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Supersymmetric phases, the electron electric dipole moment and the muon magnetic moment
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The electron electric dipole moment (de) and the muon magnetic moment anomaly (am) recently observed
at BNL are analyzed within the framework of SUGRA models withCP violating phases at the GUT scale. It
is seen analytically that even ifde were zero, there can be a largeB-ino mass phase~ranging from 0 to 2p)
with a corresponding largeB soft breaking mass phase~of size&0.5 with the sign fixed by the experimental
sign of am). The dependence of theB phase on the other SUSY parameters, the gaugino massm1/2,tanb,A0,
is examined. The lower bound ofam determines the upper bound ofm1/2. It is shown analytically how the
existence of a nonzeroB-ino phase reduces this upper bound~which would correspondingly lower the SUSY
mass spectra!. The experimental upper bound onde determines the range of allowed phases, and the question
of whether the current bound onde requires any fine-tuning is investigated. At the electroweak scale, the
phases have to be specified to within a few percent. At the GUT scale, however, theB phase requires
fine-tuning below the 1% level over parts of the parameter space for lowm1/2, and if the current experimental
bound onde were reduced by only a factor of 3–4, fine-tuning below 1% would occur at both the electroweak
and GUT scales over large regions of the parameter space. All accelerator constraints (mh.114 GeV,
b→sg, etc.! and relic density constraints with all stau-neutralino coannihilation processes are included in the
analysis.
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I. INTRODUCTION

The role thatCP violation plays in elementary particl
physics and how it relates to current theory still remains a
many years unclear. In the standard model~SM!, CP viola-
tion is accommodated by inserting a single phase into
Cabibbo-Kobayashi-Maskawa~CKM! matrix, and there are
now under way a number of experiments to test the valid
of this idea@1#. In supersymmetry, the CKM phase can al
exist, but it is possible to have additional phases appearin
the soft breaking masses. From the viewpoint of str
theory,CP violating phases are a natural occurrence. Thu
10 or 11 dimensional M-theory models with six dimensio
compactified on a Calabi-Yau manifold, the Ka¨hler potential
and Yukawa matrices are represented by integrals over
Calabi-Yau space, and since this is a complex manifold,
not surprising thatCP violating phases can arise. With su
persymmetry breaking, phases could arise also in the
breaking masses. However, M-theory is not sufficiently
veloped to determine the details of such effects, and i
useful to have phenomenological constraints as a guid
where the fundamental theory may be.

As is well known, the existance ofCP violating phases in
the supersymmetric~SUSY! soft breaking masses leads
electric dipole moments~EDMs! for the electron and neu
tron, and the smallness of the current experimental bou
on these puts severe constraints on the parameter space
may satisfy these constraints by assuming that the phase
nonzero but small@i.e., O(1022)# or that the SUSY masse
are large@i.e., *O(1 TeV!#. The electron EDM~EEDM!
arises from two diagrams: one involving the chargin
sneutrino intermediate state, and one involving
neutralino- selectron intermediate state. More recently it w
suggested that a cancellation might occur between these
for relatively large phases@i.e., O(1021)# over a reasonably
0556-2821/2001/64~11!/113010~12!/$20.00 64 1130
r

e

y

in
g
in

he
is

ft
-
is
to

ds
One
are

-
e
s

wo

large range of parameters@2#, and there has been a larg
number of analyses based on this idea@3–6#. Diagrams simi-
lar to the above also enter into the muong22, and the re-
cently reported 2.6s deviation from the standard mode
value for that quantity@7# has placed significant bounds~at
the 95% C.L.! on the allowed supergravity~SUGRA! param-
eter space@8#. It is thus natural to ask whether both co
straints can be phenomenologically realized, and initial d
cussions of this have been made@9#.

The minimal supersymmetric standard model~MSSM!
has over 40 independent phases, and so cannot make si
cant theoretical predictions on this question. We use h
instead supergravity~SUGRA! grand unified theory~GUT!
models with gravity mediated supersymmetry breaking@10#
and R-parity invariance.1 Such models have become qui
predictive, in part due to the fact that they automatica
include the CERNe1e2 collider LEP results on grand uni
fication, and because radiative breaking ofSU(2)3U(1)
implies that the SUSY soft breaking masses are of e
troweak size. Thus the general size of bothg22 and the
EDMs ~which depend on the size of the SUSY masses! are
restricted. In addition, such models have a natural candid
for dark matter, the lightest neutralino (x̃1

0), and the condi-
tion that the relic density of neutralinos be in accord with t
allowed range from astronomical measurements also
important constraints on the parameter space.

Previous analyses of the EDMs within the framework
SUGRA GUT models has shown that a new fine tuning pr

1Two alternate SUGRA models are anomaly mediated@11# and
gauge mediated@12# soft breaking. The former appears to ha
difficulty in satisfying the Brookhaven E821 bounds ong22 when
no SUSY CP phases are present@13#, while the latter does not
appear to have a satisfactory dark matter candidate@14#.
©2001 The American Physical Society10-1



pa

th
r,

ino
ed

at
ia
s

th
an

th
r t

g
-
th

t,

ta
ca
ed
e

r
th
e

t.

d
th
ts

he
m

ne

U
g

e not

o-
and
gino

loop
g
to
k

gs

g

ich

e

ere

ne

t

the

the
the

rom

R. ARNOWITT, B. DUTTA, AND Y. SANTOSO PHYSICAL REVIEW D64 113010
lem arises at the GUT scale foruB0
~the phase of B, the

bilinear soft breaking mass! when tanb gets large@4#. Fur-
ther, the discussion of the muong22 have shown that tanb
is greater than 5~and very possibly greater than 10!. In car-
rying out our analysis, then, we put a constraint on the
rameter space thatDuB0

/uB0
.0.01, whereDuB0

is the al-
lowed range that will satisfy the experimental bounds on
EDMs. In order to carry out a complete analysis, howeve
is necessary to include all the accelerator constraints@i.e.,
that mh.114 GeV ~whereh is the light Higgs boson!, the
CLEO bound on theb→sg decay, etc.# as well as the full
analysis of the relic density including all the stau-neutral
coannihilation channels.~The details of these were discuss
in @15,16#.!

