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At the upper end point of the photon energy spectrunYin Xy, the standard NRQCD power counting
breaks down and the OPE gives rise to color-octet structure functions. Furthermore, in this kinematic regime
large Sudakov logarithms appear in the octet Wilson coefficients. The end point spectrum can be treated
consistently within the framework of a recently developed effective field theory of collinear and soft particles.
Here we show that within this approach the octet structure functions arise naturally and that Sudakov loga-
rithms can be summed using the renormalization group equations. We derive an expression for the resummed
energy spectrum and, using a model light cone structure function, investigate the phenomenological importance
of the resummation.
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I. INTRODUCTION tion that the color-singlet contribution is leadif§—7]. At
low values of the photon energy, fragmentation contributions
Early theoretical analyses of heavy quarkonium decayio I'(Y —Xy) are importan{8,5]. The situation at large val-

were based on the color-singlet mod€iSM). The underly-  ues of the photon energy is even more interesting, because
ing assumption of this model is that the heavy-quark-Poth the OPE and perturbative expansion break down. The
antiquark pair has the same quantum numbers as the quark@reakdown of the OPE was first addressed in R&f.It was
nium meson(For example théob that forms any must be s_hown that th(=T co!or-octet contrlbutlons, which give rise to a
) . 3 . . singular contribution at maximum photon energy, become
in a color-singlet®S,; configuration. One consequence of

e SR . . . leading for large photon energies. The singular nature is
such a restrictive assumption is that theoretical prediction§,aared by a nonperturbative structure function, which

based on the CSM are simple, depending on only one noRzmes the end point behavior of the photon spectrum. The
perturbative parameter. The quantities f|rs_t calculated in thgreakdown of the perturbative expansion gives rise to so-
CSM were the inclusive rates for quarkonium to decay intocalled Sudakov logarithms which have to be resummed. In a
leptons and into light hadronisl]. Subsequently the direct recent work{9] it was pointed out that the leading Sudakov
photon spectrum in inclusive radiative quarkonium decaysogarithms cancel in the CSM. However this is not the case
was calculated?]. for Sudakov logarithms in the color-octet contribution.

In recent years the simple CSM has been superseded by a Both the breakdown of the OPE and the appearance of
nonrelativistic effective theory of QCENRQCD) [3,4]. In-  Sudakov logarithms are symptoms of the same disease:
clusive decays of quarkonium are now understood in thdNRQCD does not contain the correct low energy degrees of
framework of the operator product expansi@PB), supple- freedom to describe the end point of the photon spectrum. It
mented by the power-counting rules of NRQCD. In this for-does not contain collinear quarks and gluons. A theory con-
malism the direct photon spectrum %f decay is structed from the appropriate degrees of freedom was devel-

oped in Refs[10,11]. In those papers the theory was applied
dr to the decay of a single heavy quark to light degrees of
—=> Ci(M 2){(Y|O|Y), (1)  freedom. It was shown that the renormalization group equa-
dz 45 tions (RGE’9) in this theory sums Sudakov logarithms. In
addition, for inclusive decays at the end point, the nonpertur-
wherez=2E_/M, with M =2m, . C; are short-distance Wil- bative structure function arises naturally from a modified

son coefficients which can be calculated as a perturbativéersion of the OPE. Here we apply the theory to the color-
series inag(M), and the®, are NRQCD operators. NRQCD octet contributions to radiativi decay. In Sec. Il we discuss
’ | .

power-counting rules assign a power of the relative velocity"€ 1€ading contributions in the end point region and moti-

v of the heavy quarks to each operator, and organize thyate perturbative and nonperturbative resummation. In Sec.

series. The series may be truncated at any order with omitteld W€ Sum Sudakov logarithms using the RGE's in an effec-
terms suppressed by powers of For Swave mesons the tive field theory. In Sec. IV we_mtroduce a ph.eno.menologl—
formally leading-order contribution is the color-singlet op- €& model for the shape function, convolute it with the re-
erator, which is related to the wave function at the origin.Summed spectrum, and show how this changes the color-
Thus for Swave decays one recovers the CSM at IeadingOCtEt contribution to the spectrum. In Sec. V we conclude.
order inv. At higher orders inv color-octet operators need to
be included.
However, the picture of the photon spectrumYnr- Xy The inclusive radiative differential decay rateYsfcan be

decay which emerges is much richer than the naive expectaalculated using the optical theorem. This relates the decay

