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Quantized bulk fermions in the Randall-Sundrum brane model
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The lowest order quantum corrections to the effective action arising from quantized massive fermion fields
in the Randall-Sundrum background spacetime are computed. The boundary conditions and their relation with
gauge invariance are examined in detail. The possibility of Wilson loop symmetry breaking in brane models is
also analyzed. The self-consistency requirements, previously considered in the case of a quantized bulk scalar
field, are extended to include the contribution from massive fermions. It is shown that in this case it is possible
to stabilize the radius of the extra dimensions but it is not possible to simultaneously solve the hierarchy
problem, unless the brane tensions are dramatically fine-tuned, supporting previous claims.

DOI: 10.1103/PhysRevD.64.105029 PACS number~s!: 11.10.Kk, 04.50.1h, 04.62.1v, 11.25.Mj
in
ti

or

rin

ve
i-
ls
a
f

an
ro

a
-

wi
xt
th
a
o

his
o
th
b
a
h

al
hi
an
-
a
ite
is

t
k

The
t it
the

to
ll-
on-
he
he
rea-
sics

lk
y
evi-
a.

ing
in-

en-
ase.

ea-
m-

es,

the

a
eld
rec-

ne
I. INTRODUCTION

The idea of extra dimensions was originally introduced
order to provide a unified description of the electromagne
and gravitational interactions@1,2# and further generalized to
more than one extra dimension in order to allow the inc
poration of non-Abelian gauge fields@3#. More recent inter-
est was generated in connection with supergravity and st
theory @4–6#.

In the past few years this idea is having a novel reju
nation, particularly in relation with the resolution of the h
erarchy problem. In addition, extra dimensions have a
provided an interesting link between string theory and p
ticle physics, motivating the construction of low energy e
fective theories with possible experimental signatures,
suggesting possible resolutions of many long standing p
lems of particle physics and cosmology.

This new perspective on higher dimensional theories w
first pointed out in Ref.@7#, where, in contrast with the stan
dard belief that extra dimensions must be associated
extremely small length scales, it was noted that the e
dimensions could be as large as a millimeter, bringing
fundamental Planck scale closer to the electroweak scale
thus providing an explanation for the relative weakness
gravity with respect to the other forces. Unfortunately, t
scenario with large extra dimensions suffers from an imp
tant drawback. It trades, in fact, a large ratio between
Planck scale and the electroweak scale for a large ratio
tween the compactification scale and the electroweak sc
not providing a satisfactory explanation to the hierarc
problem.

A brane model, with the interesting feature of having
the parameters of the theory of the same magnitude w
still generating a very large hierarchy, was devised by R
dall and Sundrum@8#. Their model is based on a five
dimensional spacetime with the extra spatial dimension h
ing an orbifold compactification. Two 3-branes with oppos
tensions sit at the orbifold fixed points. The line element
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ds25e22krufuhmndxmdxn2r 2df2 ~1!

with xm the usual four-dimensional coordinates,ufu<p with
the points (xm,f) and (xm,2f) identified. The 3-branes si
at f50 andf5p. k is a constant of the order of the Planc
scale~the natural scale for the theory!, andr is an arbitrary
constant associated with the size of the extra dimension.
interesting feature of the Randall-Sundrum model is tha
can generate a TeV mass scale from the Planck scale in
higher dimensional theory. A field with a massm0 on the
f5p brane will have a physical mass ofm.e2pkrm0. By
taking kr.12, and m0.1019GeV, we end up withm
.1 TeV.

Another interesting aspect of brane models is related
their field content. In the original version of the Randa
Sundrum model all of the standard model particles were c
fined on the brane, with only gravity moving throughout t
bulk spacetime. Alternatives to confining particles on t
brane have been investigated and a different number of
sons seem to suggest the necessity of new bulk phy
@9–19#.

Particularly relevant is the role of higher dimensional bu
fermions, primarily in relation with string theory, as the
arise as superpartners of gravitational moduli and are in
table in any string theory realization of the brane world ide
In the context of particle physics phenomenology and str
inspired model building some study has been devoted to
clude bulk fermions, but apart from a few exceptions, att
tion has been mostly concentrated on the massless c
However, bulk fermion masses constitute an important f
ture which has to be taken into account for a different nu
ber of reasons.

In order to study possible phenomenological signatur
massless@16# and massive@17# bulk fermions have been
considered. Interestingly, in Ref.@17# the resulting phenom-
enology is shown to be highly dependent on the value of
five dimensional fermion mass. In Ref.@12# a new way for
obtaining small Dirac neutrino masses, without invoking
see-saw mechanism, was outlined. Within an effective fi
theory approach, massless chiral fermions and loop cor
tions to the effective action have been investigated@20,21#.
In Ref. @22# a comprehensive study of five dimensional bra
models for neutrino physics has been presented.
©2001 The American Physical Society29-1
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Motivation for introducing massive bulk fermions als
come from the need to localize fermion zero modes in
extra dimensions. In Ref.@24# a modification of the Dirac
equation via a pseudoscalar Yukawa coupling term of

form mx(y)C̄C, with x}e(y) and e(y) the sign function,
has been considered and it was shown that in this way
possible to ensure both localization and chirality. Nonch
theories of fermions have been discussed in Ref.@23#, where
we stressed the fact that the fermion representations of
full Lorentz group in five dimensions have eight, rather th
four, components.

