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Towards a global analysis of polarized parton distributions
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We present a technique for implementing in a fast way, and without any approximations, higher-order
calculations of partonic cross sections into global analyses of parton distribution functions. The approach,
which is set up in Mellin-moment space, is particularly suited for analyses of future data from polarized
proton-proton collisions, but not limited to this case. The usefulness and practicability of this method is
demonstrated for the semi-inclusive production of hadrons in deep-inelastic scattering and the transverse
momentum distribution of ‘‘prompt’’ photons inpp collisions, and a case study for a future global analysis of
polarized parton densities is presented.
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I. INTRODUCTION

High-energy spin physics has been going through a pe
of great popularity and rapid development ever since
measurement of the proton’s spin-dependent deep-inel
structure functiong1

p by the European Muon Collaboratio
~EMC! @1# more than a decade ago. As a result of combin
experimental and theoretical efforts, we have gained so
fairly precise information concerning, for example, the to
quark spin contribution to the nucleon spin. Yet many oth
interesting and important questions, most of which came
in the wake of the EMC measurement, remain unanswe
so far, the most prominent ‘‘unknown’’ being the nucleon
spin-dependent gluon density,Dg. Also, polarizedinclusive
deep-inelastic scattering~DIS! data do not provide enoug
information for a complete separation of the distributions
the different quark and antiquark flavorsu,ū,d,d̄,s, and s̄.
Here in particular a possible flavor asymmetry in the nuc
on’s light sea,Dū2Dd̄Þ0, has attracted quite some intere
and several models have been proposed recently@2–4#. Cur-
rent and future dedicated spin experiments are expecte
vastly broaden our understanding of the nucleon spin st
ture by studying reactions that give further access to its s
dependent parton distributions, among themDg and Dū,
Dd̄. In addition to lepton-nucleon scattering, there will al
be for the first time information coming from very inelast
polarizedpp collisions at the BNL Relativistic Heavy-Ion
Collider ~RHIC! @5#.

Having available at some point in the near future spin d
on various different reactions, one needs to tackle the q
tion of how to determine the polarized parton densities fr
the data. Of course, this problem is not at all new: in
unpolarized case, several groups perform such ‘‘glo
analyses’’ of the plethora of data available there@6,7#. The
strategy is in principle clear: an ansatz for the parton dis
butions at some initial scalem0, given in terms of appropri-
ate functional forms with a set of free parameters, is evol
0556-2821/2001/64~11!/114007~10!/$20.00 64 1140
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to a scalemF relevant for a certain data point for a certa
cross section. Then the parton densities at a scalemF are
used to compute the theoretical prediction for the cross s
tion, and ax2 value is assigned that represents the quality
the comparison to the experimental point. This is done for
data points to be included in the analysis, and subseque
the parameters in the ansatz for the parton distribution fu
tions are varied, until eventually a minimum inx2 is reached.

In practice, this approach is not fully viable if the parton
scattering is treated beyond the lowest order of perturba
theory. The numerical evaluation of the hadronic cross s
tion at higher orders is usually a rather time-consuming p
cedure as it often requires several tedious numerical inte
tions, not only for the convolutions with the parton densitie
but also for the phase space integrations in the partonic c
section. The fitting procedure outlined above, on the ot
hand, usually requires thousands of computations of
cross section for any given data point, and so the compu
time required for a fit easily becomes excessive even
modern workstations. We note that for practically all rea
tions of interest in the unpolarized and polarized cases
first-order QCD corrections to the respective partonic cr
sections are known by now. They are generally indispensa
in order to arrive at a firmer theoretical prediction for ha
ronic cross sections; for instance the dependence on the
physical factorization and renormalization scales is redu
when going to higher orders in the perturbative expansi
Only then can one reliably extract information on the part
distribution functions.

In the unpolarized case, a way to get around this prob
is based on the fact that the parton densities are alre
known here rather accurately@6,7#. Their gross features ar
basically determined by the wealth of very precise DIS d
which cover a wide kinematical range in the momentu
fractionx and the scalemF.Q. As a consequence, the theo
answer for a certain cross section is expected to change
very predictable way when going from the lowest-order Bo
level to the first-order approximation. It is then possible
©2001 The American Physical Society07-1
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pre-calculate a set of correction factorsKi ( i running over
the data points!, and to simply multiply them in each step o
the fitting procedure to thelowest-orderapproximation for
the cross section, the latter being usually much faste
evaluate than that involving higher order terms. TheKi usu-
ally hardly change at all from one set of parton distributio
to another, and in any case one may update them if neces
at certain stages of the fitting procedure.

It should be noted, however, that this way of treating ne
to-leading order~NLO! corrections in a fit is not necessari
adequate in all cases of interest. In particular if one is in
ested in extracting information about the gluon density
large values ofx, where it is only rather poorly constrained
the moment, the correction factorsKi cannot be reliably pre-
calculated, and they may vary considerably during the fitt
procedure. It is therefore desirable to incorporate NLO cr
sections without any approximations in future analyses
parton densities.

