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Wave functions and properties of massive states in three-dimensional supersymmetric
Yang-Mills theory
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We apply supersymmetric discrete light-cone quantization~SDLCQ! to the study of supersymmetric Yang-
Mills theory on R3S13S1. One of the compact directions is chosen to be lightlike and the other to be
spacelike. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and
thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present
an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and
disjoint bands. In one band the SDLCQ approximation is valid only up to intermediate coupling. There we find
a well defined and well behaved set of states, and we present a detailed analysis of these states and their
properties. In the other band, which contains a completely different set of states, we present a much more
limited analysis for strong coupling only. We find that, while these states have a well defined spectrum, their
masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.
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I. INTRODUCTION

The properties of strongly coupled gauge theories wit
sufficient amount of supersymmetry can be analyzed in g
detail @1–3#. In particular, there are a number of supersy
metric gauge theories that are believed to be interconne
through a web of strong-weak coupling dualities. Wh
these dualities provide a great deal of insight, there is st
need to study the bound states of these theories directly
at any coupling.

It is well known that~111!-dimensional field theoriescan
be solved from first principles via a straightforward applic
tion of discrete light-cone quantization~DLCQ! @4,5#. This
includes a large class of supersymmetric gauge theorie
two dimensions. More recently a supersymmetric form
DLCQ ~SDLCQ!, which is known to preserve supersymm
try, has been developed@6–12#. We have recently shown tha
the SDLCQ algorithms can be extended to solve high
dimensional theories@13#. One important difference betwee
two-dimensional and higher-dimensional theories is
phase diagram induced by variations in the gauge coupl
The spectrum of a~111!-dimensional gauge theory scale
trivially with respect to the gauge coupling, while a theory
higher dimensions has the potential of exhibiting a comp
phase structure, which may include strong, intermediate,
weak coupling regions@13#. It is therefore interesting to
study the properties of the bound states of gauge theorie
D>3 dimensions in all of these regions.

Towards this end, we apply SDLCQ to the study of thre
dimensional SU(Nc) N51 super-Yang-Mills theory com
pactified on the space-timeR3S13S1. This extends previ-
ous work@13,14# to better numerical resolution and includ
extraction of wave functions for bound states at these hig
resolutions. We work in the large-Nc limit, with the light-
cone coordinatex2 and transverse spatial coordinatex'
0556-2821/2001/64~10!/105027~15!/$20.00 64 1050
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compactified on the circlesS1. As is customary in DLCQ, we
drop the longitudinal zero modes@6–9,11,13,15–18#. A re-
view of dynamical and constrained zero modes can be fo
in @5#.

We are able to solve for bound states and their proper
numerically by diagonalizing the discretized light-cone s
percharge. Since we do not break the supersymmetry,
resulting spectrum is exactly supersymmetric. Study of
entire spectrum, which one obtains by a complete diago
ization of the entire Hamiltonian, shows that the spectr
breaks up into three distinct parts, which we will call th
weak, intermediate, and strong-coupling regions. The we
coupling region is closely related to the dimensionally
duced theory, and we have discussed it elsewhere@13#. By
the intermediate-coupling region, we refer to the low-ma
portion of the spectrum. We will see that this region clea
separates from the high-mass region for couplings bey
weak coupling. We will also see that a standard DLC
analysis of these low-mass states is only possible at inter
diate coupling. We will present a detailed analysis of the
states and their properties in this region. We then look at
high-mass spectrum and show that it appears to behave
strongly coupled spectrum. Unfortunately, a detailed analy
of these states requires a complete diagonalization of
Hamiltonian and that is beyond the scope of this work.

The remainder of the paper is structured as follows.
Sec. II, we summarize the formulation of SU(Nc) N51
super-Yang-Mills theory defined on the compactified spa
time R3S13S1. This includes explicit expressions for th
light-cone supercharges and their discretization via SDLC
Also discussed are discrete symmetries of the theory tha
helpful in classifying the spectrum. In Sec. III, we discu
the numerical methods that we use and present an over
of the full spectrum of the theory. In Sec. IV, we presen
detailed analysis of the states in the low-mass region, wh
the SDLCQ approximation is only valid up to intermedia
©2001 The American Physical Society27-1
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HILLER, PINSKY, AND TRITTMANN PHYSICAL REVIEW D 64 105027
coupling. This includes a study of the convergence of
states in both transverse and longitudinal resolutions.
present some of the properties of these states and calc
transverse-momentum distribution functions for some
these states. In Sec. V, we consider the strongly coup
states. We present the scaled mass spectrum as a functi
the inverse coupling and discuss the strong-coupling sp
trum as a function of the transverse momentum cutoff.
Sec. VI, we conclude by discussing the general propertie
this theory and their implications.

II. LIGHT-CONE QUANTIZATION AND SDLCQ

The action for three-dimensionalN51 supersymmetric
Yang-Mills theory, in a space-time compactified on a scalL
in the transverse directionx'5x2, is

S5E d2xE
0

L

dx'tr~2 1
4 FmnFmn1 i C̄gmDmC!, ~2.1!

whereAm and C are tracelessNc3Nc Hermitian matrices
transforming in the adjoint representation of SU(Nc), and we
suppress color indices. We introduce light-cone coordina
x65(x06x1)/A2 and choose to work in the light-con
gaugeA150. With chiral projections of the spinorC de-
fined by

c5
11g5

21/4
C, x5

12g5

21/4
C, ~2.2!

andf[A2, the action becomes

S5E dx1dx2E
0

L

dx'trF1

2
~]2A2!21~D1f1]'A2!]2f

1 icD1c1 ix]2x1
i

A2
cD'x1

i

A2
xD'cG . ~2.3!

