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We apply supersymmetric discrete light-cone quantizatBDLCQ) to the study of supersymmetric Yang-
Mills theory on RXS'X S, One of the compact directions is chosen to be lightlike and the other to be
spacelike. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and
thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present
an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and
disjoint bands. In one band the SDLCQ approximation is valid only up to intermediate coupling. There we find
a well defined and well behaved set of states, and we present a detailed analysis of these states and their
properties. In the other band, which contains a completely different set of states, we present a much more
limited analysis for strong coupling only. We find that, while these states have a well defined spectrum, their
masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.
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I. INTRODUCTION compactified on the circleS'. As is customary in DLCQ, we
drop the longitudinal zero modg¢6-9,11,13,15-1B A re-

The properties of strongly coupled gauge theories with aview of dynamical and constrained zero modes can be found
sufficient amount of supersymmetry can be analyzed in grean [5].
detail [1-3]. In particular, there are a number of supersym- \We are able to solve for bound states and their properties
metric gauge theories that are believed to be interconnectetdmerically by diagonalizing the discretized light-cone su-
through a web of strong-weak coupling dualities. While Percharge. Since we do not break the supersymmetry, the
these dualities provide a great deal of insight, there is still 4&sulting spectrum is exactly supersymmetric. Study of the

need to study the bound states of these theories directly arfd!tir® Spectrum, which one obtains by a complete diagonal-
at any coupling. ization of the entire Hamiltonian, shows that the spectrum

It is well known that(1+ 1)-dimensional field theoriesan breall(<s_ Utp intc:j.thtree d(;Sti?Ct parts, \l’.\'hiCh we W”%_ﬁa” thek
be solved from first principles via a straightforward applica-Wea , INtermediate, and strong-coupling regions. 1he weax-

. ) . - . coupling region is closely related to the dimensionally re-
tion of discrete light-cone quantizatid®LCQ) [4,5]. This duced theory, and we have discussed it elsewfisk By

mcluS_es a I_arge (,:\I/Iass of sup?rsymmetnc gauge-th;aones f%e intermediate-coupling region, we refer to the low-mass
two dimensions. More recently a supersymmetric form o portion of the spectrum. We will see that this region clearly

DLCQ (SDLCQ), which is known to preserve supersymme- separates from the high-mass region for couplings beyond
try, has been develop¢@i—12]. We have recently shown that \eak coupling. We will also see that a standard DLCQ
the SDLCQ algorithms can be extended to solve higherynalysis of these low-mass states is only possible at interme-
dimensional theoriefl3]. One important difference between giate coupling. We will present a detailed analysis of these
two-dimensional and higher-dimensional theories is thestates and their properties in this region. We then look at the
phase diagram induced by variations in the gauge couplinthigh-mass spectrum and show that it appears to behave as a
The spectrum of d1+1)-dimensional gauge theory scales strongly coupled spectrum. Unfortunately, a detailed analysis
trivially with respect to the gauge coupling, while a theory in of these states requires a complete diagonalization of the
higher dimensions has the potential of exhibiting a complexHamiltonian and that is beyond the scope of this work.
phase structure, which may include strong, intermediate, and The remainder of the paper is structured as follows. In
weak coupling regiong13]. It is therefore interesting to Sec. Il, we summarize the formulation of W) A=1
study the properties of the bound states of gauge theories guper-Yang-Mills theory defined on the compactified space-
D=3 dimensions in all of these regions. time Rx Stx S, This includes explicit expressions for the
Towards this end, we apply SDLCQ to the study of threedight-cone supercharges and their discretization via SDLCQ.
dimensional SU{.) A'=1 super-Yang-Mills theory com- Also discussed are discrete symmetries of the theory that are
pactified on the space-timRx S'x S'. This extends previ- helpful in classifying the spectrum. In Sec. Ill, we discuss
ous work[13,14] to better numerical resolution and includes the numerical methods that we use and present an overview
extraction of wave functions for bound states at these highewf the full spectrum of the theory. In Sec. IV, we present a
resolutions. We work in the largd; limit, with the light-  detailed analysis of the states in the low-mass region, where
cone coordinatex™ and transverse spatial coordinate the SDLCQ approximation is only valid up to intermediate
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states in both transverse and longitudinal resolutions. We P~ =
present some of the properties of these states and calculate
transverse-momentum distribution functions for some of (2.6)
these states. In Sec. V, we consider the strongly coupled

states. We present the scaled mass spectrum as a function of .

the inverse coupling and discuss the strong-coupling spec- . _ - ;

trum as a function of the transverse momentum cutoff. In | _f dx fo dx W3- $d, +igd, ] 27
Sec. VI, we conclude by discussing the general properties of

this theory and their implications.

coupling. This includes a study of the convergence of the L
fdx*f dx, tr
0

1J1JiD 1D
_EE_E uﬂz IR/2N

The chiral projections of the light-cone supercharge, a two-
Il. LIGHT-CONE QUANTIZATION AND SDLCQ component Majorana spinor, are

The action for three-dimensionadl’=1 supersymmetric

Yang-Mills theory, in a space-time compactified on a stale +_~1a (L
in the transverse direction, =x?, is Q'=2"/ dx . dx tr{d_gp— i ¢], (2.8

