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Interaction of Reggeized gluons in the Baxter-Sklyanin representation
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We investigate the Baxter equation for the Heisenberg spin model corresponding to a generalized BFKL
equation describing composite states ofn Reggeized gluons in the multi-color limit of QCD. The Sklyanin
approach is used to find a unitary transformation from the impact parameter representation to the representation
in which the wave function factorizes as a product of Baxter functions and a pseudovacuum state. We show
that the solution of the Baxter equation is a meromorphic function with poles (l2 ir )2(n21) (r 50,1, . . . ) and
that the intercept for the composite Reggeon states is expressed through the behavior of the Baxter function

around the pole atl5 i . The absence of pole singularities in the two dimensionallW plane for the bilinear
combination of holomorphic and antiholomorphic Baxter functions leads to the quantization of the integrals of
motion because the holomorphic energy should be the same for all independent Baxter functions.
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I. INTRODUCTION

In the leading logarithmic approximation~LLA ! of pertur-
bative QCD the Reggeons~Reggeized gluons! move in the
two-dimensional impact parameter planerW and interact pair-
wise @1,2#. To unitarize the QCD scattering amplitudes
high energies one should take into account the mu
Reggeon exchanges in thet channel. The composite states
the Reggeized gluons satisfy a Schro¨dinger-like equation@3#.

The Reggeon Hamiltonian in the infinite color limitNc
→` takes a simple form and can be written as follows@4#,

H5
1

2
~h1h* !, @h,h* #50, ~1!

where the holomorphic and antiholomorphic Hamiltonian

h5 (
k51

n

hk,k11 , h* 5 (
k51

n

hk,k11* , ~2!

are expressed in terms of the pair Balitskiı˘-Fadin-Kuraev-
Lipatov ~BFKL! operator@1,4#

hk,k115 log pk1 log pk111
1

pk
~ logrk,k11!pk

1
1

pk11
~ logrk,k11!pk1112g. ~3!

Here rk,k115rk2rk11 , pk5 i (]/]rk), pk* 5 i (]/]rk* ), and
g52c(1) is the Euler-Mascheroni constant.

In this context the Pomeron is a compound state of t
Reggeized gluons and the odderon is constructed from t
Reggeized gluons.

The operatorh is invariant under the Mo¨bius transforma-
tions @2# with generators:
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MW 5 (
k51

n

MW k ; Mk
35rk]k , Mk

25]k , Mk
152rk

2]k .

The Casimir operator of this group is

MW 252(
l ,r

n

r lr
2 ] l] r . ~4!

The Hamiltonianh describes the integrableXXX spin
model with the spins being the generatorsMW k of the Möbius
group @5#. The integrals of motion of this model are gene
ated by the transfer matrix which is the trace of the mon
dromy matrix satisfying the Yang-Baxter equation@5#.
Therefore, the quantum inverse scattering method@6,7# can
be applied to find an algebraic solution of the Schro¨dinger
equation.

The pair Hamiltonian~3! can be obtained from the funda
mental monodromy matrix associated to theXXX Heisen-
berg spin model@5,8,9#. Notice that the local operatorspk ,rk
act in an infinite dimensional Hilbert space whereas the s
operators in the usual Heisenberg model are finite dim
sional matrices both for integer or half plus an integer sp

The auxiliary L-operator for the Heisenberg spin mod
with s521 is given below@8–10#

Lk~u!5S u1pkrk0 2pk

pkrk0
2 u2pkrk0

D , ~5!

wherer0 is the coordinate of the composite state.
The auxiliary monodromy matrix for this model can b

parametrized as follows:

T~u!5Ln~u!Ln21~u! . . . L1~u!5S A~u! B~u!

C~u! D~u!
D , ~6!
©2001 The American Physical Society19-1
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wheren is the number of the Reggeized gluons. The trans
matrix is the trace of the monodromy matrix

t~u!5A~u!1D~u!5(
j 50

n

Qju
n2 j ,

where

Qj5 (
i 1. i 2.•••. i j

pi 1
pi 2

. . . pi j
r i 1i 2

. . . r i j 21i j
r i j i 1

. ~7!

The eigenvaluesL(u) of t(u) take the form

L~u!52un1q2un221q3un231•••1qn ,

whereqj ,2< j <n are eigenvalues of the integrals of motio
Qj @5#. In particular,q252m(m21) is the eigenvalue o
the holomorphic Casimir operator~4! andm is the conformal
weight.

The operatorC(u) annihilates the pseudovacuum state
the s521 model@9#,

C~u!V050, V05)
r 51

n

r r0
22 . ~8!

The operatorsB(u) can be obtained directly from Eq.~6!.
We find for n52 andn53,

B(n52)~u!52u~p11p2!1p1p2r12

B(n53)~u!52u2~p11p21p3!

~9!
1u~p1p2r121p1p3r131p2p3r23!

2p1p2p3r12r23.

For arbitraryn one obtains

B(n)~u!52 (
k50

n21

bku
n212k whereb05P[(

i 51

n

pi ,

b152 (
1< i , j <n

pipjr i j ,

b25 (
1< i 1, i 2, i 3<n

pi 1
pi 2

pi 3
r i 1i 2

r i 2i 3
,

. . . ,
~10!

bl5~21! l (
1< i 1, i 2,•••, i l 11<n

pi 1
pi 2

•••pi l
pi l 11

3r i 1i 2
r i 2i 3

•••r i l i l 11
,

•••,

bn215~21!n21p1p2•••pnr12r23•••rn21,n .

The operatorsB with different spectral parameters com
mute
11401
r

r

@B~u!,B~v !#50

and therefore, one can write them in factorized form a
product of the operator zerosl̂k of B(u):

B~u!52P)
k51

n21

~u2l̂k!, @ l̂k1
,l̂k2

#5@ l̂k ,P#50,

following Sklyanin @12#.
The wave function describing composite states

Reggeized gluons in the holomorphic impact parame
spacer can be written as follows@12# ~see also@9#!:

c~r1 ,r2 , . . . ,rn ;r0!

5Q~ l̂1!Q~ l̂2! . . . Q~ l̂n21!)
r 51

n

r r0
22 , r r05r r2r0 .

~11!

The functionQ(l) satisfies the Baxter equation@13#

L~l!Q~l!5~l1 i !nQ~l1 i !1~l2 i !nQ~l2 i !. ~12!

For the odderon case, the dependence of the energy
the eigenvalues of the integrals of motion has been fo
with the use of the Baxter equation@14# and of the duality
symmetry@11#.

In this paper we systematically develop the construct
of composite Reggeon states using the Baxter-Sklyanin~BS!

representation, in which the operator zerosl̂k of B(u) are
diagonal. The matrix elements relating the momentum a
BS representations obey solvable ordinary differential eq
tions forn52,3. These matrix elements are elementary fu
tions for the pomeron case and hypergeometric functions
the odderon case. In the BS representation the wave func
of the composite state is written as a product of the Bax
functions and the pseudovacuum state.

For the Pomeron, we provide general formulas for t
Baxter function valid in the whole complexl plane and
study its analytic properties. It turns out that the most e
cient way to solve the Baxter equation in the present con
is to use the pole expansions~Mittag-Löffler!.

We show that the Pomeron wave function has no sin
larities on the real axis as a function ofs5Rel and hence it
can be normalized. This corresponds to the single-valued
condition in the coordinate representation.

We derive also the analytic Bethe ansatz equations
construct the Baxter function as an infinite product of Be
ansatz roots.

The solutionQ(u) of the Baxter equation for the gener
n-Reggeon case is constructed as an infinite sum over p
of the orders from 1 up ton21. Their residues satisfy
simple recurrence relations. It is shown, that the quantiza
condition for the integrals of motion follows from the con
dition of the cancellation of the pole singularities in the tw
9-2
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INTERACTION OF REGGEIZED GLUONS IN THE . . . PHYSICAL REVIEW D 64 114019
dimensionallW -plane for the bilinear combination of holo
morphic and antiholomorphic Baxter functionsQ(lW ) and the
physical requirement, that all Baxter functions with the sa
integrals of motion yield the same energy.

For the odderon, we explicitly construct the BS repres
tation and investigate the properties of the odderon w
functions in this representation. The completeness and
thogonality relations for these functions are discussed.

We derive new formulas for the eigenvalues of t
Reggeon Hamiltonian written through the Baxter functio
These formulas generalize the result for the Pomeron to
number of Reggeons. The energy turns to be expresse
terms of the behavior of the Baxter function near its poles
l5 i which are present for arbitraryn.

The BS representation promises to be an appropriate s
ing point to find new composite Reggeon states forn.3. In
particular, it will be interesting to generalize the odder
solution constructed in Ref.@15# to the case of many
Reggeons.

II. BS REPRESENTATION FOR THE WAVE FUNCTION

In order to solve the Baxter equation, one should fix
class of functions in which the solution is searched. The c
of integer conformal weightm has been considered in Ref
@9,10,18#. It was assumed there that the solutions were en
functions with the asymptotics

Q~l!;lm2n,

but such functions do not exist for physical values of t
conformal weightsm.

We want to find the conditions which should be satisfi
by the solutions of the Baxter equation from the known
formation about the eigenfunctionsF of the Schro¨dinger
equation in the two-dimensional impact parameter spacrW
@2,16#. For this purpose we perform an unitary transform
tion of the wave functionF to the BS representation i
which the operatorB(u) is diagonal.

To begin with, let us go to the momentum representat
~with removed gluon propagators!:

Cm,m̃~pW 1 ,pW 2 , . . . ,pW n!

5)
r 51

n

~pW r !
2E )

k51

n Fd2rk

2p
exp~ ipW k•rW k0!G

3Fm,m̃~rW 1 ,rW 2 , . . . ,rW n ;rW 0!. ~13!

Here Fm,m̃(rW 1 ,rW 2 , . . . ,rW n ;rW 0) is the wave function of the
composite state in the two-dimensional impact param
spacerW . It belongs to the principal series of the unitary re
resentations of the Mo¨bius group and is an eigenfunction o
its Casimir operators

MW 2Fm,m̃5m~m21!Fm,m̃ ,

~MW * !2Fm,m̃5m̃~m̃21!Fm,m̃ .
11401
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Here

m5
1

2
1 in1

n

2
, m̃5

1

2
1 in2

n

2

are conformal weights~the quantitiesn and n are corre-
spondingly real and integer numbers for the principal se
of the unitary representations!. The Casimir operators of the
Möbius group are given by Eq.~4!.

For example, for the Pomeron and odderon we have
spectively@2,4#,

Fm,m̃
(2)

~rW 1 ,rW 2 ;rW 0!5S r12

r10r20
D mS r12*

r10* r20*
D m̃

,

Fm,m̃
(3)

~rW 1 ,rW 2 ,rW 3 ;rW 0!5S r23

r20r30
D mS r23*

r20* r30*
D m̃

fm,m̃~x,x* !,

wheref is a function of the anharmonic ratio,

x5
r12r30

r10r32
.

Due to the identity

(
k51

n

pkrk5
P

n (
k51

n

rk1 (
k51

n21

rk,k11(
r 51

k S pr2
P

n D ,

P5 (
k51

n

pk ,

we can express the quantityB(u) in momentum representa
tion in terms ofP,pk2P/n and the operators

rk,k1152 i S ]

]pk
2

]

]pk11
D52 i

]

]S (
r 51

k

pr D ,

k51,2, . . . ,n21.

It is convenient to introduce the new independent variab

P5 (
k51

n

pk , t15 ln
p1

P2p1
,

~14!

t25 ln
p11p2

P2p12p2
, . . . ,tn215 ln

P2pn

pn
.

The quantitiestk take their values in a strip of the comple
plane

2`,Retk,`, 2p,Im tk,p.
9-3



te
on

te
ave

the

-
of

l

i-

H. J. de VEGA AND L. N. LIPATOV PHYSICAL REVIEW D64 114019
There is a helpful representation for the operatorsbl be-
sides that given by Eq.~10!. Namely,

bl5~21! l (
1< i 1, i 2, . . . , i l<n

S (
r 151

i 1

pr 1D
3S (

r 25 i 111

i 2

pr 2D •••S (
r l 115 i l11

n

pr l 11D )s51

l

r i s ,i s11 ,

~15!

which is related with the duality transformation@11# consist-
ing of the cyclic permutation

pk→rk,k11→pk11

and the transposition of the operator multiplication. No
that with the use of the duality symmetry the wave functi
in the momentum space~13! for P50 is proportional to the
same function in the coordinate space@11#. Furthermore, the
function for arbitraryP can be obtained by an appropria
Möbius transformation.

