series i

the double poles withh>0 disappeafa,(m,0)=0]. Only

the double pole at the origin remains and the solution of the

Baxter equation for the odderon can be expressed in terms of

that for the Pomeron. With our normalization we obtain

bl(ﬁ]i - ,LL)
al(ﬁ], - ,LL)

_ bl(m’l’l’)
al(m7ﬂ)

+6. (76)

1 1
Ezbo(i,ﬂ) +b0(§,—#) =0.738008-5.498u%+ - - -
(77
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in agreement with the results by Janik and WogitK (take  An additional constraint foc..;(m,u«) is obtained from the
into account that we define the energy with an opposite) sign condition that in accordance with the Baxter equatipnat
E is a meromorphic function ofc. For m=1/2 its poles are \—« should decrease more rapidly tham 1/
situated on the real axis at the points

+oo

pP=+0914® ..., u@=+473D..., >

Cr(m,u)=0. (84)

/.L(3)= +13.%...,

i _ It is obvious that
The asymptotic behavior of the energy at laggevas calcu-

lated in Ref.[11]:
3 13 1\2 1 1\4] 1
a28"120M 2] T12\™ 2/ |2

T (78)

Qs(N;m, ) =—Qg(—N;m,— ),

5 =Inu+3y+ [Qu(\im ) T* = = Qg(N*sm, = ).

Investigating the behavior of the Baxter functions near
their poles we find that the following relation is true:

We checked that both the small and the laggepproxi-
mations given by Eqe77) and(78), respectively are in ex-

, , , [i 7 cotha\ +X(m, u) JQg(N;m, )
cellent agreement with numerical values obtained from the

exact equation$68)—(70) and (76). _Cy(m,u) ci(m,—pu)
A solution of the Baxter equation independent of E&Y) = agm ) O "““)Jra (m ) QUM = w),
can be written as follows:
(85)
a(m—u)  b(m—pup)
Q(—N;m,—u)= 2 ;Jr”)'u - ()\+riM wherea;(m,u)=—u and
(79 bym) dy(m)
One can verify the relation X(m, p)= a;(m,uw) a ci(m, )
[Q(—=N;m,— ) ]* =Q(\*;m, — ). _dy(m,—p)  by(m,—p)
= - . (86)
ci(m,—u)  ag(m,—u)

Furthermore, it turns out that one can construct a solution
of the Baxter equation with simple poles, providing that they

are situated ak=ir (r=0+1,+2, ...): The quantitiesc,(w),d,(w),e,(n) appear in the expan-

sion of Qg(\;m, ) near the poles at=ir
+ o0

.Cr(maM)
sNymy )= —. 80 ,
Qs(him, ) r;_m' N—ri (80 Iim Qs(N;m, ) — Cr(m 'u)+d(m pm)—ie(m,u)(N—ir)
We normalizeQ; as follows: s (87
Co(m,u)=1. (81)

and satisfy the following relations:
Then, the residues satisfy the recurrence relations
C_(m,—u)=c,(mpu),d_(m,—pu)

—u= Ju)—C_ S, 82
p oM ) = e oalmp) (82 — —d (M), e (M, — ) =er(m,p0).

3 —1)yr—
[2r=+m(m=1)r=u]c(m,u) Due to the property of holomorphic factorization the Baxter

=(r—1)%,_;(mu)+(r+1)3%, . (mpu). (83 function in the two-dimensional space has the form

Qmiu(N)=Cis. Qe(A;m, ) Qg(N*; M, — ) +CL %
C(ls)

X Qy(\*;m,— u)+CEY

+CP Q(=Nim,—w)QONF M, — ),

~ 2
mmMQ(k;m,M)Qs(k*;m,—u)+0§n)w

L QOum, ) QN M, — )+ CEE QU= Nim, = 1) Q(—A*;m, )
Q(—x;m,— 1)Q(

LQsNim ) QN M, — )+ CHE QOum, 1) Q(— MM, )

2
—A*im,u) +CEL Q-im, - )

(88)
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where we took into account thaf = —iu. ; . T )V —O(—\m —
The coefficientsC™® are fixed by the condition of the AIT?r[Q()\’m’M)Q()\ )T QEAm )

normalizability Omeﬁ;M(X), which reduces to the require-

ment foervgq;ﬂ()f) to be regular ab=0 provided that\

=o+iN/2 with [N|>0. For N=0 the poles atr=0 are 1 N

killed by the corresponding factor in the integration measure. =— —z[a(m, —u)—a(m,—uw)la,(mu)a(m,w)
It is obvious that o

XQ(=\*;m,u)]

i ~
ctd _cy _o +;D,(m,m,m,

mmu Tmmu

because in the opposite case one cannot cancel the fourt ;
order poles in the product of the corresponding hoIomorphiéN ere
and antiholomorphic functions.

Further, the following equality D, (m,m, ) =[ a(f, — w) + a(m, — ) ][b, (M, u)a, (M, )

ct ——clL —a,(m, )b, (m,u)]

Bl(m1 _/"L)— a(m! _M)bl(miﬂ')
al(muu/)

is valid. To show it, let us investigate the Baxter function
Q(N;m, ) near the regular points=—ir (r=1,2,...):

B,(m,— u)— a(m,— w)by(m,
lim Q(\;m,u)=A,(m,u)+i(A+ir)B.(m,u). (89 _Bim—w) a(~m M)by(m, p)
Mo al(muu)