In the polarized case it is in general not at all cle
whether a strategy based on correction factorsKi will work.
Here, the parton densities are known withmuch less accu-
racy so far. It is therefore not possible to pre-calcul
higher-order correction factors that one would be able
keep fixed throughout the fit, while using ‘‘fast’’ lowest-orde
expressions for the partonic cross sections. For insta
even though it is well known that for a sizableDg the q
1g→g1q Compton subprocess is the dominant contribu
to the transverse momentum distribution of a ‘‘prompt’’ ph
ton in the kinematical region of interest, this is by no mea
the case ifDg happens to be small, in which case all oth
channels, even genuine NLO ones, may become equally
portant. In addition, the spin-dependent parton distributio
as well as the polarized partonic cross sections, may h
zeros in the kinematical regions of interest, near which
predictions at lowest order and the next order will sh
marked differences. Therefore, even if the correction fac
are updated at times during the fitting procedure, the con
gence of the fit is not warranted. Conversely, if one upda
the Ki frequently, the fit will become too slow again.

Clearly, in the polarized case, the goalmustbe to find a
way of implementing efficiently, and without approxima
tions, theexactNLO expression for any hadronic cross se
tion such as the prompt photon cross section into the fit
procedure. As will be shown in the next section, this can
achieved in a very simple and straightforward way by go
to Mellin-n moment space. A technique of this sort was fi
used for the case of jet production in DIS as a means
extracting information about the unpolarized gluon dens
@8#. The relevant generalization to hadron-hadron scatter
which is more involved and requires a ‘‘double Mellin tran
form’’ was recently provided in@9#. However,@9# focuses on
the formalism and the technical aspects of the Mellin tra
formation, rather than on its actual practicability, and t
usefulness in a global QCD analysis has never been dem
strated.

Before we demonstrate in some detail the potential of
Mellin technique in praxis for two examples relevant for f
ture global analyses of polarized parton densities, which
the main thrust of this paper, we start off in Sec. II by r
11400
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deriving the required formalism in an easy and transpar
way. In Sec. III we will consider first the semi-inclusive pro
duction of hadrons in polarized DIS as the simplest appli
tion of the Mellin technique. Then moments of the partonic
cross sections can be taken analytically in this case. Bec
of the subsequent fragmentation of a final state parton
the observed hadron, semi-inclusive DIS~SIDIS! is sensitive
to different flavor combinations than inclusive DIS data.
has also the advantage that we have already data at our
posal@10,11# which can be analyzed in terms of a possib

flavor asymmetryDū2Dd̄ of the light sea. As a second ex
ample we study the production of a prompt photon at h
transverse momentumpT in pp collisions at RHIC in Sec.
IV. Its sensitivity to the gluon distribution via the LO Comp
ton subprocess, which, along with the cleanliness of
prompt photon signal, is the reason why this process will
the flagship measurement ofDg at RHIC @5#. As a first case
study for future global analyses we also carry out a ‘‘to
analysis of DISand projected prompt photon data to high
light the power of future RHICpp data to pin downDg. We
briefly summarize the main results in Sec. V.

II. HADRONIC CROSS SECTIONS AND THE MELLIN
MOMENT TECHNIQUE

The factorization theorem@12# ensures that in the pres
ence of a hard scale in a reaction the corresponding~spin-
dependent! hadronic cross section can be written as a s
over ‘‘convolutions’’ of parton densities with partonic hard
scattering cross sections. The latter are perturbatively ca
lable and are specific to the reaction under consideration.
parton distributions, which for spin-dependent interactio
contain the desired information on the nucleon’s spin str
ture, depend on long-distance phenomena. However, they
universal: a single set of distributions for~anti-!quarks

u,ū,d,d̄,s,s̄, . . . and gluonsg, predicts all data sets simul
taneously.

To be specific, for a general spin-dependent cross sec
in longitudinally polarizedpp collisions, differential in a cer-
tain observableO and integrated over experimental bins
other kinematical variablesT, one has

dDsH

dO
[

1

2 FdsH

dO
~11 !2

dsH

dO
~12 !G

5 (
a,b,c

E
exp2bin

dTE
xa

min

1

dxaE
xb

min

1

dxb

3E
zc
min

1

dzcD f a~xa ,mF!D f b~xb ,mF!Dc
H~zc ,mF8 !

3
dDŝab

c

dOdT
~xaPA ,xbPB ,PH /zc ,T,mR ,mF ,mF8 !,

~1!
7-2
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where the arguments (11) and (12) in the first line of Eq.
~1! refer to the helicities of the incoming hadronsA and B.
The D f i are the spin-dependent parton distributions, defin
as

D f i~x,mF![ f i
1~x,mF!2 f i

2~x,mF!, ~2!

where f i
1 ( f i

2) denotes the number density of a parton-ty
f i with helicity ‘‘ 1’’ ~‘‘ 2’’ ! in a proton with positive helicity,
carrying the fractionx of the proton’s momentum. The
Dc

H(z,mF8 ) represent the unpolarized fragmentation fun
tions. They parametrize the probability that a partonc frag-
ments into the observed final stateH, e.g., a charged pion
with momentumPH5z pc . For some observables, such
~di-!jets, there is no need for a fragmentation function in E
~1!.