In the variablest1 , . . . ,tn21 the matrix elementB(u)
takes the following form:

B~u!52 (
k50

n21

bku
n212k,

where the operatorsbk are given by

bk5P (
1< l 1, l 2, . . . , l k<n21

)
r 51

k21

~12etl r
2t l r 11!)

s51

k

i
]

]t l s

.

This representation can be obtained from Eq.~15! for bl
taking into account the formulas

i
]

]tk
5 i

S (
r 51

k

pr D S P2(
r 51

k

pr D
P

]

]S (
r 51

k

pr D
52

S (
r 51

k

pr D S P2(
r 51

k

pr D
P

rk,k11 ,

12etl r
2t l r 115

PS (
s51

l r 11

psD
S (

s51

l r 11

psD S P2(
s51

l r

psD .

In particular, forn52,3,4 we obtain

B(2)~u!52PS u1 i
]

]t1
D ,
11401
,

B(3)~u!52PFu21 iuS ]

]t1
1

]

]t2
D

2~12et12t2!
]

]t1

]

]t2
G ,

B(4)~u!52PFu31 iu2(
r 51

3

] r

2u (
1< l 1, l 2<3

~12etl 1l 2!] l 1
] l 2

2 i )
k51

2

~12etk,k11!]1]2]3G , ~16!

where

t l 1l 2
5t l 1

2t l 2
, ] r5

]

]t r
.

Since in the momentum representation the norm of the w
function is given by

iCm,m̃i25E )
r 51

n
d2pr

upr u2
uCm,m̃~pW 1 ,pW 2 , . . . ,pW n!u2,

we obtain after extracting the factord2(P2(k51
n pk) from

Cm,m̃ in the new variablest1 ,t1* ; . . . ;tn21 ,tn21*

iCm,m̃i25E )
r 51

n21

d2t r )
s51

n22

u12ets2ts11u22uCm,m̃u2.

The operatorsB(u) are symmetricB5Bt with respect to this
norm with the weight

)
s51

n22

u12ets2ts11u22.

The eigenvalues of the operator zerol̂k and l̂k* of B(u)
in the holomorphic and anti-holomorphic space have
form

lk5sk1 i
Nk

2
, lk* 5sk2 i

Nk

2

wheresk is real andNk is integer. The unitary transforma
tion betweent andl representations conserves the norm
the wave function

iCm,m̃i25 )
r 51

n21 S E
2`

1`

ds r (
Nr52`

1` D uCm,m̃u2.

Let us introduce the kerne
UlW 1 , . . . ,lW n21

( tW1 , tW2 , . . . ,tWn21) for the unitary transforma-

tion between thet and l representations. It satisfies the e
genvalue equations
9-4
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B~u!UlW 1 , . . . ,lW n21
~ tW1 , . . . ,tWn21!

52P)
k51

n21

~u2lk* !UlW 1 , . . . ,lW n21
~ tW1 , . . . ,tWn21!,

B~u!* UlW 1 , . . . ,lW n21
~ tW1 , . . . ,tWn21!

52P)
k51

n21

~u2lk!UlW 1 , . . . ,lW n21
~ tW1 , . . . ,tWn21! ~17!

and the orthogonality relations

E )
k51

n21
d2tk

~2p!2)r 51

n22

u12etr2tr 11u22UlW 1 , . . . ,lW n21
U

lW
18 , . . . ,lW

n218
*

5SP)
t51

n21

@d~sk2s r k
8 !dNk ,N

r k
8 #. ~18!

Here,lk* ,lk stands for the eigenvalues of the operatorsl̂k

andl̂k* , respectively and the symbolSP means the sum ove
all possible permutationsr 1 , . . . ,r n21 of the indices
1,2, . . . ,n21.

To construct the kernel with the correct normalization,
us take into account that the Kronecker and Diracd func-
tions appear in the right-hand side of the above equation
result of the integration over the region

t22t1@1, t32t2@1, . . . ,tn212tn22@1,

corresponding to one of the two possibilities

p1!p2! . . . !pn

or

p1@p2@ . . . @pn .

In this region the operatorB(u) simplifies as

B~u!→2P)
k51

n21

~u1 i ]k! ~19!

and therefore the kernel for the unitary transformation co
sponds to the Fourier transformation

UlW 1 , . . . ,lW n21
~ tW1 , tW2 , . . . ,tWn21!

→2(n21)/2SPeiF(lW r 1
, . . . ,lW r n21

) expF i (
k51

n21

~ tkl r k
* 1tk* l r k

!G ,

whereF are some phases.

III. BS REPRESENTATION FOR THE PSEUDOVACUUM
STATE

The wave function of the pseudovacuum state in the m
mentum representation is
11401
t

a

-

-

Fm5n, m̃5n
0

~pW 1 ,pW 2 , . . . ,pW n!

5E )
k51

n F 4d2rk

purk0u4
exp~ ipW k•rW k0!G

5)
k51

n

upku2 lnupku2, ~20!

where we subtracted from the distributionuru24 its singular
part @19#. This function is an eigenfunction of the transf
matrix with the eigenvalue

L~u!5~u1 i !n1~u2 i !n.

In particular, its Möbius conformal weights are

m5m̃5n

andqk50 for odd values ofk. Notice that the Baxter func-
tion for the pseudovacuum state isu independent.

It is important to know the wave function of the pseud
vacuum state in the BS representation. We see from Eq.~16!

that l̂1 in the new variables for the Pomeron state takes
simple form

l̂152 i
]

]t1

and the change of the basis results in

^p1p2uP,l1 ,l1* &5U P

p1p2
U2S p1

p2
D il1* S p1*

p2*
D il1

3d (2)~P2p12p2!. ~21!

One can obtain from Eqs.~20! and ~21! the Pomeron
pseudovacuum wave function in the new variables as

F0~PW ,lW 1!5uPu4E d2pS p

12pD 2 il1* S p*

12p*
D 2 il1

3 lnupu2 lnu12pu2.

It can be written as follows:

F0~PW ,lW 1!5uPu4 lim
m→s

]

]s

]

]mE d2pupu22is

3u12pu2imF p* ~12p!

p~12p* !
GN/2

,

where l15s1 iN/2. The integral is calculated in a close
form with the use of the anti-Wick rotation~see next sec-
tion!:

F0~PW ,lW !54p~21!Nulu2 lim
m→s

1

~m2s!3 . ~22!
9-5
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The fact that the wave function for the pomeron pseu
vacuum state turns out to be divergent is connected with
fact that such state having the weightsm5m̃52 is outside
the space of physical states. However it is important to n
malize correctly the Baxter function. The natural regulariz
tion of the Heisenberg model can be provided by chang
the spin representations→211e without losing its integra-
bility. It would lead in particular to the modification of th
pseudovacuum state~20! and to the convergence of integra
after their analytic continuation.

The above result forF0(PW ,lW ) can be obtained in a sim
pler way by taking into account, that in the integral transf
mation to thel representation the large momentap dominate

F0~PW ,lW !.~21!NuPu4E d2pe2 i (l* /p)e2 i (l/p* ) ln2upu2

5~21!NuPu4ulu2c,

where the leading divergent contribution toc does not de-
pend onl. It corresponds to the following simplification o
the operatorB(u) for p@P,

B(2)~u!52PS u2
p2

P
i

]

]pD .

In the case of three particles we have for largep1 ,p2 ,p3
with fixed P,

B(3)~u!52PFu212iu
]

]t
2yS ]2

]y2
2

]2

]t2D G
t5t11t25P~p1

212p3
21!!1, ~23!

y5t12t25P~p1
211p3

21!!1.

Its eigenvalues and eigenfunctions for smallt andy are

B(3)~u!52P~u2l1* !~u2l2* !,

w
l

1* l
2*

1
~ t,y!5e( i /2)(l1* 1l2* )t@12l1* l2* y ln y#, ~24!

w
l

1* l
2*

2
~ t,y!5e( i /2)(l1* 1l2* )ty.

Imposing the property of the single-valuedness we can w
the transition amplitude in the two-dimensional space:

UlW 1 ,lW 2
~ tW1 , tW2!5clW 1 ,lW 2

e( i /2)[(l1* 1l2* )t1(l11l2)t* ]

3S y

l1l2
1

y*

l1* l2*
2 lnuyu2D ,

where the constantclW 1 ,lW 2
for the normalized functionU is

calculated below@see Eq.~124!#.
11401
-
e

r-
-
g

-

te

However, the pseudovacuum state and other soluti
with integer conformal weights do not belong to the space
the physical states. Therefore their unitary transformation
the BS representation should be special and the norma
tion of the unitary transformation could include only the i
tegration over the large momenta. In this case it is m
natural to write for the kernel of this transformation the fo
lowing expression:

UlW 1 ,lW 2
~ tW1 , tW2!5clW 1 ,lW 2

ps
e( i /2)[(l1* 1l2* )t1(l11l2)t* ] ,

where the constantclW 1 ,lW 2

ps does not depend onl1,2.

Let us now consider then-Reggeon case. Again, the larg
momentapW k , 1<k<n presumably dominate the pseud
vacuum wave functionF0(PW ,lW ) when expressed as integr
transform of Eq.~20!. This large momenta regime corre
sponds to smalltk , 1<k<n21 according to Eq.~14!,

Retk5
P

(
r 51

k

pr

1OS p

(
r 51

k

pr
D 2

, Im tk5p.

Since the operatorB(n)(u) for small Retk and Imtk5p con-
tains more derivatives]k than factorst r 1r 2

compensating
them, we obtain in this regime for an arbitrary numbern of
Reggeons

B(n)~u!.2P@un211un22i ~n21!] t1•••#

.2PFun212un22(
j 51

n21

l j* 1•••G
wheret5t11•••1tn21.

Therefore, the transformation kernels forn Reggeons
have the large-p behavior similar to the case ofn52 and 3,

UlW 1 , . . . ,lW n21
~ tW1 , . . . ,tWn21!

5clW 1 , . . . ,lW n21

ps

3 )
k51

n21

~ ei [ ( l 51
n21l l* /(n21)]tkei [ (s51

n21ls /(n21)]tk* !

where the constantclW 1 , . . . ,lW
n21
ps is fixed by the normalization

condition with the integration over the region of large m
menta.

Thus the pseudovacuum state in the BS representation
be written as follows:
9-6
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F0~PW ,lW 1 , . . . ,lW n21!

;uPu2nclW 1 , . . . ,lW n21

ps E )
k51

n21

~ d2tke
i [ ( l 51

n21l l* /(n21)]tkei [ (s51
n21ls /(n21)]tk* !)

r 51

n22

ut r2t r 11u22 )
m51

n

upmu2 lnupmu2

;uPu2nclW 1 , . . . ,lW n21
E )

k51

n21

@d2pke
[ i /(n21)](( l 51

n21l l* /(r 51
k pr1(s51

n21ls /(r 51
k pr* )# )

m51

n

lnupmu2.
o

r-

l i
B
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Using dimensional arguments we can write the result
the integration for the pseudovacuum wave function as

F0~PW ,lW 1 , . . . ,lW n21!;uPu2nclW 1 , . . . ,lW n21

ps U(
s51

n21

lsU2(n21)

~25!

up to a divergentl-independent factor which can be regula
ized by changing the value of the Heisenberg spinss→21
1e.

Thus, providing that only large momenta are essentia
the unitary transformation, the pseudovacuum state in the
representation is expressed in terms of the normaliza
constantclW 1 , . . . ,lW n21

ps timesu(s51
n21lsu2(n21). For the Pomeron

clW does not depend onl @see Eq.~21!#. As it was argued
above, for the kernelUlW 1 , . . . ,lW n21

( tW1 , . . . ,tWn21), describing
the transition between the momentum and BS representa
for the pseudovacuum wave function, it is natural to take i
account in the normalization condition only the contributi
from large momenta~presumably this is valid also for a
states with integer conformal weightsm and m̃). We obtain
in this way

clW 1 , . . . ,lW n21

ps
51 ~26!

up to somelk independent factor.
The above arguments are in accordance with the Sklya

theory in which the pseudovacuum state in the wave func
is considered as a multiplier allowing to write the other m
tiplier as a product of the Baxter functions. Because, a
will be shown below, the Baxter function for then-Reggeon
composite state contains the polesQ(l);(l2 ir )2(n21) for
r 50,1, . . . , it isnatural to expect that the wave function
the pseudovacuum state cancels some of these poles. M
over, since from each solution of the Baxter equation we
obtain other solutions multiplying it by factors sinhk(2pl),
this symmetry should appear as a possibility to multiply
pseudovacuum state by such factors. Generally, the pse
vacuum state is not symmetric under the permutation of
parametersl1 ,l2 , . . . ,ln21. In order to find the Hamil-
tonian in the Baxter-Sklyanin representation we show be
that in the region whereln21 ,ln21* → i and ls→0 (s
51,2, . . . ,n22) the holomorphic wave function has only
single pole atln215 i . Therefore, in order to agree with th
Baxter representation we should substitute
11401
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lim
ln21 ,ln21→ i

c0, . . . ,0,lW n21

ps →sinhn22~2pln21!