X a,(m,w)a,(m,w)+a,(m,w)a,(m,
It can be verified, thaf,(m,u) and B,(m,u) for r>2 (M. )8y (M, 1) % 8, (M, )3 (M, 1)

satisfy the same recurrence relations a¢m,—u) and —a,(m,w)a,(m,u).
b,(m,— u) respectively. Thereford,(m,«) should be pro-

portional toa,(m,— ) (for r>0) ) )
According to the relations

Ar(m, ) =a(m,u)a(m,—uw). (90)
a;(m,u)=[a,(m,u)]*,a(m,u)=[a(mu)]*,
But B,(m,«) are not proportional td,(m,— u) even if we
would choose x in such a way that Bi(m,u) ~
=a(m,u)by(m,— ). The reason is that according to the the contribution containing is pure imaginary and antisym-
Baxter equation the coefficier®,(m,u) is expressed not metric to the transmutatiom« m.
only in terms ofA;(m,u), Ax(m,x) andBy(m,x) [similar In the case of conformal spin=m—m=0 the function
to b,(m, )], but it contains also a contribution proportional
to ag(m, ) =1 from the pole 2. ThereforeB,(m,u) for
r>1 are not proportional td,(m,— ). From the Baxter Qmm; (M) =Q(N;m, ) QIN*;m, — ) — Q(—A;m, — u)
equation we can obtain the following relations
XQ(—N*;m,u)

Br(m,u)=a(m,u)b (m,— ) +[By(m,u)—a(m,u)

a.(m.— ) does not contain poles at=0 for [N|>0 and can be nor-

#ﬁr(m,—ﬂ), malized. In the general casa#m to cancel the first and

a(m,—u) second order poles at=0 one should take into account all
contributions in Eq(88).

Wherear(m, — ) satisfies the same recurrent relations as Let us attemp to construct a normalized wave function for

a,(m,—u) for r>1 with different initial conditions: m=m including all contributions in Eq(88) except the sec-

ond and third terms and the last two terms. That is, we im-

pose

Xby(m, —u)]

~ ~ 1
al(m,—,u,)IO, a2(m1_1u“):§-

1), _~@ _
_ 3 o Cmm.M—Cm m_M—O.
Because in the other bilinear contributions to E88) the o n

residues of the poles ior do not containa,(m,— u), we )
should cancel them in the following combination: We call such wave functiod Qp, 7. ,(N).
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Using the Baxter equation one can obtain the recurrence a(m,u) b(m )
r ’ r
+

relations for the coefficients; , d,, e, of the Laurent expan- lim Q(\;m,u)— — — )\—II‘ +E.(m,w).
sion (87) of Q¢(A\;m,«) near the pole.=ir. They are simi- A—ir (A=ir)
lar to the relations for the expansion coefficieats b, and (91
E; for Q(A\;m, u): We obtain the following relations:
ci(m,u)
cr(m,u)= ay(m ) ar(m,p),
_ by(m ,,u)
AR (m) al(m.u) A
_by(m ,,u)
d,(m, ———C¢(m,
AT Ay T s
Ccy(m, ) by(m, ) by(m,u)
er(mu)— ——E;(m, m '
. l( Iu’) al(muﬂ) l( Iu’) 1( ,LL) a (m ) 1( ,LL) al(m ,LL) (m )
ap(m,u) LA

These relations allow one to verify that the Coefficieﬁfg;n_ﬂ in the above expressio88) can be chosen in such a way to
cancel all poles atr=0 for [N|>0, which leads to the following expression fAQm;M(K):

- ~ .. ci(m,u) o
AQm, i (V)= —=[X(m, w) +X(m, ) JQs(A;m, ) Qg(A mﬁ#HWQ(Mm.M)QS(R ;m, — )

cy(M,p) cy(m,— p) .
WQS()\ m, ) Q(—N*;m, u) + WQ( Nm,— 1) Qs(N*;m, — )
ST o o im, ) QU s, ), 92
al(m!_/-l’)
|
whereX(m,u) is defined in Eq(86). rithmic derivatives of the functions\(—i)?Q(\) atA=i in

Note that the expressioAQm'ﬁq;’u()C) constructed above f[he holomorphic apd anFihoIomorphic spaces. We have two
is in fact zero due to Eq85). However, the wave function independent functions with second order polesati. They

Qum ﬁ()\) given by Eq.(88) is normalizable and does not are Q(A;m,u) and coth@@)Qy\;m,u). The equality of the

vanish when all contributions are included. That is, choosingnergies calculated from these functions gives the quantiza-
(1), (2) tion condition for
Com 07 Cm’m;#ﬁ(but excluding the last two termsThe 2
fact thatA'Qm,a;#()\) vani.s'hes aIIows' us'to diminish the di(m,u) dy(m,—p) by(m,u)
number of independent bilinear combinations of the Baxter —2X(m, )= - N
functions. ci(mu) ci(m,—p) a(mu)
It is important that we constructed the normalized func- bi(m,—u)
tion Qm,;w():) without imposing any condition on the nu- ay(m,— ) - (93)

merical value ofu. This function is a bilinear combination of

different Baxter functions in the holomorphic and antiholo-We found from the above equations numerically the first
morphic spaces. Let us take into account the physical reqots form=m=1/2:

quirement that all these Baxter functions have the same en-

ergy, because in the opposite cé}s(gﬁq;#():) would not have n1=0.20525756 ..., w,=2.343921...,
a definite total energy. According to the results of the next
sections the energy is expressed in terms of the sum of loga-  ©3=8.326% ..., u,s=20.08049 ...,
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with the corresponding energies lim Q()\;m”&)N)\—nﬁ—m’ (100
E,=0.4943% ..., E,=5.1699..., M
E;=7.7023 ..., E,=9.4628...,.... necessary to provid@()\;m,ﬁ) to be a solution of the Bax-

ter equation ah —oo. According to the Baxter equation this
These values are in a full agreement with the results of Janikgondition is satisfied if
Wosiek and other authorsee[16]) obtained by the diago-

nalization of the integral of motions in the impact param- = pln- 2)()\)
eter space and imposing the property of single-valuedness to lim A" 22 Prim _rme . (101)
the wave function. Amce =0 (\—ir)"?