Both the electron EDM and the muong22 can be calcu-
lated from two types of diagrams, one with the intermedi
chargino and sneutrinos states, and one with the intermed
neutralino and slepton states. If one assumes universal
breaking in the first two generations, then the EEDM and
SUSY deviation of the muon magnetic moment from its st
dard model value,am

SUSY
„am5(gm22)/2…, can both be cal-

culated from a single amplitude for these diagrams,
former being related to the imaginary part, and the latte
the real part. In the following we will use the symbolam to
mean the deviation of the muon (gm22)/2 from its standard
model value.

As is well known, for large tanb, am is dominated by the
chargino diagram@17,18# ~the neutralino diagrams bein
generally quite small!, while the strong experimental con
straints on the EEDM require a near cancellation between
neutralino and chargino diagrams@2#. In order to see how
this can come about whenCP violating phases are presen
we calculate in the Appendix the leading large tanb terms.
We discuss analytically in Sec. II how both experimen
constraints can naturally be satisfied at the electroweak s
In Sec. III we examine in detail numerically the combin
experimental constraints of the EEDM and the Brookhav
E821 am experiment on the SUSY parameter space fo
variant of the MSUGRA model where the magnitudes of
soft breaking masses are universal atMG but the phases ar
arbitrary. The experimental lower bound onam puts an upper
bound on the gaugino massm1/2, and this upper bound is
generally reduced whenCP violating phases are presen
The Higgs boson mass lower bound and theb→sg con-
straint generally put a lower bound onm1/2. Imposing the
fine tuning constraint atMGUT generally increases that boun
when CP violating phases are present and also limits
range of theCP violating phases. Thus the two experimen
interact to further restrict the SUSY parameter space w
CP violating phases are large. In Sec. IV we give so
concluding remarks.

II. MUON MAGNETIC MOMENT AND ELECTRON EDM

We consider here supergravity models which are a ge
alization of minimal SUGRA~MSUGRA! to include the pos-
sibility of phases in the soft breaking masses at the G
scaleMG>231016 GeV. The magnitude of the soft breakin
11301
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masses are still assumed to be universal, but phases ar
necessarily universal. Thus the SUSY parameters atMG are
m0 ~the scalar soft breaking mass!, m1/2i5um1/2uexp(ifi) i
51,2,3 @the gaugino masses for theU(1),SU(2),SU(3)
groups#, A05uA0uexp(ia0) ~cubic soft breaking mass!, B0
5uB0uexp(iuB0

) ~quadratic soft breaking mass!, and m0

5um0uexp(ium) ~the Higgs mixing parameter in the superp
tential!. The model therefore depends on five magnitudes
six phases. However, one can always set one of the gau
phases to zero, and we chose heref250.

The renormalization group equations~RGEs! allow one to
evaluate the parameters at the electroweak scale. To one
order, thef i andum do not run. Further, radiative breakin
of SU(2)3U(1) at the electroweak scale allows one
eliminateum in terms ofuB , theB phase at the electrowea
scale, and determineumu and uBu in terms of the other pa-
rameters and tanb5u^H2&/^H1&u. Thus with a convenient
choice of Higgs VEV phases, the minimization of the Hig
potential yields@19#

um52uB1 f ~2uB1aq ,2uB1a l ! ~1!

umu25
m1

22tan2bm2
2

tan2b21
; uBu5

1

2
sin 2b

m3
2

umu
~2!

whereaq anda l are the quark and lepton phase ofAq andAl

at the electroweak scale,mi
25mHi

2 1S i ( i 51,2), m3
2

52umu21m1
21m2

2, and mHi
are the Higgs boson runnin

masses at the electroweak scale.S i5dV1 /dv i
2 whereV1 is

the one loop contribution to the Higgs potential, andv i
5u^Hi&u. There remain therefore four real parameters wh
we take to bem0 , uA0u, um1/2u, and tanb, and four phases
uB0

, a0 , f1, and f3. In this paper we examine only th
electron electric dipole moment2 ~EEDM!, and so our results
are only very weakly dependent onf3. Also, since we are
dealing only with first and second generation sleptons, th
is only a weak dependence ona0. Thus the two important
phases areuB0

andf1. The parameter range that we exami
is

um0u,1 TeV; um1/2u,1 TeV; uA0 /m1/2u,4 ~3!

tanb<40. ~4!

As discussed above, botham andde can be obtained from
the same complex amplitudeA ~assuming universal sof
breaking in the first two generations!. One has then

2While there has been considerable progress in calculating
neutron EDM@20# and 199Hg EDM @5#, there remain still significant
hadronic uncertainties, in contrast to the clear calculation of
EEDM. Further, thef3 phase can always be adjusted to satisfy
neutron EDM, and the effect of the199Hg EDM would then only
result in reducing the remaining parameter space that we find f
the EEDM and the muong22 given here.
0-2
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am52
a

4p sin2uW

mm
2 Re@A# ~5!

de /e52
a

8p sin2uW

me Im@A#. ~6!

