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Supersymmetric phases, the electron electric dipole moment and the muon magnetic moment
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The electron electric dipole momerdd) and the muon magnetic moment anomaay, X recently observed
at BNL are analyzed within the framework of SUGRA models WiXR violating phases at the GUT scale. It
is seen analytically that even d, were zero, there can be a larBeno mass phasé@anging from 0 to 2r)
with a corresponding largB soft breaking mass phasef size <0.5 with the sign fixed by the experimental
sign ofa,). The dependence of tiigphase on the other SUSY parameters, the gaugino masdang,A,,
is examined. The lower bound af, determines the upper bound of,. It is shown analytically how the
existence of a nonzer-ino phase reduces this upper boumdich would correspondingly lower the SUSY
mass spectiaThe experimental upper bound dp determines the range of allowed phases, and the question
of whether the current bound ah, requires any fine-tuning is investigated. At the electroweak scale, the
phases have to be specified to within a few percent. At the GUT scale, howeves, phase requires
fine-tuning below the 1% level over parts of the parameter space fomgyy and if the current experimental
bound ond, were reduced by only a factor of 3—4, fine-tuning below 1% would occur at both the electroweak
and GUT scales over large regions of the parameter space. All accelerator constmajptél1d GeV,
b— sy, etc) and relic density constraints with all stau-neutralino coannihilation processes are included in the
analysis.
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[. INTRODUCTION large range of parametefg], and there has been a large
number of analyses based on this ifi@a6]. Diagrams simi-
The role thatCP violation plays in elementary particle lar to the above also enter into the mugn 2, and the re-
physics and how it relates to current theory still remains aftecently reported 2.6 deviation from the standard model
many years unclear. In the standard ma@M), CP viola-  value for that quantity 7] has placed significant boundat
tion is accommodated by inserting a single phase into théhe 95% C.L) on the allowed supergravi@BUGRA) param-
Cabibbo-Kobayashi-Maskaw@KM) matrix, and there are eter spacd8]. It is thus natural to ask whether both con-
now under way a number of experiments to test the validitystraints can be phenomenologically realized, and initial dis-
of this idea[1]. In supersymmetry, the CKM phase can alsocussions of this have been madd.
exist, but it is possible to have additional phases appearing in The minimal supersymmetric standard modsISSM)
the soft breaking masses. From the viewpoint of stringhas over 40 independent phases, and so cannot make signifi-
theory,C P violating phases are a natural occurrence. Thus ircant theoretical predictions on this question. We use here
10 or 11 dimensional M-theory models with six dimensionsinstead supergravitySUGRA) grand unified theoryfGUT)
compactified on a Calabi-Yau manifold, théer potential models with gravity mediated supersymmetry breaKibgj
and Yukawa matrices are represented by integrals over thend R-parity invariance. Such models have become quite
Calabi-Yau space, and since this is a complex manifold, it igredictive, in part due to the fact that they automatically
not surprising thaC P violating phases can arise. With su- include the CERNe"e™ collider LEP results on grand uni-
persymmetry breaking, phases could arise also in the softcation, and because radiative breaking $f(2)xU(1)
breaking masses. However, M-theory is not sufficiently deimplies that the SUSY soft breaking masses are of elec-
veloped to determine the details of such effects, and it igroweak size. Thus the general size of bogth 2 and the
useful to have phenomenological constraints as a guide tBDMs (which depend on the size of the SUSY magsee
where the fundamental theory may be. restricted. In addition, such models have a natural candidate
As is well known, the existance @P violating phases in  for dark matter, the lightest neutraling), and the condi-
the supersymmetri¢SUSY) soft breaking masses leads to tion that the relic density of neutralinos be in accord with the
electric dipole moment$EDMs) for the electron and neu- allowed range from astronomical measurements also puts
tron, and the smallness of the current experimental boundgnportant constraints on the parameter space.
on these puts severe constraints on the parameter space. OnePrevious analyses of the EDMs within the framework of

may satisfy these constraints by assuming that the phases a8€JGRA GUT models has shown that a new fine tuning prob-
nonzero but smalli.e., O(10 ?)] or that the SUSY masses

are large[i.e., =O(1 TeV)]. The electron EDM(EEDM)

arises from two diagrams: one involving the chargino- Ity alternate SUGRA models are anomaly medidte] and
sneutrino intermediate state, and one involving thegauge mediated12] soft breaking. The former appears to have
neutralino- selectron intermediate state. More recently it wagifficulty in satisfying the Brookhaven E821 bounds @r 2 when
suggested that a cancellation might occur between these tw@ SUSY CP phases are presefit3], while the latter does not
for relatively large phasefs.e., O(10 1)] over a reasonably appear to have a satisfactory dark matter candiflste
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lem arises at the GUT scale faﬂBO (the phase of B, the masses are still assumed to be universal, but phases are not
bilinear soft breaking massvhen tang gets large[4]. Fur- ~ nhecessarily universal. Thu_s the SUSY parameteid gtare
ther, the discussion of the mugr-2 have shown that tgg Mo (the scalar soft breaking massny; =|myexp(#) i

is greater than %and very possibly greater than)ltn car- ~ =1,2,3 [the gaugino masses for the(1),SU(2),SU(3)
rying out our analysis, then, we put a constraint on the padroups, Ao=|Aolexp(ag) (cubic soft breaking magsB,
rameter space thak 6 /0g >0.01, whereA fg_is the al- =|Bo|exp(6s) (quadratic soft breaking massand u

lowed range that will satisfy the experimental bounds on the=|1o|€xp(6,) (the Higgs mixing parameter in the superpo-
EDMs. In order to carry out a complete analysis, however, itentia). The model therefore depends on five magnitudes and
is necessary to include all the accelerator constrdings, ~ Six phases. However, one can always set one of the gaugino
that m,>114 GeV (whereh is the light Higgs boson the ~ phases to zero, and we chose hege=0.

