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The enhançon and the consistency of excision
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The enhanc¸on mechanism removes a family of timelike singularities from certain supergravity spacetimes by
forming a shell of branes on which the exterior geometry terminates. The problematic interior geometry is
replaced by a new spacetime, which in the prototype extremal case is simply flat. We show that this excision
process, made inevitable by stringy phenomena such as enhanced gauge symmetry and the vanishing of certain
D-branes’ tension at the shell, is also consistent at the purely gravitational level. The source introduced at the
excision surface between the interior and exterior geometries behaves exactly as a shell of wrapped D6 branes,
and in particular, the tension vanishes at precisely the enhanc¸on radius. These observations can be generalized,
and we present the case for nonextremal generalizations of the geometry, showing that the procedure allows for
the possibility that the interior geometry contains a horizon. Further knowledge of the dynamics of the en-
hançon shell itself is needed to determine the precise position of the horizon, and to uncover a complete
physical interpretation of the solutions.
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I. INTRODUCTION

In Ref. @1#, the study of the supergravity fields produc
by a family of brane configurations revealed a new mec
nism by which string theory removes a class of timeli
naked singularities. The singularities, of ‘‘repulson’’ typ
arise at the locus of points where parts of the te
dimensional geometry shrink to zero size. The supergra
geometries preserve eight supercharges. In the prototype
ample of Ref.@1#, it is a K3 manifold~on which the branes
are wrapped! which shrinks to zero size, but the presence
a K3 is not essential for the phenomenon.

In short, the naive supergravity solution is modified by t
fact that the constituent branes that source the fields, sm
out from being pointlike~in their transverse space! to being a
sphere. This sphere is called the ‘‘enhanc¸on.’’ Pure super-
gravity is unable to model this phenomenon, because
controlled by physics that arises before the shrinking part
the geometry get to zero size. Instead, when they get to
umes set by a characteristic length 2pAa8, new massless
modes appear in the string theory. In Ref.@1#, the shrinking
volume of K3 gets toV* 5(2pAa8)4, and there is an en
hanced gauge symmetryU(1)→SU(2). The unwrapped
parts of the D branes are monopoles of theU(1) and corre-
spondingly become massless and expand at this place, f
ing the enhanc¸on.

The supergravity geometry interior to the enhanc¸on, con-
taining the repulson singularity, is obviously incorrect, as
exhibits a number of unphysical properties uncovered in,
example, Refs.@1–4#. In fact, since it has a naked singula
ity, the repulson is not only unphysical, it is part of a fam
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of incorrect geometries with the correct asymptotic charg
since no-hair theorems~which are usually relied upon, a
least implicitly, to interpret supergravity physics! apply only
if a singularity in the proposed geometry is hidden behind
horizon. The proposal@1# was therefore that the repulson b
excised and replaced with a more appropriate geometry
the cases studied in Ref.@1#, the geometry in the interior is
simply flat space, since there are no brane sources in
interior, as they have all expanded out to form the enhanc¸on.

In Sec. II of this paper, we will show that this excisio
procedure is consistent — and in fact is an extremely nat
process — in supergravity. By analyzing the standard ju
tion conditions, we show in the next section that the e
hançon radius is a special place even from the simple po
of view of the stress energy of the shell, and that this str
energy corresponds precisely to that of a shell of wrapped
branes. We also show that the shell provides sources for
dilaton and Ramond-Ramond~RR! fields, which again match
precisely to those of wrapped D6 branes.

In Sec. III, we generalize this situation slightly by addin
D2 branes, to set the stage for Sec. IV, where we study
families of nonextremal generalizations of the enhanc¸on ge-
ometry. The first family corresponds to a system combin
wrapped D6 branes and a larger number of additional
branes. These nonextremal solutions all contain an event
rizon, which may or may not appear outside of the enhan¸on
radius. In the case where an event horizon appears below
enhanc¸on radius, the excision procedure gives us a range
choices for the interior solution. It does not appear that t
ambiguity can be resolved within the supergravity fram
work alone.

The second family, which is characterized by a repuls
like singularity~before any excision! is an extension of those
derived in Ref.@1#.1 This solution seems to describe a no

1We correct a small but crucial typographical error in the non
©2001 The American Physical Society01-1



6
ev

an
re
s

n

if
n
e
m
g

se

o

sh
er
o

(4

th

ng

m
t

d

th

di
fo

ame
g

3

of
n,

ro
the
he
-

6

h

b-

e

ing
e

JOHNSON, MYERS, PEET, AND ROSS PHYSICAL REVIEW D64 106001
extremal configuration with arbitrary numbers of D2 and D
branes. However, this solution does not reduce to the pr
ous one when the number of D2 branes exceeds the num
of D6 branes, nor does it reduce to a standard D6-br
solution when the volume of the K3 is large. Furthermo
this solution also has the peculiar feature that it never ha
event horizon outside of the enhanc¸on radius. Hence its
physical interpretation remains unclear. Section V prese
conclusions and discussion of future directions.

Although in retrospect it could not have been much d
ferent, we do find it remarkable that while supergravity ca
not produce the stringy phenomena, which make the
hançon mechanism necessary, it does display so
awareness of the behavior of the branes that source this
ometry; the source terms on the shell correspond to preci
those in the worldvolume action.

II. THE EXTREMAL ENHANC ¸ ON

The enhanc¸on story is best told by considering the case
wrappingN D(p14) branes on a K3 manifold of volumeV.
This leaves an unwrapped (p11) –dimensional worldvol-
ume in the noncompact six dimensions. There are 52p non-
compact spatial dimensions transverse to the brane. We
often use polar coordinates in these directions, since ev
thing we do here will retain rotational symmetry. These c
ordinates arer ,$V42p%, where the set$V42p% denotes one’s
favorite choice of angular coordinates on a unit round
2p) sphere,S42p.

The supergravity solution necessarily arranges such
the volume of K3 decreases from the valueV at r 5`, to
smaller values asr decreases. We shall denote this runni
volume asV(r ). Type II string theory compactified on K3
has an enhanced gauge symmetry when the K3 volu
reachesV* 5(2p)4(a8)2, in our units. The special radius a
which this happens is called the enhanc¸on radius and denote
r e. We give its value below.

A. The geometry

To avoid unnecessary notational clutter, we focus on
casep52. For the issues that we consider, the extension
otherp is trivial, and so we suppress those cases in the
cussion, but the reader may wish to keep them in mind
their own purposes. The repulson solution is then

ds25Z2
21/2Z6

21/2hmndxmdxn1Z2
1/2Z6

1/2dxidxi

1V1/2Z2
1/2Z6

21/2dsK3
2 ,

e2F5gs
2Z2

1/2Z6
23/2,

C(3)5~Z2gs!
21dx0`dx1`dx2,

C(7)5~Z6gs!
21dx0`dx1`dx2`V«K3 , ~1!

tremal solution presented in Ref.@1#.
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where the above line element corresponds to the string fr
metric. Here indices (m,n) run over the 012 directions alon
the unwrapped worldvolume, while indices (i , j ) run over the
345 directions transverse to the brane. Also,dsK3

2 is the met-
ric of a K3 surface of unit volume, and«K3 is the corre-
sponding volume form. The harmonic functions are

Z6511
r 6

r
, Z2512

r 2

r
, ~2!

where

r 65
gsNa81/2

2
, r 25

V*
V

r 6 , ~3!

with N being the number of D6 branes. The running K
volume can be simply read off as

V~r !5V
Z2~r !

Z6~r !
. ~4!

Using this, a quick computation shows that

r e5
2V*

V2V*
r 6 . ~5!

It is interesting to note that the following is true:

]

]r
@Z2~r !Z6~r !#ur 5r e

50. ~6!

This simple result is in fact at the heart of the consistency
the full junction computation we present in the next sectio
as we shall see.

B. Brane probes

The wrapped D6 branes will expand into a shell of ze
tension atr 5r e. Just to remind the reader, and to set up
notation for the following sections, we reproduce below t
probe computation of Ref.@1# which supports this conclu
sion.

The effective worldvolume action of a single wrapped D
brane, with which we can probe the geometry, is

S52E
M 2

d3je2F(r )@m6V~r !2m2#~2detGmn!1/2

1m6EM23K3
C(7)2m2EM2

C(3) , ~7!

whereM2 is the unwrapped part of the worldvolume, whic
lies in six noncompact dimensions, andGmn is the induced
~string frame! metric. Of course, this result includes the su
traction of one fundamental unit of D2 brane tension@5# and
RR charge@6–8#, which results from wrapping the D6-bran
on K3. Note the RR chargesmp appear in the Dirac-Born-
Infeld part of the action since we have included the str
coupling gs in the solution for the dilaton. Recall that th
basic D-brane tension is given bytp5mp /gs . The funda-
1-2
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THE ENHANÇON AND THE CONSISTENCY OF EXCISION PHYSICAL REVIEW D64 106001
mental D6- and D2-brane charges arem65(2p)26a827/2

andm25(2p)22a823/2. Note that

m2

m6
5

mp

mp14
5~2p!4~a8!25V* . ~8!