The scalesmF andmF8 are the factorization scales for in
tial and final state collinear singularities, respectively, a
reflect the certain amount of arbitrariness in the separatio
short-distance and long-distance physics embodied in
~1!. Even though the parton densities~fragmentation func-
tions! cannot presently be derived from first principles, th
dependence onmF (mF8 ) is calculable perturbatively in term
of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP!
evolution equations@13#, allowing us to relate their values a
one scale to their values at any othermF (mF8 ). The other
scale,mR , in Eq. ~1! is the renormalization scale, introduce
in the procedure of renormalizing the strong coupling co
stant. Finally, the sum in Eq.~1! is over all contributing
partonic channelsa1b→c1X, with dDŝab

c the associated
partonic cross section, defined in complete analogy with
first line of Eq. ~1!, the helicities now referring to partoni
ones:

dDŝab
c [

1

2
@dŝab

c ~11 !2dŝab
c ~12 !#. ~3!

As mentioned earlier, thedDŝab
c are perturbative, that is

they have the expansion

dDŝab
c 5dDŝab

c,(0)1S as

p DdDŝab
c,(1)1S as

p D 2

dDŝab
c,(2)1 . . . .

~4!

It should be noted that lepton-hadron reactions are a
included in Eq. ~1! by simply settingD f b(xb ,mF)5d(1
2xb). We will consider this example in some detail in Se
III as it is the simplest application of the Mellin mome
technique which we are going to advocate in the following
a straightforward tool to extract information about part
densities from a global QCD analysis.

For the polarized parton distribution functions, the Mel
moments are defined as

D f i
n~m![E

0

1

dx xn21D f i~x,m!. ~5!

It is well known @14# that the evolution equations for th
parton densities become particularly simple in Mellinn
11400
d

-

.

d
of
q.

r

-

e

o

.

s

space, since the convolutions occurring in thex-space equa-
tions factorize into simple products under moments. This
lows for a straightforward analytic solution of the differenti
evolution equations, see, e.g.,@14#. In fact, several of the
NLO evolution codes used for parton density analyses in
unpolarized and polarized cases are set up in Mellin-n space.
After evolving from one scale to another in moment spa
the evolved parton distributions in Bjorken-x space are re-
covered by an inverse Mellin transform, given by

D f i~x,m!5
1

2p i ECn

dn x2nD f i
n~m!, ~6!

whereCn denotes a contour in the complexn plane that has
an imaginary part ranging from2` to ` and that intersects
the real axis to the right of the rightmost poles of t
D f i

n(m). The evolution of the time-like fragmentation func
tions can be treated in a very similar way in Mellin space
well.

The crucial, but simple, step in applying moment tec
niques to Eq.~1! is to express theD f i(xi ,mF) by their Mel-
lin inverses in Eq.~6! @9#. One subsequently interchange
integrations and arrives at

dDsH

dO
5

1

~2p i !2 (
a,b,c

E
Cn

dnE
Cm

dmD f a
n~mF!D f b

m~mF!

3E
exp2bin

dTE
xa

min

1

dxaE
xb

min

1

dxb

3E
zc
min

1

dzcxa
2nxb

2mDc
H~zc ,mF8 !

3
dDŝab

c

dOdT
~xaPA ,xbPB ,PH /zc ,T,mR ,mF ,mF8 !

~7!

[(
a,b

E
Cn

dnE
Cm

dmD f a
n~mF!D f b

m~mF!

3Ds̃ab
H ~n,m,O,mR ,mF!. ~8!

One can now pre-calculate the quantiti
Ds̃ab

H (n,m,O,mR ,mF), which do not depend at all on th
parton distribution functions,prior to the fit for a specific set
of the two Mellin variablesn and m, for each contributing
subprocess and in each experimental bin. Effectively, one
to compute the cross sections with complex ‘‘dummy’’ pa
ton distribution functionsxa

2nxb
2m . We emphasize that all the

tedious and time-consuming integrations are already d
with in the calculation of theDs̃ab

H (n,m,O,mR ,mF). We
have included the integration over the fragmentation funct
Dc

H and the summation over the final state partonc in the

definition of the pre-calculated quantitiesDs̃ab
H . This also

implies thatDs̃ab
H does not depend anymore on the cho

for mF8 apart from some residual dependence which is
higher order inas . Usually the fragmentation functions ar
7-3
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taken from ‘‘elsewhere,’’ i.e.,e1e2 data, rather than being
fitted simultaneously with the parton densities. We no
however, that one can also replaceDc

H by their Mellin in-
verse according to Eq.~6!. In that case the pre-calculate
quantities would depend on three Mellin variables.