CLEO bound on thé—sy decay, etd. as well as the full The renormalization group equatiofRGES allow one to
analysis of the relic density including all the stau-neutralino€valuate the parameters at the electroweak scale. To one loop

coannihilation channel§The details of these were discussed order, theg; and ¢, do not run. Further, radiative breaking
in [15,16].) of SU(2)XU(1) at the electroweak scale allows one to
Both the electron EDM and the mugn-2 can be calcu- €liminated,, in terms of¢g, the B phase at the electroweak
lated from two types of diagrams, one with the intermediatescale, and determingu| and|[B| in terms of the other pa-
chargino and sneutrinos states, and one with the intermediat@meters and taf=|(H,)/(H1)|. Thus with a convenient
neutralino and slepton states. If one assumes universal scfhoice of Higgs VEV phases, the minimization of the Higgs
breaking in the first two generations, then the EEDM and theotential yields[19]
SUSY deviation of the muon magnetic moment from its stan-

dard model valuea’,”" (a,= (g, —2)/2), can both be cal- 0,=—0g+f(—Og+ay,—Os+a) 1)
culated from a single amplitude for these diagrams, the

former being related to the imaginary part, and the latter to m2 — tar? Bm2 1 m2

the real part. In the following we will use the symbm), to |u|?= 1 2; |B|= = sin 2/3_3 2
mean the deviation of the muog (—2)/2 from its standard tarf5—1 2 |l

model value.

As is well known, for large ta, a,, is dominated by the wherea, anda, are the quark and lepton phasefgfandA,
chargino diagram{17,1§ (the neutralino diagrams being at the electroweak scalem?=m3 +3; (i=1,2), m;
generally quite small while the strong experimental con- _ 20 21 2 'L ;
straints on the EEDM require a near cancellation between th52|’u| it m, andmy, are the Higgs zboson runrnng
neutralino and chargino diagranig]. In order to see how Masses at the electroweak scale=dV, /dvi’ whereV, is
this can come about wheP violating phases are present, (€ one loop contribution to the Higgs potential, and
we calculate in the Appendix the leading large gaterms. = |(H;)|. There remain therefore four real parameters which
We discuss analytically in Sec. Il how both experimentalWe take to bemg, [Aq|, [my,], and tans, and four phases
constraints can naturally be satisfied at the electroweak scalfs, @o. @1, and ¢3. In this paper we examine only the
In Sec. Ill we examine in detail numerically the combined electron electric dipole moméentEEDM), and so our results
experimental constraints of the EEDM and the Brookhaverare only very weakly dependent afs. Also, since we are
E821 a, experiment on the SUSY parameter space for alealing only with first and second generation sleptons, there
variant of the MSUGRA model where the magnitudes of theis only a weak dependence er,. Thus the two important
soft breaking masses are universaMyt but the phases are phases arég, and¢,. The parameter range that we examine
arbitrary. The experimental lower bound ap puts an upper s
bound on the gaugino mass;;,, and this upper bound is
generally reduced whe@P violating phases are present. Imo|<1 TeV; |my<1TeV; |Aj/myl<4 (3)

The Higgs boson mass lower bound and the sy con-
straint generally put a lower bound any,. Imposing the
fine tuning constraint a¥ gy generally increases that bound
when CP violating phases are present and also limits the ] ]
range of theC P violating phases. Thus the two experiments AS discussed above, bo#), andd. can be obtained from
interact to further restrict the SUSY parameter space whefll€ same complex amplitud& (assuming universal soft
CP violating phases are large. In Sec. IV we give somePreaking in the first two generationsOne has then

concluding remarks.

tanB=<40. (4)

2While there has been considerable progress in calculating the
Il. MUON MAGNETIC MOMENT AND ELECTRON EDM neutron EDM[20] and ***Hg EDM [5], there remain still significant
hadronic uncertainties, in contrast to the clear calculation of the
We consider here supergravity models which are a geneEgpM. Further, thep, phase can always be adjusted to satisfy the
alization of minimal SUGRAMSUGRA,) to include the pos-  neutron EDM, and the effect of th&*Hg EDM would then only
sibility of phases in the soft breaking masses at the GUTresult in reducing the remaining parameter space that we find from
scaleM g=2Xx 10'® GeV. The magnitude of the soft breaking the EEDM and the muog—2 given here.
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a —_—————
B amsintey

m’, R4 A] (5)

d./e=— m. IM[A]. (6)

The amplitudeA is defined in the Appendix. For the case
where there are nG P violating phases, the experimentg)
data[7] favors large taB [8]. In order to see semiquantita-
tively the nature of the cancellations needed to make
small, the leading terms for large tBnwere obtained in the
Appendix when,u2>M\2,\, (which is almost always the case
for the MSUGRA parameter spacé&rom Eqs(A18), (A25)
we find for the neutralino and chargino diagrams

a,=a(x")+ax’ (7)
where
~ | lul? m;
a(x )=Cu(x") ~—F1— ~ F2|cosé
g |p[?=m3 © u[?—m3 g
8
| ul? | ul?
a(XO):C,L( %) 2 —— 0% =3 |Cu
mg ez [wl*=mi
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2 Py ~ 21
mg —mg2 2 [ul?~m]
Img|  [uf?
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wt o1 2tarfby m, |ul?—ms
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1m,
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where
~. am’ tanf
C.lx7)= (10

A7rmy| w|Sir? 6y

and C,(x°) =tarfy(m,/|my|)C,(x*). The form factors
Fi=F(m§/m~)2—(i:) andeizG(mik/miP) are defined in Egs.
(A8),(A12), and |my|=0.4m,;,, M,=0.8m;,,. (Our states
are labeled such that e.gr o< m;(Jo fori<j.)