The radiusr of the extra dimensions is assumed to be
vacuum expectation value of a scalar field, called the rad
In the scenario proposed by Randall and Sundrum, the ra
has zero potential and consequentlyr is not determined by
the dynamics of the model. Therefore for this scenario to
physically acceptable, it is necessary to find a mechanism
generating such a potential which would stabilize the size
the extra dimensions.

Goldberger and Wise have suggested a solution to
problem@9#. They proposed the introduction of a bulk sca
field with appropriate interaction terms on the branes a
means to induce a stabilizing potential.1 Although this model
provides a solution to the problem, it can be viewed as be
very artificial and hence it is important to seek more natu
alternatives.

The older Kaluza-Klein theories, based on factoriza
geometries, were affected by a similar difficulty. In that co
text, it was realised by Candelas and Weinberg that quan
effects from matter fields or gravity could be used to fix t
size of the extra dimensions, stimulating the study of qu
tum effects in such scenarios@26–29#. Analogously to that
example it seems reasonable to investigate if the radiu
the extra dimensions can be determined by quantum effe
Motivated by this analogy, the role of quantum effects h
received some recent attention@30–33,23,35,36#.

In Ref. @30# massless and conformally coupled fiel
obeying untwisted boundary conditions have been analy
Massive scalar fields minimally coupled to the scalar cur
ture with untwisted boundary conditions have been con
ered in Refs.@31,32#. In Ref.@33# massive scalar fields obey
ing twisted and untwisted boundary conditions with
nonminimal coupling have been investigated and a s
consistency relation has been obtained. In Ref.@33# the im-
portance~in principle! for the inclusion of the induced grav
ity term has been pointed out and it has been compute
both the twisted and untwisted case. Massless fermion fi
have been investigated in both Ref.@30# ~for untwisted field
configurations! and in Ref.@23# ~for twisted as well as un-
twisted field configurations!. Also in Ref. @23# it has been
pointed out that the boundary condition structure it can
enlarged when considering a gauge symmetry. The main
clusion of Refs.@30–33,23# is that a severe fine-tuning of th

1Note that the Goldberger and Wise model has to include
backreaction on the metric and the fine-tuning of the cosmolog
constant, in order to satisfy the consistency conditions derive
@25#.
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brane tensions is essential for the radius to be stabilized
quantum effects and the hierarchy problem to be solved
multaneously.

Results for finite temperature massive fermions have b
obtained by Breviket al. @34#. The one-loop Casimir energ
in five dimensionalS1/Z2 and six-dimensionalT2/Zk orbi-
folds has been considered in Ref.@35#. Some related work in
M theory has been done in Ref.@36#, where the Casimir
energy is evaluated for a nonsupersymmetricE83Ē8 com-
pactification ofM theory onS1/Z2.

In the present paper we try to amplify the previous co
siderations and compute the radiative corrections to the
fective action on a five dimensional classical backgrou
spacetime with an orbifold compactification including th
contribution coming from massive Fermi fields. The ne
section is devoted to introducing the general framework a
compute the one-loop vacuum energy for a sin
4-component fermion. The relation between the bound
condition structure and gauge invariance is clarified in S
III and the vacuum energy is computed for a fermion a
scalar multiplet under general boundary conditions. T
massless, conformally coupled case is discussed in Sec
as it provides a useful check on the method used. The p
sibility of Wilson loop symmetry breaking is deferred to Se
V. In Sec. VI we discuss the self-consistency requirement
the model when quantum effects are included. Our conc
sions are drawn in the last part of the paper.

II. EFFECTIVE ACTION

In this section we will evaluate the quantum corrections
a classical theory specified by a single massive bulk ferm
on the Randall-Sundrum background spacetime. We fol
the general method outlined in Ref.@31#, which we will
briefly review. It consists of first expanding the higher d
mensional fields in terms of a complete set of modes
then integrating out the dependence on the extra dimen
leaving an equivalent four dimensional theory with an in
nite number of fields with masses quantized in some wa

S5(
n

Sn . ~2!

Sn represents the dimensionally reduced theory for thenth
mode, with differential operator given byDn . Having done
this, the effective action is simply given by the sum over t
modes

Gn
(1)5

1

2 (
n

ln det~ l 2Dn!. ~3!

Since the one-loop effective action is expressed as the lo
rithm of the determinant ofDn , it turns out to be advanta
geous to adopt a heat kernel method, namely, writing
effective action in terms of a nonlocal kernel functio
Kn(s,x,x8):

G (1)52
1

2 (
n
E dDxugu1/2E ds

s
Tr Kn~s,x,x!, ~4!

e
al
in
9-2
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where

2
]

]s
Kn~s,x,x8!5DnKn~s,x,x8!, ~5!

Kn~0,x,x8!5d~x,x8!. ~6!

It is now possible to use an asymptotic expansion for the h
kernel, in order to obtain an expansion in powers of
curvature

Kn~s,x,x!}s2D/2(
k50

`

~ is!kak~x!, ~7!

where the heat kernel coefficientsak(x) depend on geometri
cal invariants only.

