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The enhanon and the consistency of excision
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The enhapon mechanism removes a family of timelike singularities from certain supergravity spacetimes by
forming a shell of branes on which the exterior geometry terminates. The problematic interior geometry is
replaced by a new spacetime, which in the prototype extremal case is simply flat. We show that this excision
process, made inevitable by stringy phenomena such as enhanced gauge symmetry and the vanishing of certain
D-branes’ tension at the shell, is also consistent at the purely gravitational level. The source introduced at the
excision surface between the interior and exterior geometries behaves exactly as a shell of wrapped D6 branes,
and in particular, the tension vanishes at precisely the eoharclius. These observations can be generalized,
and we present the case for nonextremal generalizations of the geometry, showing that the procedure allows for
the possibility that the interior geometry contains a horizon. Further knowledge of the dynamics of the en-
hanon shell itself is needed to determine the precise position of the horizon, and to uncover a complete
physical interpretation of the solutions.
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[. INTRODUCTION of incorrect geometries with the correct asymptotic charges,
since no-hair theoreméwhich are usually relied upon, at
In Ref.[1], the study of the supergravity fields produced least implicitly, to interpret supergravity physjcapply only
by a family of brane configurations revealed a new mechaif a singularity in the proposed geometry is hidden behind an
nism by which string theory removes a class of timelikehorizon. The proposdll] was therefore that the repulson be
naked singularities. The singularities, of “repulson” type, excised and replaced with a more appropriate geometry. In
arise at the locus of points where parts of the tenthe cases studied in RdfL], the geometry in the interior is
dimensional geometry shrink to zero size. The supergravitgimply flat space, since there are no brane sources in the
geometries preserve eight supercharges. In the prototype eiterior, as they have all expanded out to form the enbanc

ample of Ref[1], it is a K3 manifold(on which the branes In Sec. Il of this paper, we will show that this excision
are wrappefiwhich shrinks to zero size, but the presence ofprocedure is consistent — and in fact is an extremely natural
a K3 is not essential for the phenomenon. process — in supergravity. By analyzing the standard junc-

In short, the naive supergravity solution is modified by thetion conditions, we show in the next section that the en-
fact that the constituent branes that source the fields, smeaanwn radius is a special place even from the simple point
out from being pointlike(in their transverse spacto beinga  of view of the stress energy of the shell, and that this stress
sphere. This sphere is called the “enhan¢ Pure super- energy corresponds precisely to that of a shell of wrapped D6
gravity is unable to model this phenomenon, because it iranes. We also show that the shell provides sources for the
controlled by physics that arises before the shrinking parts oflilaton and Ramond-Ramori&R) fields, which again match
the geometry get to zero size. Instead, when they get to vobrecisely to those of wrapped D6 branes.
umes set by a characteristic lengthr 2a’, new massless In Sec. lll, we generalize this situation slightly by adding
modes appear in the string theory. In Rdf], the shrinking D2 branes, to set the stage for Sec. IV, where we study two
volume of K3 gets toV, =(2ma')?* and there is an en- families of nonextremal generalizations of the enfuange-
hanced gauge symmetry (1)—SU(2). The unwrapped ometry. The first family corresponds to a system combining
parts of the D branes are monopoles of thgl) and corre-  wrapped D6 branes and a larger number of additional D2
spondingly become massless and expand at this place, forrhbranes. These nonextremal solutions all contain an event ho-
ing the enhanan. rizon, which may or may not appear outside of the enbanc

The supergravity geometry interior to the enpamccon-  radius. In the case where an event horizon appears below the
taining the repulson singularity, is obviously incorrect, as itenhanon radius, the excision procedure gives us a range of
exhibits a number of unphysical properties uncovered in, fochoices for the interior solution. It does not appear that this
example, Refs[1-4]. In fact, since it has a naked singular- ambiguity can be resolved within the supergravity frame-
ity, the repulson is not only unphysical, it is part of a family work alone.

The second family, which is characterized by a repulson-
like singularity (before any excisionis an extension of those
*Email address: c.v.johnson@durham.ac.uk derived in Ref[1].! This solution seems to describe a non-
"Email address: rcm@hep.physics.mcgill.ca
*Email address: peet@physics.utoronto.ca
SEmail address: s.f.ross@durham.ac.uk We correct a small but crucial typographical error in the nonex-
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extremal configuration with arbitrary numbers of D2 and D6where the above line element corresponds to the string frame

branes. However, this solution does not reduce to the previmetric. Here indicesg,v) run over the 012 directions along

ous one when the number of D2 branes exceeds the numbtre unwrapped worldvolume, while indiceisj() run over the

of D6 branes, nor does it reduce to a standard D6-brang45 directions transverse to the brane. Al is the met-

solution when the volume of the K3 is large. Furthermore ric of a K3 surface of unit volume, anéy; is the corre-

this solution also has the peculiar feature that it never has agponding volume form. The harmonic functions are

event horizon outside of the enhamc radius. Hence its

physical interpretation remains unclear. Section V presents e rop

conclusions and discussion of future directions. Ze=1+ T Z,=1- T @
Although in retrospect it could not have been much dif-

ferent, we do find it remarkable that while supergravity can-where

not produce the stringy phenomena, which make the en-

. . . 11/2
han®n mechanism necessary, it does display some _9sNa Ve
awareness of the behavior of the branes that source this ge- Fe= 2 rz_vrﬁ’ ®
ometry; the source terms on the shell correspond to precisely
those in the worldvolume action. with N being the number of D6 branes. The running K3
volume can be simply read off as
Il. THE EXTREMAL ENHANC , ON Z5(r)
V(r)=V . 4
The enhanan story is best told by considering the case of Zg(r)
wrappingN D(p+4) branes on a K3 manifold of volumeé . . : .
This leaves an unwrapped ¢ 1) —dimensional worldvol- Using this, a quick computation shows that
ume in the noncompact six dimensions. There argp5on- 2V
compact spatial dimensions transverse to the brane. We shall re=——Tg. (5

often use polar coordinates in these directions, since every- V=V,

thing we do here will retain rotational symmetry. These co-

ordinates are,{{),_,}, where the sef(), ,} denotes one’s

favorite choice of angular coordinates on a unit round (4 9

—p) sphereS*~P. 21221 Ze(1)]]r= =0. (6)
The supergravity solution necessarily arranges such that

the volume of K3 decreases from the vaMeatr==, 10 Thjs simple result is in fact at the heart of the consistency of
smaller values as decreases. We shall denote this runningye 1| junction computation we present in the next section,
volume asV(r). Type Il string theory compactified on K3 .5 \ve shall see.

has an enhanced gauge symmetry when the K3 volume
reaches/, = (2m)*(«')?, in our units. The special radius at
which this happens is called the enhancadius and denoted
re. We give its value below. The wrapped D6 branes will expand into a shell of zero
tension atr =r,. Just to remind the reader, and to set up the
notation for the following sections, we reproduce below the
probe computation of Refl] which supports this conclu-
To avoid unnecessary notational clutter, we focus on the&ion.

casep=2. For the issues that we consider, the extension to The effective worldvolume action of a single wrapped D6
otherp is trivial, and so we suppress those cases in the disbrane, with which we can probe the geometry, is

cussion, but the reader may wish to keep them in mind for
their own purposes. The repulson solution is then

It is interesting to note that the following is true:

B. Brane probes

A. The geometry

5= f e O V(1) — o](~ detG,,) 2
d?=2; Y225 V2, dxtdxt+ 2Y°ZY%dXidX e

+ VY2727 VS +,U«efM XK3C(7)_M2JM Cey, (7)
2 2

e?®=g2z,Y27,7%"2, where M, is the unwrapped part of the worldvolume, which
lies in six noncompact dimensions, ay,, is the induced
(string frame metric. Of course, this result includes the sub-
traction of one fundamental unit of D2 brane tensihand
RR chargd 6—8], which results from wrapping the D6-brane
C7)=(Zegs) ~*dx°Adx*Ndx?*/\Veys, (1)  on K3. Note the RR charges, appear in the Dirac-Born-
Infeld part of the action since we have included the string
coupling g5 in the solution for the dilaton. Recall that the
tremal solution presented in RéfL]. basic D-brane tension is given by,=u,/gs. The funda-