A similar decomposition of the electron electric dipole
moment,d./e=d(x*) +d(x°), gives

m3

d(x™)=—De(x") —F,|sing,

m;

= 1~
pl?=mg © |ul?-
(11
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whereD = (m¢/2m?)C,, .
In the case where all phases are zero, it is well known that
the chargino contribution t@, dominates over the neu-

tralino diagram even though the front factc@;(}i) and
CM(XO) are of comparable size. This can be understood from
Egs.(8) and(9) in the following way. The second term in Eq.

(8), coming from the heavy chargin(iz?, cancels about
30% of the light chargino contribution. In a similar fashion,
the second term in Eq10) coming from the heavy smuon,

1L, contribution cancels part of the leading term. However,
due to the slowly varying nature of the form fact@g,; and
G,q, about 75% of the leadinG,; term is canceled, reduc-
ing a(;(o) significantly. The remaining two terms arising
from the heavy neutralinos}(z”a4 are generally smalland
there can be cancellations also between these jetmson-
trast, when theCP violating phases are not zero and an
electric dipole moment exits, the neutralino and chargino
contributions must be of nearly equal size and opposite sign
so thatd, be greatly suppressed to be in accord with experi-
ment. This change in the relative sizes of the two terms must
be brought about by the sine factors in Edd),(12). Simul-
taneously, the corresponding cosine factors in E8f.(9)

will modify the predictions ofa,. This then leads to two
questions(1) Can the experimental constraints ¢nanda,,

(and of course all other experimental constraitts simul-
taneously satisfied with “large” phases, i.e., of O(107? (2)

If large phases are possibland d. is very small can the
experimental constraints be satisfied without undue fine-
tuning of the phases? Questi¢®) divides into two parts:
(2a) Is there undue fine-tuning of phases needed to satisfy the
experimental constraints at the electroweak scale(2ids
there undue fine-tuning of the phases needed at the GUT
scale? In the following, we define the fine tuning parameter

R(¢) for any phasep by

_ b _Ad
RpI=g— =

§(¢2+ ®1)

(13

where ¢, and ¢, are the upper and lower value @f when

the experimental constraints oy anda,, are both satisfied.

We use here the current bound dg[21],
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|de|<4.3x10 %" cm (14) whereb is the term in Eq(9) independent of the phases. In
generalp is quite small, and we will neglect it in the follow-
and the 2 std range fa, [7]: ing. (Of course, in the numerical calculations in Sec. Il all
such effects as well as the loop corrections are considered.
11X 10™ 1°<a#< 75X 1010 (15) Using Eq.(18) to eliminatefg, we obtain
a,=*a,(0)Q(a,¢1) (20)

In the following we will assume that no fine-tuning less than

1% be allowed: i.e., wherea,,(0) is the value ofa, with zero phases,

R(¢$)>0.01. (16) _ [1+2acose, +a%]"?
N (1+a)

=<1. (22)
Within this framework, we find that questiqd) can be

answered affirmatively, i.e., cancellations between the neufhe + factor in Eq.(20) is the sign of co®s. Since experi-

tralino and chargino diagrams by, can indeed be satisfied mentally, a,>0, this implies

with large phases. Further, the answer to questianig that

no undue fine-tuning of the electroweak parameters is neces-0g>0 for 0<¢<m; 6g<0 for w<P,<2m.

sary to achieve the suppressiondyf. However, we will see (22

that this is not the case at the GUT scale, where the simul- i ,

taneous requirements of electroweak radiative breaking and '€ two branches of Eq22) are symmetric, and in the

the experimentald, constraint leads to significant fine- [ollowing we consider thels>0 branch. The factoQ in Eq.

tuning, and if Eq(16) were imposed, a large amount of the (21) reduces the theoretically expected sizedgr Since the
parameter space is eliminated. experimental lower bound oa, implies an upper bound on

In a GUT theory, the fundamental parameters are specilv2[8], theQ factor due to the phases will reduce this upper
fied atM gy, and the consequences at the electroweak scafe®und, further restricting the allowed SUSY parameter
are obtained from the renormalization group equation$Pace. However, since in gene@k0.5, this reduction will
(RGES. These GUT parameters are presumably to be detestill be consistent Wlth gll experimental data, and t_he_effect
mined at some future time by a more fundamental theory! the SUSY CP violating phases does not qualitatively
(e.g., string theory and so fine tuning at the GUT scale may change Fhe f_lt to the data far, that was obtained assuming
imply a significant theoretical problefwhile fine-tuning at ~ N0 CP violating phases. _ o .
the electroweak scale would be an acceptable theoretical We can also estimate how much fine tuning is needed in
consequence of the RGEOf course, what level of fine the phases to satisfy the experimental bound of Ed).
tuning is acceptable is somewhat a matter of choice, and wehus letA dg be the change img for a fixed value ofp, as
view Eq. (16) only as a reasonable benchmark to consider. de/€ varies from —4.3X 10721 cm to +4.3x10°%" cm.