L _
S=fd2xf dx, tr(— zF*'F,,+iVy*D,¥), (2.1) )
0
Q‘=23’4f dx‘f dx, tr
0

d, dyp+9(i[¢,d-¢]

whereA,, and ¥ are traceles®N.X N, Hermitian matrices

transforming in the adjoint representation of Sy, and we 1

suppress color indices. We introduce light-cone coordinates +2‘/"/f)(9_'4- (2.9

x*=(x+x1)/y2 and choose to work in the light-cone -

gaugeA™ =0. With chiral projections of the spinoP de-

fined by At large N, the canonicalanti-’commutators for the propa-
gating fields are, at equal light-cone timé,

1+ 'y5 1- 'yS
Y= W‘P, X= " v, (2.2 ) )
[&ij(X7, X1 ), d- (Y ,Y1)]
and ¢=A?, the action becomes ={hii (X7 X)) Py Ly )}
1
L 1 =Z85(x"—v~ - S
S:f dX+dX—f dXJ_tl’ E(a_A_)2+(D+¢+aLA_)&_¢ 2 5()( y )5(XL yL)(SII(SJk' (21@
0
FiyD,g+ixd_y+ i—lﬂDLX‘*‘ i—XDuﬂ _ (2.3  From these one can derive the supersymmetry algebra
V2 V2
We choose the light-cone gauge because the non-dynamical {Q+,Q+}=2\/§P+,

fields A~ and y may be obtained explicitly from their equa-

tions of motion, which are actually constraint equations in

light-cone coordinates. These fields are then given in terms {Q7,.Q}=2\2P7, {Q",Q7}=-4P,. (2.1
of the physical degrees of freedognand ¢ as

1 1 We will consider only the sector where the total transverse
A =—J3=—(i9[¢,0-p]+ 29y~ 3d,d¢), momentum is zero. The other allowed sectors, given our
J J- compactification, have transverse momenturm?2L, with n

a nonzero integer. In the sector with zero transverse momen-
tum, Q" andQ~ anticommute with each other, and the su-
X=— \/5—&[& 8 (2.9 persymmetry algebra is equivalent to thé=(1,1) super-
- symmetry of the two-dimensional theory obtained by
dimensional reductiorf6]. Also in this sector, the mass
squared operator is given byPZ P~. The eigenvalue prob-

The light-cone energ? ~ and momentum operatorB,” and

P, become lem for the bound states is thelP2P~|M)=M?|M), with
. M) expanded in a Fock basis diagonalRi andP*.
p+ :f dx‘f dx, t] (9 )2 +iya_ ], (2.5 The expansions of the field operators in terms of creation
0 and annihilation operators for the Fock basis are
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b (05, )= 2 J' A ) [aj(p™.n).ak(a™.m)]={b;(p*.n,).bl(q",m,)}
1 + \/ nt=—-w \/2k+ 1 :5(p —q )5%'”&5“5“"
@ik X Hi2antx L (2.12

(k+ ) |k X~ —i2mnt xJ_/L]

Notice that the compactification " means that the trans-
verse momentum modes are summed over a discrete set of

¢ij(0,X_,XL)=2\/— LE . dk*[bj;(k*,n") values 2rn'/L. In order to have a finite matrix representa-
- tion for the eigenvalue problem, we must truncate these sums
W @ik X Hizantx L at some fixed integers T. The value ofT defines a physical
transverse cutoffA | =2« T/L; however, given this defini-
+bT(k* nt)elk X —izmn® XL tion, T can also be viewed as a measure of transverse reso-
lution at fixedA | .
From the field(anti-)commutators one finds The supercharges take the following forms:
QF=i2™ EZ Ak (k,n)ay (ko) —af (ko) by kn )], (213
n €
27/47Ti —1/4
= dk—a k,nH)b;; (k,nt T(k,nt)ay; (k,nt)]+ fdkdkdk5k+k k
Q L £ Ezf [ |J( ) Ij( ) J( ) |]( )] \/G n - 1Y R2UR3 ( 1 27 3)
1 k,—k;
><5ni+n ng 2\/k_ ks [a|k(k1an1)ak1(k2an2)bu(ksvns) b i(Ks, ns)a|k(klvn1)akj(k21n2)]
1
1 ky+ks
piac g Laik(kams)ay (kb (ka.nz) —al k) bly(ka.nz)a (ke Ng)]
173
1 k,+
m nl)akj(kZ nz)a”(ks nz)— au(ks nS)blk(kl)akJ(kZ nz)]
1 1 1 T
k1+k_2_ [bf(ki,np)b} i(k2,n2)bij (k3,n3) +bfi (K, N3) b (ky,n7)byj(ka,nz) ] 1 (2.19

All sums over the transverse momentum indices are trunf14]. The specifics of the longitudinal discretization are pre-

cated at=T. The symmetric truncation with respect to posi- sented in the following section on numerical methods.

tive and negative modes aids in retaining a reflection parity The spectrum can be classified according to three com-

symmetry in the states. muting Z, symmetries ofQ ~. As described in14], they are
The remaining step of theS)DLCQ procedurd6,12,13  transverse parity

is discretization in the longitudinal direction. This is equiva-

lent to the choice of periodic boundary conditionsin[19].  P:  ajj(k,n")— —aj(k,—n"), bjj(k,n")—bj(k,—n");

For a review of ordinary DLCQ, sdé&]. Where DLCQ and (2.15

SDLCQ differ is in the construction of the discre®e . In

DLCQ this is done directly, but in SDLCQ it is the super-

charge that is discretized, witA~ constructed from the an-

ticommutator ofQ™ in the supersymmetry algebra. The dif- o ag;(k,n")——aj(k,nt),  by(k,nt)——bj(k,nb);

ference between the two discretizations disappears in the (2.1

continuum limit. The advantage of the SDLCQ approach is ‘

that the spectrum obtained from its discr&e is explicity =~ and the product of these two symmetri&s;: PS. We diag-

supersymmetric at any numerical resolution, whereas thenalize the supercharge separately in the four sectors defined