We choose the light-cone gauge because the non-dynam
fields A2 andx may be obtained explicitly from their equa
tions of motion, which are actually constraint equations
light-cone coordinates. These fields are then given in te
of the physical degrees of freedomf andc as

A25
1

]2
2

J5
1

]2
2 ~ ig@f,]2f#12gcc2]']f!,

x52
1

A2]2

D'c. ~2.4!

The light-cone energyP2 and momentum operators,P1 and
P', become

P15E dx2E
0

L

dx'tr@~]2f!21 ic]2c#, ~2.5!
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P25E dx2E
0

L

dx'trF2
1

2
J

1

]2
2

J2
i

2
D'c

1

]2
D'cG ,

~2.6!

P'5E dx2E
0

L

dx'tr@]2f]'f1 ic]'c#. ~2.7!

The chiral projections of the light-cone supercharge, a tw
component Majorana spinor, are

Q1521/4E dx2E
0

L

dx'tr@f]2c2c]2f#, ~2.8!

Q2523/4E dx2E
0

L

dx'trF]'fc1g~ i @f,]2f#

12cc!
1

]2
cG . ~2.9!

At large Nc the canonical~anti-!commutators for the propa
gating fields are, at equal light-cone timex1,

@f i j ~x2,x'!,]2fkl~y2,y'!#

5$c i j ~x2,x'!,ckl~y2,y'!%

5
1

2
d~x22y2!d~x'2y'!d i l d jk . ~2.10!

From these one can derive the supersymmetry algebra

$Q1,Q1%52A2P1,

$Q2,Q2%52A2P2, $Q1,Q2%524P' . ~2.11!

We will consider only the sector where the total transve
momentum is zero. The other allowed sectors, given
compactification, have transverse momentum 2pn/L, with n
a nonzero integer. In the sector with zero transverse mom
tum, Q1 andQ2 anticommute with each other, and the s
persymmetry algebra is equivalent to theN5(1,1) super-
symmetry of the two-dimensional theory obtained
dimensional reduction@6#. Also in this sector, the mas
squared operator is given by 2P1P2. The eigenvalue prob-
lem for the bound states is then 2P1P2uM &5M2uM &, with
uM & expanded in a Fock basis diagonal inP1 andP'.

The expansions of the field operators in terms of creat
and annihilation operators for the Fock basis are
7-2
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f i j ~0,x2,x'!5
1

A2pL
(

n'52`

` E
0

` dk1

A2k1
@ai j ~k1,n'!

3e2 ik1x21 i2pn'x'/L

1aji
† ~k1,n'!eik1x22 i2pn'x'/L#,

c i j ~0,x2,x'!5
1

2ApL
(

n'52`

` E
0

`

dk1@bi j ~k1,n'!

3e2 ik1x21 i2pn'x'/L

1bji
† ~k1,n'!eik1x22 i2pn'x'/L#.

From the field~anti-!commutators one finds
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@ai j ~p1,n'!,alk
† ~q1,m'!#5$bi j ~p1,n'!,blk

† ~q1,m'!%

5d~p12q1!dn' ,m'
d i l d jk .

~2.12!

Notice that the compactification inx' means that the trans
verse momentum modes are summed over a discrete s
values 2pn'/L. In order to have a finite matrix represent
tion for the eigenvalue problem, we must truncate these s
at some fixed integers6T. The value ofT defines a physica
transverse cutoffL'52pT/L; however, given this defini-
tion, T can also be viewed as a measure of transverse r
lution at fixedL' .

The supercharges take the following forms:
Q15 i21/4 (
n'PZ

E
0

`

dkAk@bi j
† ~k,n'!ai j ~k,n'!2ai j

† ~k,n'!bi j ~k,n'!#, ~2.13!

Q25
27/4p i

L (
n'PZ

E
0

`

dk
n'

Ak
@ai j

† ~k,n'!bi j ~k,n'!2bi j
† ~k,n'!ai j ~k,n'!#1

i221/4g

ALp
(

ni
'PZ

E
0

`

dk1dk2dk3d~k11k22k3!

3dn
1
'1n

2
' ,n

3
'H 1

2Ak1k2

k22k1

k3
@aik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!2bi j
† ~k3 ,n3

'!aik~k1 ,n1
'!ak j~k2 ,n2

'!#

1
1

2Ak1k3

k11k3

k2
@aik

† ~k3 ,n3
'!ak j~k1 ,n1

'!bi j ~k2 ,n2
'!2aik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!#

1
1

2Ak2k3

k21k3

k1
@bik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!2ai j
† ~k3 ,n3

'!bik~k1!ak j~k2 ,n2
'!#

1S 1

k1
1

1

k2
2

1

k3
D @bik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!1bi j
† ~k3 ,n3

'!bik~k1 ,n1
'!bk j~k2 ,n2

'!#J . ~2.14!
re-

om-

fined

es
All sums over the transverse momentum indices are tr
cated at6T. The symmetric truncation with respect to pos
tive and negative modes aids in retaining a reflection pa
symmetry in the states.