C(3)=(Z59s) ~*dxX°Adx \dX?,
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mental D6- and D2-brane charges aug=(2m) %a’ 72 C. The junction conditions

and u,=(2m) " %a’ =2 Note that The brane probe calculation suggests that the repulson
geometry is replaced by flat space inside a shell, which is
K2 Hp —(2m*(a')2=V ®) prod_uce_d by delo<_:a|ized branes. We_can use the classic
M6 Mpia * gravitational technique$11,12 to describe this geometry
more explicitly, and calculate the stress energy and charges

The fact that this ratio yieldy, for all p, following from T of the shell matching the exterior repulson geometry to flat

duality, is at the heart of the consistency of the whole mechasPace. _ _
nism. If it were not true, wrapped D4 branes would become If we join two solutions across some surface, there will be
massless at a different value pffrom where wrapped D6 & discontinuity in the extrinsic curvature at the surface. This
branes go massless, and then there would be no W bosonsG8" be interpreted as éfunction source of stress energy
carry the enhanced gauge symmetry. This universality alslpcated at the surfa_ce. In the foIIo_Wlng section, we will show
underlies why we can focus on the case 2 without loss of that the value of this source precisely agrees with the source
generality. inferred from the D-brane worldvolume action, confirming
Choose a static gauge where we align the worldvolumdhe consistency of this description.

coordinates¢* with the first three spacetime coordinates L€t US compute the relevant quantities, working at an ar-
(x°,x,x?), and then allow the transverse location of the Pitrary incision radius =r;. The computation should be per-
brane to ,depend only on time=x°. Next, substitute the formed in Einstein frame, to allow us to interpret the discon-

exterior solution(1) into the action(7), and expand it, keep- tnuity in the extrinsic curvature as a stress enelrg¥,12.
ing only quadratic order in velocity in'. In this way, one One gets the tep—dlmen5|onal Elnstgm metric from the string
can write the effective Lagrangian density for the problem ofon€ Presented in the previous section by the conformal re-
moving the probe brane slowly in the background producedcaling

by all of the other branes;=T(r,0,4)—U(r). As this is a dséz e*‘l”zdsé (10)
supersymmetric problent)(r) is constantit is zero in our '

conventiong while for the kinetic energy we have

and we shall denote the metric components simpl%as,
with no further adornment. When we need to refer to string
(r)v? frame metric components, we shall be very explicit.
We are slicing in a direction perpendicular to the coordi-
nater, and so we can define unit normal vectors:

T=

N| -

1
=—(ugVZo— uoZg)v?
ZgS(Mes 27 M2 6)

- (11

_ #2Zell) [F2+r2(6%+siP6¢))].  (9) Ne=* 5 ar

29s

Vi)

v, !

Note that the second line shows that the kinetic en¢agyd ~ wheren, (n_) is the outward pointing normal for the space-
hence the effective tensior(r) of the probé vanishes pre- time regionr>r; (r<r;). In terms of these, the extrinsic
cisely atr =r. curvature of the junction surface for each region is

If we were to continue the result into the repulson region
r<r., we would find that the tension of the probe becomes
negative. Fixing that problem by taking the absolute value of
the tension then produces another problem: the cancellation
of the potentialJ (r) will fail, which is inconsistent with the
supersymmetry of the situation. Therefore the probe cann

proceed any further inside the geometry than the e[dmncéi_on is defined asyag=K s+ Kag, and with these defini-

radius. We should also point out here that more can be d . S
duced[1,9,10 about the geometry by exploiting the fact that tions, the stress-energy tensor supported at the junction is

the brane is in fact a BPS monopole of the six-dimensionaPMP!Y
HiggsedSU(2). Not only does its mass go to zero at the
enhanced gauge symmetry point, but its size diverges, and
the probe spreads all over the entamtocus. The enhaoa, Sas=2(YaB~ Gae¥%c), (13
therefore, is a shell of smeared branes of zero tension.

Since there are no pointlike sources inside, it is not
unreasonable to suggest that the interior of the geometry is iwhere « is the gravitational coupling, i.e., &= 167Gy
fact flat spacegin this largeN approximation; there will be =(27-r)7(a’)4g§ is the ten-dimensional Newton'’s constant in
subleading corrections and we shall next examine the our present conventions.
consistency of this proposal from the point of view of In our case, we want to match the Einstein metric of the
supergravity. repulson,

2\G,, "

KKBZEngﬁcGAB: + (12

the discontinuity in the extrinsic curvature across the junc-
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92/2d32222—5/825 1/87]deudxv+ zg/8zglgdxidxi Let us pause to admire thg re;ult. _The last line, referring
P to the stress along the K3 direction, involves only the har-
+ V273087 184S monic function for the pure D6-brane part. This is appropri-

ate, since there are only D6-branes wrapped there. According
to the middle line, there is no stress in the directions trans-
verse to the branes. This is consistent with the fact that the
constituent branes are Bogomol'nyi-Prasad-Sommerfield
(BPS type, and so there are no interbrane forces needed to
support the shell in the transverse space.
As a first check of this interpretation, we can expand the

results in Eq.(18) for larger;. Up to an overall sign, the

=G, dx*dx"+ G;;dX dX + G,pdx3dx®,  (14)

whereZ, and Zg are given by Eq(2), to a flat metric. We
will start with a matching at some arbitrary radius r;, and
will see thatr=r. is a special choice. We explicitly ensure
that all fields are continuous through the incision by writing
the interior solution in appropriate coordinates and gauge,

022ds2=Z,(r,) " 58Z4(r,) Y8y, ,dx dX” coefficient of the metric components gives an effective ten-
s 2\l e\l Ny . . . . . L
o sion in the various directions. The leading contributions are
+Z,(r)¥8Z4(r)) "*dx dx simply
+V1/222(ri)3/826(ri)71/8d5igy ) 1 rg ( ) vV, )
_ Tmenl )= 52 S| L7~
e =g2Z3(r) Zs *Ary), 2tV

C3)=[Za(r)gs] tdx’Adx*/\dx?,

(277)6(a’)7/2gs(v V*)47Tl'i2V
C(7):[ZG(ri)gs]7ldX0/\Xm/\dX2/\V8K3.
(15 1
o _ _ =N<mV—r»( —1, (19
Some computation gives the following results for the discon- 4mriV
tinuity tensor:
11 [ 27, Z (F)= 5 ! (1)
_ = L2, %6 VT2 2T 2m8(a) 2
Y16 \/G_rr( Z, * Za) Guv: i (2m3e’) 0, A
1
__i 1 (3Z_é+7z_é)(3 _NT6(47Tri2)' 20
NTT1e G, Tz, Tz T
which is in precise accord with expectations. In the K3 di-
1 1 z, Z rections, the effective tens_ion match_gs precisely _thaNof
Yab=— 1—6—( SZ—— Z—) [CH (16)  fundamental D6 branes, with an additional averaging factor
\/G_” 2 6 (1/477'I’i2) coming from smearing the branes over the shell in

the transverse space. In the&1? directions, we have an ef-
fective membrane tension which, up to the appropriate
smearing factor, again matches that kD6 branes includ-

where the metric components are as defined in (E4), a
prime denoteg), and all quantities are evaluated at the inci-

sion Zgrfacef ri'l I_\lotet,. howev]?r, thayAé‘ ISa tgnso: on ttrr:e ing the subtraction ol units of D2-brane tension as a result
nine-dimensional junction surface and & denotes the wrapping on the K3 manifoldis].

metric on the angular directions of the transverse space, i.e., We will make the matching of our effective stress tensor
there is noy,; component. From the above we can COmpme(lB) to a shell of D-brane sources more precise in the fol-

the trace lowing section. At this point, however, notice that the result
for the stress energy in the unwrapped part of the brane is
— ] (17) proportional to Z,Z¢)’. As we have already observed in Eq.
(6), this vanishes at precisely=r., and therefore we re-

chz -
16 VG,
. ) . ) . cover the resulf1] that for incision at the enhaon radius,
Putting this all together gives the following pleasing resultsthere is a shell of branes of zero tension.

