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Dynamical chiral symmetry breaking on a brane in reduced QED
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Reduced gauge theories are theories in which while gauge fields propagate in a bulk, fermion fields are
localized on a brane. We study dynamical chiral symmetry breaking on a 2-brane and a 1-brane in reduced
QED311, and on a 1-brane in reduced QED211. Since, unlike higher dimensional gauge theories, QED311 and
QED211 are well defined, their reduced versions can serve as a laboratory for studying dynamics in a higher
dimensional brane world. The analysis of the Schwinger-Dyson~SD! equations in these theories reveals rich
and quite nontrivial dynamics in which the conformal symmetry and its breakdown play a crucial role. Explicit
solutions of the SD equations in the near-critical regime are obtained and the character of the corresponding
phase transition is described.
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I. INTRODUCTION

Dynamics in a brane world has recently attracted con
erable interest. In most cases, it has been studied in hi
dimensional theories~for a recent review, see Ref.@1#!. The
aim of this paper is to consider dynamics on a brane no
higher dimensions but in a (311)- and (211)-dimensional
world. More precisely, we study dynamical chiral symme
breaking in the reduced (311)-dimensional QED
(QED311) and QED211. The term ‘‘reduced’’ implies here
that while massless gauge fields propagate in a@(311)- or
(211)-dimensional# bulk, fermion fields are localized on
brane. We will consider the cases of a 2-brane and a 1-b
in QED311 and a 1-brane in QED211. We would like also to
emphasize that though we use the conventional term ‘‘QE
for a U(1) Abelian gauge theory with fermions, we do n
specify the origin of the gauge field: it is not necessarily
electromagnetic field.

Motivations for considering this type of models are rath
obvious. It is well known that relativistic field models ca
serve as effective theories for the description of long wa
length excitations in condensed matter systems@2#. The re-
duced QED describes the situation when while fermions
localized on a plane~say, on a Cu2O plane in a high-Tc
superconductor! or on a string~polymer like systems!, inter-
actions between them are provided by a bulk gauge field
addition to that, reduced QED311 can be relevant for the
dynamics of cosmological strings@3#. At last, reduced QED
has been recently considered in higher dimensions for
description of the mechanism of~quasi!localization of a pho-
ton field on a 3-brane@4#.

Another, more practical, reason is using the redu
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QED311 and QED211 as a laboratory for studying dynam
cal chiral symmetry breaking in the brane world. Unlik
higher dimensional gauge theories, QED311 and QED211
are well defined. While QED311 is renormalizable and there
fore well defined in perturbative theory, QED211 is super-
renormalizable and therefore asymptotically free.

As we will see, the dynamics of chiral symmetry breaki
in reduced QED is quite nontrivial. In particular, the confo
mal symmetry~and its breakdown! plays a crucial role in the
dynamics.

The paper is organized as follows. In Sec. II general f
tures of reduced QED are described. In Sec. III we stu
dynamical chiral symmetry breaking on a 2-brane in redu
QED311. In Sec. IV chiral symmetry breaking on a 1-bran
in reduced QED311 is considered. In particular, we discus
subtleties connected with spontaneous breakdown of c
tinuous symmetries on a 1-brane. In Sec. V chiral symme
breaking in the reduced QED211 with a 1-brane is studied. In
Sec. VI we summarize our results. An analysis of t
Schwinger-Dyson equation in the reduced QED211 with a
1-brane is done in Appendix A.

II. REDUCED QED: GENERAL FEATURES

In this section, general features of the reduced QED w
be described. The QED(D21)11 action in Euclidean space
reads@X5(xD ,x1 , . . . ,xD21)#

S5E dDXS 1

4e2
Fab

2 1AaJa2
1

2e2j
~]aAa!2D , ~1!

wherej is a gauge parameter andJa is a fermion current. We
will consider the chiral limit~no fermion bare mass term!
and, for convenience, consistently omit the kinetic term
fermions in the action, restoring it only when it is necessa
Integrating overAa , we get
l

©2001 The American Physical Society28-1



ow

e

g
h

f

-
e

a

.
a
his
m-

-
can

not
ill
ed

try

tive

b-

to

nt
term

-
n of

z-
tant
ous
e

E. V. GORBAR, V. P. GUSYNIN, AND V. A. MIRANSKY PHYSICAL REVIEW D64 105028
S5
1

2E dDXdDYJa~X!D̃ab
(0)~X2Y!Jb~Y!, ~2!

where

D̃ab
(0)5e2E dDK

~2p!D
exp„iK ~X2Y!…S dab2~12j!

KaKb

K2 D 1

K2

~3!

with K5(kD ,k1 , . . . ,kD21). In reduced QED, with a
d-brane, we assume that the fermion current has the foll
ing form:

Ja~X!50 for a5d11,d12, . . . ,D21,

Ja~X!5 j a~xD ,x1 , . . . ,xd!dD2d21~ x̄! for a

5D,1, . . . ,d, ~4!

wherex̄[(xd11 , . . . ,xD21). Integrating overx̄ andȳ in Eq.
~2!, we obtain the reduced (d11)-dimensional action

S̃[Dd]e f f5
1

2E dd11xdd11y jm~x!D [Dd]mn
(0) ~x2y! j n~y!,

~5!

where

D [Dd]mn
(0) ~x2y!5e2E dd11kdD2d21k̄

~2p!D
exp„ik~x2y!…S dmn

2~12j!
kmkn

k̄21k2D 1

k̄21k2
~6!

with m,n5D,1, . . . ,d ~the notation for momenta we us
here is self-explanatory!.

As it will be shown in the next sections, after integratin
over k̄ momenta, the effective action can be rewritten in t
following general form:

S[Dd]e f f5E dd11xF 1

4e2
FmnI ~2]2!Fmn1Am j m

1gauge termG , ~7!

where]2 is the Laplacian in d11 dimensions andI (2]2) is
a nonlocal~i.e., integral! operator.

The following properties of the action~7! are noticeable.
~a! The interacting termAm j m is conformally invariant for

all D andd. This point will be important for the dynamics o
chiral symmetry breaking in reduced QED.

~b! Whend5D22, the kinetic term in expression~7! is
finite. However, whend,D22, there are ultraviolet diver
gences in it. The reason for that is simple. Because of a d
function in the fermion current~4!, integrating over x̄
5(xd11 , . . . ,xD21) encounters a classical self-energy of
pointlike particle inD2d21 dimensions. It is finite in the
10502
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one-dimensional case (d5D22) and divergent otherwise
Therefore, whend,D22, one should regularize the delt
function, i.e., introduce a finite thickness for a D-brane. T
is an additional source of the breakdown of conformal sy
metry. Notice that in the reduced QED311 with d52, the
kinetic term is both finite and conformally invariant.

~c! Effective action~7! describes fermion fields and a pro
jection of the gauge field on a brane. Since gauge bosons
escape from the brane to the bulk, the unitarity does
fulfill in the brane dynamics. In the next section, we w
discuss explicit manifestations of this feature of reduc
QED.

III. REDUCED QED 3¿1 WITH A 2-BRANE

In this section we will study spontaneous chiral symme
breaking in the reduced QED311 with a 2-brane, i.e., with
D54, d52 and k̄5k3. Integrating overk3 in expression
~6!, we obtain the bare gauge field propagator of an effec
(211)-dimensional theory on a 2-brane:

D [42]mn
(0) ~x2y!5

e2

2 E d3k

~2p!3
exp„ik~x2y!…S dmn2~1

2j!
kmkn

k2 D 1

Ak2
, ~8!

wherem,n54,1,2 and, for convenience, we made the su
stitution j→2j21, i.e., (12j)→2(12j). Introducing a 2
11 vector fieldAm(x), the effective action~5! can be rewrit-
ten in the following form@compare with Eq.~7!#:

S[42]e f f5E d3xF 1

2e2
Fmn

1

A2]2
Fmn1Am j m

1
1

e2j
]mAm

1

A2]2
]nAnG . ~9!