The coefficientsak(x) are known for a wide class of dif
ferential operators defined on manifolds with and witho
boundaries with different types of boundary conditions~see
Refs.@3,37–39#, and references therein!, and recently the
spectral geometry of operator of Laplace type on manifo
with singular surfaces has been considered also in con
tion with brane models@40–42#.

The leading term, given bya0(x), represents the Casim
energy contribution to the cosmological constant. The n
term is proportional to the four dimensional curvature a
gives a gravity term induced by quantum effects. This te
has received little attention in brane models, but it playe
major role in the study of the self-consistency of the old
Kaluza-Klein theories@43#. Additionally, the induced gravity
term is essential if we wish to identify the physical value
the Newtonian gravitational constant in terms of the b
one. The next term in the expansion, proportional toa3(x),
contains higher curvature terms and becomes impor
when considering higher derivative gravity models on bra
backgrounds@44–50#.

Strictly speaking, in the Randall-Sundrum scenario, wh
the 3-branes are flat, these terms are absent, however,
make their appearance when curved branes are consid
In our analysis, we are simply after the vacuum energy
therefore these next-to-leading terms will not be report
although they are obtainable at ease with simple modifi
tions of our calculation.

The result for the quantum corrections to the effect
action is found to be divergent and needs to be regulate
some way. Here, following the procedure of Ref.@33#, we
choose to use dimensional regularization.

A. Kaluza-Klein reduction

The Kaluza-Klein reduction has been performed in
number of references~see, for example, Ref.@12#! and the
details will not be repeated here. Only in order to fix t
notation and discuss few points of importance for the pres
work, we outline the essential steps. Initially, we conside
single chiral fermion on the spacetime described by Eq.~1!
and whose action is given by

S5E d4xE dyugu1/2@ i C̄gMDMC2m•e~y!C̄C#. ~8!
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For notational convenience, the coordinatey describing the
extra dimension is reparametrized by

y5rf. ~9!

The Kaluza-Klein reduction can be performed by decomp
ing the fieldC in its left and right components

C~xm ,y!5(
n

@CR
(n)~xm!gR

(n)~y!1CL
(n)~xm!gL

(n)~y!#

~10!

and then integrating over the extra dimension. This leave
with

S5(
n
E d4x~ i c̄n]”cn2mnc̄ncn!, ~11!

wherecn(x)5CL
(n)(x)1CR

(n)(x). The dependence ofC on
the extra dimension can be expressed as a combinatio
Bessel functions

GL
(n)~zn!5zn

1/2@aL
(n)J1/21n~zn!1bL

(n)J21/22n~zn!#, ~12!

GR
(n)~zn!5zn

1/2@aR
(n)J1/22n~zn!1bR

(n)J21/21n~zn!#,
~13!

whereG(R,L)
(n) 5e22kuyug(R,L)

(n) , zn5mnekuyu/k, andn5m/k.
The coefficientsaL

(n) , bL
(n) , aR

(n) , bR
(n) can be found by

imposing some boundary conditions. The possible bound
conditions are related to the parity of the spinor fieldC
under a chiral transformation. A possibility, which we w
call I, is that the fieldC is even:

g5C~xm ,2y!51C~xm ,y!, ~14!

implying that the mass eigenvalues are quantized accor
to the following transcendental equation

J1/21nS mn

kaD J21/22nS mn

k D2J1/21nS mn

k D J21/22nS mn

kaD50,

~15!

wherea5e2krp. The other possibility, which we will call II,
is given by

g5C~xm ,2y!52C~xm ,y!, ~16!

leading to

J21/21nS mn

kaD J1/22nS mn

k D2J21/21nS mn

k D J1/22nS mn

kaD50.

~17!

It is worth commenting a bit further on the two types
parity conditions, and the mass term chosen in Eq.~8!. Gen-
erally we would expect that because of theZ2 identification
of the extra dimension, we could have

C~x,2y!5BC~x,y! ~18!
9-3
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for some matrixB. The requirements that the action,
Hamiltonian, remain invariant under theZ2 identification
place certain constraints onB, which are easily shown to b

B†B5I , ~19!

@g0g i ,B#50, i 51,2,3, ~20!

$g0g5 ,B%50, ~21!

where$,% is the anticommutator. The only way to solve the
relations occurs if

B5eidg5 ~22!

for some arbitrary phase factord. Finally we use the fact tha
B as defined in Eq.~18! must provide a representation of th
groupZ2, which requires

B25I . ~23!

~This is just a fancy way of saying that two reflections giv
us back the identity.! This fixesd to be 0 orp, and hence

B56g5 ~24!

are the only two possibilities.
Regarding the mass term, the identification ofy with 2y

on the fields withB56g5 does not leave the mass ter
invariant ifm is a constant. Choosingm}e(y) is the simplest
possibility for an invariant mass term.~A constant mass term
can be used with eight component spinor representat
@23#.!

B. Evaluation of the vacuum energy

We want to compute the vacuum energy for the the
described by the action~11!. The fact that type I and type I
boundary conditions differ only for the order of the Bess
functions simplifies the subsequent analysis and allows
deal with both cases at once. In what follows we define

m51/21n, for type I boundary conditions ~25!

and

m51/22n, for type II boundary conditions. ~26!