In Sec. Ill below, we will consider these results in detail Characteristically, the factdd (x*)A in Eq. (17) is numeri-
quantitatively. We give here an analytic discussion of howcally about 100 times the current upper boundigifie.g., for
they arise. To show that large phases are easily achievabley,;,=480 GeV (my=118 Ge\}, |u|=690 GeV, and tap
we write d, in the form =15, this factor is 4.X10 2 cm]. Considering then the

variation of 6g in Eq. (17) one finds

de/e==De(x)ALsiNO,) +asin(O,+ p0)] (A7) 102 5\ o o go)[1+acos dy) +asinbo)tan )],

where the coefficient8 anda can be read off from Eqs11), (23
(12). In the extreme case whedg=0, Eq.(17) and Eq.(1)  Hence using Eq(18),
imply
R(0g)=A0g/sin(05)=2%x10"%/(asin(¢;)). (24
asing,
tan@szm (18 Thus the allowed range of is indeed small, though the

condition of Eq.(16) is generally satisfied. A reduction df

by a factor of 10 would be enough to produce a serious
ine-tuning problem at the electroweak scale. In contrast, we
will see below that there is already a significant fine-tuning
problem at the GUT scale even with the current bound on

where we have neglected the small 1-loop correction in E
(1). The fact that the chargino diagram dominates over th
neutralino diagram implies that<1, and detailed numerical
calculations show thad~0.2—-0.4 for much of the SUSY

parameter space. Thus @s varies from 0O to 2r, over most de.
of the parameter spad#g| will be large (rising to a maxi-
mum of about 0.5even thougtd, has been set to zero. lll. DETAILED CALCULATIONS
We next consider the effects of tl@P violating phases In this section, we consider detailed calculations of the
ona, . From Egs(8),(9), we have effects of the experimental constraints involving the EEDM

_ and a,, which were analytically estimated in Sec. Il. The
aM=CM(Xi)A[cos(0M)+acos(6#+ ¢1)+b] (19 analysis is done within the framework of the generalized
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FIG. 1. Corridors in themy—m,,, plane allowed by the relic FIG. 2. Corridors in themo—my, plane allowed by the relic

density constraint for(bottom to top tang=10,30,40 form,  density constraint foffrom bottom to top Ag=0, —2my,, 4my,
>114 GeV,A,=0, x>0, all phases set to zero. The {8r 30 and  for my>114 GeV, x>0, all phases set to zero. The lowew,
40 corridors all lie in the coannihilation region, while only the Pounds forAg=0, —2m,, are due to thé— sy constraint, and for
beginning of the ta= 10 corridor is in the noncoannihilation re- Ao=4my, from the Higgs boson mass bouftb].

gion. The Higgs boson mass bound determines the lowgs ) ]
bound for tan3= 10, while both the Higgs boson mass and the The effects of the Higgs boson mass dné sy bounds is

—sy bounds equally produce the lower bound for gn30 and  to push the allowed parameter space mostly into the coanni-
b— sy determines the lower bound for t@+ 40. The short slanted hilation domain of the relic density calculatiofThus only a
lines represent the upper bound i, due to thea,, lower bound, ~ small part of the allowed parameter space occurs at small
of Eq. (15). enoughmy, to lie below the region of coannihilation, which
begins atm,;,=350-400 GeV. In SUGRA models, stau-
MSUGRA described in Sec. Il{though extension to non- neutrallno coannihilation can occur quite naturally. Thus for
universal soft breaking models can easily be doheorder =0, the charged sleptons lie below the lightest neutralino,

to get a clear picture of what constraints on the SUSY pa 0
rameter space arise, it is necessary to simultaneously impogé’ and one must increase, to raise their masses so that the

all the experimental constraints. Aside from the above, thesgl is the dark matter particle. Thus &s,,, increasesmg
include the following:(1) The LEP Higgs boson mass lower must be increased in lock step so that the neutralino remains
boundm;,>114 GeV[22]. Since the theoretical analysis of the lightest supersymmetric particleSP), and one finds a

my, still has abotia 3 GeV uncertaintfwhich (conserva- relatively narrow corridor in theny—m;;, plane consistent
tively) may be an overestimateve interpret this in the the- with the relic density bound of Eq26) and with the lightest
oretical calculation15] to meanm,,>111 GeV.(2) Theb stau lying above the neutralino. The dependence of these

— sy branching ratio constraint. We take bea 2 std range corridors on taB andA, are shown in Figs. 1 and 2 for the

of the experimental CLEO da{&3] case where there are no SU&W violating phases. We see
that the corridorgwhich are characteristically 20—30 GeV
1.8X10 *<BR(B—X.y)<4.5x10 4. (25  wide) lie higher for larger tagg and largefAy|. This is be-

cause the stau mass decreases when these parameters are
In the theoretical analysis we include the next leading ordemcreased, and so one must raisg to keep the stau mass
(NLO) SUSY contribution for large taf [24], as these pro- greater than the neutralifdn general, the effect of coanni-
duce significant effectgparticularly since thea, lower hilation is to determinen, approximately in terms oy,
bound favors larger values of t@). (4) We include the for a given tar@ and A,. This greatly sharpens the predic-
1-loop corrections to thé and 7 masseq 25|, which are tions of the theory.
significant also for large ta@. (5) All coannihilation effects
are included in the relic density calculations. We assume here A. Allowed regions at the electroweak scale fog and ¢,

the range for the neutralino cold dark matter to be We now examine the effects of having nonz&® vio-

lating phases present, and discuss the dependence of the al-
lowed phases on the SUSY parameters. To illustrate the phe-
nomena, we consider one low t8nand one high tag.

The upper bound is consistent with recent Boomerang and

Maxima measuremen{6,27], while the lower bound al-

lows for the possibility that there may be more than one type 3ncreasing tag or makingA, negative increases the magnitude

of dark matter. However, our calculations here are insensitivgf the LR term in the stau mass matrix of EGA3) and hence

to the precise value of the lower bound, and one would gegiecreases the light stau mass. Bgr>0, the opposite effect occurs,
very similar results if the lower bound were raised to 0.05 orbut also the diagonal matrix elements of the mass matrix are re-
0.1. duced, and again the stau mass decreases.