One should add the kinetic term of fermions on a 2-brane
this action:

Skin5E d3xc̄~ igm]m!c. ~10!

As is well known, there are two~two-dimensional! inequiva-
lent representations of the Clifford algebra in 211 dimen-
sions. Following Refs.@5–7#, we will consider four compo-
nent fermion fields which contain these two inequivale
representations. In this case, there exists a fermion mass
preserving parity. If there areNf fermion flavors, the sym-
metry of the action isU(2Nf) @6,7#. The dynamical genera
tion of a fermion mass leads to spontaneous breakdow
this symmetry down toU(Nf)3U(Nf).

A remarkable feature of the action~9! is that it is confor-
mal invariant. Since the initial QED theory is renormali
able, one should expect that this feature plays an impor
role in the dynamics. Our aim is to describe spontane
chiral symmetry breaking in the theory with this effectiv
8-2
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action. Since there is no dimensional parameters in the ac
~9!, a fermion dynamical massmd can be induced only
through the mechanism of dynamical transmutation. In
case, it means that one should introduce an ultraviolet cu
L, thus breaking the conformal symmetry. Then the dyna
cal mass, if it arises at all, will be proportional toL. We will
be especially interested in the near-critical regime of the
namics, whenmd!L.

The dynamical chiral symmetry breaking in this model
a highly nontrivial problem, and our strategy for solving
~at least approximately! will be to find a framework in which
the improved ladder~rainbow! approximation would be reli-
able. We recall that while in the ladder~rainbow! approxima-
tion there is only a Schwinger-Dyson~SD! equation for the
fermion propagator~with both the vertex and the gauge fie
propagator being bare!, in the improved ladder~rainbow!
approximation there are two SD equations~with a bare ver-
tex!, both for the fermion and for the gauge field propag
tors.

The SD equation for the fermion propagator
Minkowski space in the improved ladder approximation h
the following form:

G21~p!5G(0)21
~p!1 i E d3q

~2p!3
gmG~q!gnD [42]mn~p2q!,

~11!

whereG(0)(p) is the bare fermion propagator and

D [42]mn5S gmn2„12j~k2!…
kmkn

k2 D D~k2! ~12!

is the full gauge field propagator for which there is its ow
SD equation~with a bare vertex in this approximation!. Here
we use a general nonlocal gauge withj(k2) being a function
of k2 @a need for considering such gauges will soon beco
clear: see Eq.~21! below#. The bare gauge field propagator
now @compare with Eq.~8!#

D [42]mn
(0) 5S gmn2„12j~k2!…

kmkn

k2 D e2

2A2k2
~13!

and the full gauge field propagator is related to the vacu
polarization tensorPmn(k):

D [42]mn
21 ~k!5D [42]mn

(0)21
~k!1Pmn~k!,

Pmn~k!5S gmn2
kmkn

k2 D P~k2!. ~14!

The structure of the propagatorG(p2) is G(p2)5(A(p2) p̂

2B(p2))21, p̂[gmpm , and from Eqs.~11! and ~12! we
obtain the following equations forA(p2) and B(p2) in the
Euclidean space (p05 ip4):
10502
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A~p2!511
1

p2E d3q

~2p!3

A~q2!

q2A2~q2!1B2~q2!
D@~p2q!2#

3S pq1„12j@~p2q!2#…S pq

2
2„p2q22~pq!2

…

~p2q!2 D D , ~15!

B~p2!5E d3q

~2p!3

B~q2!

q2A2~q2!1B2~q2!
D@~p2q!2#„2

1j@~p2q!2#…. ~16!

Notice that the functionD(k2) is expressed through th
vacuum polarization functionP(k2) as

D~k2!5
1

2k

e2
1P~k2!

. ~17!

The full gauge field propagator~12! satisfies its own SD
equation and therefore is in principle a complicated fun
tional of the functionsA(p2) andB(p2). Fortunately, in the
present case the situation can be considerably simplifi
First of all, as we will see below, one can choose a gaug
which the functionA(p2) is identically equal to 1, and we
will use such a gauge. Second, it will be shown that, in
near-critical regime~when md!L), the fermion dynamical
mass, defined asmd5B(md

2), is mainly induced in the kine-
matic region withmd

2!k2. In that region, fermions can b
treated as massless, and, ifA(p2)51, the polarization func-
tion is given by the one loop expression with the fermi
propagators of free, (211)-dimensional, massless fermion

For completeness and convenience, however, we will
the one loop expression forP(k2) taking free fermions with
the massm5md . On a 2-brane, i.e., in 211 dimensions, it
is

P~k2!5
Nf

4p F2md1
k224md

2

k
arctan

k

2md
G . ~18!

Notice that

P~k2!→ Nfk

8
~19!

for k@md , and

P~k2!→ Nfk
2

6pmd
~20!

for k!md .
When can the improved ladder approximation be reliab

The simplest case would be of course the dynamics wit
small coupling constanta5e2/4p ~notice thata is a bare
coupling constant here!. In that case, even the ladder~rain-
8-3
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bow! approximation would be good enough. Unfortunate
as it will be shown below, for smalla there is no solution
with spontaneous chiral symmetry breaking in the redu
QED311 with a 2-brane. Therefore one should try someth
else.

Our initial observation is that the structure of SD equ
tions ~15! and ~16! is similar to that in usual, nonreduce
QED211. It had been recognized long ago that the 1/Nf ex-
pansion can be useful in that theory@6–9#. Though being
very nontrivial, the 1/Nf expansion is helpful in putting un
der control of nonperturbative dynamics. The crucial poin
the selection of a ‘‘right’’ gauge in the leading order in 1/Nf ,
in which the improved ladder approximation would be re
able @10#. In particular, appropriate Ward identities have
be satisfied in that gauge. In other gauges, the results ca
found by gauge-transforming Green’s functions from t
‘‘right’’ gauge to those gauges. Such a transformation in g
eral changes the initial improved ladder approximation
another one, though the gauge invariant quantities remai
course the same. We will adopt this strategy for the pres
problem and, first of all, check the Ward identity for th
vertex. Since in this approximation, by definition, the vert
is bare, the functionA(p2) has to be equal one. It is know
@11#, that for the full photon propagator~12!, and in arbitrary
d space dimensions, this function is identically equal to 1
one uses a nonlocal~in general! gauge with the following
gauge functionj(k2):

j~z!5d2
d~d21!

zdD~z!
E

0

z

dttd21D~ t !. ~21!

We will see that, in the near-critical regime, the mome
tum region mostly responsible for the mass generationk
@md . As it follows from Eq. ~19!, in that regionP(k2)
5Nfk/8, i.e., the functionD(k2) ~17! is proportional tok21.
For such a functionD(k2) and d52, one getsj(k2)52/3
~the so-called Nash gauge@9#!, and the gap equation take
the form

B~p2!54p2lE d3q

~2p!3

B~q2!

q21B2~q2!

1

A~p2q!2
,

l5
e2

3p2S 11
Nfe

2

16 D . ~22!

The validity of the Ward identity is a necessary but not
course sufficient condition for the reliability of the improve
ladder approximation. The crucial point for that is a justi
cation of the use of a bare vertex. This approximation for
vertex can be justified in the leading order of the 1/Nf ex-
pansion@6–10#.

Integrating over angles in Eq.~22!, we obtain

B~p2!5lE
0

L2dq2Aq2B~q2!

q21B2~q2!

A2

Ap21q21up22q2u
.