The remaining step of the~S!DLCQ procedure@6,12,13#
is discretization in the longitudinal direction. This is equiv
lent to the choice of periodic boundary conditions inx2 @19#.
For a review of ordinary DLCQ, see@5#. Where DLCQ and
SDLCQ differ is in the construction of the discreteP2. In
DLCQ this is done directly, but in SDLCQ it is the supe
charge that is discretized, withP2 constructed from the an
ticommutator ofQ2 in the supersymmetry algebra. The d
ference between the two discretizations disappears in
continuum limit. The advantage of the SDLCQ approach
that the spectrum obtained from its discreteP2 is explicitly
supersymmetric at any numerical resolution, whereas
DLCQ spectrum becomes supersymmetric only in the c
tinuum limit. For additional discussion of this point, see R
-

y

he
s

e
-

.

@14#. The specifics of the longitudinal discretization are p
sented in the following section on numerical methods.

The spectrum can be classified according to three c
muting Z2 symmetries ofQ2. As described in@14#, they are
transverse parity

P: ai j ~k,n'!→2ai j ~k,2n'!, bi j ~k,n'!→bi j ~k,2n'!;
~2.15!

the T symmetry defined by Kutasov@18#, which we callS
symmetry, to avoid confusion with the transverse cutoffT,

S: ai j ~k,n'!→2aji ~k,n'!, bi j ~k,n'!→2bji ~k,n'!;
~2.16!

and the product of these two symmetries,R5PS. We diag-
onalize the supercharge separately in the four sectors de
by the four possible combinations ofP and S eigenvalues.
This significantly reduces the size of the individual matric
7-3
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HILLER, PINSKY, AND TRITTMANN PHYSICAL REVIEW D 64 105027
required for a given level of resolution. TheP symmetry is
associated with a double degeneracy of the massive s
that is in addition to the usual boson/fermion degeneracy
supersymmetry. A demonstration of this is given in@14#.

III. NUMERICAL METHODS

We convert the mass eigenvalue problem 2P1P2uM &
5M2uM & to a matrix eigenvalue problem by introducing
discreteP2 in a basis whereP1 andP'50 are diagonal. As
discussed in the previous section, this is done in SDLCQ
first discretizing the superchargeQ2 and then constructing
P2 from the square of the supercharge:P25(Q2)2/A2. We
have already introduced a finite discretization in the tra
verse direction, characterized by the compactification scaL
and cutoff or resolutionT. To complete the discretization o
the supercharge, we introduce discrete longitudinal mome
k1 as fractionsnP1/K of the total longitudinal momentum
P1. Heren,K andK are positive integers. It is in the natur
of light-cone coordinates that the longitudinal momenta c
be chosen positive, and thatn and the number of partons ar
bounded byK. The integerK determines the resolution of th
longitudinal discretization and is known in DLCQ as th
harmonic resolution@4#. The remaining integrals inQ2 are
approximated by a trapezoidal form. The continuum limit
the longitudinal direction is then recovered by taking t
limit K→`.

In constructing the discrete approximation we drop
longitudinal zero-momentum mode. For some discussion
dynamical and constrained zero modes, see the review@5#
and previous work@20,14#. Inclusion of these modes woul
be ideal, but the techniques required to include them i
numerical calculation have proved to be difficult to develo
particularly because of nonlinearities. For DLCQ calcu
tions that can be compared with exact solutions, the ex
sion of zero modes does not affect the massive spectrum@5#.
In scalar theories it has been known for some time that c
strained zero modes can give rise to dynamical symm
breaking@5# and work continues on the role of zero mod
and near zero modes in these theories@21#. It is possible that
a careful treatment of the dynamical zero mode of the ga
field A1 could give rise to dynamical breaking of supersy
metry of the type suggested in@22#.

TABLE I. The size of the Fock basis as a function of the lon
tudinal resolutionK and transverse cutoffT.

T K54 5 6 7 8 9

1 150 768 4108 22544 131830 77510
2 522 4142 34834 305016 2753162 254310
3 1262 13632 156270 1866304 22972270
4 2498 34160 496106 7505592
5 4358 72128 1268230
6 6970 135408
7 10462 233344
8 14962 376752
9 20598 577920
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Our earliest SDLCQ calculations@13# were done using a
code written inMATHEMATICA and performed on a PC. Thi
code was rewritten inC11 for the work presented in@14#
and has now been substantially revised to reach higher r
lutions. We are able to generate the Hamiltonian matrix
K52 through 7 and for values ofT up to T59 at K54,
decreasing toT53 at K57. The actual dimension of the
Fock basis as a function of the transverse and longitud
resolutions is given in Table I. If only one symmetry sector
used, the dimension of the Hamiltonian matrix to be diag
nalized is roughly eight times smaller. The absolute limit f
the new code, on aLINUX workstation with 2 gigabytes o
RAM, is approximately 32 million states.