0.025< (;0h?<0.25. (26)
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FIG. 3. Regions allowed fofg by the experimental constraint ~ FIG. 5. Same as Fig. 3 for tg#=15. The allowed regions ter-
on d, as a function ofm,,, for tang=40, A;=0, for ¢,=0.9  minate at lowm,,, due to them, constraint.
(lower curve$ and ¢, =1.2 (upper curves

We consider next the tgh dependence of the allowed

Since for noCP violating phases, one ha@t 90% C.L)  region for 5. This arises due to an indirect t&ndepen-
tanB>10, we examine the cases of {15 and targ  dence in the parametarof Egs.(17),(18). As seen from Fig.
=40. Figure 3 shows the corridors allowed f6g (the B 2, coannihilation determinesy, in terms ofmy;,, and this
phase at the electroweak sdabey the current experimental Mg increases with tag, changing the ratio of neutralino to
bounds ond, for tang=40, A,=0 for two choices of the chargino diagram differentially. Figure 5 shows the allowed
gaugino phased;=0.9 (lower curve$ and ¢, =1.2 (upper  region for tangd= 15, andA,=0, ¢, =1.2 (upper curvesand
curves. One sees that one gets a significant phasef the ~ ¢1=0.9 (lower curveg. We see that one can get considerably
size expected by Eq18), the largere; allowing a larger larger values ofg at lower tans, though the upper bound
0, also in accord with Eq(18). Note also that the allowed On my, due to the lower bound om, is considerably re-
corridors for8g widens asm,,, increases as expected, since duced at low tagg. TheA, dependence is exhibited in Fig. 6,
the experimentatl, constraint is less severe for a heavier where the allowed corridor foég is plotted for tan3= 40,
mass spectrum. A similar graph is shown in Fig. 4 oy  ¢1=0.9, andA;=0 (upper curves |Ao|=2my;,, a(=0.5
=0.9 (upper curves ¢,= 3.4 (lower curve$. g turns nega- (lower curve$. Increasing the magnitude 8 increases the
tive for ¢, in the third quadrant, again as expected from Eq.value ofm, (by Fig. 2 and reduces the size @ .
(22.

We note in all these curves, the upper boundrgp (due B. Fine tuning at the electroweak scale
to the lower bound om,,) is reduced compared to the case
when theCP violating phases are zerdgThen the upper
bound ism;,=790 GeV for tanB3=40, Ag=0 [8].) This is
due to the phaseé; in the Q factor in Eq.(20). Q is smallest
when ¢ is nearsr, as can be seen in explicitly in Fig. 4 for

The above analysis shows that ttg experimental con-
straint allowség to beO(10™ 1) for a wide region of param-
eter space, angh; can range widely, i.e., from O to2 We
next investigate whether the smallness of the upper bound on
d. requires any fine tuning to maintain this constraint. In Fig.

$1=3.4. 7 we plot the fine tuning parametBrof Eq. (13) for 6z for
0.2}
0.24
o1l ] 0.22 /
0 0.2
B 8
0 0.18
0.16
-0.1¢t ]
% 0.14 //\
m (GeV) m; (GeV)
2 2
FIG. 4. Same as Fig. 3 fot);=0.9 (upper curves and ¢, FIG. 6. Allowed region forég for tanB=40 for A;=0 (upper
=3.4 (lower curves. curves and|Ag|=2my,, ay=0.5 (lower curves.
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FIG. 7. R(6g) as a function ofm,;, for tang=40, A;=0, ¢, )
=0.9 (upper curve ¢,= 1.2 (lower curve. FIG. 9. R(¢,) as a function ofny,, for tang=40, A;=0, and
05=0.2 (upper curvg, 65=0.3 (lower curve.

tanB=40, A;=0 for ¢;=0.9 (upper curve and ¢,=1.2 6, does not run with the RGE, its value at the GUT scale is
(lower curve. One sees tha®(6g) is small, i.e., a few per- the same as at the electroweak scale and hence no fine tuning
cent, but satisfies the criterl@>0.01 for the entire range. i needed aMg. A similar result holds for$,, which also
The size ofR(6g) is consistent with what was expected from d0€s not run with the RGE. However, as has been previously
the analytic analysis of Eq24), and increases ag, de- pointed ouf 4], matters are dlffere_nt for 'ghB phase aM;,
creases also as expected. Figure 8 shows a similar plot fdfs,, @nd we review briefly the discussion given théreo
tanB=15. Sincefy is larger here(see Fig. 5 R(6g) is See analytically what i_s occurring, we consider the interrr_le-
smaller, but still within the acceptable range. Figure 9 showsliate and low taiB region, where the RGE can be analyti-
R(¢,) for tanB=40, A;=0 for #3=0.2 (upper curvg, and cally solved. One finds foB the resultf4]
05=0.3 (lower curve. Again R(¢;)>0.01 for the entire 1
range ofm,,,, and is generally larger thaR( 6g) (by about a B=By— =(1-Dg)— >, ®;|my e (27)
factor of tang,/¢). 2

We see from the above results that the current experimeRghere D,=1— (m, /sin8)2<0.25 and®;=0(1). As tang
tal bound ond, can be accommodated with large phasesgets large, the radiative breaking condition EB) shows