~23!
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Here the ultraviolet cutoffL was introduced.
Notice that in the momentum regionq2@md

2[B2(md
2),

the termB2(q2) in the denominator of the integrand of ex
pression~23! is irrelevant. The only role of this term is to
provide a cutoff in the infrared region. Therefore one c
drop this term, introducing an explicit infrared cutoff in th
integral. Then we obtain the following equation (x5p2,y
5q2):

B~x!5lE
md

2

L2 dy

y1/2
B~y!Fu~x2y!

Ax
1

u~y2x!

Ay
G . ~24!

The transition from Eq.~23! to Eq.~24! corresponds to the so
called bifurcation approximation~or method!. For the prob-
lem of dynamical symmetry breaking, this method was int
duced in Ref.@12# and since then has been widely used in t
literature~for a review see Ref.@13#!. This method is espe
cially appropriate for the near-critical dynamics: the clos
the dynamics is to a critical~bifurcation! point, the smaller
the dynamical massmd , and therefore the termB2(q2) in the
denominator of the integrand~23!, become.

It is easy to check that the integral equation~24! is
equivalent to the differential equation

x2B91
3x

2
B81

l

2
B50 ~25!

with the following two boundary conditions:

B8~md
2!50, ~26!

~2xB81B!ux5L250. ~27!

A solution of Eq.~25! which satisfies the infrared boundar
condition ~26! is

B~x!5
md

3/2

x1/4sinhd
sinhS v

4
log

x

md
2

1d D , ~28!

where v5A128l and d5 1
2 log@(11v)/(12v)#, and here

we also used the normalization conditionB(md
2)5md . The

ultraviolet boundary condition~27! yields the following
equation for the dynamical mass:

tanhS v

2
log

L

md
1d D52v. ~29!

Obviously, there is no solutionmd!L for l,lcr51/8. For
supercritical values ofl (l.lcr), Eq. ~29! takes the form

tanS n

2
log

L

md
1arctann D52n, ~30!

wheren5A8l21. Therefore for smalln the mass is

md.L expF2
2p

n
14G . ~31!

The critical line in the plane (Nf , e2) is given by
8-4
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ecr
2 5

16

Nmax2Nf
, ~32!

whereNmax5128/3p2. Spontaneous chiral symmetry brea
ing takes place fore.ecr , and the valueNmax defines the
upper limit for the number of fermion flavorsNf for which
spontaneous chiral symmetry breaking is possible. W
Nf→Nmax, the critical valueecr

2 →`.
Let us now discuss self-consistency of the assumption

the region of momentaq@md is mostly responsible for the
generation of the mass in the near-critical regime (md!L).
The point is that in this regime lnL/md;2p/n is large. On
the other hand, the behavior of the integrand on the rig
hand side of Eq.~23! is smooth asq2→0. The smooth be-
havior of the integrand in the infrared region implies that t
region 0<q&md is too small to generate the large logarith
ln L/md . It @and therefore the essential singularity in expr
sion ~31!# is generated in the large regionmd!q!L. A
variation of the kernel in the infrared region can at mo
change the overall coefficient in that expression. This heu
tic argument is supported by numerical studies of integ
equation~23!.

The critical line~32! implies that it is a strong coupling
dynamics, withe2.ecr

2 , that provides spontaneous chir
symmetry breaking on a brane. Indeed, the lowestecr

2 corre-
sponds to Nf51 and it is ecr

2 .4.81, i.e., acr[ecr
2 /4p

.0.38.
This strong coupling dynamics is provided by~essen-

tially! conformal invariant interactions in the most importa
region of momentamd!q!L. Indeed, up to the irrelevan
B2(q2) term in the denominator, the kernel of integral equ
tion ~22! transforms as K(p2,q2)→K(s2p2,s2q2)
5s23K(p2,q2) under the scale transformationp,q→sp,sq.
This, together with the transformation of the measured3q
→s3d3q, implies that the interactions are indeed~essen-
tially! conformal invariant in that region.@In the integral
equation~24!, the conformal symmetry is broken only by th
dimensional boundary parametersL andmd in the integral.#
This reflects the presence of long range, Coulomb like, in
actions which provide the essential singularity in express
~31!.

The critical line~32! corresponds to the so called confo
mal phase transition~CPT! introduced in Ref.@14#. There are
the following characteristic features of the CPT.

~a! Unlike the conventional Ginzburg-Landau~GL! phase
transition, a parameter governing the phase transition in
CPT is connected with a marginal~i.e., renormalizable! op-
erator@in the GL phase transition, such a parameter is c
nected with a relevant~i.e., superrenormalizable! operator; it
is usually a mass term#.

~b! Though the CPT is a continuous phase transition, th
is an abrupt change of the spectrum of light excitations a
critical point ~line!. This is unlike the GL phase transitio
where the spectrum is continuous at a critical point~line!.

In the present model, the parameter governing the ph
transition is the coupling constante. It is connected with the
marginal operatorj mAm. The spectrum of the light excita
tions is discontinuous at the critical line~32!. Indeed, in the
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subcritical region, with massless fermions, there is a C
lomb, conformally invariant, phase describing interactions
massless fermions and gauge bosons. In the supercritica
gion, with massive fermions, there are a lot of bound sta
including 2Nf

2 Nambu-Goldstone bosons corresponding
spontaneous breakdown of theU(2Nf) to U(Nf)3U(Nf).
Therefore these two criterions of the CPT are indeed reali
in this model.

Notice that though QED311 is a renormalizable theory
there are new, nonperturbative, divergences in the superc
cal phase@see Eq.~31!#. These divergences are connectednot
with introducing a 2-brane of vanishing thickness in t
model but with the strong coupling dynamics. As is we
known, such divergences occur in the strong coupling ph
of QED311 in the absence of any brane@15–17#. They lead
to breakdown of the conformal symmetry~nonperturbative
scale anomaly!.

It is instructive to compare the reduced QED311 with a
2-brane with the conventional QED211. The SD equations in
these two models are similar. The difference is in the form
the gauge field propagator. Instead of expression~17!, one
has@7,8#

D~k2!5
1

k2

e3
2

1P~k2!

, ~33!

wheree3 is the ~dimensional! coupling constant in QED211
andP(k2) is the ~same! polarization function~18!. The ap-
pearance of the termk2/e3

2, instead 2k/e2, makes quite a
difference. On the one hand, it provides a dynamical ult
violet cutoff ;e3

2 in the SD equation and, on the other han
since this term is suppressed in the regionk!e3

2, it does not
contribute to the fermion dynamical mass. This implies
ducing screening of Coulomb like interactions as compa
to the reduced QED311 with a 2-brane. Indeed, the dynam
cal mass in QED211 is @8–10#

m3d;e3
2 expS 2

2p

n3
D , ~34!

wheren35A8l321 with l3516/3p2Nf . The parametern3
coincides withn in Eq. ~31! only in the limit e2→`, i.e., in
the limit of maximally strong interactions in the reduce
QED311 with a 2-brane.1

Therefore we conclude that there are important simila
ties and important differences between the dynamics
QED211 and reduced QED311 with a 2-brane. Both dynam
ics are intimately connected with long range Coulomb li
interactions. Both dynamics provide a realization of the co

1The critical value ofNf is Nf
cr5128/3p2.4.32 in QED211.

Since this result was obtained in the framework of the 1/Nf expan-
sion, there may be some concern about its reliability@18#. Although
it would be too strong to say that this issue has been finally
solved, different studies indicate that 1/Nf corrections are small for
Nf around 4@9,10#.
8-5
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formal phase transition. In particular, like in the reduc
QED311, there is an abrupt change of the spectrum of lig
excitations at the critical pointNf5Nf

cr in QED211 @19#. On
the other hand, since QED211 is superrenormalizable~and
therefore asymptotically free! theory, there is no~nonpertur-
bative! ultraviolet divergence in the dynamical mass. Als
its dynamics is more effective in generating a fermion m
in that it corresponds to the dynamics in the reduc
QED311 when the coupling constante of the latter goes to
`.