Let us now consider the Baxter equation for the

n-Reggeon composite state: It gives n—2 linear equations giving a possibility to calcu-

- - . . - . late all coefficients of the polynomm(n 2)()\)
AM(X; me)=(N+D)"Q(N+irm, )+ (A —i)" . : .
Qe #=FDTQINA M, )+ (A=) The existence of the other mdependent solution
XQ(A—i;m, ), (94) ,2
P 20

whereA(M()\) is the polynomial Q(—n:m, %) = 2 rmu (102
=0 (—N—ir)"?t

©

n
AN =2 (=D A" mo=2, u1=0, :
H k=0 H Ho Ha whereu® has the componenis; = (— 1)uy, is related with
the symmetry of the Baxter equation to the simultaneous
Hp=m(m—1), (95  transformations

where we assume, that,=i*q, for k>2 are real numbers.
The last condition is needed in order to have a normalizable
wave functions. )

We search the solution of this equation in the form of aON€ can verify that
sum over the poles of the orders from 1 upnte 1:

A——\, u—u’

[Q(—N;m, 1) T* =Q(\*;m, 15).

3 2
S Pl
QNm, u)= Z o n-1° (96) Let us investigate now the behavior of the Baxter function
r=0 (N—ir)" . .
near the regular points=—ir (r=1,2,...),
Putting this ansatz in the equation, we obtain recurrence

relations for polynom|aI§>(n 2)()\) of the ordem— 2 allow- QMM p) Sﬁ mi)( )
ing to calculate them prowdmg thal?(n 2)()\) is known. AL' r(A+ir)n2 ()\+|r)”‘2' (103

Indeed, let us define the expansion of a functi()n) in the

ower series ovex —ir up to the orden—2: - . . .
P P whereSﬁ'fm f;)()\) are polynomials obeying certain recurrence

f(\) relations which can be obtained from the Baxter equation.

FO) D=\ —ir)"~ lem—nz (97)  These recurrence relations for>2 are the same as for
A—ir(A=ir) Pf” 25( \), but we cannot choose these two functions to

Then the recurrence relations for the coefficients of polynoP€ proportlonal even by imposing this proportionalityrat

(n-2) =1 by an appropriate choice of the integrals of motign
mials Pf?m’ (A) can be written as follows: Similar to the case of the odderon it is related with the fact,

(AM(\, M)P(n 2)()\))(n 2) that S(” 2)()\) contains in these recurrence relations an ad-
rmp dltlonal contr|but|on from the pola'~". Therefore to cancel
=((N+iD)" Pﬁnﬂzg1 M()\+|))(“ 2) the pole singularities &/ in the wave functloerym,#()\) the

(n-2) bilinear combinations of the above functio®, ;(\) and
+((A—D)"P CN=i"TP (98 Qpis(—\) should be in the form

r—=1,mu

We can normalize the solution imposing the constraint QUM ) QN 3, 25) — Q(— i, a5 Q( — N* 3, 1),
limP 2\ =1. (99)
A—i To cancel other pole singularities we should introduce a set
of additional Baxter function having the poles simulta-
Then the other independent coefficients of the polynomiaheously in the upper and lower semiplanes of the complex
(” 2)()\) are determined from the condition plane,
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pt- 1)()\) p(n-2- t)( \) erators. In this new representation both the integrals of mo-
QON:m, 1) = 2 LT rimp ' tion and the Hamiltonian should have simple separability
(N—ir)t  (=\—ir)n it properties.

e oy i Let us start with the case of the Pomeron, where
where the polynomial®(~1) and P("~2~Y are fixed by the

reccurence relations following from the Baxter equation and H=Hy,.

by the condition that the new Baxter functions decrease at

infinity more rapidly thar\~"*2. These functions are linear \e now calculate the action of the hermitially conjugated
combinations ofQ(\;m, ,u) andQ(—A;m, ,us) with the co-  Hamiltonian on the eigenfunctions of the opera®(u)
efficients depending on coth)). Using all these functions given by Eq.(21) (with A= —\;=0+iN/2),

in the holomorphic and anti-holomorphic spaces one can

constructQm;n,ﬁ;():) without the poles at-=0. The quanti- [P —in p* "

zation condition foru is obtained from the requirement, that Hio ﬁ 1-p*

the energy should be the same for all Baxter functions

Q(t)()\;m,,&). We calculate the spectrum of the Reggeon Ip|2[1p|? —int o* —ix
s s

states fom>3 in a forthcoming paper.

4

m 1-p*

VII. HAMILTONIAN IN THE BS REPRESENTATION

The high energy asymptotics of the scattering amplitude
corresponding to the contribution related to thehannel ex-
change of the composite state mReggeized gluons in the
multicolor QCD has the form

_if g2tk (A=K (A=p) Tk p(1 =k (1= p*)]
m (Ik=pl?+m?)[k?1—k[?

iV ek —ix
(1—k*> '

whereP=1 andm—0 is an infrared regulator, correspond-
ing to the vector boson mass rescaledbyct. [1]).

