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Resumming the color-octet contribution to radiative Y decay

Christian W. Bauer,1 Cheng-Wei Chiang,2 Sean Fleming,2 Adam K. Leibovich,3 and Ian Low2

1Department of Physics, University of California at San Diego, La Jolla, California 92093
2Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

3Theory Group, Fermilab, P.O. Box 500, Batavia, Illinois 60510
~Received 23 July 2001; published 8 November 2001!

At the upper end point of the photon energy spectrum inY→Xg, the standard NRQCD power counting
breaks down and the OPE gives rise to color-octet structure functions. Furthermore, in this kinematic regime
large Sudakov logarithms appear in the octet Wilson coefficients. The end point spectrum can be treated
consistently within the framework of a recently developed effective field theory of collinear and soft particles.
Here we show that within this approach the octet structure functions arise naturally and that Sudakov loga-
rithms can be summed using the renormalization group equations. We derive an expression for the resummed
energy spectrum and, using a model light cone structure function, investigate the phenomenological importance
of the resummation.
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I. INTRODUCTION

Early theoretical analyses of heavy quarkonium de
were based on the color-singlet model~CSM!. The underly-
ing assumption of this model is that the heavy-quar
antiquark pair has the same quantum numbers as the qu
nium meson.~For example thebb̄ that forms anY must be
in a color-singlet 3S1 configuration.! One consequence o
such a restrictive assumption is that theoretical predicti
based on the CSM are simple, depending on only one n
perturbative parameter. The quantities first calculated in
CSM were the inclusive rates for quarkonium to decay i
leptons and into light hadrons@1#. Subsequently the direc
photon spectrum in inclusive radiative quarkonium dec
was calculated@2#.

In recent years the simple CSM has been superseded
nonrelativistic effective theory of QCD~NRQCD! @3,4#. In-
clusive decays of quarkonium are now understood in
framework of the operator product expansion~OPE!, supple-
mented by the power-counting rules of NRQCD. In this fo
malism the direct photon spectrum ofY decay is

dG

dz
5(

i
Ci~M ,z!^YuOi uY&, ~1!

wherez52Eg /M , with M52mb . Ci are short-distance Wil-
son coefficients which can be calculated as a perturba
series inas(M ), and theOi are NRQCD operators. NRQCD
power-counting rules assign a power of the relative veloc
v of the heavy quarks to each operator, and organize
series. The series may be truncated at any order with om
terms suppressed by powers ofv. For S-wave mesons the
formally leading-order contribution is the color-singlet o
erator, which is related to the wave function at the orig
Thus for S-wave decays one recovers the CSM at lead
order inv. At higher orders inv color-octet operators need t
be included.

However, the picture of the photon spectrum inY→Xg
decay which emerges is much richer than the naive expe
0556-2821/2001/64~11!/114014~10!/$20.00 64 1140
y

ko-

s
n-
e

o

s

y a

e

-

e

y
e

ed

.
g

ta-

tion that the color-singlet contribution is leading@5–7#. At
low values of the photon energy, fragmentation contributio
to G(Y→Xg) are important@8,5#. The situation at large val-
ues of the photon energy is even more interesting, beca
both the OPE and perturbative expansion break down.
breakdown of the OPE was first addressed in Ref.@7#. It was
shown that the color-octet contributions, which give rise to
singular contribution at maximum photon energy, beco
leading for large photon energies. The singular nature
smeared by a nonperturbative structure function, wh
tames the end point behavior of the photon spectrum.
breakdown of the perturbative expansion gives rise to
called Sudakov logarithms which have to be resummed.
recent work@9# it was pointed out that the leading Sudako
logarithms cancel in the CSM. However this is not the ca
for Sudakov logarithms in the color-octet contribution.

Both the breakdown of the OPE and the appearance
Sudakov logarithms are symptoms of the same dise
NRQCD does not contain the correct low energy degree
freedom to describe the end point of the photon spectrum
does not contain collinear quarks and gluons. A theory c
structed from the appropriate degrees of freedom was de
oped in Refs.@10,11#. In those papers the theory was appli
to the decay of a single heavy quark to light degrees
freedom. It was shown that the renormalization group eq
tions ~RGE’s! in this theory sums Sudakov logarithms.
addition, for inclusive decays at the end point, the nonper
bative structure function arises naturally from a modifi
version of the OPE. Here we apply the theory to the col
octet contributions to radiativeY decay. In Sec. II we discus
the leading contributions in the end point region and mo
vate perturbative and nonperturbative resummation. In S
III we sum Sudakov logarithms using the RGE’s in an effe
tive field theory. In Sec. IV we introduce a phenomenolo
cal model for the shape function, convolute it with the r
summed spectrum, and show how this changes the co
octet contribution to the spectrum. In Sec. V we conclude

