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Towards a global analysis of polarized parton distributions
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We present a technique for implementing in a fast way, and without any approximations, higher-order
calculations of partonic cross sections into global analyses of parton distribution functions. The approach,
which is set up in Mellin-moment space, is particularly suited for analyses of future data from polarized
proton-proton collisions, but not limited to this case. The usefulness and practicability of this method is
demonstrated for the semi-inclusive production of hadrons in deep-inelastic scattering and the transverse
momentum distribution of “prompt” photons ipp collisions, and a case study for a future global analysis of
polarized parton densities is presented.
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[. INTRODUCTION to a scaleug relevant for a certain data point for a certain
cross section. Then the parton densities at a spaleare
High-energy spin physics has been going through a periodsed to compute the theoretical prediction for the cross sec-
of great popularity and rapid development ever since theion, and ay? value is assigned that represents the quality of
measurement of the proton’s spin-dependent deep-inelastihe comparison to the experimental point. This is done for all
structure functiong} by the European Muon Collaboration data points to be included in the analysis, and subsequently
(EMC) [1] more than a decade ago. As a result of combinedhe parameters in the ansatz for the parton distribution func-
experimental and theoretical efforts, we have gained somtons are varied, until eventually a minimum i is reached.
fairly precise information concerning, for example, the total  In practice, this approach is not fully viable if the partonic
quark spin contribution to the nucleon spin. Yet many otherscattering is treated beyond the lowest order of perturbation
interesting and important questions, most of which came u@weory. The numerical evaluation of the hadronic cross sec-
in the wake of the EMC measurement, remain unansweretion at higher orders is usually a rather time-consuming pro-
so far, the most prominent “unknown” being the nucleon’s cedure as it often requires several tedious numerical integra-
Spin-dependent g|u0n densit&g_ Also, po|arizedinc|usive tiOﬂS, not only for the convolutions with the parton densities,
deep-inelastic scatterin@dIS) data do not provide enough but also for the phase space integrations in the partonic cross
information for a complete separation of the distributions forsection. The fitting procedure outlined above, on the other
the different quark and antiquark flavossu.d.d.s, and's. hand, usually requires thousands of computations of the

Here in particular a possible flavor asymmetry in the nucle £ross section for any given data point, and so the computing

s liaht U—Ad=0 h ttracted quit it ttime required for a fit easily becomes excessive even on
on; '9 se;aAud s h ,bas attracte gu' € some '2 €rest modern workstations. We note that for practically all reac-
and several models have been propose recgiig. Cur- tions of interest in the unpolarized and polarized cases the
rent and future dedicated spin experiments are expected

tv broad derstandi f th I i st st-order QCD corrections to the respective partonic cross
vastly broaden our understanding ot the nucieon spin StruGsg o5 are known by now. They are generally indispensable
ture by studying reactions that give further access to its spifg, o der 1o arrive at a firmer theoretical prediction for had-

dependent parton distributions, among thésg and Au,  ronic cross sections; for instance the dependence on the un-
Ad. In addition to lepton-nucleon scattering, there will alsophysical factorization and renormalization scales is reduced
be for the first time information coming from very inelastic when going to higher orders in the perturbative expansion.
polarizedpp collisions at the BNL Relativistic Heavy-lon Only then can one reliably extract information on the parton
Collider (RHIC) [5]. distribution functions.

Having available at some point in the near future spin data In the unpolarized case, a way to get around this problem
on various different reactions, one needs to tackle the quess based on the fact that the parton densities are already
tion of how to determine the polarized parton densities fromknown here rather accuratelg,7]. Their gross features are
the data. Of course, this problem is not at all new: in thebasically determined by the wealth of very precise DIS data
unpolarized case, several groups perform such “globailvhich cover a wide kinematical range in the momentum
analyses” of the plethora of data available thgse7]. The  fractionx and the scal@r=Q. As a consequence, the theory
strategy is in principle clear: an ansatz for the parton distrianswer for a certain cross section is expected to change in a
butions at some initial scalgg, given in terms of appropri- very predictable way when going from the lowest-order Born
ate functional forms with a set of free parameters, is evolvedevel to the first-order approximation. It is then possible to
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pre-calculate a set of correction factd(s (i running over deriving the required formalism in an easy and transparent
the data points and to simply multiply them in each step of way. In Sec. Il we will consider first the semi-inclusive pro-
the fitting procedure to théowest-orderapproximation for  duction of hadrons in polarized DIS as the simplest applica-
the cross section, the latter being usually much faster ttion of the Mellin technique. The moments of the partonic
evaluate than that involving higher order terms. Kheusu-  cross sections can be taken analytically in this case. Because
ally hardly change at all from one set of parton distributionsof the subsequent fragmentation of a final state parton into
to another, and in any case one may update them if necessahe observed hadron, semi-inclusive EBDIS) is sensitive
at certain stages of the fitting procedure. to different flavor combinations than inclusive DIS data. It