Further, for most of the parameter space, while the range chat |B| gets small. Taking the imaginary part of EQ7)
the allowed phases at the electroweak scale required to agjyes

commodate the bound a, is small, no fine-tuning below
1% is needed. We will see, however, a more serious fine-  |B[sin#g=|Bo|sin g, —(1/2)(1—Do)|Ao|sinayg
tuning problem develops at the GUT scale.
. =2 ®|mysing; . (28)
C. Fine tuning at the GUT scale
We now examine what parameters are fine tuned at th&o the lowest approximation, sind®| is small, one may
GUT scale to achieve the experimental EDM bounds. Fronthen neglect the left-hand sideHS) of Eq. (28). Equation
Eq. (1), we see since the loop correction is small, that (28) may then be viewed as an equation determinggin
—0g, and since we have seen tt does not need exces- terms of the other GUT scale phases, and hemgewill in
sive fine tuning, the same can be said for. Further, sinceé  general be large if the other phases are not all staaiésult
that is confirmed iN4] by detailed calculation However,

o 05 the range 0f950 so that the experimental bound ah is
. satisfied is then significantly reduced. Thus for fixed values
0.045 of a and ¢;, Eq. (29) gives as tagg gets large(i.e., | B|
0.04 becomes small
R(6p) 05022 A g, =(|B|/|Bo)A g <A . (29)
0.025 Since we have already seen tha#g is small (though not
0.02 violating the fine tuning condition one may expect that
0.015
300 350 400 450 500
“This analysis differs from that given {r28] which does not take
m% (GeV) into account the possibility of cancellationsdg between the neu-
tralino and chargino diagrams. In fact the discussiof2Bj sets the
FIG. 8. Same as Fig. 7 for tge+ 15. phaseﬂs0 to zero.
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0.025

0.02
0.02

R 0.015

Bo) 0.015 R(eBo)

0.01

0.01 0.005

0

200 500 600 700 200 500 600 700
m; (GeV) my (GeV)
2 2
FIG. 10. R(6s,) as a function of, for tang=40, A;=0 for FIG. 12.R(6,) as a function ofny, for tanB =40, ¢, =0.9 for
(from bottom to top ¢;=1.6, 1.2, 0.9, 2.3 and 2.6. Ao=0 (upper curvg and|Ao|=2my,, ap=0.5 (lower curve.

A g, may need to be fine tuned, particularly for lawy,  the electron electric dipole moment experimental bound is
where the SUSY mass spectrum is light. This is seen explicimposed on the SUSY parameter space. In order to analyze
itly in Fig. 10 for tang=40, Ag=0 with ¢,=0.9, 1.2, 1.6,  this, we imposed simultaneously the accelerator bounds of
2.3, and 2.6. We see th(¢g ) decreases ag; increases the Higgs boson massm>114 Ge\ and the b—sy

from 0.9 to 1.6 &=/2) and then increases for 2.3 and 2.6 branching ratio, the relic density bound for neutralino cold
where 7 — ¢, is decreasing.The upper bound om,, aris-  dark matter and the recent 2.6 std deviation of the muon
ing from the lower bound oa,, decreases ag; moves into  magnetic moment from the standard model prediction. The
the second quadrant in accord with E¢80),(21).] We see  (ifferent experimental constraints interact with each other.
that if one imposes the fine tuning constraint th4ts )  Thus the Higgs boson mass ang sy constraints put lower
>0.01, large sections of the lomy,, region would be ex- bounds on the gaugino mags,,,=(300—400 GeV] which
cluded, e.g., one would require;;,>540 GeV for¢;=1.6.  puts the relic density analysis mostly in the region where
The fine tuning becomes more acute at lower values oBtan stau-neutralino coannihilation occurs. This closely fixes the
Thus Fig. 11 showsk(6g ) as a function ofmy, for tang  scalar mass, in terms ofm, (for fixed A, and tang). The
=15, Ag=0 for ¢,=0.9 (upper curvg¢ and ¢, =1.2 (lower  a, lower bound then puts an upper boundrog,. Thus the
curve. Thus the fine tuning constraint would eliminate com- parameter space becomes highly constrained. One can esti-
pletely ¢,=1.2 (and the entire region of-0.4 radians mate analytically, as was done in Sec. ll, the effects of turn-
around/2) and also restricts the other valuesfgf Finally, ing on theCP violating phases. In fact ifl, were zero, one

we note that increasing, generally increases the amount of could still have largeC P violating phases present, with the
fine tuning needed. Thus Fig. 12 sho®$6g ) for tang B-ino phasep, between 0 and 2. The condition thag,, be
=40, ¢;=0.9 for Ap=0 (upper curvg and |Ao|=2m,,,  Positive puts thd phaseds in the first and fourth quadrants

ao=0.5 (lower curve. The entire|Ag|=2my, curve has With [0g]~0.2-0.4. The dependence @ on tans andA,
R(fg )<0.001. was discussed in detail in Sec. Ill. It was seen that the phase
0 ¢, acts to reduce the theoretical valueaf by a factorQ
IV. CONCLUSIONS <1, defined in Eqs(20), (21), and from the experimental
lower bound ona,, this reduces the upper bound am,,
We have examined here what SUEW violating phases  limiting further the parameter space. The reduction of the
are possible within the framework of SUGRA models, whenupper bound omm,, has several phenomenological conse-

guences. As can be seen from E2jl) and Fig. 4, the effect

0.014 is largest whenp, is close torr. Thus in the example of Fig.
4 when ¢,=3.4, one hasm,;,<515 GeV, anddg is still
0.012 fairly large (fg=0.14). This can be compared to the result
for tan=40 when all phases are zero wharg;,,<790
R(GBO) 0.01 GeV [33]. Thus the upper bound on the gluino mass would
now be 1280 GeV compared to 1960 GeV when the phases
0.008 are zero. Similarly the rest of the SUSY spectrum would be
o 006 significantly reduced, making the SUSY mass spectrum more
' accessible to accelerator discovery. Thus we ﬁ"KdF 220
300 350 400 450 500 GeV, m;(lr<421 GeV,ng, <319 GeV,n;, <446 GeV,nt,

