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Quantized bulk fermions in the Randall-Sundrum brane model
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The lowest order quantum corrections to the effective action arising from quantized massive fermion fields
in the Randall-Sundrum background spacetime are computed. The boundary conditions and their relation with
gauge invariance are examined in detail. The possibility of Wilson loop symmetry breaking in brane models is
also analyzed. The self-consistency requirements, previously considered in the case of a quantized bulk scalar
field, are extended to include the contribution from massive fermions. It is shown that in this case it is possible
to stabilize the radius of the extra dimensions but it is not possible to simultaneously solve the hierarchy
problem, unless the brane tensions are dramatically fine-tuned, supporting previous claims.
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. INTRODUCTION d=e 219l dxrdx’— r2d g2 &

The idea of extra dimensions was originally introduced inwith x* the usual four-dimensional coordinateg|< = with
order to provide a unified description of the electromagnetiche points &*,¢) and &*,— ¢) identified. The 3-branes sit
and gravitational interactiori4,2] and further generalized to at $=0 and¢= . kis a constant of the order of the Planck
more than one extra dimension in order to allow the incor-scale(the natural scale for the thegryandr is an arbitrary
poration of non-Abelian gauge field8]. More recent inter- constant associated with the size of the extra dimension. The
est was generated in connection with supergravity and stringnteresting feature of the Randall-Sundrum model is that it
theory[4-6]. can generate a TeV mass scale from the Planck scale in the

In the past few years this idea is having a novel rejuve-higher dimensional theory. A field with a masg, on the
nation, particularly in relation with the resolution of the hi- ¢= brane will have a physical mass of=e™ "™<'m,. By
erarchy problem. In addition, extra dimensions have alsdaking kr=12, and my=10'°GeV, we end up withm
provided an interesting link between string theory and par=1 TeV.
ticle physics, motivating the construction of low energy ef-  Another interesting aspect of brane models is related to
fective theories with possible experimental signatures, antheir field content. In the original version of the Randall-
suggesting possible resolutions of many long standing probSundrum model all of the standard model particles were con-
lems of particle physics and cosmology. fined on the brane, with only gravity moving throughout the

This new perspective on higher dimensional theories wabulk spacetime. Alternatives to confining particles on the
first pointed out in Ref[7], where, in contrast with the stan- brane have been investigated and a different number of rea-
dard belief that extra dimensions must be associated witsons seem to suggest the necessity of new bulk physics
extremely small length scales, it was noted that the extr§9—19.
dimensions could be as large as a millimeter, bringing the Particularly relevant is the role of higher dimensional bulk
fundamental Planck scale closer to the electroweak scale arfidrmions, primarily in relation with string theory, as they
thus providing an explanation for the relative weakness ofirise as superpartners of gravitational moduli and are inevi-
gravity with respect to the other forces. Unfortunately, thistable in any string theory realization of the brane world idea.
scenario with large extra dimensions suffers from an imporin the context of particle physics phenomenology and string
tant drawback. It trades, in fact, a large ratio between thénspired model building some study has been devoted to in-
Planck scale and the electroweak scale for a large ratio belude bulk fermions, but apart from a few exceptions, atten-
tween the compactification scale and the electroweak scalépn has been mostly concentrated on the massless case.
not providing a satisfactory explanation to the hierarchyHowever, bulk fermion masses constitute an important fea-
problem. ture which has to be taken into account for a different num-

A brane model, with the interesting feature of having allber of reasons.
the parameters of the theory of the same magnitude while In order to study possible phenomenological signatures,
still generating a very large hierarchy, was devised by Ranmasslesg16] and massivd17] bulk fermions have been
dall and Sundrum8]. Their model is based on a five- considered. Interestingly, in R€fL7] the resulting phenom-
dimensional spacetime with the extra spatial dimension havenology is shown to be highly dependent on the value of the
ing an orbifold compactification. Two 3-branes with oppositefive dimensional fermion mass. In R¢fL2] a new way for
tensions sit at the orbifold fixed points. The line element is obtaining small Dirac neutrino masses, without invoking a

see-saw mechanism, was outlined. Within an effective field
theory approach, massless chiral fermions and loop correc-

*Email address: antonino.flachi@ncl.ac.uk tions to the effective action have been investigdi2@,21].
"Email address: ian.moss@ncl.ac.uk In Ref.[22] a comprehensive study of five dimensional brane
*Email address: d.j.toms@ncl.ac.uk models for neutrino physics has been presented.
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Motivation for introducing massive bulk fermions also brane tensions is essential for the radius to be stabilized via
come from the need to localize fermion zero modes in thequantum effects and the hierarchy problem to be solved si-
extra dimensions. In Ref24] a modification of the Dirac multaneously.

