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The structure of the reported excitation spectra of light unflavored baryons is described in terms of multispin

valued Lorentz group representations of the so called Rarita-Schwinger~RS! type (K/2,K/2)^ @( 1
2 ,0)

% (0,1
2 )# with K51,3, and 5. We first motivate the legitimacy of such a pattern as fundamental fields as they

emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the
baryon realization of RS fields as composite systems by means of the quark version of the U~4! symmetric
diatomic rovibron model. In using the U(4).O(4).O(3).O(2) reduction chain, we are able to reproduce
the quantum numbers and mass splittings of the above resonance assemblies. We present essentials of the four
dimensional angular momentum algebra, and construct electromagnetic tensor operators. The predictive power
of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various
resonances to the nucleon.

DOI: 10.1103/PhysRevD.64.114005 PACS number~s!: 14.20.Gk, 03.65.Pm, 11.30.Ly
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I. O„4… DEGENERACY MOTIF IN BARYON SPECTRA:
AN INTRODUCTION

One of the basic quality tests for any model of compos
baryons is the level of accuracy reached in describing
nucleon andD excitation spectra. In this respect, a know
edge of the degeneracy group of baryon spectra appears
key tool in constructing the underlying Hamiltonian of th
strong-interaction dynamics as a function of the Casimir
erators of the symmetry group. To uncover the latter, one
analyze isospin by isospin how the masses of the resona
from the full baryon listing in Ref.@1# spread with spin and
parity. Such an analysis was performed in prior work@2#,
where it was found that Breit-Wigner masses reveal on
mass/spin (M /J) plane a well pronounced spin and pari
clustering. There it was further shown that the quantum nu
bers of the resonances belonging to a particular cluste
into O~1,3! Lorentz group representations of the so cal
Rarita-Schwinger~RS! type @3#

Cm1m2 . . . mK
ªS K

2
,
K

2 D ^ F S 1

2
,0D % S 0,

1

2D G . ~1!

To be specific, one finds the three RS clusters withK51,3,
and 5 in both the nucleon~N! andD spectra. As long as the
Lorentz group is locally isomorphic toO~4!, multiplets with
the quantum numbers of the RS representations also ap
in typical O~4! problems such as the levels of an electr
with spin in the hydrogen atom. There the principal quant
number of the Coulomb problem is associated withK11
while the role of the boost generators is taken by the Run
Lenz vector. The Rarita-Schwinger fields are the so-ca
0556-2821/2001/64~11!/114005~11!/$20.00 64 1140
e
e

s a

-
n
es

e

-
fit

ear

e-
d

‘‘diagonal case’’~i.e., a5b5K/2) of the more general rep

resentations (a,b) ^ @( 1
2 ,0)% (0,1

2 )#.

A. Rarita-Schwinger fields as multispin-parity states

RS fields are described in terms of totally symmet
traceless rank-K Lorentz tensors with Dirac spinor compo
nents that satisfy the Dirac equation for each Lorentz ind

m i , associated with a four-vector (1
2 , 1

2 ) space

~ i ]lgl2M !Cm1m2•••mK
50. ~2!

Fields of the type in Eq.~1! were considered six decades a
by Rarita and Schwinger@3#, the most popular being theK
51 field frequently applied to the description of spin-3
particles. Around the mid 1960’s, Weinberg@4# continued the
tradition of the original Rarita-Schwinger work@3# and con-
sideredCm1m2 . . . mK

as fields suited for the description o

pure spin-J5K1 1
2 states offixed parity. The conjecture that

Cm1m2 . . . mK
can be reduced to a single-spin state was ba

upon the belief that its lower-spin components are redund
unphysical states which can be removed by means of the
auxiliary conditions]m1Cm1 . . . mk

50 andgm1Cm1 . . . mk
50.

That these conditions do not serve the above purpose
demonstrated in Ref.@5#. There the first auxiliary condition
was shown to solely test consistency with the mass-s
relation E22pW 25m2, while the second condition amounte
to the acausal energy-momentum dispersion relationE5

2m6ApW 2. It is that type of acausality that must be at th
heart of the Velo-Zwanziger problem@6#. The RS fields in
O~4! are in fact compilations of fermions of different spin
and parities. To illustrate this statement, and for the sake
©2001 The American Physical Society05-1



nces, the
S clusters.
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FIG. 1. Rarita-Schwinger clustering of light unflavored baryon resonances. The full bricks stand for three- to four-star resona
empty bricks are one- to two-star states, while the triangles represent states that are ‘‘missing’’ for the completeness of the three R
Note that ‘‘missing’’ F17 and H1,11 nucleon excitations~left figure! appear as four-star resonances in theD spectrum~right figure!. The
‘‘missing’’ D excitationsP31, P33, and D33 from 63,2 are one- to two-star resonances in the nucleon counterpart 61,2 . The D(1600)
resonance~shadowed oval! drops out of our RS cluster systematics and we view it as an independent hybrid state.
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concreteness, here we consider the coupling of, say, a p
tive parity Dirac fermion to the (K/2,K/2) hyperboson, the
latter being composed of O~3! states of either natural (h
51), or, unnatural (h52) parities. These~mass degener
ate! O~3! states carry all integer internal angular momentl,
with l 50, . . . ,K, and transform~for the oddK ’s of interest!
with respect to the space inversion operationP according to

PuK;h; lm&5heip l uK;h; l 2m&,

l P50h,12h, . . . ,K2h, m52 l , . . . ,l . ~3!

In coupling now the Dirac spinor to (K/2,K/2) from above,
the following spin~J! and parity~P! quantum numbers ar
created:

JP5
1

2

h

,
1

2

2h

,
3

2

2h

, . . . ,S K1
1

2D 2h

. ~4!

In the following, for the spin sequence in Eq.~4! we will use
the short hand notations2I ,h , with s5K11, or, equiva-
lently

s2I ,h5S s21

2
,
s21

2 D ^ F S 1

2
,0D % S 0,

1

2D Gx I . ~5!