DLCQ spectrum becomes supersymmetric only in the conby the four possible combinations & and S eigenvalues.

tinuum limit. For additional discussion of this point, see Ref. This significantly reduces the size of the individual matrices

the T symmetry defined by Kutasopd8], which we callS
symmetry, to avoid confusion with the transverse culoff
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required for a given level of resolution. THesymmetry is 3000
associated with a double degeneracy of the massive states 2500
that is in addition to the usual boson/fermion degeneracy of ]
supersymmetry. A demonstration of this is giver| id]. 2000 A n
SREE ; '
IIl. NUMERICAL METHODS 1000 1 ' i
] H
We convert the mass eigenvalue proble® ™2~ |M) 500 ] i o !
=M?|M) to a matrix eigenvalue problem by introducing a : i1 I I
discreteP ~ in a basis wher®* andP* =0 are diagonal. As 0 - '
discussed in the previous section, this is done in SDLCQ by 0 20 40 60 80 100
first discretizing the supercharg@™ and then constructing 9%

- = — 2
E frorr thz squarz of tze SLfJ_p_ecmQr@E. N (Q_ ) /ﬁh We FIG. 1. The full spectrum oM? in units of 47%/L? at resolu-
ave already introduced a finite discretization in the tranSgonc k5 andT=3 in theS=+1,P=+1 symmetry sector.

verse direction, characterized by the compactification dcale
and cutoff or resolutio. To complete the discretization of
the supercharge, we introduce discrete longitudinal momenta Our earliest SDLCQ calculatior{43] were done using a
k* as fractionsnP*/K of the total longitudinal momentum code written iNMATHEMATICA and performed on a PC. This
P*. Heren<K andK are positive integers. It is in the nature code was rewritten irc++ for the work presented if14]
of light-cone coordinates that the longitudinal momenta carfnd has now been substantially revised to reach higher reso-
be chosen positive, and thatand the number of partons are lutions. We are able to generate the Hamiltonian matrix for
bounded byK. The integeiK determines the resolution of the K=2 through 7 and for values of up to T=9 atK=4,
longitudinal discretization and is known in DLCQ as the decreasing tol=3 atK=7. The actual dimension of the
harmonic resolutiori4]. The remaining integrals i@~ are ~ Fock basis as a function of the transverse and longitudinal
approximated by a trapezoidal form. The continuum limit in resolutions is given in Table I. If only one symmetry sector is
the longitudinal direction is then recovered by taking theused, the dimension of the Hamiltonian matrix to be diago-
limit K — oo, nalized is roughly eight times smaller. The absolute limit for
In constructing the discrete approximation we drop theth® new code, on aiNnux workstation with 2 gigabytes of
longitudinal zero-momentum mode. For some discussion oRAM, is approximately 32 million states. _
dynamical and constrained zero modes, see the ref@w We extract several of the lowest eigenstates of the Hamll-
and previous work20,14. Inclusion of these modes would tonian matrix by applying the Lanczos algoritf{@8]. This
be ideal, but the techniques required to include them in &equires a filtering process to remove spurious states, includ-
numerical calculation have proved to be difficult to develop,ing copies of the very lowest states, which appear before all
particularly because of nonlinearities. For DLCQ calcula-the desired states convery@he approach that we take is
tions that can be compared with exact solutions, the excluPatterned after the work of Cullum and Willoughlg4].
sion of zero modes does not affect the massive Sped:@m After n iterations of the Lanczos algonthm, we have @an
In scalar theories it has been known for some time that conX n tridiagonal representatioA of the original Hamiltonian
strained zero modes can give rise to dynamical symmetrjnatrix. The spurious eigenvalues Afappear as degenerate
breaking[5] and work continues on the role of zero modesCopies or are found in the spectrum of the matrix obtained
and near zero modes in these theofH. It is possible that from A by removing the first row and the first column. These
a careful treatment of the dynamical zero mode of the gaugBvo possibilities are easily checked because the tridiagonal
field A* could give rise to dynamical breaking of supersym-matrices are easily diagonalized in full, even thougbe-
metry of the type suggested ja2]. comes large, on the order of several thousand. The remaining
“good” eigenvalues are checked for convergence, with the

TABLE I. The size of the Fock basis as a function of the longi- number of iterations extended until the desired number or

tudinal resolutiork and transverse cutof. range of converged eigenvalues is obtained. The eigenvec-
tors are readily obtained from the eigenvectors of the tridi-
T K=4 5 6 7 8 9 agonal matrixA. The only difficulty with the filtering process

is the possibility of a “false negative,” when a nearly degen-

10462 233344

14962 376752

20598 577920 1The appearance of spurious copies is undersfaaHas a failure
of orthogonality due to accumulation of round-off errors.

1 150 768 4108 22544 131830 775104 erate eigenstate is incorrectly flagged as spurious; we found
2 522 4142 34834 305016 2753162 25431056 this type of event to be rare, but, of course, the frequency is
3 1262 13632 156270 1866304 22972270 dependent on the spectral density and the specific filtering
4 2498 34160 496106 7505592 criteria.