The fact that this ratio yieldsV* for all p, following from T
duality, is at the heart of the consistency of the whole mec
nism. If it were not true, wrapped D4 branes would beco
massless at a different value ofr from where wrapped D6
branes go massless, and then there would be no W boso
carry the enhanced gauge symmetry. This universality a
underlies why we can focus on the casep52 without loss of
generality.

Choose a static gauge where we align the worldvolu
coordinatesjm with the first three spacetime coordinat
(x0,x1,x2), and then allow the transverse location of t
brane to depend only on timet[x0. Next, substitute the
exterior solution~1! into the action~7!, and expand it, keep
ing only quadratic order in velocity inxi . In this way, one
can write the effective Lagrangian density for the problem
moving the probe brane slowly in the background produ
by all of the other branes,L5T(r ,u,f)2U(r ). As this is a
supersymmetric problem,U(r ) is constant~it is zero in our
conventions!, while for the kinetic energy we have

T[
1

2
t~r !v2

5
1

2gs
~m6VZ22m2Z6!v2

5
m2Z6~r !

2gs
FV~r !

V*
21G@ ṙ 21r 2~ u̇21sin2uḟ2!#. ~9!

Note that the second line shows that the kinetic energy@and
hence the effective tensiont(r ) of the probe# vanishes pre-
cisely atr 5r e.

If we were to continue the result into the repulson reg
r ,r e, we would find that the tension of the probe becom
negative. Fixing that problem by taking the absolute value
the tension then produces another problem: the cancella
of the potentialU(r ) will fail, which is inconsistent with the
supersymmetry of the situation. Therefore the probe can
proceed any further inside the geometry than the enhan¸on
radius. We should also point out here that more can be
duced@1,9,10# about the geometry by exploiting the fact th
the brane is in fact a BPS monopole of the six-dimensio
HiggsedSU(2). Not only does its mass go to zero at th
enhanced gauge symmetry point, but its size diverges,
the probe spreads all over the enhanc¸on locus. The enhanc¸on,
therefore, is a shell of smeared branes of zero tension.

Since there are no pointlike sources inside, it is n
unreasonable to suggest that the interior of the geometry
fact flat space~in this largeN approximation; there will be
subleading corrections!, and we shall next examine th
consistency of this proposal from the point of view
supergravity.
10600
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C. The junction conditions

The brane probe calculation suggests that the repu
geometry is replaced by flat space inside a shell, which
produced by delocalized branes. We can use the cla
gravitational techniques@11,12# to describe this geometry
more explicitly, and calculate the stress energy and cha
of the shell matching the exterior repulson geometry to
space.

If we join two solutions across some surface, there will
a discontinuity in the extrinsic curvature at the surface. T
can be interpreted as ad-function source of stress energ
located at the surface. In the following section, we will sho
that the value of this source precisely agrees with the sou
inferred from the D-brane worldvolume action, confirmin
the consistency of this description.

Let us compute the relevant quantities, working at an
bitrary incision radiusr 5r i . The computation should be pe
formed in Einstein frame, to allow us to interpret the disco
tinuity in the extrinsic curvature as a stress energy@11,12#.
One gets the ten-dimensional Einstein metric from the str
one presented in the previous section by the conformal
scaling

dsE
25e2F/2dsS

2, ~10!

and we shall denote the metric components simply asGAB ,
with no further adornment. When we need to refer to str
frame metric components, we shall be very explicit.

We are slicing in a direction perpendicular to the coor
nater, and so we can define unit normal vectors:

n657
1

AGrr

]

]r
, ~11!

wheren1 (n2) is the outward pointing normal for the spac
time region r .r i (r ,r i) . In terms of these, the extrinsi
curvature of the junction surface for each region is

KAB
6 5

1

2
n6

C ]CGAB57
1

2AGrr

]GAB

]r
. ~12!

The discontinuity in the extrinsic curvature across the ju
tion is defined asgAB5KAB

1 1KAB
2 , and with these defini-

tions, the stress-energy tensor supported at the junctio
simply

SAB5
1

k2~gAB2GABgC
C!, ~13!

where k is the gravitational coupling, i.e., 2k2516pGN

5(2p)7(a8)4gs
2 is the ten-dimensional Newton’s constant

our present conventions.
In our case, we want to match the Einstein metric of t

repulson,
1-3
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gs
1/2ds25Z2

25/8Z6
21/8hmndxmdxn1Z2

3/8Z6
7/8dxidxi

1V1/2Z2
3/8Z6

21/8dsK3
2

5Gmndxmdxn1Gi j dxidxj1Gabdxadxb, ~14!

whereZ2 and Z6 are given by Eq.~2!, to a flat metric. We
will start with a matching at some arbitrary radiusr 5r i , and
will see thatr 5r e is a special choice. We explicitly ensur
that all fields are continuous through the incision by writi
the interior solution in appropriate coordinates and gaug

gs
1/2ds25Z2~r i!

25/8Z6~r i!
21/8hmndxmdxn

1Z2~r i!
3/8Z6~r i!

7/8dxidxi

1V1/2Z2~r i!
3/8Z6~r i!

21/8dsK3
2 ,

e2F5gs
2Z2

1/2~r i!Z6
23/2~r i!,

C(3)5@Z2~r i!gs#
21dx0`dx1`dx2,

C(7)5@Z6~r i!gs#
21dx0`dx1`dx2`V«K3 .

~15!

Some computation gives the following results for the disc
tinuity tensor:

gmn5
1

16

1

AGrr
S 5

Z28

Z2
1

Z68

Z6
DGmn ,

g i j 52
1

16

1

AGrr
S 3

Z28

Z2
17

Z68

Z6
DGi j ,

gab52
1

16

1

AGrr
S 3

Z28

Z2
2

Z68

Z6
DGab , ~16!

where the metric components are as defined in Eq.~14!, a
prime denotes] r and all quantities are evaluated at the in
sion surfacer 5r i . Note, however, thatgAB is a tensor on the
nine-dimensional junction surface and soGi j denotes the
metric on the angular directions of the transverse space,
there is nog rr component. From the above we can comp
the trace

gC
C52

1

16

1

AGrr
S 3

Z28

Z2
17

Z68

Z6
D . ~17!

Putting this all together gives the following pleasing resu
for the stress-energy tensor at the discontinuity:

Smn5
1

2k2AGrr
S Z28

Z2
1

Z68

Z6
DGmn ,

Si j 50,

Sab5
1

2k2AGrr
S Z68

Z6
DGab . ~18!
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Let us pause to admire the result. The last line, referr
to the stress along the K3 direction, involves only the h
monic function for the pure D6-brane part. This is approp
ate, since there are only D6-branes wrapped there. Accor
to the middle line, there is no stress in the directions tra
verse to the branes. This is consistent with the fact that
constituent branes are Bogomol’nyi-Prasad-Sommerfi
~BPS! type, and so there are no interbrane forces neede
support the shell in the transverse space.

As a first check of this interpretation, we can expand
results in Eq.~18! for large r i . Up to an overall sign, the
coefficient of the metric components gives an effective t
sion in the various directions. The leading contributions
simply

tmem~r i!5
1

2k2

r 6

r i
2 S 12

V*
V D

5
N

~2p!6~a8!7/2gs

~V2V* !
1

4pr i
2V

5N~t6V2t2!S 1

4pr i
2V

D , ~19!

tK3~r i!5
1

2k2

r 6

r i
2

5
N

~2p!6~a8!7/2gs
S 1

4pr i
2D

5Nt6S 1

4pr i
2D , ~20!

which is in precise accord with expectations. In the K3
rections, the effective tension matches precisely that oN
fundamental D6 branes, with an additional averaging fac
(1/4pr i

2) coming from smearing the branes over the shell
the transverse space. In thex0,1,2 directions, we have an ef
fective membrane tension which, up to the appropri
smearing factor, again matches that forN D6 branes includ-
ing the subtraction ofN units of D2-brane tension as a resu
of wrapping on the K3 manifold@5#.

