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Reduced gauge theories are theories in which while gauge fields propagate in a bulk, fermion fields are
localized on a brane. We study dynamical chiral symmetry breaking on a 2-brane and a 1-brane in reduced
QEDs, 1, and on a 1-brane in reduced QER. Since, unlike higher dimensional gauge theories, @Eand
QED,, ; are well defined, their reduced versions can serve as a laboratory for studying dynamics in a higher
dimensional brane world. The analysis of the Schwinger-Dy(&i) equations in these theories reveals rich
and quite nontrivial dynamics in which the conformal symmetry and its breakdown play a crucial role. Explicit
solutions of the SD equations in the near-critical regime are obtained and the character of the corresponding
phase transition is described.
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. INTRODUCTION QED;.; and QED, ; as a laboratory for studying dynami-
cal chiral symmetry breaking in the brane world. Unlike
Dynamics in a brane world has recently attracted considhigher dimensional gauge theories, QER and QED, ;
erable interest. In most cases, it has been studied in highefe well defined. While QER.; is renormalizable and there-
dimensional theoriefor a recent review, see Rdfl]). The  fore well defined in perturbative theory, QED, is super-
aim of this paper is to consider dynamics on a brane not inenormalizable and therefore asymptotically free.
higher dimensions but in a (31)- and (2+ 1)-dimensional As we will see, the dynamics of chiral symmetry breaking
world. More precisely, we study dynamical chiral symmetryin reduced QED is quite nontrivial. In particular, the confor-
breaking in the reduced @B1)-dimensional QED mal symmetry(and its breakdownplays a crucial role in the
(QEDs,4 1) and QEDR . ;. The term “reduced” implies here dynamics.
that while massless gauge fields propagate [i(3a+1)- or The paper is organized as follows. In Sec. Il general fea-
(2+1)-dimensiondl bulk, fermion fields are localized on a tures of reduced QED are described. In Sec. Ill we study
brane. We will consider the cases of a 2-brane and a 1-brar@ynamical chiral symmetry breaking on a 2-brane in reduced
in QEDs,; and a 1-brane in QED ;. We would like alsoto  QED;, ;. In Sec. IV chiral symmetry breaking on a 1-brane
emphasize that though we use the conventional term “QED’in reduced QEB, ; is considered. In particular, we discuss
for aU(1) Abelian gauge theory with fermions, we do not subtleties connected with spontaneous breakdown of con-
specify the origin of the gauge field: it is not necessarily atinuous symmetries on a 1-brane. In Sec. V chiral symmetry
electromagnetic field. breaking in the reduced QED; with a 1-brane is studied. In
Motivations for considering this type of models are ratherSec. VI we summarize our results. An analysis of the
obvious. It is well known that relativistic field models can Schwinger-Dyson equation in the reduced QEP with a
serve as effective theories for the description of long waved-brane is done in Appendix A.
length excitations in condensed matter systé&jsThe re-

duced QED describes the situation when while fermions are Il. REDUCED QED: GENERAL FEATURES

localized on a planésay, on a Cu-O plane in a highF, _ ] )
superconductoror on a string(polymer like systenis inter- In th|s.sect|on, general featureg of f[he redgced QED will
actions between them are provided by a bulk gauge field. 1f¢ described. The QEP-1)., action in Euclidean space
addition to that, reduced QER; can be relevant for the reads[X=(xp Xy, ... Xp-1)]

dynamics of cosmological strind8]. At last, reduced QED

has been recently considered in higher dimensions for the S:J' dPx in LA Ja_i(& A2 1)
description of the mechanism @juasjlocalization of a pho- 4e2 70 2e%¢ & '

ton field on a 3-bran@4].

Another, more practical, reason is using the reducedvhereé is a gauge parameter addis a fermion current. We
will consider the chiral limit(no fermion bare mass tejm
and, for convenience, consistently omit the kinetic term for

*On leave of absence from Bogolyubov Institute for Theoreticalfermions in the action, restoring it only when it is necessary.
Physics, 03143, Kiev, Ukraine. Integrating overA,, we get

0556-2821/2001/64.0)/10502816)/$20.00 64 105028-1 ©2001 The American Physical Society



E. V. GORBAR, V. P. GUSYNIN, AND V. A. MIRANSKY

PHYSICAL REVIEW D64 105028

one-dimensional cased&D —2) and divergent otherwise.
Therefore, wherd<<D —2, one should regularize the delta
function, i.e., introduce a finite thickness for a D-brane. This
is an additional source of the breakdown of conformal sym-
metry. Notice that in the reduced QED, with d=2, the
kinetic term is both finite and conformally invariant.

(c) Effective action(7) describes fermion fields and a pro-
jection of the gauge field on a brane. Since gauge bosons can
escape from the brane to the bulk, the unitarity does not
fulfill in the brane dynamics. In the next section, we will

d-brane, we assume that the fermion current has the followdiscuss explicit manifestations of this feature of reduced

1 ~
=§f d®XdPY R(X)DQ(X—Y)JI°(Y), )
where
BY-e T exptik (x| 80y (1- ) 20| 2
expi -
ab ™ (27T)D ab™ 2 K2
()
with K=(kp,kq, ... ,kp_1). In reduced QED, with a
ing form:
J3(X)=0 for a=d+1d+2,...D—1,
JB(X)=j3(Xp . Xq, . .. X)L 9 Y(x) for a

=D,1,...d, (4)

wherex= (X411, . . . Xp_1). Integrating ovex andy in Eq.
(2), we obtain the reduced {dl)-dimensional action

- 1 .
S[Dd]eff__f d* Ixd?* by j4(X) DBy (X = Y)J"(Y),
)
where

dd+1de_d_1?

D2y, (x—y)=€? f exp(ik(x—y))( 5,

(2m)°

1
k2+K?

—(1-9= (6)

k2+ k2

with w,v=D,1, ...
here is self-explanatoyy

As it will be shown in the next sections, after integrating
over k momenta, the effective action can be rewritten in the

following general form:

PR A j*

S[Dd]eff: J d?+1x

4 2 ,U,VI(

+gauge terr}v, (7)

whered? is the Laplacian in & 1 dimensions antl(— d%) is
a nonlocal(i.e., integral operator.
The following properties of the actiofY) are noticeable.
(a) The interacting termd ,j* is conformally invariant for

all D andd. This point will be important for the dynamics of

chiral symmetry breaking in reduced QED.
(b) Whend=D — 2, the kinetic term in expressia(T) is

finite. However, wherd<D — 2, there are ultraviolet diver-

d (the notation for momenta we use

QED.

Ill. REDUCED QED 34+; WITH A 2-BRANE

In this section we will study spontaneous chiral symmetry
breaking in the reduced QEDR; with a 2-brane, i.e., with
D=4, d=2 andk=Kkjs. Integrating overks in expression
(6), we obtain the bare gauge field propagator of an effective
(2+1)-dimensional theory on a 2-brane:

) e d3k _
D[42]#V(X—Y)=7J (277)36XP(||<(X—V)) 0,,—(1

kﬂky) 1 ®

N
where u,v=4,1,2 and, for convenience, we made the sub-
stitution §é—2&—1, i.e., (1- &) —2(1—§). Introducing a 2

+ 1 vector fieldA ,(x), the effective actiori5) can be rewrit-
ten in the following form[compare with Eq(7)]:

1 1
——F,,——=F*+A,j*

26 M =7

S[42]eff:f d°x| —

1
+——d, A

a,A"|.
¢ M

C)

1
[ (92
One should add the kinetic term of fermions on a 2-brane to
this action:

= f d3xy(iy*a,) . (10)
As is well known, there are tw@wo-dimensionalinequiva-
lent representations of the Clifford algebra ir-2 dimen-
sions. Following Refs[5—7], we will consider four compo-
nent fermion fields which contain these two inequivalent
representations. In this case, there exists a fermion mass term
preserving parity. If there arll; fermion flavors, the sym-
metry of the action i2J (2N;) [6,7]. The dynamical genera-
tion of a fermion mass leads to spontaneous breakdown of
this symmetry down tdJ (N¢) X U(Ny).