The double inverse Mellin transformation which final
links the parton distributions with the pre-calculat
Ds̃ab

H (n,m,O,mR ,mF) of course still needs to be performe
in each stepof the fitting procedure. However, the integr
tions overn andm in Eq. ~8! are extremely fast to perform b
choosing the values forn,m in Ds̃ab

H (n,m,O,mR ,mF) on the
contoursCn , Cm simply as the supports for a Gaussian in
gration. The point here is that the integrand inn andm falls
off very rapidly asunu andumu increase along the contour, fo
two reasons: first, each parton distribution function is e
pected to fall off at least as a power (12x)3 at largex, which
in moment space converts into a fall-off of;1/n4 or higher.
Second, we may choose contours in moment space tha
bent by an anglea2p/2 with respect to the vertical direc
tion; a possible choice is shown in Fig. 1. Then, for largeunu
and umu, n and m will acquire large negative real parts, s
that (xa)2n and (xb)2m decrease exponentially along the r
spective contours. This helps for the numerical converge
of the calculation of theDs̃ab

H (n,m,O,mR ,mF) and also
gives them a rapid fall-off at large arguments. We note t
no new poles inn andm, beyond those already present in t
moments of the parton distribution functions, are introduc
by theDs̃ab

H (n,m,O,mR ,mF) @9#.
We note that if one wishes to integrate also over an

perimental bin inO in Eq. ~7!, a potential complication arise
if the hard scalemF in the parton distribution functions de
pends explicitly onO. This makes it impossible to straigh
forwardly include theO integration in the pre-calculation o

FIG. 1. Contours in complex Mellin-n,m spaces for the calcu
lation of the double Mellin inverse in Eq.~8!. r n andr m denote the
rightmost poles of the integrand inn andm, respectively, and theci

the intersections with the real axis.
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the Ds̃ab
H . A typical example forO, which often appears in

practice, is the transverse momentumpT of an observed jet,
hadron, or prompt photon. In this case, theO dependence of
mF is, however, not a serious limitation@8#: the logarithmic
dependence of the parton densities onmF is much weaker
than the overallpT dependence of the cross section. The
fore, it is always possible to choose a bin average ofpT as
the scale in the parton densities. Alternatively, one co
choose not to include thepT integration in theDs̃ab

H and to
construct grids of somewhat larger size, taken at a sm
number of support points for a simple Gaussian integrat
over thepT bin. A further possibility@9# is to absorb also the
evolution of the parton densities from their initial scalem0 to
mF into theDs̃ab

H , which in moment space simply enters
the form of exponentials involving the anomalous dime
sions, see, e.g.,@14#. This procedure, which is somewha
more involved, would eliminate any complication related
mF;O(pT). Anyway, the experiments will usually quote re
sults for thepT-differential cross section at thepT average
over the bin, which of course is exactly what we have co
sidered in Eqs.~7! and~8!. In the latter case it is also easil
possible to organize the grids in such a way that the ren
malization and/or factorization scales can be varied dur
the fit, by simply taking the~logarithmic! dependence on
mR,F and the strong couplingas(mR) out of the partonic
cross sections beforehand.

As a technical sidestep, we give an explicit expression
the double inverse transform in Eq.~8! for the contours de-
picted in Fig. 1. To this end, we parametrize the vario
segments in Fig. 1 by

n5cn1une6 ia and m5cm1ume6 ia, ~9!

whereun,mP@0,̀ # and the sign ofa has to be chosen ap
propriately for the branches of the contours. We then find

dDsH

dO
52

1

2p2 (
a,b

ReF E
0

`

dunE
0

`

dumD f a
n~mF!

3$e2iaD f b
m~mF!Ds̃ab

H ~n,m,O,mR ,mF!

2„D f b
m~mF!…* Ds̃ab

H ~n,m* ,O,mR ,mF!%G ,
~10!

where the asterisk denotes the complex conjugate, and w

we have made use ofD f b
m* (mF)5„D f b

m(mF)…* , since the
D f i(x,m) are real functions. This identity also implies th
there is no need to separately compute the moments of
parton densities at the complex conjugate valuesn* ,m* ,
which has a further positive effect on the computing tim
required for performing the Mellin inverses. In additio
there is no need to provide separate grids
Ds̃ab

H (n* ,m,O,mR ,mF) andDs̃ab
H (n* ,m* ,O,mR ,mF).

Before proceeding, we reemphasize that the idea outli
above of reverting to Mellin moment space in the impleme
tation of any higher-order cross section into parton den
7-4
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fits is not entirely new, but was first developed in Refs.@8,9#.
The example considered in@8# was jet production in DIS,
which offers the simplification of being only linear in th
parton distribution functions. There is a difference betwe
our approach and that of Ref.@8# in practical terms: in the
language of our example in Eq.~7!, Ref. @8# would insert a
factor (xa

min)n(xb
min)m in the integrands for thexa andxb inte-

grations, while undoing this operation through a fac
(xa

min)2n(xb
min)2m in the n andm integrands. Even though ob

viously equivalent mathematically, the disadvantage of t
procedure is that the resulting factors (xa

min/xa)
n, (xb

min/xb)
m in

thexa , xb integrands will nowgrow exponentially along the
contours in Mellin space, making it numerically much mo
cumbersome@8# to perform thexa andxb integrations yield-
ing theDs̃ab

H (n,m,O,mR ,mF). As a matter of fact, the actua
extension of the method of Ref.@8# to the case of hadronic
collisions involving bilinear combinations of parton distrib
tions appears difficult. The generalization of@8# to hadron-
hadron scattering, without the shortcomings mention
above, was first provided in@9#. The difference between ou
organization of the expression in Eq.~8! and Ref.@9# is the
choice of the contour. Reference@9# fully exploits the free-
dom in deforming the contours for the inverse Mellin tran
form and constructs a ‘‘surface of steepest descent’’ which
principle has the best numerical convergence properties
is difficult to parametrize. Instead we stick to the simp
contours in Fig. 1 which, as we will show below, turn out
be sufficient to obtain numerical agreement between Eqs~1!
and ~8! of far better than 1% for all applications we a
going to consider. We should also note that in@9# the useful-
ness of the Mellin transform method was not demonstrate
practice.