Herex I stands for the isospin spinor attributed to the sta
under consideration.

A glance at the baryon spectra teaches us that actu
Nature strongly favors excitations of multispin-valued res
nance clusters over that of pure higher-spin states. This
cumstance suggests a new data supported interpretatio
the RS fields as complete resonances packages.

B. Clustering principle for baryon resonances

In terms of the notations introduced above, all repor
light-quark baryons with masses below 2500 MeV@up to the
D(1600) resonance that is most probably an independ
quark-gluon hybrid state@7## were shown in Ref.@2# to be
completely accommodated by the RS clusters 22I ,1 , 42I ,2 ,
and 62I ,2 , having states of highest spin-3/22, 7/21, and
11/21, respectively~see Fig. 1!. In each of theD nucleon and
11400
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L hyperon spectra, the natural parity cluster 22I ,1 is always
of lowest mass. We consider it to reside in a Fock spaceF1

built on top of a scalar vacuum. Equations~3! and ~4! illus-
trate how 22I ,1 clusters ~with I 51/2,3/2, and 0) always
unite the first spin-12

1, 1
2

2, and 3
2

2 resonances. For non
strange baryons, 22I ,1 is followed by the unnatural parity
clusters 42I ,2 , and 62I ,2 , which we view to reside in a
different Fock spaceF2 , built on top of a pseudoscala
vacuum that is orthogonal@for an ideal O~4! symmetry# to
the previous scalar vacuum. To be specific, one finds
sevenD-baryon resonancesS31, P31, P33, D33, D35, F35
and F37 from 43,2 to be squeezed within the narrow ma
region from 1900 to 1950 MeV, while theI 51/2 resonances
paralleling them, of which only theF17 state is still ‘‘miss-
ing’’ from the data, are located around 1700250

120 MeV ~see
Fig. 1 left!. Therefore, the F17 resonance is the only non
strange state with a mass below 2000 MeV which is ‘‘mis
ing’’ for the completeness of the present RS classificat
scheme. In further paralleling baryons from the third nucle
andD clusters withK1156, one finds, in addition, the fou
statesH1,11, P31, P33, and D33 with masses above 200
MeV to be ‘‘missing’’ for the completeness of the new cla
sification scheme. TheH1,11 state is needed to parallel th
well establishedH3,11 baryon, while theD statesP31, P33,
and D33 are required as partners to the~less established!
P11(2100), P13(1900), andD13(2080) nucleon resonance
For L hyperons, incomplete data prevent a conclusive an
ses. Even so, Fig. 2~left! indicates that the RS motif ma
already show up in the reported spectrum. The~approximate!
degeneracy group of baryon spectra, as already suggest
Ref. @2#, is, therefore, confirmed to be

SU~2! I ^ O~1,3!.SU~2! I ^ O~4!, ~6!

i.e., isospin̂ space-time symmetry. To summarize, here
state the principle that light unflavored baryon excitations
patterned after Lorentz multiplets. For example, the Rar
Schwinger spinorsCm1 . . . mK

, with K51,3, and 5, accommo

date all thepN resonances according to

F1 :22I ,1 :Cm1
:P2I ,1 ;S2I ,1 ,D2I ,3 for I 50,

1

2
,
3

2

5-2
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FIG. 2. Clustering traces in the
L hyperon spectrum~left!. O~4!
rotational bands of nucleon~N!
and (D) excitations~right!. Nota-
tions are as in Fig. 1.
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F2:42I ,2 :Cm1m2m3
:S2I ,1 ;P2I ,1P2I ,3 ;D2I ,3 ,D2I ,5 ;F2I ,5 ,F2I ,7 ,

F2:62I ,2 :Cm1m2 . . . m5
:S2I ,1 ;P2I ,1P2I ,3 ;D2I ,3 ,D2I ,5 ;F2I ,5 ,

F2I ,7 ;G2I ,7 ,G2I ,9 ;H2I ,9 ,H2I ,11 for I 5
1

2
,
3

2
,

~7!

with the five ‘‘missing’’ statesF17,H1,11,P31,P33, andD33.
Occasionally, the above structures will be referred to

LAMPF clusters to emphasize their close relationship
LAMPF physics. The scalar vacuum in the first Fock spa
reflects the Nambu-Goldstone mode of chiral symmetry n
the ground state. As argued in Ref.@8#, its change to a pseu
doscalar between the first and second clusters may be re
to a change of the mode of chiral symmetry realization
baryonic spectra. Within our scheme, the intercluster spa
of 200–300 MeV is larger by a factor of 3–6 as compared
the mass spread within the clusters. For example, the 21,1 ,
23,1 , 41,2 , and 43,2 clusters carry the maximal interna
mass splitting of 50–70 MeV.

Finally, the reported mass averages of the resonan
from RS multiplets withK51,3, and 5 are well described b
means of the following simpleempirical relation:

Ms;I5MI2m1

1

s2 1m2

s221

4
, I 5

1

2
,
3

2
, ~8!

where, again,s5K11. The two mass parameters take f
the nucleon (I 5 1

2 ) the values m15600 MeV and m2
570 MeV, respectively. TheD spectrum (I 5 3

2 ) is best fit-
ted by the smallerm2 value ofm2540 MeV ~Fig. 2, right!.

It is the goal of this paper to develop a constituent mo
for baryons that explains the observed clustering in the sp
tra of the light unflavored baryons. The paper is organized
follows. In Sec. II we motivate the legitimacy of fundame
tal fields of specified mass and unspecified spin as t
emerge in the decomposition of a triple-Dirac-fermion s
tem into Lorentz group representations. In Sec. III
present the quark version of the diatomic rovibron model@9#
and study its excitation modes. There we also establis
correspondence between excited rovibron states and b
onic RS clusters. We further make all the observed re
nances and some of the ‘‘missing’’ resonances distingu
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able in organizing them into different rovibron modes. W
construct the relevant quark Hamiltonian and recover
~8!. We finally outline the construction of electric transitio
operators and calculate selected electric transitions of clu
inhabitants to the nucleon. The paper is completed wit
brief summary and outlook.