This point is intimately connected with the violation o
the unitarity in the brane theory. Indeed, because of the
term in the denominator of expression~17!, there is an
imaginary part forall time like momentak in the gauge field
propagator~12!, independentlyof the value of the massmd .
This feature reflects the process of escaping of a gauge b
from the brane to the bulk. This ‘‘instability’’ of brane gaug
bosons leads to an effective reduction of interactions on
brane. Only in the limite→` the gauge bosons are localize
on the brane, i.e., become ‘‘stable.’’

IV. REDUCED QED 3¿1 WITH A 1-BRANE

In this section we will consider the dynamics in the r
duced QED311 with a 1-brane, i.e., withD54 andd51. As
it was pointed out in Sec. II, there are~classical! ultraviolet
divergences in the theory with a 1-brane of vanishing thi
ness in this case. Because of that, one needs to introdu
finite thickness for the brane, which will play a role of
regularization parameter.

To get the reduction 311→111, we perform integration
in Eq. ~2! with the sources taken as

Ja~X!50 for a52,3,

Ja~X!5 j a~x4 ,x1! f ~x2! f ~x3! for

a50,1, ~35!

where the regularization function

f ~x!5Aa

p
exp~2ax2!, f ~x!→d~x!, a→`. ~36!

Integrating overx2 ,x3 and y2 ,y3 in Eq. ~2!, we obtain the
reduced (111)-dimensional action~5! with the bare gauge
field propagator

D [41]mn
(0) ~x2y!5e2E d2kdk2dk3

~2p!4
expS ik~x2y!2

k2
21k3

2

2a D
3S dmn2~12j!

kmkn

k21k2
21k3

2D 1

k21k2
21k3

2

5E d2k

~2p!2
exp„ik~x2y!…D [41]mn

0 ~k!,

m,n54,1, ~37!
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wherek5(k4 ,k1),k25k4
21k1

2. It is

D [41]mn
(0) ~k!5Fdmn2~12j!

kmkn

k2
•k2

d

dk2GD (0)~k2!,

~38!

where

D (0)~k2!52
e2

4p
expS k2

2aDEiS 2
k2

2aD ~39!

and Ei(2x) is the integral exponential function.
By introducing a 111 gauge fieldAm , we obtain an ef-

fective (111)-dimensional action:

S[41]e f f5E d2x
1

4e2
Fmn

1

2]2D (0)~2]2!
Fmn1Am j m1

1

2e2

3]mAm
1

2]2@D (0)~2]2!1~12j!]2D (0)8~2]2!#

3]nAn, ~40!

where D (0)8(2]2)5D (0)8(x)ux52]2. If there were no need
for a regularization, this effective action would be conform
invariant. The finite thickness of the 1-brane breaks the c
formal symmetry. We will return to this point below.

One should add the kinetic term of fermions on a 1-bra
to the action~40!:

Skin5E d2xc̄~ igm]m!c. ~41!

We will considerNf two component~i.e., vectorlike! fermi-
ons. The chiral group isU(Nf)L3U(Nf)R . Our aim is to
find whether a fermion dynamical mass is generated in
theory with effective action~40!. Naively, one might expec
that in this case the chiral symmetryU(Nf)L3U(Nf)R
would be spontaneously broken down to its vector subgr
U(Nf)V . However, this is not the case in 111 dimensions.
Because of the Mermin-Wagner-Coleman~MWC! theorem
@20#, there cannot be spontaneous breakdown of continu
symmetries in 111 dimensions. The MWC theorem is base
on the fact that gapless Nambu-Goldstone bosons canno
ist in 111 dimensions. It however does not prevent a ge
eration of a fermion mass. In this case, the so-cal
Berezinski-Kosterlitz-Thouless phase would realize@21,22#.
We will return to this point at the end of this section.

As in the previous section, we will change the initi
gauge in such a way that the full gauge propagator takes
form

D [41]mn~k!5Fdmn2„12j~k2!…
kmkn

k2 GD~k2![Fdmn2„1

2j~k2!…
kmkn

k2 G 1

D0
21~k2!1P~k2!

. ~42!
8-6



,
e
w

e
er

ed
in

y
l
x

m
on

,
ne
m
n

he

,

er

to
n-
the
the

nta

one

o-

a
on

DYNAMICAL CHIRAL SYMMETRY BREAKING ON A . . . PHYSICAL REVIEW D 64 105028
Our aim is to find such a functionj(k2) that the fermion
wave functionA(k2) would be identically equal to 1 in the
improved ladder approximation. Fortunately, as Eq.~21!
shows, ford51 the choice ofj51, i.e., the Feynman gauge
providesA(k2)51 for any gauge field propagator. Then th
SD equation for the fermion mass function takes the follo
ing form in the improved ladder approximation:

B~p2!5
2

~2p!2E d2kB~k2!

k21B2~k2!
D„~p2k!2

…. ~43!

As was shown in the previous section, in the reduc
QED311 with a 2-brane, there is no generation of the f
mion mass for a small coupling constanta, and we used the
1/Nf expansion in order to justify the use of the improv
ladder approximation. As we will see below, the situation
the reduced QED311 with a 1-brane is different: there ma
exist a solution with a nonzeromd even for an arbitrary smal
a. For such aa, one can expect that even the ladder appro
mation is justifiable.

Using the same arguments as in the reduced QED311 with
a 2-brane, one can show that in the present case the mo
tum region yielding a dominant contribution to SD equati
~43! is md!k!L @we will see below that the parametera1/2

~the inverse thickness of the 1-brane! plays the role of an
ultraviolet cutoffL#. Therefore, like in the previous section
for the vacuum polarization function one can use the o
loop expression with the propagators for free massive fer
ons with the massmd . In 111 dimensions, this expressio
is

P~k2!5
Nf

p F12
2md

2

Ak2~k214md
2!

ln
Ak214md

21Ak2

Ak214md
22Ak2G .

~44!

The asymptotics of this expression are

P~k2!→ Nfk
2

6pmd
2

, for k2!md
2 , ~45!

P~k2!→ Nf

p
, for k2@md

2 . ~46!

From Eqs.~39! and ~46! we find that for momentak2@2a
the photon propagator~42! rapidly decreases:

D~k2!;
1

4pk2

2e2a
1

Nf

p

;
2ae2

4pk2
. ~47!

Therefore the whole integrand in SD equation~43! rapidly
decreases fork2@2a. Because of that, one can neglect t
region of those large momenta and put the cutoffLa

252a or,
more precisely,La

252a exp(2g), with g the Euler constant
in the SD equation.

This also implies that one can keep the leading order t
in expansion ofD (0) ~39! in k2/a:
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D0~k2!.
e2

4p
log

2a exp~2g!

k2
[

e2

4p
log

La
2

k2
. ~48!

From here and Eqs.~42!, ~45!, and~46! we find that

D21~k2!.
4p

e2 log
La

2

k2

, at k2&md
2 ,

D21~k2!.
4p

e2 log
La

2

k2

1
Nf

p
, at k2*md

2 .

~49!

Now we proceed at solving the SD equation. In order
get a hint of the character of the solution, we will first co
sider the so-called a constant mass approximation, taking
external momentum being equal to zero and replacing
running mass function in the integrand by its valuemd
5B(0). Then we get the equation

15E d2k

~2p!2

1

k21md
2

2

4p

e2 log
La

2

k2

1
Nf

p

. ~50!