equation via a pseudoscalar Yukawa coupling term of the Results for finite temperature massive fermions have been

form mX(y)a‘P, with y=e(y) and e(y) the sign function, pbtained by Brevilet al. [34]. The one-loop Casimir energy

has been considered and it was shown that in this way it i%n five d|menS|onaI$1/ZZ and six-dimensional ®/Z, orbi-
possible to ensure both localization and chirality. Nonchiral olds has been considered n RES5]. Some related wor'k n
theories of fermions have been discussed in R&H], where M theory has been done in Re36], where the_Ca5|m|r
we stressed the fact that the fermion representations of thghergy is evaluated for a nonsupersymmefiic< Eg com-
full Lorentz group in five dimensions have eight, rather thanPactification ofM theory onS'/Z,.
four, components. In the present paper we try to amplify the previous con-
The radiusr of the extra dimensions is assumed to be theSiderations and compute the radiative corrections to the ef-
vacuum expectation value of a scalar field, called the radiorfective action on a five dimensional classical background
In the scenario proposed by Randall and Sundrum, the radiosPacetime with an orbifold compactification including the
has zero potential and consequentlis not determined by contribution coming from massive Fermi fields. The next
the dynamics of the model. Therefore for this scenario to b&ection is devoted to introducing the general framework and
physically acceptable, it is necessary to find a mechanism foompute the one-loop vacuum energy for a single
generating such a potential which would stabilize the size oft--component fermion. The relation between the boundary
the extra dimensions. condition structure and gauge invariance is clarified in Sec.
Goldberger and Wise have suggested a solution to thi§! and the vacuum energy is computed for a fermion and
problem[9]. They proposed the introduction of a bulk scalarscalar multiplet under general boundary conditions. The
field with appropriate interaction terms on the branes as &assless, conformally coupled case is discussed in Sec. IV,
means to induce a stabilizing potentiallthough this model ~ as it provides a useful check on the method used. The pos-
provides a solution to the problem, it can be viewed as beingibility of Wilson loop symmetry breaking is deferred to Sec.
very artificial and hence it is important to seek more naturaV. In Sec. VI we discuss the self-consistency requirements in
alternatives. the model when quantum effects are included. Our conclu-
The older Kaluza-Klein theories, based on factorizablesions are drawn in the last part of the paper.
geometries, were affected by a similar difficulty. In that con-
text, it was realised by Candelas and Weinberg that quantum Il. EFFECTIVE ACTION
effects from matter fields or gravity could be used to fix the

size of the extra dimensions, stimulating the study of quan- In th?s section we W”.I _evaluate t_he quantum corrections_to
tum effects in such scenaricﬁ,%—zq Analogously to that a classical theory specified by a single massive bulk fermion

example it seems reasonable to investigate if the radius n the Randall-Sundrum background spacetime. We follow

the extra dimensions can be determined by quantum effect 1€ general method outlined in Ref31], which we wil

Motivated by this analogy, the role of quantum effects ha riefly revieyv. It (_:onsists of first expanding the higher di-
received some recent atte,ntib$0—33 23.35,3F mensional fields in terms of a complete set of modes and

In Ref. [30] massless and conformally coupled ﬁeldsthen integrating out the dependence on the extra dimension

obeying untwisted boundary conditions have been analyzedi‘?.avmg an equn_/alent fpur dimensional t_heory with an |nf|_—
Massive scalar fields minimally coupled to the scalar curvalllté number of fields with masses quantized in some way:
ture with untwisted boundary conditions have been consid-

ered in Refs[31,32. In Ref.[33] massive scalar fields obey- S= 2 S,. )
ing twisted and untwisted boundary conditions with a n
Consistency relaion has been obtainec: I Rat] the im- S 1epresents the dimensionally reduced theory forite
portance(in principle) for the inclusion of the induced grav- mpde, with dlfferent|§1l OPG“?W given t#, . Having done

ity term has been pointed out and it has been computed iH’]IS, the effective action is simply given by the sum over the
both the twisted and untwisted case. Massless fermion fieIo@OdeS

have been investigated in both RE30] (for untwisted field 1

configurationg and in Ref.[23] (for twisted as well as un- r'V==> Inde(12D,). 3
twisted field configurations Also in Ref.[23] it has been 2 °y

pointed out that the boundary condition structure it can be_. _ L

enlarged when considering a gauge symmetry. The main comince the one-loop effective action is expressed as the loga-

clusion of Refs[30—33,23 is that a severe fine-tuning of the Nthm of the determinant oD,, it turns out to be advanta-
geous to adopt a heat kernel method, namely, writing the

effective action in terms of a nonlocal kernel function

AY)
!Note that the Goldberger and Wise model has to include thé<”(s’x’X ):

backreaction on the metric and the fine-tuning of the cosmological 1 ds
constant, in order to satisfy the consistency conditions derived in rv=—=- E f deIgll’Zf —TrKy(s,Xx,X) (4)
[25]l 2 o S n 1 ) )
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where For notational convenience, the coordingtdescribing the
5 extra dimension is reparametrized by
- %Kn(s,x,x )=DpK(s,%x,X"), (5 y=ro. 9)
Ko (0x,X")=8(x,X"). (6)  The Kaluza-Klein reduction can be performed by decompos-

ing the fieldW in its left and right components
It is now possible to use an asymptotic expansion for the heat
kernel, in order to obtain an expansion in powers of the

curvature \If(x,“y):; [T (x,)98 () + M (x,)9{"(y)]
o (10
D2 ok
Kn(s,X,X) s go (is)"ax(x), () and then integrating over the extra dimension. This leaves us
with

where the heat kernel coefficierstg(x) depend on geometri-
cal invariants only. _ 4T s