Using the anti-Wick rotation of momentg= —iky and
p,=—ipg as in Eq.(31) after some transformations we can
write the result in holomorphically separable form

K
11k

2
A(s,t)~i""1ss?, Az—g—ZNCE, (104
8w

whereE is the ground state energy for the Safirmer equa-
tion

EVhnm(p1.p2: - PniPo) =HY mm(p1,p2, - - PniPO)-

The Reggeon Hamiltonian is " ( p )‘”‘* p* )_m
1 12 1-p 1-p*
=—2 Hikea- —in* ™
e
Here 1/2 is the ration of the color factors for the adjointand | 1— p* 21-p
singlet representations of the color group and the pair BFKL
Hamiltonian is given by where
P1P3 —in* 1-p) —iN*
Hao=Inlpa| %+ Inpo|?+ == In|p1p} p, P e o[
1 1 MEE 120 M1 hys 1-p In 2 + i coth(7r\™) 1-p
_ —1-i\*
s PP P-4, (109 [ ke T
[pal?fp2l® pre (k=p)(1-k)t™™
It enjoys the property of holomorphic separability and

Hy,=hy,t+hiy, i
pr \ " [ pra-p)
where hy, =| In——————+ i coth(7\)

82

R
P —f dk*
1— p* p*+s
We now perform the unitary transformation of the Hamil- . e e —1in
tonian to the BS representation, whefeand the roots (p +K* —2k* p*)(k*)

N1,Ns, ... A,y Of the equatiorB(u)=0 are diagonal op- (K* —p*)(1—Kk*)L-I

1 1
hi,=In(p1p,) + E('n p12)P1t E('n pP12)P2—2¢(1).
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Heree—0 is an intermediate infrared cutoff. The Hamilto-
niansh,, and hy, have branch point singularities pt=0,
1le0 andp* =0,1, respectively, but the total Hamiltonian
H, , is single-valued.

We obtain, for|p|—0,

lim HyAp) =™ (p*) ™
[p|—0
=[=In|p|?+ Y(1+iIN*)+p(1—iN*)+ p(1+iN)
+(1=iIN) = 4p(1)](p) N (p*) ™
Taking into account that in the integral
V(. 1)

1 [+ g (
— d
2172f—°° O-N:—Oc

XD =(I,N),

1-p

N
7\=U+IE

for |p|—0 the leading asymptotics correspondste 0, and
shifting the integration contour ior in the upper half-plane

up to the first singularity Oﬂ’mﬁ(i,):), corresponding to the
poles at\ ,\\* =i, we obtain for the Hamiltonian near these
singularities

lim Hy®pm(1,N)

AT =i
i(

XD (L),

o+
2N

d
+
IN*

= lim
MAF =i

Using Eq.(35) for the Pomeron wave function in this limit,
D (1K)~ QO mQN* M)A |2,

the Pomeron energy is given as follows:

J
Elz:ixzinﬁi o ML =DAZQ(n,m)]

J . ~
—I[(\* =D (V)2QO )]
I\

+

We obtain for the Pomeron energy using the behavior fo
Q(\,m) near\=i [Eq. (54)]

Eqo= (M) + (1 —m)+ (M) + (1 —m) — 4y(1)
(106)

in agreement with the known reslilt].

PHYSICAL REVIEW D64 114019

VIIl. ENERGY FOR MULTI-REGGEON COMPOSITE
STATES

Let us investigate the behavior of the wave functions for
the composite states in the region where the values of gluon
momenta are strictly ordered:

|pa|<|pof<---<[pnl.

To begin with, we consider the odderon case, where the
wave function is given by

- > > 3 - S dzpk - -
W i(Pyp2.pa) =11 (pr)zf 11 [?exlﬂpk'ﬁko)}

P12P30
X: —_—
P10oP32

) Dmm(X,X*),

*
P23

Pgopgo

P23
P20P30

X

where

and the functiong, ;,(x,x*) has the property of the holo-
morphic factorization

¢m,a<x,x*>=§ Cik Phn(X) = (X* )+ (G —ql3)..

The functions¢>im(x),¢§1(x*) are independent eigenfunc-
tions of the integral of motiof4]

Anm(X) =81 mamdin(X) = Gabpp(X),
whereA,, is given by
An=i3X(1—x)[X(1—Xx)d*+(2—m)(1—2x)J
—(2—m)(1—m)]d.
The operators
an=x(1—x)(i9)™?, a;_,=x(1—-x)(ig)>™ ™

perform the duality transformatioril].
The three independent eigenfunctiafis(x) have the fol-
lowing smallx asymptoticq 16]:

SE(X)=x+0(x?), P2(x)=1+0(xInx),

2 (x)=x"[1+0(x)],

which correspond to the following asymptotics of
dmm(X,X*) enjoying single-valuedness at the singular

rpoints:

M (X, X* ) =XxT"x* M4 c|x|2In|x|2,
x—0

M G m(X,X*)=1+cx™ Ix* M 1in|x| 2

X— 00
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and behave at smalb, correspondingly aé+gp; Inp; andgp;,

wheref andg are some functions gf, analytic neap;=0.
For the single-valued property we should multiply two such
functions depending on the holomorphic and antiholomor-
phic variables. Further, because the opera@réiave more
derivatives ovepy (k=2,3, ... n) than the momenta com-
pensating themg|? should be a constant for small values of
these momenta.

In the opposite limit

M b (X, X* )= (1= X)™(1—x* )™+ ¢|1— x| In| 1—x|2.

x—1

For the function¥ , 7(p1,P2,Ps) in the limit |py|—0 the
region of largg p,g is essential. Taking into account only the
singular terms in this limit, we obtain

P2
In——

- > > . =1
¥ (P1:P2,P3) =¥ i(P2,P3) 5 [Pal? E
1

Ipnl<|pn-1|<-- - <|p4
where

. we obtain correspondingly

‘I’m,ﬁn(f’z ,53):r1;[2 |pr|2f
P§3

_ m-1
P23 )m !
v | pips

X F* P (X, X*)

dzpk s >
ﬁexmpk‘Pko)}

|

P2

\Pm,%(ﬁl-ﬁz: e 15n)~Cn|pn|2 In (109)

|Pnl?
X

The fact that the behavior o, at |p,|—0 for the
composite state afi Reggeized gluons is the same as in the
Pomeron case implies the existence of a pole in

and
Wnm(NAg, oo Npo1)

= P30
P32 at\,_,=i and at\}_,=i.