Following Ref. @33#, we use the form for the heat kern
described in Ref.@51#. After some well known manipulation
the one-loop effective action can be expressed as

G (1)52
i

2 ( ln detF l 2S h1
1

4
R1mn

2D G . ~27!

Now using the heat kernel expansion for the previous op
tor we have

G (1)5E d4xugu1/2L L
F , ~28!

with
10502
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F 52

1

2
~4p!22 lim

D→4
G~2D/2!(

n
mn

D . ~29!

The massesmn are quantized according to the following e
genvalue equation:

Pm~xn!5Jm~xn!J2m~axn!2Jm~axn!J2m~xn!50, ~30!

where, for convenience, we have defined

mn5kaxn . ~31!

Introducinge5D24, we find

L L
F 52

1

32p2
lim
e→0

~ka!41ev~e!, ~32!

where

v~e!5G~222e/2!(
n

xn
41e . ~33!

The method we use to compute the previous sum is a sim
modification of the technique developed in Refs.@52,53#,
which allows to evaluate thez function using only the basic
properties of the eigenvalue equation.

A simple application of the residue theorem permits
convert the previous sum into a contour integral:

v~e!5
G~222e/2!

2p i R
C
dz z41e

d

dz
ln Pn~z!, ~34!

whereC is any contour which encloses the positive zeros
Pn(z). After some manipulations, with an appropriate cho
for the contourC, v(e) can be recast in the following form

v~e!5
1

G~31e/2!
E

0

`

dyy41e
d

dy
ln Qm~y!, ~35!

with

Qm~y!5I m~y!Km~ay!2I m~ay!Km~y!. ~36!

Expression~35! can be rearranged in order to isolate t
divergent contributions and exploiting the dependence ona.
The analytical continuation of Eq.~35! to R(e).2 can be
carried out noting that the impediment to the convergence
Eq. ~35! comes from the behavior ofQm(z) at largez. Analo-
gously to the scalar field case, we will define

I n~z!5
ez

A2pz
S (I )~z!, ~37!

Kn~z!5Ap

2z
e2zS (K)~z!. ~38!

For largez the asymptotic expansions for the Bessel fun
tions show that
9-4



f

.
lly,

eds
ed

her
with
to
ion

an-
ssi-
the

ized

to

in
ce

QUANTIZED BULK FERMIONS IN THE RANDALL- . . . PHYSICAL REVIEW D 64 105029
S (I )~z!. (
k50

`

akz
2k, ~39!

where

ak5

~21!kGS n1k1
1

2D
2kk!GS n2k1

1

2D ~40!

and

S (K)~z!.S (I )~2z!. ~41!

With these positions, after some manipulations of Eq.~35!,
we end with

v~e!5J~a!1A1a242eB2
4d4

eG~31e/2!
~11a242e!,

~42!

where

J~a!5
1

G~31e/2!
E

0

`

dyy41e
d

dy
lnS 12

Km~y!I m~ay!

Km~ay!I m~y! D ,

~43!

A5
1

G~31e/2! H E1

`

dyy41e
d

dy S ln S (I )~y!2 (
n51

N

dny2nD
1E

1

`

dyy41e
d

dy S (
n51,nÞ4

N

dny2nD
1E

0

1

dyy41e
d

dy
ln I m~y!

1E
1

`

dyy41e
d

dy
ln

ez

A2pz
J , ~44!

B5
1

G~31e/2! H E1

`

dyy41e
d

dy S ln S (K)~y!

2 (
n51

N

~21!2ndny2nD
1E

1

`

dyy41e
d

dy S (
n51,nÞ4

N

~21!2ndny2nD
1E

0

1

dyy41e
d

dy
ln Km~y!

1E
1

`

dyy41e
d

dy
lnS e2zAp

2zD J . ~45!
10502
The coefficientsdn , which determine the pole structure o
the vacuum energy are given by the large-z behavior of
S (I )(z):

ln S (I )~z!. (
k51

`

dkz
2k, ~46!

and are immediately evaluated using a Taylor expansion
The unrenormalized one-loop vacuum energy can, fina

be written as

L L
F 52

~ka!4

64p2E
0

`

dyy4
d

dy
lnH 12

Km~y!I m~ay!

Km~ay!I m~y!J
2

~ka!41e

32p2 S A1a242eB2
4d4

eG~31e/2!
~11a242e! D .

~47!

The previous expression is found to be divergent and ne
to be renormalized. The renormalization can be perform
by using the brane tensions. In a previous work@33# we have
found that when pushing the heat kernel expansion to hig
orders there is the need to augment the brane tension
terms proportional to powers of the curvature in order
remove the pole terms. The same happens in the ferm
case. However, in this calculation we truncated the exp
sion to first order and we do not need to consider this po
bility. Proceeding as in the scalar case, one can write
brane sector of the action as

Sbrane52E d4xugu1/2$Vh1a4Vv%, ~48!

and express the bare quantities in terms of the renormal
ones:

Vv,h5Vv,h
R 1dVv,h , ~49!

where

dVv,h5
dVv,h

21

e
1dVv,h

0 , ~50!

with dVv,h
21 anddVv,h

0 independent ofe. By using Eqs.~47!,
~49!, ~50! the renormalization is straightforward leading
the following counterterms:

dVh
215dVv

215
k4

16p2 d4 , ~51!

dVh
052

k4

32p2 B, ~52!

dVv
052

k4

32p2 A. ~53!