The coefficientsa,(x) are known for a wide class of dif- S_; f AX( Y Yin = Matnifn), (11)
ferential operators defined on manifolds with and without
boundaries with different types of boundary conditidese  where y,(x) =¥V (x) + ¥ (x). The dependence oF on
Refs[3,37-39, and references therginand recently the the extra dimension can be expressed as a combination of
spectral geometry of operator of Laplace type on manifoldBessel functions
with singular surfaces has been considered also in connec-
tion with brane model§40—44. G"(z) =z a3y, (27)+BMI 1 (2)], (12)

The leading term, given bgy(x), represents the Casimir
energy contribution to the cosmological constant. The next G(R“)(zn)zzﬁlz[ag“)‘ll,z, V(Zn)+b(r?)\]71/2+ Az))]1,
term is proportional to the four dimensional curvature and (13
gives a gravity term induced by quantum effects. This term
has received little attention in brane models, but it played avhereG{R ,=e 2lg{l) ' z,=m,e"YI/k, and v=m/k.
major role in the study of the self-consistency of the older The coefficientsa!”, b{™, al) , b can be found by
Kaluza-Klein theorie$43]. Additionally, the induced gravity imposing some boundary conditions. The possible boundary
term is essential if we wish to identify the physical value of conditions are related to the parity of the spinor fisld
the Newtonian gravitational constant in terms of the bareynder a chiral transformation. A possibility, which we will
one. The next term in the expansion, proportionaa$x), call 1, is that the field¥ is even:
contains higher curvature terms and becomes important
when considering higher derivative gravity models on brane Y5 (X, —y)=+V(X,,Y), (14
background$44-50Q.

Strictly speaking, in the Randall-Sundrum scenario, wherémplying that the mass eigenvalues are quantized according
the 3-branes are flat, these terms are absent, however, thtgythe following transcendental equation
make their appearance when curved branes are considered.
In our analysis, we are simply after the vacuum energy and 3 M), (ﬂ) 3 (E)J My ~0
therefore these next-to-leading terms will not be reported, “Y2t7| kq)~~12-7| | Vztw| o | - l2=v| g | 7
although they are obtainable at ease with simple modifica- (15
tions of our calculation.

The result for the quantum corrections to the effectivewherea=e¥'". The other possibility, which we will call Il,
action is found to be divergent and needs to be regulated ii$ given by
some way. Here, following the procedure of RE33], we

choose to use dimensional regularization. YsW(X,,—y)=—Y(X,,Y), (16)
A. Kaluza-Klein reduction leading to
The Kaluza-Klein reduction has been performed in a n m, m, my)
number of referencetsee, for example, Ref12]) and the — J-12+0| 5 | Jv2—o| 7| ~I-124 4| 7 [Jv2-0| 35| =0

details will not be repeated here. Only in order to fix the (17)
notation and discuss few points of importance for the present

work, we outline the essential steps. Initially, we consider dt is worth commenting a bit further on the two types of
single chiral fermion on the spacetime described by @}. parity conditions, and the mass term chosen in(Bf.Gen-

and whose action is given by erally we would expect that because of theidentification
of the extra dimension, we could have
_ 4 121 Ay A M . U
S—f d xf dy|g| 2[|\Ifz Dy¥—m-e(y)¥PW¥]. (8 W (x,—y)=BW¥(x.y) (18
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for some matrixB. The requirements that the action, or . 1 . o
Hamiltonian, remain invariant under thg, identification Li==>(4m) 2im(-D/2) X, my. (29
. . . . 2 D—4 n
place certain constraints d which are easily shown to be
B'B=I, (199  The masses, are quantized according to the following ei-
genvalue equation:
[+°,B]=0, i=1,23, (20)
PM(XH):‘]M(XH)‘]*M(aXn)_‘],u,(axn)‘]*/.l,(xn)zoi (30
{7%7s,B}=0, (21

where, for convenience, we have defined

where{,} is the anticommutator. The only way to solve these

relations occurs if my=kax,. (31)

B=gi%y, (22) Introducinge=D — 4, we find
for some arbitrary phase factér Finally we use the fact that F_ 1 d4e
B as defined in Eq(18) must provide a representation of the La= 327721'%(“) v(e), (32
groupZ,, which requires

B2—|. (23 where

(This is just a fancy way of saying that two reflections gives v(e)=T(—2— 6/2)2 xﬁ“. (33)
us back the identity.This fixesé to be 0 orar, and hence n