A remarkable feature of the actidf) is that it is confor-

gences in it. The reason for that is simple. Because of a delt@g| invariant. Since the initial QED theory is renormaliz-

function in the fermion current(4),
=(Xd+1y - -

integrating overx

able, one should expect that this feature plays an important

Xp_1) encounters a classical self-energy of arole in the dynamics. Our aim is to describe spontaneous

pointlike particle inD—d—1 dimensions. It is finite in the chiral symmetry breaking in the theory with this effective

105028-2



DYNAMICAL CHIRAL SYMMETRY BREAKING ONA. .. PHYSICAL REVIEW D 64 105028

action. Since there is no dimensional parameters in the action 1

(9), a fermion dynamical masmy can be induced only  A(p?)=1+ —zf

through the mechanism of dynamical transmutation. In our p

case, it means that one should introduce an ultraviolet cutoff

A, thus breaking the conformal symmetry. Then the dynami- %

cal mass, if it arises at all, will be proportional fa We will

be especially interested in the near-critical regime of the dy-

namics, whermg<<A. 2(p*q*— (pa)?)
The dynamical chiral symmetry breaking in this model is B (p—q)2

a highly nontrivial problem, and our strategy for solving it

(at least approximatelywill be to find a framework in which d3q B(g?)

the improved laddefrainbow) approximation would be reli- B(pZ)ZJ

able. We recall that while in the ladd@ainbow approxima- (27)2 g?A%(g%) +B?(q?)

tion there is only a Schwinger-Dysd®$D) equation for the 2

fermion propagato(with both the vertex and the gauge field +E(P=a)D. (16)

propagator being bayein the improved laddefrainbow

approximation there are two SD equatidmsth a bare ver-

tex), both for the fermion and for the gauge field propaga-

d3q A(g?)

_ 2
(2n) A+ B L P

pa+(1—&(p—a)?]| pq

(15

D[(p—a)?1(2

Notice that the functionD(k?) is expressed through the
vacuum polarization functiohl (k?) as

tors.
The SD equation for the fermion propagator in D(kz):;. (17)
Minkowski space in the improved ladder approximation has 5
the following form: §+H(k )
. d3 The full gauge field propagatail?2) satisfies its own SD
G Xp)=GO (IO)HJ 2 )37"G(Q)7"D[42]W(P—q), equation and therefore is in principle a complicated func-
a

tional of the functionsA(p?) andB(p?). Fortunately, in the
present case the situation can be considerably simplified.
O ) First of all, as we will see below, one can choose a gauge in
whereG™(p) is the bare fermion propagator and which the functionA(p?) is identically equal to 1, and we
will use such a gauge. Second, it will be shown that, in the
near-critical regimgwhen my<<A), the fermion dynamical
D(k?) (120 mass, defined asy=B(mZ), is mainly induced in the kine-
matic region withm3<k?. In that region, fermions can be
treated as massless, andAifp?) =1, the polarization func-
tion is given by the one loop expression with the fermion
propagators of free, (21)-dimensional, massless fermions.
For completeness and convenience, however, we will use
e one loop expression féf (k?) taking free fermions with
the masam=my. On a 2-brane, i.e., in21 dimensions, it
is

(1D

LKk,
D[42],u.1/= g,u,v_(l_g(k ))?

is the full gauge field propagator for which there is its own
SD equatior{with a bare vertex in this approximatiprHere
we use a general nonlocal gauge witk?) being a function
of k? [a need for considering such gauges will soon becom(izh
clear: see E(21) below]. The bare gauge field propagator is
now [compare with Eq(8)]

k.k,| € [112) = N ) k2—4m3 k 18
2 2\/—_k2 (13 (k9= e my+ Tarcta%d . (18
Notice that

and the full gauge field propagator is related to the vacuum

D{%),.= ( 90— (1= E(K?)

polarization tensofl ,,(Kk): N:k
-1 _~O)7t
Dja2),.,(K) =D, () +11,,,(K), e and
d s
M, (k)= Ko 112 14 T1(k2 Nk 20
,u.V( )_ g,uv_? ( ) ( ) ( )_) 67de ( )
o ) oo fOrk<mg.
The structure of the propagat@(p<) is G(p“)=(A(p)p When can the improved ladder approximation be reliable?

—B(p?) 4, E)Ey”“pﬂ, and from Egs.(11) and (12) we  The simplest case would be of course the dynamics with a
obtain the following equations foh(p?) andB(p?) in the  small coupling constant=e?/47 (notice thata is a bare
Euclidean spacepp=ip.): coupling constant hejeln that case, even the laddegin-
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bow) approximation would be good enough. Unfortunately,Here the ultraviolet cutoff\ was introduced.
as it will be shown below, for smalk there is no solution Notice that in the momentum regicgf>m3i=B?(m3),
with spontaneous chiral symmetry breaking in the reducethe termB?(g?) in the denominator of the integrand of ex-
QED;, ; with a 2-brane. Therefore one should try somethingpression(23) is irrelevant. The only role of this term is to
else. provide a cutoff in the infrared region. Therefore one can
Our initial observation is that the structure of SD equa-drop this term, introducing an explicit infrared cutoff in the
tions (15) and (16) is similar to that in usual, nonreduced, integral. Then we obtain the following equatiom=p?,y
QED,. ;. It had been recognized long ago that thBdéx-  =g?):
pansion can be useful in that thed§—9]. Though being
very nontrivial, the IN; expansion is helpful in putting un- A2dy 0(x—y) 6(y—x)
der control of nonperturbative dynamics. The crucial point is B(X)ZRJ » 1B(Y) N + W
the selection of a “right” gauge in the leading order N1/ Ma Y X y

in which the improved ladder approximation would be reli- t¢ (ransition from Eq(23) to Eq.(24) corresponds to the so
able[10]. In particular, appropriate Ward identities have 10 41ed bifurcation approximatiotor method. For the prob-
be satisfied in that gauge. I.n other gauges, th.e results can Re, of dynamical symmetry breaking, this method was intro-
found by gauge-transforming Green's functions from theq,ceq in Ref[12] and since then has been widely used in the
‘right” gauge to those gauges. Such a transformation in 9eNjiterature (for a review see Ref13]). This method is espe-
eral changes the initial improved ladder approximation a1y appropriate for the near-critical dynamics: the closer
another one, though the gauge invariant quantities remain gf,o dynamics is to a criticabifurcation point, the smaller
course the same. We will adopt this strategy for the presenj,o dynamical mass;, and therefore the ter®?(g2) in the
problem and, first of all, check the Ward identity for the yonominator of the integran@3), become.

vertex. Since in this approximation, by definition, the vertex i ;g easy to check that the integral equati6®¥) is

is bare, the functiom(p?) has to be equal one. It is known equivalent to the differential equation

[11], that for the full photon propagatét?2), and in arbitrary

d space dimensions, this function is identically equal to 1 if 3X

one uses a nonlocdin general gauge with the following X?B" + - B'+5B=0 (29
gauge functiore(k?):

(24)

with the following two boundary conditions:
z
jodudflom. (21) B'(m?)=0, (26)

(2XB' +B)|,_ x2=0. (27)

d(d—1)
29D(z2)

§(z)=d~—

We will see that, in the near-critical regime, the momen-
tum region mostly responsible for the mass generatidk is
>my. As it follows from Eq.(19), in that regionII(k?)
=N;k/8, i.e., the functiorD (k?) (17) is proportional tok ™.