III. SEMI-INCLUSIVE DEEP-INELASTIC SCATTERING

As a first application for the Mellin transform techniqu
outlined in the previous section we consider the se
inclusive production of a hadronH in DIS. Semi-inclusive
DIS ~SIDIS! starts at the Born level with the LO reactio
g* q→q. The NLOO(as) corrections also comprise the pro
cessesg* q→qg andg* g→qq̄ and have been calculated
the spin-dependent case in the modified minimal subtrac
(MS) scheme in@15#. In each case one of the final sta
partons subsequently fragments into the observed hadroH.
As in the fully inclusive case, the expression for the cro
section is given by a single structure functiong1

H(x,z,Q):

dDsH

dx dy dz
5

4pa2

Q2
~22y!g1

H~x,z,Q!. ~11!

To NLO in as , g1
H can be written as@15,16#

2 g1
H~x,z,Q!5 (

q5u,ū, . . . ,s̄

eq
2FDq~x,mF!Dq

H~z,mF8 !

1
as~mR!

2p E
x

1dx̂

x̂
E

z

1dẑ

ẑ

3H DqS x

x̂
,mFD DCqq

(1)S x̂,ẑ,
mF

Q
,
mF8

Q D
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3Dq
HS z

ẑ
,mF8 D 1DqS x

x̂
,mFD

3DCgq
(1)S x̂,ẑ,

mF

Q
,
mF8

Q DDg
HS z

ẑ
,mF8 D

1DgS x

x̂
,mFD DCqg

(1)S x̂,ẑ,
mF

Q
,
mF8

Q D
3Dq

HS z

ẑ
,mF8 D J G ~12!

with x and y denoting the usual DIS scaling variables (Q2

52q25xyS), and where@17,18# z[pH•pN /pN•q. Equa-
tion ~12! and the variablez only apply to hadron production
in the current fragmentation region characterized by posi
values for the Feynman variablexF . All NLO MS partonic
coefficient functionsDCi j

(1) are collected in Appendix C o
@15#. They are non-trivial functions ofx and zsuch that thex
andz dependences of the cross section do not factorize
separate functions. Therefore the inclusion of the NLO c
rections seems to be indispensable for a reliable extractio
parton densities from SIDIS.

Due to the double convolutions appearing in Eq.~12! and
the fact that the coefficient functions contain mathemati
distributions asx→1 and/orz→1, the direct use of Eq.~12!
in a global analysis of parton densities is rather time consu
ing and awkward, though not impossible@19# since the par-
tonic coefficient functions are still fairly simple. SIDIS ha
the advantage, however, that the Mellin moments inx andz
can be taken completely analytically for the partonic coe
cient functions in Eq.~12!. In doing so, the double convolu
tions in Eq. ~12! reduce to simple multiplications
;D f j

n(mF)DCi j
(1),nm(mF /Q,mF8 /Q)Di

m(mF8 ) and all distribu-
tions become ordinary functions of the moment variabl
The DCi j

(1),nm , defined by

DCi j
(1),nmS mF

Q
,
mF8

Q D[E
0

1

dx xn21

3E
0

1

dz zm21DCi j
(1)S x,z,

mF

Q
,
mF8

Q D ,

~13!

are straightforwardly determined from the expressions
the correspondingDCi j

(1)(x,z,mF /Q,mF8 /Q) in Appendix C
of @15# and read

DCqq
(1),nmS mF

Q
,
mF8

Q D 5CFF282
1

m2
1

2

~m11!2
1

1

n2

1
~11m1n!221

m~m11!n~n11!
13S2~m!

2S2~n!1@S1~m!1S1~n!#H S1~m!
7-5
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1S1~n!2
1

m~m11!
2

1

n~n11!J
1F 2

n~n11!
1324S1~n!G lnS Q

mF
D

1F 2

m~m11!
1324S1~m!G lnS Q

mF8
D G ,

~14!

DCgq
(1),nmS mF

Q
,
mF8

Q D 5CFF222m29m21m32m41m5

m2~m21!2~m11!2

1
2m

n~m11!~m21!

2
22m1m2

m~m11!~m21!~n11!

2
21m1m2

m~m11!~m21!
@S1~m!1S1~n!#

2
2

~m11!n~n11!

12
21m1m2

m~m11!~m21!
lnS Q

mF8
D G , ~15!