3sinhn22~2pln21* !. ~27!

IV. BS WAVE FUNCTION FOR THE POMERON

The wave function of the Pomeron in the momentum re
resentation is given by

Cm,m̃~pW 1 ,pW 2!5)
r 51

2

~pW r !
2E )

k51

2 Fd2rk

2p
exp~ ipW krW k0!G

3S r12

r10r20
D mS r12*

r10* r20*
D m̃

~28!

and corresponds to the contribution of a triangle diagra
According to Appendix A the matrix element for this triang
diagram in the momentum space is

Cm,m̃~pW 1 ,pW 2!5Cm,m̃E d2kFk~P2k!

p12k G m̃21

3F k* ~P* 2k* !

p1* 2k* Gm21

, ~29!

where

Cm,m̃52~21!n
i m̃2mmm̃

2m1m̃14p3

G~12m!

G~m̃!
.

Note, that the above integral overkW is convergent at the
singular points of the integrand and at the infinity providi
thatm andm̃ correspond to the principal series of the unita
representations

m5
1

2
1 in1

n

2
, m̃5

1

2
1 in2

n

2
.

Terms proportional tod (2)(pW 1) and d (2)(pW 2) @17# can be
neglected here since they are multiplied bypW 1

2pW 2
2.
9-7
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One can analytically continue it for other values ofm and
m̃. In particular, form5m̃→2, corresponding to the pseudo
vacuum state, we obtain that the leading contributions fr
two regions: smallup12ku

E d2kS k* ~p1* 1p2* 2k* !

p1* 2k*
D m21S k~p11p22k!

p12k D m̃21

.2
2pup1u2up2u2

m1m̃24

and largeuku

up1u2up2u2E d2k
@k* ~p1* 1p2* 2k* !#m21

~p1* 2k* !m11

3
@k~p11p22k!#m̃21

~p12k!m̃11

.
2pup1u2up2u2

m1m̃24

cancel. The final result turns out to be proportional
up1u2up2u2 lnup1u2 lnup2u2.

Thus, the Pomeron wave functionFm,m̃(PW ,lW ) in the BS
representation is~for l52l1)

Fm,m̃~PW ,lW !

Pm̃~P* !m
5E d2p

up~12p!u2
S p

12p
D il* S p*

12p*
D il

3Cm,m̃~pW ,1W 2pW !

5Cm,m̃E d2p

up~12p!u2
S p

12pD il*

3S p*

12p*
D ilE d2kFk* ~12k* !

p* 2k*
Gm21

3Fk~12k!

p2k G m̃21

, ~30!

where p5p1 /P, p* 5p1* /P* , and k and k* were also re-
scaled byP andP* , respectively. The integrand is a singl
valued function only for the following values of the variab
l:

l15s1 i
N

2
, l1* 5s2 i

N

2

where s and N are correspondingly real and integer num
bers.
11401
Equation~30! admits a natural interpretation as the Fey
man diagram:

The Feynman rule is as follows: a line where a mome
tum p flows has associated the~conformal! ‘‘propagator’’
pil* (p* ) il and the anomalous dimensions for other lines
linear functions ofm andm̃.

To calculateCm,m̃(PW ,lW ) we use the anti-Wick rotation
p2→2 ip0 , k252 ik0 and introducei e to keep the singu-
larities off the integration paths:

upu25pp* →p1
22p0

22 i e. ~31!

Let us concentrate our attention on the integrals overk* and
p* . The position of the singularities ink* and p* in the
integrand of Eq.~30!:

~pp* 2 i e! il* 21@~12p!~12p* !2 i e#2 il21

3@~p2k!~p* 2k* !2 i e#12m

depend on the values ofk andp. Therefore, the three singu
larities in p* ~or k* ) may be on one side of the real axis
one of them on one side and two others in the other side
the first case we can deform the contour onp* ~or k* ) and
the integral vanishes. We obtain for the non-zero contri
tions after enclosing contours of integration overk* andp*
around the singularities of the integrand

Fm,m̃~PW ,lW !5Pm̃~P* !mCm,m̃i sinh~pl!sin~pm̃!Cm,m̃~lW !,

where

Cm,m̃~lW !5E
0

1

dp
pil* 21

~12p!11 il* E0

p

dk
~p2k!12m̃

@k~12k!#12m̃

3E
1

`

dp*
~p* ! il21

~p* 21!11 il
E

2`

0

dk*

3
~p* 2k* !12m

@k* ~k* 21!#12m
2~21!nE

0

1

dp
pil* 21

~12p!11 il*

3E
p

1

dk
~k2p!12m̃

@k~12k!#12m̃
E

2`

0

dp*
~2p* ! il21

~12p* !11 il

3E
1

`

dk*
~k* 2p* !12m

@k* ~k* 21!#12m
. ~32!
9-8
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The integrals overp* andk* as well as those overp and
k can be transformed using relations of the type

Fm̃
(1)

~p!5E
p

1

dk
~k2p!12m̃

@k~12k!#12m̃

52E
2`

0

dk
~p2k!12m̃

@2k~12k!#12m̃
,

Fm̃
(2)

~p!5E
0

p

dk
~p2k!12m̃

@k~12k!#12m̃

52E
1

`

dk
~k2p!12m̃

@k~k21!#12m̃
. ~33!

Each of the two terms in Eq.~32! factorizes into holomor-
phic and antiholomorphic functions. We can thus wr
Cm,m̃(lW ) as

Cm,m̃~lW !5 i
sinh~pl!

sin~pm!
@Cm̃

(2)
~l* !Cm

(2)~l!

1~21!nCm̃
(1)

~l* !Cm
(1)~l!#,

where

Cm̃
(1)

~l* !5E
0

1 pil* 21dp

~12p!11 il* Fm̃
(1)

~p!

5 i
sin~pm̃!

sinh~pl* !
E

2`

0 dp~2p! il* 21

~12p!11 il* Fm̃
(2)

~p!,

Cm̃
(2)

~l* !5E
0

1 pil* 21dp

~12p!11 il* Fm̃
(2)

~p!

52 i
sin~pm̃!

sinh~pl* !
E

1

` dppil* 21

~p21!11 il* Fm̃
(1)

~p!.

~34!

The functionsFm̃
(1)(p) andFm̃

(2)(p) are related to each othe
as follows:

lim
«→0, p,0

@Fm̃
(1)

~p2 i«!2Fm̃
(1)

~p1 i«!#

52 i sin~pm̃!Fm̃
(2)

~p!,

lim
«→0, p.1

@Fm̃
(2)

~p2 i«!2Fm̃
(2)

~p1 i«!#5 i sin~pm̃!Fm̃
(1)

~p!.

Upon changing the integration variables

p→12p, k→12k

one verifies from Eq.~34! that
11401
Cm
(2)~l!5Cm

(1)~2l!

and therefore

Fm,m̃~PW ,lW !

Pm̃P* mCm,m̃

52sinh2~pl!@Cm̃
(1)

~l* !Cm
(1)~l!

1~21!nCm̃
(1)

~2l* !Cm
(1)~2l!#.

We use the limiting value for the pseudovacuum statem

5m̃→2,

Fm̃
(1)

~p!→ p~12p!

22m̃
, Cm̃

(1)
~l* !→ pl*

sinh~pl* !~22m̃!
,

Cm,m̃→ 1

2p@22m̃#

to normalize our wave function.
We can write the result in terms of the product of t

Baxter functionsQ(l,m) and the pseudovacuum state:

Fm,m̃~PW ,lW !

Pm̃P* mCm,m̃

52
~21!Nulu2

mm̃
@Q~l* ,m̃!Q~l,m!

1~21!nQ~2l* ,m̃!Q~2l,m!#, ~35!

whereQ(l,m) is defined as

Q~l,m!52m
sinh~pl!

l E
0

1 pil21dp

~12p!11 ilEp

1 ~k2p!12mdk

@k~12k!#12m

52 i sinh~pl!E
0

1 pil21dp

~12p!11 ilEp

1 ~k2p!2mdk

@k~12k!#12m
.

~36!

These two equivalent integral forms of the Baxter functi
are related with integrating by parts inp and using the iden-
tity

d

dk Fk~12k!

k2p Gm

52m
@k~12k!#m21

~k2p!11m
@p~12p!1~k2p!2#.

This corresponds to the fact that the Pomeron wave func
is an eigenfunction of the Casimir operator of the Mo¨bius
group

p~12p!
d2

dp2
Fm̃

(1,2)
~p!5m~12m!Fm̃

(1,2)
~p!.

Using Eq.~36! and the identity
9-9
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lpil21~12p!2 il2152 i
d

dp
@pil~12p!2 il#

we obtain that

l2Q~l,m!52 im sinh~pl!E
0

1 pildp

~12p! il

d

dp

3E
p

1 ~k2p!12mdk

@k~12k!#12m

and

S p

12pD i (l1 i )

12S p

12pD il

1S p

12pD i (l2 i )

5
1

p~12p! S p

12pD il

.

The Baxter equation for the Pomeron~12! follows using both
integral representations~36! for Q(l,m):

~l1 i !2Q~l1 i ,m!22l2Q~l,m!1~l2 i !2Q~l2 i ,m!

5m~12m!Q~l,m!. ~37!

It should be noticed that ifQ(l,m) is a solution of the
Baxter equation for the Pomeron, thenQ(2l,m) is also a
solution.

V. ANALYTIC PROPERTIES OF THE BAXTER FUNCTION
FOR THE POMERON

The functionsFm
(1)(p) and Fm

(2)(p) defined by Eq.~33!
can be written in terms of the hypergeometric functi
2F1(a,b;g;z) and the Legendre functionPm21(z) @20#

Fm
(2)~p!5Fm

(1)~12p!

5
p~12m!

sin~pm!
pF~12m,m;2;p!

5
p

m sin~pm!
p~12p!

d

dp

3Pm21~122p!. ~38!

Therefore, we have for the Baxter function

Q~l,m!52 i
p sinh~pl!

sin~pm!
E

0

1

dp~12p! il21p2 il21

3Pm21~122p! ~39!

52
p2m~12m!

sinpm 3F2~2 il11,22m,11m;2,2;1!,

~40!

where the generalized hypergeometric function3F2 is de-
fined as follows@20#:
11401
3F2~a1 ,a2 ,a3 ;b1 ,b2 ;z!

5 (
k50

`
~a1!k~a2!k~a3!k

~b1!k~b2!k

zk

k!
, ~a!k5

G~a1k!

G~a!
.

One can find for the pseudovacuum state atm→2,

Q~l,m!5
2p

m22
1O~1!. ~41!

We thus have the following series representation for the B
ter function:

Q~l,m!52p(
k51

`
kG~m1k!G~12m1k!

~k! !3

G~k2 il!

G~12 il!
.

~42!

The late terms in this series behave ask212 il. Hence, this is
a convergent series for Iml,0.

In order to analytically continue the Baxter function to th
upperl plane we insert in Eq.~39! the series representatio
of the Legendre function@21#

Pm21~122p!5
sin2pm

p2 (
k50

`
G~m1k!G~12m1k!

~k! !2

3@2c~k11!2c~k112m!

2c~k1m!2 ln~12p!#~12p!k. ~43!

Integrating term by term in Eq.~39! yields the series

Q~l,m!5
ip

l
1

sinpm

G~11 il!(k51

`
kG~m1k!G~12m1k!

~k! !3

3G~k1 il!@2c~k11!1c~k!2c~k112m!

2c~k1m!2c~ il1k!#. ~44!

The late terms in this series behave ask221 il. Hence, this is
a convergent series for Iml.21. Equation~44! explicitly
display simple poles at

l50,i ,2i ,3i , . . . ,l i , . . . .

