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Equations for neutrino propagation in matter
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We study the dynamical equations for two-family neutrino oscillations in a medium of continuously varying
density. Explicit solutions to these equations take the form of series of nested integrals. These solutions can
serve as a basis for numerical calculation of these processes or for further study of their analytical properties.
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I. INTRODUCTION it 20
6— 6'Osir? 20" = ~ :
The presence of neutrino oscillatiofs,2] has renewed (cos 20— S +sirf 26

interest in the question of oscillations within matf&5].
The early worl{ Mikheyev-Smirnov-WolfensteitMSW)] of )
Refs.[3] and[4] solved the problem of propagation within a with
medium of constant density, and it is certainly possible to
treat a nonconstant density by numerical means. It is never-
theless always useful to think about an analytic apprd&¢h The mass parametefm?=m2—m?, where m? is the ith

in order to develop insight and understanding, and in this . . "
note we illustrate what appears to be a new approach to th ass eigenvalue, is positive. We recover the vacuum result,
abibbo angle), for A=0.

problem. Since the case we study here is that of a two- This introduction sets some notation and recalls well-
channel problem, some aspects of the methods we descrige its. Bel hall b d with iabl
are also applicable to spins in varying magnetic fields an nown results. below we shall be concerned with variable
other two-channel order-dependent problems. density.

For convenience we recall here the MSW res(i84],
constant density. We assume a two-channel approximation to !l. PASSAGE THROUGH A MEDIUM OF VARIABLE
neutrino mixing and give the amplitudg(t) for a neutrino DENSITY
beam of energ)E passing through a medium of constant
electron densityN, given some initial neutrino flavor mix-
ture #(0): namely,

A=V2GgN,. (1.4

The Schrdinger equation for a two-family weak state
Y(t) propagating through a medium of electron denbiltyis

d
JO=TOWO). (1.1) | d—‘f=<HF+W)¢, 2.1

(The timet can be interchangably viewed as the thickness
of the medium). Here the two-vector weak statee., flavor

basig is zp(t):[:e]. The transition amplitudd is
-

where, using the approximation,<E and after pieces in the
Hamiltonian proportional to the unit matrix are removed—
they lead only to overall phases, as we describe further

below—we have
T=cos¢’' +ising’ cog26')o,—ising' sin(20")oy,

1.2 ’ Sm2[ —cos29 sin26 22
F= e : .
where the primed variables contain the effect of the matter: 4E | sin26  cos
SEALZ and
5m2—>5m’2=5m2\/( cos 20— —| +sirf 26,
om L3 v2GeN, 0] [A ©
. W= = . 2.3
1.3 0 ol=lo o 2.3
sm’?2 : . .
p—p' = 1E t, Here.HF is CroeslaatedSirFﬁ) the mass eigenstates by the Cabibbo
matrix V=[Zgny Cosal:
. . 1[m? o0
*Email address: pmf2r@virginia.edu He=V{ —— ) VI=VHpV'. (2.4
"Email address: gasior@umn.edu 2E| O m;
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A solution to Eq.(2.1) will give us the amplitudeT(t), The portion ofH proportional to the unit matrix commutes

through Eq.(1.1). through the quantities in Eq2.6) and cancels, leaving
It is convenient to approach the dynamical equatidn) d
by starting in the mass ba-sis,. using the transformgd states i_gzeiAo'gtVTWVe—iAag,tg_ 2.9
é=VTy. We do so by multiplying Eq(2.1) by V', giving dt
We next write out in 2 2 form the quantity multiplyingt
do
i E=(HD+VTW\/) o. (2.5  on the right side of Eq(2.8), using in particular the identity
. eia
Next we remove the factdip by defining a new functio e'#%3=cosa+iogsina= 0 eial (2.9
by
p=e-Hotg, We find

1+ cos29 e?Atsin26
e 2sin2d 1— cos2¥

) . 1
Starting from Eq.(2.5) it is easy to see that this function e'27stvTwyve 'Aost= SA
obeys the equation