We will make the matching of our effective stress tens
~18! to a shell of D-brane sources more precise in the f
lowing section. At this point, however, notice that the res
for the stress energy in the unwrapped part of the bran
proportional to (Z2Z6)8. As we have already observed in E
~6!, this vanishes at preciselyr 5r e, and therefore we re-
cover the result@1# that for incision at the enhanc¸on radius,
there is a shell of branes of zero tension.

For r ,r e, we would get a negative tension from th
stress-energy tensor, which is problematic even in superg
ity. Notice however that nothing in our computation show
that we cannot make an incision at any radius of our cho
ing for r>r e, and place a shell of branes of the appropria
tension~as in the calculation of the effective tensions at lar
r i above!. This corresponds physically to the fact that pro
branes experience no potential, so they can consistentl
placed at any arbitrary position outside the enhanc¸on. The
special feature of the enhanc¸on radius in both cases is that
1-4
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THE ENHANÇON AND THE CONSISTENCY OF EXCISION PHYSICAL REVIEW D64 106001
is a limit to where we can place the branes. In Sec. II E,
show that the enhanc¸on radius is also special from the poi
of view of particle scattering.

D. Matching fields and branes

We have seen that the effective tensions of the shell a
with those expected for a collection of wrapped D6 brane
large radius, and that the membrane tension vanishes a
same place as the tension of the source branes. In fact,
easily seen that the stress energy of the shell is, in gen
precisely the same as the stress energy ofN wrapped D6
branes distributed uniformly on the sphere, as we will n
show.2

The integrated Einstein equation tells us that shell str
energy should be given by

SAB5E AGrr drF2
2

A2G
(
shell

dSbrane

dGAB G , ~21!

where the sum means that we should sum over the contr
tions of all of the constituent branes in the shell. The term
the square brackets is just the standard definition for
stress-energy tensor. As the source coming from the she
branes is a distribution~in the technical sense! the integral is
included to eliminate the radiald function. Note that it is
important here that the variation is made with respect to
Einstein frame metric.

The metric only appears in the Dirac-Born-Infeld~DBI!
part of the D–brane action as can be seen in Eq.~7!. Con-
verting this result to an Einstein frame, the action forN
wrapped D6 branes is

SDBI52NE
M 2

d3je2F/4@m6eFVE~r !2m2#~2detGmn!1/2,

~22!

whereVE(r ) is the volume of the K3 in a Einstein frame, i.e
VE(r )5*K3d4xA2Gab, and nowGmn denotes the pull-back
of the Einstein frame metric to the effective membra
worldvolume. We assume that theN D6 branes are distrib
uted uniformly over theS2. Recall that we work in static
gauge with jm5xm,m50,1,2. The stress energy of the
source branes can then be written as

Smn5
Ne2F/4

VEVol~S2!
~m22m6eFVE!Gmn

5
1

2k2AGrr
S Z28

Z2
1

Z68

Z6
DGmn ,

Sab52
Ne3F/4

Vol~S2!
m6Gab5

1

2k2AGrr

Z68

Z6
Gab . ~23!

2We thank Neil Constable for useful discussions about th
matching calculations.
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Thus, we see that the form agrees with the shell stress en
given in Eq.~18!.

Note that we have been slightly cavalier in doing t
stress-energy calculation using the effective membrane
tion in Eq. ~22!. The correct microscopic action would actu
ally be that for the seven-dimensional worldvolume of t
wrapped D6 branes. The term proportional tom6 implicitly
takes this form sinceVE is defined as a four-dimensiona
integral over the K3 surface. However, the contribution p
portional tom2 actually has its origin in ana8 correction to
the standard DBI action for the D6 branes@5#. That is, im-
plicitly this term involves an integral over the K3 of
curvature-squared term, and furthermore this combination
curvatures is not a topological invariant. Therefore, naivel
would appear thatSab should actually have contribution
proportional tom2. In fact, however, this contribution van
ishes because K3 is Ricci flat. The difference between
curvature-squared interaction in the D6-brane action and
Gauss-Bonnet invariant is proportional to 2RabR

ab2R2.
Hence the nontrivial contributions coming from the variati
of these terms will be proportional to the Ricci tensor
Ricci scalar, and so vanish when evaluated on K3. Simila
the contributions proportional tom2 in the effective mem-
brane action~7! originate from the integral over K3 of a
curvature-squared term in the Wess-Zumino part of the D
brane action. In this case, these anomaly induced term
form a four-dimensional topological invariant, the fir
Pontryagin class@7#. Hence, there is no contribution to th
stress tensor coming from the variation of these terms eit

Hence these results~23! provide further verification that
matching the repulson solution~1! to a flat space interior
~15! at any radius has the interpretation of introducing a sh
of wrapped D6 branes as the source. As a additional ch
we can also consider the matching of the other fields. T
simplest to consider are the RR fields. Since the exte
geometry containsN units of 7-form flux and2N units of
3-form flux, and the interior has none, the shell clearly c
ries the same RR charges asN wrapped D6 branes.

It is interesting and instructive to consider the juncti
conditions for the dilaton in detail. Since this issue is rare
discussed, we begin with the simple case of a shell of
tremal D6 branes living unwrapped in flat ten-dimension
spacetime. The dilaton and RR fields are written in terms
the harmonic functionH6 as

eF5gsH6
23/4, C(7)5~gsH6!21dx0`dx1`dx2`V«K3 ,

~24!

while the metric is, in Einstein frame,

ds25H6
21/8S 2dt21(

i 51

6

dxi
2D 1H6

7/8~dr21r 2dV2
2!.

~25!

In this BPS case, the radial component of the metric is c
tinuous at the shell, but this is not true generally. The o
requirement is that the induced metric transverse tor be con-
tinuous at the shell.
e

1-5



on
ic

en

nl
R
n
la

di

B
th
ed

de
6-

l
of

dis-
ll

ion.

the

m

g in
re
n-

JOHNSON, MYERS, PEET, AND ROSS PHYSICAL REVIEW D64 106001
Since the functionH6 is harmonic, for a shell of D6
branes at radiusr i , Gauss’s law demands

H6~r !5Z6~r i!1u~r 2r i!@Z6~r !2Z6~r i!#, ~26!

where Z6(r ) is as given in Eq.~2!. Hence, differentiating
with respect tor,

H68~r !5u~r 2r i!Z68~r ! ~27!

and once again

H69~r !5u~r 2r i!Z69~r !1d~r 2r i!Z68~r !. ~28!

It is the singular delta function that gives rise to the juncti
conditions. We therefore need to find all the places in wh
H69 appears.

For the bulk dilaton equation of motion we have, giv
the electric coupling to the RR potentialC(7)

¹2F2
~23/2!

2~8!!
e23F/2~]C!252

2k2

A2G

d

dF
(
shell

Sbrane.

~29!

For the purpose of discovering junction conditions, our o
bulk concern here is the Laplacian of the dilaton; the R
field strength term has too few derivatives. For the left-ha
side of the bulk equation, we therefore have for the singu
term just

Grr F9.2
3

4
Grr H6~r !21H69~r !

.2
3

4

1

Grr
H6~r !21d~r 2r i!H68~r !, ~30!

or in covariant language

“

2F.2
3

4
H6~r !21nr

“ rH6~r !
d~r 2r i!

AGrr

.nr¹ rF
d~r 2r i!

AGrr

.

~31!

More generally, we can encode the covariant integrated
continuity as

2k2SF[~nr¹ rFur 5r i1e2nr¹ rFur 5r i2e!

5
1

AGrr

~F8ur 5r i1e2F8ur 5r i2e!. ~32!

For the brane source term, we begin with the usual D
brane action, as the Wess-Zumino term couples only to
bulk RR field. The D6 branes of the shell are distribut
evenly over the transverse two-sphere (V), so that
10600
h

y

d
r

s-

I
e

2
2k2

A2G

d

dF~y!
(
shell

Sbrane

52k2S E d2V
N

4p
D Fm6

gs
E d7jS 3

4
D

3e3F(x)/4A2detGmn~x!G d10@y2x~j!#

A2G

5
3k2m6N

8pgs

d~r 2r i!

AGVVGrr

e3F(r )/4. ~33!

Here it is important that the variation of the dilaton is ma
while holding the Einstein frame metric fixed. The BPS D
brane shell therefore gives the source

2k2SF5
3k2m6N

8pgs

e3F(r )/4

AGVV

. ~34!

We want to show that Eqs.~32! and ~34! agree. UsingF8
523H68/4H6, and the continuity ofH6, this will be true if

2~H68~r !ur 5r i1e2H68~r !ur 5r i2e!

