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Equations for neutrino propagation in matter
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We study the dynamical equations for two-family neutrino oscillations in a medium of continuously varying
density. Explicit solutions to these equations take the form of series of nested integrals. These solutions can
serve as a basis for numerical calculation of these processes or for further study of their analytical properties.
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I. INTRODUCTION

The presence of neutrino oscillations@1,2# has renewed
interest in the question of oscillations within matter@3–5#.
The early work@Mikheyev-Smirnov-Wolfenstein~MSW!# of
Refs.@3# and@4# solved the problem of propagation within
medium of constant density, and it is certainly possible
treat a nonconstant density by numerical means. It is ne
theless always useful to think about an analytic approach@6#
in order to develop insight and understanding, and in t
note we illustrate what appears to be a new approach to
problem. Since the case we study here is that of a t
channel problem, some aspects of the methods we des
are also applicable to spins in varying magnetic fields a
other two-channel order-dependent problems.

For convenience we recall here the MSW results@3,4#,
constant density. We assume a two-channel approximatio
neutrino mixing and give the amplitudeT(t) for a neutrino
beam of energyE passing through a medium of consta
electron densityNe given some initial neutrino flavor mix
ture c~0!: namely,

c~ t !5T~ t !c~0!. ~1.1!

~The timet can be interchangably viewed as the thicknesx
of the medium.! Here the two-vector weak state~i.e., flavor
basis! is c(t)5@nm

ne #. The transition amplitudeT is

T5cosf81 i sinf8 cos~2u8!sz2 i sinf8 sin~2u8!sx ,
~1.2!

where the primed variables contain the effect of the mat

dm2→dm825dm2AS cos 2u2
2EA

dm2 D 2

1sin2 2u,

~1.3!

w→w85
dm82

4E
t,
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u→u8∋ sin2 2u85
sin2 2u

S cos 2u2
2EA

dm2 D 2

1sin2 2u

,

with

A5&GFNe . ~1.4!

The mass parameterdm25m2
22m1

2, where mi
2 is the i th

mass eigenvalue, is positive. We recover the vacuum re
Cabibbo angleu, for A50.

This introduction sets some notation and recalls we
known results. Below we shall be concerned with varia
density.

II. PASSAGE THROUGH A MEDIUM OF VARIABLE
DENSITY

The Schro¨dinger equation for a two-family weak stat
c(t) propagating through a medium of electron densityNe is

i
dc

dt
5~HF1W!c, ~2.1!

where, using the approximationmi!E and after pieces in the
Hamiltonian proportional to the unit matrix are removed
they lead only to overall phases, as we describe furt
below—we have

HF5
dm2

4E F2cos 2u sin 2u

sin 2u cos 2uG ~2.2!

and

W5F&GFNe 0

0 0G[FA 0

0 0G . ~2.3!

Here HF is related to the mass eigenstates by the Cabi
matrix V5@2sin u

cosu
cosu
sin u #,

HF5VH 1

2E Fm1
2 0

0 m2
2G J V†[VHDV†. ~2.4!
©2001 The American Physical Society17-1
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A solution to Eq. ~2.1! will give us the amplitudeT(t),
through Eq.~1.1!.

It is convenient to approach the dynamical equation~2.1!
by starting in the mass basis, using the transformed st
f[V†c. We do so by multiplying Eq.~2.1! by V†, giving

i
df

dt
5~HD1V†WV!f. ~2.5!

Next we remove the factorHD by defining a new functionj
by

f[e2 iH Dtj.

Starting from Eq.~2.5! it is easy to see that this functio
obeys the equation

i
dj

dt
5eiH DtV†WVe2 iH Dtj. ~2.6!

In this expression, only the mass difference enters into
exponentials. To see this, define

Ē[E1
m1

21m2
2

4E
and D[2

dm2

4E
. ~2.7!

In terms of these quantities,HD reads

HD5Ē1s3D.
11301
es

e

The portion ofHD proportional to the unit matrix commute
through the quantities in Eq.~2.6! and cancels, leaving

i
dj

dt
5eiDs3tV†WVe2 iDs3tj. ~2.8!