II. MULTISPIN STATES AS LORENTZ COVARIANT
REPRESENTATIONS

The relativistic description of three-Dirac-spinor system
was studied in detail in Ref.@10#. Starting with the well
known Lorentz invariance of the ordinary Dirac equation

~gmpm2m!u~pW !50, ~9!

the authors showed that the direct product of three Di
spinors gives rise to a 64-dimensional linear equation of
type

~Gmpm2m!U~pW !50

with

Gm5(
r 51

3

g r
m , g1

m5gm
^ I ^ I , g2

m5I ^ gm
^ I ,

g3
m5I ^ I ^ gm. ~10!

Here I stays for the four dimensional unit matrix, while th
index r indicates the position of the Dirac matrixgm in g r

m .
Under Lorentz transformations (an

m) of the g matrices, the

matrices Gm from Eq. ~10! change according toGm8

5UGmU21 with U5U1^ U2^ U3, and Ur defined as the
matrix that covers the Lorentz transformationg r 8

m
5an

mg r
n

5Urg r
mUr

21 of g r . Equation~10! is therefore Lorentz in-
variant. Moreover, it was demonstrated that Eq.~10! has
U~4! as an additional dynamical symmetry.

The 64 states from above are distributed over differ
irreducible representations~irreps! of U~4! and the permuta-
tional group groupS3 as well. To be specific, one finds tw
20plets in turn associated with the Young schemes@3000#
and @2100#. They are completed by the quartet@1110#. The
three-Dirac spinor state~denoted bys3) can be characterized
by the set of quantum numbers
5-3



in

-

f

on

te
y

d

t

1
s

ides

ntz

he
ch

of
nal
ro-

her-
der

sti-
atu-
ary-
the

d in
in

d
as
y

bo-
and
ical

w
ve,
so-

m,
o a
-
on-
he

les
al-

on

M. KIRCHBACH, M. MOSHINSKY, AND YU. F. SMIRNOV PHYSICAL REVIEW D64 114005
us3@ f #X,$ f %R&. ~11!

Here X stands for a set of quantum numbers characteriz
the U~4! basis vectors of the@f# irrep, while R denotes the
Yamanouchi symbol labeling the basis vectors of theS3 rep-
resentation$f% @11#. The Yamanouchi symbols for the@3000#,
@2100#, and@1110# are 1, 2, 1, and 1, respectively. The com
plete number (Ns3) of 64 states of the three-quark (q3) sys-
tem is then encoded by the relation

Nq35(
[ f ]

dim$ f %dim $ f %, ~12!

where dim@ f # and dim$ f % are in turn the dimensionalities o
the U~4! irrep @ f #, and theS3 irrep $ f %, respectively. Con-
sidering, now the reduction chain U(4).O(5) allows for a
more detailed specification of the spin content of the U~4!
multiplets from above~see Ref.@10# for details!.

The quantum numbers of the irreducible representati
~irreps! of O~5! are labeled by the two numbers (l1l2)
which can be either an integer or a half-integer. The sta
participating a given O~5! irrep can be further specified b
the quantum numbers of the irreps of the O~5! subgroups
appearing in the reduction chain O(5).O(4).O(3)
.O(2). Tospecify the O~4! irreps in the context of the O~5!
reduction down to O~2! it is more convenient to use, instea
of the pair (a,b) from above, a pair (m1 m2) with the map-
ping

m15a1b, m25a2b. ~13!

Finally, the O~3! irreps in the O(3).O(2) reduction scheme
are labeled by the well known spin number~J! and the mag-
netic quantum number (M ). The complete set of quantum
numbers specifying a member of a O~5! multiplet
u(l1 l2);(m1 m2);JM& satisfy the inequalities

l1>m1>l2>um2u,

m1>J>um2u, J>M>2J. ~14!

The U~4! irrep @2100# is of particular interest for the presen
work. In the U(4).O(5) reduction chain it splits into O~5!
irreps according to

@2100#→S 3

2

1

2D % S 1

2

1

2D . ~15!

The first irrep on the right-hand side of the last equation is
dimensional, while the second is four dimensional and as
ciated with a Dirac spinor. As we shall see below, the O~5!

16plet (3
2

1
2 ) is nothing but the RS field withK51. Indeed,

from Eq. ~14! follows that

3

2
>m1 , m1>

1

2
and

1

2
>um2u. ~16!

The inequalities in the latter equation are satisfied form1
53/2 and 1/2, and form251/2 and21/2. In accordance
with the second equation in Eq.~14!, J can take the three
11400
g

s

s

6
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valuesJ53/2,1/2, and 1/2. Thus the (3
2

1
2 ) irrep of O~5! de-

scribes a spin-3/2 state and two spin-1/2 states, and coinc
with the lowest 16-dimensional Rarita-Schwinger field.

The above consideration gives an idea of how Lore
representations of the RS type can emerge asfundamental
free particles of definite mass and indefinite spin within t
context of a relativistic space-time treatment. Though su
pointlike particles have not been detected so far, theN andD
spectra strongly indicate existence ofcompositeRS fields. In
the following, we shall focus onto that very realization
multispin Lorentz representations and explore their inter
structure by means of constituent models. For a more p
found textbook presentation on the various aspects of hig
dimensional relativistic supermultiplets, the interested rea
is referred to Ref.@12#.