The last function can be simplified in the linpt,—0, cor- Indeed, for 1 |py[>[po|>--->[p,| we have

responding top,p— and x—0. Indeed, we can use the

expansion W m(P1sP2s - - - P
95* o (X, X* ) =M™ L(x* )M L ¢ In|X| 2+ - - - S <
¢m,m( ) (x*) | | =2(n71)/2‘1:[ J doy Z exp:i(tk)\’k‘ +t’k‘)\k)]
and verify that the dependence fram, is canceled in the TS e
contribution to the integrand from the first term in the right- XW. = (N g Ny Noo1) (110
mim(N N2, - N

hand side, leading to a vanishing result after integration.

Therefore taking into account only the second term, we ob- . o
tain and therefore the contour of the integration datfy_, for

N,,_1=0 should be shifted in the complex plane up to the
- - s\ —2
W =(Dy,Pa)~Ca. pole (o,,_1—1i) "~

mi(P2:Pa)~ Ca We can find the singular part of the Hamiltonian in the BS
Hence, the resulting behavior for the odderon wave functioriepresentation for smalp,| similarly to the Pomeron case:
at |py|<[p2|<|ps| is

N k=i
2 n—-1 n—-1
| Py

1 .
S(Hon-1tHip,'

I |P
‘I’m,r?](plypzips)~03|p1|2|n|p B (107
' * —iNp_1q
n

L . L . . 1In|p p |2p_m:*1p
This is in agreement with the fact that it is an eigenfunction 2 'FiEn=1l Fn

of the integrals of motiorg, and g5 provided that we take
into account inW &, also the regular terms proportional to
p, andpy .

+[—In[py/+ Y(1+iN7 )

It is natural to expect a similar behavior

|2

W i(P1.P2s - - - Pn)~CalP1/2 1IN (108

|pal?

for the case ofn Reggeized gluons in the limip,|<|p,|

Fp(1=iNg )+ (1+iNg )

L=y 1)~ Ag(1)]p i tpE et
(112

The first term in the right-hand side can be combined with

<..-<|p,|. Indeed, there are two independent solutions forthe other pair Hamiltonians. After that, we obtain for 1

the eigenfunctions of the integrals of moti@y (7) which
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1 1 n—-2 n-1 L
7-)\* i
§|”|plpn—1|2+§ > Heea | 11 pkI “py M QM) =TT (A=)
r=1 k=2 k=1
! s s ) where the\, are solutions of the Bethe ansatz equations
=5 22 [p(1+INT) +(L—INT) + (1 +iN) [6,7]. The energy of th&XX chain is given by
n-1 L1 d  Quux(A+i)
, —inE x—ix - I RS P 2,0, Sh
Fy=ing=ap]IL p P B0 =22 371 a0 1) |
(114
Thus, for the constant behavidf ,, 7(P1, . .. Pn1)~C at  In the present case the Baxter function is a meromorphic
|p2|>--->|py| (corresponding toA;=A}=---=\,_,  function with an infinite number of poles and zeroes as dis-

=\}_,=0) the last contribution vanishes and therefore wecussed in Sec. VB. It can be expressed as an infinite product
obtain for the composite state energy the result similar to thef the Bethe ansatz solutiofisee Eq(60)]. The eigenvalue

Pomeron case expression here is not given by Ed14) but by Eq.(106)
T J ; - Ei =1+ +1//(2—m)—§, _ +[m—m]
E=i lim | —=In[(x=DAW (N m, )] I ELIN(LFiNy) ’
NAF =i

p in the Pomeron case.
+ —In[(A* —DN*TON M e, (112
IN* IX. BS REPRESENTATION FOR THE ODDERON WAVE
FUNCTION
Here W (\,_;;m,xz) and ¥ (\*_,;,m,x®) are correspond-
ingly holomorphic and antiholomorphic factors of the wave
function ath\ ,=\§ =0, 1sk=n-—2:

Here we consider tha representation for the odderon,
where the operator

u+iu

BG)(u)=—P

g d g a
—+—)—(1—e‘1‘t2)— —}

W iw(0,0, ... N ) =W Ny im, ) W (Nf_y M, i) oty ot oty dt,

and = (—1)*qi, ui=iq, are eigenvalues of the integrals is diagonal. Introducing the new variables,
of motion. This quantity can be related with the Baxter func-
tion and the normalization factor for the pseudovacuum state t=t;+t,=In

p1(P1+ pz)}

[see Eq(25)]: (P2+P3)P3
~ _ _ P1P3
Po~(0,0,. .. Np_)=cP> o N2 D 7=eV=glhto= ,
i An-2)=Coo 5, ol (P2t P3)(P1tP2)
XQ(Np-1:M, ) QNG ;m, 1%). we obtain

As it was argued above, for the pseudovacuum state it looks
plausible that the correct normalization of the kernel for the
transition between momentum and BS representations corre-

ps S =2 S -2 * 9\?
sponds to cg, Y 1—S|nH (2mN,_)Sint" ™ 227N} _ ) (1 z)( ) }
0, o N iRk

[see Eq(27)]. We obtain in this case for the energy

o o0 J 9
u +2|u5+(1—z)z—z—

@)(u)= —
B(w=-P 02”9z

To diagonalizeB® one should find the eigenvalues and

o d a1 N - eigenfunctions of the differential operators
E=i lim Kln[smH‘ (2NN Q(N;m, )]

ANE i o AN . d 9 [NFENE\?
5 o o= ¢ |((A-2z-2- -7 — ®
+—*In[sinW*1(2w)\*))\*”Q()\*;m,,us)] . e el
o\ _ 7\1_)\2)
(113 2 |