We next write out in 232 form the quantity multiplyingj
on the right side of Eq.~2.8!, using in particular the identity

eias35cosa1 is3 sina5Feia 0

0 e2 iaG . ~2.9!

We find

eiDs3tV†WVe2 iDs3t5
1

2
AF 11 cos 2u e2iDt sin 2u

e22iDt sin 2u 12 cos 2u G
→ 1

2
AF cos 2u e2iDt sin 2u

e22iDt sin 2u 2cos 2u G .
~2.10!

In the last step we have taken out the piece proportiona
the unit matrix; again, it contributes only an overall phase
j. @This can be seen in a variety of ways. For example, o
can define a new functionh[exp„1( i /2)*0

t A(t8)dt8…j and
show that the equation forh is identical to that forj but with
the last form in Eq.~2.10! on the right multiplyingh.# We
can finally transform away the term in Eq.~2.10! propor-
tional to s3 . We define the new functionz by
z[expS 1
i

2
s3I ~ t !cos 2u D j5F expS i

2
I ~ t !cos 2u D 0

0 expS 2
i

2
I ~ t !cos 2u D G j, ~2.11!

where

I ~ t ![E
0

t

A~ t8!dt8. ~2.12!

The functionz obeys the simpler equation

i
dz

dt
5e~ i /2! s3I cos 2uF 0

1

2
Ae2iDt sin 2u

1

2
Ae22iDt sin 2u 0

G e2~1/2! s3I cos 2uz

5F 0
1

2
Aei ~2Dt1I cos 2u! sin 2u

1

2
Ae2 i ~2Dt1I cos 2u! sin 2u 0

G z

[P~ t !z. ~2.13!
7-2
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The last line defines the matrixP(t), in terms of which we
can write our formal solution to this equation. We remark
particular, for later use, that the 21 elementP21 equals the
complex conjugate of the 12 elementP12. We will below
express the solution to Eq.~2.13! in terms ofP12 andP12* .

The form thatP(t) takes is easy to understand. The ce
tral matrix in the first line of Eq.~2.13! is a linear combina-
tion of s1 ands2 , while the external factorse6( i /2) s3I cos 2u

take the form of a rotation about the 3-axis. Their effect
then to rotate the combination ofs1 ands2 to give a differ-
ent combination that lies at a different angle—that takes
form of the original combination but with the phase shifte
This is indeed what happens, as the explicit calculations
give usP(t) show.

Solution of the equation forz. It is clear from the matrix
structure of Eq.~2.13! that the commutator@P(t),P(t8)#
Þ0, so that the solution to Eq.~2.13! involves an ordering.
Formally, the solution is

z~ t !5TFexpS 2 i E
0

t

P~s!dsD Gz~0![M ~ t !z~0!,

~2.14a!

where the time ordering operatorT ensures that the matrice
P in the expression are ordered so thatP with a later argu-
ment stands to the left ofP with an earlier argument. We ma
write

M ~ t !5 (
n50

`
~2 i !n

n! E
0

t

ds1E
0

t

ds2¯E
0

t

dsn

3T@P~s1!P~s2!¯P~sn!#,

and it is a standard exercise to show that this is equivalen
r-
in
q
a

lic

11301
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M ~ t !5 (
n50

`

~2 i !nE
0

t

P~s1!ds1

3E
0

s1
P~s2!ds2¯E

0

sn21
P~sn!dsn . ~2.14b!

Finally we can separate out the explicit matrix elements oM
by using the matrix structure ofP, namelyP(t)5Px(t)s1
1Py(t)s2 . This leads immediately to

M11512E
0

t

P12~ t8!S E
0

t8
P12* ~ t9!dt9D dt81¯ ,

~2.15a!

M1252 i E
0

t

P12~ t8!dt81 i E
0

t

P12~ t8!XE
0

t8
P12* ~ t9!

3S E
0

t9
P12~ t-!dt-D dt9Cdt82¯ , ~2.15b!

M215M12uP12↔P
12*

, ~2.15c!

M225M11* . ~2.15d!

Alternatively, direct differentiation of the group of Eqs
~2.15! shows that it satisfies the necessary conditiondM/dt
52 iPM .