DCqg
(1),nmS mF

Q
,
mF8

Q D 5TR

n21

n~n11! F 1

m21
2

1

m
1

1

n
2S1~m!

2S1~n!12lnS Q

mF
D G , ~16!

whereCF54/3, TR51/2, and

Si~n![(
j 51

n
1

j i
. ~17!

For completeness we give also the Mellin moments
the corresponding unpolarized coefficient functionsC1,i j

(1),nm

andCL,i j
(1),nm relevant for the structure functionsF1

H andFL
H ,

respectively. Using again Eq.~13! and thex,z space expres
sions in Appendix C in@15# one finds

C1,qq
(1),nmS mF

Q
,
mF8

Q D 5DCqq
(1),nmS mF

Q
,
mF8

Q D
1CF

2

m~m11!n~n11!
, ~18!

C1,gq
(1),nmS mF

Q
,
mF8

Q D 5DCgq
(1),nmS mF

Q
,
mF8

Q D
1CF

2

~m11!n~n11!
, ~19!
11400
r

C1,qg
(1),nmS mF

Q
,
mF8

Q D 5TRH 21n1n2

n~n11!~n12! F 1

m21
2

1

m

2S1~m!2S1~n!12lnS Q

mF
D G1

1

n2J ,

~20!

and

CL,qq
(1),nm5CF

4

~m11!~n11!
, ~21!

CL,gq
(1),nm5CF

4

m~m11!~n11!
, ~22!

CL,qg
(1),nm5TR

8

~n11!~n12!
. ~23!

We note that the usefulness of taking double Mellin mome
for unpolarized SIDIS was first pointed out, though not fu
ther pursued, in@17#. In the polarized case Mellin-n mo-
ments of the semi-inclusive cross section at fixedz have been
recently considered in@20#.

Having available the coefficient functions in Mellin mo
ment space one can evaluate the desired SIDIS struc
function g1

H in a fast way by a double inverse Mellin tran
form as discussed in Sec. III. One further ingredient requi
is the evolution of the moments of the fragmentation fun
tionsDi

m(mF8 ) which proceeds along very similar lines as f
the parton densities. Below we will use the recent NL
analysis of@21# which can be applied down to theQ values
required for the available spin-dependent SIDIS fixed-tar
data @10,11#. It should be noted that the Mellin approac
allows in principle a simultaneous fit of parton densities a
fragmentation functions in SIDIS at no extra ‘‘costs.’’

The experimentally relevant quantity is the so-called s
asymmetry, defined as the ratio of the polarized and unpo
ized SIDIS structure functions,g1

H(x,z,Q) and F1
H(x,z,Q),

respectively,

A1
H~x,z,Q!5

g1
H~x,z,Q!

F1
H~x,z,Q!

. ~24!

Due to limited statistics all presently available results for E
~24! are integrated over the entirez range accessible exper
mentally (z.0.2) @10,11#. To facilitate the comparison with
these data it is more convenient to define an ‘‘effectiv
coefficient functionDC̃ rather than using the double mo
ments and integrating afterwards overz. The DC̃ already
incorporate thez integration and can be easily pre-calculat
onceprior to the fit. They are defined by
7-6
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DC̃j
(1),nS mF

Q D
[E

zmin

1

dzE
Cm

dm z2mDCi j
(1),nmS mF

Q
,
mF8

Q DDi
m~mF8 !

~25!

~in LO one hasDCi j
(0),nm51) and can be used in a simila

way as the usual fully inclusive DIS coefficient function
This makes the numerical evaluation extremely fast: 100
culations of the SIDIS cross section in NLO take only abo
1 s on a standard workstation. Clearly, SIDIS data can b
easily incorporated in a global QCD analysis as DIS data

In Fig. 2 we compare the result of a NLO fit to all ava
able data for DISand SIDIS spin asymmetries with data fo
A1

N,6 for positively or negatively charged hadronsH6 and
different targetsN @10,11#. Regarding the details of th
analysis, we stay in the framework of the ‘‘standard’’ fit
@22#, but allow for an SU~2! breaking of the light sea by
introducing a functionf SU(2) ,

Du8~x,m0!5Du~x,m0!2 f SU(2)~x,m0!,

Dū8~x,m0!5Dū~x,m0!1 f SU(2)~x,m0!,

Dd8~x,m0!5Dd~x,m0!1 f SU(2)~x,m0!,

Dd̄8~x,m0!5Dd̄~x,m0!2 f SU(2)~x,m0!, ~26!

FIG. 2. Comparison of a fit to DIS and SIDIS data in NLO QC
~see text! with the measured SIDIS spin asymmetriesA1

N,6 for the
production of positively or negatively charged hadrons (6) off dif-
ferent targetsN @10,11#.
11400
l-
t
as

such that all quark combinations measured in inclusive D
remain unchanged,Dq81Dq̄85Dq1Dq̄, but Dū82Dd̄8
52 f SU(2) . We choose a ‘‘minimal’’ ansatz forf SU(2) with
three additional parameters

f SU(2)~x,m0!5Nxa~12x!b ~27!

wherem0.0.6 GeV is the initial scale for the evolution i
@22#. We choose the renormalization and factorization sca
mR5mF5mF85Q.