II. LEADING ORDER RESULTS

The inclusive radiative differential decay rate ofY can be
calculated using the optical theorem. This relates the de
©2001 The American Physical Society14-1
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rate to the imaginary part of the forward matrix element
the time ordered product of two currents,

dG

dz
5

M2

8p2
z^YuIm TuY&, ~2!

where we have used nonrelativistic normalization for
states: ^Y(P8)uY(P)&5(2p)3d3(P82P). For large mo-
mentum transfer the time ordered product can be expan
in terms of local operators giving

dG

dz
5(

i
Ci~z!^YuOi uY&. ~3!

The Wilson coefficients,Ci(z), can be calculated perturba
tively as a series inas(M ). The parametric size of the lon
distance matrix elements are determined by power coun
in NRQCD, but to obtain quantitative results these mat
elements have to be extracted from experiments or lat
calculations.

At leading order in the NRQCDv expansion, only the
color-singlet, spin-triplet operator

O1~
3S1!5(

p,p8
@cp8

† s ix2p8#@x2p
† s icp# ~4!

contributes, with the leading order Wilson coefficient

C1
(0)~3S1!~z!5

128as
2aeQ

2

27M2
Q~12z!F22z

z
1

z~12z!

~22z!2

12
12z

z2
log~12z!22

~12z!2

~22z!3
log~12z!G ,

~5!

where eQ521/3 for Y. This is the CSM result@2#, with
^YuO1(

3S1)uY&'(3/2p)uR(0)u2, where R(0) is the radial
wave function at the origin. The first color-octet contrib
tions to Eq.~3! are suppressed byv4 relative to this color-
singlet contribution. There are two operators

O8~
1S0!5(

p,p8
@cp8

† Tax2p8#@x2p
† Tacp#,

O8~
3P0!5

1

3 (
p,p8

@cp8
† p8•sTax2p8#

3@x2p
† p•sTacp#, ~6!

with leading order Wilson coefficients@5#

Ci
(0)~z!5C̃i

(0)d~12z!, ~7!
11401
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where

C̃8
(0)~1S0!5

16asaeQ
2 p

M2
,

C̃8
(0)~3P0!5

448asaeQ
2 p

M4
. ~8!

Since the color-octet Wilson coefficients are enhanced b
power ofas(M )/p relative to the color-singlet one, the ove
all suppression of the color-octet contribution
pv4/as(M );v2, where we have used that numerical
as /p;v2.

The singular nature of the coefficient~7! is an indication
that the OPE is breaking down. We can obtain a rough e
mate for the value ofz at which the octet contributions be
come of order the color-singlet contribution by smearing
perturbative spectrum over a small region nearz51. Inte-
grating over 12v2,z,1 gives a color-singlet contribution
that scales asas

2(M )v2 and a color-octet contribution tha
scales asas(M )pv4. Thus the ratio of octet to singlet in thi
region of phase space ispv2/as(M );1, making the color-
octet contribution of the same order as the color-singlet o

It was shown in Ref.@7# that in precisely this end poin
region the OPE breaks down and an infinite set of opera
have to be resummed into lightcone distribution functio
f i(k1).1 Each structure function gives the probability to fin
a bb̄ pair with the appropriate quantum numbers and resid
momentumk1 in the Y. For the color-singlet contribution
the structure function can be calculated using the vacu
saturation approximation. It simply shifts the maximal ph
ton energy from 2mb to MY @7#. The color-octet contribu-
tions, however, give rise to two new nonperturbative fun
tions at leading order. At higher order there are an infin
number of additional structure functions, so the different
decay rate in the end point region is

dG

dz
5(

i
E dk1Ci~z,k1! f i~k1!^YuOi uY&. ~9!

Another effect one encounters in the endpoint region
the appearance of Sudakov logarithms in the Wilson coe
cients, which ruin the perturbative expansion. Consider,
example, the Wilson coefficients for the color-octet operat
at next-to-leading order inas . In thez→1 limit they are@5#

1This is very similar to the behavior of the OPE forB→Xul n̄ at
the end point of the lepton energy spectrum andB→Xsg at the end
point of the photon energy spectrum@12#.
4-2
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RESUMMING THE COLOR-OCTET CONTRIBUTION TO . . . PHYSICAL REVIEW D64 114014
C8
(1)~1S0!~z!5

as

2p
C̃8

(0)~1S0!F22CAS log~12z!