m% (GeV) <225 GeV,rrrT2< 445 GeV. Hence for this example, the elec-

troweak sector would be mostly accessible to a linear col-
FIG. 11. R(8g,) as a function ofny, for tang=15,A,=0 for  lider at 850 GeMsuch as teslg34]) though the squarks and
¢1=0.9 (upper curvg and ¢, = 1.2 (lower curve. gluinos would require the LHC.
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0.025
0.014
0.012 0.02
0.01
R(GBO) 0.008 R(BBO) 0.015
0.006
0.01
0.004
0.002 0.005
i /_________,__
200 500 600 700 300 350 200 250 500
my (GeV) m; (GeV)
1 2
FIG. 13. R(6g) as a function ofn,, for tang=40, A;=0, ¢, FIG. 14. R(6g) as a function ofmy, for tang=15, A;=0,
=0.9 (lower curve and ¢,=0.4 (upper curvg with the current  ¢;=0.9 (lower curve and ¢,=0.3 (upper curve with the current
experimental bound od, reduced by a factor of three. experimental bound od, reduced by a factor of three.

A second consequence of the reduqtion of the UPPEL factor of three¢,<0.4 in Fig. 13 and$,<0.3 in Fig. 14
bound onm,, occurs in dark matter detegtlon_cross sections,, o id have less fine tuning but correspondgie<0.1.
Thus the neutralino-proton cross section is a decreasing In a GUT theory, presumably the parameters at the GUT
func'gon ofml,zl,danq forhexar_nple reqU|rlnm1,2<_515 Sev Iscale are the more fundamental ones, and fine-tuning of these
as above, would raise the minimum cross sections by nearly, o meters would presumably represent a serious problem.

~10°° ini . . .
a factor of ten(to ~10 " pb) compared to the minimum ¢ oorse what level of fine-tuning one accepts is somewhat
cross sections withoE P violating phase$15]. Future dark matter of taste, and we view the criteRa-0.01 as merely

. a
matter detectors would then be able more easily to scan thé? benchmark for consideration. However, the above results

fl_J” S.USY parameter space. The effect of Fhe SUeP show that any significant experimental reductiordgfvould
violating phases should also effect the experimental accesshiake the idea of large SUSEP violating phases more

i : DR
bility of detecting theBs— .~ w" which also favors the eIt to maintain, as fine-tuning would set in even at the
large tanbeta regime. Up to now this decay has been studi ectroweak scale unless the SUSY masses are heavy.

in the limit of vanishingCP violating phase$35]. Finally we mention that the lepton EDMs scale with their

The relevant question, however, is whether the smalinesg,ysqes " assuming lepton universality. Thus the bound of
of the experimental bound od, requires an unreasonable Eq. (14 would correspond to a muon EDM bound of

amount of fine-tuning of the phases. Using the parameteg gv 10-25% cm. The current bound od is 1x 10~ 8e cm

— : N ) I
R(¢)=A¢/¢ay, we find at the electroweak scale, both gg5o, ¢.1) [36]. However, experiments are currently being
R(0s) andR(¢,) are small, i.e., a few percent. However, in ¢,ngidered at Brookhaven to measdieto within an accu-
generalR>0.01, and so no fine tuning below the 1% level is racy of about 10%% cm [37], which would make the muon

needed. However, at the GUT scale, this is not the case fqtp\ measurements competitive with the electron measure-
R(HBO) for a significant part of the parameter space. Thus if

ments.
we were to exclude regions Whel%(630)<0.01, then for

tanB=15, A;=0, ¢, phases near 90(.e., 1.X ¢$,;<2.0)
are completely exclude(Fig. 11). The effect is reduced for ACKNOWLEDGMENTS
higher tanB. However, for example, for tg8=40, A;=0
the conditionR>0.01 would eliminatem,,,<540 GeV for
¢,=1.6, and raise the lower bound an;, by a lesser
amount for other values ap, (Fig. 10. IncreasingA, de-
creases the value &, making the fine-tuning more serious,
as can be seen in Fig. 12. APPENDIX: DERIVATIONS

The fine-tuning problem is thus on the verge of becoming | this appendix, we calculate the leading terms ingan
quite acute. The experimental bound dais likely to de-  for the complex amplitudé\ of Egs. (5) and (6) needed to
crease by a factor of three in the near futl28]. The effect  cajculatea, andd,. In order to do this, it is necessary to
this would have is shown in Figs. 13 and 14. Figure 13jagonalize the various mass matrices entering in the
showsR(6g) as a function ofm,, for tang=40, A¢=0,  chargino and neutralino loops. These matrices depend on the
¢1=0.4 (upper curve (corresponding tg=0.1) and¢,  phasesp,, a|, andf=6,+ €;+ €, whereq, is the phase of
=0.9 (lower curve. The curves are what would occur if the A and (H;=v; £'12 where v, ,=|(H; »|. Minimizing
experimental bound od, were reduced by a factor of three. the effective pote'ntial with respéct 0, determinesd in
Figure 14 showsR(fg ) as a function ofmy;, for tanB  terms of g5, and one may then choose Higgs phases such
=15, Ag=0, ¢,=0.3 (upper curve (corresponding todg  that €; ,=0, as was done in Eql). With this choice of
=0.1) and¢,= 0.9 (lower curve, if the bound is reduced by phases, the chargino and neutralino mass matrices are