In performing finite renormalizations, thea dependence of
the effective action has been crucial. In fact, all the terms
L L

F , except forJ(a), have the same functional dependen
9-5
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of the brane part of the action. Using the freedom to perfo
finite renormalizations we have absorbed in the counterte
everything apart fromJ(a). This leaves the following ex-
pression for the renormalized vacuum energy:

L L
F 52Vh

R2a4Vv
R1

~ka!4

16p2E
0

`

dyy3lnH 12
Km~y!I m~ay!

Km~ay!I m~y!J .

~54!

The result is plotted in Fig. 1. It qualitatively resembles t
result for massless fermions given by Garrigaet al. @30#.
Note that replacingm by 2m leaves the result unchange
appart from a shift inVv

R , and therefore results with type I
boundary conditions with massm are equivalent to result
for type I boundary conditions with massm2k.

III. GAUGE SYMMETRY AND BOUNDARY CONDITIONS

In the following we extend the previous considerations
order to discuss the most general boundary conditions c
sistent with the orbifold symmetry and the homogeneity
the spacetime. The interplay between gauge invariance
boundary conditions is also investigated. Once the bound
conditions are specified, the vacuum energy for a ferm
and scalar multiplet, described by

S5SS1SF , ~55!

where

FIG. 1. The fermion vacuum energy plotted againsta
5exp(2pkr) for various fermion masses and type I boundary co
ditions. The vacuum energy is in units of 1023k4 and shifted to
vanish ata50 to aid comparison. The brane tensionVv is kept
constant.
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1

2
E d4xdyugu1/2$gmn]mF I* ]nF I2mS

2F I* F I

2jR2F I* F I%, ~56!

SF5E d4xdyugu1/2$ i C̄ Ig
MDMC I2mFe~y!C̄ IC I%,

~57!

is computed for a variety of boundary conditions. We use
label I to index the field multiplets.

A. Homogeneous boundary conditions

It was pointed out many years ago that the boundary c
ditions of a quantum field become very rich as soon as
spacetime upon which it is based has a nontrivial topolog
structure@54,55#. Specifically, if the spacetime is multiply
connected, the fields need not be single valued, being
fact, required to obey weaker boundary conditions. It w
also noted that the homogeneity of the spacetime and ga
symmetries produced nontrivial constraints on the bound
structure of the fields.

A similar situation occurs in the Randall-Sundrum mod
where the boundary conditions can be altered from the o
considered in the previous section, according to the sym
tries of the action. The boundary conditions have to be sp
fied in order to relate the fields at identified points along
extra dimension and since they have to ensure that the ac
is single valued, we have the freedom to impose wea
boundary conditions on the fields. We assume that the m
fold upon which the quantum field theory is homogeneo
meaning that the physics is the same at every point.

The most general boundary conditions we can write a

F I~xm ,2y!5S IJ
b FJ~xm ,y!, ~58!

C I
s~xm ,2y!5D IJ

b Lb
srCJ

r~xm ,y!. ~59!

b5v,h, means that we can have different boundary con
tions at the two branes.2 S andD are global gauge transfor
mations andD251, S251. The requirement that the actio
is invariant under Eqs.~58!, ~59! results in the following
conditions:

D IJ
b* DJK

b 5d IK , ~60!

L†g0gmL5g0gm, ~61!

L†g0L52g0, ~62!

S IJ
b* SJK

b 5d IK . ~63!

Relations~61!, ~62! are satisfied uniquely by choosing

L56g5. ~64!

2This is a very important difference with respect to Refs.@54,55#,
in which the manifoldS1 did not have boundaries.

-
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These are a generalization of the results forB we wrote down
earlier. The boundary conditions can be further constrai
when taking into account the gauge symmetries of the the
If the theory is gauge invariant, it would be expected th
fields in the same gauge equivalence class satisfy the s
boundary conditions, which, in other words, means t
boundary conditions should be preserved under a ga
transformation. To exploit this, insert at each brane a ga
transformationUPG, whereG is the gauge group:

F I8~xm ,y!5US
b~xm ,y!F I~xm ,y!, ~65!

C I8~xm ,y!5UF
b~xm ,y!C I~xm ,y!. ~66!

Requiring that the primed fields satisfy the same bound
conditions as the unprimed fields together with the requ
ment that the gauge transformation be single-valued give

@US
b~xm ,y!,Sb#50, ~67!

@UF
b~xm ,y!,Db#50. ~68!

Relations~67!, ~68! represent the symmetries of the boun
ary conditions@55#.

Some comments are now in order. We have seen tha
boundary conditions the fields are required to obey
weaker the larger is the symmetry of the theory and are c
strained by the gauge invariance andZ2 symmetry of the
action. Among these constraints are the commutation r
tions given above. These commutation relations canno
satisfied for any choice of the matricesD and S, meaning
that if we want to keep the boundary conditions general,
have to restrict the original symmetry of the theory, which
turn means breaking the gauge symmetry at classical leve
we want to maintain the original symmetry of the classi
theory, we are forced to restrict the matricesD and S in
order to satisfy the constraints found, i.e., they must bel
to the center of the gauge groupG.