Il. LEADING ORDER RESULTS
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rate to the imaginary part of the forward matrix element ofwhere
the time ordered product of two currents,

drr  M? 16a.a€sm
- 20)1g y_TSTFRT
4z 87T22<Y|ImT|Y), 2 CO(1sy) = Ve

where we have used nonrelativistic normalization for the
states: (Y/(P")|Y(P))=(2m)35%(P'—P). For large mo-

mentum transfer the time ordered product can be expanded 4480 .e>
. . ~ sa€Qm
in terms of local operators giving Cgo)(:"po): ) (8)
M4
ar > Ci(2(Y|o|Y 3
dz 4 (IO ® Since the color-octet Wilson coefficients are enhanced by a

power ofag(M)/ 7 relative to the color-singlet one, the over-
The Wilson coefficientsC;(z), can be calculated perturba- all suppression of the color-octet contribution is
tively as a series imeg(M). The parametric size of the long 7v% ag(M)~v?, where we have used that numerically
distance matrix elements are determined by power counting. /7~ uv?.
in NRQCD, but to obtain quantitative results these matrix The singular nature of the coefficie(¥) is an indication
elements have to be extracted from experiments or latticehat the OPE is breaking down. We can obtain a rough esti-

calculations. mate for the value of at which the octet contributions be-
At leading order in the NRQCI expansion, only the come of order the color-singlet contribution by smearing the
color-singlet, spin-triplet operator perturbative spectrum over a small region nearl. Inte-

grating over +v2<z<1 gives a color-singlet contribution
that scales asarzg(M)v2 and a color-octet contribution that
0,(38) =2, [w;,oix,p/][xipo‘ ] (4)  scales asrg(M)7v*. Thus the ratio of octet to singlet in this
p.p’ region of phase space isv?/ as(M)~ 1, making the color-
octet contribution of the same order as the color-singlet one.
It was shown in Ref[7] that in precisely this end point
region the OPE breaks down and an infinite set of operators
2-7 z(1-2) have to be resummed into lightcone distribution functions
f.(k.).! Each structure function gives the probability to find

abb pair with the appropriate quantum numbers and residual
momentumk, in the Y. For the color-singlet contribution

Iog(l—z)l, the structure function can be calculated using the vacuum
saturation approximation. It simply shifts the maximal pho-

(5  ton energy from 2, to My [7]. The color-octet contribu-

tions, however, give rise to two new nonperturbative func-

whereey=—1/3 for Y. This is the CSM resulf2], with  tions at leading order. At higher order there are an infinite

(Y]04(3S))|Y)=~(3/2m)|R(0)|?, where R(0) is the radial number of additional structure functions, so the differential

wave function at the origin. The first color-octet contribu- decay rate in the end point region is

tions to Eq.(3) are suppressed hy’ relative to this color-

singlet contribution. There are two operators

contributes, with the leading order Wilson coefficient

1285 el
S (D= 7= 0(1-2)

2

z (2-2)?

2

+ZEI 1- —2(
2 0g9(1-2) (2-2)°

dr
-3 [ dcekoneonion). o
Op(*S0)= 2 [y Tx—p IIx T ), |
p.p

Another effect one encounters in the endpoint region is

am 1 t o, a the appearance of Sudakov logarithms in the Wilson coeffi-
Og(*Po)= 3 2 [P 0T X ] cients, which ruin the perturbative expansion. Consider, for
PP example, the Wilson coefficients for the color-octet operators

X[Xipp o], (6) at next-to-leading order ing. In thez— 1 limit they are[5]

with leading order Wilson coefficien{$]

This is very similar to the behavior of the OPE fBr—>XuI;at
~ the end point of the lepton energy spectrum 8ad X4y at the end
0 _7(0
Ci( )(Z)_Ci( )5(1-2), (7) " point of the photon energy spectruit2].
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(W1 Us= 0y 1 log(1—2) =(p*,p”,p,). Since the mass of the particle is much smaller
Cs ' ("S0)(2)= 5 _C5"("So)| =2Ca| ——— than its energy, we defing?~M?2\2, whereM is the scale
+ that sets the energy andis a small parameter. The lightcone
(23 nf)( 1 ) } momentum components are widely separated. If we choose
+ 1