The resulting asymmetry of the light sea at the input sc
m0 is shown in Fig. 3. For comparison we also show mo
predictions forDū2Dd̄ from @2# and@4,22#. It turns out that
the flavor asymmetry obtained in our analysis is much l
pronounced than predicted in most models. It has to
stressed, however, that the change in the totalx2 for all
SIDIS data isless than one unitif one chooses an SU~3!
symmetric sea, the model calculations@2,4,22# or our fit re-
sult. Thus one has to conclude that present SIDIS data
not precise enough to distinguish between different res
for Dū2Dd̄ and that one has to wait for new SIDIS da
from HERMES and, in particular, for results onW6 boson
production at RHIC @5#. Similar conclusions have bee
reached in the analysis of@19#.

IV. PROMPT PHOTON PRODUCTION AT RHIC

To give an example for the Mellin technique in hadro
hadron collisions, we study the production of a prompt ph
ton in pp collisions at RHIC. In this casedDŝab

g,(0) in Eq. ~4!

starts at LO with the reactionsq1q̄→g1g and q1g→g
1q, the latter channel being sensitive to the polarized glu
distribution. The NLO corrections,dDŝab

g,(1) , are also avail-
able @23#. The NLO x-space expressions are rather lengt
and complicated, and Mellin moments cannot be taken a
lytically anymore. Nevertheless, as we shall see below, i
in the analysis of hadron-hadron collision data where

FIG. 3. Resulting flavor asymmetry of the light sea,Dū2Dd̄, at
the input scalem0 from our combined fit to DIS and SIDIS data
Also shown are model predictions taken from@2# ~dotted line! and
@4,22# ~dashed line!.
7-7
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Mellin moment technique exhibits its full potential and us
fulness.

To be specific, the transverse momentum (pT) distribution
of a prompt photon inpp collisions at a center-of-mass en
ergy AS, integrated over a certain experimental bin in pse
dorapidityh @i.e., ‘‘O[pT’’ and ‘‘ T[h ’’ in Eq. ~1!#, is given
by

dDsg

dpT
5(

a,b
E

h2bin
dhE

xa
min

1

dxaE
xb

min

1

dxb D f a~xa ,mF!

3D f b~xb ,mF!

3
dDŝab

g

dpTdh
~xaPA , xbPB ,pT ,h, mR ,mF!, ~28!

where xa
min5xT eh/(22xT e2h) and xb

min5xa xT e2h/(2xa

2xT eh) with xT52pT /AS. For our case study, we analyz
the polarized prompt photon cross section in Eq.~28! at
NLO. The associated spin asymmetry, defined as the rati
the polarized and the unpolarized cross sections,

ALL
g [

dDsg/dpT

dsg/dpT

, ~29!

will soon be measured at RHIC in collisions of longitud
nally polarized protons and, as mentioned above, will b
key process for measuringDg. We use AS5200 GeV
and look at the cross section as a function of
photon’s transverse momentumpT for five values of pT
which will be experimentally accessible at RHIC,pT
5@12.5,17.5,22.5,27.5,32.5# GeV. We average overuhu
,0.35 in pseudorapidity. As in experiment@5#, we impose an
isolation cut on the photon, for which we choose the iso
tion proposed in@24# with parametersR50.4, e51. A posi-
tive feature of this isolation criterion is the absence o
fragmentation contribution to prompt photon productio
hence we can drop thezc integration and the fragmentatio
function Dc

g in Eq. ~1!. We choose the renormalization an
factorization scalesmR5mF5pT .

Our first goal here is to show that the method based
Eqs.~7! and~8! actually works also for the more complicate
case of hadron-hadron collisions and correctly reprodu
the result obtained within the direct, but ‘‘slow,’’ calculatio
via Eq.~28!. Also, we need to establish an optimal size of t
grids that yield excellent accuracy but is still calculable
say, a few hours of CPU time on a standard workstati
Figure 4 compares the results based on Eqs.~7! and ~8!,
referred to as the ‘‘Mellin technique,’’ to those of Eq.~28!,
for various sizes of the grid inn,m. Here we have used agai
the polarized parton densities of@22# ~‘‘standard’’ set!. For a
more detailed comparison, we split up the contributions
the NLO prompt photon cross section into three parts, as
ciated with the reactionsq1q̄→g1X andq1g→g1X that
are already present at the Born level, and all other proce
that arise only at NLO. One notices that in each case alre
a grid size of 64364 values yields excellent accuracy. Ev
a 56356 grid is acceptable apart from a minor deviati
11400
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occurring for qq̄ scattering in the vicinty of a zero in th
partonic cross section. We have checked that the result
Fig. 4 do not depend on the actual choice of parton densi

The crucial asset of the Mellin method is the speed
which one can calculate the full hadronic cross section, o

the gridsDs̃ab
g (n,m,pT ,mR ,mF) have been pre-calculated

For the 64364 grid, we found that 1000 evaluations of th
full NLO prompt photon cross section take only abo
10–15 s on a standard workstation. Note that this num
includes the evolution~in moment space! of the parton dis-
tributions from their input scale to the scalepT relevant to
this case. Clearly, an implementation into a full parton de
sity fitting procedure is now readily possible.