Actually, the poles atl51 i l ( l 51,2, . . . ) arise from the
logarithmic singularity ofPm21(122p) near p51 in the
integral ~39! @see Eq.~43!#.

Direct calculation yields from Eq.~44! for the residue at
these points

r l~m![ lim
l→ i l

@l2 i l #Q~l,m!

r 0~m!5 ip ~45!

r l~m!52 ipm~12m! 3F2~2 l 11,22m,11m;2,2;1!

52
sinpm

ip
Q~2 i l ,m!
9-10
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for l 51,2, . . . . It isinteresting to notice that the residues
Q(l,m) at l51 i l ( l 51,2, . . . ) areexpressed in terms o
Q(l,m) at l52 i l ( l 51,2, . . . ).

In summary, Eqs.~42! and ~44! explicitly show that
Q(l,m) is a meromorphic function ofl with simple poles at
l51 i l ( l 50,1,2, . . . ). The appearance of these poles
related with the logarithmic singularities of the wave fun
tion at p150 andp250.

The pomeron wave function considered as a function
real s for evenN may have in principle singularities„recall
that l5s1 i (N/2)…. However, we find from Eq.~35! for
nonvanishingN,

Pole ats50 of @Q~l* ,m̃!Q~l,m!

1~21!nQ~2l* ,m̃!Q~2l,m!#

5
1

s
@r l~m!Q~2 i l ,m̃!

2~21!nQ~2 i l ,m!r l~m̃!#

50 ~46!

wherel 5N/2. Here we used Eq.~45! and the relation

sinpm5~21!n sinpm̃.

It is important to notice that in the wave function the pole
s50 andN50 is also cancelled by the factor correspondi
to the pseudovacuum state, thus allowing to normalize
Pomeron eigenfunctions. Analogous cancellations of pole
the Baxter function at reals for a higher number of
Reggeons lead to the quantization of the integrals of mo
qr , r .2, as it will shown below. In coordinate space th
quantization appears as a consequence of the sin
valuedness condition~see@14#!.

Notice that both Eqs.~42! and ~44! exhibit the m⇔1
2m symmetry:

Q~l,m!5Q~l,12m!.

Therefore,Q(l,m) depends onm through the invariant
combinationm(12m) as we check explicitly below@see
Eqs.~49! and~50!#. Note, that this combination for the prin
cipal series takes the form

m~12m!5
1

4
2S in1

n

2D 2

. ~47!

We see from Eqs.~39! and ~44! that the functionQ(l,m)
obeys the relation

Q̄~l,m̄!5Q~2l̄,m!.

That is,Q(l,m) is real for purely imaginaryl and realm.
We have for reall andm,

ReQ~2l,m!51ReQ~l,m!,

Im Q~2l,m!52Im Q~l,m!.
11401
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The asymptotic behavior ofQ(l,m) for largel is derived
in Appendix B starting from the integral representation~39!,

Q~l,m!54ApF ~4il!m22

GS m2
1

2DG~22m!

G~m!

1~4il!212m tanpm
G~m!G~m11!

GS m1
1

2D

1O~lm24,l2m23!G . ~48!

The Baxter equation for the Pomeron~37! written in the
form

Q~l,m!5
~l1 i !2Q~l1 i ,m!1~l2 i !2Q~l2 i ,m!

2l21m~12m!

would seem to suggest thatQ(l,m) has singularities at the
zeros6 ihm of the denominator where

hm[A1

2
m~12m!5A1

8
2

1

2 S in1
n

2D 2

.

However, we know thatQ(l,m) is analytic there. Therefore
the following relation holds:

Q~ ihm1 i ,m!

Q~ ihm2 i ,m!
52S hm21

hm11D 2

.

A. Dispersion „Mittag-Lö ffler … representation of the Baxter
function

We obtain from the Baxter equation~37! a recurrence
relation for the residuesr l(m)

~ l 11!2r l 11~m!1~ l 21!2r l 21~m!

5@2l 21m~m21!#r l~m! for l>1,

r 1~m!5m~m21!r 0~m!. ~49!

All residues are thus determined in terms of the residue at
origin r 0(m). That is,

r 1~m!5m~m21!r 0~m!,

r 2~m!5
1

4
m~m21!@21m~m21!#r 0~m!,
9-11
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r 3~m!5
1

9
m~m21!F31

5

2
m~m21!

1
1

4
m2~m21!2G r 0~m!. ~50!

It is easy to check that Eqs.~42! and ~45! agree with these
results.

The asymptotic behavior of the residuesr l(m) follows
from the recursion relation~49!. We find, for largel

r l~m!5c~m!l m221c~12m!l 2m21. ~51!

Therefore, we can write the following Mittag-Lo¨ffler ~dis-
persion! representation for the Baxter function:

Q~l,m!5(
l 50

`
r l~m!

l2 i l

5
ip

l
2

sinpm

ip (
l 51

`
Q~2 i l ,m!

l2 i l
.

~52!

The asymptotic behavior~51! guarantees the convergence
this sum for21,Rem,2.

In general, we have form,p12 wherep is a positive
integer or zero@22#

Q~l,m!5Fp~l,m!1(
l 50

`

r l~m!F 1

l2 i l
2hl ,p~l!G ,

where

Fp~l,m!5 (
k50

p
~l1 i !k

k!
Q(k)~2 i ,m!,

hl ,p~l!5 (
k50

p
i 12k

~ l 11!k11
~l1 i !k. ~53!

For example,

F0~l,m!5Q~2 i ,m!52p2
m~12m!

sinpm
,

F1~l,m!5Q~2 i ,m!1~l1 i !Q8~2 i ,m!

52p2
m~12m!

sinpm
1 ip~l1 i !

3 (
k52

`
G~m1k!G~12m1k!

~k21!~k! !2
.

We get from Eq.~44! for Q(l,m) in the limit l→ i ,

lim
l→ i

Q~l,m!5pm~12m!F2
i

l2 i
122c~m!

2c~12m!12c~1!G ~54!
11401
and therefore

2 i lim
l→ i

d

dl
ln Q~l,m!5

i

l2 i
122c~m!2c~12m!

12c~1!. ~55!

We obtain for the other~independent! solutionQ(2l,m) of
the Baxter equation,

2 i lim
l→2 i

d

dl
ln Q~2l,m!5

i

l1 i
221c~m!1c~12m!

22c~1!. ~56!

The behavior of the Baxter functionQ(l,m) near its
nearest polel5 i can be also computed from the Mittag
Löffler expansion~52! with the result

Q~l,m! 5
l→ i ipm~12m!

l2 i
2 ir 0~m!1 i(

l 52

`
r l~m!

l 21
. ~57!

Equating this result with Eq.~54! yields the sum rule

2 ir 0~m!1(
l 52

`
r l~m!

l 21
5 ipm~12m!@c~m!1c~12m!

22c~1!22#.

For largel the Mittag-Löffler series~52! is dominated by
its late terms. Notice that the sum of residues

(
l 50

`

r l~m!50 ~58!

vanishes. The sum of late terms can be approximated b
integral. Using Eq.~51! we find

Q~l,m! 5
l@1

c~m!
p

sinpm
~ il!m221~m⇔12m!

in perfect agreement with Eq.~48!.

B. Infinite product representation of the Baxter function

As we have seen, the Baxter functionQ(l,m) is a mero-
morphic function of l with simple poles atl51 i l ( l
51,2, . . . ).Therefore, the function

Q~l,m!

G~ il!

is an entire function. Entire functions can be represented
infinite products over their zeros@22#.

Numerical study of the Baxter functionQ(l,m) in its
Mittag-Löffler representation showed that all zeros
Q(l,m) are in the positive imaginaryl axis for Rem,2.
We have in additionp real zeros forp14.Rem.p12
wherep is a positive integer or zero.
9-12
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For large l the imaginary zeroslk , k51,2, . . . are
equally spaced and follows for largek the law:

lk5 i Fk112m1OS 1

kaD G ~59!

for Rem,1/2 and wherea;0.5.
We assume the infinite product representation@22#,

Q~l,m!

G~ il!
5BeAl)

k51

` S 12
l

lk
Del/lk.

The asymptotic behaviors~59! and ~B3! are consistent
provided~see Appendix B!

A52 ic~22m!.

In addition,B52p according to Eq.~52!. In summary,
we have

Q~l,m!

G~ il!
52pe2 ilc(22m))

k51

` S 12
l

lk
Del/lk, ~60!

wherec(z) is the digamma function.
The Bethe ansatz equations are algebraic equation

zeros of the Baxter function. They follow from the Baxt
equation~37! and this infinite product representation. Equ
tion ~37! can be recast as,

@2l22m~12m!#
Q~l,m!

G~ il!
52 i ~l1 i !

Q~l1 i ,m!

G~ i @l1 i # !

1 il~l2 i !2
Q~l2 i ,m!

G~ i @l2 i # !
.

Setting herel5lk yields

lk~lk2 i !2

lk1 i
5e2c(22m))

l 51

` Fe2i /l l
l l2lk2 i

l l2lk1 i G . ~61!

We see that the Bethe ansatz equations are here an in
system of algebraic equations. In the present Reggeon p
lem it is more effective to solve the Baxter equations
looking at the poles of the Baxter function@see Eq.~49!#
rather than to the Bethe ansatz equations~61!. In customary
cases the Bethe ansatz equations are the more effective
@7#.

Since the Baxter function is explicitly known for th
Pomeron we can find an infinite number of sum rules for
zeroslk just by matching Eqs.~42! or ~44! with Eq. ~60!.

For example, forl→ i we get from Eq.~60!,

2 i lim
l→ i

d

dl
ln Q~l,m!5

i

l2 i
112g1 (

k51

`
1

ilk~11 ilk!

2c~22m!.

Equating with Eq.~55! yields
11401
on
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(
k51

`
1

ilk~11 ilk!
512g2c~12m!2

1

m21
.

VI. SOLVING THE BAXTER EQUATION
FOR n-REGGEON STATES

The Baxter equation for the odderon takes the form

@2l32m~m21!l1 im#Q~l;m,m!

5~l1 i !3Q~l1 i ;m,m!1~l2 i !3Q~l2 i ;m,m!,

~62!

where

q35 im, Im~m!50. ~63!

The reality property ofm is needed to obtain the single
valuedness of the odderon wave function in the coordin
space@16#.

Equation ~62! can be solved asymptotically for largel
making the power-like ansatz,

Q~l;m,m! 5
l→`

laF11
b

l
1OS 1

l2D G . ~64!

Inserting Eq.~64! into Eq. ~62! yields two solutions:a1

5m23 anda252m22 connected by them⇔12m sym-
metry. The general solution of Eq.~62! will have thus the
asymptotic behavior

Q~l;m,m! 5
l→`

A1lm23F12 i
m

~m21!~m22!l
1OS 1

l2D G
1A2l2m22F12 i

m

m~m11!l
1OS 1

l2D G
whereA6 are constants.

For the Pomeron case the Baxter function can be
pressed as a sum of simple poles in the upper plane@see Eq.
~52!#. This is not the case for the odderon. If we try an ans
with only simple poles in the upper plane,

Q0~l!5(
r 50

`
cr~m,m!

l2ri
, ~65!

the asymptotic behavior of this sum forl→` turns out to be

Q0~l!5c/l, c5(
r 50

`

cr~m,m!, ~66!

wherec is not zero. ThereforeQ0 does not satisfy the Baxte
equation for the odderon atl→`. In particular the behavior
~64! is not fulfilled by Q0(l). Note, that in the case of th
Pomeron the simple pole ansatz indeed satisfies the Ba
equation at infinity because the sum of residues vanis
@Eq. ~58!#.

For the odderon, we have to include in the Ansatz dou
poles. It will be shown below, that in the general case on
9-13
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ReggeonsQ may contain poles of the ordern21. The odd-
eron Baxter function can be written in the form

Q~l;m,m!5(
r 50

` F2
ar~m,m!

~l2ri !2 1 i
br~m,m!

l2ri G . ~67!

The residues satisfy the recurrence relations

a1~m,m!52ma0~m,m!,

8a2~m,m!5@21m~m21!2m#a1~m,m!,

~r 11!3ar 11~m,m!5@2r 31m~m21!r 2m#ar~m,m!

2~r 21!3ar 21~m,m!,

b1~m,m!52mb0~m,m!1m~m21!a0~m,m!