12z D
1

2S 23

6
CA2

nf

3 D S 1

12zD
1
G ,

C8
(1)~3P0!~z!5

as

2p
C̃8

(0)~3P0!F22CAS log~12z!

12z D
1

2S 23

6
CA2

nf

3 D S 1

12zD
1
G . ~10!

If these coefficients are integrated over the shape-func
region (12v2,z,1), then the first plus distribution on th
right-hand side gives rise to a double logarithm log2 v2, while
the second plus distribution gives a single logarithm, logv2.
Both of these are numerically of order 1/as . This clearly
ruins the perturbative expansion. Therefore, to obtain a w
controlled expansion, these logarithms must be summed

III. SUMMING SUDAKOV LOGARITHMS

The NRQCD power-counting rules break down asz→1
because NRQCD does not include all of the long dista
modes: collinear physics is missing from the theory. An
fective theory which includes collinear physics was dev
oped in Refs.@10,11#. This collinear-soft theory describes th
interactions of highly energetic collinear modes with soft d
grees of freedom. To describeY decay at the end point w
have to couple the collinear-soft theory with NRQCD@4#.
This is analogous toB→Xsg decays at the end point, whic
was studied in the context of effective field theory in R
@10#. We will closely follow the development in that pape

Understanding inclusiveY→Xg decays near the en
point is a two-step process.2 In the first step we must inte
grate out the large scale,M52mb , set by thebb̄ pair con-
stituting theY. This is done by matching onto the collinea
soft theory. In the second step collinear modes are integr
out at a scale which is set by the invariant mass of the
linear jet. This is done by performing an OPE and match
onto a soft theory containing operators which are nonlo
along the lightcone and whose matrix elements are the li
cone distribution functions,f i(k1). Sudakov logarithms are
summed by using the effective theory RGE’s. Operators
run from the hard scaleM to the collinear scale where th
OPE is performed. The nonlocal soft operators are then
from the collinear scale down to a soft scale where th
matrix elements do not contain large logarithms. This pro
dure sums all Sudakov logarithms into the short dista
coefficient functions.

To better understand the scales involved consider the
mentum of a collinear particle moving near the lightcone.
lightcone coordinates we can write this momentum asp

2In Ref. @13# it was pointed out that at higher orders in perturb
tion theory one has to adopt a one-step scheme similar to the
developed in a slightly different context in@4#.
11401
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5(p1,p2,p'). Since the mass of the particle is much smal
than its energy, we definep2;M2l2, whereM is the scale
that sets the energy andl is a small parameter. The lightcon
momentum components are widely separated. If we cho
p2 to beO(M ), thenp' /p2;l, andp1/p2;l2. We refer
to these two scales as collinear and soft, respectively. To
concrete consider thebb̄ pair to have momentumMvm

1km, where vm5(1,0,0,0) andkm is O(LQCD) in the Y

center-of-mass frame. The photon momentum isMzn̄m/2,
where we have chosenn̄m5(1,0,0,1). In the end point region
the hadronic jet recoiling against the photon moves in
opposite lightcone directionnm5(1,0,0,21), with momen-
tum pX

m5Mnm/21M (12z)n̄m/21km. Thus the hadronic jet

has n̄•pX5pX
2;M . Next note thatmX

2'M2(12z). For (1
2z);v2;LQCD/M we find

mX;AMLQCD, ~11!

which is the collinear scale. This implies that for this proce
the collinear-soft expansion parameterl is of orderA12z
;ALQCD/M . The soft scale is the component of the ha
ronic momentum in then direction:

n•pX;
mX

2

n̄•pX

;LQCD;Ml2. ~12!

Thus in order to sum Sudakov logarithms inY→Xg we first
match onto the collinear-soft theory atM and run operators
in this theory down to the collinear scalemc;MA12z. At
that scale we perform the OPE by matching onto a s
theory containing operators that are nonlocal along the lig
cone and run these operators down to the soft scalems
;M (12z).

A. The collinear-soft theory

We first need to integrate out the large scaleM by match-
ing onto the collinear-soft theory. This is done by calculati
matrix elements in QCD, expanding them in powers ofl,
and matching onto products of Wilson coefficients and o
erators in the effective theory. For the process of interest
matching is illustrated in Fig. 1. The heavy-quark spino
and the heavy-quark propagator in QCD can be expande
powers ofv to match onto NRQCD. The QCD spinor i
decomposed into two two-component Pauli spinorsc andx
for the heavy quark and the antiquark, respectively@14#.3 We
also need to expand the amplitude in powers ofl to match
onto the collinear-soft theory. This is done by using t
power-counting rules for the gluon field given in Ref.@11#
and by scaling the different components of the gluon m
mentum as

pg
m5pg•n̄

nm

2
1pg'

m 1pg•n
n̄m

2
5O~1!1O~l!1O~l2!.