We extract several of the lowest eigenstates of the Ham
tonian matrix by applying the Lanczos algorithm@23#. This
requires a filtering process to remove spurious states, inc
ing copies of the very lowest states, which appear before
the desired states converge.1 The approach that we take i
patterned after the work of Cullum and Willoughby@24#.
After n iterations of the Lanczos algorithm, we have ann
3n tridiagonal representationA of the original Hamiltonian
matrix. The spurious eigenvalues ofA appear as degenera
copies or are found in the spectrum of the matrix obtain
from A by removing the first row and the first column. The
two possibilities are easily checked because the tridiago
matrices are easily diagonalized in full, even thoughn be-
comes large, on the order of several thousand. The remai
‘‘good’’ eigenvalues are checked for convergence, with t
number of iterations extended until the desired number
range of converged eigenvalues is obtained. The eigen
tors are readily obtained from the eigenvectors of the tr
agonal matrixA. The only difficulty with the filtering process
is the possibility of a ‘‘false negative,’’ when a nearly dege
erate eigenstate is incorrectly flagged as spurious; we fo
this type of event to be rare, but, of course, the frequenc
dependent on the spectral density and the specific filte
criteria.

In Fig. 1 we show the full spectrum that we obtain as
function of a dimensionless couplingg85gANL/4p3. This

1The appearance of spurious copies is understood@23# as a failure
of orthogonality due to accumulation of round-off errors.

FIG. 1. The full spectrum ofM2 in units of 4p2/L2 at resolu-
tions K55 andT53 in theS511,P511 symmetry sector.
7-4



WAVE FUNCTIONS AND PROPERTIES OF MASSIVE . . . PHYSICAL REVIEW D 64 105027
FIG. 2. Plots of~a! the average number of particles^n& and ~b! bound-state mass squaredM2 in units of 4p2/L2 as functions of the
couplingg8 at resolutionsK55 andT52 in theS511,P521 symmetry sector.
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figure shows several striking features that we want to ana
in more detail. First, we observe that the spectrum splits
two bands; this separation is determined qualitatively,
rectly from the figure, by noting the behavior of masses
functions of the coupling. At low mass the spectrum is se
as a band of constant height in mass squared for allg8. The
upper part of the spectrum appears as a band that grow
width and in mass squared. It is very clear that there is
ferent physics at work in these two bands, and we will a
lyze them separately. It is also important to note that diff
ent numerical methods are required to analyze them.
lowest masses can be found with use of Lanczos diago
ization methods@23#; however, the lowest states in the upp
band can be found only from a full diagonalization of t
Hamiltonian.

We refer to states in the lower band in Fig. 1 as states w
intermediate coupling, for reasons that will become clear i
the next section. We call states in the upper bandstrongly
coupled states, because the masses of these states v
strongly with the coupling. We study them in the stron
coupling limit in Sec. V.

IV. INTERMEDIATE COUPLING

A. Mass spectrum

In Fig. 2 and Fig. 3 we show as functions ofg8 the aver-
age number of partons and the mass squared of bound s
in the lower band of Fig. 1. We do this for low and hig
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transverse resolutions. We see that in both cases the ave
number of particles grows very rapidly with increasingg8,
and byg851.5 the average number is essentially equal toK.
The resolutionK is the maximum number of partons that a
allowed in a state and corresponds to the situation where
the partons have one unit of longitudinal momentum. T
should not come as a total surprise, since in the dimens
ally reduced version of this model@6,8,9# in 111 dimensions
we already saw lighter and lighter states with more and m
partons appearing as we went to higher resolution. This
sult suggests that already at intermediate couplings the s
are saturating the SDLCQ approximation. That is, we
finding that, at everyK, bound states have an average nu
ber of particles that is equal toK, the maximum number of
particles allowed by the SDLCQ approximation. This impli
that the actual states have an average number of particles
is significantly larger than the allowed maximum. Therefo
beyond intermediate values of the coupling, the SDLCQ
proximation is missing a significant part of the wave fun
tion, and the calculation is becoming unreliable. For this r
son we restrict our analysis in this lower band to states w
g850.5 and 1.0. As we will see below, the dependence of
spectrum on the longitudinal resolutionK is stronger than
what we have usually seen in SDLCQ, and this is beca
the approximation is losing significant parts of the wa
function at these resolutions.

The other effect that we see in Fig. 2 is a set of states
we previously classified as unphysical@13,14#. Here these
FIG. 3. Same as Fig. 2 but forT59.
7-5



HILLER, PINSKY, AND TRITTMANN PHYSICAL REVIEW D 64 105027
FIG. 4. Bound-state masses squaredM2 in units of 4p2/L2 as functions of 1/T for ~a! states 2.51, g851.0; ~b! states 3.01, g851.0;
~c! states 2.51, g850.5; ~d! states 3.01, g850.5; ~e! states 2.52, g851.0; ~f! states 3.02, g851.0; ~g! states 2.52, g850.5; ~h! states
3.02, g850.5. The longitudinal resolutions areK56 ~stars! and 7~triangles!.
105027-6
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WAVE FUNCTIONS AND PROPERTIES OF MASSIVE . . . PHYSICAL REVIEW D 64 105027
states appear at low masses at low transverse resolution
the mass falls with increasing coupling. We also see in Fig
that there are states with low values of the average numbe
partons. For these states we findM2}L'

2 , at least approxi-
mately. We will find strongly coupled states that grow ra
idly with transverse resolution as well, and we will return
these unphysical states when we discuss states tha
strongly coupled. In Fig. 3, which shows results at a hig
transverse resolution, the states are no longer visible.