6
4+ 77—
322 7ZG

11(25 z;

for the stress-energy tensor at the discontinuity: For r<r,, we would get a negative tension from the
, , stress-energy tensor, which is problematic even in supergrav-

s 1 (é+ ﬁ) ity. Notice however that nothing in our computation shows
*o2k?\G, 22 Zg) M that we cannot make an incision at any radius of our choos-

ing forr=r,, and place a shell of branes of the appropriate

S;=0, tension(as in the calculation of the effective tensions at large

r; above. This corresponds physically to the fact that probe
1 Z. branes experience no potential, so they can consistently be

Sﬁb:ﬁ(z_e)Gab (18  placed at any arbitrary position outside the entoancrhe
K rr

special feature of the enhamtradius in both cases is that it
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is a limit to where we can place the branes. In Sec. Il E, weThus, we see that the form agrees with the shell stress energy
show that the enhapa radius is also special from the point given in Eq.(18).

of view of particle scattering. Note that we have been slightly cavalier in doing the
stress-energy calculation using the effective membrane ac-
D. Matching fields and branes tion in Eq.(22). The correct microscopic action would actu-

ally be that for the seven-dimensional worldvolume of the

We have seen that the effecti\_/e tensions of the shell agrérapped D6 branes. The term proportionalutg implicitly
with those expected for a collection of wrapped D6 branes at . o< this form sinc&/g is defined as a four-dimensional

large ra|d|us, ancri] that the mefmhbrane tenstl)on vanllsh?s at_ tlfl”‘?tegral over the K3 surface. However, the contribution pro-
same place as the tension of the source branes. In fact, it |3, jona| to 4, actually has its origin in am’ correction to

easily seen that the stress energy of the shell is, in gener e standard DBI action for the D6 bran. That is, im-
precisely the same as the stress energNokrapped D6 [ plicitly this term involves an integral over the K3 of a
c

branes distributed uniformly on the sphere, as we will NOWe, a1 re-squared term, and furthermore this combination of
show” . . : . curvatures is not a topological invariant. Therefore, naively it
The integrated Einstein equation tells us that shell stresg, |4 appear thaS,, should actually have contributions
energy should be given by proportional tou,. In fact, however, this contribution van-
2 S0 and ishes because K3 .is Ricc! fIaF. The difference bgtween the
SAB:f \/G_,,dr R —5 | (21) curvature-squared interaction in the D6-brane action and the
\—G shell 6G Gauss-Bonnet invariant is proportional tcR2R*"—R2.
Hence the nontrivial contributions coming from the variation
where the sum means that we should sum over the contribwf these terms will be proportional to the Ricci tensor or
tions of all of the constituent branes in the shell. The term inRicci scalar, and so vanish when evaluated on K3. Similarly
the square brackets is just the standard definition for théhe contributions proportional tge, in the effective mem-
stress-energy tensor. As the source coming from the shell dfrane action(7) originate from the integral over K3 of a
branes is a distributiofin the technical seng¢he integral is  curvature-squared term in the Wess-Zumino part of the D6-
included to eliminate the radia? function. Note that it is brane action. In this case, these anomaly induced terms do
important here that the variation is made with respect to théorm a four-dimensional topological invariant, the first

Einstein frame metric. Pontryagin clas$7]. Hence, there is no contribution to the
The metric only appears in the Dirac-Born-InfeldBl)  stress tensor coming from the variation of these terms either.
part of the D—brane action as can be seen in (EZg.Con- Hence these resuli®3) provide further verification that
verting this result to an Einstein frame, the action fér matching the repulson solutiofl) to a flat space interior
wrapped D6 branes is (15) at any radius has the interpretation of introducing a shell

of wrapped D6 branes as the source. As a additional check,
B 3D ® 2 we can also consider the matching of the other fields. The
SDBI__NJM d*ée” " uee " VE(r) — uo](—detG,, )™ simplest to consider are the RR fields. Since the exterior
2 (22) geometry contain®N units of 7-form flux and—N units of
3-form flux, and the interior has none, the shell clearly car-

whereVg(r) is the volume of the K3 in a Einstein frame, i.e., €S the same RR charges Msvrapped D6 branes.
Ve(r) = J ad*x = Gp, and nowG,, denotes the pull-back It is interesting and instructive to consider the junction
of the Einstein fra?ne metric to the effective membraneconditions for the dilaton in detail. Since this issue is rarely
worldvolume. We assume that tie D6 branes are distrib- discussed, we begin with the simple case of a shell of ex-

uted uniformly over theS?. Recall that we work in static tremal D6 branes living unwrapped in flat ten-dimensional
gauge with £“=x*,,=0,1,2. The stress energy of these spacetime. The dilaton and RR fields are written in terms of

source branes can then be written as the harmonic functioHg as

Ne /4 ® e?=gHg ¥, C(7):(gsHe)ildXO/\Xm/\dXZ/\V8K31
S,,=————— (2~ ue€ " Ve)G,,
“Tyvol(s) 2T TR (24)

B 1 (Zé . Zé) while the metric is, in Einstein frame,
262G, \ 22 Zs) M’ 6
d52=Hg1/8<—dt2+2 dx? | +HE¥dr2+r%d03).

N 1z - (25
Sap= ————— wsGap=—s—— = Gp. (23
ab VoI(Sz) M6Sab 2,2 #G” Zs ab

In this BPS case, the radial component of the metric is con-
tinuous at the shell, but this is not true generally. The only
2We thank Neil Constable for useful discussions about thesgequirement is that the induced metric transverselie con-
matching calculations. tinuous at the shell.
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Since the functionHg is harmonic, for a shell of D6 242 S
branes at radius;, Gauss’s law demands -—— 2 Sorane
V=G OP(y) shell
N 3
=2K2<Jd29— —6f d7§(—)
Os 4
My —x(é)]
X @3P()/4 ) — detGW(x)} _

He(r)=Zg(ri) + 0(r—r[Ze(r)—Ze(r)],  (26)

where Zg(r) is as given in Eq(2). Hence, differentiating
with respect tar,

4ar
V—G

Hg(r)=0(r—r;)Zg(r) 27
3k?ugN 8(r—r;)
and once again = e3P/, (33
870s NG0aGir
Hg(r)=0(r—r)Zg(r)+ 8(r —r;) Zg(r). (28

Here it is important that the variation of the dilaton is made
It is the singular delta function that gives rise to the junctionWhlle holding the Einstein frame metric fixed. The BPS D6-

conditions. We therefore need to find all the places in whicH’rane shell therefore gives the source
& appears.

. . . . 2 3d(r)/4
For the bulk dilaton equation of motion we have, given 2,2 :3K peN e (34)
the electric coupling to the RR potential;, 879s Gqq
) (=312 o ) 22§ We want to show that Eq$32) and (34) agree. Usingd’
Ve — 2(8)! e (9C)°=— S S g;” Sbrane- =—3H¢/4H,, and the continuity oHg, this will be true if
29 ) /
e (S IR TS N
For the purpose of discovering junction conditions, our only 2, NH r)\/G_e”(”"‘ N
bulk concern here is the Laplacian of the dilaton; the RR _ < 46N Hel I _o2 8 (35
field strength term has too few derivatives. For the left-hand 27Qs VGgq 4mrigs
side of the bulk equation, we therefore have for the singular
term just

Note that the factors oHg have cancelled in a nontrivial
manner. Thus, this result is consistent with the usual form of
G~ — §GrrH (1)~ HZ(r) the harmonic function; i.e., E¢35) is satisfied ifZg takes its
4 6 6 usual form,

gSNa/I/Z
2

31 . :
==z He(n ar=roHgr, (30

r
pe=(2m) %’ oz =1+, 1g

_ _ (36)
or in covariant language

Thus, for a spherical shell of unwrapped D6 branes, the dis-

) . 8(r—r;) : o(r—rj) continuity in the derivative of the dilaton field at the shell
Voo =— ZHG(r) n VrHG(r)? =n'V,® el agrees with the source term in the brane worldvolume action.
rr Gy To extend this to the case of the enhamgs straightfor-