The amplitudeA is defined in the Appendix. For the cas
where there are noCP violating phases, the experimentalam
data@7# favors large tanb @8#. In order to see semiquantita
tively the nature of the cancellations needed to makede
small, the leading terms for large tanb were obtained in the
Appendix whenm2@MW

2 ~which is almost always the cas
for the MSUGRA parameter space!. From Eqs.~A18!, ~A25!
we find for the neutralino and chargino diagrams

am5a~ x̃6!1a~ x̃0! ~7!

where

a~ x̃6!5Cm~x̃6!F umu2

umu22m̃2
2

F12
m̃2

2

umu22m̃2
2

F2Gcosum

~8!

a~ x̃0!5Cm~x̃0!F H S umu2

mũL

2
2mũ

R
2

2
umu2

umu22m̃1
2D G11

2S umu2

mũL

2
2mũ

R
2

2
1

2

umu2

umu22m̃1
2D G21J

3cos~um1f1!2
1

2 tan2uW

um̃1u

m̃2

umu2

umu22m̃2
2

3H S G222
1

2
S m̃2

umu D
2

G23D
3cosum2

1

2

m̃2

umu
G23J G ~9!

where

Cm~x̃6!5
a mm

2 tanb

4pm̃2umusin2uW

~10!

and Cm(x̃0)5tan2uW(m̃2 /um̃1u)Cm(x̃6). The form factors
Fi5F(mñ

2/mx̃
i
6

2
) andGki5G(mm̃k

2 /mx̃
i
0

2
) are defined in Eqs

~A8!,~A12!, and um̃1u>0.4m1/2, m̃2>0.8m1/2. ~Our states
are labeled such that e.g.,mx̃

i
0,mx̃

j
0 for i , j .!

A similar decomposition of the electron electric dipo
moment,de /e5d(x̃6)1d(x̃0), gives

d~ x̃6!52De~ x̃6!F umu2

umu22m̃2
2

F12
m̃2

2

umu22m̃2
2

F2Gsinum

~11!
11301
d~ x̃0!52De~ x̃0!F H S umu2

mũL

2
2mũ

R
2

2
umu2

umu22m̃1
2D G11

2S umu2

mũL

2
2mũ

R
2

2
1

2

umu2

umu22m̃1
2D G21J sin~um1f1!

2
1

2 tan2uW

um̃1u

m̃2

umu2

umu22m̃2
2

3S G222
1

2
S m̃2

umu D
2

G23D sinumG ~12!

whereDe5(me/2mm
2 )Cm .

In the case where all phases are zero, it is well known t
the chargino contribution toam dominates over the neu
tralino diagram even though the front factorsCm(x̃6) and
Cm(x0) are of comparable size. This can be understood fr
Eqs.~8! and~9! in the following way. The second term in Eq
~8!, coming from the heavy chargino,x̃2

6 , cancels about
30% of the light chargino contribution. In a similar fashio
the second term in Eq.~10! coming from the heavy smuon
m̃2, contribution cancels part of the leading term. Howev
due to the slowly varying nature of the form factorsG11 and
G21, about 75% of the leadingG11 term is canceled, reduc
ing a(x̃0) significantly. The remaining two terms arisin
from the heavy neutralinos,x̃2,3,4

0 are generally small~and
there can be cancellations also between these terms!. In con-
trast, when theCP violating phases are not zero and a
electric dipole moment exits, the neutralino and charg
contributions must be of nearly equal size and opposite s
so thatde be greatly suppressed to be in accord with expe
ment. This change in the relative sizes of the two terms m
be brought about by the sine factors in Eqs.~11!,~12!. Simul-
taneously, the corresponding cosine factors in Eqs.~8!, ~9!
will modify the predictions ofam . This then leads to two
questions:~1! Can the experimental constraints onde andam
~and of course all other experimental constraints! be simul-
taneously satisfied with ‘‘large’’ phases, i.e., of O(1021)? ~2!
If large phases are possible~and de is very small! can the
experimental constraints be satisfied without undue fi
tuning of the phases? Question~2! divides into two parts:
~2a! Is there undue fine-tuning of phases needed to satisfy
experimental constraints at the electroweak scale, and~2b! Is
there undue fine-tuning of the phases needed at the G
scale? In the following, we define the fine tuning parame
R(f) for any phasef by

R~f![
f22f1

1

2
~f21f1!

[
Df

fav
~13!

wheref2 andf1 are the upper and lower value off when
the experimental constraints onde andam are both satisfied.
We use here the current bound onde @21#,
0-3
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udeu,4.3310227e cm ~14!

and the 2 std range foram @7#:

11310210,am,75310210. ~15!

In the following we will assume that no fine-tuning less th
1% be allowed: i.e.,

R~f!.0.01. ~16!

Within this framework, we find that question~1! can be
answered affirmatively, i.e., cancellations between the n
tralino and chargino diagrams inde can indeed be satisfie
with large phases. Further, the answer to question 2~a! is that
no undue fine-tuning of the electroweak parameters is ne
sary to achieve the suppression ofde . However, we will see
that this is not the case at the GUT scale, where the sim
taneous requirements of electroweak radiative breaking
the experimentalde constraint leads to significant fine
tuning, and if Eq.~16! were imposed, a large amount of th
parameter space is eliminated.

In a GUT theory, the fundamental parameters are sp
fied atMGUT, and the consequences at the electroweak s
are obtained from the renormalization group equatio
~RGEs!. These GUT parameters are presumably to be de
mined at some future time by a more fundamental the
~e.g., string theory!, and so fine tuning at the GUT scale ma
imply a significant theoretical problem~while fine-tuning at
the electroweak scale would be an acceptable theore
consequence of the RGEs!. Of course, what level of fine
tuning is acceptable is somewhat a matter of choice, and
view Eq. ~16! only as a reasonable benchmark to conside

In Sec. III below, we will consider these results in det
quantitatively. We give here an analytic discussion of h
they arise. To show that large phases are easily achiev
we write de in the form

de /e52De~ x̃6!A@sin~um!1a sin~um1f1!# ~17!

where the coefficientsA anda can be read off from Eqs.~11!,
~12!. In the extreme case wherede50, Eq.~17! and Eq.~1!
imply

tanuB5
a sinf1

11a cosf1
~18!

where we have neglected the small 1-loop correction in
~1!. The fact that the chargino diagram dominates over
neutralino diagram implies thata,1, and detailed numerica
calculations show thata;0.2–0.4 for much of the SUSY
parameter space. Thus asf1 varies from 0 to 2p, over most
of the parameter spaceuuBu will be large ~rising to a maxi-
mum of about 0.5! even thoughde has been set to zero.