The main contribution comes from the range of mome
k2@md

2 . Therefore one can omit the termmd
2 in denominator

and put instead the parametermd
2 as the lower limit in the

integral. Then the integral can be easily evaluated and
gets the following algebraic transcendental equation:

15
1

2Nf
H log

La
2

md
2

2
4p2

e2Nf

logF11
e2Nf

4p2
log

La
2

md
2G J . ~51!

Introducing the variabley5(e2Nf /4p2)log(La
2/md

2), it can be
rewritten as

e2Nf
2

2p2
5y2 log~11y!. ~52!

The function on the right-hand side of this equation is mon
tonically increasing, starting from zero value aty50 and
going to ` as y→`. Therefore this equation always has
solution. However, the character of the solution depends
the value of the parametere2Nf

2/2p2. Indeed, one gets

md
2.La

2 expS 2
4p

e D , for
e2Nf

2

2p2
!1, ~53!
8-7
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md
2.La

2S e2Nf
2

2p2 D 24p2/e2Nf

3exp~22Nf !, for
e2Nf

2

2p2
@1. ~54!

Notice that solution~53! corresponds to a weak couplin
regime. It does not depend onNf and therefore comes from
the range of momenta in the integral equation where one
neglect the vacuum polarization, i.e., one can use the la
~rainbow! approximation in this case.

A closer look at Eq.~51! reveals that the solution~53!
emerges from the range of momenta where a double lo
rithmic contribution dominates in the gap equation~50!. On
the other hand, the solution at largeNf @Eq. ~54!# comes
from the region of momenta generating a one logarithm
contribution.

We will turn now at studying SD equation~43! for the
running mass function. In order to integrate over the an
variable there, we will use the following conventional a
proximation for the vector boson propagator@23# ~for a re-
view see Ref.@13#!:

D„~p2k!2
….D~p2!u~p22k2!1D~k2!u~k22p2!.

~55!

This approximation is justifiable: the measure of the o
‘‘dangerous’’ ~for this approximation! region, with up2u
.uk2u, is small and the dependence of the propagatorD„(p
2k)2

… on the angular variable is rather smooth.
Neglecting then the termB2(k2) in the denominator and

instead putting the infrared cutoffmd
2[B2(md

2) in the inte-
gral ~the bifurcation approximation discussed in the previo
section!, one gets a simple integral equation. It is easy
show that it is equivalent to a differential equation with tw
@infrared ~IR! and ultraviolet~UV!# boundary conditions:

B9~x!2
D9~x!

D8~x!
B8~x!2

D8~x!

2px
B~x!50, x5p2, ~56!

B8~x!ux5m
d
250,

@D~x!B8~x!2D8~x!B~x!#ux5L
a
250. ~57!

It is convenient to introduce the variablez
5(e2Nf /4p2)log(La

2/x) in terms of which Eq.~56! becomes

B9~z!2
D9~z!

D8~z!
B8~z!2

2p

e2Nf

D8~z!B~z!50,

D~z!5
p

Nf

z

z11
. ~58!

Together with the boundary conditions, it can be rewritten
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B9~z!1
2

z11
B8~z!1

2p2

e2Nf
2~z11!2

B~z!50, ~59!

B8~z!uz5(e2Nf /4p2)log(L
a
2/m

d
2)50,

@zB8~z!2B~z!#uz5050.
~60!

The solutionB(z) satisfying the UV boundary condition an
the normalizationB(x5md

2)5md is given by

B~z!5mdS z011

z11 D 1/2 sinhFv2log~z11!G
sinhFv2log~z011!G ,

v5A12
8p2

e2Nf
2
, ~61!

wherez0[z(x5md
2). The IR boundary condition leads to th

equation for the dynamical mass:

tanhFv2log~z011!G5v. ~62!

For realv (e2Nf /8p2.1) it can be easily solved:

md
2.La

2 exp„2NfS~v!…,

S~v!5F S 11v

12v D 1/v

21G 12v2

2
. ~63!

For largee2Nf this solution becomes

md
25La

2S e2Nf
2

2p2 D 28p2/e2Nf

exp~22Nf !, ~64!

and coincides, up to minor difference in preexponential f
tor, with expression~54! obtained in the constant mass a
proximation.

The line a[e2/4p52p/Nf
2 divides the region in plane

(a,Nf) in two parts with different dependence of a dynam
cal mass ona and Nf . Indeed, ata,2p/Nf

2 , when v
5 in,n5A8p2/e2Nf

221, Eq. ~62! gives

md
2.La

2 expS 2
p2A2

e D 5La
2 expS 2pA p

2a D . ~65!

The ratio of powers of two exponents in Eqs.~65! and~53! is
p/2A2'1.11 that shows that the constant mass approxim
tion in this case is also rather reliable. It is peculiar that
expression~65! for a dynamical mass coincides with the e
pression for a dynamical mass generated by a magnetic
in quenched QED311 @see Eq.~111! in Ref. @24# #. In fact, in
the ladder~rainbow! approximation, used in the weak cou
pling regime, the present SD equation essentially coinci
8-8
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with the SD equation in that paper~see especially Appendix
C there!. The origin of this similarity is in the dimensiona
reduction 311→111 in the dynamics of spontaneous ch
ral symmetry breaking in a magnetic field@24#.

The existence of the two types solutions, correspondin
the weak (ē2[e2Nf!1) and the strong (ē2@1) coupling
regimes, is intriguing. While the strong coupling solutio
essentially coincides with that in the (111)-dimensional
Thirring model~see below!, the weak coupling one yields
new type solution, characteristic for a 1-brane physics i
(311)-dimensional bulk. These two solutions are genera
by very different dynamics: while in the strong coupling r
gime the gauge field propagator is dominated by the 1-br
vacuum polarization operator, in the weak coupling one
propagator is dominated by the bare term coming from
bulk. In particular, while the polarization operator is gen
ated by the conformal invariant interactionj mAm, the bare
term breaks the conformal symmetry as result of a fin
thickness 1/a1/2 of a 1-brane. We will argue below that th
point can be important in the connection with the MW
theorem.

As we already stated above, there cannot be spontan
breakdown of a continuous symmetry in 111 dimensions
~the MWC theorem! @20#. This happens because strong flu
tuations of would be NG modes lead to vanishing order
rameter connected with such a breakdown. Let us recall h
this theorem is realized in the case of t
(111)-dimensional Thirring model with the color grou
U(Nc) and the chiral symmetryU(Nf)L3U(Nf)R . It is rel-
evant for our case since the dynamics of the strong coup
solution found above essentially coincides with the dynam
of the Thirring model with the color groupU(1). Indeed,
since for this solution the gauge field propagator is do
nated by the 1-brane vacuum polarization function, which
essentially constant in this case@see Eq.~46!#, the interaction
is of a current3 current form, as in the Thirring model.

First of all, using the Fierz identities, it is easy to sho
that, in 111 dimensions, the Thirring model is equivalent
the Gross-Neveu~GN! model @25#. The interaction term of
the latter is

Sint
GN5E d2x

G

2
@~ c̄lsc!21~ c̄lsig5c!2#, ~66!

where ls are flavor matrices,s50,1, . . . ,Nf
221, and the

summation overs and color indices of the fermion fields i
assumed. Thels matrices are normalized according
tr(lslk)52dsk.