5
k2m6N

2pgs

H6~r !AGrr e
3F(r )/4

AGVV

52k2
Nm6

4pr i
2gs

. ~35!

Note that the factors ofH6 have cancelled in a nontrivia
manner. Thus, this result is consistent with the usual form
the harmonic function; i.e., Eq.~35! is satisfied ifZ6 takes its
usual form,

m65~2p!26a827/2→Z6~r !511
r 6

r
, r 6[

gsNa81/2

2
.

~36!

Thus, for a spherical shell of unwrapped D6 branes, the
continuity in the derivative of the dilaton field at the she
agrees with the source term in the brane worldvolume act

To extend this to the case of the enhanc¸on is straightfor-
ward. The crucial point again is that we need to consider
DBI action in the Einstein frame. Using Eq.~22!, the
wrapped D6-brane shell then gives the source

2k2SF5
k2N

2pgs

1

AGVV

S 3

4
e3F(r )/4m61

1

4

e2F(r )/4

VE~r !
m2D .

~37!

Note that while this result coincides with that expected fro
the effective membrane action~22!, it can also be properly
derived with the curvature-squared interactions appearin
the D6-brane action@5,7#, assuming that the curvatures a
calculated with the string frame metric. The dilaton disco
tinuity in this case is given by
1-6
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2k2SF5
1

AGrr

~F8ur 5r i1e2F8ur 5r i2e!

5
1

AGrr

S 2
3

4

Z68

Z6

1
1

4

Z28

Z2
D , ~38!

where Z6 ,Z2 are given in Eq.~2!. Thus, we see that th
behavior of the dilaton field atr 5r i is correctly accounted
for by a source shell of wrapped D6 branes. One particu
point to note is that the shell still acts as a source for
dilaton at the enhanc¸on radius, where the effective mem
brane tension vanishes.

E. Particle scattering

There is another reason why the enhanc¸on radius is spe-
cial in supergravity. It is the place where the string fram
metric begins to show repulsive behavior for geode
probes. That is, we probe the solution with particles that f
only the ~string frame! geometry and do not have any add
tional couplings to the dilaton or RR fields. This is a natu
probe computation to perform when considering mass
string modes.

There is a pair of killing vectors,j5] t andh5]f , and so
a probe with ten-velocityu has conserved quantitiese5
2j•u andl 52h•u. e andl are the total energy and angul
momentum per unit mass, respectively. We have frozen
motion in the longitudinal directions.

The radial evolution is given by one-dimensional moti
in an effective potential with

dr

dt
56AE2Veff~r !,

where

Veff~r !5
1

2 F 1

Grr
S 11

l 2

Gff
D21G , E5

e221

2
, ~39!

where the metric components in the above are in str
frame. Let us specialize to the study of purely radial moti
with zero impact parameter. We can see if the geometry
repel the probe at some radius by simply placing it there
rest, and observing if it rolls towards larger or smallerr. For
large enoughr, the effective potential is indeed attractiv
and so we need only seek a vanishing first derivative
Veff(r ). This gives the condition

Gtt8 50, ~40!

which is in fact condition~6!, and so we see that the partic
begins to be repelled precisely atr 5r e. Particles with non-
zero angular momentum will of course experience additio
centrifugal repulsion, butr 5r e is the boundary of the region
where there is an intrinsic repulsion in the geometry. See
top curve in Fig. 1.

Cutting the geometry at any smaller radius would leav
region where the geometry is repulsive and so we see tha
10600
r
e

c
l

l
e

e

g
,
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f

l

e

a
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enhanc¸on radius is therefore the minimal radius at which w
can excise all of the infection inherited from the repulson3

A similar computation can be done for the massle
modes too, with the following result for the effective motio

e2

l 2 5
1

l 2 S dr

dl D 2

1Qeff~r !,

where

Qeff~r !5
1

Z2~r !Z6~r !r 2
. ~41!

The effective potentialQeff(r ) is purely centrifugal, and rep
resents the usual bending of light rays by the geometry.

We conclude that the part of extremal geometry that tr
should be called the ‘‘repulson’’ geometry, actually begins
r 5r e. Hence in establishing the enhanc¸on at precisely this
radius, string theory avoids creating in these configuration
region of the spacetime that is both naked~i.e., not sur-
rounded by an event horizon! and intrinsically repulsive.

III. ADDING D2 BRANES

A useful generalization4 is to add D2 branes to the en
hançon configuration described above.5 They preserve the
same amount of supersymmetry as the original configurat
and so it is easy to compute how a single D2–brane pr
sees the enhanc¸on geometry. Since a D2–brane probe do
not have any sensitivity to the K3 part of the geometry, th
is no enhanc¸on effect for it, and it can travel all the way t
the origin atr 50 @10#. Hence we can imagine building u
D2 branes inside the enhanc¸on radius. We will also find that
the presence of the D2 branes actually allows a certain f
tion of the D6 branes to move inside the enhanc¸on shell.
Therefore, we present a solution below describing a sys
of N wrapped D6 branes andM D2 branes. Of these,N8 of
the D6 branes and allM of the D2 branes are placed atr
50, while N2N8 of the D6 branes remain in the enhanc¸on
shell. After presenting the solution, we will discuss the ph
ics of these configurations.

A. The geometry

Given a spherically symmetric configuration ofN
wrapped D6 branes, the effect of addingM real D2 branes,
which are smeared over the K3, is to increase the D2-br

3This question, essentially ‘‘Just how much repulsion is left ov
after excision?’’ was raised by audience members~Scott Thomas,
Lenny Susskind, Matt Kleban, John McGreevy, and possibly o
ers! during a lecture on enhanc¸ons by C.V.J. at the ITP Stanford. W
thank them for the question.

4The analogous construction for the D5/D1–brane syst
wrapped on K3, was considered in Ref.@13# in considering the role
of the enhanc¸on in the physics of extremal black holes.

5We remind the reader that the harmonic functionsZ2 in the pre-
vious geometry have nothing to do with real D2 branes, but aris
a result of the induced D2–brane charge produced by wrapping
the K3.
1-7
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charge from2N to M2N. In the exterior solution, this shif
is simply accomplished by modifying the harmonic functi
Z2 in Eq. ~2!. The scale appearing there is now

r 25r 6

V*
V S 12

M

N D , ~42!

while the scaler 6 remains as in Eq.~3!. The enhanc¸on radius
is now given by the slightly more general expression:

r e5
2V* r 6

V2V*
S 12

M

2ND , ~43!

and the exterior solution with the modifiedr 2 applies forr
.r e. Notice that Eq.~43! seems to indicate that the en
hançon shell shrinks due to the presence to the D2 bran
One can easily verify that besides the coordinate position
the shell becoming smaller, the proper area of the shell
becomes smaller. In particular forM>2N, there is no en-
hançon shell at all. That is, the D6 branes and D2 branes
all coalesce to a pointlike configuration at the origin.

As in the previous constructions, we will describe t
incision at some arbitrary radiusr i>r e. We match onto an
interior solution withN8 D6 branes andM D2 branes placed
at the origin. Thus the interior geometry is given by

gs
1/2ds25H2

25/8H6
21/8hmndxmdxn1H2

3/8H6
7/8~dr21r 2dV!

1V1/2H2
3/8H6

21/8dsK3
2 ~44!

and the nontrivial fields are

e2F5gs
2H2

1/2H6
23/2,

C(3)5~gsH2!21dx0`dx1`dx2,

C(7)5~gsH6!21dx0`dx1`dx2`V«K3 , ~45!

FIG. 1. The effective potential for increasing amounts of no
extremality,r 0. The top curve is the extremal case.
10600
s.
of
so

n

where

H2512
r 22r 28

r i
2

r 28

r
, r 285r 6

V*
V

N82M

N
, ~46!

H6511
r 62r 68

r i
1

r 68

r
, r 685r 6

N8

N
5

gsN8a81/2

2
,

~47!

where the constant terms in the harmonic functions are c
sen to ensure continuity of the solution at the incision radi
r 5r i . This interior solution is, of course, essentially th
same as the exterior solution with modified harmonic fun
tions.

After computations analogous to those of the previo
section, we get a stress tensor

2k2Smn5
1

AGrr
S Z28

Z2
1

Z68

Z6
2

H28

H2
2

H68

H6
DGmn ,

Si j 50,

2k2Sab5
1

AGrr
S Z68

Z6
2

H68

H6
DGab . ~48!

We see once again that the pressure in the shell direct
vanishes, in agreement with the fact that this system is
BPS. Furthermore, we can show that the effective tensio
the x0,1,2 directions vanishes precisely at the enhanc¸on ra-
dius, and more generally the discontinuities at the shell ag
with the source terms in the worldvolume action ofN2N8
wrapped D6 branes.