5 4358 72128 1268230 In Fig. 1 we show the full spectrum that we obtain as a
6 6970 135408 function of a dimensionless couplirg/ =g/NL/47°. This

7

8

9
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FIG. 2. Plots of(a) the average number of particlés) and (b) bound-state mass squarbt? in units of 42/L? as functions of the
couplingg’ at resolutionK =5 andT=2 in theS=+1,P=—1 symmetry sector.

figure shows several striking features that we want to analyzeansverse resolutions. We see that in both cases the average
in more detail. First, we observe that the spectrum splits intmmumber of particles grows very rapidly with increasigg
two bands; this separation is determined qualitatively, di-and byg’=1.5 the average number is essentially equad.to
rectly from the figure, by noting the behavior of masses asThe resolutiorK is the maximum number of partons that are
functions of the coupling. At low mass the spectrum is seerallowed in a state and corresponds to the situation where all
as a band of constant height in mass squared fag'allThe  the partons have one unit of longitudinal momentum. This
upper part of the spectrum appears as a band that grows ghould not come as a total surprise, since in the dimension-
width and in mass squared. It is very clear that there is difally reduced version of this modg8,8,9 in 1+1 dimensions
ferent physics at work in these two bands, and we will anawe already saw lighter and lighter states with more and more
lyze them separately. It is also important to note that differ-partons appearing as we went to higher resolution. This re-
ent numerical methods are required to analyze them. Theult suggests that already at intermediate couplings the states
lowest masses can be found with use of Lanczos diagonakre saturating the SDLCQ approximation. That is, we are
ization method$23]; however, the lowest states in the upperfinding that, at every, bound states have an average num-
band can be found only from a full diagonalization of the ber of particles that is equal €, the maximum number of
Hamiltonian. particles allowed by the SDLCQ approximation. This implies
We refer to states in the lower band in Fig. 1 as states withhat the actual states have an average number of particles that
intermediate couplingfor reasons that will become clear in is significantly larger than the allowed maximum. Therefore,
the next section. We call states in the upper batrdngly  beyond intermediate values of the coupling, the SDLCQ ap-
coupled statgsbecause the masses of these states vargroximation is missing a significant part of the wave func-
strongly with the coupling. We study them in the strong-tion, and the calculation is becoming unreliable. For this rea-

coupling limit in Sec. V. son we restrict our analysis in this lower band to states with
g’'=0.5and 1.0. As we will see below, the dependence of the
IV. INTERMEDIATE COUPLING spectrum on the longitudinal resolutidf is stronger than

what we have usually seen in SDLCQ, and this is because

the approximation is losing significant parts of the wave
In Fig. 2 and Fig. 3 we show as functions @f the aver-  function at these resolutions.

age number of partons and the mass squared of bound statesThe other effect that we see in Fig. 2 is a set of states that

in the lower band of Fig. 1. We do this for low and high we previously classified as unphysiddl3,14. Here these

A. Mass spectrum

67 12
R CE R
4_:§° 8—_:"

At o 3

g3y = 8-
2-:‘ 4
1] 21
O:‘"'\""\""\‘"'l""\""\"“I'H'|'H'|HH O-.""I""T‘"'l""T"“I""]""T"“I""T""
01 23 456 7 8 910 0123 4567 8 910

g .

FIG. 3. Same as Fig. 2 but far=9.
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1
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FIG. 4. Bound-state masses squaMaEl in units of 47%/L? as functions of IV for (a) states 2.5, g’'=1.0; (b) states 3.8, g'=1.0;
(c) states 2.5, g’ =0.5; (d) states 3.8-, g’ =0.5; (¢) states 2.5, g'=1.0; (f) states 3.6-, g’ =1.0; (g) states 2.5, g’ =0.5; (h) states
3.0—, g’ =0.5. The longitudinal resolutions ake=6 (starg and 7(triangles.
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states appear at low masses at low transverse resolution, andTABLE Il. MassesM? and average fermion numbéng) for
the mass falls with increasing coupling. We also see in Fig. 2he states in Fig. 4. The masses are in units of/4.
that there are states with low values of the average number &f
partons. For these states we fiktPxA? | at least approxi- m? 152 2.30 2.39 3.10 1.78 1.96 2.73 2.85
mately. We will find strong!y coupled states tha§ grow rap- g’ 05 05 10 10 05 05 10 1.0
idly with transverse resolution as well, and we will return to o4 o4 o4 - -
these unphysical states wher_1 we discuss states th_at a{&) WithP=+1 2 05 2 0 2 2 2 =2
strongly coupled. In Fig. 3, which shows results at a h|gher<n ) with P=—1 2 A o8 A o 0 2 0
transverse resolution, the states are no longer visible. F
A detailed analysis of a few intermediate-coupling bound®These assignments are based on the symmetry pattern observed in
states will be done in two steps. At fixed longitudinal reso-Table IiI, i.e., low-massS+, P— states appear to have two fermi-
lution K, we will identify a sequence of states at different ons.
values of the longitudinal resolutiohthat correspond to the

same bound state. We make this identification using the toff. We then plot these cutoff-independent masses as a
properties of the state, most notably the mass, the avera aitott. b b

number of fermions, and the average momentum of the fe function of 1K a?”_d make_a s_econd Iinea_r fit. The ir_1tercept Is
mions. We have calculated a large number of other averag@e mass at infinite Iong|tU(_JI|n_aI resolution. By this method
properties of the bound states, but they are less useful W€ identify the mass that is independent of the transverse
distinguishing states. We then plot this set of states as a fungfomentum cutoff and of the longitudinal resolution. These
tion of 1/T and make a linear fit. The intercept is the mass aPound states are at a fixed value of the coupling, and the
a particular value oK with an infinite transverse-momentum Mass scale is set by the transverse length scale.