A detailed analysis of a few intermediate-coupling bou
states will be done in two steps. At fixed longitudinal res
lution K, we will identify a sequence of states at differe
values of the longitudinal resolutionT that correspond to the
same bound state. We make this identification using
properties of the state, most notably the mass, the ave
number of fermions, and the average momentum of the
mions. We have calculated a large number of other aver
properties of the bound states, but they are less usefu
distinguishing states. We then plot this set of states as a f
tion of 1/T and make a linear fit. The intercept is the mass
a particular value ofK with an infinite transverse-momentum
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cutoff. We then plot these cutoff-independent masses a
function of 1/K and make a second linear fit. The intercept
the mass at infinite longitudinal resolution. By this meth
we identify the mass that is independent of the transve
momentum cutoff and of the longitudinal resolution. The
bound states are at a fixed value of the coupling, and
mass scale is set by the transverse length scale.

TABLE II. MassesM2 and average fermion number^nF& for
the states in Fig. 4. The masses are in units of 4p2/L2.

M2 1.52 2.30 2.39 3.10 1.78 1.96 2.73 2.8

g8 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0
S 1 1 1 1 2 2 2 2

^nF& with P511 2 0.5 2 0 2 2 2 2
^nF& with P521 2 2a 2a 2a 2 0 2 0

aThese assignments are based on the symmetry pattern observ
Table III, i.e., low-mass,S1, P2 states appear to have two ferm
ons.
f

FIG. 5. Bound-state masses squaredM2 for the S511 sector in units of 4p2/L2 at couplingg851.0 for ~a! the state 3.5 as a function

of 1/T for different values ofK and fit to straight lines,~b! intercepts from~a! plotted as a function of 1/K, ~c! the state 4.0 as a function o
1/T for different values ofK and fit to straight lines, and~d! intercepts from~c! plotted as a function of 1/K. The longitudinal resolutions are
K54 ~squares!, 5 ~diamonds!, 6 ~stars!, and 7~triangles!.
7-7



HILLER, PINSKY, AND TRITTMANN PHYSICAL REVIEW D 64 105027
FIG. 6. Same as Fig. 5 but forg850.5. The open squares represent longitudinal resolutionK53.
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As we discussed earlier, this theory has two exact sy
metries, parityP andSsymmetry, and the problem of calcu
lating the spectrum is divided into 4 sectors,P561 andS
561. TheP symmetry gives rise to a doubling of the spe
trum; this degeneracy is in addition to the fermion-bos
degeneracy. TheseP-degenerate pairs are in fact not simp
related. For example, in one sector a state may have an
erage number of fermionŝnF& equal to 2, while in the othe
sector it might havê nF&50. This property proves to be
very useful in identifying sequences of bound states at
ferentK andT. While two states might appear very similar
oneP sector, they can be very different in the other secto

The two S sectors give rise to different sets of boun
states, one forS511 and another forS521. For each
bound-state mass there will be two states with different pr
erties, one corresponding toP511 and one correspondin
to P521. We will present here the four lowest states
eachS sector. We label these states as 2.56, 3.06, 3.56,
and 4.06 for convenience.

As we mentioned earlier, in this theory the average nu
ber of particles in a bound state grows as the mass of
bound state decreases. Therefore, the lightest massive b
state has a large number of particles. The maximum num
of particles allowed by the approximation is the resolutio
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K. At K57 andK56 we are only able to includeT up to 3
and 5, respectively. The two lowest mass states in each se
are seen only forK56 or 7, and for these cases we do n
attempt to make a linear fit in 1/K but rather we just use the
averageT intercept for the mass. The 1/T curves for these
states, 2.56 and 3.06, are shown in Fig. 4 forg850.5 and
1.0, and the properties are given in Table II.

Finally, we have states that can be identified at three v
ues ofK and other states that can be identified at four val
of K. In Fig. 5 we show these states for the sectorS511
and couplingg851.0, while in Fig. 6 we show the lowes
states at couplingg850.5. Similarly in Figs. 7 and 8 we
show the lowest states in theS521 sector withg851.0 and
g850.5, respectively. The properties of each are given
Table III.

B. Structure functions

So far, we have discussed only the integrated propertie
the wave functions of the individual states. It is, howev
very instructive to look at the structure functions. The fa
that we saw very good convergence will be reflected in
invariance of the shape of the structure function of a giv
bound state seen at differentT andK.
7-8
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FIG. 7. Same as Fig. 5 but for theS521 sector.
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We use a standard definition of the structure functions

ĝA~x,k'!5(
q
E

0

1

dx1•••dxqE
2`

`

dk1
'
•••dkq

'

3dS (
i 51

q

xi21D dS (
j 51

q

kj
'D (

l 51

q

d~xl2x!

3d~kl
'2k'!dAl

A uc~x1 ,k1
' ; . . . xq ,kq

'!u2.

~4.1!

HereA stands for either a boson or a fermion. The sum ru
over all parton numbersq, and the Kronecker deltadAl

A se-

lects partons with matching statisticsAl . The discrete ap-
proximationgA to the structure functionĝA , with resolutions
K andT in longitudinal and transverse momentum, is

gA~n,n'!5 (
q52

K

(
n1 , . . . ,nq51

K2q

(
n1

' , . . . ,nq
'

52T

T

dS (
i 51

q

ni2K D
3dS (

j 51

q

nj
'D (

l 51

q

dn
nld

n'

nl
'

dAl

A

3uc~n1 ,n1
' ; . . . ,nq ,nq

'!u2. ~4.2!
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The functionsgA(n,n') are normalized so that summatio
over both arguments gives the average boson or ferm
number; their sum is then the average parton number, and
compute these sums as a test.