The solution given by Eqs.~2.15! is essentially a power
series inA. The order dependence of the result is contain
in the fact that the integrals inM are nested. We can write th
transition amplitudeT in terms ofM by undoing our series o
transformations, leaving
T~ t !5VFe2 i „Dt1~1/2!I ~ t !cos 2u… 0

0 ei „Dt1~1/2!I ~ t !cos 2u …
GM ~ t !V†. ~2.16!
Generally speaking the nested integrals inM are compli-
cated, even for the case of constant density.~Of course nu-
merical integration is always possible.!

III. SECOND ORDER EQUATION

Equation~2.13! represents two coupled first order diffe
ential equations. These equations can be rewritten as a s
uncoupled second order equation, and the second order e
tion lends itself to a variety of treatments beyond the form
solution we have already expressed. In terms of the exp
components ofz, Eq. ~2.13! reads

F ż1

ż2
G5F 0 a

b 0G Fz1

z2
G5Faz2

bz1
G , ~3.1!

where
gle
ua-
l
it

a[2 iP12 and b[2 iP2152 iP12* . ~3.2!

One more derivative of, say, the upper component givesz̈1

5ȧz21aż25(ȧ/a) ż11abz1 , or

z̈12
ȧ

a
ż12abz150. ~3.3!

Using the explicit expressions fora andb, we find that

ȧ

a
5

Ȧ

A
1 i ~2D1A cos 2u! and ab52S 1

2
A sin 2u D 2

.

7-3
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Thus we have finally the second order equation

z̈12
Ȧ

A
ż11 i ~2D1A cos 2u!ż11S 1

2
A sin 2u D 2

z150.

~3.4!

It is worthwhile noting that the quantityI, Eq. ~2.12!, does
not appear in this equation. We may take the required
boundary conditions to bez1(0) and z2(0)5 ż1(0)/a(0).
Once we find the solution forz1(t), we have z2(t)
5@1/a(t)#@dz1(t)/dt#. We also remark here that we hav
verified that our formal solution to the equations forz, Eq.
~2.15!, satisfies Eq.~3.4!.

Recovery of constant density case. For the MSW case
~constantA[A0!, reviewed in Sec. I, Eq.~3.4! takes the
form

z̈12 ib0ż11c0
2z150, ~3.5!

where

b052D1A0 cos 2u and c05
1

2
A0 sin 2u. ~3.6!

If in addition we define

v[Ab0
214c0

2, ~3.7!
11301
o

then the solution to this equation is

z1~ t !5B1 expS i t

2
@v1b0# D1C1 expS i t

2
@2v1b0# D ,

~3.8a!

z2~ t !5B2 expS i t

2
@v2b0# D1C2 expS i t

2
@2v2b0# D ,

~3.8b!

where

B15
1

v S 1

2
z1~0!@v2b0#2c0z2~0! D ,

C15
1

v S 1

2
z1~0!@v1b0#1c0z2~0! D ,

B25
1

v S 1

2
z2~0!@v1b0#2c0z1~0! D ,

C25
1

v S 1

2
z2~0!@v2b0#1c0z1~0! D .

This solution allows us to identifyM (t) through Eq.
~2.14! and hence the transition amplitudeT through Eq.
~2.16! adapted to constantA: namely,
n

T~ t !5VFe2~ i t /2!~2D1A0 cos 2u! 0

0 e~ i t /2!~2D1A0 cos 2u!GMV†5VFe2~ i t /2!b0 0

0 e~ i t /2!b0
GMV†. ~3.9!

The result of the exercise is

T5
1

2v
VF ~v2b0!eivt/21~v1b0!e2 ivt/2 22c0~eivt/22e2 ivt/2!

22c0~eivt/22e2 ivt/2! ~v1b0!eivt/21~v2b0!e2 ivt/2GV†. ~3.10!

Then specific calculation shows, for example,

T12~5Tem!5
2i

v
D sin 2u sin~vt/2!. ~3.11!