It should be noted, however, that this way of treating next-has also the advantage that we have already data at our dis-
to-leading ordeXNLO) corrections in a fit is not necessarily posal[10,11] which can be analyzed in terms of a possible

adequate in all cases of interest. In particular if one is mterﬂavor asymmetr;AU— Ad of the light sea. As a second ex-

ested in extracting inf_ormation about the gluon density atample we study the production of a prompt photon at high
large values ok, where it is only rather poorly constrained at transverse momenturp; in pp collisions at RHIC in Sec.

the moment, the correction factdss cannot be reliably pre- IV. Its sensitivity to the gluon distribution via the LO Comp-

calculated, and they may vary considerably during the fittin b hich. al ith the cleanli £ th
procedure. It is therefore desirable to incorporate NLO cros on subprocess, which, along wi € cleaniiness ot the

sections without any approximations in future analyses of"OMPt photon signal, is the reason why this process will be
parton densities. the flagship measurement 4y at RHIC[5]. As a first case

In the polarized case it is in general not at all clearStudy for future global analyses we also carry out a “toy”
whether a strategy based on correction factorsvill work. ~ analysis of DISand projected prompt photon data to high-
Here, the parton densities are known withuchless accu- light the power of future RHIG p data to pin downg. We
racy so far. It is therefore not possible to pre-calculatedriefly summarize the main results in Sec. V.
higher-order correction factors that one would be able to
keep fixed throughout the fit, while using “fast” lowest-order
expressions for the partonic cross sections. For instance, |l. HADRONIC CROSS SECTIONS AND THE MELLIN
even though it is well known that for a sizableg the q MOMENT TECHNIQUE
+g— y+qg Compton subprocess is the dominant contributor
to the transverse momentum distribution of a “prompt” pho-  The factorization theorerfil2] ensures that in the pres-
tonin the-klnemancal region of mtergst, thls is by no meanssnce of a hard scale in a reaction the correspondpin-
the case ifAg happens to be small, in which case all otheryenendenthadronic cross section can be written as a sum

channels, even genuine NLO ones, may become equally i e, «conyolutions” of parton densities with partonic hard-

portant. In addition, the spin-dependent parton dIStrIbUtlor‘Sscattering cross sections. The latter are perturbatively calcu-

as weI_I as the_ polan_zed partonic cross sections, may havl%\ble and are specific to the reaction under consideration. The
zeros in the kinematical regions of interest, near which the L . . ! )

- . parton distributions, which for spin-dependent interactions
predictions at lowest order and the next order will show

marked differences. Therefore, even if the correction factorfom"’l('jn the ddeswed mc;‘prtmatlon k? n the nuclaons splntr?truc—
are updated at times during the fitting procedure, the conve ure, depend on long-distance phenomena. HOWEver, (n€y are

gence of the fit is not warranted. Conversely, if one updateé'@ers_‘r’d:_a single set of distributions fdanti-quarks

the K, frequently, the fit will become too slow again. u,u,d,d,s,s, ... and gluong, predicts all data sets simul-
Clearly, in the polarized case, the goalstbe to find a  taneously.
way of implementing efficiently, and without approxima-  To be specific, for a general spin-dependent cross section
tions, theexactNLO expression for any hadronic cross sec-in longitudinally polarizecp p collisions, differential in a cer-
tion such as the prompt photon cross section into the fittingain observabled and integrated over experimental bins in
procedure. As will be shown in the next section, this can bedther kinematical variables, one has
achieved in a very simple and straightforward way by going
to Mellin-n moment space. A technique of this sort was first
used for the case of jet production in DIS as a means of dAot
extracting information about the unpolarized gluon density ~do
[8]. The relevant generalization to hadron-hadron scattering,
which is more involved and requires a “double Mellin trans- D J del dx fl dx
form” was recently provided ih9]. However,[9] focuses on abic Jexp-bin - Jxmn 2] ymin b
the formalism and the technical aspects of the Mellin trans-
formation, rather than on its actual practicability, and the 1 H ,
usefulness in a global QCD analysis has never been demon- X fzmindZCAfa(Xa’/'LF)Afb(Xb E)DC (2o, mp)
strated. ¢
Before we demonstrate in some detail the potential of the dA(}gb
Mellin technique in praxis for two examples relevant for fu- Xm(XaPAaXbP&PH/ZC TR ME S E),
ture global analyses of polarized parton densities, which is
the main thrust of this paper, we start off in Sec. Il by re- 1)
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where the arguments{+) and (+ —) in the first line of Eq.  space, since the convolutions occurring in ¥agpace equa-
(1) refer to the helicities of the incoming hadroAsandB.  tions factorize into simple products under moments. This al-
The Af; are the spin-dependent parton distributions, definedows for a straightforward analytic solution of the differential
as evolution equations, see, e.§14]. In fact, several of the
NLO evolution codes used for parton density analyses in the
Afi (6 ue) =17 (% me) = 7 (X, 1), (2)  unpolarized and polarized cases are set up in Mellspace.
. . After evolving from one scale to another in moment space,
wheref;" (f;) denotes the number density of a parton-typethe evolved parton distributions in Bjorkenspace are re-

f; with helicity “ +” (* —=") in a proton with positive helicity, covered by an inverse Mellin transform, given by
carrying the fractionx of the proton’s momentum. The