III. QUARK VERSION OF THE DIATOMIC ROVIBRON
MODEL AND THE RS CLUSTERING IN BARYON

SPECTRA

Baryons in the quark model are considered to be con
tuted of three quarks in a color singlet state. It appears n
ral, therefore, to undertake an attempt of describing the b
onic system by means of algebraic models developed for
purposes of triatomic molecules, a path already pursue
Ref. @13#. There, the three body system was described
terms of two vectorial (pW 1) boson degrees of freedom an
one scalar (s1) boson degree of freedam that transform
the fundamental U~7! septet. In the dynamical symmetr
limit

U~7!→U~3!3U~4! ~17!

the degrees of freedom associated with the one vectorial
son factorize from those associated with the scalar boson
the remaining vectorial boson. Because of that the phys
states constructed within the U~7! IBM model are often la-
beled by means of U(3)3U(4) quantum numbers. Below
we will focus on that very sub-model of the IBM, and sho
that it perfectly accommodates the RS clusters from abo
and thereby the LAMPF data on the nonstrange baryon re
nances.

The dynamical limit U(7)→U(3)3U(4) corresponds to
the quark-diquark approximation of the three quark syste
when two of the quarks reveal a stronger pair correlation t
diquark (Dq) @14#, while the third quark~q! acts as a spec
tator. The diquark approximation turned out to be rather c
venient in particular in describing various properties of t
ground state baryons@15,16#. Within the context of the
quark-diquark (q-Dq) model, the ideas of the rovibron
model, known from the spectroscopy of diatomic molecu
@9#, can be applied to the description of the rotation
vibrational ~rovibron! excitations of theq-Dq system.

A. Rovibron model for the quark-diquark system

In the rovibron model~RVM! the relativeq-Dq motion
~see Fig. 3! is described by means of four types of bos
creation operatorss1,p1

1 ,p0
1 , andp21

1 ~compare Ref.@9#!.
5-4
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BARYONS IN O~4! AND THE VIBRON MODEL PHYSICAL REVIEW D 64 114005
The operatorss1 and pm
1 in turn transform as rank-0 an

rank-1 spherical tensors, i.e., the magnetic quantum num
m takes in turn the valuesm51, 0, and21. In order to
construct boson-annihilation operators that also transform
spherical tensors, one introduces the four operatorss̃5s and
p̃m5(21)m p2m . Constructing rank-k tensor product of any
rank-k1 and rank-k2 tensors, say,Am1

k1 and Am2

k2 , is standard

and given by

@Ak1^ Ak2#m
k 5 (

m1,m2

~k1m1k2m2ukm!Am1

k1 Am2

k2 . ~18!

Here, (k1m1k2m2ukm) are the well known O~3! Clebsch-
Gordan coefficients.

Now the lowest states of the two-body system are ide
fied with N boson states, and are characterized by the
vectorsunsnpl m& ~or, a linear combination of them! within a
properly defined Fock space. The constantN5ns1np stands
for the total number ofs andp bosons, and plays the role o
a parameter of the theory. In molecular physics, the par
eter N is usually associated with the number of molecu
bound states. The group symmetry of the rovibron mode
well known to be U~4!. The 15 generators of the associat
su~4! algebra are determined as the following set of bilinea

A005s1s̃, A0m5s†p̃m ,

Am05pm
1s̃, Amm85pm

† p̃m8 . ~19!

The u~4! algebra is then recovered by the commutation re
tions

@Aab ,Agd#25dbgAad2dadAgb . ~20!

The operators associated with physical observables can
be expressed as combinations of the u~4! generators. To be
specific, the three-dimensional angular momentum takes
form

Lm5A2@p1
^ p̃#m

1 . ~21!

Further operators are (Dm) – and (Dm8 ), defined as

Dm5@p1
^ s̃1s1

^ p̃#m
1 , ~22!

FIG. 3. Schematic presentation of aq-Dq two-body system.
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Dm8 5 i @p1
^ s̃2s1

^ p̃#m
1 , ~23!

respectively. HereDW plays the role of the electric dipole
operator.

Finally, a quadrupole operatorQm can be constructed as

Qm5@p1
^ p̃#m

2 , with m522, . . . ,12. ~24!

The u~4! algebra has the two algebras su~3!, and so~4!, as
respective subalgebras. The su~3! algebra is constituted by
the three generatorsLm , and the five components of th
quadrupole operatorQm . Its so(4) subalgebra is constitute
by the three components of the angular momentum oper
Lm , on the one hand, and the three components of the
erator Dm8 , on the other hand. Thus there are two exac
soluble RVM limits that correspond to the two differe
chains of reducing U~4! down to O~3!. These are

U~4!.U~3!.O~3! and U~4!.O~4!.O~3!,
~25!

respectively. The Hamiltonian of the RVM in these exac
soluble limits is then constructed as a properly chosen fu
tion of the Casimir operators of the algebras of either the fi
or the second chain. For example, in case one approa
O~3! via U~3!, the Hamiltonian of a dynamical SU~3! sym-
metry can be cast into the form

HSU(3)5H01aC2„SU~3!…1bC2„SO~3!…. ~26!

HereH0 is a constant, andC2„SU(3)… andC2„SO(3)… are in
turn the quadratic~in terms of the generators! Casimirs of the
groups SU~3! and SO~3!, respectively, whilea and b are
constants, to be determined from data fits.

A similar expression~in obvious notations! can be written
for the RVM Hamiltonian in the U(4).O(4).O(3) exactly
solvable limit:

HSO(4)5H01ãC2„SO~4!…1b̃C2„SO~3!…. ~27!

The Casimir operatorC2„SO(4)… is defined accordingly as

C2„SO~4!…5
1

4
~LW 21DW 82! ~28!

and has an eigenvalue ofK/2@(K/2)11#. In molecular phys-
ics, only linear combinations of the Casimir operators a
used, as a rule. However, as known from the hydrogen a
@17#, the Hamiltonian is determined by the inverse power
C2„SO(4)… according to

HCoul5 f @24C2„SO~4!…21#21, ~29!

wheref is a parameter with the dimensionality of mass. Th
Hamiltonian predicts the energy of the states asEK5
2 f /(K11)2 and does not follow the simple linear patte
@also see Eq.~27!#.