B. The physics

Let us consider how the configuration above could
constructed physically. For the following physics discussi
we will only consider the case where the shell sits at p
ciselyr i5r e, with the enhanc¸on radius given in Eq.~43!. We
will further assume thatM,2N in order that there is an
enhanc¸on.

First beginning with only wrapped D6 branes in an e
hançon shell, we noted above that a D2 brane encounters
obstacle to moving pastr 5r e to the origin. Hence a natura
solution to think about is that withM D2 branes at the origin
and allN wrapped D6 branes in the shell, i.e.,N850. In this
case,r 6850, and so the six-brane harmonic function is sim
ply a constant,H65Z6(r e). As defined in Eq.~46!, r 2 is
negative for this configuration, and so the two-brane h
monic function takes the formH25g1ur 28u/r , which grows
as r decreases. Now the volume of the K3 is given by

V~r !5V
H2

H6
5V

g1ur 28u/r
Z6~r e!

, ~49!

where the constants in the expression are fixed by the c
dition V(r e)5V* . Now the interesting observation is tha
V(r ) is a function that grows asr decreases in the interio

-

1-8
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solution. Therefore, there is no obstruction to some of
wrapped D6 branes migrating from the enhanc¸on shell to the
origin.

Examining the solution above further, one finds that
growth of the K3 volume noted above is suppressed w
we begin to place D6 branes at the origin. Hence, we m
ask at what point this growth stops altogether. AsV(r ) is a
monotonic function, the answer is most easily determined
requiring:

V~r 50!5V
H2~0!

H6~0!
5V

ur 28u

r 68
5V* , ~50!

from which we findN85M /2. With this choice of param-
eters, we have in fact thatH2(r )5V* /VH6(r ) which pro-
duces some simplifications in the solution above. The m
important point, however, is that as measured in the st
frame, the volume of the K3 is a fixed constantV* for the
interior solution. Hence, given this configuration withN8
5M /2, a probe D6 brane cannot move into the interior, a
so any D6 branes that might be added to this configurat
would accumulate at the enhanc¸on shell.

Thus one might think that this is a limiting configuratio
However, it is still possible to moveadditional D6 branes
inside the enhanc¸on.6 In principle, this is achieved by carry
ing some of the D2–branes back out to the enhanc¸on shell,
and by binding them to an equal number of the D6 bra
there. This composite unit can now move belowr e, since the
negative tension induced from wrapping the K3 is cance
by the tension of the instantonic D2 branes smeared ove
worldvolume of the D6 branes. This threshold bound st
becomes a true BPS bound state forr ,r e, since separating
them would produce a pure D6 brane, which is not BPS
that region—see Ref.@13# for further discussion. Through
this mechanism we can also form configurations with up
N85M units of D6-brane charge located atr ,r e. Thus the
true limiting solution is that withN85M . That is, our rea-
soning using string theory facts would indicate that the
pergravity solutions withN8.M are unphysical.

The latter conclusion is also supported by the fact tha
this caser 28.0, and so there is a repulson singularity in t
geometry. The repulsive nature of the singularity is se
from the following supergravity calculation: Consider an e
cision construction where flat space is inserted as the inte
solution, i.e., the shell contains N D6 branes and M
branes withN.M , and calculate the associated shell str
energy, i.e., setH2,68 50 in Eq. ~48!. One would find that
before the shell could shrink down to zero size, the tens
would become negative indicating an unphysical configu
tion was reached. Hence even supergravity alone seem
regard as unphysical the repulsonlike configurations withN
or N8.M .

In the limiting case, the interior solution has no net D2
brane charge, as can be seen from the fact thatr 2850. Fur-

6We thank Joe Polchinski for a very useful discussion of t
point.
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thermore, one finds that the K3 volume actually does shr
to below the stringy valueV* , for this configuration~or any
solution withM /2<N8,M !.

Perhaps a few final remarks are in order here: First,
enhanc¸on radius~43! remains unaffected by the migration o
D6 branes from the enhanc¸on shell to the origin. The secon
comment is that we are considering a BPS system of bra
and even within the restriction to spherical symmetry,
could generalize these solutions to having concentric sh
of combinations of D6- and D2-branes, both inside and o
side the enhanc¸on.

IV. SOME NONEXTREMAL ENHANC¸ ONS

Having learned about the nature of the enhanc¸on and the
excision process in the extremal case, where we have the
of supersymmetry to guide our intuition, we now feel able
proceed towards the unknown, and study the nonextre
geometry. What we have in mind is applying some of o
new-found experience to studying the physics of the
hançon at finite temperature. Some suggestions with resp
to this topic were made in Ref.@1#. We generalize the dis
cussion by adding D2 branes to the system of wrapped
branes. If the number of D2 branesM exceeds the number o
D6 branesN, the net D2 charge is positive, and the none
tremal solutions familiar from the unwrapped case can
adapted to the present problem. Hence we begin by stud
these solutions in the following two sections. In fact, the
solutions also accommodate the situation whereM,N, as
we will show in Sec. IV C. TakingM to zero recovers the
proposed solution for the nonextremal enhanc¸on considered
in Ref. @1# ~up to the correction of a small typographic
error!. However, upon closer examination, we find that the
solutions exhibit certain peculiarities, which makes th
physical interpretation uncertain, as discussed in Sec. IV

A. The geometry

We study the nonextremal solution describingN wrapped
D6 branes andM D2 branes. As we said above, we lim
ourselves here to the caseM>N, so that the net D2 brane
charge is positive~or zero!. Then the exterior solution take
the familiar nonextremal form. So forr .r i , we have~in
Einstein frame!:

gs
1/2ds25Ẑ2

25/8Ẑ6
21/8~2Kdt21dx1

21dx2
2!1Ẑ2

3/8Ẑ6
7/8~K21dr2

1r 2dV2
2!1V1/2Ẑ2

3/8Ẑ6
21/8dsK3

2 . ~51!

The dilaton and RR fields are

e2F5gs
2Ẑ2

1/2Ẑ6
23/2,

C(3)5~gsa2Ẑ2!21dt`dx1`dx2,

C(7)5~gsa6Ẑ6!21dt`dx1`dx2`V«K3 . ~52!

The various harmonic functions are given by
s

1-9
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K512
r 0

r
,

Ẑ2511
a2r 2

r
, a252

r 0

2r 2
1A11S r 0

2r 2
D 2

,

Ẑ6511
a6r 6

r
, a652

r 0

2r 6
1A11S r 0

2r 6
D 2

, ~53!

where

r 25r 6

V*
V S M

N
21D , ~54!

and r 6 is still as given in Eq.~3!. Note that the presen
definition of r 2 differs by a sign from that given in Eq.~42!
in the previous section, so that this quantity is posit
throughout the current discussion, whereM>N. The en-
hançon radius is the place where the running volume of
gets to the valueV* . The result may be written as

r̂ e5
V* a6r 62Va2r 2

V2V*
. ~55!

As we found before, the presence of the D2 branes cause
enhanc¸on radius to shrink, and so with a sufficiently larg
number of D2 branes, there will be no enhanc¸on shell outside
the horizon atr 5r 0. Furthermore, note that ifr 0 is large
enough,r̂ e will fall inside the horizon. In fact,r 05 r̂ e at

r 0
25

~V
*
2 r 6

22V2r 2
2!2

V* ~V2V* !~V* r 6
22r 2

2!

5
V

*
2 r 6

2@22~M /N!2#2~M /N!2

~V2V* !@V2V* ~12M /N!2#
. ~56!

Note that this result only applies forM,2N. As we noted
before for M52N, the enhanc¸on radius collapses to zer
with r 050. For larger valuesM>2N, the enhanc¸on radius is
always inside the horizon@and the result in Eq.~56! is spu-
rious#. For small enoughr 0 and r 2 ~or M /N), we will have
r̂ e.r 0, and we can have a solution with an enhanc¸on shell.
Given Eq.~56!, it is useful to keep in mind then that we a
thinking of r 0&V* /Vr6. By our procedures of the previou
section, we match on to some nontrivial interior geome
which is composed of a nonextremal system ofM D2 branes
andN8 wrapped D6 branes.

Hence we take the solution inside some incision radiur i
to be of the form

gs
1/2ds25Ĥ2

25/8Ĥ21/8S 2
K~r i!