A solution of Eq.(25) which satisfies the infrared boundary
condition (26) is

For such a functiorD(k?) andd=2, one getsé(k?)=2/3 32 o x
(the so-called Nash gaud8]), and the gap equation takes B(x)= % sin —log—+ 46/, (29
the form xY4sinh s 4 mj
?q  B(g) 1 where w=1—8\ and 6= 3log[(1+w)/(1-w)], and here
B(p2)=4772>\j \ we also used the normalization conditi&fm?)=my. The
(2m)° a*+B*q?) V(p—a)* ultraviolet boundary condition27) yields the following
, equation for the dynamical mass:
e
. Nee”) - 2 tant] Llog~ +5)—— (29
372 1+ 16) an 2ogm—d =—w. )

Obviously, there is no solutiomy<<A for A<\, =1/8. For

The validity of the Ward identity is a necessary but not Ofsupercritical values ok (\>M,), Eq. (29) takes the form

course sufficient condition for the reliability of the improved
ladder approximation. The crucial point for that is a justifi- v A
cation of the use of a bare vertex. This approximation for the tar( =log— + arctanv
vertex can be justified in the leading order of thé&llex- 2 mg
pansion[6—10].

Integrating over angles in E§22), we obtain

2d (2. /2 2 =
B(p2)=)\JA do?Vo®B(g?) V2 m Aexr{

o ¢?+BXq?) pP+a?+[p?—q?
(23)  The critical line in the planeN;, €?) is given by

=—v, (30)

wherev=+/8\—1. Therefore for smalv the mass is

2

14

+41. (32
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16 subcritical region, with massless fermions, there is a Cou-

Ne—N.’ (32 lomb, conformally invariant, phase describing interactions of

max: massless fermions and gauge bosons. In the supercritical re-
) gion, with massive fermions, there are a lot of bound states,
whereN .= 128/37%. Spontaneous chiral symmetry break- including 2N? Nambu-Goldstone bosons corresponding to
ing takt_as_place foe>e;,, and the_valueNmax defines_the spontaneous breakdown of th&(2N;) to U(N;) X U(N;).
upper limit for the number of fermion flavod; for which — tharefore these two criterions of the CPT are indeed realized
spontaneous chiral symmetgy breaking is possible. Wheky this model.
Ni—Nmay, the critical valueeg,— . . Notice that though QER.; is a renormalizable theory,

Let us now discuss self-consistency of the assumption thahere are new, nonperturbative, divergences in the supercriti-
the region of momentg>mjy is mostly responsible for the ¢a| phasésee Eq(31)]. These divergences are conneated
generation of the mass in the near-critical regimg<€A).  with introducing a 2-brane of vanishing thickness in the
The point is that in this regime IN/my~2/v is large. On  model but with the strong coupling dynamics. As is well
the other hand, the behavior of the integrand on the rightynown, such divergences occur in the strong coupling phase
hand side of Eq(23) is smooth agj?—0. The smooth be- ¢ QED;, ; in the absence of any brafg5—17. They lead
havior of the integrand in the infrared region implies that thetg preakdown of the conformal symmetfgonperturbative
region O<q=my is too small to generate the large logarithm scale anomaly
In A/my. It [and therefore the essential singularity in expres- |t is instructive to compare the reduced QEDR with a
sion (31)] is generated in the large regiang<q<A. A 2.prane with the conventional QED;. The SD equations in
variation of the kernel in the infrared region can at mostihese two models are similar. The difference is in the form of

change the overall coefficient in that expression. This heurisghe gauge field propagator. Instead of expressioh, one
tic argument is supported by numerical studies of integrahas[7,g]

€cr=

equation(23).
The critical line(32) implies that it is a strong coupling
dynamics, withe?>e?,, that provides spontaneous chiral D(k2)=2—, (33
symmetry breaking on a brane. Indeed, the Iovaépt:orre- — +TI(K?)
sponds toNy=1 and it is e2,=4.81, i.e., a;,=e>/4m e’

=0.38.

This strong coupling dynamics is provided ligssen- Wheree; is the (dimensional coupling constant in QER. ;
tially) conformal invariant interactions in the most importantandIL(k?) is the (same polarization function(18). The ap-
region of momentang<q<A. Indeed, up to the irrelevant pearance of the terrk?/e3, instead &/e?, makes quite a
B2(g?) term in the denominator, the kernel of integral equa-difference. On the one hand, it provides a dynamical ultra-
tion (220 transforms as K(p2q?)—K(s?p?,s?q?)  violet cutoff ~€j5 in the SD equation and, on the other hand,
=s"3K(p?,g%) under the scale transformatigng— sp,sq. since this term is suppressed in the regk@ﬂeg, it does not
This, together with the transformation of the measd?g contribute to the fermion dynamical mass. This implies re-
—s°d3q, implies that the interactions are inde¢glssen- ducing screening of Coulomb like interactions as compared
tially) conformal invariant in that regiorlin the integral to the reduced QER ; with a 2-brane. Indeed, the dynami-
equation(24), the conformal symmetry is broken only by the cal mass in QEB, ; is [8—1(]
dimensional boundary parameteétsandmg in the integral]

This reflects the presence of long range, Coulomb like, inter- 2 2@

. . . . b S . Mas~e5expg — — (34)
actions which provide the essential singularity in expression 3d =3 vy’
(31).

The critical line(32) corresponds to the so called confor- wherev,=\/8\3— 1 with A\ 3=16/37°N;. The parameter,
mal phase transitiofCPT) introduced in Ref{14]. There are  coincides with in Eq. (31) only in the limite?—x, i.e., in
the following characteristic features of the CPT. the limit of maximally strong interactions in the reduced
(a) Unlike the conventional Ginzburg-Landé@L) phase QED;. ; with a 2-brané
transition, a parameter governing the phase transition in the Therefore we conclude that there are important similari-
CPT is connected with a margin@le., renormalizableop-  ties and important differences between the dynamics in
erator[in the GL phase transition, such a parameter is CONQED, ., ; and reduced QER ; with a 2-brane. Both dynam-
nected with a relevarii.e., superrenormalizableperator; it jcs are intimately connected with long range Coulomb like

is usually a mass term ' N interactions. Both dynamics provide a realization of the con-
(b) Though the CPT is a continuous phase transition, there

is an abrupt change of the spectrum of light excitations at &a=———
critical point (line). This is unlike the GL phase transition  ithe critical value ofN; is N¢'=128/372=4.32 in QED.,.
where the spectrum is continuous at a critical pgiinte). Since this result was obtained in the framework of tHg Jéxpan-