We next consider the effects of theCP violating phases
on am . From Eqs.~8!,~9!, we have

am5Cm~x̃6!A@cos~um!1a cos~um1f1!1b# ~19!
11301
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whereb is the term in Eq.~9! independent of the phases. I
general,b is quite small, and we will neglect it in the follow
ing. ~Of course, in the numerical calculations in Sec. III a
such effects as well as the loop corrections are consider!
Using Eq.~18! to eliminateuB , we obtain

am56am~0!Q~a,f1! ~20!

wheream(0) is the value ofam with zero phases,

Q5
@112a cosf11a2#1/2

~11a!
<1. ~21!

The 6 factor in Eq.~20! is the sign of cosuB . Since experi-
mentally,am.0, this implies

uB.0 for 0,f1,p; uB,0 for p,f1,2p.
~22!

The two branches of Eq.~22! are symmetric, and in the
following we consider theuB.0 branch. The factorQ in Eq.
~21! reduces the theoretically expected size foram . Since the
experimental lower bound onam implies an upper bound on
m1/2 @8#, theQ factor due to the phases will reduce this upp
bound, further restricting the allowed SUSY parame
space. However, since in generalQ*0.5, this reduction will
still be consistent with all experimental data, and the eff
of the SUSY CP violating phases does not qualitative
change the fit to the data foram that was obtained assumin
no CP violating phases.

We can also estimate how much fine tuning is needed
the phases to satisfy the experimental bound of Eq.~14!.
Thus letDuB be the change inuB for a fixed value off1 as
de /e varies from 24.3310227 cm to 14.3310227 cm.
Characteristically, the factorD(x̃6)A in Eq. ~17! is numeri-
cally about 100 times the current upper bound onde @e.g., for
m1/25480 GeV (m05118 GeV!, umu5690 GeV, and tanb
515, this factor is 4.1310225 cm#. Considering then the
variation ofuB in Eq. ~17! one finds

231022>DuB cos~uB!@11a cos~f1!1a sin~f1!tan~uB!#.

~23!

Hence using Eq.~18!,

R~uB!>DuB /sin~uB!>231022/„a sin~f1!…. ~24!

Thus the allowed range ofuB is indeed small, though the
condition of Eq.~16! is generally satisfied. A reduction ofde
by a factor of 10 would be enough to produce a serio
fine-tuning problem at the electroweak scale. In contrast,
will see below that there is already a significant fine-tuni
problem at the GUT scale even with the current bound
de .

III. DETAILED CALCULATIONS

In this section, we consider detailed calculations of t
effects of the experimental constraints involving the EED
and am which were analytically estimated in Sec. II. Th
analysis is done within the framework of the generaliz
0-4
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SUPERSYMMETRIC PHASES, THE ELECTRON . . . PHYSICAL REVIEW D64 113010
MSUGRA described in Sec. II~though extension to non
universal soft breaking models can easily be done!. In order
to get a clear picture of what constraints on the SUSY
rameter space arise, it is necessary to simultaneously im
all the experimental constraints. Aside from the above, th
include the following:~1! The LEP Higgs boson mass lowe
boundmh.114 GeV@22#. Since the theoretical analysis o
mh still has about a 3 GeV uncertainty@which ~conserva-
tively! may be an overestimate# we interpret this in the the
oretical calculation@15# to meanmh.111 GeV. ~2! The b
→sg branching ratio constraint. We take here a 2 std range
of the experimental CLEO data@23#

1.831024<BR~B→Xsg!<4.531024. ~25!

In the theoretical analysis we include the next leading or
~NLO! SUSY contribution for large tanb @24#, as these pro-
duce significant effects~particularly since theam lower
bound favors larger values of tanb). ~4! We include the
1-loop corrections to theb and t masses@25#, which are
significant also for large tanb. ~5! All coannihilation effects
are included in the relic density calculations. We assume h
the range for the neutralino cold dark matter to be

0.025,Vx̃
1
0h2,0.25. ~26!

The upper bound is consistent with recent Boomerang
Maxima measurements@26,27#, while the lower bound al-
lows for the possibility that there may be more than one ty
of dark matter. However, our calculations here are insensi
to the precise value of the lower bound, and one would
very similar results if the lower bound were raised to 0.05
0.1.

FIG. 1. Corridors in them02m1/2 plane allowed by the relic
density constraint for~bottom to top! tanb510,30,40 for mh

.114 GeV,A050, m.0, all phases set to zero. The tanb530 and
40 corridors all lie in the coannihilation region, while only th
beginning of the tanb510 corridor is in the noncoannihilation re
gion. The Higgs boson mass bound determines the lowerm1/2

bound for tanb510, while both the Higgs boson mass and theb
→sg bounds equally produce the lower bound for tanb530 and
b→sg determines the lower bound for tanb540. The short slanted
lines represent the upper bound onm1/2 due to theam lower bound,
of Eq. ~15!.
11301
-
se
e

r

re

d

e
e

et
r

The effects of the Higgs boson mass andb→sg bounds is
to push the allowed parameter space mostly into the coa
hilation domain of the relic density calculation.~Thus only a
small part of the allowed parameter space occurs at sm
enoughm1/2 to lie below the region of coannihilation, whic
begins atm1/2>350–400 GeV.! In SUGRA models, stau-
neutralino coannihilation can occur quite naturally. Thus
m050, the charged sleptons lie below the lightest neutrali
x̃1

0, and one must increasem0 to raise their masses so that th

x̃1
0 is the dark matter particle. Thus asm1/2 increases,m0

must be increased in lock step so that the neutralino rem
the lightest supersymmetric particle~LSP!, and one finds a
relatively narrow corridor in them02m1/2 plane consistent
with the relic density bound of Eq.~26! and with the lightest
stau lying above the neutralino. The dependence of th
corridors on tanb andA0 are shown in Figs. 1 and 2 for th
case where there are no SUSYCP violating phases. We se
that the corridors~which are characteristically 20–30 Ge
wide! lie higher for larger tanb and largeruA0u. This is be-
cause the stau mass decreases when these paramete
increased, and so one must raisem0 to keep the stau mas
greater than the neutralino.3 In general, the effect of coanni
hilation is to determinem0 approximately in terms ofm1/2
for a given tanb and A0. This greatly sharpens the predic
tions of the theory.