23a1~m,m!,

8b2~m,m!5@21m~m21!2m#b1~m,m!

1@61m~m21!#a1~m,m!

212a2~m,m!,

~r 11!3br 11~m,m!5@2r 31m~m21!r 2m#br~m,m!b f

2~r 21!3br 21~m,m!

1@6r 21m~m21!#

3ar~m,m!23~r 11!2

3ar 11~m,m!23~r 21!2ar 21~m,m!.

~68!

We can normalize

a0~m,m!51. ~69!

In order to satisfy the Baxter equation at infinity and to o
tain the asymptotic behavior~64!, we impose

(
r 50

`

br~m,m!50. ~70!

This equation fixes the value ofb0(m,m). Therefore, all co-
efficientsan(m,m) andbn(m,m) are univocally determined

We find for larger that bothar(m,m) and br(m,m) de-
crease asr m23. As in the Pomeron case, the asymptotic b
havior of the Baxter function for largel is governed by the
late terms in the Mittag-Lo¨ffler series~67!. Evaluating the
sum of such late terms we reproduce the asymptotic beha
~65!.

We see from the recurrence relations~68! that for m→0
the double poles withr .0 disappear@ar(m,0)50#. Only
the double pole at the origin remains and the solution of
Baxter equation for the odderon can be expressed in term
that for the Pomeron. With our normalization we obtain
11401
-

-

ior

e
of

Q~l;m,0!52
Q~l,m!

ipl
, ~71!

whereQ(l,m) is the Pomeron Baxter function.
Equation~71! holds because for smalll

lim
l→0

Q~l,m!5
ip

l
1Q0~m!.

To calculateQ0(m) one can use Eq.~54!, the relation

Q~2 i ,m!52p2
m~m21!

sin~pm!
~72!

and the Baxter equation forQ(l,m) nearl50. Thus, we
have

Q0~m!5pF p

sin~pm!
1c~m!1c~12m!22c~1!G

~73!

in an agreement with the asymptotics atm→2 @see Eq.~41!#

Q~l,m!→ 2p

m22
.

Therefore, we obtain the residueb0(m,m) of the simple pole
in the odderon solution form50 as

b0~m,0!5
p

sin~pm!
1c~m!1c~12m!22c~1! ~74!

and in particular,

b0S 1

2
,0D5p24 log 250.369004 . . . .

From Eq. ~70! one can compute several terms of t
small-m expansion ofb0(m,m) at m51/2

b0S 1

2
,m D50.36900422.835m22.749m222.947m31•••.

~75!

It will be shown in the next sections that the odder
energyE „related with the interceptD @see Eq.~104!#… is
calculated in terms of the behavior ofQ(l;m,m) and
Q(l* ;m̃,2m) at their singular pointl5 i and l* 5 i , re-
spectively@see Eq.~113!#:

E5
b1~m,m!

a1~m,m!
1

b1~m̃,2m!

a1~m̃,2m!
16. ~76!

In particular, this gives the possibility to calculate the ene
for m51/2 as a series inm

E5b0S 1

2
,m D1b0S 1

2
,2m D50.73800825.498m21•••

~77!
9-14
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in agreement with the results by Janik and Wosiek@14# ~take
into account that we define the energy with an opposite si!.
E is a meromorphic function ofm. For m51/2 its poles are
situated on the real axis at the points

m (1)560.91450 . . . , m (2)564.7340 . . . ,

m (3)5613.36 . . . , . . . .

The asymptotic behavior of the energy at largem was calcu-
lated in Ref.@11#:

E

2
5 ln m13g1F 3

448
1

13

120S m2
1

2D 2

2
1

12S m2
1

2D 4G 1

m2

1•••. ~78!

We checked that both the small and the largem approxi-
mations given by Eqs.~77! and ~78!, respectively are in ex-
cellent agreement with numerical values obtained from
exact equations~68!–~70! and ~76!.

A solution of the Baxter equation independent of Eq.~67!
can be written as follows:

Q~2l;m,2m!5(
r 50

` F2
ar~m,2m!

~l1ri !2 2 i
br~m,2m!

l1ri G .
~79!

One can verify the relation

@Q~2l;m,2m!#* 5Q~l* ;m̃,2m!.

Furthermore, it turns out that one can construct a solu
of the Baxter equation with simple poles, providing that th
are situated atl5 ir (r 50,61,62, . . . ):

Qs~l;m,m!5 (
r 52`

1`

i
cr~m,m!

l2ri
. ~80!

We normalizeQs as follows:

c0~m,m!51. ~81!

Then, the residues satisfy the recurrence relations

2m5c1~m,m!2c21~m,m!, ~82!

@2r 31m~m21!r 2m#cr~m,m!

5~r 21!3cr 21~m,m!1~r 11!3cr 11~m,m!. ~83!
11401
e

n
y

An additional constraint forc61(m,m) is obtained from the
condition that in accordance with the Baxter equationQs at
l→` should decrease more rapidly than 1/l:

(
r 52`

1`

cr~m,m!50. ~84!

It is obvious that

Qs~l;m,m!52Qs~2l;m,2m!,

@Qs~l;m,m!#* 52Qs~l* ;m,2m!.

Investigating the behavior of the Baxter functions ne
their poles we find that the following relation is true:

@ ip cothpl1X~m,m!#Qs~l;m,m!

5
c1~m,m!

a1~m,m!
Q~l;m,m!1

c1~m,2m!

a1~m,2m!
Q~2l;m,2m!,

~85!

wherea1(m,m)52m and

X~m,m!5
b1~m,m!

a1~m,m!
2

d1~m,m!

c1~m,m!

5
d1~m,2m!

c1~m,2m!
2

b1~m,2m!

a1~m,2m!
. ~86!

The quantitiescr(m),dr(m),er(m) appear in the expan
sion of Qs(l;m,m) near the poles atl5 ir

lim
l→ ir

Qs~l;m,m!→ i
cr~m,m!

l2 ir
1dr~m,m!2 ier~m,m!~l2 ir !

~87!

and satisfy the following relations:

c2r~m,2m!5cr~m,m!,d2r~m,2m!

52dr~m,m!,e2r~m,2m!5er~m,m!.

Due to the property of holomorphic factorization the Bax
function in the two-dimensionallW space has the form
Qm,m̃;m~lW !5Cm,m̃;m
(s)

Qs~l;m,m!Qs~l* ;m̃,2m!1Cm,m̃;m
(1)

Q~l;m,m!Q~l* ;m̃,2m!1Cm,m̃;m
(2)

Q~2l;m,2m!Q~2l* ;m̃,m!

1Cm,m̃;m
(1s)

Q~l;m,m!Qs~l* ;m̃,2m!1Cm,m̃;m
(s2)

Q~2l;m,2m!Q~2l* ;m̃,m!1Cm,m̃;m
(2s)

Q~2l;m,2m!

3Qs~l* ;m̃,2m!1Cm,m̃;m
(s1)

Qs~l;m,m!Q~l* ;m̃,2m!1Cm,m̃;m
(12)

Q~l;m,m!Q~2l* ;m̃,m!

1Cm,m̃;m
(21)

Q~2l;m,2m!Q~l* ;m̃,2m!, ~88!
9-15
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where we took into account thatq3* 52 im.
The coefficientsC(k) are fixed by the condition of the

normalizability ofQm,m̃;m(lW ), which reduces to the require
ment for Qm,m̃;m(lW ) to be regular ats50 provided thatl
5s1 iN/2 with uNu.0. For N50 the poles ats50 are
killed by the corresponding factor in the integration measu

It is obvious that

Cm,m̃;m
(12)

5Cm,m̃;m
(21)

50,

because in the opposite case one cannot cancel the fo
order poles in the product of the corresponding holomorp
and antiholomorphic functions.

Further, the following equality

Cm,m̃;m
(1)

52Cm,m̃;m
(2)

is valid. To show it, let us investigate the Baxter functi
Q(l;m,m) near the regular pointsl52 ir (r 51,2, . . . ):

lim
l→2 ir

Q~l;m,m!5Ar~m,m!1 i ~l1 ir !Br~m,m!. ~89!

It can be verified, thatAr(m,m) and Br(m,m) for r .2
satisfy the same recurrence relations asar(m,2m) and
br(m,2m) respectively. ThereforeAr(m,m) should be pro-
portional toar(m,2m) ~for r .0)

Ar~m,m!5a~m,m!ar~m,2m!. ~90!

But Br(m,m) are not proportional tobr(m,2m) even if we
would choose m in such a way that B1(m,m)
5a(m,m)b1(m,2m). The reason is that according to th
Baxter equation the coefficientB2(m,m) is expressed no
only in terms ofA1(m,m), A2(m,m) andB1(m,m) @similar
to b2(m,m)#, but it contains also a contribution proportion
to a0(m,m)51 from the pole 1/l2. ThereforeBr(m,m) for
r .1 are not proportional tobr(m,2m). From the Baxter
equation we can obtain the following relations

Br~m,m!5a~m,m!br~m,2m!1@B1~m,m!2a~m,m!

3b1~m,2m!#
ar~m,2m!

a1~m,2m!
1ãr~m,2m!,

where ãr(m,2m) satisfies the same recurrent relations
ar(m,2m) for r .1 with different initial conditions:

ã1~m,2m!50, ã2~m,2m!5
1
8

.

Because in the other bilinear contributions to Eq.~88! the
residues of the poles ins do not containãr(m,2m), we
should cancel them in the following combination:
11401
.

rth
ic

s

lim
l→ ir

@Q~l;m,m!Q~l*; m̃,2m!2Q~2l;m,2m!

3Q~2l* ;m̃,m!#

52
1

s2
@a~m̃,2m!2a~m,2m!#ar~m,m!ar~m̃,m!

1
i

s
Dr~m,m̃,m!,

where

Dr~m,m̃,m!5@a~m̃,2m!1a~m,2m!#@br~m,m!ar~m̃,m!

2ar~m,m!br~m̃,m!#

1S B1~m,2m!2a~m,2m!b1~m,m!

a1~m,m!

2
B1~m̃,2m!2a~m̃,2m!b1~m̃,m!

a1~m̃,m!
D

3ar~m,m!ar~m̃,m!1ar~m̃,m!ãr~m,m!

2ãr~m̃,m!ar~m,m!.

According to the relations

ar~m̃,m!5@ar~m,m!#* ,ãr~m̃,m!5@ ãr~m,m!#* ,

the contribution containingã is pure imaginary and antisym
metric to the transmutationm↔m̃.

In the case of conformal spinn5m2m̃50 the function

Qm,m;m~lW !5Q~l;m,m!Q~l* ;m,2m!2Q~2l;m,2m!

3Q~2l* ;m,m!

does not contain poles ats50 for uNu.0 and can be nor-
malized. In the general casemÞm̃ to cancel the first and
second order poles ats50 one should take into account a
contributions in Eq.~88!.

Let us attemp to construct a normalized wave function
mÞm̃ including all contributions in Eq.~88! except the sec-
ond and third terms and the last two terms. That is, we
pose

Cm,m̃;m
(1)

5Cm,m̃;m
(2)

50.

We call such wave functionDQm,m̃;m(lW ).
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Using the Baxter equation one can obtain the recurre
relations for the coefficientscr , dr , er of the Laurent expan-
sion ~87! of Qs(l;m,m) near the polel5 ir . They are simi-
lar to the relations for the expansion coefficientsar , br and
Er for Q(l;m,m):
t
in

e
te

c
-
f
lo-
r
e

ex
og

11401
e
lim

l→ ir
Q~l;m,m!→2

ar~m,m!

~l2 ir !2
1 i

br~m,m!

l2 ir
1Er~m,m!.

~91!

We obtain the following relations:
to
cr~m,m!5
c1~m,m!

a1~m,m!
ar~m,m!,

dr~m,m!5
c1~m,m!

a1~m,m!
br~m,m!1

d1~m,m!2
b1~m,m!

a1~m,m!
c1~m,m!

a1~m,m!
ar~m,m!,

er~m,m!5
c1~m,m!

a1~m,m!
Er~m,m!1

d1~m,m!2
b1~m,m!

a1~m,m!
c1~m,m!

a1~m,m!
br~m,m!

1

e1~m,m!2
c1~m,m!

a1~m,m!
E1~m,m!2S d1~m,m!2

b1~m,m!

a1~m,m!
c1~m,m! Db1~m,m!

a1~m,m!

a1~m,m!
ar~m,m!.