This can be put into the canonical form of Ref.@4#, 2 i (sinwm)(sin 2um), where the subscriptm indicates the propagation is i
material, and wherewm5(dmeff

2 /4E)t, if we identify

sin 2um5
2uDusin 2u

v
5

sin 2u

A12
4EA

dm2 cos 2u1S 2EA

dm2 D 2
5

sin 2u

AS cos 2u2
2EA

dm2 D 2

1sin2 2u

~3.12a!

and

dmeff
2 52Ev5dm2A12

4EA

dm2 cos 2u1S 2EA

dm2 D 2

5dm2AS cos 2u2
2EA

dm2 D 2

1sin2 2u. ~3.12b!
7-4
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Indeed, in terms of these new variables the full transit
amplitude is

T5coswm1~ i sinwm cos 2um!sz2~ i sinwm sin 2um!sx .
~3.13!

This is the full canonical form described in Sec. I for prop
gation in a medium of constant density.

Adiabatic expansion. If the factor in Eq.~3.4! that con-
tains the derivative ofA is small compared to the other fac
tors, one can make a systematic adiabatic expansion@7# in
terms of it about the 0th order~MSW! answer. To do so, it is
useful to recast the solution technique somewhat. We s
first take the starting point of the neutrino beam, att50, to
specify the constant background level of the material den
factor, i.e., A(0)5A0 . We leave the boundary condition
z1(0) and z2(0) unspecified for the moment bu
remark that using Eq.~2.13! the boundary condition
for z2(0) gives us alternatively a condition for the derivati
of z1 at t50: (dz1 /dt)(0)52 iP12(0)z2(0)
52( i /2)A0(sin 2u)z2(0).

We see from our earlier solution of the constant dens
case@Eq. ~3.8!# that thet dependence is contained in a pair
phases. An alternative way to derive these phases in the
stant density case is through a solution ansatz of the s
matic form

z15R0 exp„iS0~ t !…, ~3.14!

whereR0 is constant and whereS0(t50)50. The real and
imaginary parts of Eq.~3.5! lead to the following equations
for S0(t):

S dS0

dt D 2

2b0

dS0

dt
2c0

250,

d2S0

dt2
50. ~3.15!

Together with the vanishing ofS0 at t50, these imply that

S0~ t !5lt, ~3.16!

where

l22b0l2c0
250. ~3.17!

The solution of the quadratic equation gives

l65
1

2
~b06v!, where v[Ab0

214c0
2. ~3.18!

Thus, as indeed Eq.~3.8! shows, a better ansatz for the s
lution is

z1~ t !5R1eil1t1R2eil2t. ~3.19!

The boundary conditions forz1(t) give us immediatelyR1

1R25z1(0) and R1l11R2l252 1
2 A0z2(0)sin 2u ; in

turn these last two relations determine
11301
n

-

all

ty

y

n-
e-

R65
z1~0!

2
7

b0z1~0!1A0z2~0!sin 2u

2v
. ~3.20!

Having reviewed the 0th order~constant density! prob-
lem, we go on to include time~distance! dependence in the
material density. We accordingly write the input density a

A~ t !5A0„11 f 1~ t !…, ~3.21!

wheref 1(t)!1 for all t in the problem andf 1(t<0)50. We
extend our ansatz for the solution to the form

z1~ t !5R1~ t !b1eiS1~ t !1R2~ t !b2eiS2~ t !, ~3.22a!

where

R6~ t !5R6„11r1
6~ t !…, ~3.22b!

S6~ t !5l6t1s1
6~ t !. ~3.22c!

The quantities with subscript ‘‘1’’ are all small; moreove
r1

6(0)5s1
6(0)50. We also set

b~ t !5b01b1~ t !, where b1~ t !5A0f 1~ t !cos 2u,
~3.23a!

c~ t !5c01c1~ t !, where c1~ t !5„A0f 1~ t !sin 2u…/2.
~3.23b!

We now insert our ansatz into Eq.~3.5!. The spirit of the
adiabatic expansion is to keep only first order terms in qu
tities with the subscript ‘‘1.’’ In addition, we insist that th
coefficients of exp„iS6(t)… vanish separately.

The real and imaginary parts of the coefficients
exp(iS6) give, respectively,

d2r1
6

dt2
7v

ds1
6

dt
1K6 f 150, ~3.24a!

d2s1
6

dt2
6v

dr1
6

dt
2l6

d f1

dt
50, ~3.24b!

where

K6[A0~l6 cos 2u1c0 sin 2u!52l6~22D6v!/2.
~3.25!