DH(z,ut) represent the unpolarized fragmentation func- 1 _

tions. TrF1ey parametrize the probability that a partoinag- Afi(x.p) = ﬁfc dnx A (w), 6)

ments into the observed final state e.g., a charged pion, "

with momentumP =z p.. For some observables, such aswhere(, denotes a contour in the complexplane that has

(di-)jets, there is no need for a fragmentation function in Eq.an imaginary part ranging from « to « and that intersects

(2). the real axis to the right of the rightmost poles of the
The scalesur and ur are the factorization scales for ini- Af(x). The evolution of the time-like fragmentation func-

tial and final state collinear singularities, respectively, andions can be treated in a very similar way in Mellin space as

reflect the certain amount of arbitrariness in the separation afell.

short-distance and long-distance physics embodied in Eq. The crucial, but simple, step in applying moment tech-

(1). Even though the parton densitisagmentation func- niques to Eq(1) is to express tha f;(x;,ug) by their Mel-

tions) cannot presently be derived from first principles, theirlin inverses in Eq.(6) [9]. One subsequently interchanges

dependence opr (uf) is calculable perturbatively in terms integrations and arrives at

of the Dokshitzer-Gribov-Lipatov-Altarelli-PariSiDGLAP)

evolution equationgl13], allowing us to relate their values at ~ dAo™ 1 n m
one scale to their values at any otheg (ur). The other dO  (27i)2 a%C Cndn CmdmAfa(MF)Afb(MF)
scale,ur, in Eq. (1) is the renormalization scale, introduced

in the procedure of renormalizing the strong coupling con- y 4T 1 q 1 q

stant. Finally, the sum in EqJ) is over all contributing exp—bin i Xa i Xp

partonic channelsi+b—c+ X, with dA¢S, the associated

partonic cross section, defined in complete analogy with the !

X | o820 ", "Dz uf)

first line of Eq. (1), the helicities now referring to partonic Zmin
ones: A
1 dAUgb( Pa.XoPs,Py/ze, T )
~ - ~ X = (XaPa XpPe Py /Ze T rs e s o
dAo%,= 5[dogy(++)—dog(+ )], (3 dodT " ) "
(7)
As mentioned earlier, thelAcog, are perturbative, that is,
they have the expansion E;) fc dnL dmAfY(ue) AR (ue)
dAGS =dAaS @4 28| gage | s sz‘c,(z)Jr ~H
Tap=UR T, T Tab - Tab R X Aoy, (n,m,O, ur, mg). 8

“ One can now pre-calculate the guantities
It should be noted that lepton-hadron reactions are alsd};'b(n,m,O,MR,MF), which do not depend at all on the
included in Eq.(1) by simply settingAf,(X,,ug)=4(1 parton distribution functiongrior to the fit for a specific set
—Xp). We will consider this example in some detail in Sec.of the two Mellin variablesn and m, for each contributing
lll as it is the simplest application of the Mellin moment subprocess and in each experimental bin. Effectively, one has
technique which we are going to advocate in the following ago compute the cross sections with complex “dummy” par-
a straightforward tool to extract information about partonton distribution functionx; "x, ™. We emphasize that all the
densities from a global QCD analysis. tedious and time-consuming integrations are already dealt
For the polarized parton distribution functions, the Mellin with in the calculation of theAo ,(n,m,0,ug ue). We
moments are defined as have included the integration over the fragmentation function
D and the summation over the final state partoim the

1
Afin(,U«)EJo dx X" A (X, ). (5 definition of the pre-calculated quantitiésoy,. This also
implies thatA?rgb does not depend anymore on the choice

It is well known [14] that the evolution equations for the for wf apart from some residual dependence which is of
parton densities become particularly simple in Mehin- higher order inag. Usually the fragmentation functions are
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the Aat},. A typical example forO, which often appears in

practice, is the transverse momentpsnof an observed jet,
hadron, or prompt photon. In this case, thalependence of
M is, however, not a serious limitatid]: the logarithmic
dependence of the parton densities @p is much weaker
than the overalp; dependence of the cross section. There-
fore, it is always possible to choose a bin averag@phs
the scale in the parton densities. Alternatively, one could

choose not to include thgy integration in theAot, and to
construct grids of somewhat larger size, taken at a small
number of support points for a simple Gaussian integration
over thept bin. A further possibility{ 9] is to absorb also the
evolution of the parton densities from their initial scalg to

ME into theA?r;'b, which in moment space simply enters in
the form of exponentials involving the anomalous dimen-
sions, see, e.g[,14]. This procedure, which is somewhat
more involved, would eliminate any complication related to
e~ O(p7). Anyway, the experiments will usually quote re-
sults for theps-differential cross section at thp; average