These relations allow one to verify that the coefficientsCm,m̃;m
(t) in the above expression~88! can be chosen in such a way

cancel all poles ats50 for uNu.0, which leads to the following expression forDQm,m̃;m(lW ):

DQm,m̃;m~lW !52@X~m,m!1X~m̃,m!#Qs~l;m,m!Qs~l* ;m̃,2m!1
c1~m,m!

a1~m,m!
Q~l;m,m!Qs~l* ;m̃,2m!

2
c1~m̃,m!

a1~m̃,m!
Qs~l;m,m!Q~2l* ;m̃,m!1

c1~m,2m!

a1~m,2m!
Q~2l;m,2m!Qs~l* ;m̃,2m!

2
c1~m̃,2m!

a1~m̃,2m!
Qs~l;m,m!Q~l* ;m̃,2m!, ~92!
two

tiza-

rst
whereX(m,m) is defined in Eq.~86!.
Note that the expressionDQm,m̃;m(lW ) constructed above

is in fact zero due to Eq.~85!. However, the wave function
Qm,m̃;m(lW ) given by Eq.~88! is normalizable and does no
vanish when all contributions are included. That is, choos
Cm,m̃;m

(1)
Þ0ÞCm,m̃;m

(2)
~but excluding the last two terms!. The

fact that DQm,m̃;m(lW ) vanishes allows us to diminish th
number of independent bilinear combinations of the Bax
functions.

It is important that we constructed the normalized fun
tion Qm,m̃;m(lW ) without imposing any condition on the nu
merical value ofm. This function is a bilinear combination o
different Baxter functions in the holomorphic and antiho
morphic spaces. Let us take into account the physical
quirement that all these Baxter functions have the same
ergy, because in the opposite caseQm,m̃;m(lW ) would not have
a definite total energy. According to the results of the n
sections the energy is expressed in terms of the sum of l
g

r

-

e-
n-

t
a-

rithmic derivatives of the functions (l2 i )2Q(l) at l5 i in
the holomorphic and antiholomorphic spaces. We have
independent functions with second order poles ats5 i . They
are Q(l;m,m) and coth(pl)Qs(l;m,m). The equality of the
energies calculated from these functions gives the quan
tion condition form:

22X~m,m!5
d1~m,m!

c1~m,m!
2

d1~m,2m!

c1~m,2m!
2

b1~m,m!

a1~m,m!

1
b1~m,2m!

a1~m,2m!
50. ~93!

We found from the above equations numerically the fi
roots form5m̃51/2:

m150.205257506 . . . , m252.3439211 . . . ,

m358.32635 . . . , m4520.080497 . . . , . . .
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with the corresponding energies

E150.49434 . . . , E255.16930 . . . ,

E357.70234 . . . , E459.46283 . . . , . . . .

These values are in a full agreement with the results of Ja
Wosiek and other authors~see@16#! obtained by the diago
nalization of the integral of motionq3 in the impact param-
eter space and imposing the property of single-valuednes
the wave function.

Let us now consider the Baxter equation for t
n-Reggeon composite state:

L (n)~l;mW !Q~l;m,mW !5~l1 i !nQ~l1 i ;m,mW !1~l2 i !n

3Q~l2 i ;m,mW !, ~94!

whereL (n)(l) is the polynomial

L (n)~l;mW !5 (
k50

n

~2 i !kmkl
n2k, m052, m150,

m25m~m21!, ~95!

where we assume, thatmk5 i kqk for k.2 are real numbers
The last condition is needed in order to have a normaliza
wave functions.

We search the solution of this equation in the form o
sum over the poles of the orders from 1 up ton21:

Q~l;m,mW !5(
r 50

` Pr ;m,mW
(n22)

~l!

~l2 ir !n21
. ~96!

Putting this ansatz in the equation, we obtain recurre
relations for polynomialsPr ;m,mW

(n22)(l) of the ordern22 allow-

ing to calculate them providing thatP0;m,mW
(n22)(l) is known.

Indeed, let us define the expansion of a functionf (l) in the
power series overl2 ir up to the ordern22:

„f ~l!…r
(n22)5~l2 ir !n22 lim

l→ ir

f ~l!

~l2 ir !n22
. ~97!

Then the recurrence relations for the coefficients of poly
mials Pr ;m,mW

(n22)(l) can be written as follows:

„L (n)~l,mW !Pr ;m,mW
(n22)

~l!…r
(n22)

5„~l1 i !nPr 11;m,mW
(n22)

~l1 i !…r
(n22)

1„~l2 i !nPr 21;m,mW
(n22)

~l2 i !…r
(n22) . ~98!

We can normalize the solution imposing the constrain

lim
l→ i

P0;m,mW
(n22)

~l!51. ~99!

Then the other independent coefficients of the polynom
P0,m,mW

(n22)(l) are determined from the condition
11401
ik,

to

le

e

-

l

lim
l→`

Q~l;m,mW !;l2n1m, ~100!

necessary to provideQ(l;m,mW ) to be a solution of the Bax-
ter equation atl→`. According to the Baxter equation thi
condition is satisfied if

lim
l→`

ln22(
r 50

` Pr ;m,mW
(n22)

~l!

~l2 ir !n21
50. ~101!

It gives n22 linear equations giving a possibility to calcu
late all coefficients of the polynomialP0,m,mW

(n22)(l).
The existence of the other independent solution

Q~2l;m,msW !5(
r 50

` P
r ;m,msW
(n22)

~l!

~2l2 ir !n21
, ~102!

wheremW s has the componentsmk
s5(21)kmk , is related with

the symmetry of the Baxter equation to the simultaneo
transformations

l→2l, m→ms.

One can verify that

@Q~2l;m,mW s!#* 5Q~l* ;m̃,mW s!.

Let us investigate now the behavior of the Baxter functi
near the regular pointsl52 ir (r 51,2, . . . ),

lim
l→2 ir

Q~l;m,mW !

~l1 ir !n22
5

Sr ;m,mW
(n22)

~l!

~l1 ir !n22
, ~103!

whereSr ;m,mW
(n22)(l) are polynomials obeying certain recurren

relations which can be obtained from the Baxter equati
These recurrence relations forr .2 are the same as fo
Pr ;m,mW s

(n22) (2l), but we cannot choose these two functions
be proportional even by imposing this proportionality atr
51 by an appropriate choice of the integrals of motionmk .
Similar to the case of the odderon it is related with the fa
that S2;m,mW

(n22)(l) contains in these recurrence relations an
ditional contribution from the polel12n. Therefore to cance
the pole singularities 1/s in the wave functionQm,m̃,mW (lW ) the
bilinear combinations of the above functionsQm,mW (l) and
Qm,mW s(2l) should be in the form

Q~l;m,mW !Q~l* ;m̃,mW s!2Q~2l;m,mW s!Q~2l* ;m̃,mW !.

To cancel other pole singularities we should introduce a
of additional Baxter function having the poles simult
neously in the upper and lower semiplanes of the complel
plane,
9-18
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Q(t)~l;m,mW !5(
r 50

` F Pr ;m,mW
(t21)

~l!

~l2 ir ! t
1

Pr ;m,mW
(n222t)

~2l!

~2l2 ir !n212tG ,

where the polynomialsP(t21) andP(n222t) are fixed by the
reccurence relations following from the Baxter equation a
by the condition that the new Baxter functions decrease
infinity more rapidly thanl2n12. These functions are linea
combinations ofQ(l;m,mW ) andQ(2l;m,mW s) with the co-
efficients depending on coth(pl). Using all these functions
in the holomorphic and anti-holomorphic spaces one
constructQm,m̃,mW (lW ) without the poles ats50. The quanti-
zation condition form is obtained from the requirement, th
the energy should be the same for all Baxter functio
Q(t)(l;m,mW ). We calculate the spectrum of the Regge
states forn.3 in a forthcoming paper.

VII. HAMILTONIAN IN THE BS REPRESENTATION

The high energy asymptotics of the scattering amplitu
corresponding to the contribution related to thet-channel ex-
change of the composite state ofn Reggeized gluons in the
multicolor QCD has the form

A~s,t !; i n21ssD, D52
g2

8p2
NcE, ~104!

whereE is the ground state energy for the Schro¨dinger equa-
tion

ECm,m̃~rW 1 ,rW 2 , . . . ,rW n ;rW 0!5HCm,m̃~rW 1 ,rW 2 , . . . ,rW n ;rW 0!.

The Reggeon Hamiltonian is

H5
1

2 (
k51

n

Hk,k11 .

Here 1/2 is the ration of the color factors for the adjoint a
singlet representations of the color group and the pair BF
Hamiltonian is given by

H1,25 lnup1u21 lnup2u21
p1p2*

up1u2up2u2
lnur12u2p1* p2

1
p2p1*

up1u2up2u2
lnur12u2p2* p124c~1!. ~105!

It enjoys the property of holomorphic separability

H1,25h121h12* ,

where

h125 ln~p1p2!1
1

p1
~ ln r12!p11

1

p2
~ ln r12!p222c~1!.

We now perform the unitary transformation of the Ham
tonian to the BS representation, whereP and the roots
l̂1 ,l̂2 , . . . ,l̂n21 of the equationB(u)50 are diagonal op-
11401
d
at

n

s

e

L

erators. In this new representation both the integrals of m
tion and the Hamiltonian should have simple separabi
properties.

Let us start with the case of the Pomeron, where

H5H1,2.

We now calculate the action of the hermitially conjugat
Hamiltonian on the eigenfunctions of the operatorB(u)
given by Eq.~21! ~with l52l15s1 iN/2),

H1,2
1 S p

12pD 2 il* S p*

12p*
D 2 il

5 lnF upu2u12pu2

m4 G S p

12pD 2 il* S p*

12p*
D 2 il

2
1

pE d2k
@kp* ~12k* !~12p!1k* p~12k!~12p* !#

~ uk2pu21m2!uku2u12ku2

3S k

12kD 2 il* S k*

12k*
D 2 il

,

whereP51 andm→0 is an infrared regulator, correspond
ing to the vector boson mass rescaled byP ~cf. @1#!.

Using the anti-Wick rotation of momentak252 ik0 and
p252 ip0 as in Eq.~31! after some transformations we ca
write the result in holomorphically separable form

H1,2
1 S p

12pD 2 il* S p*

12p*
D 2 il

5S p*

12p*
D 2 il

h12S p

12pD 2 il* 1 S p
12pD2 il*

h12* S p*
12p* D 2 il

,

where

h12S p

12pD 2 il*
5F ln

p~12p!

«2
1p i coth~pl* !G S p

12pD 2 il*

2E
p1«

1

dk
~p1k22kp!k212 il*

~k2p!~12k!12 il*

and

h12* S p*

12p*
D 2 il

5F ln
p* ~12p* !

«2
1p i coth~pl!G

3S p*

12p*
D 2 il

2E
p* 1«

1

dk*

3
~p* 1k* 22k* p* !~k* !212 il

~k* 2p* !~12k* !12 il* .
9-19
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Here«→0 is an intermediate infrared cutoff. The Hamilto
nians h12 and h12* have branch point singularities atp50,
1,̀ and p* 50,1,̀ , respectively, but the total Hamiltonia
H1,2 is single-valued.

We obtain, forupu→0,

lim
upu→0

H1,2~p!2 il* ~p* !2 il

5@2 lnupu21c~11 il* !1c~12 il* !1c~11 il!

1c~12 il!24c~1!#~p!2 il* ~p* !2 il.

Taking into account that in the integral

Cm,m̃~pW ,1W 2pW !

5
1

2p2E2`

1`

ds (
N52`

1` S p

12pD 2 il* S p*

12p*
D 2 il

3Fm,m̃~1W ,lW !, l5s1 i
N

2

for upu→0 the leading asymptotics corresponds toN50, and
shifting the integration contour ins in the upper half-plane
up to the first singularity ofCm,m̃(1W ,lW ), corresponding to the
poles atl,l* 5 i , we obtain for the Hamiltonian near thes
singularities

lim
l,l* → i

H1,2Fm,m̃~1W ,lW !

5 lim
l,l* → i

F i S ]

]l
1

]

]l*
1

1

l2 i
1

1

l* 2 i
D 12G

3Fm,m̃~1W ,lW !.

Using Eq.~35! for the Pomeron wave function in this limit

Fm,m̃~1W ,lW !;Q~l,m!Q~l* ,m̃!ulu2,

the Pomeron energy is given as follows:

E125 i lim
l,l* → i

H ]

]l
ln@~l2 i !l2Q~l,m!#

1
]

]l*
ln@~l* 2 i !~l* !2Q~l* ,m̃!#J .