~13!

-
ne

3Note that in Ref.@14# states are normalized relativistically.
4-3
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FIG. 1. Matching onto operators in the effective field theory with one and two gluons in the final state.
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Omitting the straightforward but unenlightening details, t
color-octet contributions match in theY rest frame, at lead-
ing order inl, onto the operators

Q8
m~1S0!52igsebe'

am(
p

@x2p
† Tacp#Aa

a ,

Q8
m~3PJ!54gseb~g'

adgms1g'
asgmd2g'

amn̄sn̄d!

3(
p

L•p̂s@x2p
† L•sdTacp#Aa

a , ~14!

where e'
am5eamrbn̄rvb and g'

mn5gmn2(nmn̄n1nnn̄m)/2.
Hatted variables are divided byM, and theLm i are boost
matrices which boost from thebb̄ center-of-mass frame@14#.
We have chosen factors in the operators such that at lea
order the corresponding Wilson coefficients satisfy

C8
Q~ 1S0!5C8

Q~ 3P0![C8
Q51. ~15!

Note that there is no color-singlet operator at this order inl,
and therefore leading Sudakov logarithms are absent in
CSM @9#.

To calculate the renormalization group equations of th
operators, we also need the Feynman rules shown in Tab
They are all obtained by expanding full theory diagrams
powers ofl andv. In addition the coupling of soft gluons i
given by heavy quark effective theory~HQET! and large
energy effective theory~LEET! @15# Feynman rules, and th
coupling of three collinear gluons is identical to the thr
gluon vertex in QCD. The renormalization is independent
the operator and the two diagrams that need to be calcul
are shown in Fig. 2. The result for the collinear and s
graphs are

Ac5
asCA

4p S 4p
m2

~212 id!pg
2D e

3
G2~12e!G~11e!

G~222e!

223e

e2
Vi

ama , ~16!

As52
asCA

4p S 4p
m2~ n̄•pg!2

~212 id!2pg
4D e

G~11e!

3G~112e!G~122e!
1

e2
Vi

ama , ~17!

whereVi
ama5„V8

ama(1S0),V8
ama(3PJ)….
11401
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To renormalize the vertex, we expand ine, keeping only
the divergent pieces. This must equal (Z21)Vi

ama . Note
however thatZ is not the counterterm for the vertex, rath
ZO5Zhh̄Z3

1/2Z21Zg
1/2, whereZg51 since we are not consid

ering QED corrections,Zhh̄ is the counterterm of the color
octethvh̄v current, andZ3 is the gluon wave function coun
terterm:

Zhh̄511
asCA

4p

1

e
,

Z3511
as

4p

1

e S CA

5

3
2nf

2

3D . ~18!

This leads to

ZO215
as

4p FCAS 1

e2
1

1

e
logS m2

M2D 1
17

6e D 2
nf

3eG . ~19!

We can check this result by matching the effective theory
QCD while regulating all divergences using dimension
regularization. In this approach there is no scale in effect
theory loop integrals so they are zero. This leaves only
countertermZ, which must match thee poles in the QCD
calculation. The QCD vertex at one loop can be extrac
from a calculation by Maltoni, Mangano, and Petrelli@16#.
Equating the pole terms in the QCD calculation toZ we
again obtain Eq.~19!.

The RGE for the Wilson coefficients of the operators
Eq. ~14! is

m
d

dm
Ci

Q~m!5gQ~m!Ci
Q~m!. ~20!

In order to make use of previous results fromB→Xsg, we
write the anomalous dimension in the same form as in R
@17#:

gQ~m!52Gcusp
adj log

m

mb
1

B12g

2
. ~21!

Defining

Gcusp
adj 5

as~m!

p
G1

adj1S as~m!

p D 2

G2
adj, B5

as~m!

p
B1 ,

g5
as~m!

p
g1 , ~22!

we find
4-4
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TABLE I. Feynman rules in the collinear-soft theory at leading order inl. The vertices
V1,8(

3S1), V1,8(
1P1) have a zero matching coefficient at this order.
-

m
ry

on-
g a

th
G1
adj5CA , B112g152CA2

b0

2
, ~23!

whereb05(11CA22nf)/3. At this point we can only deter
mine the above linear combination ofB1 andg1, and we do
not know the expression forG2

adj. However, as we will show
below, B1 andG2

adj can be found in the soft theory. To su
the leading Sudakov logarithms in the collinear-soft theo
we run the operator given in Eq.~14! from the matching

FIG. 2. Collinear and soft diagrams needed to calculate
renormalization of the vertices in the effective theory.
11401
,

scalem5M down to a scalemc;AMLQCD at which the
OPE is performed. We can lift the solution from Ref.@11#,

logF CV~m!