Thus the energy is expressed in terms of the behavior of th¥NereA are the eigenvalues of the zerosBIP)(u):
Baxter functionQ(\,m) nearA =i. 2

In the CL_Jstomary case of spin chains the Baxter function is B®(u)=— PH (u— ;\k)_
a polynomial of degreé, k=1
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The solution of the above equations can be written in termsliagram as it was in the case of the Pomeron wave function

of hypergeometric functions (30). After changing the integration variableinto k as fol-
lows
. — ol [(NT FAS)21t,i[(N] —23)/2]
Parx(t,z) =€t T2 iz e
PNk Ty X H * * X= pl L
XF(—iN5 JINE 1+i(NT—)\3);2) T-p, 1K
SOk oy xS [N B2
— @il(\] +A3)/2]t TT1+i(Ay —A3)]z 2 Eqg. (116 takes the form
C(—=iN5+1)T(iNY)
I e H A ik
o x—1\ 1N e le,xz(t,z):(&)'*z( *)' ZJ' ( k ) %
X jl Y7 X "M Adx. Cxl')‘; P3 |k(1 k)|
An independent solution follows by interchanging ha/g % k* )i}‘l(kJF pl_l)l}\z
and\j . 1—K* k—pa
Therefore, we can write the following relation between - —in
ions i i kK*+p7—1) "2
the wave functions in momentum and BS representations, (118
, k* —p3 '
(R RS \_pm m -
¥ (P1,P2,Pg) =PT(P) kll (Nk_zw jﬁo d(’k) The wave function in tha. representation has the form
X U5, 5, (6.2 Wm (N, Ko, d2p,d2ps . -
mm()\la 2) zUil,Xz(t'z)
where |p11%1—p1—psl?|psl
Ny Ny \Pm,a(ﬁlvi_ﬁl_b)SvﬁB)-
)\k:O'k+|7, )\’k(:(fk_l?, (115)
The associated Feynman diagram is depicted in Fig. 1.
and
- X. PROPERTIES OF THE UNITARY TRANSFORMATION
U)zlv):z(f)'i):C):l’}:zeit[()‘l +)‘2)/2]eit*[(’\1+)\2)/2]U):1’}:2(2)_ FOR THE ODDERON WAVE FUNCTION

The function Uglygz(f) is a solution of the differential

equations of a hypergeometric type in both varialdemnd
*

Here the functiorUgl,gz(Z) is defined as follows:

Uy %, (Z) Zl[(>\l A5 )/2](Z )|[()\1 Ap)/2] z*,
1
ik d d )\*+)\* 2 )\*_)\* 2
X_l |)\2 1 2 1 > _
J_| |2X I}\l(x ) I}\l(x_z) |:(1 Z)Zd d —7 2 + 2 U O,
x*—1 —iky d d A+ As 2 A=\, 2
X<X*_Z*) o {(1_2*)Z*dz* e _Z*( -2 A T Il
and the normalization constaﬁt,:l,g2 can be found from the =0.

orthogonality condition . - o )
Therefore,Uglygz(z) is a bilinear combination of indepen-

d?td?z Us < (E2U% (E.3) dent solutions being functions of and z*. In addition,
|Z(1—2)[2 "rrat A A @ 5(z) should be a single valued function afnear the
singularities z| = =0, |z| =c. The effective way to
_ oo ) Sn i 11 satisfy _these reqU|remen{§3] is to use th_e monodromy
2 I so=ai) Nic:N; (117 propertieg 20] of the two independent solutions:

It should be taken into account that due to the symmetry 2B (N, N 14T (A —Ny);2),
properties ongl,gz(Z) under\ ;<\, two terms appear in
the right-hand side of the orthogonality equation. z7 O RIE (=N iNg; 1= (N —Np);2)

Let us show that the kernel of the unitary transformation
Ugl,gz(f,f) has an interpretation in terms of the Feynmanand analogous expressionszh. Thus, we obtain
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Us. 5(1,z
! Usnt2) — o (TS 0521 +* [\ +2)/2)
Cr KRN,

o ok
- X[axlxzax;xgz*'[()‘l N2)/21 [\ =23)/2]
k
. _ s LN
—ay 2t =221 -1 ~A5)/2l
k—p While the phases of the constant factors in E®1) are
3 k+P1_1 special functions, the squared modulus is quite simple. In-
deed, we find
P3 P, Py
. .., T A2
FIG. 1. Odderon Feynman diagram. |a7\1v>\za7\f A3 le,A2| - E m :
U, (D) =KE D0, (Z)xas (2) The normalization conditioi117) then yields
X020 (2], (119 Ay

(122

Cil,XZN‘)\_z(M_M)
where
‘ up to a numerical constant.
X (Z) =2y, (24) 17272 Using the relation between hypergeometric functions with
mutually inversed argumenf&0] we obtain forz— o«
XF(—iNg,iNg 1HiI(N g —Np);Z%),

d==T (A N )T (—iNy)
_ T(iNpDT(=iNy) Xy a(Z) = : 1r(1J2ri>\1() 2

= (120
X (%) 101+ 12 gi mal(im(2)/|Im(2)]

AN T Hi (A —Np)’

and an analogous expression ﬁp,p; ,A’;(Z)- This result can

be verified by the direct calculation of the integ(al6). In
such a way we obtain for the constdfy, i in Eq. (119

D(=i(N+2p)L(INy)
T(1-i\,)
% @—imal(m(2)/|im(2)[]

(z%)~il0a /2]

sinh(7r\5)sinh( 7\ ;)
sinh(m(N1—\p)) '