(3D ward. The crucial point again is that we need to consider the

DBI action in the Einstein frame. Using Ed22), the

More generally, we can encode the covariant integrated disyrapped D6-brane shell then gives the source
continuity as

2 2 N1 3 3d(r)/a 1e ®08
2 =n'V,®|,_, .. —n'V,D|_, _ 2 = -e + = .
K“Sp=( r |r—ri+e r |r—ri e K“Sq 27795\/6_99 4 M6 4 Vg(r) M2
1 (37
:\/:(q)’|r=ri+e_q),|r=ri—e)- (32
Grr Note that while this result coincides with that expected from

the effective membrane actiq®2), it can also be properly
For the brane source term, we begin with the usual DBIderived with the curvature-squared interactions appearing in
brane action, as the Wess-Zumino term couples only to théhe D6-brane actiofi5,7], assuming that the curvatures are
bulk RR field. The D6 branes of the shell are distributedcalculated with the string frame metric. The dilaton discon-
evenly over the transverse two-sphefe)( so that tinuity in this case is given by
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enhanon radius is therefore the minimal radius at which we

ZKZSq):—(CI)’|r=ri+E—CI>’|r=ri,E) can excise all of the infection inherited from the repuldon.
\/G_rr A similar computation can be done for the massless
, , modes too, with the following result for the effective motion:
1 3Z¢ 127,
=—<—ZZ—+ZZ—), (38 e 1/dr\?
VG, 6 2 |_2_|_2(ﬁ + Qerl(r),
where Zg,Z, are given in Eq.(2). Thus, we see that the where
behavior of the dilaton field at=r; is correctly accounted
for by a source shell of wrapped D6 branes. One particular
point to note is that the shell still acts as a source for the Qer(r)= Z,(NZs(r)r? (42)
dilaton at the enhagmn radius, where the effective mem- 2 6
brane tension vanishes. The effective potentia@Q.«(r) is purely centrifugal, and rep-
resents the usual bending of light rays by the geometry.
E. Particle scattering We conclude that the part of extremal geometry that truly

should be called the “repulson” geometry, actually begins at
r=re. Hence in establishing the enhamcat precisely this
radius, string theory avoids creating in these configurations a
egion of the spacetime that is both nak@g., not sur-
ounded by an event horizpand intrinsically repulsive.

There is another reason why the enf@ncadius is spe-
cial in supergravity. It is the place where the string frame
metric begins to show repulsive behavior for geodesi
probes. That is, we probe the solution with particles that fee

only the (string frame geometry and do not have any addi-

tional couplings to the dilaton or RR fields. This is a natural IIl. ADDING D2 BRANES
probe computation to perform when considering massive
string modes. A useful generalizatichis to add D2 branes to the en-

There is a pair of killing vectorg=d; andy=d,,, and SO hanpn configuration described abo¥erhey preserve the
a probe with ten-velocityy has conserved quantities=  game amount of supersymmetry as the original configuration,

—& uandl=—»-u. eandl are the total energy and angular 5nq g it is easy to compute how a single D2—brane probe
momentum per unit mass, respectively. We have frozen thgees the enhann geometry. Since a D2—brane probe does
motion in the longitudinal directions. _ _not have any sensitivity to the K3 part of the geometry, there
_ The rad|_al evolutlo_n is given by one-dimensional motionjg enhanan effect for it, and it can travel all the way to
in an effective potential with the origin atr =0 [10]. Hence we can imagine building up
dr D2 branes inside the enharcradius. We will also find t_hat
a7 T VE~Ver(r), the presence of the D2 branes actually allows a certain frac-
T tion of the D6 branes to move inside the enfanchell.
Therefore, we present a solution below describing a system
where of N wrapped D6 branes arld D2 branes. Of theséy’ of
17 1 |2 0?1 the D6 branes and aM of the D2 branes are placed &t
V(1) = = _< 1+ _) _1} E= , (399 =0, whileN—N’ of the D6 branes remain in the enhanc
2 Gy Gy 2 shell. After presenting the solution, we will discuss the phys-

. _ ) _ ics of these configurations.
where the metric components in the above are in string

frame. Let us specialize to the study of purely radial motion, A. The geometry
with zero impact parameter. We can see if the geometry will

; ; o Given a spherically symmetric configuration afl
repel the probe at some radius by simply placing it there at .
rest, and observing if it rolls towards larger or smaleFor wrapped DG branes, the effect of addikbreal D2 branes,

large enoughr, the effective potential is indeed attractive, which are smeared over the K3, is to increase the D2-brane

and so we need only seek a vanishing first derivative of

Veii(r). This gives the condition
er(r) 9 3This question, essentially “Just how much repulsion is left over

(40) after excision?” was raised by audience memb@sott Thomas,
Lenny Susskind, Matt Kleban, John McGreevy, and possibly oth-

S . . ers during a lecture on enhaans by C.V.J. at the ITP Stanford. We
which is in fact condition6), and so we see that the particle thank them for the question.

begins to be repelled preciselymatr.. Particles with non- ape aha0g0us  construction for the DS/D1-brane system

zero angular momentum will of course experience additionayrapped on k3, was considered in REE3] in considering the role

centrifugal repulsion, but=r. is the boundary of the region o the enhapen in the physics of extremal black holes.

where there is an intrinsic I’epu|SiOI’l in the geometry. See theSWe remind the reader that the harmonic func’[i@@s'n the pre-

top curve in Fig. 1. vious geometry have nothing to do with real D2 branes, but arise as
Cutting the geometry at any smaller radius would leave a result of the induced D2—brane charge produced by wrapping on

region where the geometry is repulsive and so we see that thee K3.

G;=0,
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0.11 where

ro—ry, I, , VvV, N—M

H2: - ) -, r2=r67 N y (46)

0 15 20 25 30 35 40
0
re—re Té N’ gN'a’'?
He=1+ +—, ri=rp—=—-—
\ \\/ 6 ri r’ 6 6 N 2 ’
01 where the constant terms in the harmonic functions are cho-

sen to ensure continuity of the solution at the incision radius,

Veff r=r;. This interior solution is, of course, essentially the
same as the exterior solution with modified harmonic func-
—0.27 tions.

After computations analogous to those of the previous
section, we get a stress tensor

1 (Z, Zg H, H;
031 2k2S,,= —2+—6——2——6)G .
a VG, \Z2 Zg Hz Hg a

FIG. 1. The effective potential for increasing amounts of non-

extremality,ry. The top curve is the extremal case. S, =0
J L
charge from— N to M —N. In the exterior solution, this shift 1 /7" H!
is simply accomplished by modifying the harmonic function 2K28ab:_(_6 — _6) ab (48)
Z, in Eq. (2). The scale appearing there is now VG, ' Zs Hs
B V_* 1- M 42 We see once again that the pressure in the shell directions
F2=Te7y N/’ (42) vanishes, in agreement with the fact that this system is still

BPS. Furthermore, we can show that the effective tension in
while the scale s remains as in Eq:3). The enhapen radius  the x%12 directions vanishes precisely at the enfanca-
is now given by the slightly more general expression: dius, and more generally the discontinuities at the shell agree
with the source terms in the worldvolume actionMf N’
2V, r M wrapped D6 branes.
Fema 01— |, (43) PP
V-V, 2N
) ) ) - ) B. The physics
and the exterior solution with the modified applies forr Let us consider how the configuration above could be

>r.. Notice that Eq.(43) seems to indicate that the en- ) . ; . .
hanon shell shrinks due to the presence to the D2 branesc_ons;tructed physically. For the following physics discussion,