CV~M !G52
4pG1

adj

b0
2as~M !

F1

y
211 logyG2

G1
adjb1

b0
3 F12y

1y logy2
1

2
log2 yG2

B112g1

b0
logy

2
4G2

adj

b0
2 @y212 logy#, ~24!

wherey5as(m)/as(M ).

B. The purely soft theory

At the collinear scalemc'MA12z we integrate out col-
linear modes and perform an OPE for the inclusiveY radia-
tive decay rate in the end point region. The result is a n
local OPE in which the two currents are separated alon
e

4-5
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lightlike direction. Diagrammatically this is illustrated in Fig
3. We write the momentum of the jet as

pX5
M

2
nm1km1

M

2
~12x!n̄m, ~25!

wherekm is the residual momentum of thebb̄ pair. Note we
distinguishx from z, because the momentum of the jet is n
exactly the same as the momentum of the collinear gl
which was integrated out. The two can differ slightly due
the emission of soft quanta by the jet. The imaginary par
the tree level diagram on the left hand side of Fig. 3
proportional tod(px

2). Taking km;M (12x);Ml2 and ex-
panding in the small parameterl, we match at leading orde
onto the operator

Oi~x!5(
pp8

@cp8
† G i8x2p8#d~12x1 iD̂ 1!@x2p

† G icp#,

~26!

whereG8(
1S0)5Ta andG8(

3P0)5Tap•s/A3. Thex serves
as a continuous label on the operator.

Each operator has a Wilson coefficient, which can dep
on the photon energy fractionz. The differential decay rate is
given by a convolution of the matrix elements of the ope
tors Oi(x) and the corresponding Wilson coefficients

dG

dz
5(

i
E dxCi~x2z;m! f i~x;m!^YuOi uY&, ~27!

where

f i~x,m!5
^YuOi~x;m!uY&

^YuOi uY&
~28!

are the lightcone distribution functions.
The convolution of the short distance Wilson coefficien

and the long distance operators presents a technical pro
since the RGE forO(x) will be given in terms of a convo-
lution as well. We use a Mellin transform to deconvolute E
~27!, which is equivalent to taking moments of the dec
rate. We must restrict ourselves to large momentsN, since it
is the limit N→` which is equivalent to the regionz→1.
Once the final expression in moment space is obtained
can take an inverse-Mellin transform to get back toz space.
This procedure is valid up to corrections of order 12z. Tak-
ing large moments of the expression in Eq.~27! gives

FIG. 3. The leading OPE: tree level matching of the time
dered product in the collinear-soft theory to a nonlocal operato
the soft theory.
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G~N![E dz zN21
dG

dz
5(

i
Ci~N;m! f i~N;m!, ~29!

where

f i~N;m![E xN21f i~x;m!. ~30!

To match onto the soft theory, we compare large mome
of the differential decay rate calculated in the collinear-s
effective theory and the soft effective theory in the part
model. Large moments of the one loop expression calcula
in the collinear-soft theory are given in Eq.~A7!. The one
loop expression for̂bb̄uO(N;m)ubb̄& can be lifted from Ref.
@10# with the replacementCF→CA :

^bb̄uO~N;m!ubb̄&512
asCA

4p F4 log2
mN

Mn0
24 log

mN

Mn0
G ,
~31!

wheren05e2gE. At the scalemc5MAn0 /N all logarithms
match, and at that scale the tree level matching coefficie
are

Ci~N;m!5C̃i
(0)@CQ~MAn0 /N!#2. ~32!

In the matrix element@Eq. ~31!# all logarithms vanish at
the scalems5Mn0 /N. To sum the large logarithms, w
therefore have to run the Wilson coefficient in the s
theory, Ci(N;m), from mc5MAn0 /N to ms5Mn0 /N.
Again, we keep the notation introduced forB→Xsg and
write the RGE as

m
d

dm
Ci~N;m!5g~N;m!Ci~N;m!, ~33!

with

g~N;m!52Gcusp
adj ~m!log

mN

Mn0
1B. ~34!