Let us first consider the case of theU(1)L3U(1)R chiral
group. In this case the model is soluble@26#. There is a
nonzero dynamical mass for fermions for allNc>2. How-
ever, there isno NG boson in the model. Instead of tha
there is a Berezinski-Kosterlitz-Thouless~BKT! gapless
mode. This mode is described by the exponent fieldU(x)
5exp„iu(x)…, where u satisfies the constraint 0<u(x)
,2p. More precisely, the BKT mode is described by a us
Lagrangian density of a massless free field,f /2(]mu]mu)
with f .Nc/4p. However, the corresponding observables
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described not by Green’s functions of the fieldu but by
Green’s functions of the fieldU(x) and its derivatives, in-
cluding the derivative]mu5 iU ]mU†. The point is that while
the propagator and other Green’s functions of theu(x) field
do not exist in 111 dimensions~they are divergent for all
x), Green’s functions of theU(x) field and its derivatives are
well defined. Moreover, the corresponding field theory
conformal invariant and the parameterf defines anomalous
dimensions of its Green’s functions.

The case of the GN model with one color is special. F
Nc51 and the chiral groupU(1)L3U(1)R , fermions are
massless and, moreover, the bosonization of the model l
exactly to the Lagrangian of the free massless BKT mo
@27#. Therefore in this particular case, thewholedynamics is
conformal invariant.

Though the dynamics withNf>2 is more involved, some
of the basic points described above survive. In this case
should distinguish theU(1)L3U(1)R and the SU(Nf)L
3SU(Nf)R sectors. The dynamics in the first one is ess
tially the same as in the model withNf51 and one should
expect that while forNc>2 fermions are massive, they be
come massless forNc51. In the second sector, because o
strong self-interaction betweenNf

221 would be NG bosons
all of them acquire a~same! mass, thus leading to a Wigne
realization of the dynamics with the exactSU(Nf)L
3SU(Nf)R symmetry@28#.

In our case the number of colorsNc51. Does it necessar
ily imply that the dynamical mass of fermions will disappe
in the exact solution in the reduced QED311 with a 1-brane?
We do not think that the situation is so simple. First of a
even the status of the Goldstone theorem is not comple
clear in this case: some of the assumptions the theorem
based on are violated in the brane world. Indeed, in the in
bulk theory, the (D21)11 Lorentz invariance is broken be
cause of the presence of a d-brane. On the other hand, w
on a d-brane thed11 Lorentz symmetry is preserved, th
corresponding effective theory in nonlocal. Second, as w
emphasized above, in the (111)-dimensional Thirring~or
Gross-Neveu! model, it is important that the conformal sym
metry is exact in the sector with the BKT fieldU(x). On the
other hand, in the reduced QED311 with a 1-brane, the con-
formal symmetry is necessarily broken by a finite thickne
of the brane. The latter is especially important for the we
coupling solution~65! in which the gauge field propagator
dominated by the bare term~48! which explicitly breaks the
conformal symmetry. The dynamics described by that so
tion is very different from that of the Thirring model.

It remains a challenge to clarify these various issues in
brane dynamics.

V. REDUCED QED2¿1 WITH A 1-BRANE

In this section we will study spontaneous chiral symme
breaking in the reduced QED211 with a 1-brane, i.e., with
D53 and d51. Recall that the gauge coupling constant
dimensional in 211 dimensions: its dimension is@e3#
5m1/2, and we will see that the parametere3

2Nf plays the
role of an ultraviolet cutoff, which is a typical feature fo
QED211 @6,7#. Notice also that as it follows from the discus
8-9
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sion in Sec. II, there is no need for introducing a finite thic
ness for a 1-brane in a (211)-dimensional bulk.

With trivial modifications, the effective action can be d
rived as in the case of the reduced QED311 with a 2-brane. It
is

S[32]e f f5E d2xF 1

2e3
2

Fmn

1

A2]2
Fmn1c̄~ igm]m!c1Am j m

1
1

e3
2j

]mAm
1

A2]2
]nAnG . ~67!

As in the previous section, we will considerNf two compo-
nent fermion fields@see Eq. ~41!#. The chiral group is
U(Nf)L3U(Nf)R .

The full photon propagator in a nonlocal gauge is giv
by

Dmn~k!5Fdmn2„12j~k2!…
kmkn

k2 G 1

2k

e3
2

1P~k2!

, ~68!

where the vacuum polarization functionP(k2) is given in
Eq. ~44!. As was shown in Sec. IV, the convenient choice
the gauge for the study of fermion dynamics on a 1-bran
j51. Then the SD equation for the fermion mass funct
takes the form of Eq.~43! with the functionD(k) given now
by

D~k!5
1

2k

e3
2

1P~k2!

. ~69!

Like in the case of the reduced QED311 with a 1-brane, the
bare term 2k/e3

2 breaks the conformal symmetry. Howeve
this bare term is very different from that one in Eq.~50!. Its
strong dependence on momentum implies that it is impor
both in the infrared and ultraviolet regions. Taking into a
count this term and the asymptotics of the vacuum polar
tion function P(k2) ~45! and ~46!, one concludes that th
dominant, logarithmic, contribution to the SD equati
should come from the range of momenta 12pmd

2/e3
2Nf,k

,e3
2Nf /2p.
An analysis of this SD equation is done in the Append

It is shown there that a solution with a nonzero dynami
mass exists for all values ofNf ande3

2. It is also shown that
the dynamical mass satisfies the following constraint:

Nfe3
2

p
exp~22Nf !&md&

Nfe3
2

2A6p
expS 2

Nf

7 D . ~70!

In the case whenNf@1, the dynamical mass is

md.
Nfe3

2

2A6p
expF2S Nf1

1

8
1g23 log 7D G . ~71!
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It is interesting that, unlike the previous model withD54
andd51, in this model the constant mass approximation
unreliable. In particular, it is not difficult to show~see Ap-
pendix A! that it would yield the following expression for th
dynamical mass in the caseNf@1:

md.
Nfe3

2

2A6p
expS 2

Nf

7 D , ~72!

which is very different from expression~71!. The reason for
that is that, unlike the previous model, the bare term in
propagator~69! ~now strongly depending on momentum!
does not decouple even in the dynamical regime withNf
@1.

We would like also to add that all remarks made in S
IV concerning the status of the problem of the fermion ma
generation on a 1-brane, in particular, its connection with
Mermin-Wagner-Coleman theorem, are also relevant for
present case.

VI. CONCLUSION

The dynamics of chiral symmetry breaking in reduc
QED is rich and quite nontrivial. Its characteristic featur
are intimately connected with the structure of the gauge fi
propagator. It includes two terms: the vacuum polarizat
function, completely defined by the brane dynamics, and
‘‘bare’’ term coming from the bulk. The vacuum polarizatio
function is connected with the conformal invariant ter
j mAm. Therefore, since in 111 and 211 dimensions there
are no divergences in the polarization function, it is conf
mal invariant for massless fermions. This feature essenti
survives in the near-critical regime of chiral symmetry brea
ing: in this regime, a fermion dynamical massmd is small
and the dominant region is that with momentak@md .

On the other hand, in many cases, the bare term bre
the conformal symmetry: either because of a finite thickn
of a brane or because an initial bulk theory~as QED211! is
not conformal invariant. The interplay between those t
dynamical sources provides rich nonperturbative dynami

In this paper, the improved rainbow approximation~with
a bare vertex! was used. It would be interesting to study th
dynamics beyond this approximation, though it is n
straightforward at all. The point is that, besides the bare s
structuregm , the vertex can have other ones. For example
the case of a 2-brane, there are in principle 11 other st
tures. The crucial point in the present analysis is decoup
of the Schwinger-Dyson equations. Therefore the role of
gauge where the functionA(p2)51 is very important. As it
is discussed in Sec. III, for the bare vertex, one can find s
a gauge for any vector boson propagator. However, bey
the approximation with the bare vertex, new structures in
vertex can appear. In order to find these structures, one e
should consider the equation for the vertex~that is quite
complicated! or try to construct an ansatz for the vertex co
sistent with such general constraints as Ward identities,
absence of kinematic singularities, the correct perturba
limit, etc. This last approach was successful
(311)-dimensional QED@30#. However, studies of this
8-10
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problem in (211)-dimensional QED~which is similar to the
dynamics on a 2-brane! have revealed that it is a hard~and
still unresolved! problem@31#. We hope to turn to this prob
lem elsewhere.