M2 M?

{c) (d)

FIG. 5. Bound-state masses squakéti for the S= + 1 sector in units of 4%/L? at couplingg’ = 1.0 for (a) the state 3.5 as a function
of 1/T for different values oK and fit to straight lines(b) intercepts from(a) plotted as a function of K/, (c) the state 4.0 as a function of
1/T for different values oK and fit to straight lines, an@l) intercepts from(c) plotted as a function of K. The longitudinal resolutions are
K=4 (squarey 5 (diamonds, 6 (starg, and 7(triangles.
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4 4
3 ] 3
, W 2
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0 0.2 0.4 0.6 0.8 1 0.1 0.2 0.3 0.4 0.5

(c) (d)
FIG. 6. Same as Fig. 5 but fg’ =0.5. The open squares represent longitudinal resoliisrs.

As we discussed earlier, this theory has two exact symK. At K=7 andK=6 we are only able to includ€ up to 3
metries, parity? andS symmetry, and the problem of calcu- and 5, respectively. The two lowest mass states in each sector
lating the spectrum is divided into 4 secto”==*=1 andS  are seen only foK=6 or 7, and for these cases we do not
== 1. TheP symmetry gives rise to a doubling of the spec- attempt to make a linear fit in K/but rather we just use the
trum; this degeneracy is in addition to the fermion-bosonayerageT intercept for the mass. TheTlicurves for these
degeneracy. These-degenerate pairs are in fact not simply siates, 2.5 and 3.0-, are shown in Fig. 4 fog’ =0.5 and
related. For example, in one sector a state may have an ay-g and the properties are given in Table II.
erage number of fermiongie) equal to 2, while in the other  £inayy we have states that can be identified at three val-
sector It m|ght_ hav_dr_1,;>=0. This property proves to be_ ues ofK and other states that can be identified at four values
very useful in identifying sequences of bound states at d|f-of K. In Fig. 5 we show these states for the se@er+ 1
ferentk andT. While two states might appear very similar in and couplingg’ =1.0, while in Fig. 6 we show the lowest
oneP sector, they can be very different in the other sector. states at coupling;":O.S. Similarly in Figs. 7 and 8 we

The two S sectors give rise to different sets of bound show the lowest states in tige= — 1 sector withg’ = 1.0 and

states, one foiS=+1 and another folS=—1. For each . . : .
' . . . "=0.5, r ively. The pr rti f h are given in
bound-state mass there will be two states with different propgll.ablg ?II espectively. The properties of each are give

erties, one corresponding #= +1 and one corresponding
to P=—1. We will present here the four lowest states in
eachS sector. We label these states as#2,53.0+, 3.5+,
and 4.0+ for convenience. So far, we have discussed only the integrated properties of

As we mentioned earlier, in this theory the average numthe wave functions of the individual states. It is, however,
ber of particles in a bound state grows as the mass of theery instructive to look at the structure functions. The fact
bound state decreases. Therefore, the lightest massive bouifét we saw very good convergence will be reflected in the
state has a large number of particles. The maximum numbenvariance of the shape of the structure function of a given
of particles allowed by the approximation is the resolution,bound state seen at differefitand K.

B. Structure functions

105027-8
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(© (d)
FIG. 7. Same as Fig. 5 but for ti&= —1 sector.

We use a standard definition of the structure functions: The functionsga(n,n*) are normalized so that summation
over both arguments gives the average boson or fermion
ga(x,kY) f dxg - - dxqf dk: number; their sum is then the average parton number, and we
compute these sums as a test.
q q We focus on the state in the=—1 sector which has a
S 2 X — ) (2 Kt )E S(x— cont[nuum_mass 0M2=3.52. This state will have different
i=1 =1 = manifestations at different cutofts and T, and we have to
TR L 2 ask the following questions. First, are the structure functions
X ok —k®) A||¢(X1’k v 'Xq'kq)| ' stable enough against variations in both cutoffs to identify
(4.1) states at differenK and T, and, secondly, are they distinct
enough for different states, so that we can distinguish be-
HereA stands for either a boson or a fermion. The sum runsween states that are close in mass and other integrated prop-
over all parton numberg, and the Kronecker deltéA se- erties of their wave functions?
lects partons with matching statistids . The discrete ap- To address the first question, consider Fig. 9, where we
proximationg, to the structure functio@A, with resolutions ~ Present plots of the boson and fermion structure functions of

K andT in longitudinal and transverse momentum, is the state. It is important to keep. in mlnd_ that in each plot
there arefour curves, corresponding to different transverse

cutoff values and to different amounts of longitudinal mo-
mentum. The curves with the higher amplitudes in each plot
are the probabilities to find the parton with a longitudinal
momentum ofn=1, and the low-amplitude curves are the

T ¢l
NIRRT DR
a=-T

%8 Eq n-i) % Pl 5nﬁ5A probabilities to find the same parton with=2. We suppress
R = B e curves withn=2, because of their much smaller amplitudes.
The first thing to notice is that the shapes of all states are
X|p(ng,ny; ... Ngq ,né)|2- (4.2 nearly invariant under a change of the transverse cutoff
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FIG. 8. Same as Fig. 6 but for tf&= —1 sector.