= Car— = p~ to beO(M), thenp, /p~~X\, andp*/p~~\2. We refer
6 3 . )
to these two scales as collinear and soft, respectively. To be

o log(1—2) concrete consider théb pair to have momentunMo
Cé”<3Po)(z)=ﬁCgO)(SPo){—ZCA(?) +k*, wherev#=(1,0,0,0) andk” is O(Aqcp) in the Y
+ center-of-mass frame. The photon momentunvign*/2,
23 N 1 where we have chosert= (1,0,0,1). In the end point region
|5 3)l1T% J (100 the hadronic jet recoiling against the photon moves in the

opposite lightcone direction“=(1,0,0,-1), with momen-

If these coefficients are integrated over the shape-functiofM Px=Mn#/2+M(1-2)n*/2+k*. Thus the hadronic jet
region (1-v2<z<1), then the first plus distribution on the hasn-pyx=py~M. Next note tham3~M?(1—z). For (1

right-hand side gives rise to a double logarithn?log while  —2) ~v?~Agcp/M we find
the second plus distribution gives a single logarithm,ug
Both of these are numerically of orderal/. This clearly My~ VM A qcp, (11

ruins the perturbative expansion. Therefore, to obtain a well = ) o ,
controlled expansion, these logarithms must be summed. which is the collinear scale. This implies that for this process
’ the collinear-soft expansion parameteris of order1—z

Il SUMMING SUDAKOV LOGARITHMS ~+\Aqcp/M. The soft scale is the component of the had-

' ronic momentum in the direction:
The NRQCD power-counting rules break downzas 1 )
because NRQCD does not include all of the long distance my
i e s missi n-px~ ~Agep~MA2 (12)

modes: collinear physics is missing from the theory. An ef- Px~= QCD :

: o ) . n-
fective theory which includes collinear physics was devel- Px

oped in Refs[10,11]. This collinear-soft theory describes the Thys in order to sum Sudakov logarithms¥n- Xy we first
interactions of highly energetic collinear modes with soft de-match onto the collinear-soft theory Bt and run operators
grees of freedom. To describe decay at the end point we i, this theory down to the collinear scale.~M \1—z. At
have to couple the collinear-soft theory with NRQQBL.  {hat scale we perform the OPE by matching onto a soft
This is analogous t8— X,y decays at the end point, which heory containing operators that are nonlocal along the light-

was studied in the context of effective field theory in Ref.cone”and run these operators down to the soft sgale
[10]. We will closely follow the development in that paper. ~M(1-2).

Understanding inclusiveY — Xy decays near the end
point is a two-step procegsin the first step we must inte-
grate out the large scal®) =2m,, set by thebb pair con- . i
stituting the'Y . This is done by matching onto the collinear- . We first need to integrate out the large sdslléy match-
soft theory. In the second step collinear modes are integrated@9 Onto the collinear-soft theory. This is done by calculating
out at a scale which is set by the invariant mass of the colMatrix elements in QCD, expanding them in powershof
linear jet. This is done by performing an OPE and matchinga”d ma_tchmg onto'products of Wilson coeff|C|en.ts and op-
onto a soft theory containing operators which are nonloca?ratOVS n 'Fhe_ effective theor_y. For the process of mtere_s,t this
along the lightcone and whose matrix elements are the lighthaiching is illustrated in Fig. 1. The heavy-quark spinors
cone distribution functionst; (k. ). Sudakov logarithms are and the heavy-quark propagator in QCD can be expanded in
summed by using the effective theory RGE’s. Operators ar@OWers ofv to match onto NRQCD. The QCD spinor is
run from the hard scal®/ to the collinear scale where the decomposed into two two-component Pauli spingrand x
OPE is performed. The nonlocal soft operators are then rufPr the heavy quark and the antiquark, respectiy&#].” We
from the collinear scale down to a soft scale where thei@/S0 need to expand the amplitude in powers.db match
matrix elements do not contain large logarithms. This proce®nto the collinear-soft theory. This is done by using the
dure sums all Sudakov logarithms into the short distanc®OWer-counting rules for the gluon field given in Rgt1]
coefficient functions. and by scaling the different components of the gluon mo-

To better understand the scales involved consider the mdnentum as
mentum of a collinear particle moving near the lightcone. In —

A. The collinear-soft theory

. . . - M n
lightcon rdin we can write this momentum — n
ghtcone coordinates we ca te this momentum pas pg=pg-nf+pgﬁ+pg-n7=0(1)+0(>\)+(9(7\2).
(13
2In Ref.[13] it was pointed out that at higher orders in perturba-
tion theory one has to adopt a one-step scheme similar to the one
developed in a slightly different context jd]. 3Note that in Ref[14] states are normalized relativistically.
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NN B VAVAVAVAVAVoV
> 2 LAQQQQQAQ )
L2e00e0ee, Leceooeee
+ crossed diagram + crossed diagrams

FIG. 1. Matching onto operators in the effective field theory with one and two gluons in the final state.