FIG. 1. Contours in complex Mellimsm spaces for the calcu- over the bin, which of course is exactly what we have con-
lation of the double Mellin inverse in E@8). r, andr,, denote the ~ sidered in Eqs(7) and(8). In the latter case it is also easily
rightmost poles of the integrand mandm, respectively, and the, possible to organize the grids in such a way that the renor-
the intersections with the real axis. malization and/or factorization scales can be varied during

the fit, by simply taking the(logarithmig dependence on

taken from “elsewhere,” i.e.e*e™ data, rather than being urr and the strong couplinges(ug) out of the partonic
fitted simultaneously with the parton densities. We notecross sections beforehand.

however, that one can also replabé' by their Mellin in- As a technical sidestep, we give an explicit expression for
verse according to E6). In that case the pre-calculated the double inverse transform in E) for the contours de-
quantities would depend on three Mellin variables. picted in Fig. 1. To this end, we parametrize the various

The double inverse Mellin transformation which finally segments in Fig. 1 by
links the parton distributions with the pre-calculated
ATrgb(n,m,O,,uR,,uF) of course still needs to be performed
in each stepof the fitting procedure. However, the integra-
tions ovem andmin Eq. (8) are extremely fast to perform by

choosing the values far,min Aa!,(n,m,0, ug, 1) on the

n=c,+u,e”® and m=cytune'?, 9

whereu,, ,e[0] and the sign ofx has to be chosen ap-
propriately for the branches of the contours. We then find

contoursC,, C,, simply as the supports for a Gaussian inte- dA o™ 1 o o
gration. The point here is that the integranchiandm falls 90 - 52 > Re{f dunf dunAfD(ue)
off very rapidly agn| and|m| increase along the contour, for 27 ab 0 0

two reasons: first, each parton distribution function is ex-

pected to fall off at least as a power<{X)3 at largex, which

in moment space converts into a fall-off 6f1/n* or higher. _

Second, we may choose contours in moment space that are —(Afbm(,u,:))*Acrgb(n,m*,O,,u,R,,u,,:)}},

bent by an anglexr— 7/2 with respect to the vertical direc-

tion; a possible choice is shown in Fig. 1. Then, for lange (10)

and|m|, n and m will acquire large negative real parts, so

that (x,) " and (x,) ~™ decrease exponentially along the re- where the asterisk denotes the complex conjugate, and where

spective contours. This heIBs for the numerical convergenc@e have made use OifE*(MF)=(AfEn(MF))*, since the

of the calculation of theAo!(n,m,0,ug,ur) and also  Af,(x,u) are real functions. This identity also implies that

gives them a rapid fall-off at large arguments. We note thathere is no need to separately compute the moments of the

no new poles im andm, beyond those already present in the parton densities at the complex conjugate valn&sm*,

moments of the parton distribution functions, are introducedvhich has a further positive effect on the computing time

by theAagb(n-m-O:P«RrMF) [9]. requireq for performing the Me!lin inverses. In agdition,
We note that if one wishes to integrate also over an exthere is no need to provide separate grids for

perimental bin inO in Eq.(7), a potential complication arises Aag'b(n* ,M,O, ur, Mg) andAoZb(n*,m* JO, R ME)-

if the hard scalewg in the parton distribution functions de- Before proceeding, we reemphasize that the idea outlined

pends explicitly onO. This makes it impossible to straight- above of reverting to Mellin moment space in the implemen-

forwardly include theO integration in the pre-calculation of tation of any higher-order cross section into parton density

X {1 AL(ur) AN, MO, ur, )
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fits is not entirely new, but was first developed in R¢&9]. 7

The example considered {8] was jet production in DIS, XD¢| =.mf | +AQ| = e

which offers the simplification of being only linear in the

parton distribution functions. There is a difference between ,

our approach and that of R€#8] in practical terms: in the < ACD| % 3 HME HE DH <,

language of our example in E7), Ref.[8] would insert a gq| %2 Q’'Q/ 9.3 etz

factor (x3")"(xg""™ in the integrands for th&, andx, inte-

grations, while undoing this operation through a factor X =~ KE i
(X2~ ~™Min the n andm integrands. Even though ob- +Ag S oME Ang(X,Z,EyE)

viously equivalent mathematically, the disadvantage of this
procedure is that the resulting factosg](/x.)", (Xg""/%p)™ in .
thex,, X, integrands will nonwgrow exponentially along the X DE .y }
contours in Mellin space, making it numerically much more z
cumbersomé¢8] to perform thex, andx, integrations yield-

ing theAaH,(n,m,0, g, 1r). As a matter of fact, the actual With x andy denoting the usual DIS scaling variable®%
extension of the method of Rei8] to the case of hadronic =—g?=xyS), and where[17,18 z=p,-pn/pn-Q9- Equa-
collisions involving bilinear combinations of parton distribu- tion (12) and the variable only apply to hadron production
tions appears difficult. The generalization[@f to hadron- in the current fragmentation region characterized by positive
hadron scattering, without the shortcomings mentioned;ajyes for the Feynman variablg . All NLO MS partonic
above, was first provided if9]. The difference between our ¢efficient functionsAC{" are collected in Appendix C of
organization of the expression in E@) and Ref,[9] is the [15]. They are non-trivial functions of and zsuch that the