Unfortunately, this means that tHdashed and soljdines  plots. We see that they are very close in shape, although the
are almost indistinguishable. The only thing that changes ipeak values change. A discussion of the differences in peak
the actual cutoff im™*: the curves have support only up to a values is in order. In Fig. 9, we see that the peak values are
maximum n,..=T. This might be also hard to see in the the same for the fermion structure functions at differnt
plots, and we put vertical lines in each plot at the pointshut are different for the boson structure functions. The reason
n"= =3, where the support of the structure function at thefor this becomes clear if we look at the properties of this
smaller transverse cutoff ends. This behavior is contrary t@tate: the average fermion number stays constant with in-
that in the longitudinal direction, where a largei's synony-  creasingk, whereas the average parton number grows con-
mous with a better resolution of the wave function. Here,sigerably. The latter fact is what we see in Figs. 2 and 3, and
however, a change df clearly is a change of the cutoff jt 5150 tells us that we mainly add partons with vanishing
A, =2aT/L, wherel is the fixed transverse box size. as we go higher irK. A quick look at the fermion structure
Having established this remarkable stability'Tnlet us  nctions in the lower row of Fig. 9 reveals a consistent

now look at how the structure function changeskagrows. behavior. Again, we see no dependence on the transverse

In Fig. 9 we have to compare the functions in the two UPPEI. 1off T. The curves are a perfect match at differént

Now that the shape invariance of the structure functions
TABLE Ill. MassesM? and average fermion numbéng) for  has been established for changes in bitand T, let us
the states in Figs. 5, 6, 7, and 8. The masses are in units®14.  5qqress the second question, of whether the structure func-
tions are different enough to distinguish states. Consider Fig.

2
M 3.57 359 454 489 3.59 4.30 3.52 5.46 10, where the state with continuum mass squahéd
g’ 05 05 1.0 1.0 05 05 1.0 1.0 =3.52 is plotted(cf. Fig. 9 at T=5 for K=5 andK=6,
S + + o+ o+ = = = = together with the next lightest state witmg)=2 in both
(ng) with P=+1 0 2 2 0 2 2 2 2 parity sectors aK =6, which has a mass!?=2.73 accord-
(neywithP=—1 2 2 2 2 2 0 2 0 ing to Table Il. It is immediately clear that the latter state is

different and cannot be a manifestation of the one With
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20 2.0 T one therefore needs a full diagonalization of the Hamiltonian
to reach them. This severely limits the valueKodndT that
1.5 1 1.5 1 we can consider. Nevertheless, we think it is worth taking a
T T look at this part of the spectrum.
= g 19 The Hamiltonian matrix is a quadratic matrix polynomial
in g’, and, therefore, it is natural to consideér’/g’? as a
0417 31 function of 14'2. In Fig. 11 we show plots foK=5 and
i3 . : . 00 . : . T=1, 2 and 3. At the bottom of the strong-coupling band,
5 0 5 5 0 5 several clear sets of separate masses appear. They seem to
@) ni () nt move linearly as functions of @/2, and it is natural to iden-
tify them as bound states. From these three figures it is clear
1.5 1.5 that these states have a strahdependence. In Fig. 1d) we
plot the intercept of a linear fit in @/ to the lowest state in
10 ] 1.0 ] the strong-coupling band. While we only have three points,
T T they clearly appear to have linear behaviofTin
e & In fact, if we look at the full spectrum as a function Bf
0.5 0.5 1 as shown in Fig. 12, we see that the entire strong-coupling
band appears to grow linearly with increasifgas the state
5 A\ 0.0 AL~ we just discussed behaves. Given this behavidr, it is not
5 0 5 5 0 5 clear whether we should take these states seriously. If we
©) nt ) nt view these states in terms of dimensionful quantities, the

gauge couplingyy, and the transverse cutof, =2#T/L,

FIG. 9. Structure functions for the bound state with miks  we see that the physical mass squatéd is proportional to
=3.52 at differenK andT. Top row: boson structure function® g2, N.A, . This is an expression for the bound-state mass
K=5 atT=3 (dashed linpandT=9 (solid line). (b)) K=6 atT  that is independent of the length scalgit is, however, not
=3 (dashed lingandT=5 (solid ling). Bottom row: fermion struc-  \yhat one expects for the continuum limit for the bound states
ture functions.(c) K=5 at T=3 (dashed lineand T=9 (solid ¢ g finjte theory with only one dimensionful parameter,
line). (d) K=6 atT=3 (dashed lingand T=5 (solid line). The o Ag e commented ifiL4], one would expect the con-
vertical lines mark the range in" for T=3. tinuum mass of such a theory to behave likg (N)?.

We know that this is a totally finite theory, so it would

=3.52: both then=1 and then=2 components of the struc- appear that this behavior is very strange. It is interesting to
ture function have different shapes, even if we scale them 1@, ot the structure functions for some of these states. In

have the same peak values. The shape of the structure fung;y 134) we show the structure function of the lowest state

tion of a state seems, therefore, a very characteristic angl e strong-coupling band for various valuesTofAround
stable property of each individual state. zero transverse momentum we see in this figure a bound
state similar to the bound states we saw in earlier structure
V. STRONG COUPLING functions. This central peak converges quicklyTiand can-
not be the main reason for tfledependence of this state. It
Our analysis of the strongly coupled stat@se upper rather comes from the wings that appear at large transverse
band of Fig. 1 can only be considered preliminary at this momentum. As we increade we see a larger and larger part
stage, since these states are in the middle of the spectrum apfl these bound states, and this gives rise to the stfbng
dependence of the total state.