L~r i!
Ldt21dx1

21dx2
2D

1Ĥ2
3/8Ĥ6

7/8~L21dr21r 2dV!1V1/2Ĥ2
3/8Ĥ6

21/8dsK3
2 ,

~57!

with accompanying fields
10600
the

,

e2F5gs
2Ĥ2

1/2Ĥ6
23/2,

C(3)5S K~r i!

L~r i!
D 1/2

~gsa28Ĥ2!21dt`dx1`dx2,

C(7)5S K~r i!

L~r i!
D 1/2

~gsa68Ĥ6!21dt`dx1`dx2`V«K3 ,

~58!

where

L512
r 08

r
,

Ĥ2511
a2r 22a28r 28

r i
1

a28r 28

r
,

a2852
r 08

2r 28
1A11S r 08

2r 28
D 2

, r 285r 6

V*
V

M2N8

N
,

Ĥ6511
a6r 62a68r 68

r i
1

a68r 68

r
,

a6852
r 08

2r 68
1A11S r 08

2r 68
D 2

, r 685r 6

N8

N
. ~59!

Note that we have introduced an independent nonextrem
scaler 08 for the interior solution. Implicitly,r 08,r i in order
that the interior black hole actually fits inside the shell. Al
note that we have been lax in imposing continuity at t
shell. Our choice of constants in the harmonic functions
sures that the geometry and metric are continuous there
RR potentials jump by a constant term. While the latter
pure gauge, it means that in a probe calculation the pr
may acquire a spurious constant energy in crossing
shell—however, we will not present any such calculatio
here.

The stress tensor of the shell is now

2k2Stt5
1

AGrr
F Ẑ28

Ẑ2

1
Ẑ68

Ẑ6

1
4

r i
2AL

KS Ĥ28

Ĥ2

1
Ĥ68

Ĥ6

1
4

r i
D GGtt ,

2k2Smn5
1

AGrr
F Ẑ28

Ẑ2

1
Ẑ68

Ẑ6

1
K8

K
1

4

r i

2AL

KS Ĥ28

Ĥ2

1
Ĥ68

Ĥ6

1
L8

L
1

4

r i
D GGmn ,

2k2Si j 5
1

AGrr
FK8

K
1

2

r i
2AL

KS L8

L
1

2

r i
D GGi j , ~60!

2k2Sab5
1

AGrr
F Ẑ68

Ẑ6

1
K8

K
1

4

r i
2AL

KS Ĥ68

Ĥ6

1
L8

L
1

4

r i
D GGab .
1-10
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Here, the indices onSmn only run over thex1 andx2 direc-
tions. Furthermore, in these expressions,Grr denotes the ra-
dial component of the exterior metric as given in Eq.~51!.

B. Some physics

For the above solution, we will regardr 0 , r 2, andr 6 ~or
alternativelyr 0 , M, andN) as fixed parameters as they d
fine the mass and RR charges of the given configurat
This leavesr 08 and N8, as well as the incision radiusr i , as
free parameters, which we expect should be fixed by
physics of the enhanc¸on. Also, recall that we are working
with N<M,2N. The first bound is required for th
asymptotic D2 charge to be positive. The second boun
imposed in order that the enhanc¸on radius can appear outsid
of the event horizon atr 5r 0.

To gain some intuition for these solutions, we imagi
that they arise by beginning with a~spherically symmetric!
BPS configuration of D2- and D6-branes, and then introd
ing a small Schwarzschild black hole at the center. The bl
hole upsets the balance of forces of the original configu
tion, and so the branes begin to fall towards the origin. F
lowing the discussion of Sec. III, there is no mechanism
halt the infall of the D2 branes and so we have implici
assumed that they are all sucked into the black hole—tha
we have set the number of D2 branes in the interior solu
to M, the total number of D2’s in the system. It is straigh
forward to show that in the nonextremal background,
tension of a probe D6 brane still becomes negative preci
when the K3 volume shrinks belowV* . Hence although
there seems to be no obstacle for the wrapped D6 brane
reachr 5 r̂ e, the enhanc¸on provides a potential mechanism
restrain the further infall of these branes. Hence for our
lution to be physically relevant, it seems we must fix t
incision radius to match the enhanc¸on radius~55!. Notice
that the latter is completely fixed by the exterior paramete
r 0 , M, andN.

Therefore, one might be tempted to think about a solut
with N850, i.e., the solution where all of the D6-branes a
fixed in the shell atr 5 r̂ e. However, just as in Sec. III A, we
consider the volume of the K3 in the interior region:

V̂~r !5V
Ĥ2

Ĥ6

~61!

where withr i5 r̂ e, we have ensured thatV̂( r̂ e)5V* . With
the choiceN850, we note thatĤ6 is a fixed constant, while
Ĥ2 grows with decreasing radius. Hence once again, it se
that there is no obstacle for some of the D6 branes to
from the shell into the black hole at the center. This proc
would have to continue at least until the point whereV(r ) is
constant over the entire interior region. This condition
most easily determined by settingV̂(r 50)5V* , which
yields

a28r 28

a68r 68
5

V*
V

, ~62!
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which implicitly gives a constraint relatingr 08 andN8. While
it is a straightforward algebraic exercise to explicitly dete
mineN85N

*
8 (r 08), the result is not particularly illuminating

However, we note that for smallr 08 , the approximate resul
takes the form

N8.
M

2 F12
1

4 S 12
V*
V D Vr08

V* r 6
1•••G . ~63!

This result indicates that introducing the black hole actua
makes the interior region less accessible to the wrapped
branes. That is, in the limit~62!, the critical number of D6
branes is less in the nonextremal case than in the BPS
figuration,N85N

*
8 ,M /2.

Fixing our last free parameterr 08 seems to require more
subtle physical insight. One approach to further fixr 08 is to
consider the components of the shell stress energy~60! in the
transverse space. In particular, the sign of these compon
is completely determined byr 0 andr 08 . For r 08.r 0, the sign
is negative, and there is a positive tension in these directi
That is, the shell appears to want to expand in the transv
space, but it is held in place by an internal tension. Forr 08
,r 0, the sign is positive and so there is a positive pressur
these directions. Hence in this case, the shell appears to
to collapse in the transverse space, but is held in place b
internal pressure. Given the physical intuition that the imb
ance of forces is caused by the gravitational attraction of
central black hole, it seems then that we should restrict
attention tor 08,r 0. Note that this also implies thatr 08,r 0

, r̂ e, so that the interior black hole does fit inside the e
hançon shell.

An exceptional case that may be of interest isr 085r 0. This
choice makesSi j 50 and dramatically simplifies the othe
components of the stress tensor. In particular, the stress
ergy takes a relativistic form similar to that of the BPS co
figurations, where there are two tensions, one in the K3
rections and one along the effective membrane direction

tmem~r i!5~N2N8!~ t̂6V2 t̂2!S 1

4pr i
2V

D ,

tK3~r i!5~N2N8!t̂6S 1

4pr i
2D ,

where t̂65AL(r i)a6t6 and t̂25AL(r i)a2t2. Hence the re-
sults are essentially the same as in Eq.~19!, but the funda-
mental tensions have been modified. We can model
source as a shell of wrapped six branes with a worldvolu
action as in Eq.~22! but with modified fundamental tensions
However, one can verify that these new tensions do not
respond to those of a wrapped D6 brane for any value ofr i .
As it appears that there is no six brane in string theory w
such tensions, the supergravity configurations withr 05r 08
would seem to be unphysical.

At this point, we have constrainedr 08 , but not completely
fixed this free parameter. We leave this issue unresol
here, but we will return to it in the concluding section. Th
1-11
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above discussion should illustrate for the reader that in g
eral the technique of cutting and pasting together vari
supergravity solutions is a crude procedure. One is not
titled to believe that the resulting configuration is necessa
physically relevant. Rather, one must supplement this
proach with other physical arguments to ascertain whe
the resulting solutions are relevant or not.

To finish this section, we comment that given the disc
sion of D6/D2-brane bound states in Sec. III B, there is
fact a physical mechanism by which more D6 branes co
accumulate in the black hole. That is, Eq.~62! determines a
critical valueN

*
8 beyond which a wrapped D6 brane cann

enter the interior region. However, when D2 branes fo
bound states with the wrapped D6 branes, the resulting c
posite branes see no obstruction to entering these regio
the nonextremal situation, one does not have the freedo
pull D2 branes in the central black hole out to the enhan¸on
shell to form such bound states that would then fall back
However, one can imagine that if these bound states w
involved in the initial infall of branes onto the origina
Schwarzschild black hole, then the final central black h
could contain any number of D6 branes betweenN

*
8 <N8

<N. Note that since we are considering a configuration w
more D2 branes than D6 branes, i.e., withM.N, there
would be no obstacle to having the black hole swallow all
the D6 branes. Hence the bound states provide a mecha
for forming black holes in which the horizon is surround
by a region withV(r ),V* . Furthermore, if the entire blac
hole moves out from the center out to the enhanc¸on radius,
we imagine that all of the D6 branes in the shell would
swallowed to form a final-state black hole described by s
ply the exterior solution~51!–~54!.