chope of the contour. Refereng@] fully 'epr0|ts the'free- andz dependences of the cross section do not factorize into
dom in deforming the contours for the inverse Mellin trans-

form and constructs a “surface of steepest descent” which ir?epgrate functions. T_her_efore the |nclu3|on_of the NLO_cor-
principle has the best numerical convergence properties pligctions seems to be indispensable for a reliable extraction of
is difficult to parametrize. Instead we stick to the simpleParton densities from SIDIS. o

contours in Fig. 1 which, as we will show below, turn out to  DUe to the double convolutions appearing in Etp) and

be sufficient to obtain numerical agreement between ggs. the fact that the coefficient functions contain mathematical
and (8) of far better than 1% for all applications we are distributions ax—1 and/orz— 1, the direct use of Eq12)
going to consider. We should also note thaf9hthe useful- ina global analysis of parton densities is rather time consum-
ness of the Mellin transform method was not demonstrated ifig and awkward, though not impossi&9] since the par-

(12

practice. tonic coefficient functions are still fairly simple. SIDIS has
the advantage, however, that the Mellin momentg andz
ll. SEMI-INCLUSIVE DEEP-INELASTIC SCATTERING can be taken completely analytically for the partonic coeffi-

As a first application for the Mellin transform technique clent fu_nct|ons in Eq(12). In doing SO, the dOUbk.e gonyolu—
.tions in Eqg. (120 reduce to simple multiplications

outlined in the previous section we consider the semi- 1 ; , o
inclusive production of a hadroH in DIS. Semi-inclusive ,”Af?(“F)ACi(i )'nnf('“F /Q*“F{Q)Dim('“F) and all d|str|pu-
DIS (SIDIS) starts at the Born level with the LO reaction tions become ordinary functions of the moment variables.

y*q—q. The NLOO(a.) corrections also comprise the pro- The AC{D"™, defined by

cessesy* g—qg and y* g—qq and have been calculated in )
the spin-dependent case in the modified minimal subtraction mm(& E) =fldxx”‘1
(MS) scheme in[15]. In each case one of the final state " Q'Q

partons subsequently fragments into the observed hddron
As in the fully inclusive case, the expression for the cross
section is given by a single structure functigﬁ(x,z,Q):

0

1 KE
X | dz i“‘lAC»m(x,z,E,—
fo 4 Q' Q

(13

dA oM A
2

2

= —v)gH

dxdydz @ (2-y)9:(x,2,Q). (12) | | |
are straightforwardly determined from the expressions for

To NLO in g, g} can be written a$15,16] the corresponding\ C{P(x,2, e /Q, ut/Q) in Appendix C

of [15] and read

2¢¥(xzQ)= 2 _ef Ad(x.ur)DY(z uf)

B - ’ 1 2 1
gt B gl 4 1 22
R R aq d F 2 2 2
+as(MR) 1% rid3 Q'Q m? (m+1)> n
o7 %23 (1+m+n)2—1
/ m(m+1)n(n+1)+382(m)
X ~ o~ MF ME
x{Aq| =, AC(l)(X,Z,—,—)
{ A\ gokr )Pl B2 g = Sy(N)+[Sy(m) +Sy(M)]{ Sy(m)
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1 1
+Si(n) = m(m+1) n(n+1)

%)
{3

(14

+

+3—=4S;(n)|In

n(n+1)

+3-4S,(m)

+{m(m+1)

2—-2m—9m?+me—m*+m®
m?(m—1)?(m+1)?

2m

amt D(m—1)
2—m+m?

B m(m+21)(m—1)(n+1)

2+ m+m?
_m(m+ 1)(m—-1)

2
(m+1)n(n+1)

2
+2ﬂm(3)1, s

[S1(m)+Sy(n)]

m(m+21)(m—1) | uf
@on{ #F #E|_ n-1 1 1 1
ACqq (Q ’ Q>_TRn(n+1) m=1 m n_oxm
—S;(n)+2In 8” (16)
MFE
whereCg=4/3, TR=1/2, and
1
Sn=> -. (17)

PHYSICAL REVIEW D64 114007

clyan| K BE . 2+n+n? 11
a9 1 Q' Q Rln(n+1)(n+2)\m-1 m
Q\] 1
—S;(m)—S;(n)+2In Z +¥ ,
(20
and
4
(1),nm_
Claas ~CFimrD(n+D) D)
chmog* (22)
Lea —“Fm(m+1)(n+1)’
e, % (23)
Lag — "Rn+1)(n+2)°

We note that the usefulness of taking double Mellin moments
for unpolarized SIDIS was first pointed out, though not fur-
ther pursued, if17]. In the polarized case Mellin- mo-
ments of the semi-inclusive cross section at fixédve been
recently considered if20].

Having available the coefficient functions in Mellin mo-
ment space one can evaluate the desired SIDIS structure
function g? in a fast way by a double inverse Mellin trans-
form as discussed in Sec. lll. One further ingredient required
is the evolution of the moments of the fragmentation func-
tionsD{"(uf) which proceeds along very similar lines as for
the parton densities. Below we will use the recent NLO
analysis off21] which can be applied down to th@ values
required for the available spin-dependent SIDIS fixed-target
data[10,11. It should be noted that the Mellin approach
allows in principle a simultaneous fit of parton densities and
fragmentation functions in SIDIS at no extra “costs.”