In the present model, the parameter governing the phasgon, there may be some concern about its reliabfilig]. Although
transition is the coupling constaat It is connected with the it would be too strong to say that this issue has been finally re-
marginal operatolj ,A*. The spectrum of the light excita- solved, different studies indicate thatN\}/corrections are small for
tions is discontinuous at the critical lif&2). Indeed, in the Ny around 4[9,10].
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formal phase transition. In particular, like in the reducedwherek= (k4,k;),k?*=k3+k2. It is
QEDs, 4, there is an abrupt change of the spectrum of light
excitations at the critical poirtl;=N$" in QED,,; [19]. On ©)
the other hand, since QED; is superrenormalizabléand Dia1yun(K) =
therefore asymptotically fredgheory, there is ngnonpertur-
bative ultraviolet divergence in the dynamical mass. Also,
its dynamics is more effective in generating a fermion masgynere
in that it corresponds to the dynamics in the reduced
QEDs;, ; when the coupling constaetof the latter goes to e? k2
. DO(K?)=— —ex;{
. L . . . A
This point is intimately connected with the violation of
the unitarity in the brane theory. Indeed, because of the first,q Ei(—x) is the integral exponential function.
term in the denominator of expressidi7), there is an By introducing a 1 gauge fieldA, , we obtain an ef-
imaginary part forall time like moments in the gauge field o tive (1+1)-dimensional action: a
propagator(12), independentlyf the value of the mass.
This feature reflects the process of escaping of a gauge boson

kk, _d
6,41,1/_(1_5)%' kz_

~a D),

(39

2
Ei

2a

2a

(39

from the brane to the bulk. This “instability” of brane gauge Sajett= f dzxi F—————FA+A jit i
bosons leads to an effective reduction of interactions on the 4e? —9*DO(—4?) 2¢?
brane. Only in the limie— o« the gauge bosons are localized

on the brane, i.e., become “stable.” 1

xa”AM—aZ[D“’)(—02>+<1—§>azo<0>’<—azn

IV. REDUCED QED WITH A 1-BRANE
QED344 X a,AY, (40

In this section we will consider the dynamics in the re-
duced QER.; with a 1-brane, i.e., witth=4 andd=1.As  whereD®'(—3%)=D©'(x)|,__ . If there were no need
it was pointed out in Sec. Il, there afelassical ultraviolet  for a regularization, this effective action would be conformal
divergences in the theory with a 1-brane of vanishing thickinvariant. The finite thickness of the 1-brane breaks the con-
ness in this case. Because of that, one needs to introducef@mal symmetry. We will return to this point below.
finite thickness for the brane, which will play a role of a  One should add the kinetic term of fermions on a 1-brane
regularization parameter. to the action(40):
To get the reduction 31— 1+ 1, we perform integration
in Eq. (2) with the sources taken as P
Sn | @Pxiv5,00 (@
J3(X)=0 for a=2,3,
We will considerN; two componenti.e., vectorlikg fermi-

JA(X)=]%(x4,%1) f(x2)f(x3) for ons. The chiral group i&J(N¢). X U(N;)g. Our aim is to
find whether a fermion dynamical mass is generated in the
a=0,1, (35  theory with effective actiort40). Naively, one might expect
o ) that in this case the chiral symmetty (N;) XU (Np)g
where the regularization function would be spontaneously broken down to its vector subgroup

3 U(N;)y. However, this is not the case intll dimensions.
_ /2 a2 Because of the Mermin-Wagner-Colem@iWC) theorem
Fo0 \/;qu ), F0—=8(x),  a—e. (36 [20], there cannot be spontaneous breakdown of continuous
symmetries in &+ 1 dimensions. The MWC theorem is based
Integrating overx,,x; andy,,y; in Eq. (2), we obtain the on the fact that gapless Nambu-Goldstone bosons cannot ex-
reduced (1 1)-dimensional actiot5) with the bare gauge st in 1+ 1 dimensions. It however does not prevent a gen-
field propagator eration of a fermion mass. In this case, the so-called
Berezinski-Kosterlitz-Thouless phase would reali2é,22|.
We will return to this point at the end of this section.
As in the previous section, we will change the initial
gauge in such a way that the full gauge propagator takes the

d?kdk,dks p(_k( : k3+k3
—eXp IK(X—Y)—
(277)4 y 2a

Dfﬂ]w(x—y)=e2f

K,k 1 form
x| 8,,—(1— v
o] o .
d2k Diagyui(K)= 5W—(1—§(k2))% D(k?)=|4,,—(1
=j (2 )Zexmik(x_y))D[O4l],u,V(k)r
' §(k2)\k“k” - (42)
=41, 37 T 12 Dy (kD) + (KD
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Our aim is to find such a functiog(k?) that the fermion e 2aexp—y) € A2
wave functionA(k?) would be identically equal to 1 in the Do(k?)= 4—Io 2 = 4—Iogk—2a. (48
a T

improved ladder approximation. Fortunately, as E1)
shows, ford=1 the choice ok=1, i.e., the Feynman gauge,
providesA(k?) =1 for any gauge field propagator. Then the From here and Eqs42), (45), and(46) we find that
SD equation for the fermion mass function takes the follow-
ing form in the improved ladder approximation:

i L

2 fdsz(kz) D((p—k)? (43) e’lo
(2m)2) K2+B3(k?) (p ' %2

at k’=mj,
B(p*)=

As was shown in the previous section, in the reduced

QED;, ; with a 2-brane, there is no generation of the fer-

mion mass for a small coupling constantand we used the

1/N; expansion in order to justify the use of the improved e

ladder approximation. As we will see below, the situation in

the reduced QEBR. ; with a 1-brane is different: there may

exist a solution with a nonzeroy even for an arbitrary small ) )

a. For such ax, one can expect that even the ladder approxi- NOW we proceed at solving the SD equation. In order to

mation is justifiable. get a hint of the character of the solution, we will first con-
Using the same arguments as in the reduced QEiith sider the so-called a Cor_lstant mass approximation, tal_<ing the

a 2-brane, one can show that in the present case the mome#xternal momentum being equal to zero and replacing the

tum region yielding a dominant contribution to SD equationfunning mass function in the integrand by its valog

(43) is my<k< A [we will see below that the paramet¥2 ~ =B(0). Then we get the equation

(the inverse thickness of the 1-brangays the role of an

ultraviolet cutoff A ]. Therefore, like in the previous section, d2k 1 2

for the vacuum polarization function one can use the one- =f 22 .

loop expression with the propagators for free massive fermi- (2m)"k*+my 4w &

ons with the massng. In 1+ 1 dimensions, this expression A§ T

is e? Iogﬁ

o N 2mj V2 +am3+ k2
( )_? 22 7 N7 2 2|
VKZ(K2+4m3) k2 +4mi— k2

(44)

4 N
D Yk)=——+—, at k’=mj.

(49

(50

The main contribution comes from the range of momenta
k?>m3. Therefore one can omit the temmf, in denominator
and put instead the paramemﬁ as the lower limit in the
The asymptotics of this expression are integral. Then the integral can be easily evaluated and one
gets the following algebraic transcendental equation:

TI(k2)— Nk for k2<m?2 (45)
6mmg ; 1- =l A ST PR & } (51)
\ 2N¢ gm_g esz'g 4772'gm_§ '
n(kz)ﬁ?‘, for k2>mZ. (46)