Omitting the straightforward but unenlightening details, the To renormalize the vertex, we expandédnkeeping only
color-octet contributions match in the rest frame, at lead- the divergent pieces. This must equa@—{1)V{***. Note

ing order in\, onto the operators however thatZ is not the counterterm for the vertex, rather
Zo=Zwn23°2 7}, whereZ,=1 since we are not consid-
Q,lal-(lso)zzigsebefﬂz [tiTal/fp]Az, ering QED correctionsZyy, is the counterterm of the color-
octeth,h, current, andZ; is the gluon wave function coun-
o terterm:
Q5(°Py) =4ge5(91’g " +g7 g’ gf*n"n’)
a’SCA 1
. Znp=1+———,
X2 A-plx Ao THpIAL,  (19) ™€
P
. agl{ 5 2
where e**=e*Pn v, and gi’=gr —(n¥n"+n"nk)/2. Ze=14 | Cagnig) (18
Hatted varlables are divided uy| and theA* are boost .
matrices which boost from theb center-of-mass framj@4]. 1S leads to
We have chosen factors in the operators such that at leading N 1 2 17
order the corresponding Wilson coefficients satisfy 1=_5 4 ) i I
Zo—1 yp Ca 2 log vz) T Be|  3e (19
CE('So)=Cg(*Pg)=Cg=1. (15)

We can check this result by matching the effective theory to

Note that there is no color-singlet operator at this ordex,in  QCD while regulating all divergences using dimensional
and therefore leading Sudakov logarithms are absent in theegularization. In this approach there is no scale in effective
CSM[9]. theory loop integrals so they are zero. This leaves only the

To calculate the renormalization group equations of theseountertermzZ, which must match the poles in the QCD
operators, we also need the Feynman rules shown in Table ¢alculation. The QCD vertex at one loop can be extracted
They are all obtained by expanding full theory diagrams infrom a calculation by Maltoni, Mangano, and Petré¢ll6].
powers ofx andv. In addition the coupling of soft gluons is Equating the pole terms in the QCD calculation Zowe
given by heavy quark effective theofHQET) and large again obtain Eq(19).
energy effective theorfLEET) [15] Feynman rules, and the The RGE for the Wilson coefficients of the operators in
coupling of three collinear gluons is identical to the threeEq. (14) is
gluon vertex in QCD. The renormalization is independent of

the operator and the two diagrams that need to be calculated i Q/ . . Q Q
are shown in Fig. 2. The result for the collinear and soft Hau Crlw) =y (WCip). 20
graphs are
In order to make use of previous results fr@w- Xy, we
aCh u? € write the anomalous dimension in the same form as in Ref.
A= T — [17]:
4 (_ 1-i9) pg
B+2y
I?(1—-e)I'(1+e€) 2—3.avwa 16 yQ(M)=—F§3'Splog—+ 5 (22)
['(2—2€) e (16
Defining
aC 2(n.py? \©
AS:— SA T ,LL( pg; 4) I'(1+e¢) Fad] ( ) s(/“) FadJ B= as(ﬂ)B
4 (—=1-i96) Py cusp - » BT 1s
a,u.a a (lu')
XI'(1+2e)I'(1— 26) 5V (17) y=— (22)
whereV 2= (Vg#3(1Sy), V52 (3Py)). we find
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TABLE |. Feynman rules in the collinear-soft theory at leading order Nn The vertices
V1,8(381), VLB(lPl) have a zero matching coefficient at this order.

Diagram Feynman rule
kW a
:
ME%Q %gsfabcn#(zgypﬁ -p— 0P’ — PP’ — RN - k)
pv,b q,pc