d 1 cos 29 e?'Asin 26
i a:eiHDt\/TWVe—iHDtg_ (2.6) - EA e 2sin2g —cos29 |
: . . . (2.10
In this expression, only the mass difference enters into the ] .
exponentials. To see this, define In the last step we have taken out the piece proportional to
the unit matrix; again, it contributes only an overall phase to
_ m§+ mg Sm? & [This can be seen in a variety of ways. For example, one
E=E+— g and A=———. (27 can define a new functiop=exp(+ (i/2) [LA(t')dt’)¢ and
show that the equation foy is identical to that fo& but with
In terms of these quantities]p reads the last form in Eq(2.10 on the right multiplying».] We
o can finally transform away the term in E¢R.10 propor-
Hp=E+o3A. tional to o3. We define the new functioti by
i
i exp{zl(t)cos 219) 0
gzexp< +503I(t)cos 20)§= i ¢, (2.1)
0 ex;{ —El(t)cos 20)
where
t
I(t)zf A(t")dt'. (2.12
0
The function{ obeys the simpler equation
1
0 EAez'At sin 26
i % — e(i/2) o3l cos 20 ef(1/2) ogl cos 219§
dt 1 .
EAe‘z'At sin 26 0
1
0 _Ae|(2At+I cos 20) sin 26
2
_Ae—i(zAH—I cos20)sin 26 0
2
=P(1)¢. (213
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The last line defines the matriR(t), in terms of which we *

t
can write our formal solution to this equation. We remark in M(t)= 2 (—i)”f P(s;)ds;
particular, for later use, that the 21 eleméhyt; equals the n=0 0
complex conjugate of the 12 elemeRt,. We will below s Sn_1
express the solution to E€2.13 in terms ofP, and P%,. X fo P(Sz)dsz“'fo P(s)ds,. (2.14b

The form thatP(t) takes is easy to understand. The cen-

tral matrix in the first line of Eq(2.13 is a "”ngz)cfﬁ‘cﬁ’;rga' Finally we can separate out the explicit matrix elementslof
3

tion of oy and o, while the external factore= b d :
’ . ; . . by using the matrix structure d@®, namelyP(t)=P,(t)o;
take the form of a rotation about the 3-axis. Their effect is P,(t). This leads immediately to

then to rotate the combination of, and o, to give a differ-
ent combination that lies at a different angle—that takes the t o
form of the original combination but with the phase shifted. Mllzl—f Plz(t’)( f PI(t")dt”
This is indeed what happens, as the explicit calculations that 0 0
give usP(t) show.

Solution of the equation faf. It is clear from the matrix . . )
structure of EQ.(2.13 that the commutatof P(t),P(t")] M= —i f Poo(t")dt +i f Plz(t,)(ft PX(t")
#0, so that the solution to E¢2.13 involves an ordering. 0 0 0

dt’+---,
(2.153

Formally, the solution is

t x ft Plz(t’”)dt'”)dt”)dt’—-~~ , (2.15b
{O=T exp(—ij P(s)ds) {O)=M(1)£(0), ’
0
(2.143 M21=Mylp . P, (2.159
where the time ordering operatdrensures that the matrices N
P in the expression are ordered so tRatith a later argu- M2o=M1;. (2.15d
ment stands to the left &f with an earlier argument. We may ) ) . o
write Alternatively, direct differentiation of the group of Egs.
(2.15 shows that it satisfies the necessary conditddm/dt
* (—i)" [t t t =—iPM.
M(t)=>, ol f d81J dszf ds, The solution given by Eq92.15 is essentially a power
n=0 % 0 0 0 series inA. The order dependence of the result is contained
XT[P(s1)P(S,) - -P(sp)], in the fact that the integrals i are nested. We can write the

transition amplitudd in terms ofM by undoing our series of
and it is a standard exercise to show that this is equivalent ttransformations, leaving

efi(AH(l/Z)l(t)cosZﬁ) 0
_ t
T()=V 0 Qi (At+ (1721 (t)cos 20) M(t)V'. (2.16
|
Generally speaking the nested integralsMnare compli- a=—iPy, and B=—iPy=—iP},. (3.2

cated, even for the case of constant dengff. course nu-
merical integration is always possible.

One more derivative of, say, the upper component gises
11l. SECOND ORDER EQUATION =d§2+a'§2=(d/a).§1+a,8§1, or

Equation(2.13 represents two coupled first order differ-
ential equations. These equations can be rewritten as a single i
uncoupled second order equation, and the second order equa- t- 3'51_ aBi,=0. (3.3
tion lends itself to a variety of treatments beyond the formal ed
solution we have already expressed. In terms of the explicit
components of, Eq. (2.13 reads
{1 (el

& _[0 a
I 1B 0|l&] [BO N . ,
where Z=K+i(2A+A00320) and a,3=—(§Asin20) .