From the results in Refs.@10,18,19# and Sec. II we obtain

G1
adj5CA , G2

adj5CAFCAS 67

36
2

p2

12D2
5nf

18 G ,
B152CA , g152

b0

4
, ~35!

where we have takenG2
adj from Refs.@18,19#.

The solution to Eq.~33! combined with the running in the
collinear-soft theory@Eq. ~24!# can be lifted directly from
Ref. @17# by substituting into that result the expressions
Eq. ~35!. This gives the fully resummed result in mome
space

G~N!5(
i

C̃i
(0)f ~N;Mn0 /N!elog(N)g1(x)1g2(x), ~36!

-
n

4-6
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where

g1~x!52
2G1

adj

b0x
@~122x!log~122x!22~12x!log~12x!#,

g2~x!52
8G2

adj

b0
2 @2 log~122x!12log~12x!#2

2G1
adjb1

b0
3 F log~122x!22log~12x!1

1

2
log2~122x!2 log2~12x!G

1
4g1

b0
log~12x!1

2B1

b0
log~122x!2

4G1
adj

b0
logn0@ log~122x!2 log~12x!#. ~37!

x5 log(N)as(M)b0/4p andb15(34CA
2210CAnf26CFnf)/3.

IV. RESULTS

Now that we have the resummed rate in moment space@Eq. ~36!#, we must take the inverse Mellin transform to obtain t
expression for the photon energy spectrum. Fortunately, the inverse Mellin transform of the resummed rate inB→Xsg decay
was calculated in Ref.@20#, and we can use that result by simply substituting in thegi from Eq.~37!. We obtain the following
for the resummed Wilson coefficients of the octet contribution:

Ci~x2z!52C̃i
(0) d

dzH u~x2z!
exp@ lg1@asb0l /~4p!#1g2@asb0l /~4p!# #

G†12g1@asb0l /~4p!#2asb0l /~4p!g18@asb0l /~4p!#‡
J , ~38!
n
in

to

tu
he

io

, is

the
the

. In
c-

c-
an
we
we

e

whereC̃i
(0)5C̃8

(0)(1S0), C̃8
(0)(3P0), andl'2 log(x2z). Each

Ci(x2z) is evaluated at the soft scale so that all leading a
next-to-leading Sudakov logarithms have been summed
it.

One way of checking Eq.~38! is by expanding in powers
of as and comparing to the fixed order calculation. Using

S logn~12z!

12z D
1

5 lim
h→0

Fu~12z2h!
logn~12z!

12z

1d~12z!
logn11~h!

n11 G , ~39!

as the definition for plus distributions it is straightforward
verify that the orderas term in the expansion of Eq.~38!
reproduces the plus distributions in Eq.~10!.

Recall that the covariant derivative in Eq.~26! is of order
LQCD/M . If we consider the limit 12z@LQCD/M , then the
covariant derivative in the operator appearing in the struc
function can be neglected. In this limit we can perform t
integral in Eq.~27! to obtain

dG

dz
5(

i
Ci~12z!. ~40!

This result gives the effect of the perturbative resummat
without the structure function. The quantityCi(12z)/C̃i

(0) ,
11401
d
to

re

n

which is the same for the two leading octet configurations
shown as the dashed line in Fig. 4.4

However, for thebb̄ systemmv2;LQCD so the covariant
derivative cannot be dropped in the end point region of
photon spectrum, and the differential rate is given by
convolution in Eq.~27!. The lightcone distribution function
is a nonperturbative function and needs to be modeled
this paper we will be content with the simple structure fun
tions introduced in Ref.@22# for inclusiveB decays,

f ~k1!5NS 12
k1

L̄
D a

e(11a)k1/L̄, ~41!

whereN is chosen so that the integral of the structure fun
tion is normalized to 1. In principle the structure function c
be different for the different color-octet states. But since
are ignorant of the nonperturbative structure function,
will naively use the same model for both the1S0 and 3P0

configurations. The structure function forB mesons have the
property that the first moment with respect tok1 vanishes.
For quarkonium the first moment of Eq.~28! ~wherex51
1 k̂1) with respect tok̂1 is

4The Landau pole in Eq.~38! should be dealt with in the sam
fashion as in theB decays@21#.
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L15

K YU(
p,p8

@x2p8
† TaG icp8# iD̂ 1@cp

†TaG ix2p#UYL
K YU(

p,p8
@x2p8

† TaG icp8#@cp
†TaG ix2p#UYL .

~42!