We focus on the state in theS521 sector which has a
continuum mass ofM253.52. This state will have differen
manifestations at different cutoffsK and T, and we have to
ask the following questions. First, are the structure functio
stable enough against variations in both cutoffs to iden
states at differentK and T, and, secondly, are they distinc
enough for different states, so that we can distinguish
tween states that are close in mass and other integrated p
erties of their wave functions?

To address the first question, consider Fig. 9, where
present plots of the boson and fermion structure function
the state. It is important to keep in mind that in each p
there arefour curves, corresponding to different transver
cutoff values and to different amounts of longitudinal m
mentum. The curves with the higher amplitudes in each p
are the probabilities to find the parton with a longitudin
momentum ofn51, and the low-amplitude curves are th
probabilities to find the same parton withn52. We suppress
curves withn>2, because of their much smaller amplitude

The first thing to notice is that the shapes of all states
nearly invariant under a change of the transverse cutofT.
7-9
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FIG. 8. Same as Fig. 6 but for theS521 sector.
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Unfortunately, this means that the~dashed and solid! lines
are almost indistinguishable. The only thing that change
the actual cutoff inn': the curves have support only up to
maximum nmax

' 5T. This might be also hard to see in th
plots, and we put vertical lines in each plot at the poi
n'563, where the support of the structure function at t
smaller transverse cutoff ends. This behavior is contrary
that in the longitudinal direction, where a largerK is synony-
mous with a better resolution of the wave function. He
however, a change ofT clearly is a change of the cutof
L'52pT/L, whereL is the fixed transverse box size.

Having established this remarkable stability inT, let us
now look at how the structure function changes asK grows.
In Fig. 9 we have to compare the functions in the two up

TABLE III. MassesM2 and average fermion number^nF& for
the states in Figs. 5, 6, 7, and 8. The masses are in units of 4p2/L2.

M2 3.57 3.59 4.54 4.89 3.59 4.30 3.52 5.4

g8 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0
S 1 1 1 1 2 2 2 2

^nF& with P511 0 2 2 0 2 2 2 2
^nF& with P521 2 2 2 2 2 0 2 0
10502
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plots. We see that they are very close in shape, although
peak values change. A discussion of the differences in p
values is in order. In Fig. 9, we see that the peak values
the same for the fermion structure functions at differentK,
but are different for the boson structure functions. The rea
for this becomes clear if we look at the properties of th
state: the average fermion number stays constant with
creasingK, whereas the average parton number grows c
siderably. The latter fact is what we see in Figs. 2 and 3,
it also tells us that we mainly add partons with vanishingn' ,
as we go higher inK. A quick look at the fermion structure
functions in the lower row of Fig. 9 reveals a consiste
behavior. Again, we see no dependence on the transv
cutoff T. The curves are a perfect match at differentK.

Now that the shape invariance of the structure functio
has been established for changes in bothK and T, let us
address the second question, of whether the structure f
tions are different enough to distinguish states. Consider
10, where the state with continuum mass squaredM2

53.52 is plotted~cf. Fig. 9! at T55 for K55 andK56,
together with the next lightest state with^nF&52 in both
parity sectors atK56, which has a massM252.73 accord-
ing to Table II. It is immediately clear that the latter state
different and cannot be a manifestation of the one withM2
7-10
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WAVE FUNCTIONS AND PROPERTIES OF MASSIVE . . . PHYSICAL REVIEW D 64 105027
53.52: both then51 and then52 components of the struc
ture function have different shapes, even if we scale them
have the same peak values. The shape of the structure
tion of a state seems, therefore, a very characteristic
stable property of each individual state.

V. STRONG COUPLING

Our analysis of the strongly coupled states~the upper
band of Fig. 1! can only be considered preliminary at th
stage, since these states are in the middle of the spectrum

FIG. 9. Structure functions for the bound state with massM2

53.52 at differentK andT. Top row: boson structure functions.~a!
K55 at T53 ~dashed line! and T59 ~solid line!. ~b! K56 at T
53 ~dashed line! andT55 ~solid line!. Bottom row: fermion struc-
ture functions.~c! K55 at T53 ~dashed line! and T59 ~solid
line!. ~d! K56 at T53 ~dashed line! and T55 ~solid line!. The
vertical lines mark the range inn' for T53.

FIG. 10. Structure functions of two manifestations of the sa
state at differentK55,6 and a distinct state atK56: the state with
continuum massM253.52 forK55 ~solid line! andK56 ~dotted
line!; the state with continuum massM252.73 for K56 ~dashed
line!. For all cases the value ofT is 5, the symmetry sector isS
521,P511, and the coupling isg851.
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one therefore needs a full diagonalization of the Hamilton
to reach them. This severely limits the values ofK andT that
we can consider. Nevertheless, we think it is worth takin
look at this part of the spectrum.

The Hamiltonian matrix is a quadratic matrix polynomi
in g8, and, therefore, it is natural to considerM2/g82 as a
function of 1/g82. In Fig. 11 we show plots forK55 and
T51, 2 and 3. At the bottom of the strong-coupling ban
several clear sets of separate masses appear. They se
move linearly as functions of 1/g82, and it is natural to iden-
tify them as bound states. From these three figures it is c
that these states have a strongT dependence. In Fig. 11~d! we
plot the intercept of a linear fit in 1/g82 to the lowest state in
the strong-coupling band. While we only have three poin
they clearly appear to have linear behavior inT.