u Vet (1Sg) = —2gsepe?” nT_pTaﬁp

Ve (3 Po) = digses(g5° 9" + g7 " — gParnl)
&, a XA - ﬁanT_pA co 5T,

~ b . Bu A =3 +
W ‘/saﬁa (130) — %gzebfabc (GJ_A ﬁn_p] _ eiﬂﬁl.__m) U—pchp

P10, a
Vet (3Py) = —gley f¥° [ (95%9" + 979" — ¢i¥nn’)
s B, b A S o
& — 2 (997 + g2 9" — gl
XA - Po nT_pA cosTe,
- scaleu=M down to a scaleu,~JMA at which the
Mf=Ca, Byt2y,=~Ca- o 23 o e aco
2 OPE is performed. We can lift the solution from REE1],
adj adj
where By=(11C,—2n;)/3. At this point we can only deter- Cv(n) __ 4mly }_1“094_ Iy 'Bl[l_y
mine the above linear combination Bf andy,, and we do Cy(M) ESQS(M) y 58
not know the expression fdr3”. However, as we will show
below, B; andI"3% can be found in the soft theory. To sum loqy— E| 200 Bl+27’1|
] ) . . +ylogy— ;log~y ogy
the leading Sudakov logarithms in the collinear-soft theory, 2 Bo
we run the operator given in Eq14) from the matching pad
2
——Lly—1-logyl], (24)

Bo
+ wherey= ags(u)! ag(M).
e@e B. The purely soft theory
%agqnsy
« At the collinear scalex.~M \1—2z we integrate out col-

linear modes and perform an OPE for the inclusiWweadia-
FIG. 2. Collinear and soft diagrams needed to calculate thdive decay rate in the end point region. The result is a non-
renormalization of the vertices in the effective theory. local OPE in which the two currents are separated along a
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dr
r(N)zfdziHE=Z CiN:wfi(Nip), (29
—_— -
/ \ where

FIG. 3. The leading OPE: tree level matching of the time or- fi(N;,u)Ef XN (x; ). (30
dered product in the collinear-soft theory to a nonlocal operator in

the soft theory. To match onto the soft theory, we compare large moments

o S ) ] o ~__of the differential decay rate calculated in the collinear-soft
lightlike direction. Diagrammatically this is illustrated in Fig. effective theory and the soft effective theory in the parton

3. We write the momentum of the jet as model. Large moments of the one loop expression calculated
M M in the collinear-soft theory are given in EGA7). The one
pXZEH'U“'F K-+ ?(1—x)n“, (25  loop expression fotbb|O(N; )| bb) can be lifted from Ref.

[10] with the replacemen€e—Cy:

wherek* is the residual momentum of theb pair. Note we — = ala uN uN
distinguishx from z, because the momentum of the jet is not (PPION;w)[bb)=1———=/4 log? Mno —4log, o’
exactly the same as the momentum of the collinear gluon

which was integrated out. The two can differ slightly due to (31)

the emission of soft quanta by the jet. The imaginary part of R B _
the tree level diagram on the left hand side of Fig. 3 isWhereno=e 7t At the scalen.=Myno/N all logarithms
proportional tod(p2). Taking k“~M(1—x)~M\2 and ex- match, and at that scale the tree level matching coefficients

panding in the small parametker we match at leading order are
h ~
onto the operator Ci(N; ) =EO[CAM TG N) 12 (32
O(x)= T 18(1—x+iD D)y o], In the matrix elementEq. (31)] all logarithms vanish at
) % Lo Tix-pr 1o Ix=elivol the scaleus=Mny/N. To sum the large logarithms, we

(26) therefore have to run the Wilson coefficient in the soft

theory, Ci(N;u), from wu.,=Myng/N to wus=Mng/N.
whereI'g(1S,)=T? and'g(°P,) = T?p- 0/+/3. Thex serves  Again, we keep the notation introduced fB— Xsy and
as a continuous label on the operator. write the RGE as

Each operator has a Wilson coefficient, which can depend

on the photon energy fractian The differential decay rate is o ) )
given by a convolution of the matrix elements of the opera- “ﬁci(N’“)_ YINi) Gi(N: ), (33)
tors O;(x) and the corresponding Wilson coefficients

with
ar > f d )f Y|O]Y), (27) N
—= XG(x—z;u)fi(X; dY), i
dz 4 Go-zutiam)(Y[OIY) y(N;M)=2F§SJSF(M)Iogl\'LAL—n+B. (34)
0
where From the results in Ref$10,18,19 and Sec. Il we obtain
(Y0106 w)|Y) . padl 67 | 5n
fi(X.M)—W (28) I'177=Ca, I27=CAlCAl 36~ 13/ ~ 15|
are the lightcone distribution functions. Bi=—Cx, 71=— Bo (35)
The convolution of the short distance Wilson coefficients 1 AL 4’

and the long distance operators presents a technical problem _

since the RGE fo)(x) will be given in terms of a convo- Where we have takeli3¥ from Refs.[18,19.

lution as well. We use a Mellin transform to deconvolute Eq.  The solution to Eq(33) combined with the running in the
(27), which is equivalent to taking moments of the decaycollinear-soft theory{Eq. (24)] can be lifted directly from
rate. We must restrict ourselves to large momatsince it ~ Ref. [17] by substituting into that result the expressions in
is the limit N— o which is equivalent to the region—1.  Ed. (35). This gives the fully resummed result in moment
Once the final expression in moment space is obtained wgpace

can take an inverse-Mellin transform to get backztgpace.