The experimentally relevant quantity is the so-called spin

For completeness we give also the Mellin moments forasymmetry, defined as the ratio of the polarized and unpolar-

the corresponding unpolarized coefficient functi@n%}'”m
and C{("}"™ relevant for the structure functiors andF',

respectively. Using again EqL3) and thex,z space expres-

sions in Appendix C if15] one finds

cin{ 47, ) < cggon{ 7 E
2
+Cr m(m+1)n(n+1)’ (18)
ety gl sl Gl
2
O ) "

ized SIDIS structure functiong(x,z,Q) andF(x,z,Q),
respectively,

_9¥(x2.Q)

A(x,2,Q) Fx2Q)’

(24)

Due to limited statistics all presently available results for Eq.
(24) are integrated over the entizrange accessible experi-
mentally (z>0.2) [10,11]. To facilitate the comparison with
these data it is more convenient to define an “effective”

coefficient functionAC rather than using the double mo-

ments and integrating afterwards overThe AC already
incorporate the integration and can be easily pre-calculated
onceprior to the fit. They are defined by
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SAAAA B B S I AL B R 0.15 — T — T
SMC SMC - - -
0.5 A11>,+ ' T A11>,- 1 : x(Au - Ad) Wp =M, :
. +  ——— DIS+SIDIS fit .
0 L) r 0.1 = _ _ _ GRSV val. scen. 7
- | .. solitonmodel ,7 N |
o5 L SMC SMC - s Y .
. _Ad’+ -T- Ad,— -1 L 4 4
+ \ ]
0 oyt e i
e i
05 HERMES HERMES + 0
g AllJ,+ AIID,' 1
L 4 1 f | o
0 . FIG. 3. Resulting flavor asymmetry of the light séaj—Ad, at
U ELIRTI PR U R the input scaleu, from our combined fit to DIS and SIDIS data.
0.5 _HElleES DAL “”:_II'{IIIERM:ESI HRARRL (b Also shown are model predictions taken fr¢#] (dotted ling and
| pHe L pme: [4,22] (dashed ling
1 1 +
0 '—‘-H-!—J"——T Famana such that all quark combinations measured in inclusive DIS
L t + remain unchangedAq’'+Aq'=Aq+Aq, but Au’—Ad’
""_2 '_1 ' '_2 = '_1 =2fgy(z). We choose a “minimal” ansatz fof gy with
10 10 - 10 10 x ! three additional parameters
FIG. 2. Comparison of a fit to DIS and SIDIS data in NLO QCD f X =Nx¥1—x)B 2
(see text with the measured SIDIS spin asymmetrk%i for the SU(Z)( o) ( ) @7
production of positively or negatively charged hadrons) (off dif- ) o o
ferent targets\ [10,11). where uy=0.6 GeV is the initial scale for the evolution in
[22]. We choose the renormalization and factorization scales
~ 1y n| BF MR= pE=pE=Q. . .
ACJ( )n 6 The resulting asymmetry of the light sea at the input scale

Mo is shown in Fig. 3. For comparison we also show model

1 mx ~(Dm| HE BE) oo predictions forAu— Ad from [2] and[4,22]. It turns out that

—J' dz| dmz "AC;” 90 Di"(ue) the flavor asymmetry obtained in our analysis is much less
pronounced than predicted in most models. It has to be

(25 stressed, however, that the change in the tgfalfor all
) (0).nm ) _ . SIDIS data isless than one uniif one chooses an SB)
(in LO one hasACj”""=1) and can be used in a similar symmetric sea, the model calculatidizs4,23 or our fit re-
way as the usual fully inclusive DIS coefficient functions. git. Thus one has to conclude that present SIDIS data are
This makes the numerical evaluation extremely fast: 100 calpgt precise enough to distinguish between different results
culations of the SIDIS cross section in NLO take only aboutfor AU—Ad and that one has to wait for new SIDIS data
1 s on a standard workstation. Clearly, SIDIS data can be % om HERMES and, in particular, for results ok boson

easily incorporated in a global QCD analysis as DIS data. . L .
InyFi ZF\)Ne com are%he resQuIt of a N{O fit to all avail- production at RHIC[5]. Similar conclusions have been
9- P reached in the analysis ¢19].

able data for DISand SIDIS spin asymmetries with data for
A= for positively or negatively charged hadroks™ and
different targetsN [10,11]. Regarding the details of the IV. PROMPT PHOTON PRODUCTION AT RHIC
analysis, we stay in the framework of the “standard” fit of
[22], but allow for an SW2) breaking of the light sea by ha
introducing a functiorfgyy),

!