Introducing the variablg = (€?N/47?)log(A2/mj), it can be

From Eqs.(39) and (46) we find that for moment&?>2a  'ewritten as
the photon propagatdr?2) rapidly decreases:

e’N?
D (k) ~ _ 2a¢ | @ 52 Yloglty). (52)
47k?> N 4ak?
2e?a T The function on the right-hand side of this equation is mono-

tonically increasing, starting from zero value w0 and

Therefore the whole integrand in SD equati@®) rapidly  going to» asy—o. Therefore this equation always has a
decreases fok?>2a. Because of that, one can neglect thesolution. However, the character of the solution depends on
region of those large momenta and put the cutdff=2a or,  the value of the parametefNZ/2z2. Indeed, one gets
more preciselyAizZa exp(—1y), with y the Euler constant,
in the SD equation. 4 e?N2

This also implies that one can keep the leading order term m2=A2 exp( - _77) for f<1 (53
in expansion oD (39) in k?/a: ¢ e e/ w?
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_ 21,2
4mcle“N¢ 2 2,”.2

272
e“Nj " /
+— +

B"(z) z+1B (2)

272

B(z)=0, (59

2__ A2 -
mg=Aj e’N?(z+1)?

e2N?

f
2oL (54)

B'(2)| 2= (eN/4n2)log(A2/m2) = 0,

xXexp(—2Ny), for
[2B'(2)—B(2)]|,=0=0.
Notice that solution(53) corresponds to a weak coupling (60

regime. It does not depend & and therefore comes from The solutionB(z) satisfying the UV boundary condition and
the range of momenta in the integral equation where one cajpe normalizatiorB(x= mg) —my is given by

neglect the vacuum polarization, i.e., one can use the ladder

(rainbow) approximation in this case. ®
A closer look at Eq.(51) reveals that the solutiof63) 2 41|12 sinr{glog(z+ 1)
emerges from the range of momenta where a double loga- B(z)=my 0 ,
rithmic contribution dominates in the gap equati@®). On z+1 sink{glo (Zo+1)
the other hand, the solution at larg& [Eq. (54)] comes 2'99(%0
from the region of momenta generating a one logarithmic
contribution. 82
We will turn now at studying SD equatio@3) for the w= BCNTL (61
running mass function. In order to integrate over the angle e“Ns

variable there, we will use the following conventional ap- 9 "
proximation for the vector boson propagaf@s] (for a re-  Wherezp=z(x=mg). The IR boundary condition leads to the
view see Ref[13)): equation for the dynamical mass:

D((p—k)?)=D(p®) 6(p*—k?)+D(k?) 6(k*~p?). tan?{;log(z(ﬂ— 1) |=w. (62

(59

2 2 i i .
This approximation is justifiable: the measure of the onIyFOr realw (e°Ng/8m>1) it can be easily solved:

“dangerous” (for this approximatioh region, with |p?|
=|k?|, is small and the dependence of the propagBt((p
—k)?) on the angular variable is rather smooth.

mi=AZ exp(— N2 (w)),

. 270N . 1+ | 1-w?
Neglecting then the terB-(k“) in the denominator and S(w)=|| ——| - (63)
instead putting the infrared cutoffi}=B2(m3) in the inte- 1w 2
gral (the bifurcation ap_proxmatlon dlscussgd in thg previous. largee?N; this solution becomes
sectior), one gets a simple integral equation. It is easy to
show that it is equivalent to a differential equation with two o2 —8n2/e?N;
i . L e
[infrared (IR) and ultraviolet(UV)] boundary conditions: m§=A§( Zf) exp(— 2Ny), (64)
2
" D”(X) ’ D,(X) 2 . . . . . .
B"(x)— ——B'(x)=—5 __~B(x)=0, x=p* (56)  and coincides, up to minor difference in preexponential fac-
D’ (x) tor, with expressior(54) obtained in the constant mass ap-
proximation.
B’ (X)[x-m2=0, The line a=€?/47=2m/N? divides the region in plane
(a,N;) in two parts with different dependence of a dynami-
2
[D(X)B'(X)—D"(X)B(X)]ly-12=0. (57) ca.l mass on;v ezmd N . Indeed, ?.ta<277/N , when w
a =iv,v=+87w"le Nfz—l, Eq.(62) gives
It is convenient to introduce the variablez Wzﬁ p
= (e?N¢/47?)log(AZ/x) in terms of which Eq(56) becomes mﬁzAﬁexp{ - ) =AZ ex;{ — W\/z). (65)
" D"(2) _, 2w The ratio of powers of two exponents in E¢85) and(53) is
B"(2) - D'(2) B (Z)_esz D'(2)B(2)=0, m/2\2~1.11 that shows that the constant mass approxima-

tion in this case is also rather reliable. It is peculiar that the
expressior(65) for a dynamical mass coincides with the ex-
D(z)= i i_ (58) pression for a dynamical mass generated by a magnetic field
N¢ z+1 in quenched QEB, ; [see Eq(111) in Ref.[24]]. In fact, in
the ladder(rainbow) approximation, used in the weak cou-
Together with the boundary conditions, it can be rewritten agling regime, the present SD equation essentially coincides
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with the SD equation in that papésee especially Appendix described not by Green’s functions of the fiefdbut by
C therg. The origin of this similarity is in the dimensional Green'’s functions of the fielt) (x) and its derivatives, in-
reduction 3+1—1+1 in the dynamics of spontaneous chi- cluding the derivativel,, =iU aMUT. The point is that while
ral symmetry breaking in a magnetic figla4]. the propagator and other Green'’s functions of #(e) field
The existence of the two types solutions, corresponding telo not exist in # 1 dimensiongthey are divergent for all
the weak EZEe2Nf< 1) and the strong?» 1) coupling X), Green’s functions of th&J(x) field and its derivatives are
regimes, is intriguing. While the strong coupling solution well defined. Moreover, the corresponding field theory is
essentially coincides with that in the ¢11)-dimensional conformal invariant and the parametedefines anomalous
Thirring model(see below, the weak coupling one yields a dimensions of its Green’s functions.
new type solution, characteristic for a 1-brane physics in a The case of the GN model with one color is special. For
(3+1)-dimensional bulk. These two solutions are generated.=1 and the chiral groupJ(1) X U(1)g, fermions are
by very different dynamics: while in the strong coupling re- massless and, moreover, the bosonization of the model leads
gime the gauge field propagator is dominated by the 1-branexactly to the Lagrangian of the free massless BKT mode
vacuum polarization operator, in the weak coupling one thé27]. Therefore in this particular case, thdroledynamics is
propagator is dominated by the bare term coming from thgonformal invariant.
bulk. In particular, while the polarization operator is gener- Though the dynamics witN¢=2 is more involved, some
ated by the conformal invariant interactignA*, the bare of the basic points described above survive. In this case one
term breaks the conformal symmetry as result of a finiteshould distinguish theU(1), XU(1)z and the SU(N¢),
thickness 142 of a 1-brane. We will argue below that this X SU(N¢)r sectors. The dynamics in the first one is essen-
point can be important in the connection with the MWC tially the same as in the model witd;=1 and one should
theorem. expect that while folN,=2 fermions are massive, they be-
As we already stated above, there cannot be spontaneoagme massless fdd.=1. In the second sector, because of a
breakdown of a continuous symmetry in-1 dimensions strong self-interaction betwedw? —1 would be NG bosons,
(the MWC theorem[20]. This happens because strong fluc-all of them acquire gsamé mass, thus leading to a Wigner
tuations of would be NG modes lead to vanishing order parealization of the dynamics with the exa®U(N¢),
rameter connected with such a breakdown. Let us recall howx SU(N¢) g symmetry[28].
this theorem is realized in the <case of the Inourcase the number of coloks=1. Does it necessar-
(1+1)-dimensional Thirring model with the color group ily imply that the dynamical mass of fermions will disappear
U(N.) and the chiral symmetryd (N¢)_ X U(N¢)r. Itis rel-  in the exact solution in the reduced QELQ with a 1-brane?
evant for our case since the dynamics of the strong coupliniVe do not think that the situation is so simple. First of all,
solution found above essentially coincides with the dynamicgven the status of the Goldstone theorem is not completely
of the Thirring model with the color group)(1). Indeed, clear in this case: some of the assumptions the theorem is
since for this solution the gauge field propagator is domi-based on are violated in the brane world. Indeed, in the initial
nated by the 1-brane vacuum polarization function, which isulk theory, the D—1)+ 1 Lorentz invariance is broken be-
essentially constant in this casee Eq(46)], the interaction  cause of the presence of a d-brane. On the other hand, while
is of a currentx current form, as in the Thirring model. on a d-brane thel+1 Lorentz symmetry is preserved, the
First of all, using the Fierz identities, it is easy to show corresponding effective theory in nonlocal. Second, as was
that, in 1+ 1 dimensions, the Thirring model is equivalent to emphasized above, in the {11)-dimensional Thirring(or
the Gross-NevelGN) model[25]. The interaction term of Gross-Neveumodel, it is important that the conformal sym-
the latter is metry is exact in the sector with the BKT fieldi(x). On the
other hand, in the reduced QED, with a 1-brane, the con-
G _ _ formal symmetry is necessarily broken by a finite thickness
Sﬁ’t\':f dZXE[(lﬂ?\Slﬂ)sz(W\si Y )2, (66)  of the brane. The latter is especially important for the weak
coupling solution(65) in which the gauge field propagator is
) 5 dominated by the bare terfd8) which explicitly breaks the
where \* are flavor matricess=0,1,... Nf—1, and the  conformal symmetry. The dynamics described by that solu-
summation oves and color indices of the fermion fields is tion is very different from that of the Thirring model.