This procedure is valid up to corre_ctio_ns of ord_efz_ Tak- I'(N)= 2 ’éi(O)f(N; M nO/N)elog(N)gl(X)Jrgz(X), (36)

ing large moments of the expression in E&7) gives i
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where

2r2d
900==7 L [(1-2x)log(1-2x) —2(1— x)log(1—x)],
oX

rad 2r{s, L, 2
ga(x)=— e [—log(1-2x)+2log(1~x)]— 5 log(1—2x) —2log(1~ x) + 5l0g™(1—2x) —~log*(1~x)
0 0
4y, 2B, AT3d
+ ——log(1—x) +——log(1—-2x)— logng[log(1—2x)—log(1—x)]. (37)
Bo Bo Bo

x=log(N)ag(M)By/47 and B;=(34C4%— 10Cn;— 6Cgn;)/3.

IV. RESULTS

Now that we have the resummed rate in moment spge(36)], we must take the inverse Mellin transform to obtain the
expression for the photon energy spectrum. Fortunately, the inverse Mellin transform of the resumme8 rabé i decay
was calculated in Ref20], and we can use that result by simply substituting inghifom Eq. (37). We obtain the following
for the resummed Wilson coefficients of the octet contribution:

~ d exd| [/(4m)]+ /(4
Ci(x—2)= _Ci(O)d_ o(x—2) d191[ asBol/(4m)] gz[asﬁo/ (4m)]] , 39)
z I[1=ga[ esBol/(4m)]— asBol/(4m)gi[ asBol /(4m)]]
|
Whereﬁf°)=6§°)(180), E:go)(3p0), andl ~ —log(x—2). Each which is the same for the two leading octet configurations, is

Ci(x—2) is evaluated at the soft scale so that all leading andhown as the dashed line in Fig” 4.

next-to-leading Sudakov logarithms have been summed into However, for thebb systemmv2~AQCD so the covariant

it. derivative cannot be dropped in the end point region of the
One way of checking E((38) is by expanding in powers photon spectrum, and the differential rate is given by the

of a5 and comparing to the fixed order calculation. Using  convolution in Eq.(27). The lightcone distribution function

is a nonperturbative function and needs to be modeled. In

this paper we will be content with the simple structure func-

(_Iog”(l—z)) = lim [ 0(1—z— 1) log'(1-2) tions introduced in Refl22] for inclusive B decays,
1-z 4 90 1-z
log" ()
+0(1-2)——7—|. (39 *

k*\* n
f(k+)=N(1—T) e(rak/A (41)

as the definition for plus distributions it is straightforward to

verify that the orderag term in the expansion of Eq38)

reproduces the plus distributions in EqO). whereN is chosen so that the integral of the structure func-

Recall that the covariant derivative in E@6) is of order  tion is normalized to 1. In principle the structure function can

Aqcp/M. If we consider the limit +-z>Aqcp/M, then the  be different for the different color-octet states. But since we

covariant derivative in the operator appearing in the structurare ignorant of the nonperturbative structure function, we

function can be neglected. In this limit we can perform thewill naively use the same model for both tH&, and 3P,

integral in Eq.(27) to obtain configurations. The structure function fBrmesons have the
property that the first moment with respectkd vanishes.
For quarkonium the first moment of ER8) (wherex=1

dr ] f
E:Z Ci(1-2). (40 4+ &*) with respect tk* is

This result gives the effect of the perturbative resummation 4the | andau pole in Eq38) should be dealt with in the same
without the structure function. The quanti;(1—2)/C{%),  fashion as in thed decays21].