To give an example for the Mellin technique in hadron-
dron collisions, we study the production of a prompt pho-

ton inpp collisions at RHIC. In this caseAfr;’b(O) in Eq.(4)

Au’(X, o) = Au(X, mo) — Fsu(X, o), starts at LO with the reactiong+q— y+g and q+g— vy
o o +4, the latter channel being sensitive to the polarized gluon
AU’ (X, o) = Au(X, mo) + Fsy(2y(X, o). distribution. The NLO correctionslA o2, are also avail-
able[23]. The NLO x-space expressions are rather lengthy
Ad' (X, o) =Ad(X, o) + fsuy( X, so) s and complicated, and Mellin moments cannot be taken ana-
o o lytically anymore. Nevertheless, as we shall see below, it is
Ad' (X, o) =Ad(X, o) — Fsuey(X, so) s (26) in the analysis of hadron-hadron collision data where the

114007-7



MARCO STRATMANN AND WERNER VOGELSANG PHYSICAL REVIEW D64 114007

Mellin moment technique exhibits its full potential and use- S T T

fulness. [ qq 192 T gg+qq+qq’
To be specific, the transverse momentyws)(distribution .

of a prompt photon irpp collisions at a center-of-mass en-

ergy /S, integrated over a certain experimental bin in pseu-

1.05 | + + -

Eq.(28)/Mellin technique

dorapidity [i.e., “O=p;" and * T= 5" in Eq. (1)], is given ) Y eTe o o2 als 2 o o
by 5] . . . . o ° o o .
dAo” 1 1 095 [ 1 e eaxeagia ]
=S [ dn[ ] a% Atacme) - T lfeme 1 -
Pr &b Jy-bin X3 Xp, © 48x48 grid
X Afy(Xp, mr) ¥y w 5w 15 3
R pr [GeV]
dA(Tgb
Xdp—d(XaPA’ XoPg P17 MR ME), (289 FIG. 4. Comparison of the results based on the Mellin technique
T4 in Egs.(7) and(8) to those of Eq(28) for various sizes of the grid

where XM=x;e”/(2—x;e ") and XM=x.xre (2x,
—x7€7) with x;=2p+1/+/S. For our case study, we analyze o
the polarized prompt photon cross section in E28) at  occurring forqq scattering in the vicinty of a zero in the

NLO. The associated spin asymmetry, defined as the ratio gfartonic cross section. We have checked that the results in

the polarized and the unpolarized cross sections, Fig. 4 do not depend on the actual choice of parton densities.
The crucial asset of the Mellin method is the speed at
dAo”/dpr which one can calculate the full hadronic cross section, once
Al=———1, (29 e ATy
do?/dpy the gridsAo,(n,m,pr,ur,ug) have been pre-calculated.

For the 64<64 grid, we found that 1000 evaluations of the
will soon be measured at RHIC in collisions of longitudi- full NLO prompt photon cross section take only about
nally polarized protons and, as mentioned above, will be d0-15 s on a standard workstation. Note that this number
key process for measurindg. We use /S=200 GeV includes the evolutioin moment spaceof the parton dis-
and look at the cross section as a function of thetributions from their input scale to the scabe relevant to
photon’s transverse momentupy for five values ofpr  this case. Clearly, an implementation into a full parton den-
which will be experimentally accessible at RHIQyr  sity fitting procedure is now readily possible.
=[12.5,17.5,22.5,27.5,325GeV. We average ovefr| To give an example, we finally perform a “toy” global
<0.35 in pseudorapidity. As in experimel3, we impose an  analysis of the available data on polarized QI$ and of
isolation cut on the photon, for which we choose the isolatictitious data on prompt photon production at RH[G],
tion proposed irj24] with parameter=0.4, e=1. Aposi-  yhich we project by simply calculating/, in Eq. (29) to
;'Ve featturtg of th'st ]Eo![gtlont crlterlontls ;h(;: abseno?e t(')f aNLO using the sets of polarized and unpolarized parton dis-
ragmentation -contribution 1o prompt photon production, i, 4iqng of[22] and[7], respectively. For an estimate of the
hence we can drop the, integration and the fragmentation . “ ” y

. v - . anticipated b errors on the “data” forA}, , we use the
function DZ in Eq. (1). We choose the renormalization and .
factorization Scalego— - — numbers reported ifi5]. We subsequently apply a random
HRZHF=PT- Gaussian shift of the pseudo-data, allowing them to vary

Our first goal here is to show that the method based o hin 1o. The “data.” I h derlving th ical
Eqgs.(7) and(8) actually works also for the more complicated WIthin 1o The “data,” as well as the underlying theoretica

case of hadron-hadron collisions and correctly reproduceS@iculation ofA7, based on the spin-dependent parton den-
the result obtained within the direct, but “slow,” calculation Sities of[22] (solid line), are shown in the left panel of Fig.
via Eq.(28). Also, we need to establish an optimal size of thed- .