It is instructive to see how this works in simple cases
we consider a single scalar field, relation~63! implies that
S561 ~the commutation relations are trivially satisfied
this case!. This gives

f~xm ,2y!56f~xm ,y!, ~69!

where the1 sign gives the untwisted field configuration co
sidered in Refs.@30–33,23#, and the2 sign gives the twisted
configuration considered in Refs.@33,23#. In the single fer-
mion caseL56g5 and D5eiu. The boundary conditions
are then

C~xm ,2y!56eiuC~xm ,y!, ~70!

and the conditionD251 impliesu50, which gives the fields
configurations considered in the previous section.

B. Effective action

In this section we will evaluate the effective action f
situations in which a richer boundary structure is possible
first simple choice is to take a single real scalar field obey
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different boundary conditions at the two branes. Two pos
bilities arise: the field is even aty50 and odd aty5pr or
viceversa. We call these two cases ‘‘twisted’’ and label th
TI and TII , respectively. The boundary conditions can
applied in a straighforward manner giving, for the eigenva
equation~the functionsj n ,yn ,i n ,kn in the scalar case are th
ones defined in Ref.@33#!,

j n~axn!Yn~xn!2yn~axn!Jn~xn!50, ~71!

for type TI and

j n~xn!Yn~axn!2yn~xn!Jn~axn!50, ~72!

for type TII . The computation of the vacuum energy is n
different from the previous case and the renormalized qu
tum corrections can be written as

L L
S5

~ka!4

64p2E dyy4gn
(TI ,TII )~y!, ~73!

where

gn
TI~y!512

i n~ay!Kn~y!

kn~ay!I n~y!
, ~74!

and

gn
TII~y!512

kn~y!I n~ay!

i n~y!Kn~ay!
. ~75!

Another simple possibility is to consider a single fermio
field obeying different boundary conditions at the tw
branes. There are two possibilities:

C~xm ,2y!51g5C~xm ,y! at y50, ~76!

C~xm ,2y!52g5C~xm ,y! at y5pr ,
~77!

and the reversed one

C~xm ,2y!52g5C~xm ,y! at y50, ~78!

C~xm ,2y!51g5C~xm ,y! at y5pr .
~79!

The mass eigenvalue equation is

J2m~axn! j m~xn!2Jm~axn! j 2m~xn!50, ~80!

with m51/21n for the first case andm5n21/2 for the
second case. For convenience, we have defined

j m~z!5S 1

2
2n D Jm~z!1zJm8 ~z!, ~81!

km~z!5S 1

2
2n DKm~z!1zKm8 ~z!. ~82!
9-7
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The evaluation of the vacuum energy goes along the s
lines as before and the renormalized contribution is found
be

L L
F 5

~ka!4

16p2E
0

`

dyy3lnH 12
km~y!I m~ay!

Km~ay!i m~y!J . ~83!

The problem of computing the radiative corrections b
comes more complicated, when a gauge symmetry is con
ered, due to the enlarged complexity of the boundary con
tions. We have seen that, in order to maintain the ga
symmetry at classical level, the boundary conditions hav
satisfy certain symmetries, specificallyD andS have to be-
long to the center of the gauge groupG.

As an example, let us considerG5SU(N). D belongs to
the center ofSU(N). This modifies the boundary condition
in a simple way: the boundary conditions that each ferm
component has to obey can be of type I, II,TI , or TII . This
can be incorporated in the evaluation of the vacuum ene
in a straightforward manner, giving

L L
F 5 (

kP(I,II, TI ,TII )
Nk

FL L
F ~k!, ~84!

where Nk
F represents the number of components satisfy

type k boundary conditions andL L
F (k) is the vacuum en-

ergy for each component obeying typek boundary condi-
tions.

Another simple example is to consider anSO(N) scalar
theory, for which the situation is similar to the previous on
giving

L L
S5 (

kP(I,II, TI ,TII )
Nk

SL L
S~k!, ~85!

whereNk
S represents the number of scalar components s

fying type k boundary conditions andL L
S(k) is the vacuum

energy for each component obeying typek boundary condi-
tions.

All this can be generalized to a general gauge gro
whose center is trivial. In this case the boundary conditio
scalar and fermion fields ought to satisfy are still of the sa
type as before, giving

LL5L L
S1L L

F 5 (
kP(I,II, TI ,TII )

$Nk
FL L

F ~k!1Nk
SL L

S~k!%.

~86!

IV. CONFORMALLY COUPLED CASE

The massless, conformally coupled case~studied in Ref.
@30# for untwisted field configurations and in Ref.@23# for
both the twisted and untwisted case! is worth of some specia
attention and provides a useful check on the general me
used in the previous sections. For type I and type II bound
conditionsm51/2, Eq. ~43! can be expressed in terms
elementary functions and the integrals are now evaluate
ease, giving for the renormalized one-loop vacuum ener
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L L
F 52

3k4a4

128p2 z~5!~12a!24. ~87!

