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We find (N+1)/2 distinct classe$‘generations” of kink solutions in anSU(N) X Z, field theory. The
classes are labeled by an integeiThe members of one class of kinks will be globally stable while those of
the other classes may be locally stable or unstable. The kink solutions ig'th#ass have a continuous
degeneracy given by the manifok,=H/K,, whereH is the unbroken symmetry group akgCH is the
group under which the kink solution remains invariant. The spagés found to contain two incontractable
spheres for some values gf indicating the possible existence of certain incontractable spherical structures in
three dimensions. We explicitly construct the three classes of kinks 81U§6) model with a quartic potential
and discuss the extension of these ideas to magnetic monopole solutions in the model.
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I. INTRODUCTION from the same class can be constructed by applying global
It is relatively easy to determine if a field theory with gauge transformations from the coset speidé whereH is
spontaneous symmetry breaking admits topological defectshe unbroked symmetry group and H is the “internal”
If the asymptotic field configuration is topologically non- symmetry group that leaves the original kink solution invari-
trivial, the interior field Configuration must have a tOpOlOgi- ant. One such class of solutions was Constructd@]lmow-
cal defect. However, there can be a large class of asymptotigver, several questions of relevance were left unanswered.
field configurations, all having the same topological characyjj| there exist a kink solution for any choice @, ? Are
teristics. Which of the many different boundary conditionse gifferent solutions really distinct? How many distinct so-
with a given topology should one use when trying 1o find & sjons can one obtain? Are these solutions stable? We wil

) o . L
topologlc;al def(_act SO|UtIOI’I.. . . answer these questions in this paper.

We will restrict our attention to the simplest kind of topo- ; .

. ; . s . In Sec. Il we will show that not all choices df . lead to
logical defects, namely kinks in one spatial dimension. How-k. K solut q find that t h @
ever the field theories we will consider are rather general, Ink solutions and we fin at we must hai®. @]

having symmetry groupS§U(N)x Z, with N being an odd =_0 in order for a sol_ution to exist. This_ _Ieads to a finit_e,
integer. The field content will be a scalar fialt transform- discrete set of topological boundary conditions that can yield

ing in the adjoint representation 8U(N), and theZ, takes distinct kink solu_tions. Each boundary c_ondition _deter_mines
@ to —d. The potential of the field theory is taken to be & class of co_n_tmuously degene_rate kink solutions in the
such that it gives a vacuum expectation valuedofthat ~Model. Surprisingly, we also find that there are non-
breaks the symmetry spontaneouslyHe={SU[(N+1)/2] topolog!ca_l klr_lk §0Iut|ons for which the boundary condmons
XSU[(N—1)/2] X U(1)}/C, where C=Z 12X Zn-1)12 do not lie in distinct topological sectors. These solutions can
is the center oSU[(N+1)/2]x SU[(N—1)/2]; other than also be classified and counted. We then find the manifold that
having this property the potential is not restricted in any waydescribes the continuous degeneracy of every class. This
The vacuum manifold of the theory is disconnected becausganifold has non-trivial topological properties which sug-
the Z, is broken down completely by the vacuum expecta-gests that certain closed domain walls are incontractable. In
tion value. Hence there are topological kinks in the theory. Sec. V we consider the specific example of3d(5) model
Suppose we want to find the explicit solution for thesewith a quartic potential and construct the topological and
kinks. Let ®(x=—«)=®_ and ®(x=+x)=®d . Then, non-topological kink solutions explicitly. In this case we also
to obtain a topological defect, the only constraint is tat  analyze the stability of the kink solutions in the three differ-
and ® _ should lie in distinct topological sectors of the ent classes. There is one globally stable class of solutions;
vacuum manifold. In fact, if®_ is a choice,Ud U for another is locally stable for some parameters; the remaining
UeSU(N) is also a valid choice. Ifil] it was shown that classes are unstable for our choice of potential.
the SU(5)X Z, kink with &, =—® _ is unstable to small In Sec. VII we discuss the extension of our results on
perturbations and that there exists a stable domain wall s@omain walls toSU(5) magnetic monopoles. With fixed
lution of lower energy corresponding to a different choice ofasymptotic field configurations, our findings suggest that
@, . These results were generalized3®&J(N) X Z, in [2]  there should exist three generations of fundame&ta(5)
where the concept of different classes of kink solutions wasnagnetic monopole solutions. We summarize our results in
introduced. Given a kink solution, the rest of the solutionsSec. VIII.
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II. KINK BOUNDARY CONDITIONS

The Lagrangian of oufl+1 dimensiongl model is
L=Tr(3,P)?—V(P). )