assumed. The\® matrices are normalized according to |t remains a challenge to clarify these various issues in the

tr(AS\K) =25 brane dynamics.
Let us first consider the case of th€1), X U(1)g chiral
group. In this case the model is soludi26]. There is a V. REDUCED QED,,; WITH A 1-BRANE

nonzero dynamical mass for fermions for &lj=2. How-

ever, there isno NG boson in the model. Instead of that, In this section we will study spontaneous chiral symmetry
there is a Berezinski-Kosterlitz-Thouled8KT) gapless breaking in the reduced QEDR; with a 1-brane, i.e., with
mode. This mode is described by the exponent flg(ck) D=3 and d=1. Recall that the gauge coupling constant is
=expif(x)), where 6 satisfies the constraint 06(x) dimensional in 21 dimensions: its dimension ifes]

< 2. More precisely, the BKT mode is described by a usual=m? and we will see that the parameteéNf plays the
Lagrangian density of a massless free fielt@(d,605"0) role of an ultraviolet cutoff, which is a typical feature for
with f=N_/4w. However, the corresponding observables areQED, . ; [6,7]. Notice also that as it follows from the discus-
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sion in Sec. Il, there is no need for introducing a finite thick-It is interesting that, unlike the previous model with=4

ness for a 1-brane in a (21)-dimensional bulk. andd=1, in this model the constant mass approximation is
With trivial modifications, the effective action can be de- unreliable. In particular, it is not difficult to shoysee Ap-

rived as in the case of the reduced QERwith a 2-brane. It  pendix A) that it would yield the following expression for the

is dynamical mass in the cadg>1:
S P N T o M 72
32]eff 265 ‘”\/__,92 Yo, m d 2\/€7T 7|

which is very different from expressioi7l). The reason for
(67)  that is that, unlike the previous model, the bare term in the
propagator(69) (now strongly depending on momentum
does not decouple even in the dynamical regime With
>1.

We would like also to add that all remarks made in Sec.
IV concerning the status of the problem of the fermion mass
generation on a 1-brane, in particular, its connection with the
Mermin-Wagner-Coleman theorem, are also relevant for the
present case.

1 1
+ -39, At —=09 A"|.

e =2

As in the previous section, we will considsl; two compo-
nent fermion fields[see Eq.(41)]. The chiral group is
U(Ng)L XU(N¢)g.

The full photon propagator in a nonlocal gauge is given
by

5 kK,
D,uv(k): 5,LLV_(1_§(|( )/ k2 ) (68)

—2+H(k2) VI. CONCLUSION
€3 The dynamics of chiral symmetry breaking in reduced

QED is rich and quite nontrivial. Its characteristic features
are intimately connected with the structure of the gauge field
ropagator. It includes two terms: the vacuum polarization
nction, completely defined by the brane dynamics, and the
bare” term coming from the bulk. The vacuum polarization

function is connected with the conformal invariant term

where the vacuum polarization functidib(k?) is given in

Eq. (44). As was shown in Sec. 1V, the convenient choice of
the gauge for the study of fermion dynamics on a 1-brane i
£=1. Then the SD equation for the fermion mass function.
takes the form of Eq43) with the functionD (k) given now

by j ,A*. Therefore, since in £1 and 2+ 1 dimensions there
are no divergences in the polarization function, it is confor-
D(k)= 1 (69) mal invariant for massless fermions. This feature essentially
' survives in the near-critical regime of chiral symmetry break-
§+H(k2) ing: in this regime, a fermion dynamical masy is small
3

and the dominant region is that with momektamy .
On the other hand, in many cases, the bare term breaks

Like in the case of the reduced QED with a 1-brane, the the conformal symmetry: either because of a finite thickness

2
bare term R/e5 breaks the conformal symmetry. However, of a brane or because an initial bulk thedas QED . ;) is

this bare term is very different from that one in E80). Its ¢ conformal invariant. The interplay between those two
strong dependence on momentum implies that it is importaryy namical sources provides rich nonperturbative dynamics.
both in the infrared and ultraviolet regions. Taking into ac- = | ihis paper, the improved rainbow approximati@vith

count this term and the asymptotics of the vacuum polarizag e vertexwas used. It would be interesting to study the
tion function TT(k?) (45) and (46), one concludes that the dynamics beyond this approximation, though it is not
dominant, logarithmic, contribution to the SD_ equation yaightforward at all. The point is that, besides the bare spin
Sh°2U|d come from the range of momentamtg/e3N;<k structurey,, , the vertex can have other ones. For example, in
<esN¢/2m. the case of a 2-brane, there are in principle 11 other struc-
An analysis of this SD equation is done in the Appendix.tyres. The crucial point in the present analysis is decoupling
It is shown there that a solution with a nonzero dynamicalpf the Schwinger-Dyson equations. Therefore the role of the
mass exists for all values ®f; ande3. It is also shown that gauge where the functioA(p?)=1 is very important. As it

the dynamical mass satisfies the following constraint: is discussed in Sec. IlI, for the bare vertex, one can find such
a gauge for any vector boson propagator. However, beyond

N¢e3 N;e3 N¢ the approximation with the bare vertex, new structures in the
Texp( —2Np)= mdswgw exp — = (70 vertex can appear. In order to find these structures, one either

should consider the equation for the vertékat is quite

complicatedl or try to construct an ansatz for the vertex con-

sistent with such general constraints as Ward identities, the

absence of kinematic singularities, the correct perturbative

N; + E+,y_3 log 7” (7y  limit, etc. This last approach was successful in
8 (3+1)-dimensional QED[30]. However, studies of this

In the case wheiN¢>1, the dynamical mass is

Nfeg F{
Myg= ——=—expg —
d 2\/677

105028-10



DYNAMICAL CHIRAL SYMMETRY BREAKING ONA.. .. PHYSICAL REVIEW D 64 105028

problem in (2+1)-dimensional QEDBwhich is similar to the eng

dynamics on a 2-branérave revealed that it is a hafdnd B(p?)=myg=——exp —2N;). (A3)
still unresolved problem[31]. We hope to turn to this prob- 7
lem elsewhere.