B=+ 1y (24)  The method we use to compute the previous sum is a simple

modification of the technique developed in Ref§2,53,

are the only two possibilities. which allows to evaluate thé function using only the basic

Regarding the mass term, the identificationyafith —y properties of the eigenvalue equation.
on the fields withB= =y does not leave the mass term A simple application of the residue theorem permits to
invariant if mis a constant. Choosimg=¢(y) is the simplest ~convert the previous sum into a contour integral:
possibility for an invariant mass terrfA constant mass term

can be used with eight component spinor representations _(=2-€2) § L d
[23].) v(e)=——F Cdz 4 NP2, (39
B. Evaluation of the vacuum energy whereC is any contour which encloses the positive zeros of

P,(z). After some manipulations, with an appropriate choice
We want to compute the vacuum energy for the theor o(2) P Pprop

¥s i i .
described by the actiofid). The fact that type | and type Il for the contourC, v(e) can be recast in the following form:
boundary conditions differ only for the order of the Bessel 1 - d
functions simplifies the subsequent analysis and allows to v(e)= mf dyy““d—ln QLY), (35
deal with both cases at once. In what follows we define 0 y

u=1/2+v, fortype | boundary conditions (25 with
and Qu(Y)=1,.(y)K (ay) =1, ,(ay)K,(y). (36)

w=1/2—v, fortype Il boundary conditions. (26) Expression(35) can be rearranged in order to isolate the
divergent contributions and exploiting the dependence.on
Following Ref.[33], we use the form for the heat kernel The analytical continuation of Eq35) to fi(e)>2 can be
described in Ref[51]. After some well known manipulation carried out noting that the impediment to the convergence of
the one-loop effective action can be expressed as Eq. (35 comes from the behavior & ,(2) at largez. Analo-
gously to the scalar field case, we will define

[ 1
r<1>=—§2 Inde{lz D+ZR+mﬁ . (27) o
IV(Z)=\/=2“)(Z), (37)
Now using the heat kernel expansion for the previous opera- 2mz
tor we have
o
K,(2)= \/Ze’ZE(K’(z). (39
r<1>:f d*x|g|2Cf (28
For largez the asymptotic expansions for the Bessel func-
with tions show that
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E(')(z)zkE a2z K, (39)
=0
where
1
(—1)'<r( vkt s
ak= (40)
2XIT | v—k+ 1)
' 2
and
3K (2)=30(-2). (41

With these positions, after some manipulations of &%),
we end with

(1+a™*79),
(42

u(e):J(a)+A+a—4—EB—m

where

K.V (ay)
K (@ayl, (y)/)’

1 (= ,..d
O K T
(43

Ae 1 de el [Insoy )—% dy "
Tare2 | LYY dy V)™ e O

N
d +e€ d —Nn
J vy dY(n—En;m nY )

1 d
+e___
+JO dyy* dyInIM(y)

j dyy“*f—ln

dy /2 7TZJ 44

1
B= r(3+e/2)“ dyy*! y('”E(K)(y)

N
-2 (—1>"dny“)
N

n+4

(_1)_ndny_n)

* d
+ | dyy*te—
fl vy dy(n—l2

1 d
+e___
+JO dyy* dyIn K,.(Y)

+Lwdyy4“%ln(ez\/£>]. (45)

PHYSICAL REVIEW D 64 105029

The coefficientd,,, which determine the pole structure of
the vacuum energy are given by the lamédehavior of
>(2):

In 2(')(2)22l dizX, (46)

and are immediately evaluated using a Taylor expansion.
The unrenormalized one-loop vacuum energy can, finally,
be written as

SFo  (kay* y)l (ay)
£h= G | ¢ y4 K@yl ,(y)
(ka)4+e e 4 e
v A+a 4 B_—ef(3+6/2)(1+a 4 )).

(47)

The previous expression is found to be divergent and needs
to be renormalized. The renormalization can be performed
by using the brane tensions. In a previous W&38&| we have
found that when pushing the heat kernel expansion to higher
orders there is the need to augment the brane tension with
terms proportional to powers of the curvature in order to
remove the pole terms. The same happens in the fermion
case. However, in this calculation we truncated the expan-
sion to first order and we do not need to consider this possi-
bility. Proceeding as in the scalar case, one can write the
brane sector of the action as

Swane=— | @IV 2V, ), 49

and express the bare quantities in terms of the renormalized
ones:

Vv,h:Vl?,h-i_évv,h! (49)
where

-1
Vvh

oV, h= +5VU ho (50
with 8V, § and 8V | independent ok. By using Eqs(47),
(49), (50) the renormalization is straightforward leading to
the following counterterms:

4

5vh‘1=5v;1=—21677 dg, (51)
0 k*

oVyp=— WB, (52)
0 k*

oV, =— WA. (53

In performing finite renormalizations, thee dependence of
the effective action has been crucial. In fact, all the terms in
Ei, except forJ(a), have the same functional dependence
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1
N Ss=35 J d*xdyig|4g""9,®} 6,0, — msd @
08] — {RPOT @}, (56)
&
5 _ _
EO-G‘ SF:f d*xdylg|"Hiw YDy ¥ —mee(y) ¥, ¥},
3 B (57)
$0.41
is computed for a variety of boundary conditions. We use the
021 labell to index the field multiplets.
o ‘ . A. Homogeneous boundary conditions
01 0203 b4, .
¥ s A It was pointed out many years ago that the boundary con-
N ditions of a quantum field become very rich as soon as the

spacetime upon which it is based has a nontrivial topological
structure[54,55. Specifically, if the spacetime is multiply

Legend connected, the fields need not be single valued, being, in
_________________ mass=0 ek fact, required to obey weaker boundary conditions. It was
----------------- mass=1.0k also noted that the homogeneity of the spacetime and gauge

symmetries produced nontrivial constraints on the boundary

FIG. 1. The fermion vacuum energy plotted agairst structure of the fields.

=exp(—kr) for various fermion masses and type | boundary con- o . . .
ditions. The vacuum energy is in units of 1% and shifted to A similar situation occurs in the Randall-Sundrum model,

vanish ata=0 to aid comparison. The brane tensivp is kept where the boundary conditions can be altered from the ones
constant. considered in the previous section, according to the symme-
tries of the action. The boundary conditions have to be speci-
fied in order to relate the fields at identified points along the
xtra dimension and since they have to ensure that the action
R single valued, we have the freedom to impose weaker
boundary conditions on the fields. We assume that the mani-
fold upon which the quantum field theory is homogeneous,
meaning that the physics is the same at every point.

of the brane part of the action. Using the freedom to perfor
finite renormalizations we have absorbed in the counterterm
everything apart fromJ(a). This leaves the following ex-
pression for the renormalized vacuum energy:

ka)* [« K | (a The most general boundary conditions we can write are
L£h=-Vi-a*vi+ —2—(167_: J dyy3ln[1— —KMEZ) )‘;“( (y;].
° waulY Dy(X,,—Y) =P Po(X,,Y), (58)
(54)
W7 (X, —Y)=ARATPEE(X, ). (59

The result is plotted in Fig. 1. It qualitatively resembles the

result for massless fermions given by Garriggal. [30]. b=v,h, means that we can have different boundary condi-
Note that replacings by —u leaves the result unchanged tions at the two braness andA are global gauge transfor-
appart from a shift inv%, and therefore results with type Il mations and\?=1, %2=1. The requirement that the action
boundary conditions with mas® are equivalent to results IS invariant under Eqgs(58), (59) results in the following

for type | boundary conditions with mass— K. conditions:
AP AS= 6k, (60)
Ill. GAUGE SYMMETRY AND BOUNDARY CONDITIONS
. . L ATYOyrA =909, (62)
In the following we extend the previous considerations in
order to discuss the most general boundary conditions con- ATyPA == 40 (62)
sistent with the orbifold symmetry and the homogeneity of
the spacetime. The interplay between gauge invariance and EIbJ*E?K: Sik - (63)

boundary conditions is also investigated. Once the boundary

conditions are specified, the vacuum energy for a fermiorRelations(el), (62) are satisfied uniquely by choosing
and scalar multiplet, described by

A==+ (64)
S=Ss+ S, (55)
2This is a very important difference with respect to Rg8st,55,
where in which the manifoldS! did not have boundaries.
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These are a generalization of the resultsBave wrote down  different boundary conditions at the two branes. Two possi-
earlier. The boundary conditions can be further constrainetilities arise: the field is even at=0 and odd aty==r or
when taking into account the gauge symmetries of the theorywiceversa. We call these two cases “twisted” and label them
If the theory is gauge invariant, it would be expected thatT, and T, respectively. The boundary conditions can be
fields in the same gauge equivalence class satisfy the samagplied in a straighforward manner giving, for the eigenvalue
boundary conditions, which, in other words, means thaequation(the functions,,y, i, k, in the scalar case are the
boundary conditions should be preserved under a gaugenes defined in Ref33]),

transformation. To exploit this, insert at each brane a gauge

transformationl € G, whereG is the gauge group: J(a%) Y, (Xn) =Y (aX)J,(Xn) =0, (71)
D/ (x,,y)=ULX, . Y)P(X,.Y), (65)  for type T, and
W (%, ,Y) =UR(X, Y)W (X, Y). (66) J(Xn) Y, (8%0) =Y ,(Xn) I (a%q) =0, (72

Requiring that the primed fields satisfy the same boundaryor type T, . The computation of the vacuum energy is no
conditions as the unprimed fields together with the requiredifferent from the previous case and the renormalized quan-
ment that the gauge transformation be single-valued gives tum corrections can be written as

[U(x,,y),3P]=0, (67)

k 4
£§=% f dyy'g\" (y), (73
[UR(X,.y),AP]=0. (68)

Relations(67), (68) represent the symmetries of the bound-Where

ary conditiong 55]. i (ay)K,(y)