C. The geometry revisited

We would like to consider the nonextremal solution in t
regimeM,N. The limit M50 is of particular interest. If we
takeM,N in the nonextremal solution~51!–~54!, the obvi-
ous change is that the scaler 2 becomes negative, as can b
seen in Eq.~54!. This simple difference has a drastic effe
on the nature of the solution.

Ẑ2511
a2r 2

r
55 11Ar 2

21r 0
2/42r 0/2

r
, r 2.0,

12Ar 2
21r 0

2/41r 0/2

r
, r 2,0.

~64!

While for r 2.0, this harmonic function is always positiv
for r .r 0, in the caser 2,0, Ẑ2 vanishes atr 5ua2r 2u.r 0.
The latter vanishing results in the appearance of a repul
type singularity at this radius. Given our experience with
BPS configurations, this is precisely the behavior that
should expect in this regime~in particular, atM50).

We further remark that in solving the supergravity equ
tions there is in fact achoiceto be made in fixinga2. One
finds the equations are solved by both
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a2r 256Ar 2
21r 0

2/42r 0/2, ~65!

irrespective of the sign ofr 2. For our discussion here, th
plus sign is the correct choice forM.N, while the minus
seems to apply forM,N. The nonextremal solution as pre
sented in Eqs.~51!–~54! correctly captures both of thes
choices. We return to discuss the sign ambiguity in Eq.~65!
in the final section.

Notice that, crucially, the solution does not make
smooth transition betweenM.N andM,N. Consider tak-
ing the limit r 2→0 in Eq. ~64!. On the top line, it yields
Ẑ251, while in the bottom line, one findsẐ2512r 0 /r . ~Of
course, this discontinuity vanishes in the BPS limit withr 0
→0.! This behavior is actually problematic. Consider fixin
M and taking the limitV→`. This corresponds to smoothl
taking the limit r 2→0. In this case, our intuition is that th
solution should reduce to that of the usual nonextremal
lution for ~unwrapped! D6 branes, as the effective D2-bran
sources are being infinitely diluted over the D6 brane wor
volume. However, we just showed that our solution forM
,N does not properly accomplish this limit. Thus, our no
extremal solution in this regime seems not to be simply
scribing a nonextremal D6 brane wrapped on K3; rat
there is some local difference, independent of the effects
K3 curvature. In particular, these solutions seem to ca
nontrivial dilaton hair — see concluding remarks. To find
solution that is locally just a nonextremal D6 brane, we p
sumably need to consider a more general ansatz for the
ric and dilaton. In the absence of such a solution, it is s
interesting to apply the techniques we have developed to
present solution, and we shall in the sequel.

Given the preceding discussion, we regard the curr
section as an exploration of a distinct family of supergrav
solutions. Furthermore, to avoid any confusion about sig
we introduce some new definitions for the current discuss
For the following, the exterior solution will be taken as give
above in Eqs.~51!–~53!, except that we replace the D2-bran
harmonic function with

Ẑ2512
a2r 2

r
, a25

r 0

2r 2
1A11S r 0

2r 2
D 2

, ~66!

where

r 25r 6

V*
V S 12

M

N D.0. ~67!

With these definitions, the result for the enhanc¸on radius be-
comes

r̂ e5
V* a6r 61Va2r 2

V2V*
. ~68!

Note that the D2 branes still cause the enhanc¸on radius to
shrink, i.e., a largerM yields a smallerr 2.

Also note that withM50, this solution corresponds t
that given in Ref.@1#, except that we have corrected a sign
a2 relative to that which appears there. As commen
above, in this regimeM,N, the supergravity solution ac
1-12
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quires a repulson-type singularity atr 5r r5a2r 2, where the
volume to the K3 shrinks to zero. As noted above and a
clear from the definitions in Eqs.~67!–~68!, this repulson
radiusr r is alwaysgreaterthan the radiusr 0, at which there
would have been an event horizon. Hence this solution
never yield a black-hole horizon no matter how larger 0 be-
comes. The absence of a horizon again suggests tha
resulting nonextremal solution has some additional struc
turned on.

Of course, the repulson singularity should be unphysi
as before, and our task is to determine how to replace
interior geometry forr ,r i ~or rather forr , r̂ e, as we will
argue shortly!. As our ansatz for the interior geometry, w
take precisely the same interior solution~57!–~59! as pre-
sented above. However, to accommodate our new definit
in Eqs.~66! and ~67!, we now write

Ĥ2512
a2r 21a28r 28

r i
1

a28r 28

r
. ~69!

Implicitly, we assume that the physically relevant interi
still satisfies the relationN8<M for simplicity. That is, the
black hole that appears in the interior region contains m
D2 branes than wrapped D6 branes.

The results for the shell stress energy remain as give
Eq. ~60!. Then the only changes come through the impli
redefinition of the relevant functions considered in this s
tion.

A case of particular interest isM50 (5N8), i.e., no ad-
ditional D2 branes. In this case, the harmonic functions
the interior region are simply constants, and the interior
lution reduces to a Schwarzschild black hole parametrized
r 08 . In this case, the stress tensor becomes

2k2Stt5
1

AGrr
F Ẑ28

Ẑ2

1
Ẑ68

Ẑ6

1
4

r i
S 12AL

K D GGtt ,

2k2Smn5
1

AGrr
F Ẑ28

Ẑ2

1
Ẑ68

Ẑ6

1
K8

K
2

L8

L
AL

K

1
4

r i
S 12AL

K D GGmn ,

2k2Si j 5
1

AGrr
FK8

K
2

L8

L
AL

K
1

2

r i
S 12AL

K D GGi j ,

2k2Sab5
1

AGrr
F Ẑ68

Ẑ6

1
K8

K
2

L8

L
AL

K

1
4

r i
S 12AL

K D GGab . ~70!

D. Some more physics

As already noted above, the nonextremal solutions p
sented in the previous section exhibit some peculiar featu
10600
is

ll

the
re

l,
is

ns

e

in
t
-

n
-
y

e-
s.

Hence we have little physical intuition to guide us here,
particular to determine the interior solution given a fixed
of parameters,r 0 , M, andN. Once again, we have three fre
parameters to determiner 08 , N8, and r i . To gain some in-
sight, we begin by studying the exterior solution with tw
types of probes.

We may probe the geometry with a single wrapped
brane. In this nonextremal situation there appears a nontr
potential for the probe’s motion, since we have broken
persymmetry. The result is

L5T~r ,u,f!2U~r !,

with

T5
m2Ẑ6~r !

2gsAK~r !
F V̂~r !

V*
21GF ṙ 2

K~r !
1r 2~ u̇21sin2uḟ2!G ~71!

U5
m2

gsẐ2~r !
F S V̂~r !

V*
21DAK~r !1

1

a2
2

1

a6

V̂~r !

V*
G . ~72!

From Eq.~71!, we see that the effective membrane tens
vanishes precisely at the enhanc¸on radius, whereV̂(r )
5V* , as before. Furthermore, it becomes negative
smaller radii, whereV̂(r ),V* . It is easy to see that the
potential in Eq.~72! is always attractive. In fact, it is increas
ingly attractive for largerr 0. Given these results, it seem
that the physically relevant solution will be that withr i

5 r̂ e, as there is no obstacle to preventing the infall of t
wrapped D6 branes at larger radii, and as before, the exte
solution yields unphysical effects forr , r̂ e.

We may also probe the geometry with point particles
we did for the extremal geometry. The result is identical
that given in Eq.~39!, and is shown in Fig. 1. Again we find
that the geometry is purely attractive up to the radiusr̂ d
determined by the vanishing of the first derivative of t
string frame componentGrr :

]

]r
@ Ẑ2~r !Ẑ6~r !K22~r !#ur 5 r̂ d

50,

where

r̂ d5r 6Fa6Vr02a2V* ~12M /N!~r 012r 6a6!

a2V* r 6~12M /N!2V~2r 01r 6a6! G . ~73!

This is the place where the repulsive part of the geome
begins. The special radiir̂ e, r̂ d are not the same away from
extremality. The radiusr̂ d is alwaysless thanthe enhanc¸on
radius r̂ e. Hence introducing the shell atr i5 r̂ e, will again
ensure that all of the repulsive behavior in the metric is
moved. Figure 2 shows the behavior of these special radi
increasingr 0, for some generic choice of the paramete
with M50.