A. Allowed regions at the electroweak scale foruB and f1

We now examine the effects of having nonzeroCP vio-
lating phases present, and discuss the dependence of th
lowed phases on the SUSY parameters. To illustrate the p
nomena, we consider one low tanb and one high tanb.

3Increasing tanb or makingA0 negative increases the magnitud
of the LR term in the stau mass matrix of Eq.~A3! and hence
decreases the light stau mass. ForA0.0, the opposite effect occurs
but also the diagonal matrix elements of the mass matrix are
duced, and again the stau mass decreases.

FIG. 2. Corridors in them02m1/2 plane allowed by the relic
density constraint for~from bottom to top! A050, 22m1/2, 4m1/2,
for mh.114 GeV, m.0, all phases set to zero. The lowerm1/2

bounds forA050, 22m1/2 are due to theb→sg constraint, and for
A054m1/2 from the Higgs boson mass bound@15#.
0-5
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Since for noCP violating phases, one had~at 90% C.L.!
tanb.10, we examine the cases of tanb515 and tanb
540. Figure 3 shows the corridors allowed foruB ~the B
phase at the electroweak scale! by the current experimenta
bounds onde for tanb540, A050 for two choices of the
gaugino phase:f150.9 ~lower curves! and f151.2 ~upper
curves!. One sees that one gets a significant phaseuB of the
size expected by Eq.~18!, the largerf1 allowing a larger
uB , also in accord with Eq.~18!. Note also that the allowed
corridors foruB widens asm1/2 increases as expected, sin
the experimentalde constraint is less severe for a heav
mass spectrum. A similar graph is shown in Fig. 4 forf1
50.9 ~upper curves!, f153.4 ~lower curves!. uB turns nega-
tive for f1 in the third quadrant, again as expected from E
~22!.

We note in all these curves, the upper bound onm1/2 ~due
to the lower bound onam) is reduced compared to the ca
when theCP violating phases are zero.~Then the upper
bound ism1/25790 GeV for tanb540, A050 @8#.! This is
due to the phasef1 in theQ factor in Eq.~20!. Q is smallest
whenf1 is nearp, as can be seen in explicitly in Fig. 4 fo
f153.4.

FIG. 3. Regions allowed foruB by the experimental constrain
on de as a function ofm1/2 for tanb540, A050, for f150.9
~lower curves! andf151.2 ~upper curves!.

FIG. 4. Same as Fig. 3 forf150.9 ~upper curves! and f1

53.4 ~lower curves!.
11301
.

We consider next the tanb dependence of the allowe
region for uB . This arises due to an indirect tanb depen-
dence in the parametera of Eqs.~17!,~18!. As seen from Fig.
2, coannihilation determinesm0 in terms ofm1/2, and this
m0 increases with tanb, changing the ratio of neutralino to
chargino diagram differentially. Figure 5 shows the allow
region for tanb515, andA050, f151.2 ~upper curves! and
f150.9 ~lower curves!. We see that one can get considerab
larger values ofuB at lower tanb, though the upper bound
on m1/2 due to the lower bound onam is considerably re-
duced at low tanb. TheA0 dependence is exhibited in Fig. 6
where the allowed corridor foruB is plotted for tanb540,
f150.9, andA050 ~upper curves!, uA0u52m1/2, a050.5
~lower curves!. Increasing the magnitude ofA0 increases the
value ofm0 ~by Fig. 2! and reduces the size ofuB .

B. Fine tuning at the electroweak scale

The above analysis shows that thede experimental con-
straint allowsuB to beO(1021) for a wide region of param-
eter space, andf1 can range widely, i.e., from 0 to 2p. We
next investigate whether the smallness of the upper boun
de requires any fine tuning to maintain this constraint. In F
7 we plot the fine tuning parameterR of Eq. ~13! for uB for

FIG. 5. Same as Fig. 3 for tanb515. The allowed regions ter
minate at lowm1/2 due to themh constraint.

FIG. 6. Allowed region foruB for tanb540 for A050 ~upper
curves! and uA0u52m1/2, a050.5 ~lower curves!.
0-6
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tanb540, A050 for f150.9 ~upper curve! and f151.2
~lower curve!. One sees thatR(uB) is small, i.e., a few per-
cent, but satisfies the criteriaR.0.01 for the entire range
The size ofR(uB) is consistent with what was expected fro
the analytic analysis of Eq.~24!, and increases asf1 de-
creases also as expected. Figure 8 shows a similar plo
tanb515. SinceuB is larger here~see Fig. 5!, R(uB) is
smaller, but still within the acceptable range. Figure 9 sho
R(f1) for tanb540, A050 for uB50.2 ~upper curve!, and
uB50.3 ~lower curve!. Again R(f1).0.01 for the entire
range ofm1/2, and is generally larger thanR(uB) ~by about a
factor of tanf1 /f1).

We see from the above results that the current experim
tal bound onde can be accommodated with large phas
Further, for most of the parameter space, while the rang
the allowed phases at the electroweak scale required to
commodate the bound onde is small, no fine-tuning below
1% is needed. We will see, however, a more serious fi
tuning problem develops at the GUT scale.

C. Fine tuning at the GUT scale

We now examine what parameters are fine tuned at
GUT scale to achieve the experimental EDM bounds. Fr
Eq. ~1!, we see since the loop correction is small, thatum>
2uB , and since we have seen thatuB does not need exces
sive fine tuning, the same can be said forum . Further, since

FIG. 8. Same as Fig. 7 for tanb515.