One can easily verify that besides the coordinate position o\f\gge\llw:lgrsly \?v?t?]st'ggre;hheaCas?a\évizirei\}gﬁ iihE&:;S Ve\lltepre-
the shell becoming smaller, the proper area of the shell als@ ey i = e (ien ra g A
becomes smaller. In particular fod=2N, there is no en- will further assume thaM <2N in order that there is an

hanon shell at all. That is, the D6 branes and D2 branes caﬁn:]:?rg?rge innina with onlv wranoed D6 branes in an en-
all coalesce to a pointlike configuration at the origin. Y 9 y PP

As in the previous constructions, we will describe thehar@n shell, we noted a_bove that a D2 brane encounters no
incision at some arbitrary radius=r.,. We match onto an obsta_lcle to moving past=re to Fhe origin. Hence a nat.ur.al
interior solution withN’ D6 branes andl D2 branes placed solution to think about is that W'tM D2 branes’ ft the origin
at the origin. Thus the interior geometry is given by and aII,N wrapped D6 brapes in the shell, |..Bl,—0.. In t.hls.

caserg=0, and so the six-brane harmonic function is sim-

gé’ZdSZZH£5/8Hgl/8,7wdxﬁdxv+ HYBH78(dr2+r2dQ) ply a constantHg=Zg(r¢). As defined in Eq.(46), r, is
negative for this configuration, and so the two-brane har-
+V2H3BH Ve (44 monic function takes the forrhl,= y+|rj|/r, which grows

asr decreases. Now the volume of the K3 is given by
and the nontrivial fields are

H, y+|ra|/r

ez‘b=g§H%/2Hg3’2, V(r)=VH—6:Vm, (49

C(3)=(gst)*ldxo/\dxl/\dxz, where the constants in the expression are fixed by the con-
dition V(rg =V, . Now the interesting observation is that

C7y=(gsHe) TdXPNAdXAAX A\ Ve, (45  V(r) is a function that grows as decreases in the interior

106001-8



THE ENHANCON AND THE CONSISTENCY OF EXCISION PHYSICAL REVIEW [®4 106001

solution. Therefore, there is no obstruction to some of theéhermore, one finds that the K3 volume actually does shrink
wrapped D6 branes migrating from the enpamshell to the  to below the stringy valu¥/,, , for this configuration(or any
origin. solution withM/2<N’'<M).

Examining the solution above further, one finds that the Perhaps a few final remarks are in order here: First, the
growth of the K3 volume noted above is suppressed wherenhanon radius(43) remains unaffected by the migration of
we begin to place D6 branes at the origin. Hence, we mighD6 branes from the enhaoe shell to the origin. The second
ask at what point this growth stops altogether.\Ws) is a  comment is that we are considering a BPS system of branes,
monotonic function, the answer is most easily determined byand even within the restriction to spherical symmetry, we

requiring: could generalize these solutions to having concentric shells
of combinations of D6- and D2-branes, both inside and out-
V(r:0)=VH2(O) _ sz 50 side the enhayan.
He(0) ~ rp %

IV. SOME NONEXTREMAL ENHANC , ONS

from which we findN’=M/2. With this choice of param- Having learned about the nature of the enftemand the
eters, we have in fact thad,(r) =V, /VHg(r) which pro-  excision process in the extremal case, where we have the aid
duces some simplifications in the solution above. The mostf supersymmetry to guide our intuition, we now feel able to
important point, however, is that as measured in the stringproceed towards the unknown, and study the nonextremal
frame, the volume of the K3 is a fixed constant for the  geometry. What we have in mind is applying some of our
interior solution. Hence, given this configuration wiktY new-found experience to studying the physics of the en-
=M/2, a probe D6 brane cannot move into the interior, anchanon at finite temperature. Some suggestions with respect
so any D6 branes that might be added to this configuratiortp this topic were made in Refl]. We generalize the dis-
would accumulate at the enhamcshell. cussion by adding D2 branes to the system of wrapped D6

Thus one might think that this is a limiting configuration. branes. If the number of D2 brankkexceeds the number of
However, it is still possible to movadditional D6 branes D6 branesN, the net D2 charge is positive, and the nonex-
inside the enhamum?® In principle, this is achieved by carry- tremal solutions familiar from the unwrapped case can be
ing some of the D2—branes back out to the enbarshell, adapted to the present problem. Hence we begin by studying
and by binding them to an equal number of the D6 braneshese solutions in the following two sections. In fact, these
there. This composite unit can now move belqw since the  solutions also accommodate the situation whigre'N, as
negative tension induced from wrapping the K3 is cancelledve will show in Sec. IV C. TakingVl to zero recovers the
by the tension of the instantonic D2 branes smeared over thgroposed solution for the nonextremal enfnconsidered
worldvolume of the D6 branes. This threshold bound staten Ref. [1] (up to the correction of a small typographical
becomes a true BPS bound state fetr, since separating erron. However, upon closer examination, we find that these
them would produce a pure D6 brane, which is not BPS irsolutions exhibit certain peculiarities, which makes their
that region—see Ref.13] for further discussion. Through physical interpretation uncertain, as discussed in Sec. IV B.
this mechanism we can also form configurations with up to

'=M units of D6-brane charge locatedratr,. Thus the A. The geometry

true limiting solution is that withN’=M. That is, our rea- ; )
soning using string theory facts would indicate that the su-__We study the nonextremal solution describMgvrapped
pergravity solutions wittN’>M are unphysical. D6 branes andM D2 branes. As we said above, we limit

The latter conclusion is also supported by the fact that iPurselves here to the cas¢=N, so that the net D2 brane
this caser}>0, and so there is a repulson singularity in thecharge is positivéor zerg. Then the exterior solution t:_:lkes
geometry. The repulsive nature of the singularity is see h_e famllf|ar nonextremal form. So far>r;, we have(in
from the following supergravity calculation: Consider an ex- EInStéin frame
cision construction where flat space is inserted as the interior/, 5 5/85-1/8 > 2 | 53/857/8 1, —
solution, i.e., the shell contains N D6 branes and M D29% ds’=2, 826 (—Kdt*+dxp+dxg) + 23725 (K dr?
branes withN>M, and calculate the associated shell stress +12d02) +V1/223/82—1/8dsﬁ _ (51)
energy, i.e., seH,¢=0 in Eq. (48. One would find that 2 26 3
before the shell coulql sh_rlnl_< dqwn to zero size, the tgnsmq.he dilaton and RR fields are
would become negative indicating an unphysical configura-
tion was reached. Hence even supergravity alone seems to 2b_ 251/25—3/2
regard as unphysical the repulsonlike configurations With e =0s23"2¢"",
or N'>M.

In the limiting case, the interior solution has no net D2— _ 51 1 5
brane charge, as can be seen from the factrthat0. Fur- Ca)=(Gsx2Zo) dUAD/ADX,

C(7): (gsa’GZG) _1dt/\dX1/\d XZ/\VS K3 - (52)
SWe thank Joe Polchinski for a very useful discussion of this
point. The various harmonic functions are given by
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ro e2® — 2[yLi2py =312
K:].—T, gs 2 6 1

K(ri) R 1A dy2
5 asl) o / ro 2 Ciy= L(r) (gsazH,) ~dtAdx Adx?,
— — i
Z=1+ r ap _2I’2+ 1+<—2r2) ,

K(I’i) 1/2 - ) ,
Coy=|17=| (gsagHe) " tdtAdXAdX2A\Veys,

2
~ aere ro ro L(ri)
=1+— =——+ +|=—
Zemlt = 2rg 1 2r6> ’ 3 (58)
where where
V, (M ro
=ra—| —— L=1——,
ry r6V(N 1), (549 r
andrg is still as given in Eq.(3). Note that the present - aro—anly, aly
definition of r, differs by a sign from that given in E@42) Hy=1+ r + r
in the previous section, so that this quantity is positive
throughout the current discussion, wheve=N. The en- [ 2 V. M=N’
hanon radius is the place where the running volume of K3 =,/ — _ LA 1+ =], rh=re— ,
gets to the valud/, . The result may be written as 2r) 2r) V. N
~ V*a’ﬁre_vazrz ) aal a—alrl  alr!
I’EZT. (55) H6:1—|— 6 Gr_ 66 ? 6'
|
As we found before, the presence of the D2 branes causes the , p )
enhanon radius to shrink, and so with a sufficiently large ~ ,_ To 14 To Pl N (59)
number of D2 branes, there will be no enhanshell outside ° org oy T ° ° N
the horizon atr=ry. Furthermore, note that ify is large
enough r, will fall inside the horizon. In factr,=r at Note that we have introduced an independent nonextremality
scaler, for the interior solution. Implicitly,r j<r; in order
2 (Vi ré—V2r§)2 that the interior black hole actually fits inside the shell. Also
rO_V (V=V,)(V, r2—r2) note that we have been lax in imposing continuity at the
* ¥ TRE T2 shell. Our choice of constants in the harmonic functions en-
V212 2— (M/N)2J2(M/N)? sures that the geometry and metric are continuous there, but
= > (56) RR potentials jump by a constant term. While the latter is
(V=V)IV=V,(1-M/N)7] pure gauge, it means that in a probe calculation the probe