To give an example, we finally perform a ‘‘toy’’ globa
analysis of the available data on polarized DIS@1# and of
fictitious data on prompt photon production at RHIC@5#,
which we project by simply calculatingALL

g in Eq. ~29! to
NLO using the sets of polarized and unpolarized parton d
tributions of@22# and@7#, respectively. For an estimate of th
anticipated 1s errors on the ‘‘data’’ forALL

g , we use the
numbers reported in@5#. We subsequently apply a rando
Gaussian shift of the pseudo-data, allowing them to v
within 1s. The ‘‘data,’’ as well as the underlying theoretic
calculation ofALL

g based on the spin-dependent parton d
sities of @22# ~solid line!, are shown in the left panel of Fig
5.

Next, we perform a large number of fits to the full,DIS
plus projected prompt photon, data set. We simultaneously fi
all polarized parton densities,~anti!quarks and gluons
choosing the distributions of@22# as the input for theDq,
Dq̄, but using randomly chosen values for the parameter
the ansatz for the polarized gluon distribution at the inp
scale m0. Regarding the details of the evolution, we st
again within the setup of@22#, but we choose a more flexibl
ansatz for the polarized gluon density,

Dg~x,m0!5N xa~12x!b~11g x! g~x,m0!, ~30!

FIG. 4. Comparison of the results based on the Mellin techni
in Eqs.~7! and~8! to those of Eq.~28! for various sizes of the grid
in n,m.
7-8
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which also allows for a zero in thex shape ofDg. g(x,m0)
is the unpolarized gluon density@7# at the input scale of@22#.
Note that the functional form for the polarized gluon dens
of @22#, used for generating our pseudo-data, is included
Eq. ~30! for N51.419,a51.43,b50.15,g50. Each fit
takes only about 10–20 min.

Ideally, thanks to the strong sensitivity of the prompt ph
ton reaction toDg, the gluon density in each fit should retu
close to the function we assumed when calculating the fi
tious prompt photon ‘‘data’’ in the region ofx probed by the
data. Indeed, as shown in Fig. 5~b!, this happens. The shade
band illustrates the deviations of the gluon densities obtai
from the global fits to the ‘‘referenceDg’’ @22# used in gen-

FIG. 5. ~a! Generated pseudo-data forALL
g based on a calcula

tion using the spin-dependent parton densities of@22# ~solid line!.
The shaded band corresponds to the results of a large numb
combined fits to DIS andALL

g data~see text!. ~b! Variations~shaded
area! of the polarized gluon densities obtained in the combined
with respect toDg of @22#, for mF510 GeV~see text!. Also shown
are two extreme gluon densities~dotted lines! which give an excel-
lent description of the polarized DIS data only.
11400
n

-

i-

d

erating the pseudo-data. It should be stressed that only t
fits are admitted to the band that give a good simultane
description of the DISand ALL

g data. Here we have tolerate
a maximum increase of the totalx2 by up to four units from
its minimum value. The shaded area in Fig. 5~a! shows the
corresponding variations inALL

g .
As is expected, all gluon densities are rather tightly co

strained in thex-region dominantly probed by the promp
photon data. This is true in particular atx'0.15, as a result
of the most precise data point forALL

g at pT512.5 GeV. We
note that one can also easily include the SIDIS data
cussed in Sec. III into the global analysis without any s
nificant increase of computing time for each fit. However,
far these data have no impact on our results. To illustrate
presentignorance ofDg, Fig. 5~b! shows also two extreme
gluon densities with first momentsDg1(m0)560.8 ~dotted
lines!, which are both in perfect agreement with all presen
available DIS data. The corresponding predictions forALL

g

for these two sets are given in Fig. 5~a!. It should be noted
that future measurements ofALL

g at RHIC at AS
5500 GeV and for similarpT values of the prompt photon
would further reduce the uncertainties onDg in thex region
between 0.05 and 0.1. Although our analysis still contain
certain bias by choosing only the framework of@22# for the
fits as well as by our choice of whatx2 values are still
tolerable, it clearly outlines the potential and importance
upcoming measurements ofALL

g at RHIC for improving our
understanding of the spin structure of the nucleon, in parti
lar of its spin-dependent gluon density.

V. CONCLUSIONS

To conclude, we have presented and applied a powe
technique for implementing in a fast way, and without a
approximations, higher-order calculations of partonic cro
sections into global analyses of parton distribution functio
We have demonstrated that the approach works in prac
for two examples: SIDIS and prompt photon production
pp collisions. In the first case it was possible to perform t
Mellin transform analytically and we have provided all ne
essary technical details for future analyses of polarized
unpolarized SIDIS data. For polarized prompt photon p
duction we have presented a case study for a future glo
analysis based on fictitious data. The Mellin transfo
method is certainly applicable to any other reaction of int
est, and it could equally well be an improvement also in a
global analysis of unpolarized parton distributions.
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