Equations~3.24! contain only derivatives of the function
we seek, so they are in fact two coupled first order equati
for the functions

v1
6[

ds1
6

dt
and u1

6[
dr1

6

dt
. ~3.26!

To the equations forv1
6 andu1

6 we add boundary condition
that follow from dz1 /dt50, namelyv1

6(0)505u1
6(0). As

we shall see, these boundary conditions guarantee thas1
andr1 remain small@i.e., O( f 1 )#.
7-5
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FIG. 1. Probability, as calculated in the adiabatic approximation described in the text, ofne as a function of time from production as
pure nm at t50, in a medium with density factorA0(11qt), whereA0563109 cm21510213 eV corresponds to Earth-like density. W
assume the primary mixing angle isu50.7 and that the difference of the square of the neutrino masses is 531026 eV2. The factorD5
27.9310214 eV, a value for which the neutrino energy lies around the MSW resonance value, an energy of roughly 20 MeV. The ho
axis is in units of 1014 eV21; note that forq522310215 eV, qt520.2 att51014 eV21.
n’
We decouple the two equations forv1
6 andu1

6 by taking
one more derivative of, say, Eq.~3.24a!, giving a single sec-
ond order equation foru1

6 :

d2u1
6

dt2
1v2u1

652Dl6

d f1

dt
, ~3.27!

where for the coefficient ofd f1 /dt we have used6vl6

2K652D. This equation is solved by a standard Gree
function G(t2t8) that satisfies

d2G~ t2t8!

dt2
1v2G~ t2t8!5d~ t2t8!

with, as causality suggests,G(x)50 for x,0. The Green’s
function required is
11301
s

G~x!5
1

v
u~ t !sinvt. ~3.28!

In terms of this function we have

u1
6~ t !5as

6 sinvt1ac
6 cosvt

12Dl6E
2`

`

dt8G~ t2t8!
d f1~ t8!

dt8

5as
6 sinvt1ac

6 cosvt12Dl6

1

v E
0

t d f1~ t8!

dt

3sin„v~ t2t8!…dt8. ~3.29!
r

n
e.
FIG. 2. Same as Fig. 1, but with the facto
D527.5310215 eV, a value for which the neu-
trino energy lies roughly ten times higher tha
that corresponding to the MSW resonance valu
7-6
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EQUATIONS FOR NEUTRINO PROPAGATION IN MATTER PHYSICAL REVIEW D64 113017
~The lower limit reflects the fact thatf 1 is identically zero for
negative argument.! Once we haveu1

6 we can getv1
6 from

Eq. ~3.24a!:

v1
656

1

v S du1
6

dt
1K6 f 1D

56S as
6 cosvt2ac

6 sinvt1
K6

v
f 1~ t ! D . ~3.30!

At this point we can getas
6 andac

6 from the boundary con-
ditions for v1

6(0) and u1
6(0), which determineas

65ac
6

50. ~It is worth noting that since these quantities are n
proportional tof 1 , the only way for them to be small is to b
zero.! In turn, we have finally

r1
6~ t !5

2Dl6

v E
0

tE
0

t8
sin„v~ t82t9!…

d f1~ t9!

dt9
dt9dt8,

~3.31!

s1
656

1

v
K6E

0

t

f 1~ t8!dt8. ~3.32!

The phase functionS6(t) takes on a suggestive form if w
use the identityK656vl62D(b06v), in which case we
can write

S6~ t !5l6E
0

t

„11 f 1~ t8!…dt87
2Dl6

v E
0

t

f 1~ t8!dt8.

~3.33!
on

-
ol
th

,
7t

e

ys
.

11301
t

The first term integrates the material density.
An example. We take a linear variation,f 15qt, together

with the condition that the beam is purenm at t50 @which
translates intoz1(0)52sinu and z2(0)5cosu#. Then we
have immediately

S6~ t !5l6S t1
1

2
qt2D7

2Dl6

v

1

2
qt2 ~3.34a!

and

R6~ t !5R6F11q
2Dl6

v2 S t2
1

v
sinvt D G . ~3.34b!

In Figs. 1 and 2 we plot some probabilities associated w
the resulting amplitude for some representative values of
parameters.
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