FIG. 7. R(uB) as a function ofm1/2 for tanb540, A050, f1

50.9 ~upper curve!, f151.2 ~lower curve!.
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um does not run with the RGE, its value at the GUT scale
the same as at the electroweak scale and hence no fine tu
is needed atMG . A similar result holds forf1, which also
does not run with the RGE. However, as has been previo
pointed out@4#, matters are different for theB phase atMG ,
uB0

, and we review briefly the discussion given there.4 To
see analytically what is occurring, we consider the interm
diate and low tanb region, where the RGE can be analy
cally solved. One finds forB the result@4#

B5B02
1

2
~12D0!2( F i um1/2ueif i ~27!

where D0512(mt /sinb)2&0.25 andF i5O(1). As tanb
gets large, the radiative breaking condition Eq.~2! shows
that uBu gets small. Taking the imaginary part of Eq.~27!
gives

uBusinuB5uB0usinuB0
2~1/2!~12D0!uA0usina0

2( F i um1/2usinf i . ~28!

To the lowest approximation, sinceuBu is small, one may
then neglect the left-hand side~LHS! of Eq. ~28!. Equation
~28! may then be viewed as an equation determininguB0

in

terms of the other GUT scale phases, and henceuB0
will in

general be large if the other phases are not all small~a result
that is confirmed in@4# by detailed calculation!. However,
the range ofuB0

so that the experimental bound onde is
satisfied is then significantly reduced. Thus for fixed valu
of a0 and f i , Eq. ~28! gives as tanb gets large~i.e., uBu
becomes small!

DuB0
>~ uBu/uB0u!DuB!DuB . ~29!

Since we have already seen thatDuB is small ~though not
violating the fine tuning condition!, one may expect tha

4This analysis differs from that given in@28# which does not take
into account the possibility of cancellations inde between the neu-
tralino and chargino diagrams. In fact the discussion in@28# sets the
phaseuB0

to zero.

FIG. 9. R(f1) as a function ofm1/2 for tanb540, A050, and
uB50.2 ~upper curve!, uB50.3 ~lower curve!.
0-7
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DuB0
may need to be fine tuned, particularly for lowm1/2

where the SUSY mass spectrum is light. This is seen exp
itly in Fig. 10 for tanb540, A050 with f150.9, 1.2, 1.6,
2.3, and 2.6. We see thatR(uB0

) decreases asf1 increases
from 0.9 to 1.6 (>p/2) and then increases for 2.3 and 2
wherep2f1 is decreasing.@The upper bound onm1/2 aris-
ing from the lower bound onam decreases asf1 moves into
the second quadrant in accord with Eqs.~20!,~21!.# We see
that if one imposes the fine tuning constraint thatR(uB0

)
.0.01, large sections of the lowm1/2 region would be ex-
cluded, e.g., one would requirem1/2.540 GeV forf151.6.
The fine tuning becomes more acute at lower values of tab.
Thus Fig. 11 showsR(uB0

) as a function ofm1/2 for tanb

515, A050 for f150.9 ~upper curve! andf151.2 ~lower
curve!. Thus the fine tuning constraint would eliminate com
pletely f151.2 ~and the entire region of;0.4 radians
aroundp/2) and also restricts the other values off1. Finally,
we note that increasingA0 generally increases the amount
fine tuning needed. Thus Fig. 12 showsR(uB0

) for tanb

540, f150.9 for A050 ~upper curve! and uA0u52m1/2,
a050.5 ~lower curve!. The entire uA0u52m1/2 curve has
R(uB0

),0.001.

IV. CONCLUSIONS

We have examined here what SUSYCP violating phases
are possible within the framework of SUGRA models, wh

FIG. 10. R(uB0
) as a function ofm1/2 for tanb540, A050 for

~from bottom to top! f151.6, 1.2, 0.9, 2.3 and 2.6.

FIG. 11. R(uB0
) as a function ofm1/2 for tanb515, A050 for

f150.9 ~upper curve! andf151.2 ~lower curve!.
11301
c-
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the electron electric dipole moment experimental bound
imposed on the SUSY parameter space. In order to ana
this, we imposed simultaneously the accelerator bound
the Higgs boson mass (mh.114 GeV! and the b→sg
branching ratio, the relic density bound for neutralino co
dark matter and the recent 2.6 std deviation of the mu
magnetic moment from the standard model prediction. T
different experimental constraints interact with each oth
Thus the Higgs boson mass andb→sg constraints put lower
bounds on the gaugino mass@m1/2*(300–400! GeV# which
puts the relic density analysis mostly in the region whe
stau-neutralino coannihilation occurs. This closely fixes
scalar massm0 in terms ofm1/2 ~for fixed A0 and tanb). The
am lower bound then puts an upper bound onm1/2. Thus the
parameter space becomes highly constrained. One can
mate analytically, as was done in Sec. II, the effects of tu
ing on theCP violating phases. In fact ifde were zero, one
could still have largeCP violating phases present, with th
B-ino phasef1 between 0 and 2p. The condition thatam be
positive puts theB phaseuB in the first and fourth quadrant
with uuBu;0.2–0.4. The dependence ofuB on tanb andA0
was discussed in detail in Sec. III. It was seen that the ph
f1 acts to reduce the theoretical value ofam by a factorQ
,1, defined in Eqs.~20!, ~21!, and from the experimenta
lower bound onam this reduces the upper bound onm1/2,
limiting further the parameter space. The reduction of
upper bound onm1/2 has several phenomenological cons
quences. As can be seen from Eq.~21! and Fig. 4, the effect
is largest whenf1 is close top. Thus in the example of Fig
4 when f153.4, one hasm1/2,515 GeV, anduB is still
fairly large (uB50.14). This can be compared to the res
for tanb540 when all phases are zero wherem1/2,790
GeV @33#. Thus the upper bound on the gluino mass wou
now be 1280 GeV compared to 1960 GeV when the pha
are zero. Similarly the rest of the SUSY spectrum would
significantly reduced, making the SUSY mass spectrum m
accessible to accelerator discovery. Thus we findmx̃

1
0,220

GeV, mx̃
1
6,421 GeV,mẽ1

,319 GeV,mẽ2
,446 GeV,mt̃1

,225 GeV,mt̃2
,445 GeV. Hence for this example, the ele

troweak sector would be mostly accessible to a linear c
lider at 850 GeV~such as tesla@34#! though the squarks an
gluinos would require the LHC.