We obtain for the Pomeron energy using the behavior
Q(l,m) nearl5 i @Eq. ~54!#

E125c~m!1c~12m!1c~m̃!1c~12m̃!24c~1!
~106!

in agreement with the known result@1#.
11401
r

VIII. ENERGY FOR MULTI-REGGEON COMPOSITE
STATES

Let us investigate the behavior of the wave functions
the composite states in the region where the values of gl
momenta are strictly ordered:

up1u!up2u!•••!upnu.

To begin with, we consider the odderon case, where
wave function is given by

Cm,m̃~pW 1 ,pW 2 ,pW 3!5)
r 51

3

~pW r !
2E )

k51

3 Fd2rk

2p
exp~ ipW k•rW k0!G

3S r23

r20r30
D mS r23*

r20* r30*
D m̃

fm,m̃~x,x* !,

where

x5
r12r30

r10r32

and the functionfm,m̃(x,x* ) has the property of the holo
morphic factorization

fm,m̃~x,x* !5(
i ,k

cikfm
i ~x!fm̃

k
~x* !1~q3↔2q3!.

The functionsfm
i (x),fm̃

k (x* ) are independent eigenfunc
tions of the integral of motion@4#

Amfm
i ~x!5a12mamfm

i ~x!5q3fm
i ~x!,

whereAm is given by

Am5 i 3x~12x!@x~12x!]21~22m!~122x!]

2~22m!~12m!#].

The operators

am5x~12x!~ i ]!m11, a12m5x~12x!~ i ]!22m

perform the duality transformation@11#.
The three independent eigenfunctionsfm

i (x) have the fol-
lowing small-x asymptotics@16#:

fm
1 ~x!.x1O~x2!, fm

2 ~x!.11O~x ln x!,

fm
3 ~x!.xm@11O~x!#,

which correspond to the following asymptotics
fm,m̃(x,x* ) enjoying single-valuedness at the singu
points:

lim
x→0

fm,m̃~x,x* !.xmx* m̂1cuxu2 lnuxu2,

lim
x→`

fm,m̃~x,x* !.11cxm21x* m̂21 lnuxu22
9-20
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and

lim
x→1

fm,m̃~x,x* !.~12x!m~12x* !m̂1cu12xu2 lnu12xu2.

For the functionCm,m̃(pW 1 ,pW 2 ,pW 3) in the limit up1u→0 the
region of largeur10u is essential. Taking into account only th
singular terms in this limit, we obtain

Cm,m̃~pW 1 ,pW 2 ,pW 3!.Cm,m̃~pW 2 ,p3
W !

1

2
up1u2 ln

uPu2

up1u2

where

Cm,m̃~pW 2 ,pW 3!5)
r 52

3

upr u2E )
k52

3 Fd2rk

2p
exp~ ipW k•rW k0!G

3S r23

r20r30
D m21S r23*

r20* r30*
D m̃21

3]]* fm,m̃~x,x* !

and

x5
r30

r32
.

The last function can be simplified in the limitp2→0, cor-
responding tor20→` and x→0. Indeed, we can use th
expansion

]]* fm,m̃~x,x* !.mm̃xm21~x* !m̂211c lnuxu21•••

and verify that the dependence fromr30 is canceled in the
contribution to the integrand from the first term in the righ
hand side, leading to a vanishing result after integrati
Therefore taking into account only the second term, we
tain

Cm,m̃~pW 2 ,pW 3!;c3 .

Hence, the resulting behavior for the odderon wave funct
at up1u!up2u!up3u is

Cm,m̃~pW 1 ,pW 2 ,pW 3!;c3up1u2 ln
uPu2

up1u2
. ~107!

This is in agreement with the fact that it is an eigenfunct
of the integrals of motionq2 and q3 provided that we take
into account inCm,m̃ also the regular terms proportional
p1 andp1* .

It is natural to expect a similar behavior

Cm,m̃~pW 1 ,pW 2 , . . . ,pW n!;cnup1u2 ln
uPu2

up1u2
~108!

for the case ofn Reggeized gluons in the limitup1u!up2u
!•••!upnu. Indeed, there are two independent solutions
the eigenfunctions of the integrals of motionQj ~7! which
11401
.
-

n

r

behave at smallp1 correspondingly asf 1gp1 ln p1 andgp1,
wheref andg are some functions ofpk analytic nearp150.
For the single-valued property we should multiply two su
functions depending on the holomorphic and antiholom
phic variables. Further, because the operatorsQj have more
derivatives overpk (k52,3, . . . ,n) than the momenta com
pensating them,ugu2 should be a constant for small values
these momenta.

In the opposite limit

upnu!upn21u!•••!up1u

we obtain correspondingly

Cm,m̃~pW 1 ,pW 2 , . . . ,pW n!;cnupnu2 ln
uPu2

upnu2
. ~109!

The fact that the behavior ofCm,m̃ at upnu→0 for the
composite state ofn Reggeized gluons is the same as in t
Pomeron case implies the existence of a pole in

Cm,m̃~lW 1 ,lW 2 , . . . ,lW n21!

at ln215 i and atln21* 5 i .
Indeed, for 15up1u@up2u@•••@upnu we have

Cm,m̃~pW 1 ,pW 2 , . . . ,pW n!

52(n21)/2)
k51

n21 S E
2`

1`

dsk (
Nk52`

1`

exp@ i ~ tklk* 1tk* lk!# D
3Cm,m̃~lW 1 ,lW 2 , . . . ,lW n21! ~110!

and therefore the contour of the integration insn21 for
Nn2150 should be shifted in the complex plane up to t
pole (sn212 i )22.

We can find the singular part of the Hamiltonian in the B
representation for smallupnu similarly to the Pomeron case

1

2
~Hn,n211H1n!pn

2 iln21*
pn
* 2 iln21

5
1

2
lnup1pn21u2p

n

2 iln21*
pn
* 2 iln21

1@2 lnupnu21c~11 iln21* !

1c~12 iln21* !1c~11 iln21!

1c~12 iln21!24c~1!#p
n

iln21*
pn
* 2 iln21 .

~111!

The first term in the right-hand side can be combined w
the other pair Hamiltonians. After that, we obtain for
5up1u@up2u@•••@upnu:
9-21
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S 1

2
lnup1pn21u21

1

2 (
r 51

n22

Hr ,r 11D )
k52

n21

p
k

2 ilk* pk
* 2 ilk

5
1

2 (
r 52

n21

@c~11 il r* !1c~12 il r* !1c~11 il r !

1c~12 il r !24c~1!# )
k52

n21

p
k

2 ilk* pk
* 2 ilk .

Thus, for the constant behaviorCm,m̃(pW 1 , . . . ,pW n21);c at
up2u@•••@upnu ~corresponding to l15l1* 5•••5ln22

5ln22* 50) the last contribution vanishes and therefore
obtain for the composite state energy the result similar to
Pomeron case

E5 i lim
l,l* → i

H ]

]l
ln@~l2 i !lC~l;m,mW !#

1
]

]l*
ln@~l* 2 i !l* C~l* ;m̃,mW s!#J . ~112!

Here C(ln21 ;m,mW ) and C(ln21* ;,m̃,mW s) are correspond-
ingly holomorphic and antiholomorphic factors of the wa
function atlk5lk* 50, 1<k<n22:

Cm,m̃~0,0, . . . ,lW n21!⇒C~ln21 ;m,mW !C~ln21* ;m̃,mW s!

andmk5(2 i )kqk , mk
s5 i kqk are eigenvalues of the integra

of motion. This quantity can be related with the Baxter fun
tion and the normalization factor for the pseudovacuum s
@see Eq.~25!#:

Cm,m̃~0,0, . . . ,lW n21!⇒c0,0, . . . ,lW n21

ps uln21u2(n21)

3Q~ln21 ;m,mW !Q~ln21* ;m̃,mW s!.

As it was argued above, for the pseudovacuum state it lo
plausible that the correct normalization of the kernel for
transition between momentum and BS representations co
sponds to c0,0, . . . ,lW n21

ps
5sinhn22(2pln21)sinhn22(2pln21* )

@see Eq.~27!#. We obtain in this case for the energy

E5 i lim
l,l* → i

H ]

]l
ln@sinhn21~2pl!lnQ~l;m,mW !#

1
]

]l*
ln@sinhn21~2pl* !l* nQ~l* ;m̃,mW s!#J .

~113!

Thus the energy is expressed in terms of the behavior of
Baxter functionQ(l,m) nearl5 i .

In the customary case of spin chains the Baxter functio
a polynomial of degreeL,
11401
e
e

-
te

ks
e
re-

e

is

QXXX~l!5)
k51

L

~l2lk!

where thelk are solutions of the Bethe ansatz equatio
@6,7#. The energy of theXXX chain is given by

EXXX522(
k51

L
1

lk
211

5 i
d

dl
log

QXXX~l1 i !

QXXX~l2 i ! U
l50

.

~114!

In the present case the Baxter function is a meromorp
function with an infinite number of poles and zeroes as d
cussed in Sec. V B. It can be expressed as an infinite pro
of the Bethe ansatz solutions@see Eq.~60!#. The eigenvalue
expression here is not given by Eq.~114! but by Eq.~106!

E12511g1c~22m!2 (
k51

`
1

ilk~11 ilk!
1@m→m̃#,

in the Pomeron case.

IX. BS REPRESENTATION FOR THE ODDERON WAVE
FUNCTION

Here we consider thel representation for the odderon
where the operator

B(3)~u!52PFu21 iuS ]

]t1
1

]

]t2
D2~12et12t2!

]

]t1

]

]t2
G

is diagonal. Introducing the new variables,

t5t11t25 lnFp1~p11p2!

~p21p3!p3
G ,

z5ey5et12t25
p1p3

~p21p3!~p11p2!
,

we obtain

B(3)~u!52PFu212iu
]

]t
1~12z!z

]

]z
z

]

]z

2~12z!S ]

]t D
2G .

To diagonalizeB(3) one should find the eigenvalues an
eigenfunctions of the differential operators

i
]

]t
w52

l1* 1l2*

2
w, F ~12z!z

]

]z
z

]

]z
2zS l1* 1l2*

2 D 2Gw
52S l1* 2l2*

2 D 2

w,

wherelk are the eigenvalues of the zeros ofB(3)(u):

B(3)~u!52P)
k51

2

~u2l̂k!.
9-22
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The solution of the above equations can be written in te
of hypergeometric functions

wl
1* l

2*
~ t,z!5ei [(l1* 1l2* )/2]tzi [(l1* 2l2* )/2]

3F„2 il2* ,il1* ;11 i ~l1* 2l2* !;z…

5ei [(l1* 1l2* )/2]t
G@11 i ~l1* 2l2* !#zi [(l1* 2l2* )/2]

G~2 il2* 11!G~ il1* !

3E
1

`S x21

x2zD 2 il2*

x2 il1* 21dx.

An independent solution follows by interchanging herel1*
andl2* .

Therefore, we can write the following relation betwe
the wave functions in momentum and BS representation

Cm,m̃~pW 1 ,pW 2 ,pW 3!5Pm̃~P* !m)
k51

2 S (
Nk52`

1` E
2`

1`

dskD
3UlW 1 ,lW 2

~ tW,zW !Cm,m̃~lW 1 ,lW 2!,

where

lk5sk1 i
Nk

2
, lk* 5sk2 i

Nk

2
, ~115!

and

UlW 1 ,lW 2
~ tW,zW !5ClW 1 ,lW 2

eit [(l1* 1l2* )/2]eit* [(l11l2)/2]UlW 1 ,lW 2
~zW !.

Here the functionUlW 1 ,lW 2
(zW) is defined as follows:

UlW 1 ,lW 2
~zW !5zi [(l1* 2l2* )/2]~z* ! i [(l12l2)/2]

3E d2x

uxu2
x2 il1* ~x* !2 il1S x21

x2zD 2 il2*

3S x* 21

x* 2z*
D 2 il2

~116!

and the normalization constantClW 1 ,lW 2
can be found from the

orthogonality condition

E d2td2z

uz~12z!u2
UlW 1,lW 2

~ tW,zW !UlW
18 ,lW

28
* ~ tW,zW !

5(
P

)
k51

2

d~sk2s i k
8 !dNk ,N

i k
8 . ~117!