Therefore, we need to shiftk1 in Eq. ~41! to k11L1, so that
Eq. ~41! will have the desired first moment for quarkoniu
decays. The integration limits fork1 are, similar to the case
for B decays, from2M to MY2M . Both L̄ and L1 are
nonperturbative parameters related throughL̄5MY2M
2L1. We use the following numbers in our plots:as

50.2, a51/137,mb54.8 GeV, MY59.46 GeV,a51, L̄
5480 MeV, andL152620 MeV.

In Fig. 4 the convolution ofCi(x2z)/C̃i
(0) with the model

of the structure function@Eq. ~41!# is shown as the solid line
In addition we show as the dotted line the terms in the n
to leading order~NLO! QCD expression that dominate in th
end point region@Eq. ~10!# divided byC̃i

(0) , and as the dot-
dashed line the convolution of these terms with Eq.~41!.
Thus Fig. 4 gives a picture of the effects of resummati
The singular plus distribution piece of the NLO QCD expre
sion is tamed by both the perturbative resummation and
structure function. Either of these alone gives a sim
curve, which is peaked nearz50.94. However, to be consis
tent the perturbative resummation must be convoluted w
the structure function. This gives a curve that is broader, w
a peak that is 34% lower and shifted toz50.87. Changing
the values of the structure function parameters changes
shape of the curve. Halving the value ofL̄ gives a narrower
peak that is 30% lower and shifted toz50.83. If as is in-
creased by 10% the peak moves slightly to the left and
creases in height by 5%. Doubling the value ofa in Eq. ~41!
slightly raises the peak, and steepens the curve as it go
zero at the end point.

In Fig. 5, we show as dashed curves the fully resumm
color-octet contribution convoluted with the structure fun

FIG. 4. The differential decay spectra near the end point reg
0.7,z in arbitrary units. The solid curve is the perturbative resu
mation convoluted with the structure function and the dashed cu

is the perturbative resummationCi(12z)/C̃i
(0) . The dotted curve is

the plus distribution terms in the one-loop result@Eq. ~10!#, and the
dot-dashed curve is these terms convoluted with the structure f
tion.
11401
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tion for two choices of the matrix elements. We also show
the solid curve the color-singlet contribution. Here we us
^YuO1(

3S1)uY&53.63 GeV3 @23#. The values of the color-
octet matrix elements are not well determined. One may
tempted to use a naive power-counting argument which g

^YuO8~
1S0!uY&;^YuO8~

3P0!uY&/mb
2;v4^YuO1~

3S1!uY&,

with v2;0.1. However, this gives values for the color-oct
matrix elements that are too large to be compatible with d
on the ratio of hadronic to leptonic decays@5#. The data
suggest that the octet matrix elements are at least an ord
magnitude smaller than the naive power-counting estim
Therefore, we use values that are 10 times and 100 ti
smaller than estimates from naive power counting, with
larger matrix element yielding the higher peak.5 We have
added to the resummed result the NLO QCD result with
singular terms@Eqs. ~10!# subtracted. This interpolates be
tween the NLO QCD expression at lower values ofz and the
resummed result in the end point region. For comparison
show as the dotted curves the NLO QCD contribution@5#
convoluted with the shape function for the two choices of
color-octet matrix elements.

Since the octet contributions dominate the color-sing
contribution in this end point region~or at least are of the
same order of magnitude!, it should be possible to use thi
process to constrain the size of the color octet matrix e
ment. The suppression of the matrix element compared to
naive power counting estimate makes a measurement of
matrix element particularly interesting and might shed so
light on the convergence of thev expansion in NRQCD.
However, before a meaningful comparison of theory to d
on radiativeY decay can be made, subleading Sudakov lo

5In Ref. @24# it was argued that a factor of 1/2Nc should be in-
cluded in a naive estimate of the color-octet matrix elements.
larger of our two choices for this matrix elements is of the sa
order of magnitude as this modified naive estimate.

n
-
e

c-

FIG. 5. The differential decay spectra in the region 0.5,z. The
dashed curves are the fully resummed result convoluted with
shape function for two choices of the octet matrix elements.
addition we have interpolated the fully resummed result with
NLO result in the region away from the end point. The dott
curves are the NLO result convoluted with the structure function
two choices of the matrix elements. The solid curve is the co
singlet contribution.
4-8
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rithms in the color-singlet contribution must be summed. T
existence of these logarithms was first pointed out in Ref.@9#
where it was observed that though leading Sudakov lo
rithms cancel in the color-singlet contribution to the diffe
ential rate, they are present in the derivative of the rate at
end point. We leave the resummation of these logarithms
future publication@25#.