In order to demonstrate how the RVM applies to bary
spectroscopy, let us consider the case ofq-Dq states associ-
ated withN55 and for the case of a SO~4! dynamical sym-
5-5
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M. KIRCHBACH, M. MOSHINSKY, AND YU. F. SMIRNOV PHYSICAL REVIEW D64 114005
metry. From now on we shall refer to the quark rovibr
model as QRVM. It is of common knowledge that the tota
symmetric irreps of the u(4) algebra with the Young sche
@N# contain the SO~4! irreps (K/2,K/2) with

K5N,N22, . . . ,1 or 0. ~30!

Each one of these SO~4! irreps contains SO~3! multiplets
with three dimensional angular momenta

l 5K,K21, K22, . . . ,1,0. ~31!

In applying the branching rules in Eqs.~30! and ~31! to the
caseN55, one encounters the series of levels

K51: l 50,1,

K53: l 50,1,2,3,

K55: l 50,1,2,3,4,5. ~32!

The parity carried by these levels ish(21)l whereh is the
parity of the relevant vacuum. In coupling now the angu
momenta in Eq.~32! to the spin-1/2 of the three quarks in th
nucleon, the following sequence of states is obtained:

K51: hJp5
1

2

1

,
1

2

2

,
3

2

2

,

K53: hJp5
1

2

1

,
1

2

2

,
3

2

2

,
3

2

1

,
5

2

1

,
5

2

2

,
7

2

2

,

K55: hJp5
1

2

1

,
1

2

2

,
3

2

2

,
3

2

1

,
5

2

1

,
5

2

2

,
7

2

2

,
7

2

1

,

9

2

2

,
11

2

2

. ~33!

Thus rovibron states of half-integer spin will transform a

cording to (K/2,K/2)^ @( 1
2 ,0)% (0,1

2 )# representations o
SO~4!. The isospin structure is accounted for pragmatica
through attaching an isospin spinorx I to the RS clusters
with I taking the valuesI 5 1

2 and 3
2 for the nucleon and theD

states, respectively. As illustrated in Fig. 1, the above qu
tum numbers cover both the nucleon and theD excitations.

Note that in the present simple version of the rovibr
model, the spin of the quark-diquark system isS5 1

2 , and the
total spinJ takes the valuesJ5 l 6 1

2 in accordance with Eqs
~32! and~33!. The strong relevance ofsamepicture for both
the nucleon and theD(1232) spectra~where the diquark is in
a vector-isovector state! hints onto the dominance of a scal
diquark for both the excited nucleon andD(1232) states.
This situation is reminiscent of the210 configuration of the
70(12)plet of the canonical SU(6)SF^ O(3)L symmetry
where the mixed symmetric-antisymmetric character of
S51/2 wave function in spin space is compensated for b
mixed symmetric-antisymmetric wave function in coordina
space, while the isotripletI 53/2 part is totally symmetric.
Here we will leave aside the discussion of the generic pr
lem of the various incarnations of the IBM model regardi
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the symmetry properties of the resonance wave functions
later date, and concentrate in Sec. III B on the ‘‘missin
resonance problem.

B. Observed and ‘‘missing’’ resonance clusters within the
rovibron model

The comparison of states in Eq.~33! with the reported
states in Eq.~7! shows that the predicted sets are in agr
ment with the characteristics of the nonstrange baryon e
tations with masses below;2500 MeV, provided the parity
h of the vacuum changes from scalar (h51) for theK51
cluster to pseudoscalar (h521) for the K53 and 5 clus-
ters. A pseudoscalar ‘‘vacuum’’ can be modeled in terms
an excited composite diquark carrying an internal angu
momentumL512 and maximal spinS51. In one of the
possibilities the total spin of such a system can beuL2Su
502. To explain the properties of the ground state, one
to consider evenN values separately, such as, say,N854. In
this case another branch of excitations, withK54, 2, and 0
will emerge. TheK50 value characterizes the ground sta

K52 corresponds to (1,1)̂@( 1
2 ,0)% (0,1

2 )#, while K54

corresponds to (2,2)̂@( 1
2 ,0)% (0,1

2 )#. These are the multip-
lets that we will associate with the ‘‘missing’’ resonanc
predicted by the rovibron model. In this manner, repor
and ‘‘missing’’ resonances fall apart and populate distin
U~4!- and SO~4! representations. In making observed a
‘‘missing’’ resonances distinguishable, reasons for their
sence or presence in the spectra are easier to search for.
the parity of resonances with evenK ’s, there is some ambi-
guity. As a guidance one may consider the decomposition
the three-quark (q3) Hilbert space into Lorentz group repre
sentations as performed in Ref.@8#. There, two states of the

type (1,1)̂ @( 1
2 ,0)% (0,1

2 )# were found. The first one aros
from the decomposition of theq3 Hilbert space spanned b

the 1s21p22s single-particle states. It was close to (1
2 , 1

2 )

^ @( 1
2 ,0)% (0,1

2 )# and carried opposite parity to the latte
Therefore, it accommodated, unnatural parity resonan
The secondK52 state was part of the (1s23s22p21d)

single-particle configuration space and was closer to (3
2 , 3

2 )

^ @( 1
2 ,0)% (0,1

2 )#. It also carried a parity opposite to the la
ter and accommodated natural parity resonances. Finally

K54 cluster (2,2)̂ @( 1
2 ,0)% (0,1

2 )# emerged in the decom
position of the one-particle–one-hole states within the (s
24s23p22d21 f 21g) configuration space and also ca

ried natural parity, that is, a parity opposite to (5
2 , 5

2 )

^ @( 1
2 ,0)% (0,1

2 )#. In accordance with the above results, he
we will treat theN54 states to be all of natural parities, an
identify them with the nucleon (K50), the natural parity
K52, and the natural parityK54 RS clusters.

The unnatural parityK52 cluster from Ref.@8# could be
generated through an unnatural parityN52 excitation mode.
However, this mode would require a manifest chiral symm
try up to '1550 MeV which contradicts at least prese
data. With this observation in mind, we here will restri
ourselves to the consideration of the natural parityN54
5-6
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clusters. In this manner the unnatural parityK52 state from
Ref. @8# will be dropped from the current version of th
rovibron model. From now on we will refer to the excite
N54 states as to ‘‘missing’’ rovibron clusters.