grids that yield excellent accuracy but is still calculable in, Next, we perform a large number of fits to the fulllS
say, a few hours of CPU time on a standard workstationP!us projected prompt photoudata set. We simultaneously fit
Figure 4 compares the results based on E@s.and (8), all polarized parton densitiesiantiquarks and gluons,
referred to as the “Mellin technique,” to those of E(@8),  choosing the distributions d22] as the input for theAq,

for various sizes of the grid in,m. Here we have used again Aq, but using randomly chosen values for the parameters in
the polarized parton densities [@#2] (“standard” se}. For a  the ansatz for the polarized gluon distribution at the input
more detailed comparison, we split up the contributions tcscale uo. Regarding the details of the evolution, we stay
the NLO prompt photon cross section into three parts, assagain within the setup d22], but we choose a more flexible
ciated with the reactiong+q— y+X andq+g— y+ X that ~ ansatz for the polarized gluon density,

are already present at the Born level, and all other processes

that arise only at NLO. One notices that in each case already

a grid size of 64 64 values yields excellent accuracy. Even Ag(X,0) =N Xx*(1=x)P(1+yX) g(X,u0), (30

a 56x56 grid is acceptable apart from a minor deviation
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L L L erating the pseudo-data. It should be stressed that only those
0.2 @) . fits are admitted to the band that give a good simultaneous
description of the DISind 4/, data. Here we have tolerated

a maximum increase of the totgf by up to four units from

AIL I . L | its minimum value. The shaded area in Figa)sshows the
Ag 4y =08 (DIS only), . -~ corresponding variations A/, .
01 - - ] As is expected, all gluon densities are rather tightly con-

strained in thex-region dominantly probed by the prompt
photon data. This is true in particularx=0.15, as a result
of the most precise data point f&f, atpr=12.5 GeV. We
note that one can also easily include the SIDIS data dis-
cussed in Sec. Il into the global analysis without any sig-
nificant increase of computing time for each fit. However, so
| far these data have no impact on our results. To illustrate our
NLO Ag () = 0.8 (DIS only) presentignorance ofAg, Fig. 5b) shows also two extreme
e b b e b b gluon densities with first momentsg*(uo) = = 0.8 (dotted
10 15 20 25 30 35 lines), which are both in perfect agreement with all presently
P [GeV] available DIS data. The correspondi dicti
. ponding predictions Agp
— — ; ; —— for these two sets are given in Fig@h It should be noted
""""""" that future measurements oA}, at RHIC at /S
. =500 GeV and for similapy values of the prompt photon
.. would further reduce the uncertainties Ag in the x region
i jprompt-ydata 1 between 0.05 and 0.1. Although our analysis still contains a
200 GeV 7 certain bias by choosing only the framework[@®] for the
- fits as well as by our choice of what® values are still
tolerable, it clearly outlines the potential and importance of
upcoming measurements Af, at RHIC for improving our
understanding of the spin structure of the nucleon, in particu-
lar of its spin-dependent gluon density.

(=]

(Ag - Aggrsv)/ A8arsy
, .

V. CONCLUSIONS

2 e . To conclude, we have presented and applied a powerful
TR technique for implementing in a fast way, and without any
approximations, higher-order calculations of partonic cross
X ’ sections into global analyses of parton distribution functions.

We have demonstrated that the approach works in practice
FIG. 5. (a) Generated pseudo-data f&f, based on a calcula- for two examples: SIDIS and prompt photon production in
tion using the spin-dependent parton densitie$2a (solid line).  pp collisions. In the first case it was possible to perform the
The shaded band corresponds to the results of a large number Rfellin transform analytically and we have provided all nec-

combined fits to DIS and/, data(see text (b) Variations(shaded  essary technical details for future analyses of polarized and
ar_ea of the polarized gluon densities obtained in the combined ﬁtsunpolarized SIDIS data. For polarized prompt photon pro-

with respect taAg of [22], for ue=10 GeV(see text Also shown  q;ction we have presented a case study for a future global
are two extreme gluon densitiédotted lineg which give an excel-  gnaiysis based on fictitious data. The Mellin transform
lent description of the polarized DIS data only. method is certainly applicable to any other reaction of inter-
est, and it could equally well be an improvement also in any

which also allows for a zero in theshape ofAg. g(X,u0)  global analysis of unpolarized parton distributions.
is the unpolarized gluon density] at the input scale d22].

Note that the functional form for the polarized gluon density
of [22], used for generating our pseudo-data, is included in
Eqg. (30) for N=1.419,¢=1.43,3=0.15,y=0. Each fit We are grateful to G. Sterman and A. Vogt for useful
takes only about 10—20 min. comments, and to A. Deshpande for helpful discussions. We
Ideally, thanks to the strong sensitivity of the prompt pho-also thank S. Kretzer for providing us with the evolution
ton reaction ta\ g, the gluon density in each fit should return code for the set of fragmentation functiond #1]. The work
close to the function we assumed when calculating the fictiof M. S. was supported in part by the National Science Foun-
tious prompt photon “data” in the region of probed by the dation grant no. PHY-9722101. W.V. is grateful to RIKEN,
data. Indeed, as shown in Figh, this happens. The shaded Brookhaven National Laboratory and the U.S. Department of
band illustrates the deviations of the gluon densities obtaine&nergy(contract number DE-AC02-98CH1088®r provid-
from the global fits to the “referencag” [22] used in gen- ing the facilities essential for the completion of this work.
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