. ) may acquire a spurious constant energy in crossing the
Note that this result only applies fal <2N. As we noted  ghe||_however, we will not present any such calculations
before for M =2N, the enhapen radius collapses to zero pgre

with ro=0. For larger value® = 2N, the enhapen radius is

L . i i The stress tensor of the shell is now
always inside the horizofand the result in Eq56) is spu-

[ious]. For small enoughy andr, (or M/N), we will have , 1 -Zé Zg 4 L |:|§ I:ié 4
re>ro, and we can have a solution with an enpamshell. 2Kk°Sy= N ~—+=+ —~ VK —+ =+ T Gt
Given Eq.(56), it is useful to keep in mind then that we are GilZy Ze i Ha He i
thinking of ry=<V, /Vrg. By our procedures of the previous fa, a,
section, we mach on to some nontrivial interior geometry,, 5o _ 1 é+é+ K_'+ 4
which is composed of a nonextremal systenioD2 branes K= G 7, 26 K
andN’ wrapped D6 branes. m
Hence we take the solution inside some incision radjus L |3|é |3|(’5 L’ 4
to be of the form “Vk |3|_+|3|_+T+F Guvs
2 6 !
112 " —5/80) — 1/8) K(ri) 2 2 2
Os dSZIHZ H _ml_dt +dX1+dX2 1 {K/ 2 \/E L’ 2
i 2K2S =—|—+—— —(—+— Gij, 60)
N3BT8 —14p2, 2 17203187y — 1/8, X VG, LK i KiL /] (
+AYAIEL1dr2+r2dQ) + VYA T VB,
7 2k°S ! Zé+K,+4 \F Aé+|‘/+4) G
Koap™—| " "~ VKl 77 " ab
with accompanying fields VG [Zg K T KiHg L T
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Here, the indices o5, only run over thex' andx? direc-  which implicitly gives a constraint relating, andN’. While
tions. Furthermore, in these expressio@g, denotes the ra- it is a straightforward algebraic exercise to explicitly deter-
dial component of the exterior metric as given in Esfl). mineN’ =N, (r(), the result is not particularly illuminating.
However, we note that for smalf,, the approximate result
B. Some physics takes the form

For the above solution, we will regarg, r,, andrg (or M
alternativelyry, M, andN) as fixed parameters as they de- N =—|1
fine the mass and RR charges of the given configuration. 2

This leavesr, andN’, as well as the incision radius, as g result indicates that introducing the black hole actually
free parameters, which we expect should be fixed b_y thenakes the interior region less accessible to the wrapped D6
physics of the enhava. Also, recall that we are working pranes. That is, in the limit62), the critical number of D6

with N<M<2N. The first bound is required for the panes s less in the nonextremal case than in the BPS con-
asymptotic D2 charge to be positive. The second bound 'ﬁguration N =N’ <M/2
1 * .

imposed in order that the enhamcradius can appear outside
of the event horizon at=r,.

1
4

V*) Vrg

V | V,rg (63

Fixing our last free parametey, seems to require more
subtle physical insight. One approach to furtherrfixis to

To gain some intuition for these solutions, we imagine ) .
that they arise by beginning with @pherically symmetric consider the components.of the shelllstress en@ogyin the
transverse space. In particular, the sign of these components

BPS configuration of D2- and D6-branes, and then introduc- . f , _
ing a small Schwarzschild black hole at the center. The blacks ComPpletely determined by, andro . Forro>ro, the sign
hole upsets the balance of forces of the original configuralS negative, and there is a positive tension in f[hese directions.
tion, and so the branes begin to fall towards the origin. Fol-1"atis, the shell appears to want to expand in the transverse
lowing the discussion of Sec. Ill, there is no mechanism tcSPace, but it is held in place by an internal tension. Ror
halt the infall of the D2 branes and so we have implicitly <'o, the sign is positive and so there is a positive pressure in
assumed that they are all sucked into the black hole—that ighese directions. Hence in this case, the shell appears to want
we have set the number of D2 branes in the interior solutiol® collapse in the transverse space, but is held in place by an
to M, the total number of D2’s in the system. It is straight- internal pressure. Given the physical intuition that the imbal-
forward to show that in the nonextremal background, the2nce of forces is caused by the gravitational attraction of the
tension of a probe D6 brane still becomes negative precise|9entral black hole, it seems then that we should restrict our
when the K3 volume shrinks below, . Hence although attention tor<ro. Note that this also implies thal<r,
there seems to be no obstacle for the wrapped D6 branes tor,, so that the interior black hole does fit inside the en-
reachr =t,, the enhapen provides a potential mechanism to hanon shell.
restrain the further infall of these branes. Hence for our so- An exceptional case that may be of interestjs r. This
lution to be physically relevant, it seems we must fix thechoice makesS;=0 and dramatically simplifies the other
incision radius to match the enhamc radius(55). Notice  components of the stress tensor. In particular, the stress en-
that the latter is completely fixed by the exterior parametersergy takes a relativistic form similar to that of the BPS con-
rg, M, andN. figurations, where there are two tensions, one in the K3 di-
Therefore, one might be tempted to think about a solutiorrections and one along the effective membrane directions:
with N’=0, i.e., the solution where all of the D6-branes are
fixed in the shell at =r.. However, just as in Sec. Ill A, we NN SN
consider the volume of the K3 in trj1e interior region: Tment 1) = (N=N")(76V = 75)

Amr?V

v(r) vHz (62)
rN=Vv-—-—
He

,\ 1
TK3(ri):(N_N,)76(47Tr2),

where withr;=r,, we have erAlsured that(re) =V, . With where 76= \L(r;) ag s and 7= \L(r;) a,7,. Hence the re-
the choiceN’ =0, we note thatls is a fixed constant, while sults are essentially the same as in Exf), but the funda-

H, grows with decreasing radius. Hence once again, it seenfsental tensions have been modified. We can model the
that there is no obstacle for some of the D6 branes to falsource as a shell of wrapped six branes with a worldvolume
from the shell into the black hole at the center. This proces@ction as in Eq(22) but with modified fundamental tensions.
would have to continue at least until the point whei@) is  However, one can verify that these new tensions do not cor-
constant over the entire interior region. This condition isrespond to those of a wrapped D6 brane for any valug of
most easily determined by setting(r=0)=V, , which AS itappears that there is no six brane in string theory with

yields such tensions, the supergravity configurations wigker}
would seem to be unphysical.
ayh Vv, At thi_s point, we have constraineg, bu_t not completely
TERRVA (62 fixed this free parameter. We leave this issue unresolved
aglg here, but we will return to it in the concluding section. The
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above discussion should illustrate for the reader that in gen- ol y= = \r2+124—ry/2, (65)
eral the technique of cutting and pasting together various

supergravity solutions is a crude procedure. One is not erjrrespective of the sign of,. For our discussion here, the
titled to believe that the resulting configuration is necessarilyplus sign is the correct choice fdi >N, while the minus

physically relevant. Rather, one must supplement this apseems to apply foM <N. The nonextremal solution as pre-
proach with other physical arguments to ascertain whethegented in Eqs(51)—(54) correctly captures both of these

the resulting solutions are relevant or not. ~ choices. We return to discuss the sign ambiguity in &)
To finish this section, we comment that given the discusin the final section.