Using the explicit expressions far and 8, we find that

: 3.9
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Thus we have finally the second order equation then the solution to this equation is

2

A. :

£,=0. g”l(t)=Blexy{i§t[a)+bo] +C1exr<i§t[—w+bo]
(3.9 (3.83

1A'2
Esme

It is worthwhile noting that the quantity, Eq. (2.12, does _ it it

not appear in this equation. We may take the required two fa(t) =Bz ex E[“’_bO] +Cyex E[_‘”_bOJ '
boundary conditions to bé;(0) and £,(0)=¢,(0)/a(0). (3.8b
Once we find the solution forf,(t), we have {5(t)
=[1la(t)][d{.(t)/dt]. We also remark here that we have

where

verified that our formal solution to the equations forEq. 1/1
(2.15), satisfies Eq(3.4). Bl=5(551(0)[w—bo]—co§2(0)),
Recovery of constant density cageor the MSW case
(constantA=A,), reviewed in Sec. |, Eq(3.4) takes the 1/1
form C1=;(§§1(0)[€0+ bo]"'cofz(o)),
{1—iboly+c501=0, (3.9 1/1
Where Bzzz<§§2(o)[a’+ Po]—€ol1(0) |,
1 _ 1/1
bo=2A+Aycos29 and cozonsm 20. (3.6 (;2:5 552(0)[w—b0]+co§1(0) i
If in addition we define This solution allows us to identifyM(t) through Eq.
(2.14 and hence the transition amplitude through Eq.
w= b5+ 4cg, (3.7 (2.16 adapted to constadt namely,
e (it/2)(2A+Aq cos 29) 0 e~ (it/2)bg 0
T(H)=V 0 Qlit/2)(28+ Aq cos 20) MVT=V 0 alit/2)bg MVT. (3.9
The result of the exercise is
1 ((,U_ bo)eiwt/2+ (w+ bo)e—iwt/Z _Zco(eiwt/Z_ e—iwt/Z)
T=— . . ; V) (3.10
20 _ 2C0(e| wt/2__ e*lthZ) (w+ bo)el wt/2+ (w_ bo)eflthZ
Then specific calculation shows, for example,
2i .
TiA=Teu) = ;A sin 26 sin(wt/2). (3.11)

This can be put into the canonical form of Ref], —i(sin¢,)(sin 26,,), where the subscriph indicates the propagation is in
material, and where:m=(5m§ff/4E)t, if we identify

. 2|Alsin 26 sin 260 sin 26
sin 260,= = = (3.123
® \/ 4EA 2EA\? \/ 2EA\?2 -
1-——cos20+| — cos20— —| +sir?2
Sm? % Sm? 2 Sm? " 26
and

SM2=2Ew=23 2\/1 4EA 20+ 2EA 2—5 2\/ 20 2EA 2+ i 26 3.12
Mex= w=om —WCOS W =om Ccos —W Sl . ( b
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Indeed, in terms of these new variables the full transition £1(0) _boZ1(0)+Agl,(0)sin 260
amplitude is R.= 5 = 50 . (3.20

T=C0oSem* (i Sinom COS W) 02~ (1 SiN ¢ SiN 20”‘)0)‘1'3) Having reviewed the Oth ordeiconstant densityprob-

lem, we go on to include timédistance dependence in the
This is the full canonical form described in Sec. | for propa-material density. We accordingly write the input density as
gation in a medium of constant density.

Adiabatic expansianlf the factor in Eq.(3.4) that con- A(t) =Ag(1+f4(1)), (3.2)
tains the derivative oA is small compared to the other fac- .
tors, one can make a systematic adiabatic exparfgipin  Wheref,(t)<1 for alltin the problem and, (t<0)=0. We
terms of it about the Oth ordéMSW) answer. To do so, itis €Xtend our ansatz for the solution to the form
useful to recast the solution technique somewhat. We shall . .
first take the starting point of the neutrino beamtan, to H()=R(1)B,eS+W+R_(1)p_eS-U, (3.229
specify the constant background level of the material densi%here
factor, i.e.,A(0)=A,. We leave the boundary conditions
£1(0) and ¢,(0) unspecified for the moment but
remark that using EQ.(2.13 the boundary condition
for £,(0) gives us alternatively a condition for the derivative .
of ¢ at =0 (d¢y/d0)(0)=—iP;(0)¢x(0) S:(=Ast+ o (). (3-229
= —(i/12)Aq(sin 26)£5(0).

V\§e s)eeog‘rom czgzr(e)arlier solution of the constant density! '€ quantities with subscript “1" are all small; moreover,
casd Eq. (3.8)] that thet dependence is contained in a pair of P1 (0)= 01 (0)=0. We also set
phases. An alternative way to derive these phases in the con-
stant density case is through a solution ansatz of the sche-
matic form