The remaining discussion precisely follows that in Se
IV B. First, we would say that~unlessM50) not all of the
1-13
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D6 branes will stay at the enhanc¸on radius. Rather they wil
fall into the central black hole until the K3 volume is fixed
V* over this entire region. This condition is determined
precisely the same equation as before, i.e., Eq.~62!, which
implicitly yields precisely the same constraint as before,N8
5N

*
8 (r 0). So as before, the physical solution would pla

N85N
*
8 &M /2 wrapped D6 branes on the central black ho

Furthermore our discussion ofr 08 is also as in Sec. IV B.
By examining the transverse stresses in the shell, we a
that we must haver 08,r 0. However, note that in this case
there was no restriction onr 0, and so we must imposer 08

, r̂ e as a separate constraint, which ensures that the ce
black hole actually fits inside of the enhanc¸on shell. Beyond
these two constraints, we have not fixed the final free par
eter r 08 .

V. CONCLUDING REMARKS

We have found that a purely supergravity analysis sing
out the enhanc¸on radius as a special place in spacetime.
the BPS enhanc¸on, our precise matching calculation was ab
to verify that the solution proposed in Ref.@1# corresponds
precisely to introducing a shell of wrapped D6 branes at
enhanc¸on radius. This result shows that the excision pro
dure, suggested by the full string theory, is also a sens
construction from the point of view of supergravity. O
analysis also strengthens the case that there is simply a
space region inside the enhanc¸on shell~and not, e.g., some
breakdown of the spacetime description!.

Furthermore, these matching calculations explain w

FIG. 2. Some special radii for increasing nonextremalityr 0, in
the caseM50. The solid curves are as follows: The enhanc¸on
radius is top, the repulson radius is bottom, and the minimal ra

for which excision would remove all repulsivenessr̂ d , ~which also
deserves a name! is the middle curve. Notice that the latter tw
coalesce into the would–be horizon~dotted line at very bottom! at
large r 0.
10600
.

ue

ral

-

s
r

e
-
le

at-

y

one can sensibly carry out the excision procedure in su
gravity, even without full knowledge of the detailed mech
nism by which the branes will expand. The latter is esp
cially pertinent to wrapped Dp branes withp5” 6, where one
does not have the intuition supplied by the fact the the
pansion is just the physics of ordinary BPS Yang-Mill
Higgs monopoles, and also for uplifts of the enhanc¸on to M
theory, as studied in Ref.@14#.

It is clear that this technique has wide applications. So
cases of particular interest are Denef’s ‘‘empty holes’’ stu
ied in Ref. @15#. There, a similar excision procedure is pe
formed, matching a nontrivial supergravity exterior to a fl
space interior. This matching seems to be dictated by su
symmetry and the attractor flow equations. However,
continuity conditions imposed at the excision surface gu
antee that the implicit source consists of a shell of mass
particles as would be appropriate for a D3 brane wrappin
conifold cycle. It may be interesting to study those solutio
from this point of view in more detail.

We used the supergravity analysis to explore a nonex
mal deformation of the enhanc¸on.7 However, in this case, ou
results seemed less satisfactory, as we are unable to c
pletely fix r 08, the radius of the black hole in the interio
region. Instead we were only able to produce two relativ
lax constraints:r 08,r 0 and r 08, r̂ e.

In fact, we expect that there is no single correct value
r 08 in the following sense: The nonextremal configuratio
consist of two thermal subsystems: the central black h
with the Hawking temperature, and the enhanc¸on shell
whose internal degrees of freedom are thermally excit
~We could extend the number of subsystems to three by
cluding a thermal bath at infinity.! While the solution pre-
sumably describes these subsystems in thermal equilibr
for one particular value ofr 08, we are implicitly working in a
regime where they are only weakly coupled, e.g., therm
fluxes are diffuse enough that their gravitational back re
tion is negligible. Hence if the black hole and the enhanc¸on
shell have different temperatures, we expect that they
only equilibrate over a very long time span. Hence the
static nonextremal solutions can be considered as good
proximations to the full system which only evolves ve
slowly. This would be analogous to how isolated black ho
are described by classical solutions of Einstein’s equati
and the dynamical effects of Hawking evaporation are
nored. With this reasoning, it is natural to think thatr 08
should remain a free parameter~subject to certain broad con
straints! in the nonextremal solutions.

Our partial results with respect tor 08 provide a good illus-
tration of the fact that the excision technique of matchi
together different supergravity solutions is a coarse t
when there is no supersymmetry. To completely verify t
physical correctness of the results, one must still invo
other arguments. In particular, if the nonextremal solutio
are to describe thermally excited enhanc¸ons, it seems that we

7References@16# provide other opportunities to apply the tec
niques discussed here to nonsupersymmetric cases.

s
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need a better microscopic understanding of the thermal p
ics of the D branes in the shell. While it is clear that the R
sources remain unchanged, i.e., the RR fields are simply
termined by the number of branes, the thermal excitation
the internal modes on the branes will modify the metric a
dilaton sources. While the matching calculations allow us
calculate these sources from the supergravity solution fo
particular choice of parameters, without a microscopic mo
we cannot verify, e.g., what the associated tempera
should be. In principle, such a microscopic picture wou
allow us to identify the value ofr 08 at which the central black
hole and the enhanc¸on shell would be in thermal equilibrium

In fact, a larger problem was revealed in examining
nonextremal solutions in the regime where the D6 bra
outnumbered the D2 branes. In this case, the solutions
hibit a number of peculiar features. First, the exterior so
tion never contains an event horizon no matter how large
nonextremality scaler 0 became. Furthermore, in the lim
r 2→0, equivalent to a large K3 volume limit, these solutio
do not seem to reproduce the expected nonextremal
brane solution. Examining this limit more closely, we s
that the RR three-form potential actually vanishes atr 250,
even though we have a nontrivial harmonic functionĤ251
2r 0 /r . On the other hand, this harmonic function still mak
a nontrivial contribution to the metric, and in particular to t
dilaton. Hence, rather than the expected solution, we see
have produced a solution for nonextremal D6 branes ca
ing some additional dilaton hair. In fact~as in the extrema
case! the repulson singularity in these solutions implies th
the usual no-hair theorems no longer apply, and so our n
extremal solutions are presumably just one example o
family of singular solutions with the same asympto
charges and mass, but differing by scalar hair. It would
interesting if these generalized solutions could be fou
along the lines of Ref.@17#, as some of the physical problem
might be ameliorated with the appropriate hair dressi
However, without the guidance of supersymmetry in the
nonextremal solutions, this seems a daunting task.

Finally, recall our observation that solving the supergra
ity equations left a sign ambiguity in the following relatio

a2r 256Ar 2
21r 0

2/42r 0/2, ~74!

irrespective of the sign ofr 2. In the discussion in Sec. IV, we
made the particular choices that the sign is plus~minus! for
M.N(M,N). Figure 3 illustrates the two differen
branches in Eq.~74! and our choices in resolving the amb
guity. A feature that distinguishes our choice of signs is t
in the limit r 0→0, these two branches coalesce to fill out t
diagonal, which we know corresponds to the proper B
solution. However, as illustrated, the two families of so
tions actually both extend over the entire range ofM /N. The
solutions on the lower branch are all characterized by hav
a repulson singularity~before any excision procedure
implemented!. As discussed above, these singular solutio
are not unique and we will not consider them further her

A distinguishing feature of the solutions corresponding
the upper branch is that all of these nonextremal configu
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tions are black holes~again before any excision procedure
implemented!. Hence we expect that no-hair theorems w
single out these solutions as the unique solutions with a n
singular event horizon for a given set of parameters:r 0 , M,
and N. Therefore, it is to be expected that there is so
interesting physics associated with these solutions even w
M,N. For example, if we probe a ‘‘large’’ Schwarzschil
black hole with either test D6– or D2–brane probes, th
are now obstructions to either type of probe, to prevent th
from falling into the black hole. So if this black hole absor
a relatively small number of branes, we expect that the
state must be a black hole in this family of solutions, even
M,N. Similarly, one might think about starting with a blac
hole on theM.N part of this branch and dropping i
anti–D2 branes to reduce the final black hole toM,N. As a
final comment, however, we note that even with smallr 0, the
black holes withM,N have masses~relatively! far above
the BPS limit.
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FIG. 3. The two branches~solid lines! of supergravity solutions
for varying values of the ratioM /N. There is a crucial discontinuity
at N5M ~see text!.
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