It should be taken into account that due to the symme
properties ofUlW 1,lW 2

(zW) underl1↔l2 two terms appear in
the right-hand side of the orthogonality equation.

Let us show that the kernel of the unitary transformat
UlW 1 ,lW 2

( tW,zW) has an interpretation in terms of the Feynm
11401
s

y

diagram as it was in the case of the Pomeron wave func
~30!. After changing the integration variablex into k as fol-
lows

x5
p1

12p1

k

12k

Eq. ~116! takes the form

UlW 1 ,lW 2
~ tW,zW !

ClW 1,l2
W

5S p1

p3
D il2* S p1*

p3*
D il2E d2k

uk~12k!u2S k

12kD 2 il1*

3S k*

12k* D 2 il1S k1p121

k2p3
D 2 il2*

3S k* 1p1* 21

k* 2p3*
D 2 il2

. ~118!

The wave function in thel representation has the form

Cm,m̃~lW 1 ,lW 2!5E d2p1d2p3

up1u2u12p12p3u2up3u2
UlW 1 ,lW 2

* ~ tW,zW !

3Cm,m̃~pW 1 ,1W 2pW 12pW 3 ,pW 3!.

The associated Feynman diagram is depicted in Fig. 1.

X. PROPERTIES OF THE UNITARY TRANSFORMATION
FOR THE ODDERON WAVE FUNCTION

The functionUlW 1 ,lW 2
(zW) is a solution of the differential

equations of a hypergeometric type in both variablesz and
z* ,

F ~12z!z
d

dz
z

d

dz
2zS l1* 1l2*

2 D 2

1S l1* 2l2*

2 D 2GU50,

F ~12z* !z*
d

dz*
z*

d

dz*
2z* S l11l2

2 D 2

1S l12l2

2 D 2GU

50.

Therefore,UlW 1 ,lW 2
(zW) is a bilinear combination of indepen

dent solutions being functions ofz and z* . In addition,
FaW ,bW (zW) should be a single valued function ofzW near the
singularitiesuzu50, uz21u50, uzu5`. The effective way to
satisfy these requirements@23# is to use the monodromy
properties@20# of the two independent solutions:

zi [(l12l2)/2]F„2 il2 ,il1 ;11 i ~l12l2!;z…,

z2 i [(l12l2)/2]F„2 il1 ,il2 ;12 i ~l12l2!;z…

and analogous expressions inz* . Thus, we obtain
9-23
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UlW 1 ,lW 2
~zW !5KlW 1 ,lW 2

@xl1l2
~z* !xl

1* l
2*
~z!

2xl2l1
~z* !xl

2* l
1*
~z!#, ~119!

where

xl1l2
~z* ![al1l2

~z* ! i [(l12l2)/2]

3F„2 il2,il1;11 i ~l12l2!;z* …,

al1l2
[

G~ il1!G~2 il2!

G„11 i ~l12l2!…
, ~120!

and an analogous expression forxl
1* ,l

2*
(z). This result can

be verified by the direct calculation of the integral~116!. In
such a way we obtain for the constantKlW 1 ,lW 2

in Eq. ~119!:

KlW 1 ,lW 2
5 i ul2u2

sinh~pl2!sinh~pl1!

sinh„p~l12l2!…
,

where we used@see Eqs.~115!#

sinh~pl2!sinh~pl1!

sinh„p~l12l2!…
5

sinh~pl2* !sinh~pl1* !

sinh„p~l1* 2l2* !…
.

In summary, collecting all factors we find for the matr
elements of the unitary transformation relating moment
and BS representations,

UlW 1 ,lW 2
~ tW,zW !

ClW 1 ,lW 2
KlW 1 ,lW 2

5ei „t[(l1* 1l2* )/2]1t* [(l11l2)/2]…

3@xl1l2
~z* !xl

1* l
2*
~z!

2xl2l1
~z* !xl

2* l
1*
~z!#, ~121!

wherexl1l2
(z* ) andxl

1* l
2*
(z) are given by Eq.~120!.

We find for z→0 the asymptotic behavior,

FIG. 1. Odderon Feynman diagram.
11401
UlW 1 ,lW 2
~ tW,zW !

ClW 1 ,lW 2
KlW 1 ,lW 2

5ei „t[(l1* 1l2* )/2]1t* [(l11l2)/2]…

3@al1l2
al

1* l
2*
z* i [(l12l2)/2]zi [(l1* 2l2* )/2]

2al2l1
al

2* l
1*
z* 2 i [(l12l2)/2]z2 i [(l1* 2l2* )/2]#.

While the phases of the constant factors in Eq.~121! are
special functions, the squared modulus is quite simple.
deed, we find

ual1 ,l2
al

1* ,l
2*
KlW 1 ,lW 2

u5
p

A2
U l2

l1~l12l2!
U.

The normalization condition~117! then yields

ClW 1 ,lW 2
;Ul1

l2
~l12l2!U ~122!

up to a numerical constant.
Using the relation between hypergeometric functions w

mutually inversed arguments@20# we obtain forz→`

xl1 ,l2
~z* ! 5

uzu→`G„i ~l11l2!…G~2 il2!

G~11 il1!

3~z* ! i [(l11l2)/2]eipl2[(Im(z))/uIm(z)u]

1
G„2 i ~l11l2!…G~ il1!

G~12 il2!
~z* !2 i [(l11l2)/2]

3e2 ipl1[(Im(z))/uIm(z)u] .

As a consequence of this asymptotic behavior, the inter
ence terms inFlW 1 ,lW 2

(zW) cancel using the relation

sinh~pl1!sinh~pl2* !5sinh~pl2!sinh~pl1* !.

We obtain with the use of the equality

sinh~pl1!sinh~pl1* !2sinh~pl2!sinh~pl2* !

5ep(l22l2* ) sinh„p~l12l2!…sinh„p~l11l2!…

the following asymptotics forUlW 1 ,lW 2
(zW) for large uzu

UlW 1 ,lW 2
~zW !5blW 1 ,lW 2

(1)
~z* ! i [(l11l2)/2]zi [(l1* 1l2* )/2]

1blW 1 ,lW 2

(2)
~z* !2 i [(l11l2)/2]z2 i [(l1* 1l2* )/2]

where

blW 1 ,lW 2

(1)
5

pG~2 il1!G~12 il2!G„i ~l1* 1l2* !…

G„12 i ~l11l2!…G~ il2* !G~11 il1* !
,
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blW 1 ,lW 2

(2)
52

pG~ il2* !G~11 il1* !G„2 i ~l11l2!…

G„11 i ~l1* 1l2* !…G~2 il1!G~12 il2!
.

This can also be obtained from the integral~116! by direct
calculation.

We analogously find using the series expansion for
hypergeometric function whenc5a1b11 @24#

xl1 ,l2
~z* !5~z* ! i [(l12l2)/2]H 1

l1l2
1

12z*

G~12 il2!G~11 il1!

3 (
n50

`
G~n112 il2!G~n111 il1!

n! ~n11!!
~12z* !n

3@ log~12z* !2c~n11!2c~n12!1c~n11

2 il2!1c~n111 il1!#J .

We obtain in the limitz* →1:

lim
z* →1

xl1 ,l2
~z* !5

1

l1l2
1~12z* !F ln~12z* !1c~12 il2!

1c~11 il1!2c~1!

2c~2!1
i

2l1
2

i

2l2
G

in agreement with Eq.~24!. Thus we obtain

lim
z→1

UlW 1 ,lW 2
~zW !

KlW 1 ,lW 2

52 ip
sinh„p~l12l2!…

sinh~pl1!sinh~pl2!

3S 12z

l1l2
1

12z*

l1* l2*
1u12zu2 lnu12zu2D ,

~123!

where we used the relations

c~12 il2!1c~11 il1!2c~12 il1!2c~11 il2!1
i

l1

2
i

l2
52 ip

sinh„p~l12l2!…

sinh~pl1!sinh~pl2!
.

Again, the result~123! can be obtained directly from th
integral representation~116! for FaW ,bW (zW). Taking into ac-
count the found above value of the normalization const
we have for large momentapk and fixedP
11401
e

t

UlW 1 ,lW 2
~ tW,zW !

pul1l2~l12l2!u
5ei „t[(l1* 1l2* )/2]1t* [(l11l2)/2]…

3S 12z

l1l2
1

12z*

l1* l2*

1u12zu2 lnu12zu2D . ~124!
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APPENDIX A

We compute in this appendix the integral in Eq.~28!.
To start we need the Fourier transform@20#,

E d2z

2p
eiqW •zWzm~z* !m̃

5
i m̃2m

22m2m̃21
q2m̃21~q* !2m21

G~11m̃!

G~2m!
.

~A1!

Entering the factor (pW 1)2(pW 2)2 inside the integral in Eq.
~28! as¹1

2¹2
2 we find after partial integration,

Cm,m̃~pW 1 ,pW 2!5um~m21!u2E d2z1

2p

d2z2

2p
ei (pW 1•zW11pW 2•zW2)

3
~z12z2!m22

~z1z2!m

~z1* 2z2* !m̃22

~z1* z2* !m̃
. ~A2!

Now, we replace thez factors in the integrand by the integra
representation~A1!:

z2m~z* !2m̃5
i m2m̃

2m1m̃21

G~12m!

G~m̃!
E d2k

2p
eiqW •kW~k* !m21km̃21.
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The z integrals in Eq.~A2! give now Dirac delta functions
and we obtain Eq.~29!.

APPENDIX B

We derive here the asymptotic behavior of the Bax
function for the Pomeron starting from the integral repres
tation ~39!. We change the integration variable to

y[2 argtanh~122p!, p5
1

2 S 12tanh
y

2D
and obtain

Q~l,m!5 i
p sinh~pl!

sin~pm!
E

2`

1`

dyeilyPm21S tanh
y

2D .

The functionPm21(z) has a cut running fromz521 to z
52`. Therefore,Pm21@ tanh(y/2)# has cuts in they plane
from y5 i (2n11)p till y52` wheren is an integer. We
now deform the integration path around the cut fromy
5 ip till y52` and we find

Q~l,m!5 i
p sinh~pl!

sin~pm!
e2plE

0

1`

dxeilx

3FPm21S 2coth
x

2
1 i0D

2Pm21S 2coth
x

2
2 i0D G ~B1!

where we changed the integration variable asy5 ip2x. The
integral ~B1! is dominated for largel by the end-pointx
50. Therefore, we insert in Eq.~B1! the representation o
Pm21(z) appropriate for largez52coth(x/2)6 i0 @20#

Pm21~z!5
tanpmG~m!

2mApG~m1 1
2 !

z2F1S m11

2
,
m

2
;m1

1

2
;

1

z2D
1

2m21GS m2
1

2D
ApG~m!

z2

3F1S 12m

2
,12

m

2
;2m1

3

2
;

1

z2D . ~B2!

Keeping here the dominant terms for largez and using the
relation

S 2coth
x

2
1 i0D 2m

2S 2coth
x

2
2 i0D 2m

522i sinpmS coth
x

2D 2m

, x.0,
11401
r
-

we get forl@1 ~for Re m.1/2)

Q~l,m!54Ap~4il!m22

GS m2
1

2DG~22m!

G~m!

3H 11OS 1

l2D 1~4il!122m tanpm

3
G2~m!G~m11!

GS m1
1

2DGS m2
1

2DG~22m!
F11OS 1

l2D G J .

~B3!

For Rem,1/2 one should just replacem⇒12m.
The casem51/2 follows by taking the limitm→1/2 in

Eq. ~B3! with the result forl@1

QS l,
1

2D5
Ap

2~ il!3/2H F logS il

4 D1223gG1OS 1

l2D J .

Let us now derive the asymptotic behavior ofQ(l,m)
starting from their infinite product representation~60! and
the asymptotic distribution of their zeros~59!.

For l@1 the product will be dominated by zeros of th
order;l. We can then write

)
k51

` S 12
l

lk
Del/lk

.)
k51

M F S 12
l

lk

11 i
l

k112m

D el/lk1 il/(k112m)G
3)

k51

` S 11
il

k112mDe2 il/(k112m)

whereM is a cutoff 1!M!ulu. We obtain forl@1 using
the formulas@20#

)
k51

` S 11
iy

k1xDe2 iy /k5e2 igy
G~11x!

G~11x1 iy !

c~x11!1g5 (
k51

`
x

k~x1k!
,

Q~l,m!5constlm22 ~B4!

in perfect agreement with Eq.~B3!.
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