114014-7



BAUER, CHIANG, FLEMING, LEIBOVICH, AND LOW PHYSICAL REVIEW D 64 114014

FIG. 4. The differential decay spectra near the end point region FIG. 5. The differential decay spectra in the region<0z The
0.7<z in arbitrary units. The solid curve is the perturbative resum-dashed curves are the fully resummed result convoluted with the
mation convoluted with the structure function and the dashed curvéhape function for two choices of the octet matrix elements. In
is the perturbative resummati@)(1—2z)/C(?). The dotted curve is addition we have interpolated the fully resummed result with the
the plus distribution terms in the one-loop reg@ty. (10)], and the ~ NLO result in the region away from the end point. The dotted

dot-dashed curve is these terms convoluted with the structure fun&urves are the NLO result convoluted with the structure function for
tion. two choices of the matrix elements. The solid curve is the color-

singlet contribution.
<Y > X T ]iD [y ToT X ]
p.p’
<Y

Therefore, we need to shift” in Eq.(41) tok™ + A4, so that
Eq. (41) will have the desired first moment for quarkonium

Y tion for two choices of the matrix elements. We also show as
the solid curve the color-singlet contribution. Here we used

Ay= (Y|0,(3S))|Y)=3.63 Ge\? [23]. The values of the color-

> [XTp’TaFiw;I)]['r//;TaFiX—p]‘Y> octet matrix elements are not well determined. One may be
p.p’ 42) tempted to use a naive power-counting argument which gives

(Y| Og(*So) | Y )~ (Y| Og(3P) | Y Y mE~ (Y| O4(3S))|Y),

decays. The integration limits far are, similar to the case with v2~0.1. However, this gives values for the color-octet

i o matrix elements that are too large to be compatible with data
for B decays, from—M to My—M. Both A and A, are o the ratio of hadronic to leptonic decafs]. The data
nonperturbative parameters related through=My—M suggest that the octet matrix elements are at least an order of
—A;. We use the following numbers in our plotsts  magnitude smaller than the naive power-counting estimate.
=0.2, «=1/137,m,=4.8 GeV,M,=9.46 GeV,a=1, A Therefore, we use values that are 10 times and 100 times
=480 MeV, andA ;= —620 MeV. smaller than estimates from naive power counting, with the

In Fig. 4 the convolution of;(x—2)/C(® with the model  &rger matrix element yielding the higher peale have

of the structure functiohEq. (41)] is shown as the solid line. added to the resummed result the NLO .Q¢D result with the
In addition we show as the dotted line the terms in the nex?lngular termg Egs. (10)] subt_racted. This interpolates be-
to leading ordefNLO) QCD expression that dominate in the tween the NLO Q_CD expression at Io_vver values ahd _the

. . . =(0) resummed result in the end point region. For comparison we
end point regiofEqg. (10)] divided byC;™, and as the dot-

. . ) show as the dotted curves the NLO QCD contributjéh
dashed line the convolution of these terms with B&1).  .qnyoluted with the shape function for the two choices of the
Thus Fig. 4 gives a picture of the effects of resummation

. D color-octet matrix elements.
The singular plus distribution piece of the NLO QCD expres- — gince the octet contributions dominate the color-singlet

sion is tamed by both the perturbative resummation and thgytribution in this end point regiofor at least are of the

structure _funption. Either of these alone gives a similarSame order of magnitugleit should be possible to use this
curve, which is peaked near-0.94. However, to be consis- hocess to constrain the size of the color octet matrix ele-
tent the perturbative resummation must be convoluted withyent The suppression of the matrix element compared to the
the structure function. This gives a curve that is broader, with, 5ie power counting estimate makes a measurement of this
a peak that is 34% lower and shifted 26:0.87. Changing  matrix element particularly interesting and might shed some
the values of the structure function parameters changes ”]E]ht on the convergence of the expansion in NRQCD.
shape of the curve. Halving the value dfgives a narrower  However, before a meaningful comparison of theory to data

peak that is 30% lower and shifted #=0.83. If a5 is in-  on radiativeY decay can be made, subleading Sudakov loga-
creased by 10% the peak moves slightly to the left and de-

creases in height by 5%. Doubling the valueadh Eq. (41)

slightly raises the peak, and steepens the curve as it goes t6|n Ref. [24] it was argued that a factor of M should be in-

zero at the end point. cluded in a naive estimate of the color-octet matrix elements. The
In Fig. 5, we show as dashed curves the fully resummedhkrger of our two choices for this matrix elements is of the same

color-octet contribution convoluted with the structure func-order of magnitude as this modified naive estimate.
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rithms in the color-singlet contribution must be summed. Thetex contribution to the forward scattering matrix element is

existence of these logarithms was first pointed out in Fdf.  twice that given in Eq(16). There is a contribution to the