Now the QRVM Hamiltonian that reproduces the ma
formula from Eq.~8! is given by the following function of
C2„SO(4)…:

HQRVM5H02 f 1@4C2„SO~4!…11#211 f 2„C2~SO~4!!….
~34!

The states in Eq.~33! are degenerate and the dynamical sy
metry is SO~4!. The parameter set

H05MN/D1 f 1 , 1 f 15m1 , f 25m2 , ~35!

with I 5 1
2 and 3

2 , recovers the empirical mass formula in E
~8!. Thus the SO~4! dynamical symmetry limit of the QRVM
picture of baryon structure motivates existence of quas
generate clusters of resonances in the nucleon- andD baryon
spectra. In Table I we list the masses of the RS clus
concluded from Eqs.~34! and ~35!.

The data on theL, S, andV2 hyperon spectra are sti
far from being as complete as those of the nucleon and thD
baryons and do not allow, at least at the present stag
conclusive statement on relevance or irrelevance of the r
bron picture~Fig. 1!. The presence of the heavier stran
quark can significantly influence the excitation modes of
q3 system. If the presence of ans quark in the hyperon
structure is essential, the U(4).U(3).O(3) chain can be
favored over the U(4).O(4).O(3) chain, and a differen
clustering motif can appear here. For the time being,
issue will be dropped from further consideration. In S
III C, we shall outline the calculational scheme for branchi
ratios of reduced probabilities for electromagnetic tran
tions.

C. O„4… angular momentum algebra and multipole operators

In the following, resonance states from a RS cluster w
be denoted as

TABLE I. Predicted mass distribution of observed~obs!, and
missing ~miss! rovibron clusters~in MeV! according to Eqs.~34!
and ~35!. The sign ofh in Eq. ~3! determines natural (h511) or
unnatural (h521) parity states. AllD excitations have been ca
culated withm2540 MeV rather than with the nucleon value o
m2570 MeV. The experimental mass averages of the resona
from a given RS cluster have been labeled ‘‘exp.’’ The nucleon
D ground state massesMN andMD were taken to be equal to the
experimental values.

K sign h Nobs Nexpt Dobs Dexpt Nmiss Dmiss

0 1 939 939 1232 1232
1 1 1441 1498 1712 1690
2 1 1612 1846
3 2 1764 1689 1944 1922
4 1 1935 2048
5 2 2135 2102 2165 2276
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uN;0h;~a,b!; l p;S;JpMJ&. ~36!

Here h56 denotes the parity of the vacuum of the Fo
space accommodating the RS cluster, (a,b)5(K/2,K/2), l p

is the underlying three-dimensional angular momentum,S is
the quark spin, andJp and MJ are in turn total spin and
magnetic quantum numbers of the resonance under con
eration. In fact,K is nothing but the four-dimensional angu
lar momentum. Within the framework of the rovibron mod
one can describe three different types of transitions.

~i! Transitions without change of the quantum numbersN
andK, i.e., transitions between resonances from same clu
In such a case, the transition operator is theDm8 generator of
theso(4) algebra. One can calculate the reduced probabil
B(a1 ,J1→a1J2 ;Ta;1) for electric dipole transitions. Note
that the reduced transition probability, for an electric tran
tion of the multipolarityl between states of initial and fina
spinsJ1 andJ2, respectively, is defined as@19#

B~a1 ,J1→a2 ,J2 ;Ta,l!5
1

2J111
z~a2J2uuTa,luua1J1!z2.

~37!

Unfortunately, such transitions are difficult and perhaps e
beyond any possibility of being observed.

~ii ! Transitions between states of same number of bos
N but of different four dimensional angular momenta,DK
Þ0, i.e., transitions between resonances belonging to dif
ent RS clusters. Operators that can realize transitions
tween different O~4! multiplets are U~4! generators~or, ten-
sor products of them! lying outside of the so~4! sub algebra.
The latter operators constitute the set

Qm5@p1
^ p̃#m

2 , Em5
1

A2
Dm,

E05
1

2A3
~3ns2np!. ~38!

It is not difficult to prove that the nine operators in Eq.~38!
behave with respect to SO~4! transformation as the compo
nents of the totally symmetric rank-2 tensor,T(1,1)lm, where

T(1,1)2m
ªQm , T(1,1)1m

ªEm ,

T(1,1)00
ªE0. ~39!

The tensorT(1,1)lm is the one of lowest rank that can realiz
transitions between SO~4! multiplets having same number o
bosonsN and differing by two units inK.

~iii ! Transitions between U~4! multiplets whose number o
bosons differ by one unit (DN51), the most interesting be
ing resonance de-excitation modes into the nucleon:

uN155;0h;K1 ; l 1 ;S15 1
2 ;J1M1&

→uN254;01;K250;l 250;S25 1
2 ; 1

2 m1/2&. ~40!

es
d
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In the following we will be mainly interested in transitions o
the third type. At the present stage, however, it is conven
to first outline the general scheme of the SO~4! Racah alge-
bra.

Tensor products@T(a1 ,b2)
^ T(a2 ,b2)# (a,b) lm in SO~4! are

defined as~see Refs.@11,18# for details!

@T(a2 ,b2)
^ T(a1 ,b1)# (a,b) lm5 (

l 1m1l 2m2

„~a1b1!l 1m1~a2b2!

3 l 2m2u~a1b1!~a2b2!;~ab!lm…

3T(a1 ,b1) l 1m1T(a2 ,b2) l 2m2. ~41!

The matrix elements of any tensor operatorT(a,b) lm between
O~4! states are expressed as

^~a1 ,b1!l 1m1uT(a,b) lmu~a2 ,b2!l 2m2&

5„~a2b2!l 2m2~ab!lmu~a2b2!~ab!;~a1b1!