At last, we would like to indicate that this analysis can be
useful for studying dynamical chiral symmetry breaking in
higher dimensional brane theorig€32,33. In this connec-
tion, it is noticeable that in Ref33] the consequences of the

Since the initial interaction is stronger, the trog is larger
than the valugA3).

Let us find an estimate from above for the dynamical
mass. To do this, we consider the integral equatiompZat

existence of a ultraviolet stable fixed point in higher dimen-zo' Itis
sional gauge theories were considered. ) 5
2 d“kB(k) by o
B(O): 2] 2 2 D(k !md)! (A4)
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cial support. wheref (k?) =B(k?)/B(0). It follows from the gap equation
that B’ (p?) <0, i.e., B(p?) is a decreasing function qf°.
APPENDIX: ANALYSIS OF THE GAP EQUATION FOR Thereforef(k?)<1 in Eq.(A5) for k*>0. In the case of the
THE REDUCED QED,,; WITH A 1-BRANE constant mass approximatidawhere B(k?) is a constant
2y — 2 s ;
In this appendix we analyze the SD equation for the Casgéﬁa)tior':/'l] the square mass1® satisfies the following gap
of the QED ,; with a 1-brane. The equation has the form '
2 d%k
2 d?kB(k?) 1= f D(k?,M? (A6)
B(p?)= f D(p—k)?), (Al = oz e g2 PkEMY).
(p*) 2m2) @B (p=k)?), (A1 (2m)2) K2+ M
where By using asymptotic$45) and(46) for the vacuum polariza-
tion function, the integration region in E@A6) is divided
1 into two regionsk=M /6 andk=M /62 that gives us the
D(p—k)?)= , following gap equation:
2\(p—k)? )
—————+II(p—k)?) |
€3 1— 1 vaFG dk 1
. 2 2
and the vacuum polarization functidib(k?) is given in Eq. T Jo KA M EJF & L
We will first obtain the constraint70) for the dynamical
mass. We begin by deriving the lower limit fary. As was = dk k (A7)
already indicated in Sec. V, the dominant contribution to SD

) Mk2+M?2 2k Ng |
equation(Al) comes from the range of momenia<k<<A —+—
with infrared and ultraviolet cutoffs given byu es 7

=127m3/Nse3, A=e3N/2m. Since the kernel of this inte-
gral equation is positivécorresponding to an attractive in- ''* “ ; o
first integral in Eq.(A7), while in the second one we can

teractior), we obviously obtain a lower limit fomy if inte- 5 . 2 ] .
grate only over this range of momenta and, furthermoreN€9l€CtM®in comparison t&®. Evaluating the integrals, we

replaceD ((p—k)?2) in the kernel by its minimal value in this €0Me 1o the following expression:
interval. Taking into account Eq55), one finds that the

We can further negledt? term in comparison t? in the

minimal value is@w/2N¢. Then the gap equation becomes N;e3 1 Ne2
simole: e gap eq 1= —log| 1+ ——— |+ —og| 1+———2—].
ple: N 2\6mM /) Ng 2\/67M
(A8)
B(p?) = 2 fA d’kB(k?) (A2)
P (27m)2) uw K2+ B2(k?) 2Nt
2The valueM 6 here was determined from matching small and
It has the following solution: large k asymptotics of the vacuum polarization function.
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The corresponding solution for a small dynamical mads ( Furthermore, we approximate the functibr{p) on the in-

<ed) is terval u<p<A as
e p( Nf) (A9) D(P)= () ™5 + 4
~——exp — = |. p)=6(pn—p p—p ,
2\67 7 " Np? T2p N
is obviously valid & 7
It is obviously valid forN¢>1. (A14)

Let us prove thami<M?2, wherem3 is the solution of the

gap equation with the running mass function, by assumingyhere the parametgr,, is determined from the condition of
the opposite and then showing that it leads to a contradictiorontinuity of D(p) at the pointp=p[pPm= 6m2/Ne
So let us assume thai3>M? and consider the integral +\(67m2/N€2) 2+ 6mi~mq6].

) ) It is convenient to represent the mass function as
J' dkf(k?)

e D(k?,m3). (A10)
d

B(p)=Bi(p)#(pm—P)+Bu(P)O(p—pm). (AL5)

For “infrared” B; and “ultraviolet” B, (with respect to the

Sincef(k?)<1, we have _
parametep,,) parts of the mass function, we get the follow-

d2kf(k2) d2k Ing equations:
fﬁD(kz,m§)<f S D(K,mj).
ke+my k+mj 6m3 (pdkkB (k) (PmdkkB(k) 6m3
(A11) Bi(p)= f 5 +f >
N¢p?Ju K24+ mj p o kZ+mi  N;k?

By calculating

LL[rdkkB(O 1

) (Al6)
d2k T 2 2
|(m§)=f _D(K&,m3), P KEmG 2k Ny
k2+ my eg m
one can show that’(m3) <0, i.e., I(m3) is a decreasing 1 1 b dkkB,(K)
function of mﬁ. Since we assumed thaﬁ>M2, we have B,(p)=— f
w 2p+ N¢J o k2+m3
d%k 2
f K2 ;D2 mj)<1 i
+
Mo +fAdkkBU(k) 1
and, consequently, we obtain that p K%+ mﬁ 2k N
S+—=
akf(kD) es 7
f — 5 D(k"my<1 (A12)
ke+mj 1 1 pmdkkB (k)
+— > (A17)
7TZpJFNf r o k24+mj

for all m3>M?2. Then, since we cannot satisfy equati@b) 5
with m>M?2, the assumption thani>M? leads to a con- €3
tradiction. Therefore, we get the inequal'rt;§<M2 with M

given in Eq.(A9). This and the lower limit we obtaine

ko

d Taking the derivatives on the both sides of these equations,

earlier lead us to constraififo0). we get
Can one get an explicit solution of the integral equation )
(A1) in a reliable approximation? The answer is affirmative. B/(p) = 1 127defpdkk5(k) (A18)
To solve Eq.(Al), we use approximatiofb5) in order to ! T Nep® Ju K2+ m§ '
be able to perform integration over angles. Since we already
know that the main(logarithmig contribution comes from 12 1 omd kKB (K)
the range of momenta #2n3/Ne3<k<e3N:/27, we put B/(p)=—— — . f mdkkB
infrared and ultraviolet cutoffs in the integral equationuat ! ™ e§ 2p  N¢ w k24 mf,
=127m?/Ne3 and A = e3N;/2m, respectively. Then the in- &2
tegral equatiorfAl) takes the form 3
N Jp dkkB,(k) (A19)
A |-
B(p)zi D(p) pdkkB(k) J' dkkB(k)D(k) . o Kt 2
™ p K2+mi  Jp KP+m3