In fact, if we look at the full spectrum as a function ofT,
as shown in Fig. 12, we see that the entire strong-coup
band appears to grow linearly with increasingT, as the state
we just discussed behaves. Given this behavior inT, it is not
clear whether we should take these states seriously. If
view these states in terms of dimensionful quantities,
gauge couplinggY M and the transverse cutoffL'52pT/L,
we see that the physical mass squaredM 2 is proportional to
gY M

2 NcL' . This is an expression for the bound-state ma
that is independent of the length scaleL; it is, however, not
what one expects for the continuum limit for the bound sta
of a finite theory with only one dimensionful paramete
gY M . As we commented in@14#, one would expect the con
tinuum mass of such a theory to behave like (gY M

2 N)2.
We know that this is a totally finite theory, so it woul

appear that this behavior is very strange. It is interesting
look at the structure functions for some of these states
Fig. 13~a! we show the structure function of the lowest sta
in the strong-coupling band for various values ofT. Around
zero transverse momentum we see in this figure a bo
state similar to the bound states we saw in earlier struc
functions. This central peak converges quickly inT and can-
not be the main reason for theT dependence of this state.
rather comes from the wings that appear at large transv
momentum. As we increaseT, we see a larger and larger pa
of these bound states, and this gives rise to the stronT
dependence of the total state.

In Fig. 13~b! we show the structure functions of two oth
states in the strong-coupling band. These states do not ha
central peak like the one in Fig. 13~a!, and the large wings
that we saw before are replaced by two bumps at non-z
momentum. It appears that the property that character
these states in the strong-coupling band is this multi-hu
distribution function.

We now return to the unphysical states that we saw in
intermediate-coupling band. It is convenient to consid
them at large coupling even though they are in the interm
diate coupling band. The identifying property of these sta
is their low average parton number. WhenK54 and g8
510, most states havên&.4, whereas these states ha
^n&.2. The mass of the lowest of these states grows rap
with increasingT, like the states that we found in the stron
coupling band.

The structure function for this state is shown in Fig. 1

e
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FIG. 11. Bound-state masses squaredM2 in units of 4p2/L2 divided byg82 as functions of 1/g82 in the symmetry sectorS511,P5
11 for K55 and~a! T51, ~b! T52, and~c! T53; and~d! the T dependence of the intercepts of the lowest strongly-coupled state o~a!,
~b!, and~c!.
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We see a shape that is somewhat similar to those for stat
the strong-coupling band. There now appear to be th
bound states with all three peaks resolved but not clea
separated. We see that, as the transverse resolution i
creased from three to nine, the three peaks become m
more distinct. There is no doubt that this change gives ris
the strongT dependence. It is not clear at this time exac

FIG. 12. Bound-state masses squaredM2 in units of 4p2/L2 as
functions ofT, for the symmetry sectorS511,P511, longitudi-
nal resolutionK54, and couplingg8510.
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why certain of these multi-hump distributions appear in t
lower band and others appear in the upper band.

Let us now turn to some of the global properties of t
full spectrum. In Fig. 15 we show the bound-state spectr
as a function of the average number of particles atK55,

FIG. 13. Structure functions for some strongly coupled sta
~a! the lowest strongly coupled state, atT53, 6, 9~dashed, dotted,
solid lines, respectively!, and~b! two very massive states withM2

524,625~dashed line! and M2522,728~solid line!. For all cases,
the symmetry sector isS511,P511, the longitudinal resolution
is K54, and the coupling isg8510.
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WAVE FUNCTIONS AND PROPERTIES OF MASSIVE . . . PHYSICAL REVIEW D 64 105027
T51 and K56,T51. We superimpose the spectra forg8
50.1,0.5,1,1.5,2,3,4, . . . ,10. As we noted previously, th
density clusters near the maximum value allowed for^n&,
which is K. In addition we see sets of trajectories with i
creasing masses at small^n&. In fact, these trajectories with
the low ^n& correspond to the most massive states in
entire spectrum.

In Fig. 16 we show the bound-state spectrum as a func
of the average number of fermions. In spite of the fact t
we are dealing with a supersymmetric theory, the aver
number of fermions behaves quite differently from that
bosons. It does not appear to grow nearly as fast. For s
with intermediate coupling we saw that the number of ferm
ons was nearly a sharp quantum number in the bound s
that is ^nF

2&5^nF&2. In comparing the figures forK55 and
K56, in Fig. 16, we see a particularly striking feature: the
are no states in the range from 4 to 6 forK56. That is, all
the bound states with six fermions have exactly six fermio
The interpretation of this fact is not yet clear.

VI. DISCUSSION

In this paper we present a first-principles calculation
the massive spectrum and the wave functions ofN51 su-

FIG. 14. Structure functions for an unphysical state. Shown
the probabilities to find a boson with longitudinal momentumn
51,2,3 ~each with decreasing amplitude! for different cutoffsT
53 ~dashed lines! andT59 ~solid lines!. The symmetry sector is
S511,P511, the longitudinal resolution isK54, and the cou-
pling is g8510.
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persymmetric Yang-Mills theory in 211 dimensions. This is
the first such calculation and will provide a benchmark
future calculations using lattice and other methods. The
culation was performed using SDLCQ, which has been s
cessfully applied to a number of~111!-dimensional theories
The success of this method stems from its retention of su
symmetry at every step of the numerical approximation.