As a consequence of this asymptotic behavior, the interfer-
ence terms irﬁ)glvgz(f) cancel using the relation

where we usefisee Egs(11
d as(119] sinh( 7\ 1)sinh( 7w\ %) =sinh(ar\,)sinh( 7\ 7).

sinh(mAp)sinh(m\;)  sink( a\3)sinh(7\Y)

: _ We obtain with the use of the equality
sinh(m(A1—X\7)) sinh((A} —\%))

sinh(7\ )sinh(7w\T ) —sinh( 7\ ) sinh( 7\ 3)
In summary, collecting all factors we find for the matrix A0 2E) o i
elements of the unitary transformation relating momentum =emz 2 sinh(m(A 1 — Ap))sinh(m(A 1+ A5))
and BS representations, .
the following asymptotics foly, 1 (z) for large |z|
Us. 5.(1,2)
L:ei(t[(x’f+A§)/2]+t*[(>\1+>\2)/2]) Us - (2)=b(~l) R (Z*)i[(}\1+)\2)/2]zi[()\I+)\§)/2]
Cx, KK, %, . Aok
(2) _ ok —i[(N N2l —i[(NF +015) /2]
+ 1 2
X[Xxlxz(Z*)Xx’l*x’z*(Z) b)‘1'>‘2(z ) £

— X0, (Z) a5 (2], (121 where
wherex, ,,(z*) andx}q)\azc(z) are given by Eq(120. b :Wr(_i)‘l)r(l_i)‘Z)F(i()‘i+)‘,2‘))
We find forz—0 the asymptotic behavior, M2 P(L—i(N )TN (1+iNT)
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b@  __ TTOADTA+IM)I (i +A2) U3, 5,(6.2)

= —— " _ _ :ei(t[(q+>\;)/2]+t*[(x1+>\2)/2])
Rz AT AN (—iIN) T (1—iNp) TIN N2 (N1 — o)

+
ANo  \TAS

1-z 1-z¢
This can also be obtained from the integtal6) by direct X(

calculation.

We analogously find using the series expansion for the
hypergeometric function wheo=a+b+1 [24] K In|1—z|2) ) (124)
X, o, (ZF)=(2%) 10712 Ly Lz ACKNOWLEDGMENTS
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C(n+1—ixy)T(n+1+iky)
“5 nl(n+1)! (1=

Z*)n

—iNy)+ zp(n—i-l—i-i)\l)]].

_ 1
lim Xkl,xz(z*)=m+(1—z*)

¥ -1
+p(1+iNg) = (1)

U2+ 5 5

APPENDIX A
2N, 2\,

We compute in this appendix the integral in Eg8).
To start we need the Fourier transfof@0],
in agreement with Eq24). Thus we obtain

d’z .. -
J Zelq-zzm(z*)m

UGN sinr(n -2g)
im—————=—imr— . e ~
z-1 Ky %, sinh( X\ q)sinh( 7\ ») o Ty
=—=q (q*) —_
2-m-m-1 I'(—m)
o L S Y
ANy NENE [1=2%In[1=2%], (A1)
(123 Entering the factor §;)2(p,)? inside the integral in Eq.
(28) asV2V3 we find after partial integration,
where we used the relations
N d221 d222 .
Vi %(pl,pz)=|m(m—1)|2f —— ——¢€/(Pratpz)
i ' 2 2
1—iNo)+ (1 +iNg) = p(1—ikg) = (1 +iky) + — .
’;D( 2) ‘p( 1) lﬂ( 1) ’;b( 2) )\1 (21—22)m72 (ZI—ZE)WFZ
. . X . (A2)
[ . sinh(m(N1—X>)) (2,2,)™ (ZFz5)m

N TSinh(mhg)sinh( k)
Now, we replace the factors in the integrand by the integral

. . . representatiorfiAl):
Again, the result(123 can be obtained directly from the
integral representatiof116) for CD;,[;(Z). Taking into ac- _jm-m r(1-m) d%k .. ~
count the found above value of the normalization constantz—m(z*)-m= _ _ — el k(xym=1m-1,
we have for large momenta, and fixedP 2m*m=1T(m) 2m
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The z integrals in Eq.(A2) give now Dirac delta functions we get forn>1 (for Re m>1/2)

and we obtain Eq(29).

APPENDIX B

We derive here the asymptotic behavior of the Baxter
function for the Pomeron starting from the integral represen-

tation (39). We change the integration variable to

y=2 argtanlil—2p), p= —( —tanhz—

and obtain

7 sinh(\)

sin(7Tm) tanhz

The functionP,,_4(z) has a cut running fromz=—-1 to z

= —oo. Therefore,P,,_;[tanh{/2)] has cuts in the/ plane
from y=i(2n+1) till y=—o wheren is an integer. We
now deform the integration path around the cut frgm
=i till y=—c and we find

QN M) =i —r

f dyé)‘ m—1

wsmf(rr)\)
sin(rm)

Pm_l( —coth; +i0)
X
— cothi —i0 } (B1)

where we changed the integration variableyas w—x. The
integral (B1) is dominated for largex by the end-pointx

Q()\ ) w)\joerdxei)\x

X

- l:)m—l

=0. Therefore, we insert in EqB1) the representation of

Pm_1(z) appropriate for largeg= —coth/2)*=i0 [20]

P (2 tanTmlI’(m) . m+1 m +1 1)
1(2)= z o m+ o —
TR o arme H T 2 2 202
1
m-1 -
+2 F(m 2)
— 2
Jar(m
o L U B2
XE| ol s emt 5 (B2)

Keeping here the dominant terms for largand using the
relation

—m

(—cotthriO _m—(—coth;—io)

X —-m
=—2isinwm(c0th§) , x>0,

3
r m—z I'i2—m)

I'(m)