3 l 1m1…~~a1 ,b1!uzuT(a,b)uzu~a2 ,b2!!. ~42!

The SO~4! Clebsch-Gordan coefficients entering the la
equation are determined by

„~a2b2!l 2m2~ab!lmu~a1b1!~a2b2!;~a1b1!l 1m1…

5A~2l 111!~2l 211!~2l 11!~2a11!~2b11!

3~21!( l 2m)S l 1 l 2 l

2m1 2m2 mD
3H a1 a2 a

b1 b2 b

l 1 l 2 l
J . ~43!

The last equation shows that the ratios of the redu
probabilities of electromagnetic transitions between re
nances with differentK quantum numbers are determined
ratios of the squared SO~4! Clebsch-Gordan coeffecients, a
the triple barred transition matrix elements cancel out. As
example of that type of transitions let us consider the e
tromagnetic de-excitations of the natural parity resonan
with spins 3/22 and 1/22 from the first cluster to the
nucleon. Obviously, the relevant tensor operator in SO~4!
space isT(1/2,1/2)lm. The latter should connect U~4! states
with different numbers of bosons, i.e.,DN51. Therefore, it
can be taken in the forms

T(1/2,1/2)1m5pm
1 , T(1/2,1/2)005s1. ~44!

Transitions of the above type can then be calculated
means of ordinary Racah algebra in consideringa i
ªN(N8)(ai ,bi)5N(N8)(Ki /2,Ki /2) ~with i 51,2) as an in-
trinsic quantum number according to
11400
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K a1 ,l 1 ;
1

2
;JpMJUTa,lmUa2 ,0;

1

2
;
1

2

1

m1/2L
5~21!(J2MJ)S J l

1

2

2MJ m m1/2

D
3S a1 ,l 1 ;

1

2
;JpUuTa,l uUa2 ;0;

1

2

1D . ~45!

In order to express double barred matrix element in terms
triple barred matrix elements, the following relations shou
be taken into account:

S a1 ,l 1 ;
1

2
;JpUuTa,l uUa2 ;01;

1

2
;
1

2

1D
5d l 1lA2~2J11!~a1 ,l uuTa,l uua2 ,0!,

~N~a1 ,b1!; l 1uuT(a,b) l uuN8~a2 ,b2!; l 2!

5A~2l 111!~2l 211!~2l 11!~2a111!~2b111!

3H a2 b2 l 2

a b l

a1 b1 l 1

J
3~N~a1 ,b1!uzuT(a,b)uzuN8~a2 ,b2!!,

H 0 0 0

a b l

a1 b1 l 1

J
5da1adb1bd l 1l

1

A~2l 11!~2a11!~2b11!
.

~46!

Combining Eqs.~45! and ~46! results in

ZS N(a1 ,b1); l 1 ;
1

2
;JpUuT(a,b) l uUN8(0,0);01;

1

2
;
1

2

1D Z2
5~2J11!u~N~a,a!uzuT(a,a)uzuN8~0,0!!u2. ~47!

D. Electric de-excitations of resonances to the nucleon

Equations~45!–~47! can be applied to calculate the rat
of, say, the electric dipole de-excitationsD13(1520)→p1g,
andS11(1535)→p1g. In this casel 1

p5 l p512, a15a5 1
2 ,

b15b5 1
2 , and Jp takes the two valuesJp5 3

2
2 and 1

2
2,

respectively.
Substitution of the relevant quantum numbers into E

~45! and ~46!, followed by a calculation of the ratio of the
squared values of theJp5 3

2
2 and J5 1

2
2 matrix elements,

yields the theoretical ratio of the electric dipole widths
interest Gg

D13, and Gg
S11 of the respectiveD13(1520) and

S11(1535) states as

R th5S Gg
D13

Gg
S11D th

51. ~48!
5-8
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BARYONS IN O~4! AND THE VIBRON MODEL PHYSICAL REVIEW D 64 114005
In order to compare to data, one may approximate the dip
widths with the totalg widths and obtain their experimenta
values from the full widths and the branching ratios listed
Ref. @1#. The full widths of theD13(1520) andS11(1535)
resonances are reported as 120 and 150 MeV, respecti
The D13(1520)→p1g branching ratio is reported a
0.46–0.56 %, while theS11(1535) takes values within th
broader range from 0.15% to 0.35%. The theoretical pre
tion corresponds to aS11(1535)→p1g ratio of 0.35%, and
thereby lies at the upper bound of the data range. This rat
in fact J independent. This shows that a purely algebr
description is insufficient to reproduce the electromagn
properties of the resonances in great detail. In that reg
further development of the model is needed with the aim
account for the internal diquark structure.

Remarkably, the internal structure of the diquark does
show up in the spectra, and seems to be irrelevant for
gross feature of the excitation modes. At the vertex lev
however, it will gain more importance. The merit of the rov
bron model is that there it can be treated as a correc
rather than as a leading mechanism from the very beginn

One can further compare gamma-widths of resonan
carrying different internal O~3! quantum numbersl. This ef-
fect is easiest to study on the example of the natural pa
resonances from the ‘‘missing’’ rovibron clusters. To be sp
cific, we will compare the reduced probabilities for the fo
lowing two transitions:
th
un
n
ia

F
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c
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U4;01;~2,2!;12;
1

2
;
3

2

2

m3/2L
→

T(2,2)1mU4;01;~0,0!;01;
1

2
;
1

2

1

m1/2L ,

U4;01;~2,2!;32;
1

2
;
5

2

2

m5/2L
→

T(2,2)3mU4;01;~0,0!;01;
1

2
;
1

2

1

m1/2L . ~49!

The relevant transition operator is

T(2,2)lm5@T(1,1)
^ T(1,1)# (2,2)lm. ~50!