Some comments are now in order. We have seen that the gI'(y): 1-——— (74)
boundary conditions the fields are required to obey are k,(ay)l.(y)
weaker the larger is the symmetry of the theory and are con-
strained by the gauge invariance adgd symmetry of the and
action. Among these constraints are the commutation rela- k,(y)l (ay)
tions given above. These commutation relations cannot be gTu(y)zl_ Bal Aot ahe sy
satisfied for any choice of the matricasand 3, meaning v (YK, (ay)
that if we want to keep the boundary conditions general, we ) o ) ) )
have to restrict the original symmetry of the theory, which inAnother simple possibility is to consider a single fermion
turn means breaking the gauge symmetry at classical level. f{e!d obeying different boundary conditions at the two
we want to maintain the original symmetry of the classicalPranes. There are two possibilities:
theory, we are forced to restrict the matricksand 3 in
order to satisfy the constraints found, i.e., they must belong V(% =y)=+7"W(x,y) aty=0, (76)
to the center of the gauge gro@ s

It is instructive to see how this works in simple cases. If V(xy,—y)==yV(x,y) aty=ar,
we consider a single scalar field, relati¢dB) implies that 77
3 ==*1 (the commutation relations are trivially satisfied in
this case This gives

(79

and the reversed one

A(X, = Y) =T B(X,Y), (69) Ve —y)==y"¥(x,y) aty=0, (79
where the+ sign gives the untwisted field configuration con- V(x,,~y)=+y"V(x,,y) aty=mar.
sidered in Refg.30-33,23, and the— sign gives the twisted (79

configuration considered in Refg33,23. In the single fer- . o
mion caseA =++5 and A=e'’. The boundary conditions "€ Mass eigenvalue equation is

h
are then J_(a%y)j ,(Xn) = 3 ,,(8X0) ] - (%) =0, (80)

W(x,,—y)=*€e"V(x,.y), (70
a a with u=1/2+v for the first case angh=v—1/2 for the
and the conditiolA?=1 implies#=0, which gives the fields second case. For convenience, we have defined

configurations considered in the previous section.

J.(2)+23,(2), (81)

B. Effective action (D)= (E v

In this section we will evaluate the effective action for 1
situations in which a richer boundary structure is possible. A ,
i : S . . : =|=— + :
first simple choice is to take a single real scalar field obeying ku(2) (2 V) Ku(2)+2K,(2) (82)
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The evaluation of the vacuum energy goes along the same - 3k%a? .
lines as before and the renormalized contribution is found to Ly=— W@(&(l—a)_ . (87)
be

4, Similarly, for type T, and T, boundary conditiongu=1/2

rF _(ka) f dyy3ln[ 1- ku.(Y)1,.(ay) ] (83  @and a straightforward calculation of E73) leads to

A16a? Jo Ku(ay)i,(y)

15 3 k%t

The problem of computing the radiative corrections be- EA_1_6 12872 (1—a)4§(5)'
comes more complicated, when a gauge symmetry is consid-
ered, due to the enlarged complexity of the boundary condiThe previous results can be also dealt with by direct summa-
tions. We have seen that, in order to maintain the gaugéon of the mass eigenvalues,, which are, in general,
symmetry at classical level, the boundary conditions have t@iven by
satisfy certain symmetries, specificallyand, have to be-
long to the center of the gauge gro@ m Zﬁ

As an example, let us considé=SUN). A belongs to "1l-a

the center ofSUN). This modifies the boundary conditions ) ) ] ) )
in a simple way: the boundary conditions that each fermionvhere =0 gives the untwisted field configuration, amd

(88)

(nm=*0), (89

component has to obey can be of type ITj, or T,. This = 7/2 gives twisted one. The sum over the mode_sfncan
can be incorporated in the evaluation of the vacuum energhe performed by using the properties of tdunction and
in a straightforward manner, giving without the need of any renormalization:
F FAF CF i 1 (wka)®
L= NEL (), gy Li=—lm =%
. KE('r%I TS Al) &4 b4 327" (1-a)

F X . o) o]
where N}, represents t.h.e numberF of cpmponents satisfying xI(-D2)| S (n+6)°+ > (n—6)P°|.
type « boundary conditions and , () is the vacuum en- n=1 n=1
ergy for each component obeying tygeboundary condi- (90)
tions.