sion of D6/D2-brane bound states in Sec. Il B, there is in Notice that, Crucia"y’ the solution does not make a
fact a physical mechanism by which more D6 branes coulgmooth transition betweeld >N and M <N. Consider tak-
accumulate in the black hole. That is, E§2) determines @ ing the limit r,—0 in Eq. (64). On the top line, it yields
critical valueN, beyond which a wrapped D6 brane cannotzzz 1, while in the bottom line, one find&,=1—r/r. (Of
enter the interior region. However, when D2 branes forme, rse  this discontinuity vanishes in the BPS limit with
bound states with the wrapped D6 branes, the resulting com-, g ) This hehavior is actually problematic. Consider fixing

posite branes see no (_)bstruction to entering these region. | 5ng taking the limitv— . This corresponds to smoothly
the nonextremal situation, one does not have the freedom tQing the |imitr,—0. In this case, our intuition is that the

pull D2 branes in the central black hole out to the enloanc
shell to form such bound states that would then fall back in

However, one can imagine that if these bound states werg, o are being infinitely diluted over the D6 brane world-

g\vr?lved mh'}geblmltllall’] |Infaltlhof l;)k:anf(.as Iontotthleblcmgi](lnr;alll volume. However, we just showed that our solution Kér
chwarzschild black nole, then fhe Tinal central X i‘c NO'€<N does not properly accomplish this limit. Thus, our non-
could contain any number of D6 branes betw@ép<N"  gyremal solution in this regime seems not to be simply de-

=<N. Note that since we are considering a configuration Withscribing a nonextremal D6 brane wrapped on K3; rather

more D2 branes than D6 branes, i.e., wh>N, there  there is some local difference, independent of the effects of
would be no obstacle to having the black hole swallow all ofk3 cyrvature. In particular, these solutions seem to carry

the D6 branes. Hence the bound states provide a mechanisigntrivial dilaton hair — see concluding remarks. To find a
for forming black holes in which the horizon is surrounded so|ytjon that is locally just a nonextremal D6 brane, we pre-
by a region withV(r) <V, . Furthermore, if the entire black s mably need to consider a more general ansatz for the met-
hole moves out from the center out to the enfeneadius, ric and dilaton. In the absence of such a solution, it is still

we imagine that all of the D6 branes in the shell would bejnteresting to apply the techniques we have developed to the
swallowed to form a final-state black hole described by SiMypresent solution, and we shall in the sequel.

ply the exterior solutior(51)—(54). Given the preceding discussion, we regard the current
section as an exploration of a distinct family of supergravity
solutions. Furthermore, to avoid any confusion about signs,
we introduce some new definitions for the current discussion.
We would like to consider the nonextremal solution in the For the following, the exterior solution will be taken as given

regimeM <N. The limit M =0 is of particular interest. If we above in Eqs(51)—(53), except that we replace the D2-brane
takeM <N in the nonextremal solutio(b1)—(54), the obvi-  harmonic function with

ous change is that the scalg becomes negative, as can be

solution should reduce to that of the usual nonextremal so-
lution for (unwrapped D6 branes, as the effective D2-brane

C. The geometry revisited

seen in Eq(54). This simple difference has a drastic effect A aols o ro\?
on the nature of the solution. Zy=1-——, a2:2_r2+ 1+ 2, (66)
2 2
fro+r3/4—ry/2
r 14 2 or 0 1,0, where
A asl o
Z=1+——= V, ( M)
r 2+ 12/4+1 /2 r,=re—|1——1|>0. (67)
1_ 2 Or O_, I‘2<O V N

(64)  With these definitions, the result for the enhancadius be-
comes

While for r,>0, this harmonic function is always positive ~ V,agrgt+Vasr,

for r>r, in the case ,<0, Z, vanishes at =|a,r,|>r,. Fe= V-V,

The latter vanishing results in the appearance of a repulson-

type singularity at this radius. Given our experience with theNote that the D2 branes still cause the enlencadius to

BPS configurations, this is precisely the behavior that weshrink, i.e., a largeM yields a smaller .

should expect in this regim@n particular, atM =0). Also note that withM =0, this solution corresponds to
We further remark that in solving the supergravity equa-that given in Ref[1], except that we have corrected a sign in

tions there is in fact @hoiceto be made in fixingr,. One  «a, relative to that which appears there. As commented

finds the equations are solved by both above, in this regimeévl <N, the supergravity solution ac-

(68)
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quires a repulson-type singularity &t r,= a,r,, where the ~Hence we have little physical intuition to guide us here, in

volume to the K3 shrinks to zero. As noted above and as iarticular to determine the interior solution given a fixed set

clear from the definitions in Eqg67)—(68), this repulson of parameters;o, M, andN. Once again, we have three free

radiusr , is alwaysgreaterthan the radius,, at which there ~parameters to determing, N’, andr;. To gain some in-

would have been an event horizon. Hence this solution willsight, we begin by studying the exterior solution with two

never yield a black-hole horizon no matter how largebe-  types of probes.

comes. The absence of a horizon again suggests that the We may probe the geometry with a single wrapped D6

resulting nonextremal solution has some additional structurbrane. In this nonextremal situation there appears a nontrivial

turned on. potential for the probe’s motion, since we have broken su-

Of course, the repulson singularity should be unphysicalpersymmetry. The result is

as before, and our task is to determine how to replace this

interior geometry for <r; (or rather forr<Fe, as we will

argue shortly. As our ansatz for the interior geometry, we ,iih

take precisely the same interior solutisi7)—(59) as pre-

sented above. However, to accommodate our new definitions z 9 L2

- : poZ6(1) {vm H

in Egs.(66) and(67), we now write = —
29sVK(r) K(r)

Y 1 1V
( (r)—l) K(r)+———£] (72)

V* Ay ag V*

L=T(r,0,¢)—U(r),

+r2('62+sir|20¢' 2)} (71)

V.
A asl o+ abr abr}
, 1 22 2'2 212

. 69
I r ( ) U M2

Implicitly, we assume that the physically relevant interior 9sZ2(r)
still satisfies the relatioN’<M for simplicity. That is, the

black hole that appears in the interior region contains morgrom Eq.(71), we see that the effective membrane tension

DZT?lr:Tz:JITsa?oﬁﬁgpsehdeIli)gtrbers: ee?w'er remain as given ixanishes precisely at the enhanc radius, WhereV(r)
9y 9 =V, , as before. Furthermore, it becomes negative for

Eq. (60). Then the only changes come through the implicit

redefinition of the relevant functions considered in this secSmaller radii, wherev(r)<V, . It is easy to see that the
tion. potential in Eq(72) is always attractive. In fact, it is increas-

A case of particular interest l1=0 (=N'), i.e., no ad- INdly attractive for larger,. Given these results, it seems
ditional D2 branes. In this case, the harmonic functions irfhat the physically relevant solution will be that with
the interior region are simply constants, and the interior so=Tre, as there is no obstacle to preventing the infall of the
lution reduces to a Schwarzschild black hole parametrized byrapped D6 branes at larger radii, and as before, the exterior
ro. In this case, the stress tensor becomes solution yields unphysical effects meFe.
We may also probe the geometry with point particles as

) 1 _Zé Zé 4 L we did for the extremal geometry. The result is identical to
2K°S= N Z_+ 2_"' T 1- Vi |G that given in Eq(39), and is shown in Fig. 1. Again we find

e ® that the geometry is purely attractive up to the radlA'Hs

1 [z22 720 k LU L determined by the vanishing of the first derivative of the

2k%S, = N string frame componer,, :
NGz, zg KL VK
J . ~
4 L —[Z5(r)Ze(r)K2(r)]|,=7,=0,
+—1-/]||G o ’

i KJ|#

where

2K23j=L[K——L—\ﬁ+E(1— \/E”Gij' [T aV (1= MINIro 2rgae)|
VG LK L VK T K a6 TV, re(L—M/N)—V(2r g+ reag) |

) 1 |zf K' L \F This is the place where the repulsive part of the geometry
2K Sab:\/? Z_6+ K L VK begins. The special radii,,r 4 are not the same away from
" extremality. The radius, is alwaysless thanthe enhanen
P \/E) G... (70) radiusr,. Hence introducing the shelllat:'Fe, will again
i K ab ensure that all of the repulsive behavior in the metric is re-

moved. Figure 2 shows the behavior of these special radii for
increasingry, for some generic choice of the parameters,
with M=0.