Herel can take the valuesl 50,1,2, 3, and 4. The first of the
transitions in Eq.~49! is governed by the electric dipole op
eratorT(2,2)1m, while the second is controlled by the electr
octupoleT(2,2)3m. We are going to calculate the ratioR2 of
the quantities

R25

BS a1 ,
5

2

2

→a2 ,
1

2

1

;T(2,2)1D
BS a1 ,

3

2

2

→a2 ,
1

2

1

;T(2,2)3D . ~51!

Here
BS a1 ,
3

2

2

→a2 ,
1

2

1

;T(2,2)1D 5
1

4
ZS 4;01;~1,1!;12;

1

2
;
3

2

2Uu@T(2,2)1
^ 11# (2,2)1uU4;01;~0,0!;0;

1

2
;
1

2

1D Z2,

BS a1 ,
5

2

2

→a2 ,
1

2

1

;T(2,2)3D 5
1

6
ZS 4;01;~1,1!;32;

1

2
;
5

2

2Uu@T(2,2)3
^ 11# (2,2)3uU4;01;~0,0!;0;

1

2
;
1

2

2D Z2.

~52!
e

Usage of Eq.~47! yields equal reduced probabilities for bo
the dipole and octupole deexcitations and thereby the
value forR2. Thus, within this early version of the rovibro
model, a given RS cluster will have a common part
(g1p) decay width, that is insensitive to its O~3! spin
content.

A more interesting situation occurs in the case of LAMP

clusters, such likeu5;02;( 3
2 , 3

2 );22; 1
2 ; 3

2
2m3

2 &. There one en-
counters asuppression of electromagnetic transitions to t
nucleon. Indeed, in the rigorous case of an ideal O~4! sym-
metry, due to the unnatural parities of the nucleon resonan
with masses above 1535 MeV~and theD excitations with
masses above 1700 MeV!, transitions of the type
it

l

es

U5;02;S 3

2
,
3

2D ;22;
1

2
;
3

2

2

m3/2L
→U4;01;~0,0!;01;

1

2
;
1

2

1

m1/2L ~53!

cannot proceed either via electricEl or magneticMl mul-
tipoles~to be presented elsewhere!. In the less rigid scenario
of a violated O~4! symmetry, mixing between states of sam
parity and total spins but differentK ’s may occur. For ex-
ample, the above unnatural parity spin-3

2
2 resonance from

the K53 multiplet may mix up with the spin32
2 of natural

( l 512) from theK852 multiplet
5-9
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UJp5
3

2

2

m3/2L
5A12a2U5;02;S 3

2
,
3

2D ;22;
1

2
;
3

2

2

m3/2L
1aU4;01;~1,1!,12;

1

2
;
3

2

2

m3/2L . ~54!

For similar reasons, a mixing withK854 states can also tak
place. Within this mixing scheme, unnatural parity res
nances can be excited electrically via their natural pa
component. As long as the relevant transition operator
such transitions isT„(K8/2)(K8/2)…lm, its matrix element be-
tween the nucleon and the resonance of interest will be
portional to the mixing parametera. To be specific,

K Jp5
3

2

2

m3/2UT(1,1)1mU4;01;~0,0!;01,
1

2
;
1

2

1

m1/2L
5aK 4;01;~1,1!;12;

1

2
;
3

2

2

m3/2U
3T(1,1)1mU4;~0,0!;01;

1

2
;
1

2

1

m1/2L . ~55!

It is obvious from the last equation that electric excitations
the nucleon into the unnatural parity resonances will be s
pressed by the factor ofa2. At the present early stage o
development of the quark rovibron model, the mixing para
etera cannot be calculated but has to be considered as
and determined from data. A theoretical prediction fora
would require more fundamental approach to the inter
diquark dynamics. In case the O~4! symmetry is slightly vio-
lated, one may assumea to be same for all cluster inhabit
ants and perform some calculations as to what extent s
states can be linked via electromagnetic transitions to
nucleon.

IV. SUMMARY AND OUTLOOK

The results of the present study can be summarized
follows.
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~1! The present investigation communicated an idea
how Lorentz representations of the RS type can emerg
fundamentalas well ascompositefree particles of definite
mass and indefinite spin within the context of a relativis
space-time treatment of the three Dirac-fermion syste
Though structureless RS particles have not been detecte
far, theN andD spectra strongly indicate existence ofcom-
positeRS fields.

~2! Excited light unflavored baryons preferably exist
multiresonance clusters that are described in terms of
multiplets such as the~predominantly! observed LAMPF
clusters 22I ,1 , 42I ,2 and 62I ,2 , and the ‘‘missing’’ clusters
32I ,1 and 52I ,1 .

~3! The above RS clusters accommodate all the re
nances observed so far in thepN decay channel@up to the
D(1600) state#. The LAMPF data constitute, therefore, a
almost accomplished excitation mode in its own rights,
only five resonances are ‘‘missing’’ for the completeness
this structure.

~4! We modeled composite RS fields within the fram
work of the quark rovibron model, and constructed a Ham
tonian that fits the masses of the LAMPF clusters.

~5! In using the Hamiltonian we predicted, from a diffe
ent but the SU(6)SF^ O(3)L perspective, the masses of tw
‘‘missing’’ clusters of natural parity resonances, in support
the TJNAF ‘‘missing’’ resonance search program@20#.
‘‘Missing’’ resonances under debate in the literature, such
P11(1880) @21# and P13(1910) @22# could neatly fit into the

(2,2)^ @( 1
2 ,0)% (0,1

2 )# RS cluster at 1935 MeV in Table I.
~6! We constructed electric transition operators, outlin

the essentials of the O~4! Racah algebra, and calculated r
tios of reduced probabilities of various resonance
excitations to the nucleon. We found the internal structure
the diquark to be of minor importance for the gross featu
of the excitation modes. At the vertex level, however,
pointlike diquark was shown to be insufficient to account
differences in the branching ratios of resonances from sa
cluster. It is that place where the present early version of
QRVM model of baryon structure needs further improv
ments. Treating the internal structure of the diquark a
correction rather than as a leading mechanism from the v
beginning is a major merit of the quark rovibron model.
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