QN,m)=4m(4in)m2

+ (4N 2Mtanm

1
X)] 1+0
()\

r2(mr
(mI(m+1) 140

5l

(B3)

r'im+ I'a2—m)

1F 1
2/N\m=3

For Rem<1/2 one should just replage=1—m.
The casem=1/2 follows by taking the limitm—1/2 in
Eq. (B3) with the result forn>1
1
P .

o250
2 2(i )\)3/2
Let us now derive the asymptotic behavior @{\,m)
starting from their infinite product representati@®0) and
the asymptotic distribution of their zer@S9).
For A>1 the product will be dominated by zeros of the
order~\. We can then write

+2-3y|+0

IN
log T

1— — e)\/)\k
kHl ( Ak
N
M l—)\—
=[] k MM (k+1-m)
-t 1+i N
k+1—-m
% H ix e iN(k+1-m)
k+l m

whereM is a cutoff <M <|\|. We obtain forA>1 using
the formulag 20]

I'(1+x)
I'(1+x+iy)

'y

[ee]
H —iylk— a—ivyy

k=1

e

” X
P(X+1)+y= kzl PEER
Q(\,m)=const\™2 (B4)

in perfect agreement with E4B3).

114019-26



INTERACTION OF REGGEIZED GLUONS IN TH . . . PHYSICAL REVIEW D 64 114019

[1] L.N. Lipatov, Sov. J. Nucl. Phy3, 338 (1976); V.S. Fadin, 76, 48 (1973; E.K. Sklyanin, nlin.SI/0009009.
E.A. Kuraev, and L.N. Lipatov, Phys. Let60B, 50 (1975; [14] J. Wosiek and R.A. Janik, Phys. Rev. Let, 2935(1997).
E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, Sov. Phys. JETP[15] J. Bartels, L.N. Lipatov, and G.P. Vacca, Phys. Letd®, 178

44, 443 (1976; 45, 199 (1977; Ya.Ya. Balitsky and L.N. (2000.
Lipatov, Sov. J. Nucl. Phy8, 822(1978. [16] P. Gauron, L.N. Lipatov, and B. Nicolescu, Phys. Lett2®&0,
[2] L.N. Lipatov, Sov. Phys. JETB3, 904 (1986. 407(1991); 304, 334(1993; L.N. Lipatov, inRecent Advances
[3] J. Bartels, Nucl. Phy$8175, 365(1980; J. Kwiecinski and M. in Hadronic Physics Proceedings of the Blois Conference
Praszalowicz, Phys. Let®4B, 413(1980. (World Scientific, Singapore, 1997R.A. Janik and J. Wosiek,
[4] L.N. Lipatov, Phys. Lett. B251, 284 (1990; 309, 394(1993. Phys. Rev. Lett82, 1092(1999; M.A. Braun, P. Gauron, and
[5] L.N. Lipatov, hep-th/9311037, Padova report No. DFPD/93/ B. Nicolescu, Nucl. PhysB542 329(1999; M. Praszalowicz
TH/70. and A. Rostworowski, Acta Phys. Pol. 3, 349(1999.
[6] L.A. Takhtajan and L.D. Faddeev, Russ. Math. Surv@4s11 [17] A.N. Muller and W.K. Tang, Phys. Lett. B84, 123(1992); J.
(1979; P.P. Kulish and E.K. Sklyanin, ilntegrable QFT,ed- Bartels, H. Lotter, M. Wathoff, J.R. Forshaw, L.N. Lipatov,
ited by J. Hietarinta and C. Mortonen, Lecture Notes in Phys- and M.G. Ryskin,ibid. 348 589 (1995; J. Bartels, M.A.
ics Vol. 151 (Springer, Berlin, 198R p. 66; V.E. Korepin, Braun, D. Colferai, and G.P. Vacca, Eur. Phys. J2@ 323
N.M. Bogolyubov, and A.G. IzergirQuantum Inverse Scatter- (2002.
ing Method and Correlation Function€ambridge University [18] Z. Maassarani and S. Wallon, J. Phys28, 6423(1995.
Press, Cambridge, England, 1993 [19] I.M. Gelfand and G.E. Shilov, Les Distributions, Dunod, Paris,
[7] See for example, H.J. de Vega, Int. J. Mod. Phys}, 2371 1962.
(1989. [20] I.S. Gradshteyn and I.M. Ryshikable of Integrals, Series and
[8] L.N. Lipatov, JETP Lett59, 596 (1994). Products(Academic, New York, 1980
[9] L.D. Faddeev and G.P. Korchemsky, Phys. Lett3® 311  [21] N.N. Lebedev, Special Functions and their Applications
(1995. (Prentice-Hall, Englewood Cliffs, NJ, 1985
[10] G.P. Korchemsky, Nucl. Phy&443 255 (1995. [22] M. Lavrentev and B. Chabatylethodes de la Tharie des
[11] L.N. Lipatov, Nucl. PhysB548 328(1999. Fonctions d’une Variable Complex#lir, Moscou, 1972.
[12] E.K. Sklyanin, in Non-Linear Equations in Classical and [23] See, for example, VI.S. Dotsenko and V.A. Fateev, Nucl. Phys.
Quantum Field TheoryProceedings, Meudon and Paris VI, B240, 312(1984.
1983-84, edited by N. ®ahez, Lecture Notes in Physics [24] Handbook of Mathematical Functionslatl. Bur. Stand. Appl.
Vol. 226 (Springer-Verlag, Berlin, 1985 Math. Ser. No. 55, edited by M. Abramowitz and I. A. Stegun
[13] R. Baxter, Ann. Phys(N.Y.) 70, 193(1972; 70, 323 (1972; (U.S. GPO, Washington, DC, 1965

114019-27