3.5 5 In Fig. 13b) we show the structure functions of two other
3.0 4 states in the strong-coupling band. These states do not have a
2.5 1 central peak like the one in Fig. (8, and the large wings
~ 201 that we saw before are replaced by two bumps at non-zero
% 151 momentum. It appears that the property that characterizes
10 ] these states in the strong-coupling band is this multi-hump
e distribution function.
051 We now return to the unphysical states that we saw in the
0.0 intermediate-coupling band. It is convenient to consider

them at large coupling even though they are in the interme-
diate coupling band. The identifying property of these states

FIG. 10. Structure functions of two manifestations of the samg$ their low average parton number. Whén=4 and g’
state at differenk =5,6 and a distinct state &t=6: the state with = 10, most states haven)=4, whereas these states have
continuum mas#12=3.52 fork=5 (solid line) andK =6 (dotted ~ (N)=2. The mass of the lowest of these states grows rapidly
line); the state with continuum madd2=2.73 forK=6 (dashed With increasingT, like the states that we found in the strong-
line). For all cases the value df is 5, the symmetry sector i§  coupling band.
=—-1,P=+1, and the coupling ig’ =1. The structure function for this state is shown in Fig. 14.
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FIG. 11. Bound-state masses squakétiin units of 472/L? divided byg’'? as functions of I'? in the symmetry sectdd=+1,P=
+1 forK=5 and(a) T=1, (b) T=2, and(c) T=3; and(d) the T dependence of the intercepts of the lowest strongly-coupled st&#, of
(b), and(c).

We see a shape that is somewhat similar to those for stateswhy certain of these multi-hump distributions appear in the
the strong-coupling band. There now appear to be threwer band and others appear in the upper band.

bound states with all three peaks resolved but not cleanly Let us now turn to some of the global properties of the
separated. We see that, as the transverse resolution is ifudl spectrum. In Fig. 15 we show the bound-state spectrum
creased from three to nine, the three peaks become mu@s a function of the average number of particleKat5s,
more distinct. There is no doubt that this change gives rise to

the strongT dependence. It is not clear at this time exactly 10 0.5
0.8 1 0.4 1
10000 T I T I
) P l ! 1 —~ 0.6 - ~ 0.3 1
8000 ] i by B )
] : | | l I S 0.4 S 0.2 ]
6000 . 1} I P
< R T I 0.2 1 0.1 1
40004 : § 3¢
: 0.0 0.0
20004 P ° @ - )
a nt
0 1-!'!'!'
0 2 4 6 8 10 FIG. 13. Structure functions for some strongly coupled states:
T (a) the lowest strongly coupled state, &t 3, 6, 9(dashed, dotted,

solid lines, respective)y and(b) two very massive states witki2
FIG. 12. Bound-state masses squakétlin units of 47%/L> as  =24,625(dashed lingand M2=22,728(solid line). For all cases,
functions of T, for the symmetry sectds= +1,P=+1, longitudi-  the symmetry sector iS=+1,P=+1, the longitudinal resolution
nal resolutionK =4, and couplingy’ = 10. is K=4, and the coupling ig’=10.
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persymmetric Yang-Mills theory in21 dimensions. This is
the first such calculation and will provide a benchmark for
future calculations using lattice and other methods. The cal-
culation was performed using SDLCQ, which has been suc-
cessfully applied to a number ¢f+ 1)-dimensional theories.
The success of this method stems from its retention of super-
symmetry at every step of the numerical approximation.

In our formulation this theory has three exact symmetries:
supersymmetry, parity?, and an orientation symmetry we
call S These are alZ, symmetries, and they allow us to
reduce the size of the matrices in the numerical approxima-

FIG. 14. Structure functions for an unphysical state. Shown argion by a factor of 8. Supersymmetry and pa”ty give rise to

the probabilities to find a boson with longitudinal momentam
=1,2,3 (each with decreasing amplitudéor different cutoffs T
=3 (dashed linesand T=9 (solid lineg. The symmetry sector is
S=+1,P=+1, the longitudinal resolution iK=4, and the cou-
pling isg’=10.

T=1 andK=6,T=1. We superimpose the spectra fpr
=0.1,0.5,1,1.5,2,3,4..,10. As we noted previously, the
density clusters near the maximum value allowed (fioy,

a four-fold degeneracy which is now split between different
symmetry sectors. The elimination of this four-fold degen-
eracy simplifies the application of the Lanczos diagonaliza-
tion algorithm.

The theory has three dimensionful constants with the di-
mension of (length)*: g%MNC; A, , the transverse momen-
tum cutoff; and 1L, the reciprocal of the length of the com-
pact dimension. We find spectra that behave as?1/

which is K. In addition we see sets of trajectories with in- g2, ,N.A, , andA? . In Fig. 1 we see that the spectrum di-

creasing masses at smaff). In fact, these trajectories with vides into three regions, a weak-coupling region and two

the low (n) correspond to the most massive states in theyands at higher coupling. The weak-coupling region is dis-

entire spectrum. ~ cussed in detail in Refl14]. There we found massless states
In Fig. 16 we show the bound-state spectrum as a functioRnq very light states that are totally determined by the

of the average number of fermions. In spite of the fact that; 1)_gimensional theory, as well as heavier states whose

we are dealing with a supersymmetric theory, the averagg,asses come primarily from the transverse momentum of the
number of fermions behaves quite differently from that Ofconstituents These states all scalie1/

bosons. It does not appear to grow nearly as fast. For states

with intermediate coupling we saw that the number of fermi-
ons was nearly a sharp quantum number in the bound state

that is(nZ)=(ng)2. In comparing the figures fdk=>5 and

K=6, in Fig. 16, we see a particularly striking feature: there

are no states in the range from 4 to 6 ##6. That is, all

the bound states with six fermions have exactly six fermions

The interpretation of this fact is not yet clear.