(A13) Differentiating the last equations one more time we obtain
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3 12m®  B(p) where we used the formula for differentiating the hypergeo-
B/'(p)+ EBi’(p)Jr N, p2(p2+m§):0' (A20) metric function[29]
2 n
BI(p)+ - B!(p) E[za*”*lF(a,b;c;z)]=(a)nzale(a+ n,b;c;z).
3Nt
o (A26)
2
€3 PBu(P) -0 Since forB,(p) the corresponding momenta are larger than
27 +e2Nf 2( 24 ) ' mg(pP=pm>my), we approximatep’+m3 by p? in Eq.
P 20 P d (A21). This gives us
(A21)
2
We h Iso the following IR and UV bound ditions: y 2 , Bu(p)
e have also the following IR an oundary conditions BI(p)+ , Bu(p)+—3 Do
, , eSNf 2 e3Nf
B/(P)|p-,=0. [(p+A)By(P)]'[5-1=0, (A22) - plp+ 5

where the prime denotes the derivative with respecp.to (A27)
Furthermore, the mass function is continuous at the point

Pm. thereforeB;(pm) =By(pm) and the first derivatives sat- Introducing the variablez=—2mp/N;e5 and making the
isfy substitution

T i BT (A23) z
WP NreZpy o B,(2)=1(1), —1=t, (A28)
[the condition of continuity and EqA23) follow from Egs.
(A16), (A17) and Eqs.(A18), (A19), respectively. Eq. (A27) reduces to the hypergeometric differential equa-
The general solution of EqA20) is given in terms of tion
hypergeometric functions:

2\ (1-w)/2 2 1
My —lto lto p t(1—t)f"(t)+ —f(t)=0. A29
B(pZ):Cl _2> F( 5 ’T’ +w;__§> ( ) () Nf () ( )
m2| " 14w 1-w p2 A solution regular at zero is
+C2 - __l_ll_w;__ 1
p’ 22 m
1+v 1—v 4
(A24) B =tF| —— ——2it], »v=1\/1+
f
where w=\1—12N;. The IR boundary condition gives a (A30)
relation between the constar@s andC,
0\ [14e 14w 2 and the second independent solutiof28]
Cl(l—w)(m—d) FT'T;1+w;_(m_d +Cy(1
f(t)=(1 t)F(—1+V 1oy t) (A31)
0 ll-w l-w 2 20)=(1— ) 2,1—1.
ol ) (£ .
My 2 2 My
(A25) Thus the general solution for the mass function is
|
B c z . 1+v 1—1/_2_ z c 1 F 1+v 1—1/_2_ 1 732
U(Z)_ 31_2 2 ’ 2 ’ ;Z_l + 41_2 2 ’ 2 ’ 11_2 . ( )
The UV boundary conditioffA22), which can be rewritten as
d
d—z[(l—Z)B(Z)]Iz:q:O. (A33)
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allows us to fix the raticC3/C,

E 1+v 1—1/_2_1 . 1+v l—v_l_l
Cs 2 2 2] Tl2 2 2 A3
C, [l+v 1w 1 1+v 1—v 1)’ (A34)
227 2 22 2
where the formula for differentiating the hypergeometric function
dr'l
E[chlF(a,b;c;z)]=(c—n)nchlan(a,b;c—n;z) (A35)

has been used. Fdi;>1 we haveC;/C,=1/8Ns.

Finally, matching the solutionB;(p) andB,(p) at the pointp=p,,=m\/6, we obtain two other equations for the constants
C,,C,,C3,Cy4:

—1+w 1+t w 1+w 1-w z 1+v 1—v z
(0—1)/2 . . ~(1+w)2e| _ TS ..

C,6 F( it 6)+026 F( 5l w; 6) [Csl_ZF 52T
c 1 . 1+v 1—1/_2_ 1 A36
R e e e | (A36)

z=—plpy,
l1+w 1+t w l1-w 1-w
Ci(1- )6 V| —— —— 1+ w;—6|+Cy(1l+w)6 TR —— — 1 ;-6
2 2 2 2
B 1 C.F 1+v 1—1/_1_ z N 1+v 1—1/_1_ 1 A37
3(1-22l Yl 22 Tzl V22 T2 . (A37)
m

The determinant of the set of homogeneous equatidgs), (A34), (A36), and(A37) gives an equation for determining the
dynamical mass. Since we look for a solution withp,<1, we can simplify the equations f@; by using the corresponding
formulas for hypergeometrical functiof29]. Finally, we obtain the following equation for the dynamical mass:

sink{w(log%nté(w)”
! 1Cy [3-— 3+ 1 exp(hj
J1— w?A(0) K -8 Y V) L og| Pmeho)) (A38)
. pm 3C4 2 2 3Nf ILL
sinh w Iog;+ Os(w)
where
1+w 1+w_ _g|E l1-w 1-w n 6 12
A B Tl 2 1 +w!_ TYTI _w!_ A
()= —l+to 1+to _slE 1to 1-o 6 ' (A39)
2 L 2 1 +w5_ _TITI w!_
1+w 1+a)_ g
o = 1| 22 e A40
T S (A40)
2o e
—1+w l+w
(1+w)F< 5 o ;1+w;—6)
52(w)=zlog 7o 1w , (A41)
(1-w)F Ty T l—w;—6
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and the constartt is tion function, which is the same. All the information about
extra dimensionglike the number of dimensions, geometry,
1-v etc) is contained in the preexponential factor.
- 9”(7) (A42) The reason why the gauge field propagator is dominated
by the 1-brane vacuum polarization function in the reduced
In the limit of largeN;>1 the last equation can be solved QED,, ; is rather subtle. An analysis of the gap equation
explicitly and we find (A1) for the running mass function shows that its nontrivial
solution is formed by momenta on the intervah\/6,A):
Nfeg F{ ( 1 ) this equation with the low ultraviolet cutoffiy\/6 does not
my= exg — | N¢+=+y—3log7 ", - o
2\/577 8 have a nontrivial solution. In the limiN;>1, the vacuum
polarization dominates on the intervah{\6,A), and the
and we used thaF(1,1;2;—6)=log 7/6 (note also that equation reduces to a simple Gross-Neveu like equation
+vy—3log 7=—5.14). It is obvious from comparison with whose solution isng~exp(—Ny).

Egs.(A3) and(A9) that our solution(A43) satisfies the esti- Notice that this is not true for the constant mass approxi-
mates from below and above, which we obtained earlier. mation, where a nontrivial mass is generated even for the
Notice that up to the preexponential factor the dependenclew ultraviolet cutoff my\/6. Therefore, the constant mass
of this solution onN; coincides with the corresponding de- approximation in this case gives a different result for the
pendence of théstrongly coupling solution(54) in the case dynamical masgA9) than the correct solution for the run-
of the reduced QEP, ; with a 1-brane. The cause of that is ning mass functionA43). This is unlike the case of the
the fact that, wherN;>1, in both cases the gauge field reduced QEB,; with a 1-brane, where the constant mass

propagators are dominated by the 1-brane vacuum polarizapproximation is reliable.

1+v
2

8:2!#(1)—1#(
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