Another simple example is to consider SIO(N) scalar ~ The previous result can be expressed in terms of the Hurwitz
theory, for which the situation is similar to the previous one,{ function:

giving

£F = lim — (Wka)Dr( DI2)[£y(~D.,6)
AT 252 1 _\D - Ht— Y,
L= 3 NS0, 85) p—a 327" (172)

ce i +{u(—=D,1-0)], (91)

whereNS® represents the number of scalar components satis-, . . . . .
. K - S ) which, by using basic properties ¢f;, can be recast in the
fying type « boundary conditions and 3 () is the vacuum

form
energy for each component obeying typdoundary condi-
tions. _ . 3 (ka* coshé
All this can be generalized to a general gauge group Ly=— 1282 (1-a)° > 5 (92

whose center is trivial. In this case the boundary conditions
scalar and fermion fields ought to satisfy are still of the samg,, hediate inspection of Eq92) reproduces Eq(87) for 6

type as before, giving =0 and Eq.(88) for 6==/2, as it must be.
La=L5+c8= > {NFLR (k) +NSLS (k). V. TOPOLOGICAL SYMMETRY BREAKING
ke(LILT Ty
(86) An interesting feature of the boundary conditions on the

branes is the possibility of breaking bulk gauge symmetries.
The residual symmetries are those which commute with the
two matricesS" and3? introduced in Sec. Il A. The sym-
The massless, conformally coupled cdswidied in Ref. metry breaking mechanism is similar to the Wilson-loop
[30] for untwisted field configurations and in R¢R3] for ~ symmetry breaking mechanism in nonsimply connected
both the twisted and untwisted caseworth of some special spacetime$54-59.
attention and provides a useful check on the general method There are two equivalent ways to describe this type of
used in the previous sections. For type | and type Il boundargymmetry breaking. The nontrivial boundary conditions are
conditions u=1/2, Eq. (43) can be expressed in terms of useful for evaluating and comparing the effective action for
elementary functions and the integrals are now evaluated alifferent symmetry breaking schemes, as we shall do below.
ease, giving for the renormalized one-loop vacuum energy Alternatively, it is possible to simplify the boundary condi-

IV. CONFORMALLY COUPLED CASE
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tions by performing a gauge transformation which introduces m, m, m, m,
a pure gauge field stretching between the two branes. This DFJV(T)YV kal M ral Ve T) (103
“Wilson line” is the analogue of the Wilson loop in the
Wilson loop mechanism. If the field strength vanishes, the m m m
line integral of the gauge field along a loop is conserved. quJu(—n>Y'p =3, =Y —”)
This need not be true for the Wilson line and the symmetry k ka ka k
breaking becomes associated with a set of moduli fields. (104
We shall concentrate on the possible symmetry breaking m m m m
schemes fields with aBU(N) gauge symmetry. The matri- rV:J’(_n) , LY D T4 sl ) _”>
ces3M and3? satisfy €")2=(2?)2=1, the unit matrix. By |k ka] "\ka k
considering the eigenspaces[&",3"]?, it is easy to show (109
'fjhat theTe is a basis in which the matrices take the block- m m m m
iagonal form =3 =y 2D =g Py 2
? SV‘JV( k)Y” ka) Prlka Y k)'
Sh=diag+1,... 7103, ...,03, (93 (106)
Sv=diag*1,... ES IR 1, The values oim, are given by
(94 Pyt 1788+ 12608 0+ 0,y 1F 1 18IMP6=0. (107

wherea,, o, o3 are the Pauli matrices and For =0, this reduces to the previous cages ,,=0 (for

type | boundary conditionsand s,,,,=0 (for type Il
boundary conditions
In the massless fermion and the conformally invariant

scalar field theories the Bessel functions become trigonomet-

SU(Nny) X SU(N,) - - - X SU(N,) x U(1)4. (96)  ric functions and the values afi, are given by Eq(89). The
vacuum energy from on@ “block” can be expressed in
There areSU(n) factors for each of the four combinations of terms of Hurwitz zeta functions and evaluates to
the =1 entries along the diagonals of the matrices and fur-

0 = 03C0S 20+ g1Sin 26. (95

The residual symmetry group is then

ther SU(n) factors for each repeated value @&f _ +I%gk“a4 74§ cog2n6)
For example, ifG is the groupSU(5), we cantake Ly== 12872 (1-a) “~  n (108
3"=diag—1,-1-103}, 97 where the upper sign is for fermions, the lower for bosons,
. and g is the dimension of the fermion representation. The
Yv=diag—~1,-1,~ 1o} (98)  vacuum energy is extremized fat=0 and 9= =/2, where

o the result reduces to the untwisted and twisted results, re-
The group reduces 6—SU(4)xU(1) if §=0 orm/2and  gpectively. This remains the case for massive fields because

G—SU(3)xU(1) otherwise. _ of the symmetrie¥)— — 6 and 6— 7— 6 in the formula for
The action(56) or (57) splits into separate terms, with one the m,, (107).

term for each of the block diagonal entrie®). Each term The full effective action will include, not only potential

gives a contribution to the effective potential. THelL en-  ormg put also induced kinetic terms for the moduli fields.
tries correspond to the type | and II, twisted and untwistedry,qir presence can be inferred from the form of &g heat

boundary conditions considered in Sec. Ill B. Thgentries  erne| coefficient, which depends on the boundary condi-
correspond to the following boundary conditions on the fer-ions and includes derivatives of the matriddsands?. The

mion modes at the hidden brage-0 and the visible brane gy mmetry breaking mechanism is therefore truly dynamical,

y=tm, and differs from the usual Wilson loop mechanism in this
. respect. The closest analogy is to the symmetry breaking
Gr(0)=03GR(0), (99 associated with quantum wormholgz9).
Gr(0)==03GR(0), (100 VI. RADIUS STABILIZATION
Gr(rm)=a,Gg(r), (101) AND SELF-CONSISTENT SOLUTIONS