R=()=R=(1+p1 (1)), (3.220

b(t)=bp+bq(t), where b(t)=Aqf(t)cos 29,
(3.233

£1=RyexpliSy(t)), (3.14 c(t)=cg+cy(t), where cq(t)=(Ayf;(t)sin 26)(%2.236
whereR, is constant and wher8,(t=0)=0. The real and _ ) o
imaginary parts of Eq(3.5) lead to the following equations We now insert our ansatz into E¢.5). The spirit of the

for Sy(t): adiabatic expansion is to keep only first order terms in quan-
tities with the subscript “1.” In addition, we insist that the
ds)\? ds coefficients of exfiS. (t)) vanish separately.
(W) —boW— co=0, The real and imaginary parts of the coefficients of
exp(S..) give, respectively,
dZSO 2 _* =+
az (319 oy 971y 40, (3.243

dt® dt

Together with the vanishing &, att=0, these imply that . .
d?o; dpy dfy

So(t)=At, (3.16 T THR T TR (3.24h
where where
2_ A2
A~ boh —65=0. 3.17 K. =Ao(\ COS 20+ Co SiN 20) =2\ - (— 2A % w)/2.
(3.25

The solution of the quadratic equation gives

Equations(3.24) contain only derivatives of the functions

>\+=}(bot ®), where w=b2+4c2. (3.1 We seek, so they are in fact two coupled first order equations
7 for the functions

Thus, as indeed Ed3.8) shows, a better ansatz for the so- do} dp;

\ution i T -1

ution is v T and uj T (3.26
L) =R,eM'+R_eM-t, (3.19

To the equations fos; andu; we add boundary conditions
The boundary conditions faf,(t) give us immediatehR, that follow fromd¢, /dt=0, namelyv; (0)=0=u; (0). As
+R_=¢4(0) and RyA,+R_N_=—3Aq,(0)sin2¥; in  we shall see, these boundary conditions guaranteeothat
turn these last two relations determine andp; remain smalli.e., O(f;)].
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T probability

0.825 A

0.55 \

FIG. 1. Probability, as calculated in the adiabatic approximation described in the textasfa function of time from production as a
pure v, att=0, in a medium with density factohy(1+qt), whereA,=6x10°cm *=10"'3eV corresponds to Earth-like density. We
assume the primary mixing angle #s=0.7 and that the difference of the square of the neutrino masses 195 eV?. The factorA=
—7.9x10 *eV, a value for which the neutrino energy lies around the MSW resonance value, an energy of roughly 20 MeV. The horizontal
axis is in units of 18* eV~ 1; note that forg=—2x10 eV, qt=—0.2 att=10"% eV 1.

We decouple the two equations fo{ andu; by taking _
one more derivative of, say, E(8.244, giving a single sec- G(x) =~ d(bsinet. (3.28
ond order equation fou; :

2,*
d u21 +w2uf:2A>\i%, (327 Interms of this function we have
dt dt
where for the coefficient otif,/dt we have used: w\ . uj (t)=a sinwt+a; coswt

—K.=2A. This equation is solved by a standard Green’s

function G(t—t’) that satisfies o dfy(t’
(t=t) +2A7‘if dt'G(t—t) Olli )
d’G(t-t') , , o
=ag Sinwt+a, COSwH-ZA)\tEf T
0
with, as causality suggest§,(x)=0 for x<0. The Green’s
function required is Xsin(w(t—1t"))dt’. (3.29

T probability

0.025

FIG. 2. Same as Fig. 1, but with the factor
A=—7.5x10"1%eV, a value for which the neu-
trino energy lies roughly ten times higher than
that corresponding to the MSW resonance value.
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(The lower limit reflects the fact thdy is identically zero for
negative argumentOnce we havei; we can ge; from
Eq. (3.243:

1

+—
w

du;

dt

U, =

)

==+

K
ag coswt—a, sinwt+ j‘fl(t)). (3.30

At this point we can gea; anda, from the boundary con-
ditions for v (0) and u; (0), which determineag =a_

PHYSICAL REVIEW B4 113017

The first term integrates the material density.

An exampleWe take a linear variatiorf,; = qt, together
with the condition that the beam is purg, att=0 [which
translates intaZ;(0)= —siné and {,(0)=coséd]. Then we
have immediately

=0. (It is worth noting that since these quantities are not

proportional tof , the only way for them to be small is to be
zero) In turn, we have finally

Lo 2AN. thv , o dfl(t”)d,,d,
pr)=—"—| | sin(w(t’ —t") —m—dt"dt,
(3.31)
Uizi—KiJfﬂﬂmV. (3.32
w 0

The phase functiois..(t) takes on a suggestive form if we
use the identitfK . = = o\ . — A(bg* w), in which case we
can write

*

t 2A t
sia)=xi£}1+fﬂv»dv: J;naqdv.

(3.33

1 2AN. 1
S.(t)=\o|t+ eqz T eqz (3.34a3
and
2AN . 1
R.(t)=R. 1+q—wz— t—;smwt . (3.34b

In Figs. 1 and 2 we plot some probabilities associated with
the resulting amplitude for some representative values of the
parameters.
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