This work was supported in part by National Science
Foundation Grant No. PHY-0070964.
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m, V2Myy sinB G 1 m,
V2My, cosp3 I M kT myo
m 0 a b where
M 0 m, ¢ d A2) L
-
X a C 0 - M 77}(:_|:E(tanﬁwxlj+>(2j)DIk_ K|X3jD§k
b d —-u O
- o~ . _ X[\/EtanawxljDZk+ K X3iD 1], (A10)
wherem;=|m|e'?1, u=|u|e'%, a=—M;sinf,cosp, b
=M, sin@ysinB, c=—acoté,, d=—b coté,, andm, has 1 ) ) )
been chosen real and positive. X] :Eta”zﬁvv|xlj| (|D1l“+4[D2l?)
The slepton mass matrices have the form
, (ML Mg |X21|2|D1k|2+tan0W|le|2X11 ;+O(m)
T\ a2 2 (A3)
Mitr  Mirr (A11)

2 _ ia
wheremi g =m (A —xtang), A=|Ae', and and K= m|/(\/§MWcos,8) The loop integrals areGy;
1 —G(m/m~o) Hyj= H(m/m~o) where

m|2LL=m5+m|2—§(1—2 sifOy)M2cos28 (A4)

1+x 2X

Mis = M2+ m?—sir? 6y M2 cos 28. (A5) G(x)= (1—x)2+ (1_X)3|HX (A12)

The mE'R are obtained by running the RGE from the GUT
scale to the electroweak scdlg0]. In our analysis we will 2+ 5x—x? 6X

) . ~ ~ H(x)= + Inx. (A13)
assume universal soft breaking of theande scalar masses (1-x)°%  (1-x)4

(mg) and universal cubic soft breaking masség)(at M.
Sincem? andm are very small they can be neglected at thewe need only keep the termsAnindependent ofn, and thus

electroweak scale |eNI —M~ can neglect theO(m,) terms in Eq.(Al11). (Actually, 77|
M7o is a symmetric, complex matrix and can be diagonal-begins linearly inm;.)
ized by a unitary matrixX according toM;oX= X*M(D) We are interested in calculating only the leading terms in
Where tanf. We will also do this in the limitM3,/| x|?<1 and
M2/|m;|?<1 (which is valid for most of the MSUGRA pa-
M%(Do)=diag(m~2,m;(g,m;(g,rn;(g). (AB6) rameter spageIn that case one hd82]
M3 can be diagonalized by a Hermitian matriX with m}gzlﬁlﬂ; m;(gzm;ltzﬁh; MQ =my==|ul.
M7 D= DMZ(D) where Mz( )= =diag(m; mTZZ). Finally one ' (Al4)

dlagonallzesl\/l v+ by two unitary transformationhl and V
according  to U*M;(:VTzMiDi) where MiDi)
=diag(m~1r,m;(2t).

The amplitudeA can be divided into its chargino and

We consider first the calculation @f(x™). SinceV diago-
nalizesM—}(iM;(t and U* diagonalizesl\/l;(:M;(t one finds
for the leading terms

neutralino partsA=A(x")+A(x°). We follow the notation |uf?
of [31] where one finds that = — —\/—Mwsm,8| 7 1‘1 (A15)
AxH) = ! ! u VEF, (A7)
X )= i2 r~n2
\/—MWCOS,B V21— \/—MWSII’]ﬂ |M|2 = V22- (Al16)

andF;=F(mZ/m..) with

Xi With an appropriate choice of phases one has to lowest order

F(x) 1-3x  2x°Inx (8) Uy=1=Uy, V;;=1, and
X) = - .
(1-x)? (1-x)°

V=gl (Al17)
Similarly Hence inserting into EqA7) gives

113010-10
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|ml? m;
| ul?=m3

~ tang

Ax")=—= O
M| ]

1™ ~ 2|
| 2= m3
(A18)

To calculate the leading terms &f x°) it is useful to first
note the size of the matrix elemerg . Thus to zeroth order
in M5

Xy =e (1201

Xp=1 (A19)

1 . .
X3g=— Xg3= —29_ W20, Xg=Xgg=e"™'?Xg5. (A20)

Also one hasX;,, X,; are O(M3) (and hence negligibje
while the remaining components a@M;). To lowest or-

. 2
der, the slepton mass eigenvalues amésmfRR, sy
1

I2
=m? | , and theD matrix has the fornD,=1=D,; and

m(AY — wtang)

2 2 22- (A21)
my —my
2 1

To illustrate the calculation oA(x°) we consider the
leading term whek=1=j. From Eq.(A10), two terms con-
tribute to 7} for large tang:

(V2 tanBy,X11D 2) + (K X3:D%p)

1
"= ( Etan OwX11D 71

X (V2 tanfyX11D2y)

which evaluates to

(A22)

m tarf 6 tanB|  |u|? | ul?

PHYSICAL REVIEW &4 113010

where we have used

| |2
| ]2 =] my|?

M sin 6y sinB
o

3= Xq1. (A24)

[Note that 7} is linear inm, and hence Eq(A9) is not
singular asm;—0.] In a similar fashion one can obtain all
the leading terms in EqA9). [The X}‘ terms of Eq(A11) do
not contribute] The total answer is

> ul?
2 2 ~
mp - [wff=[my?

~ tar? 6,y tan3 ( s
- 11

A(X")= =
||l

11 fuf?
2 tarf Oy | u|?—mj

w21 |uf?

_z Gl e-i(0ut 1)
2 2 ~ 21
m —my 2 |l ]my|?

G23)

(A25)

my| 1 |my|m,
=G5
my 2 | )

1 |my| |uf?

xe Out =
tart6y, |4l |u|2—m2

1
Z 623 .

We note that a large amount of cancellation occurs in this
regime: terms proportional 1G,, have all canceled with part
of the G,; terms, and the totab,, contribution cancels with
the G,5 terms. Note also that tha(x°) depends separately
on two phase combination#,, + ¢, and 6, though terms

/i 2 2 ~
|l mp —mp |l
X e (Ot 1) (A23)  depending or9,+ ¢, are generally larger.
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