In a previous pap€l33], by looking at the quantum cor-
Gi(rm)=— o ,Gx(rm). (102 rected Einstein equations, we have examined the conditions
for self-consistency of the Randall-Sundrum spacetime and
The boundary conditions fof5;, modes and scalar field obtained a self-consistency relation, which the radius had to
modes have an equivalent form. satisfy. Specifically, if
The fermion mode functions were given in E¢$2) and
(13). Substituting these modes into the boundary conditions
gives the values for the masses; . Introduce F:SG_f dvxF(a), (109

105029-9
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denotes the full quantum corrected effective action, the re- VII. CONCLUSIONS

uirements are i .
q We have evaluated the one-loop radiative corrections to

ST the effective action arising from a massive bulk fermion
(59 ) =0, (110 quantized on the Randall-Sundrum background spacetime.
BYIg =1, As in the scalar field case, it is not possible to obtain an exact
result for general curved membranes, but it is possible to
ol ~0 111 resort to a heat kernel expansion and compute the effective
Sa e (119 action to any desirable order. The vacuum energy density,

9uv™ Tuw which is the first term in the expansion, has been recognized

The first forces the Randall-Sundrum solution to be a solu® Play a role in the Randall-Sundrum model for its contri-

tion of the quantum corrected Einstein’s equations, the sedaution to the stab|I|ty_ of the branes separation which is re-
ond being a requirement for the radius to be an extremum dftéd to the gauge hierarchy problem. We showed that the
the effective potential. When quantum corrections are infields can obey different boundary conditions from the ones

cluded considered in Refd.30—33,23 and this gives rise to modi-
fications in the vacuum energy.
F(a)=V,+aPV,+f(a), (112 We have clarified the relation between gauge invariance
and boundary conditions and showed how these are con-
the following relation is obtained: strained by the gauge invariance, having to obey to what

Hosotani called the symmetries of the boundary conditions
[55]. This richer boundary structure has to be taken into ac-

In Ref. [33], we studied these consistency requirements fOI_cour!t when scalar or fermion mgltiplets are considered and
quantized bulk scalar fields. In that case, the conclusion wa this case the vacuum energy is calculated for ISJfer-
that when the balancing condition between the brane tensioions, SON) scalars, and generally for situations in which
is forced to hold at quantum level also, quantum effects werd€ center of the gauge group is trivial. _
offering no self-consistent radius stabilization mechanism. 1"e massleseconformally couplegicase is dealt with by
When the balancing condition was relaxed, it was possible t§liréct summation of the eigenvalues and as a limiting case of
find self-consistent solutions only at the price of fine tuningth® general result. This has provided a check on both our
the brane tensions to a considerable degree. This was foud§neral method and a comparison with previous results.
to be in agreement with Reff30,23. _The pOSSIbIIIty. of brgal_qng the bulk gauge symmetries by
Including fermions in the analysis might give some hopeUSing & mechanism similar to the Wilson loop symmetry
to find a self-consistent solution with a less degree of find?r€aking in nonsimply connected spacetimes has been ana-

0=DaP(Vv,+V,)+(1-aP)af’'(a)+Daf(a). (113

tuning. If one defines lyzed. We concentrated on_the possible breaking schemes
when the gauge group isSU(N) and showed that
f(a):/;i+£i, (114  the residual symmetry group is always of the form

SU(ny) X ---XSU(n,) xU(1)9. The vacuum energy de-
one finds that, iV, + V=0 is required to hold, then there is pends on a set of moduli fieldsand is generally extremised
no self-consistent solution for which the hierarchy problemfor §=0 or §= #/2. It would be interesting to investigate the
is simultaneously solved. If this condition is relaxed then adynamical implications of these moduli fields. There may
severe fine-tuning of the brane tensions is still required inalso be a connection with the wormhole symmetry breaking
order to satisfy Eq(114). Unfortunately, one has to resort to mechanisn{59].

a numerical approach to verify this, nevertheless in some The self-consistency, discussed for quantized scalar fields
special cases it is possible to see this analytically. For ext33], has been examined when massive fermion are included.
ample in the massless case one asafdc; are irrelevant |t is shown that in this case also it is not possible to stabilize
numerical factors the radius and simultaneously solving the hierarchy problem
_ 4 ’ 6 without a considerable degree of fine-tuning, supporting the
0=(V,+Vp)(1-a)"+(cs—c(l+a’—a’). (119  previous claims of Refd30-33,23.
It is now straightforward to see that in order to have a solu-
tion to Eq. (115 and simultaneously solve the hierarchy
problem @=10"19 a dramatic fine-tuning of the parameters  A. Flachi is grateful to the University of Newcastle upon
in Eq. (115 is required. Tyne for financial support.
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