Similarly, for type TI and TII boundary conditionsm51/2
and a straightforward calculation of Eq.~73! leads to

L L
F 5

15

16

3

128p2

k4a4

~12a!4 z~5!. ~88!

The previous results can be also dealt with by direct sum
tion of the mass eigenvaluesmn , which are, in general,
given by

mn5
ka

12a
~np6u!, ~89!

where u50 gives the untwisted field configuration, andu
5p/2 gives twisted one. The sum over the modes inL L

F can
be performed by using the properties of thez function and
without the need of any renormalization:

L L
F 52 lim

D→4

1

32p2

~pka!D

~12a!D

3G~2D/2!S (
n51

`

~n1u!D1 (
n51

`

~n2u!DD .

~90!

The previous result can be expressed in terms of the Hur
z function:

L L
F 52 lim

D→4

1

32p2

~pka!D

~12a!D G~2D/2!@zH~2D,u!

1zH~2D,12u!#, ~91!

which, by using basic properties ofzH , can be recast in the
form

L L
F 52

3

128p2

~ka!4

~12a!4 (
cos 2nu

n5 . ~92!

Immediate inspection of Eq.~92! reproduces Eq.~87! for u
50 and Eq.~88! for u5p/2, as it must be.

V. TOPOLOGICAL SYMMETRY BREAKING

An interesting feature of the boundary conditions on t
branes is the possibility of breaking bulk gauge symmetr
The residual symmetries are those which commute with
two matricesSh andSv introduced in Sec. III A. The sym-
metry breaking mechanism is similar to the Wilson-lo
symmetry breaking mechanism in nonsimply connec
spacetimes@54–59#.

There are two equivalent ways to describe this type
symmetry breaking. The nontrivial boundary conditions a
useful for evaluating and comparing the effective action
different symmetry breaking schemes, as we shall do be
Alternatively, it is possible to simplify the boundary cond
9-8
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tions by performing a gauge transformation which introdu
a pure gauge field stretching between the two branes.
‘‘Wilson line’’ is the analogue of the Wilson loop in the
Wilson loop mechanism. If the field strength vanishes,
line integral of the gauge field along a loop is conserv
This need not be true for the Wilson line and the symme
breaking becomes associated with a set of moduli fields

We shall concentrate on the possible symmetry break
schemes fields with anSU(N) gauge symmetry. The matri
cesSh andSv satisfy (Sh)25(Sv)25I , the unit matrix. By
considering the eigenspaces of@Sh,Sv#2, it is easy to show
that there is a basis in which the matrices take the blo
diagonal form

Sh5diag$61, . . . ,71,s3 , . . . ,s3%, ~93!

Sv5diag$61, . . . ,61,su1
, . . . ,sun

%,
~94!

wheres1 , s2 , s3 are the Pauli matrices and

su5s3cos 2u1s1sin 2u. ~95!

The residual symmetry group is then

SU~n1!3SU~n2!•••3SU~np!3U~1!q. ~96!

There areSU(n) factors for each of the four combinations
the 61 entries along the diagonals of the matrices and
ther SU(n) factors for each repeated value ofu.

For example, ifG is the groupSU(5), we cantake

Sh5diag$21,21,21,s3%, ~97!

Sv5diag$21,21,21,su%. ~98!

The group reduces toG→SU(4)3U(1) if u50 or p/2 and
G→SU(3)3U(1) otherwise.

The action~56! or ~57! splits into separate terms, with on
term for each of the block diagonal entries~94!. Each term
gives a contribution to the effective potential. The61 en-
tries correspond to the type I and II, twisted and untwis
boundary conditions considered in Sec. III B. Thesu entries
correspond to the following boundary conditions on the f
mion modes at the hidden braney50 and the visible brane
y5rp,

GR~0!5s3GR~0!, ~99!

GR8 ~0!52s3GR8 ~0!, ~100!

GR~rp!5suGR~rp!, ~101!

GR8 ~rp!52suGR8 ~rp!. ~102!

The boundary conditions forGL modes and scalar field
modes have an equivalent form.

The fermion mode functions were given in Eqs.~12! and
~13!. Substituting these modes into the boundary conditi
gives the values for the massesmn . Introduce
10502
s
is

e
.
y

g

-

r-

d

-

s

pn5JnS mn

k DYnS mn

kaD2JnS mn

kaDYnS mn

k D , ~103!

qn5JnS mn

k DYn8S mn

kaD2JnS mn

kaDYn8S mn

k D ,

~104!

r n5Jn8S mn

k DYnS mn

kaD2Jn8S mn

kaDYnS mn

k D ,

~105!

sn5Jn8S mn

k DYn8S mn

kaD2Jn8S mn

kaDYn8S mn

k D .

~106!

The values ofmn are given by

pn11/2sn11/2cos2u1qn11/2r n11/2sin2u50. ~107!

For u50, this reduces to the previous casespn11/250 ~for
type I boundary conditions! and sn11/250 ~for type II
boundary conditions!.