As already noted above, the nonextremal solutions pre- The remaining discussion precisely follows that in Sec.
sented in the previous section exhibit some peculiar feature$V B. First, we would say thatunlessM =0) not all of the

D. Some more physics
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one can sensibly carry out the excision procedure in super-
601 gravity, even without full knowledge of the detailed mecha-

nism by which the branes will expand. The latter is espe-
cially pertinent to wrapped P branes withp+# 6, where one

507 does not have the intuition supplied by the fact the the ex-
- pansion is just the physics of ordinary BPS Yang-Mills-
40 o Higgs monopoles, and also for uplifts of the enjam¢o M
Special ) theory, as studied in Ref14].
adii It is clear that this technique has wide applications. Some
30+

cases of particular interest are Denef’s “empty holes” stud-
ied in Ref.[15]. There, a similar excision procedure is per-
formed, matching a nontrivial supergravity exterior to a flat
space interior. This matching seems to be dictated by super-
symmetry and the attractor flow equations. However, the
continuity conditions imposed at the excision surface guar-
antee that the implicit source consists of a shell of massless
particles as would be appropriate for a D3 brane wrapping a
0 5 10 - 15 20 25 conifold cycle. It may be interesting to study those solutions
0 from this point of view in more detail.

We used the supergravity analysis to explore a nonextre-
mal deformation of the enhaan.” However, in this case, our
gesults seemed less satisfactory, as we are unable to com-

FIG. 2. Some special radii for increasing nonextremalgyin
the caseM =0. The solid curves are as follows: The enhamc
radius is top, the repulson radius is bottom, and the minimal radiu N : ’ . .
for which excision would remove all repulsiveness (which also pletely fix ro, the radius of the black hole in the interior

deserves a namas the middle curve. Notice that the latter two region. Instead we were onIyAabIe to produce two relatively

coalesce into the would—be horizétotted line at very bottojnat ~ lax constraintsr j<<ro andr(<re.

larger,,. In fact, we expect that there is no single correct value for
ro in the following sense: The nonextremal configurations

D6 branes will stay at the enhamt radius. Rather they will consist of two thermal subsystems: the central black hole
fall into the central black hole until the K3 volume is fixed at With the Hawking temperature, and the enfmmcshell
V, over this entire region. This condition is determined bywhose internal degrees of freedom are thermally excited.
precisely the same equation as before, i.e., (B8), which (We could extend the number of subsystems to three by in-
implicitly yields precisely the same constraint as befdté, ~cluding a thermal bath at infinityWhile the solution pre-
=N_(ro). So as before, the physical solution would placeSumably describes these subsystems in thermal equilibrium
N’=N’ =M/2 wrapped D6 branes on the central black hole for one particular value afy, we are implicitly working in a

Furthermore our discussion o is also as in Sec. [VB. e€dime where they are only weakly coupled, e.g., thermal

By examining the transverse stresses in the shell, we arng,Jxes are diffuse enough that their gravitational back reac-

that we must have,<r,. However, note that in this case, tion is negligible. Hence if the black hole and the enfmanc

there was no restriction orv. and so we must iMpose. shell have different temperatures, we expect that they will
Mo, POSE only equilibrate over a very long time span. Hence these

<Tr. as a separate constraint, which ensures that the centrgdatic nonextremal solutions can be considered as good ap-
black hole actually fits inside of the enhamcshell. Beyond  proximations to the full system which only evolves very
these two constraints, we have not fixed the final free paramsiowly. This would be analogous to how isolated black holes
eterrg. are described by classical solutions of Einstein’s equations
and the dynamical effects of Hawking evaporation are ig-
nored. With this reasoning, it is natural to think thg}f
should remain a free parametsubject to certain broad con-
We have found that a purely supergravity analysis singlestraintg in the nonextremal solutions.
out the enhayan radius as a special place in spacetime. For Our partial results with respect tg provide a good illus-
the BPS enharmn, our precise matching calculation was abletration of the fact that the excision technique of matching
to verify that the solution proposed in R¢ll] corresponds together different supergravity solutions is a coarse tool
precisely to introducing a shell of wrapped D6 branes at thevhen there is no supersymmetry. To completely verify the
enhanon radius. This result shows that the excision procephysical correctness of the results, one must still invoke
dure, suggested by the full string theory, is also a sensiblether arguments. In particular, if the nonextremal solutions
construction from the point of view of supergravity. Our are to describe thermally excited enhans, it seems that we
analysis also strengthens the case that there is simply a flat-
space region inside the enhancshell(and not, e.g., some
breakdown of the spacetime descripdion "Referenced16] provide other opportunities to apply the tech-
Furthermore, these matching calculations explain whyniques discussed here to nonsupersymmetric cases.

V. CONCLUDING REMARKS
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need a better microscopic understanding of the thermal phys- -
ics of the D branes in the shell. While it is clear that the RR 05 +7° _
sources remain unchanged, i.e., the RR fields are simply de-
termined by the number of branes, the thermal excitation of
the internal modes on the branes will modify the metric and
dilaton sources. While the matching calculations allow us to
calculate these sources from the supergravity solution for a
particular choice of parameters, without a microscopic model
we cannot verify, e.g., what the associated temperature 1
should be. In principle, such a microscopic picture would o
allow us to identify the value af} at which the central black
hole and the enhaoa shell would be in thermal equilibrium.

In fact, a larger problem was revealed in examining the
nonextremal solutions in the regime where the D6 branes
outnumbered the D2 branes. In this case, the solutions ex-
hibit a number of peculiar features. First, the exterior solu- FIG. 3. The two brancheolid lines of supergravity solutions
tion never contains an event horizon no matter how large théor varying values of the ratiM/N. There is a crucial discontinuity
nonextremality scaleg, became. Furthermore, in the limit atN=M (see text
r,—0, equivalent to a large K3 volume limit, these solutions
do not seem to reproduce the expected nonextremal D@ions are black holegagain before any excision procedure is
brane solution. Examining this limit more closely, we seeimplementedl Hence we expect that no-hair theorems will
that the RR three-form potential actually vanishesat0,  single out these solutions as the unique solutions with a non-

even though we have a nontrivial harmonic functidpg=1  Singular event horizon for a given set of parametess:M,
—r,/r. On the other hand, this harmonic function still makes@nd N. Therefore, it is to be expected that there is some
a nontrivial contribution to the metric, and in particular to the Intéresting physics associated with these solutions even when
dilaton. Hence, rather than the expected solution, we seem #§ <N. For example, if we probe a “large” Schwarzschild
have produced a solution for nonextremal D6 branes carryPlack hole with either test D6— or D2—brane probes, there
ing some additional dilaton hair. In fa¢as in the extremal ar€ nOW obstructions to either type of probe, to prevent them
case the repulson singularity in these solutions implies thatfrom fa}lllng into the black hole. So if this black hole absorbs
the usual no-hair theorems no longer apply, and so our norf: élatively small number of branes, we expect that the end
extremal solutions are presumably just one example of tate must be a black hole in this family of solutions, even if
family of singular solutions with the same asymptotic M <N. Similarly, one might think about starting with a black
charges and mass, but differing by scalar hair. It would béole on theM>N part of this branch and dropping in
interesting if these generalized solutions could be found@nti—D2 branes to reduce the final black holéMecN. As a
along the lines of Ref17], as some of the physical problems final comment, however, we note that even with smglthe
might be ameliorated with the appropriate hair dressingPlack holes withM <N have massegrelatively) far above
However, without the guidance of supersymmetry in theséhe BPS limit.

nonextremal solutions, this seems a daunting task.
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