FIG. 12. R(uB0
) as a function ofm1/2 for tanb540,f150.9 for

A050 ~upper curve! and uA0u52m1/2, a050.5 ~lower curve!.
0-8
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A second consequence of the reduction of the up
bound onm1/2 occurs in dark matter detection cross sectio
Thus the neutralino-proton cross section is a decrea
function of m1/2, and for example requiringm1/2,515 GeV
as above, would raise the minimum cross sections by ne
a factor of ten~to ;1029 pb! compared to the minimum
cross sections withoutCP violating phases@15#. Future dark
matter detectors would then be able more easily to scan
full SUSY parameter space. The effect of the SUSYCP
violating phases should also effect the experimental acce
bility of detecting theBs→m2m1 which also favors the
large tanbeta regime. Up to now this decay has been stu
in the limit of vanishingCP violating phases@35#.

The relevant question, however, is whether the smalln
of the experimental bound onde requires an unreasonab
amount of fine-tuning of the phases. Using the param
R(f)5Df/fav, we find at the electroweak scale, bo
R(uB) andR(f1) are small, i.e., a few percent. However,
generalR.0.01, and so no fine tuning below the 1% level
needed. However, at the GUT scale, this is not the case
R(uB0

) for a significant part of the parameter space. Thu

we were to exclude regions whereR(uB0
),0.01, then for

tanb515, A050, f1 phases near 90 °~i.e., 1.2,f1,2.0)
are completely excluded~Fig. 11!. The effect is reduced fo
higher tanb. However, for example, for tanb540, A050
the conditionR.0.01 would eliminatem1/2,540 GeV for
f151.6, and raise the lower bound onm1/2 by a lesser
amount for other values off1 ~Fig. 10!. IncreasingA0 de-
creases the value ofR, making the fine-tuning more seriou
as can be seen in Fig. 12.

The fine-tuning problem is thus on the verge of becom
quite acute. The experimental bound onde is likely to de-
crease by a factor of three in the near future@29#. The effect
this would have is shown in Figs. 13 and 14. Figure
showsR(uB) as a function ofm1/2 for tanb540, A050,
f150.4 ~upper curve! ~corresponding touB.0.1) andf1
50.9 ~lower curve!. The curves are what would occur if th
experimental bound onde were reduced by a factor of three
Figure 14 showsR(uB0

) as a function ofm1/2 for tanb

515, A050, f150.3 ~upper curve! ~corresponding touB
.0.1) andf150.9 ~lower curve!, if the bound is reduced by

FIG. 13. R(uB) as a function ofm1/2 for tanb540, A050, f1

50.9 ~lower curve! and f150.4 ~upper curve! with the current
experimental bound onde reduced by a factor of three.
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a factor of three.f1,0.4 in Fig. 13 andf1,0.3 in Fig. 14
would have less fine tuning but correspond touB,0.1.

In a GUT theory, presumably the parameters at the G
scale are the more fundamental ones, and fine-tuning of th
parameters would presumably represent a serious prob
Of course, what level of fine-tuning one accepts is somew
a matter of taste, and we view the criteriaR.0.01 as merely
a benchmark for consideration. However, the above res
show that any significant experimental reduction ofde would
make the idea of large SUSYCP violating phases more
difficult to maintain, as fine-tuning would set in even at t
electroweak scale unless the SUSY masses are heavy.

Finally we mention that the lepton EDMs scale with the
masses, assuming lepton universality. Thus the bound
Eq. ~14! would correspond to a muon EDM bound o
8.9310225e cm. The current bound ondm is 1310218e cm
~95% C.L.! @36#. However, experiments are currently bein
considered at Brookhaven to measuredm to within an accu-
racy of about 10224e cm @37#, which would make the muon
EDM measurements competitive with the electron measu
ments.
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APPENDIX: DERIVATIONS

In this appendix, we calculate the leading terms in tanb
for the complex amplitudeA of Eqs. ~5! and ~6! needed to
calculateam and de . In order to do this, it is necessary t
diagonalize the various mass matrices entering in
chargino and neutralino loops. These matrices depend on
phasesf1 , a l , andu5um1e11e2 wherea l is the phase of
Al and ^H1,2&5v1,2e

i e1,2 where v1,25u^H1,2&u. Minimizing
the effective potential with respect toe1,2 determinesu in
terms ofuB , and one may then choose Higgs phases s
that e1,250, as was done in Eq.~1!. With this choice of
phases, the chargino and neutralino mass matrices are

FIG. 14. R(uB0
) as a function ofm1/2 for tanb515, A050,

f150.9 ~lower curve! andf150.3 ~upper curve! with the current
experimental bound onde reduced by a factor of three.
0-9
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M x̃65S m̃2 A2MW sinb

A2MW cosb m
D ~A1!

M x̃05S m̃1 0 a b

0 m̃2 c d

a c 0 2m

b d 2m 0

D ~A2!

where m̃15um̃1ueif1, m5umueium, a52MZ sinuWcosb, b

5MZ sinuWsinb, c52a cotuW, d52b cotuW, andm̃2 has
been chosen real and positive.

The slepton mass matrices have the form

M l̃
2
5S mlLL

2 mlLR
2

mlLR
2* mlRR

2 D ~A3!

wheremlLR
2 5ml(Al* 2m tanb), Al5uAl ueia l, and

mlLL
2 5mL

21ml
22

1

2
~122 sin2uW!MZ

2 cos 2b ~A4!

mlRR
2 5mR

21ml
22sin2uWMZ

2 cos 2b. ~A5!

The mL,R
2 are obtained by running the RGE from the GU

scale to the electroweak scale@30#. In our analysis we will
assume universal soft breaking of them̃ andẽ scalar masses
(m0) and universal cubic soft breaking masses (A0) at MG .
Sinceme

2 andmm
2 are very small, they can be neglected at t

electroweak scale, i.e.,M m̃
2

5Mẽ
2 .