At last, we would like to indicate that this analysis can
useful for studying dynamical chiral symmetry breaking
higher dimensional brane theories@32,33#. In this connec-
tion, it is noticeable that in Ref.@33# the consequences of th
existence of a ultraviolet stable fixed point in higher dime
sional gauge theories were considered.
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APPENDIX: ANALYSIS OF THE GAP EQUATION FOR
THE REDUCED QED2¿1 WITH A 1-BRANE

In this appendix we analyze the SD equation for the c
of the QED211 with a 1-brane. The equation has the form

B~p2!5
2

~2p!2E d2kB~k2!

k21B2~k2!
D„~p2k!2

…, ~A1!

where

D„~p2k!2
…5

1

2A~p2k!2

e3
2

1P„~p2k!2
…

,

and the vacuum polarization functionP(k2) is given in Eq.
~44!.

We will first obtain the constraint~70! for the dynamical
mass. We begin by deriving the lower limit formd . As was
already indicated in Sec. V, the dominant contribution to
equation~A1! comes from the range of momentam,k,L
with infrared and ultraviolet cutoffs given bym
512pmd

2/Nfe3
2 , L5e3

2Nf /2p. Since the kernel of this inte
gral equation is positive~corresponding to an attractive in
teraction!, we obviously obtain a lower limit formd if inte-
grate only over this range of momenta and, furthermo
replaceD„(p2k)2

… in the kernel by its minimal value in this
interval. Taking into account Eq.~55!, one finds that the
minimal value isp/2Nf . Then the gap equation becom
simple:

B~p2!5
2

~2p!2Em

L d2kB~k2!

k21B2~k2!

p

2Nf
. ~A2!

It has the following solution:
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B~p2!5md.
e3

2Nf

p
exp~22Nf !. ~A3!

Since the initial interaction is stronger, the truemd is larger
than the value~A3!.

Let us find an estimate from above for the dynamic
mass. To do this, we consider the integral equation atp2

50. It is

B~0!5
2

~2p!2E d2kB~k2!

k21md
2

D~k2,md
2!, ~A4!

and we explicitly indicated the dependence of the interact
kernelD(k2,md

2) on the dynamical massmd
2 . Equation~A4!

is equivalent to

15
2

~2p!2E d2k f~k2!

k21md
2

D~k2,md
2!, ~A5!

where f (k2)5B(k2)/B(0). It follows from the gap equation
that B8(p2),0, i.e., B(p2) is a decreasing function ofp2.
Therefore,f (k2),1 in Eq.~A5! for k2.0. In the case of the
constant mass approximation@where B(k2) is a constant
B(k2)5M # the square massM2 satisfies the following gap
equation:

15
2

~2p!2E d2k

k21M2
D~k2,M2!. ~A6!

By using asymptotics~45! and~46! for the vacuum polariza-
tion function, the integration region in Eq.~A6! is divided
into two regionsk&MA6 and k*MA62 that gives us the
following gap equation:

15
1

p F E0

MA6 dk

k21M2

1

2

e3
2

1
Nf

6p

k

M2

1E
MA6

` dk

k21M2

k

2k

e3
2

1
Nf

p
G . ~A7!

We can further neglectk2 term in comparison toM2 in the
first integral in Eq.~A7!, while in the second one we ca
neglectM2 in comparison tok2. Evaluating the integrals, we
come to the following expression:

15
6

Nf
logS 11

Nfe3
2

2A6pM
D 1

1

Nf
logS 11

Nfe3
2

2A6pM
D .

~A8!

2The valueMA6 here was determined from matching small a
largek asymptotics of the vacuum polarization function.
8-11
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The corresponding solution for a small dynamical massM
!e3

2) is

M.
Nfe3

2

2A6p
expS 2

Nf

7 D . ~A9!

It is obviously valid forNf@1.
Let us prove thatmd

2,M2, wheremd
2 is the solution of the

gap equation with the running mass function, by assum
the opposite and then showing that it leads to a contradict

So let us assume thatmd
2.M2 and consider the integral

E d2k f~k2!

k21md
2

D~k2,md
2!. ~A10!

Since f (k2),1, we have

E d2k f~k2!

k21md
2

D~k2,md
2!,E d2k

k21md
2

D~k2,md
2!.

~A11!

By calculating

I ~md
2!5E d2k

k21md
2

D~k2,md
2!,

one can show thatI 8(md
2),0, i.e., I (md

2) is a decreasing
function of md

2 . Since we assumed thatmd
2.M2, we have

E d2k

k21md
2

D~k2,md
2!,1

and, consequently, we obtain that

E d2k f~k2!

k21md
2

D~k2,md
2!,1 ~A12!

for all md
2.M2. Then, since we cannot satisfy equation~A5!

with md
2.M2, the assumption thatmd

2.M2 leads to a con-
tradiction. Therefore, we get the inequalitymd

2,M2 with M
given in Eq. ~A9!. This and the lower limit we obtained
earlier lead us to constraint~70!.

Can one get an explicit solution of the integral equat
~A1! in a reliable approximation? The answer is affirmativ

To solve Eq.~A1!, we use approximation~55! in order to
be able to perform integration over angles. Since we alre
know that the main~logarithmic! contribution comes from
the range of momenta 12pmd

2/Nfe3
2,k,e3

2Nf /2p, we put
infrared and ultraviolet cutoffs in the integral equation atm
512pmd

2/Nfe3
2 andL5e3

2Nf /2p, respectively. Then the in
tegral equation~A1! takes the form

B~p!5
1

p FD~p!E
m

pdkkB~k!

k21md
2

1E
p

LdkkB~k!D~k!

k21md
2 G .

~A13!
10502
g
n.

.

y

Furthermore, we approximate the functionD(p) on the in-
terval m,p,L as

D~p!5u~pm2p!
6pmd

2

Nfp
2

1u~p2pm!
1

2p

e3
2

1
Nf

p

,

~A14!

where the parameterpm is determined from the condition o
continuity of D(p) at the point p5pm@pm56pmd

2/Nfe3
2

1A(6pmd
2/Nfe3

2)216md
2'mdA6#.

It is convenient to represent the mass function as

B~p![Bi~p!u~pm2p!1Bu~p!u~p2pm!. ~A15!

For ‘‘infrared’’ Bi and ‘‘ultraviolet’’ Bu ~with respect to the
parameterpm) parts of the mass function, we get the follow
ing equations:

Bi~p!5
6md

2

Nfp
2Em

pdkkBi~k!

k21md
2

1E
p

pmdkkBi~k!

k21md
2
•

6md
2

Nfk
2

1
1

pEpm

L dkkBu~k!

k21md
2

•

1

2k

e3
2

1
Nf

p

, ~A16!

Bu~p!5
1

p F 1

2p

e3
2

1
Nf

p

E
pm

p dkkBu~k!

k21md
2

1E
p

LdkkBu~k!

k21md
2

1

2k

e3
2

1
Nf

p
G

1
1

p

1

2p

e3
2

1
Nf

p

E
m

pmdkkBi~k!

k21md
2

. ~A17!

Taking the derivatives on the both sides of these equatio
we get

Bi8~p!5
1

p F2
12pmd

2

Nfp
3 E

m

pdkkBi~k!

k21md
2 G , ~A18!

Bu8~p!52
1

p

2

e3
2

1

S 2p

e3
2

1
Nf

p D 2 F E
m

pmdkkBi~k!

k21md
2

1E
pm

p dkkBu~k!

k21md
2 G . ~A19!