VI. DISCUSSION

Of the two bands at higher coupling, we call the lower

one the intermediate-coupling band. Most of the bound states
Ii this band are dominated by a very large number of con-
stituents as the coupling gets strong. This fact limits the re-
gion in coupling space that we can explore using SDLCQ.

We have explored this region up to an intermediate coupling,
and we find a well defined spectrum which converges very
rapidly as we increase the transverse momentum cutoff. We
also found that the transverse momentum distributions con-
verge exceptionally well with transverse momentum cutoff.

In this paper we present a first-principles calculation ofConvergence in the longitudinal resolution is not as rapid as

the massive spectrum and the wave functions\ef1 su-

the transverse convergence, but it still appears to be well

12000 16000 -
1 [ J
10000 ]
1 e 12000 -
8000 o . 1
= 6000 | e S 8000 -
4000 1 o ¢ ]
1 e . 4000 -
2000 4 o - 1
1 o » ]
0 Jmeee - 0-
2 3 4 5 2 3 4 5 6
(a) <n> (b) <n>

FIG. 15. Bound-state masses squak&tlin units of 42/L? as functions of the average number of partidies for (a) K=5,T=1 and
(b) K=6,T=1. Several different values of the coupling are included; theygare0.1,0.5,1,1.5,2,3,4 .. ,10. The symmetry sector 8

=+1,P=+1.
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FIG. 16. Same as Fig. 15 but for masses as functions of the average number of fgfmgions

behaved. We extrapolate to infinite resolution in both theenergy. We have looked for these states but could not find
longitudinal and transverse directions and present a list ofhem. Also, this picture does not naturally seem to lead to an
some of these states and their properties. The masses of all @kplanation of the linear growth of the mass with the trans-
these states scale ad .1/ It is interesting to note that, while verse momentum cutoff.

the average number of particles grows rapidly with the cou- We have looked at the global properties of this strongly
pling, this is not true for the average number of fermions.coupled band and found unusual behavior as a function of
Typically the states we studied in this band have preciselyhe average number of fermions and of the average number
either zero fermions or two fermions. In fact, this is a prop-of particles. Numerical limitations unfortunately make this
erty that persists throughout the full spectrum. It is as if @acthang more difficult to investigate, and, while it remains pos-
bound state has a valence number of adjoint fermions thafiyje that interesting physics might emerge from these states,
characterizes the state. _the most likely result is that they decouple from the physical
_In addition to these states, there are other states in thgyectrum. We must note that we do not find states that scale
intermediate-coupling band that we discussed previousl sg%,,NZ, which is the dependence one would exped®in

[13,14 and have called unphysical states. The distinctive,here the coupling is the only dimensionful parameter in this
properties of these states are that the average number of pafs.. theory.

ticles is small and does not appear to saturate the resolution. .o what we have learned about the spectrum of this

The transverse momentum distributions are multi-humpedy,oqy there appear to be three natural directions for future
and the masses grow like} and fall with increasing cou- j,yestigations. One is to explore the fact that all these states
pling. Therefore, as we take the transverse cutoff to infinitygeem to prefer a small valence number of adjoint fermions.
these states appear to decouple. It could be of some impoyye might consider a supersymmetriclike theory that only has
tance to find a physical meaning for these states, becausgjioint fermions. Such a theory is obtained if 1L dimen-
they have a small average number of particles, as one mighions py simply dropping the boson terms in the supercharge
expect in a QCD-like theory, but even if their masses were 1925 1§ One could try the same thing here. Alternatively, one
stabilize at some large transverse cutoff beyond what weg, decouple the bosons by adding a mass term for them.
currently can reach, they would be so massive that it 'is harghese are two simple extensions of the present work that
to see how they could be relevant. The only hope might beyight avoid the large number of adjoint bosons in the bound
that at some very large coupling they fall back into an inter-giates. The third alternative is to consider a Chern-Simons
esting region. _ extension of this theory. This has the advantage of maintain-
,n the strong-coupling band we found states that scaled a5 exact supersymmetry and giving the constituents a mass.
gywN. at large coupling. We were motivated to look for this n addition to these three directions for thé=1 theory, we
behavior because the supercharge is linear in the couplingan consider the next class of interesting models by adding
These states have multi-hump transverse momentum distiinore supersymmetry. Th&/=2 theory would be particu-
butions, and their masses vary @yNcA, . We saw that  |arly interesting because it is the dimensional reduction of
some of the transverse momentum distributions have twghe A’=1 theory in 3+1 dimensions.
clearly separated and symmetric humps. It is as if half of the
constituents in these bound states are going one way while
the other half are going the other way, leaving no constitu- ACKNOWLEDGMENTS
ents that are at rest relative to the center of mass of the bound
state. It almost appears as though we are looking at two This work was supported in part by the U.S. Department
bound state$25,26. If this were the case we would expect of Energy. J.R.H. thanks the Department of Physics of the
to see the same bound states elsewhere in the spectrum wifhio State University for its hospitality during a visit there
a different relative transverse momentum and a different totalvhile this work was being completed.
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