where it was observed that though leading Sudakov logaforward scattering matrix element from a ladder graph,

rithms cancel in the color-singlet contribution to the differ- which we have not yet evaluated. It gives

ential rate, they are present in the derivative of the rate at the

end point. We leave the resummation of these logarithms to a

future publication25]. aCp
2

_ p2(n-pg)?
(—1-i8)%pg

) I'1+e)I'(1+2¢)
V. CONCLUSION

Using an effective field theory approach, we have re- XF(l—Ze)EMO, (A1)
summed Sudakov logarithms in the leading color-octet con- €
tributions to theY — Xy differential decay rate in the end
point region. This is done in two steps. First we match onto
) . . where
an effective theory with collinear and soft degrees of free-
dom and run the theory to the collinear scale. Next we inte-
grate out collinear modes by performing an OPE, matching 2
onto nonlocal operators which are run to the soft scale. This MOZC.(O) 5
sums all Sudakov logarithms into Wilson coefficients of pg—io
these operators. The color-octet contribution to the differen-
tial decay rate in the end point region is given by the convo-
lution of the Wilson coefficients with matrix elements of the is the tree level amplitude, angf=M?(1~2). In addition
operators betweelY states. The latter are the color-octet there is a contribution coming from virtual corrections to the
structure functions defined in Réf7]. collinear gluon propagator, which include the fermion,
We choose a simple model for the structure functions tcgluon, and ghost loops:
investigate the phenomenological consequences of resumma-
tion. We find that either the perturbative resummation or the .
inclusion of a structure function cures the singular behavior as (5 2 u? 1
of the QCD results. Both give a similar effect, causing the 3" Ax §CA_ 3N T a2 ZMO' (A3)
(—1-id)pq
curve to turn over neaz=0.94 and to go to zero at the end
point. However, the effective field theory approach makes it
clear that the correct expression for the differential rate neapdding all contributions gives the full one-loop corrections
the end point is given by a convolution of the perturbativeto the forward scattering amplitude,
resummation and the structure function. This gives a spec-
trum that has a broader and lower peak than we obtain by

(A2)

2

including only perturbative resummation or the structure g 1 w 17| ng
function, shifting the peak ta=0.87. Mig=5_1Ca 5+ Zlog| =5 |+ 6el 3¢
Before a meaningful comparison to data can be made the € M
color-singlet result must be resummed as well. Only then can C 2 17C 2 n 2
data on the decay spectrum be used to constrain the size of + Aog? ® + Alog Ll _f|0g Ll
the octet contribution in the endpoint regif@5]. 2 2 6 M2/ 3 M?
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priaiy where the ellipses represent terms of ordgemot enhanced

by logarithms.

Next add the counterterms. There is a gluon propagator
insertion that gives— My(Z3—1). The vertex insertion is

Matching the forward scattering matrix element in theZhﬁzﬁ’zzgl. In order to facilitate a comparison with the re-
QCD and collinear-soft theory gives an important check thasults in Ref[5], we use dimensional regularization to regu-
we are reproducing the infrared physics of the full theory. Welate the infrared divergences in the heavy quark sector, and
have already calculated the vertex corrections. Note thahereforeZ,,=1. Adding all the counterterms cancels the
there are two contributions from the vertex loops so the verpoles in Eq.(A4), leaving

APPENDIX: FORWARD SCATTERING
MATRIX ELEMENT
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1 wu?
Joa?| =—
2Iog ( NE

, 23
—Ca lOQZ[(l_Z)(_l_I5)]_CA€|09[(1_Z)(_ 1

—id)]+ %Iog[(l—z)(—l—ié)]]/\/l(ﬁ ---. (Ab)

To obtain the differential decay rate we takel/zr Im [EqQ.
(A5)] using

—_1I Iog[(l—z)(—l—ié)]_( 1 )

' 1-z+ié “\1-z

-4 log”[(1-2)(-1-id)]

1-z+ié6

log(1-2)
2( 1-z )+

—m28(1—2). (AB)
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Comparing to Ref[5] (taking the limitz—1 in their expres-
siong, we confirm that at the matching scale=M the ef-

fective theory reproduces the plus distributions in the full
theory. Taking large moments of the imaginary part of Eq.

(A5) gives

1 w?
Joa2| £
2Iog ( MZ)

nfl
399

1 B ag
- ;j dz 2 1|mM|g=E[ Ca

»
M2

N
no

)
+ E'Og W
23

2 +CA€Iog
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