V. CONCLUSION

Using an effective field theory approach, we have
summed Sudakov logarithms in the leading color-octet c
tributions to theY→Xg differential decay rate in the en
point region. This is done in two steps. First we match o
an effective theory with collinear and soft degrees of fre
dom and run the theory to the collinear scale. Next we in
grate out collinear modes by performing an OPE, match
onto nonlocal operators which are run to the soft scale. T
sums all Sudakov logarithms into Wilson coefficients
these operators. The color-octet contribution to the differ
tial decay rate in the end point region is given by the con
lution of the Wilson coefficients with matrix elements of th
operators betweenY states. The latter are the color-oct
structure functions defined in Ref.@7#.

We choose a simple model for the structure functions
investigate the phenomenological consequences of resum
tion. We find that either the perturbative resummation or
inclusion of a structure function cures the singular behav
of the QCD results. Both give a similar effect, causing t
curve to turn over nearz50.94 and to go to zero at the en
point. However, the effective field theory approach make
clear that the correct expression for the differential rate n
the end point is given by a convolution of the perturbat
resummation and the structure function. This gives a sp
trum that has a broader and lower peak than we obtain
including only perturbative resummation or the structu
function, shifting the peak toz50.87.

Before a meaningful comparison to data can be made
color-singlet result must be resummed as well. Only then
data on the decay spectrum be used to constrain the siz
the octet contribution in the endpoint region@25#.
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APPENDIX: FORWARD SCATTERING
MATRIX ELEMENT

Matching the forward scattering matrix element in t
QCD and collinear-soft theory gives an important check t
we are reproducing the infrared physics of the full theory.
have already calculated the vertex corrections. Note
there are two contributions from the vertex loops so the v
11401
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tex contribution to the forward scattering matrix element
twice that given in Eq.~16!. There is a contribution to the
forward scattering matrix element from a ladder grap
which we have not yet evaluated. It gives

Ml5
asCA

2p S 4p
m2~ n̄•pg!2

~212 id!2pg
4D e

G~11e!G~112e!

3G~122e!
1

e
M0 , ~A1!

where

M05C̃i
(0) M2

pg
22 id

~A2!

is the tree level amplitude, andpg
25M2(12z). In addition

there is a contribution coming from virtual corrections to t
collinear gluon propagator, which include the fermio
gluon, and ghost loops:

MZ3
5

as

4p S 5

3
CA2

2

3
nf D S m2

~212 id!pg
2D e

1

e
M0 . ~A3!

Adding all contributions gives the full one-loop correction
to the forward scattering amplitude,

Mlg5
as

2p H CAF 1

e2
1

1

e
logS m2

M2D 1
17

6eG2
nf

3e

1
CA

2
log2S m2

M2D 1
17CA

6
logS m2

M2D 2
nf

3
logS m2

M2D
2CA log2@~12z!~212 id!#2CA

23

6
log@~12z!

3~212 id!#1
nf

3
log@~12z!~212 id!#J M01•••,

~A4!

where the ellipses represent terms of orderas not enhanced
by logarithms.

Next add the counterterms. There is a gluon propaga
insertion that gives2M0(Z321). The vertex insertion is
Zhh̄Z3

1/2ZO
21 . In order to facilitate a comparison with the re

sults in Ref.@5#, we use dimensional regularization to reg
late the infrared divergences in the heavy quark sector,
thereforeZhh̄51. Adding all the counterterms cancels thee
poles in Eq.~A4!, leaving
4-9
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Mlg5
as

2p H CAF1

2
log2S m2

M2D 1
17

6
logS m2

M2D G2
nf

3
logS m2

M2D
2CA log2@~12z!~212 id!#2CA

23

6
log@~12z!~21

2 id!#1
nf

3
log@~12z!~212 id!#J M01••• . ~A5!

To obtain the differential decay rate we take21/p Im @Eq.
~A5!# using

21

p
Im

log@~12z!~212 id!#

12z1 id
5S 1

12zD
1

,

21

p
Im

log2@~12z!~212 id!#

12z1 id
52S log~12z!

12z D
1

2p2d~12z!. ~A6!
an

D

s

11401
Comparing to Ref.@5# ~taking the limitz→1 in their expres-
sions!, we confirm that at the matching scalem5M the ef-
fective theory reproduces the plus distributions in the f
theory. Taking large moments of the imaginary part of E
~A5! gives

2
1

pE dz zN21 ImMlg5
as

2p H CAF1

2
log2S m2

M2D
1

17

6
logS m2

M2D G2
nf

3
logS m2

M2D
2CA log2F N

n0
G1CA

23

6
logF N

n0
G

2
nf

3
logF N

n0
G J C̃i

(0)1•••. ~A7!
-
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