In the massless fermion and the conformally invaria
scalar field theories the Bessel functions become trigonom
ric functions and the values ofmn are given by Eq.~89!. The
vacuum energy from oneu ‘‘block’’ can be expressed in
terms of Hurwitz zeta functions and evaluates to

LV56
3gk4a4

128p2 ~12a!24(
n51

`
cos~2nu!

n5 , ~108!

where the upper sign is for fermions, the lower for boso
and g is the dimension of the fermion representation. T
vacuum energy is extremized foru50 andu5p/2, where
the result reduces to the untwisted and twisted results,
spectively. This remains the case for massive fields beca
of the symmetriesu→2u andu→p2u in the formula for
the mn ~107!.

The full effective action will include, not only potentia
terms, but also induced kinetic terms for the moduli field
Their presence can be inferred from the form of thea5/2 heat
kernel coefficient, which depends on the boundary con
tions and includes derivatives of the matricesSh andSv. The
symmetry breaking mechanism is therefore truly dynamic
and differs from the usual Wilson loop mechanism in th
respect. The closest analogy is to the symmetry break
associated with quantum wormholes@59#.

VI. RADIUS STABILIZATION
AND SELF-CONSISTENT SOLUTIONS

In a previous paper@33#, by looking at the quantum cor
rected Einstein equations, we have examined the condit
for self-consistency of the Randall-Sundrum spacetime
obtained a self-consistency relation, which the radius had
satisfy. Specifically, if

G5SG2E dvxF~a!, ~109!
9-9
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denotes the full quantum corrected effective action, the
quirements are

S dG

dgmn
D

gmn5hmn

50, ~110!

S dG

da D
gmn5hmn

50. ~111!

The first forces the Randall-Sundrum solution to be a so
tion of the quantum corrected Einstein’s equations, the s
ond being a requirement for the radius to be an extremum
the effective potential. When quantum corrections are
cluded

F~a!5Vh1aDVv1 f ~a!, ~112!

the following relation is obtained:

05DaD~Vv1Vh!1~12aD!a f8~a!1Da f~a!. ~113!

In Ref. @33#, we studied these consistency requirements
quantized bulk scalar fields. In that case, the conclusion
that when the balancing condition between the brane ten
is forced to hold at quantum level also, quantum effects w
offering no self-consistent radius stabilization mechanis
When the balancing condition was relaxed, it was possibl
find self-consistent solutions only at the price of fine tuni
the brane tensions to a considerable degree. This was fo
to be in agreement with Refs.@30,23#.

Including fermions in the analysis might give some ho
to find a self-consistent solution with a less degree of fi
tuning. If one defines

f ~a!5L L
S1L L

F , ~114!

one finds that, ifVv1Vh50 is required to hold, then there i
no self-consistent solution for which the hierarchy proble
is simultaneously solved. If this condition is relaxed then
severe fine-tuning of the brane tensions is still required
order to satisfy Eq.~114!. Unfortunately, one has to resort t
a numerical approach to verify this, nevertheless in so
special cases it is possible to see this analytically. For
ample in the massless case one has (cs andcf are irrelevant
numerical factors!:

05~Vv1Vh!~12a!41~cs2cf !~11a22a6!. ~115!

It is now straightforward to see that in order to have a so
tion to Eq. ~115! and simultaneously solve the hierarch
problem (a.10218) a dramatic fine-tuning of the paramete
in Eq. ~115! is required.
th
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VII. CONCLUSIONS

We have evaluated the one-loop radiative corrections
the effective action arising from a massive bulk fermi
quantized on the Randall-Sundrum background spacet
As in the scalar field case, it is not possible to obtain an ex
result for general curved membranes, but it is possible
resort to a heat kernel expansion and compute the effec
action to any desirable order. The vacuum energy den
which is the first term in the expansion, has been recogni
to play a role in the Randall-Sundrum model for its cont
bution to the stability of the branes separation which is
lated to the gauge hierarchy problem. We showed that
fields can obey different boundary conditions from the on
considered in Refs.@30–33,23# and this gives rise to modi
fications in the vacuum energy.

We have clarified the relation between gauge invaria
and boundary conditions and showed how these are c
strained by the gauge invariance, having to obey to w
Hosotani called the symmetries of the boundary conditio
@55#. This richer boundary structure has to be taken into
count when scalar or fermion multiplets are considered
in this case the vacuum energy is calculated for SU(N) fer-
mions, SO(N) scalars, and generally for situations in whic
the center of the gauge group is trivial.

The massless~conformally coupled! case is dealt with by
direct summation of the eigenvalues and as a limiting cas
the general result. This has provided a check on both
general method and a comparison with previous results.

The possibility of breaking the bulk gauge symmetries
using a mechanism similar to the Wilson loop symme
breaking in nonsimply connected spacetimes has been
lyzed. We concentrated on the possible breaking sche
when the gauge group isSU(N) and showed that
the residual symmetry group is always of the for
SU(n1)3•••3SU(np)3U(1)q. The vacuum energy de
pends on a set of moduli fieldsu and is generally extremise
for u50 or u5p/2. It would be interesting to investigate th
dynamical implications of these moduli fields. There m
also be a connection with the wormhole symmetry break
mechanism@59#.

The self-consistency, discussed for quantized scalar fi
@33#, has been examined when massive fermion are includ
It is shown that in this case also it is not possible to stabil
the radius and simultaneously solving the hierarchy prob
without a considerable degree of fine-tuning, supporting
previous claims of Refs.@30–33,23#.
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