In our formulation this theory has three exact symmetri
supersymmetry, parityP, and an orientation symmetry w
call S. These are allZ2 symmetries, and they allow us t
reduce the size of the matrices in the numerical approxim
tion by a factor of 8. Supersymmetry and parity give rise
a four-fold degeneracy which is now split between differe
symmetry sectors. The elimination of this four-fold dege
eracy simplifies the application of the Lanczos diagonali
tion algorithm.

The theory has three dimensionful constants with the
mension of (length)21: gY M

2 Nc ; L' , the transverse momen
tum cutoff; and 1/L, the reciprocal of the length of the com
pact dimension. We find spectra that behave as 1/L2,
gY M

2 NcL' , andL'
2 . In Fig. 1 we see that the spectrum d

vides into three regions, a weak-coupling region and t
bands at higher coupling. The weak-coupling region is d
cussed in detail in Ref.@14#. There we found massless stat
and very light states that are totally determined by the~1
11!-dimensional theory, as well as heavier states wh
masses come primarily from the transverse momentum of
constituents. These states all scale 1/L2.

Of the two bands at higher coupling, we call the low
one the intermediate-coupling band. Most of the bound sta
in this band are dominated by a very large number of c
stituents as the coupling gets strong. This fact limits the
gion in coupling space that we can explore using SDLC
We have explored this region up to an intermediate coupli
and we find a well defined spectrum which converges v
rapidly as we increase the transverse momentum cutoff.
also found that the transverse momentum distributions c
verge exceptionally well with transverse momentum cuto
Convergence in the longitudinal resolution is not as rapid
the transverse convergence, but it still appears to be w

e

FIG. 15. Bound-state masses squaredM2 in units of 4p2/L2 as functions of the average number of particles^n& for ~a! K55,T51 and
~b! K56,T51. Several different values of the coupling are included; they areg850.1,0.5,1,1.5,2,3,4, . . . ,10. The symmetry sector isS
511,P511.
7-13
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FIG. 16. Same as Fig. 15 but for masses as functions of the average number of fermions^nF&.
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behaved. We extrapolate to infinite resolution in both
longitudinal and transverse directions and present a lis
some of these states and their properties. The masses of
these states scale as 1/L2. It is interesting to note that, while
the average number of particles grows rapidly with the c
pling, this is not true for the average number of fermio
Typically the states we studied in this band have precis
either zero fermions or two fermions. In fact, this is a pro
erty that persists throughout the full spectrum. It is as if ea
bound state has a valence number of adjoint fermions
characterizes the state.

In addition to these states, there are other states in
intermediate-coupling band that we discussed previou
@13,14# and have called unphysical states. The distinct
properties of these states are that the average number o
ticles is small and does not appear to saturate the resolu
The transverse momentum distributions are multi-hump
and the masses grow likeL'

2 and fall with increasing cou-
pling. Therefore, as we take the transverse cutoff to infin
these states appear to decouple. It could be of some im
tance to find a physical meaning for these states, bec
they have a small average number of particles, as one m
expect in a QCD-like theory, but even if their masses were
stabilize at some large transverse cutoff beyond what
currently can reach, they would be so massive that it is h
to see how they could be relevant. The only hope might
that at some very large coupling they fall back into an int
esting region.

In the strong-coupling band we found states that scale
gY M

2 Nc at large coupling. We were motivated to look for th
behavior because the supercharge is linear in the coup
These states have multi-hump transverse momentum d
butions, and their masses vary asgY M

2 NcL' . We saw that
some of the transverse momentum distributions have
clearly separated and symmetric humps. It is as if half of
constituents in these bound states are going one way w
the other half are going the other way, leaving no const
ents that are at rest relative to the center of mass of the bo
state. It almost appears as though we are looking at
bound states@25,26#. If this were the case we would expe
to see the same bound states elsewhere in the spectrum
a different relative transverse momentum and a different t
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energy. We have looked for these states but could not
them. Also, this picture does not naturally seem to lead to
explanation of the linear growth of the mass with the tra
verse momentum cutoff.

We have looked at the global properties of this stron
coupled band and found unusual behavior as a function
the average number of fermions and of the average num
of particles. Numerical limitations unfortunately make th
band more difficult to investigate, and, while it remains po
sible that interesting physics might emerge from these sta
the most likely result is that they decouple from the physi
spectrum. We must note that we do not find states that s
asgY M

4 Nc
2 , which is the dependence one would expect inR3,

where the coupling is the only dimensionful parameter in t
finite theory.

From what we have learned about the spectrum of
theory, there appear to be three natural directions for fut
investigations. One is to explore the fact that all these sta
seem to prefer a small valence number of adjoint fermio
We might consider a supersymmetriclike theory that only h
adjoint fermions. Such a theory is obtained in 111 dimen-
sions by simply dropping the boson terms in the supercha
@25,18#. One could try the same thing here. Alternatively, o
can decouple the bosons by adding a mass term for th
These are two simple extensions of the present work
might avoid the large number of adjoint bosons in the bou
states. The third alternative is to consider a Chern-Sim
extension of this theory. This has the advantage of maint
ing exact supersymmetry and giving the constituents a m
In addition to these three directions for theN51 theory, we
can consider the next class of interesting models by add
more supersymmetry. TheN52 theory would be particu-
larly interesting because it is the dimensional reduction
the N51 theory in 311 dimensions.
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