M x̃0 is a symmetric, complex matrix and can be diagon
ized by a unitary matrixX according toM x̃0X5X* M x̃0

(D)

where

M x̃0
(D)

5diag~mx̃
1
0,mx̃

2
0,mx̃

3
0,mx̃

4
0!. ~A6!

M l̃
2 can be diagonalized by a Hermitian matrixD with

M l̃
2
D5DM l̃

2(D) where M l̃
2(D)

5diag(ml̃ 1

2 ,ml̃ 2

2 ). Finally one

diagonalizesM x̃6 by two unitary transformationsU and V
according to U* M x̃6V†5M x̃6

(D) where M x̃6
(D)

5diag(mx̃
1
6,mx̃

2
6).

The amplitudeA can be divided into its chargino an
neutralino parts:A5A(x̃6)1A(x̃0). We follow the notation
of @31# where one finds that

A~ x̃6!5
1

A2MW cosb
(

i

1

mx̃
i
6

Ui2* Vi1* Fi ~A7!

andFi5F(mñ
2/mx̃

i
6

2
) with

F~x!5
123x

~12x!2
2

2x2 ln x

~12x!3
. ~A8!

Similarly
11301
e

l-

A~ x̃0!5
1

ml
(
k, j

1

mx̃
j
0
S h j

kGk j1
ml

6
Xj

kHk j D ~A9!

where

h j
k52F 1

A2
~ tanuWX1 j1X2 j !D1k* 2k lX3 jD2k* G

3@A2 tanuWX1 jD2k1k lX3 jD1k#, ~A10!

Xj
k5

1

2
tan2uWuX1 j u2~ uD1ku214uD2ku2!

1
1

2
uX2 j u2uD1ku21tanuWuD1ku2X1 jX2 j* 1O~ml !

~A11!

and k l5ml /(A2MW cosb). The loop integrals areGk j

5G(ml̃ k

2 /mx̃
j
0

2
), Hk j5H(ml̃ k

2 /mx̃
j
0

2
) where

G~x!5
11x

~12x!2
1

2x

~12x!3
ln x ~A12!

H~x!5
215x2x2

~12x!3
1

6x

~12x!4
ln x. ~A13!

We need only keep the terms inA independent ofml and thus
can neglect theO(ml) terms in Eq.~A11!. ~Actually, h l

k

begins linearly inml .)
We are interested in calculating only the leading terms

tanb. We will also do this in the limitMW
2 /umu2!1 and

MW
2 /um̃i u2!1 ~which is valid for most of the MSUGRA pa

rameter space!. In that case one has@32#

mx̃
1
0>um̃1u; mx̃

2
0>mx̃

1
6>m̃2 ; mx̃

3,4
0 >mx̃

2
6>umu.

~A14!

We consider first the calculation ofA(x̃6). SinceV diago-
nalizesM x̃6

†
M x̃6 and U* diagonalizesM x̃6M x̃6

† one finds
for the leading terms

U12* >2
1

m
A2MW sinb

umu2

umu22m̃2
2

U11* ~A15!

V21>
1

m̃2

A2MW sinb
m̃2

2

umu22m̃2
2

V22. ~A16!

With an appropriate choice of phases one has to lowest o
U11>1>U22, V11>1, and

V22>eium. ~A17!

Hence inserting into Eq.~A7! gives
0-10
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A~ x̃6!52
tanb

m̃2umu
e2 iumF umu2

umu22m̃2
2

F12
m̃2

2

umu22m̃2
2

F2G .

~A18!

To calculate the leading terms ofA(x̃0) it is useful to first
note the size of the matrix elementsXi j . Thus to zeroth order
in MZ

X11>e2( i /2)f1, X22>1 ~A19!

X33>2X43>
1

A2
e2( i /2)um, X34>X44>ep i /2X33. ~A20!

Also one hasX12, X21 are O(MZ
2) ~and hence negligible!

while the remaining components areO(MZ). To lowest or-
der, the slepton mass eigenvalues areml̃ 1

2 >mlRR
2 , ml̃ 2

2

>mlLL
2 , and theD matrix has the formD12>1>D21 and

D11>2
ml~Al* 2m tanb!

ml̃ 2

2
2ml̃ 1

2 >2D22* . ~A21!

To illustrate the calculation ofA(x̃0) we consider the
leading term whenk515 j . From Eq.~A10!, two terms con-
tribute toh1

1 for large tanb:

h1
152S 1

A2
tanuWX11D11* D ~A2 tanuWX11D21!1~k lX31D21* !

3~A2 tanuWX11D21! ~A22!

which evaluates to

h1
152

ml tan2uW tanb

umu F umu2

ml̃ 2

2
2ml̃ 1

2 2
umu2

umu22um̃1u2G
3e2 i (um1f1) ~A23!
cl

y,

11301
where we have used

X31>
MZ sinuW sinb

m

umu2

umu22um̃1u2
X11. ~A24!

@Note that h1
1 is linear in ml and hence Eq.~A9! is not

singular asml→0.# In a similar fashion one can obtain a
the leading terms in Eq.~A9!. @TheXj

k terms of Eq.~A11! do
not contribute.# The total answer is

A~ x̃0!>2
tan2uW tanb

um̃1uumu F H S umu2

ml̃ 2

2
2ml̃ 1

2 2
umu2

umu22um̃1u2D G11

2S umu2

ml̃ 2

2
2ml̃ 1

2 2
1

2

umu2

umu22um̃1u2D G21J e2 i (um1f1)

2
1

2

1

tan2uW

umu2

umu22m̃2
2 S um̃1u

m̃2

G222
1

2

um̃1um̃2

umu2
G23D

3e2 ium1
1

4

1

tan2uW

um̃1u
umu

umu2

umu22m̃2
2

G23G . ~A25!

We note that a large amount of cancellation occurs in t
regime: terms proportional toG24 have all canceled with par
of theG23 terms, and the totalG14 contribution cancels with

the G13 terms. Note also that theA(x̃0) depends separatel
on two phase combinations:um1f1 and um , though terms
depending onum1f1 are generally larger.
s.

ys.
,

h,

z,
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