Differentiating the last equations one more time we obta
8-12
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Bi9~p!1
3

p
Bi8~p!1

12m2

Nf

B~p!

p2~p21md
2!

50, ~A20!

Bu9~p!1
2

p1
e3

2Nf

2p

Bu8~p!

1
e3

2

2p

pBu~p!

S p1
e2Nf

2p D 2

~p21md
2!

50.

~A21!

We have also the following IR and UV boundary condition

Bi8~p!up5m50, @~p1L!Bu~p!#8up5L50, ~A22!

where the prime denotes the derivative with respect top.
Furthermore, the mass function is continuous at the p
pm , therefore,Bi(pm)5Bu(pm) and the first derivatives sat
isfy

Bu8~pm!5
6pmd

2

Nfe3
2pm

Bi8~pm! ~A23!

@the condition of continuity and Eq.~A23! follow from Eqs.
~A16!, ~A17! and Eqs.~A18!, ~A19!, respectively!.

The general solution of Eq.~A20! is given in terms of
hypergeometric functions:

B~p2!5C1S md
2

p2 D (12v)/2

FS 211v

2
,
11v

2
,11v;2

p2

md
2D

1C2S md
2

p2 D (11v)/2

FS 2
11v

2
,
12v

2
,12v;2

p2

md
2D ,

~A24!

where v5A1212/Nf . The IR boundary condition gives
relation between the constantsC1 andC2

C1~12v!S m

md
D v

FF11v

2
,
11v

2
;11v;2S m

md
D 2G1C2~1

1v!S m

md
D 2v

FF12v

2
,
12v

2
;12v;2S m

md
D 2G50,

~A25!
10502
:

nt

where we used the formula for differentiating the hyperge
metric function@29#

dn

dzn
@za1n21F~a,b;c;z!#5~a!nza21F~a1n,b;c;z!.

~A26!

Since forBu(p) the corresponding momenta are larger th
md(p>pm.md), we approximatep21md

2 by p2 in Eq.
~A21!. This gives us

Bu9~p!1
2

p1
e3

2Nf

2p

Bu8~p!1
e3

2

2p

Bu~p!

pS p1
e3

2Nf

2p D 2 50.

~A27!

Introducing the variablez522pp/Nfe3
2 and making the

substitution

Bu~z!5 f ~ t !,
z

z21
5t, ~A28!

Eq. ~A27! reduces to the hypergeometric differential equ
tion

t~12t ! f 9~ t !1
1

Nf
f ~ t !50. ~A29!

A solution regular at zero is

f 1~ t !5tFS 11n

2
,
12n

2
;2;t D , n5A11

4

Nf
,

~A30!

and the second independent solution is@29#

f 2~ t !5~12t !FS 11n

2
,
12n

2
;2;12t D . ~A31!

Thus the general solution for the mass function is
Bu~z!5C3

z

12z
FS 11n

2
,
12n

2
;2;

z

z21D1C4

1

12z
FS 11n

2
,
12n

2
;2;

1

12zD . ~A32!

The UV boundary condition~A22!, which can be rewritten as

d

dz
@~12z!B~z!#uz52150, ~A33!
8-13
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allows us to fix the ratioC3 /C4

C3

C4
5

FS 11n

2
,
12n

2
;2;

1

2D2FS 11n

2
,
12n

2
;1;

1

2D
FS 11n

2
,
12n

2
;1;2

1

2D1FS 11n

2
,
12n

2
;2;2

1

2D , ~A34!

where the formula for differentiating the hypergeometric function

dn

dzn
@zc21F~a,b;c;z!#5~c2n!nzc212nF~a,b;c2n;z! ~A35!

has been used. ForNf@1 we haveC3 /C4.1/8Nf .
Finally, matching the solutionsBi(p) andBu(p) at the pointp5pm.mA6, we obtain two other equations for the consta

C1 ,C2 ,C3 ,C4:

C16(v21)/2FS 211v

2
,
11v

2
;11v;26D1C262(11v)/2FS 2

11v

2
,
12v

2
;12v;26D5FC3

z

12z
FS 11n

2
,
12n

2
;2;

z

z21D
1C4

1

12z
FS 11n

2
,
12n

2
;2;

1

12zD GU
z52m/pm

, ~A36!

C1~12v!6(v21)/2FS 11v

2
,
11v

2
;11v;26D1C2~11v!62(11v)/2FS 12v

2
,
12v

2
;12v;26D

5
1

3~12z!2 FC3FS 11n

2
,
12n

2
;1;

z

z21D1C4FS 11n

2
,
12n

2
;1;

1

12zD GU
z52m/pm

. ~A37!

The determinant of the set of homogeneous equations~A25!, ~A34!, ~A36!, and~A37! gives an equation for determining th
dynamical mass. Since we look for a solution withm/pm!1, we can simplify the equations forCi by using the corresponding
formulas for hypergeometrical functions@29#. Finally, we obtain the following equation for the dynamical mass:

A12v2A~v!

sinhFvS log
pm

m
1d1~v! D G

sinhFvS log
pm

m
1d2~v! D G 5

1

3

C3

C4
GS 32n

2 DGS 31n

2 D2
1

3Nf
logS pmexp~h09!

m D , ~A38!

where

A~v!5F FS 11v

2
,
11v

2
;11v;26DFS 12v

2
,
12v

2
;12v;26D

FS 211v

2
,
11v

2
;11v;26DFS 2

11v

2
,
12v

2
;12v;26D G

1/2

, ~A39!

d1~v!5
1

2v
log

FS 11v

2
,
11v

2
;11v;26D

FS 12v

2
,
12v

2
;12v;26D , ~A40!

d2~v!5
1

2v
log

~11v!FS 211v

2
,
11v

2
;11v;26D

~12v!FS 2
11v

2
,
12v

2
;12v;26D , ~A41!
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and the constanth09 is

h0952c~1!2cS 11n

2 D2cS 12n

2 D . ~A42!

In the limit of largeNf@1 the last equation can be solve
explicitly and we find

md5
Nfe3

2

2A6p
expF2S Nf1

1

8
1g23 log 7D G , ~A43!

and we used thatF(1,1;2;26)5 log 7/6 ~note also that18
1g23 log 7'25.14). It is obvious from comparison wit
Eqs.~A3! and~A9! that our solution~A43! satisfies the esti-
mates from below and above, which we obtained earlier.

Notice that up to the preexponential factor the depende
of this solution onNf coincides with the corresponding de
pendence of the~strongly coupling! solution~54! in the case
of the reduced QED311 with a 1-brane. The cause of that
the fact that, whenNf@1, in both cases the gauge fie
propagators are dominated by the 1-brane vacuum pola
m

r
e,

-

s

l,

.

s

m

.

10502
ce

a-

tion function, which is the same. All the information abo
extra dimensions~like the number of dimensions, geometr
etc.! is contained in the preexponential factor.

The reason why the gauge field propagator is domina
by the 1-brane vacuum polarization function in the reduc
QED211 is rather subtle. An analysis of the gap equati
~A1! for the running mass function shows that its nontriv
solution is formed by momenta on the interval (mdA6,L):
this equation with the low ultraviolet cutoffmdA6 does not
have a nontrivial solution. In the limitNf@1, the vacuum
polarization dominates on the interval (mdA6,L), and the
equation reduces to a simple Gross-Neveu like equa
whose solution ismd;exp(2Nf).

Notice that this is not true for the constant mass appro
mation, where a nontrivial mass is generated even for
low ultraviolet cutoff mdA6. Therefore, the constant mas
approximation in this case gives a different result for t
dynamical mass~A9! than the correct solution for the run
ning mass function~A43!. This is unlike the case of the
reduced QED311 with a 1-brane, where the constant ma
approximation is reliable.
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