V(®) is a potential invariant under

G=SUN)XZ,, (2

N is taken to be odd, and the parameter¥ iare such tha®
has an expectation value that can chosen to be

2
‘I’OZ”Vm( ) ®)

wherel, is thepX p identity matrix andz is an energy scale
determined by the minima of the potential Such an expec-
tation value spontaneously breaks the symmetry down to

0
—-(n+1)1,

n1n+1
0

H=[SU(n+1)XSU(n)xU(1)]/C, (4)
where we have defined
N=2n+1, )

with n=1 being an integer. The exact formét®) will not
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Now we can explicitly list all the possible boundary con-
ditions (up to gauge rotationghat can lead to kink solutions.
At x=—o0, we fix d_=d, given in Eq.(3). Then we can
have

[ 2 :
D, =€y mdlag(nlnﬂ,q,—(n+1)1q,n1q,

(6)

where we have introduced a parametes= =1 and another
g=0, ... ,n. The labeler is +1 when the boundary condi-
tions are topologically trivial and is-1 when they are topo-
logically non-trivial. g tells us how many diagonal entries of
& _ have been permuted ip, . The caseq=0 is when
&, =erd_. The case=n was considered in detail in Ref.

[2].

—(I"H' 1)1n—q)a

Ill. KINK SOLUTIONS

We now find kink solutions for any allowed boundary
conditions® ... As a starting point we take the following

ansatz:
Dy =F, ()M, +F_(x)M_+g(x)M, 7
where
O, +d_ O, —-d_
+ = 2 I} - 2 1 (8)

be important for most of our analysis. However, it does play

a role in the stability of solutions and then we will choose it
to be a quartic polynomial ib.

If P(x=—0)=D_, then ®(x=+wx)=>0, =
—U®d_U" for any Ue SU(N) implies that the boundary
conditions are topologically non-trivial. For example,Uf
e H, the symmetry group that leaveB_ invariant, then
®,=—®_. The first question we ask is: for a fixed_,

g(£x)=0 andM is yet to be found. Explicitly, fore;=
—1, we have

1 .
M. = 7N \/ZN(N L (USPRMEPI PRUS)

(€)

for what choices ofb ;. can we obtain kink solutions? As we
shall now see, for a solution to exist, we must necessarily
choosed , such thafd, ,®_]=0.

1 .
M_=g7 2N(N —l)dlaq_znlnﬂfq 1q.1q,2(n

In Appendix A we will prove the stronger result that if 1)1 q). (10
d(x) is a solution thep® .., (x)]=0. Here we will give i .
a qualitative argument in support of this statement. Once th&lOte that the matrices! .. are orthogonal:
boundary condition ak=—o is fixed, the various small Tr(M .M _)=0, (11)

excitations of the field® around® _ can be classified as
massless or massive. The only component®dhat can be  pyt are not normalized to 1/2. The boundary conditions for
non-trivial in the kink solution are the massive modes since= | gre:

the massless modes, also called the Nambu-Goldstone

modes, if non-vanishing inside the kink, will not decay as we F (—»)=—1, F_(+0)=+1,
go further away from the kink. The massive modes are given
precisely by the generators that commute with while the F.(—©)=+1, F, (+0o)=+1. (12)

Nambu-Goldstone modes are those that do not commute.

Hence[® _,®,(x)]=0 and, in particulaj® _,®, ]=0. The advantage of this form of the ansatz is that, for particular
Therefore to construct a kink solution, one needs to fixvalues of the parameters of a quartic potential in d¥en

& _ to a vacuum expectation value and consider all possibléopological 1= —1) case, one finds the explicit and simple

commuting vacuum expectation values fbr, . ® _ can be  solutionF _(x) =tanh@x), F . (x)=1 andg(x) =0, whereo

chosen to be diagonal and by performing rotations that leaves the kink width which can be written in terms of the pa-

@ _ invariant(i.e. lie in the unbroken groupl at x=—) rameterd 1,2]. Also, for q=0, e;=—1, the solution is the

&, can also be brought to diagonal form. embedded, kink i.e. F . (x)=g(x)=0, F_(x)=tanhXx).
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Now we would like to find the unknown matrid in the (n+1-q-1)+(q—1)+(q—1)+(n—q—1)=N—4.
ansatz(7). This can be done by treatimg({x)M as a small
perturbation to Hence there are N—1)—(N—4)=3 choices ofM for
©) which the condition in Eq(18) plus TrV,=0 is not met.
OV=F, (XM +F_(X)M_. (13)  However this number includes the two possibilitiés
M .. . Hence there is only one remaining possible choice of

The perturbation is restricted to generators that are orthogq\;I

) and this is
nal to®,:

M=pdiagd(n—=aq)ly1-q, —(N=q)(N+1-0q)ly,—(n

. . . _Q)(n+1_Q)1qyQ(fH‘l—Q)ln—q) (20)
We need to check if the energy density contains any terms
that are linear irg(x), otherwise we could always construct with x being a normalization factor in which we also include
a stable kink solution witlg(x)=0. The quadratic terms in the energy scale for convenience:
the energy density clearly will not have such terms since
Tr(®{PM)=0. The only terms that may be linear {(x) w=n2q(n—q)(n+1-q){2n(n+1-q)—q}] *2
will be from terms in the potential such as ®¥) for even (21
s=4. (s has to be even since the potential is taken to have a o . . .
Z, symmetry undef®— — ®.) There will be no terms linear Note that the matrixM is not normalizable ifg=0 or if q

Tr(dPM)=0. (14

in g(x) only if =n. For these values of, we can seig(x)=0 and ®{"
coincides with the ansatp, .
Tr(®?)s"*M)=0 (15) It is easy to see thab, is a valid ansatz. Any perturba-
tions that are orthogonal ®, would have to satisfy Eq18)
for every possible choice d¥l satisfying the conditions as well as be orthogonal td. Such perturbations necessar-

ily have TrV,=0. Further, all traces of the kind in E(L5)
are proportional to T¥, and hence vanish. This justifies the

If M is off-diagonal, Eq(15) is satisfied because the trace of ansatz in Eq(7).

the product of a diagonal and an off-diagonal matrix Van'the-:—rhg fﬁgtcigr?gsgfié]xgtisgd dge(r)i(\)/e(éa?robme Iﬁ:nfab¥a?10|gggto-
ishes. @(ko) is diagonal. The non-trivial part is to check the q grang

dition for di M and hall trat gether with the specified boundary conditions. There is no
fﬁlg é;;g or diagonalvl and we shall now concentrate on guarantee that a solution will exist and so we find the solu-

Let us writeM as tions prlicitly forN_=5 with a_quartic potential i_n Se(_:. V.
An interesting point to note is that the ansatz is valid even
A if &, are not in distinct topological sectors i.e. eveneff
M=diagUn1-q:Vq:Wq:Xn-1), (7 =+1. These imply the existence of non-topological kink
whereU,.1_q, Vq, Wq andX,_, are diagonal matrices of solutions in the m_odel. If we include a subscrm)fd' to de-
order given by their subscripts. Implementation of the conhote “non-topological” andT to denote “topological,” we
ditions in Eq.(16) leads to have

Tr(M)=0, Tr(M_M)=0, TrM,M)=0. (16)

TrUn+l,q:_Trvq:_Tqu:Tan,q. (18) q)NTk:F+(X)MNT++F—(X)MNT—+g(X)MNT' (22)

Note that ifq=0 or if g=n, this condition enforces each Since®\r,=—®1., we find
matrix to be traceless.

Now, to check if Eq.(15) is satisfied, we insert the form Myt-=M1_, Myr—-=M1,., My=M7. (23
of CID(kO) from Eg. (13). From the boundary conditions in Eq.

(12), it is clear that the function . (x) are linearly indepen- Hence
dent and so Eq(15) can only be satisfied if:
Py F- (M7 +FL (XM +g(x)M7. (29
Tr(M*MAM)=0 (19

So to getF _ (F,) for the non-topological kink we have to
for integersa, B such that B+ B=<s—1. Explicit evalu- solve the topologicaF ., (F_) equation of motion with the
ation of this trace, together with the relations in Ef8) boundary conditions foF _ (F,). To obtaing for the non-
shows that the condition is satisfied by &l with TrV,  topological kink, we need to interchane. andF_ in the
=0. However, foM with TrV,+#0, the condition is not met topological equation of motion. The boundary conditions for
if « is an even integer. g are unchanged.

How many generators are there for whichVly#0 and In Sec. V we will find the topological and the non-
that satisfy the conditions in E¢L8)? There are a total num- topological kinks explicitly forN=5. Generally the non-
ber of N—1 diagonalSU(N) generators. Of these, the num- topological solutions, if they exist, will be unstable. How-
ber of generators satisfying the conditions in E§8) to-  ever, the possibility that some of them may be locally stable
gether with TV =0 are for certain potentials cannot be excluded.
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IV. KINK CLASSES Kq={SU(n+1-q)x[SU(q)]?X SU(N—q)U(1)3}/Z.

In Sec. Il we showed that there is a discrete set of bound- (26)
ary conditions that lead to different topological kink solu-
tions. The discrete set is labeled by the integevhich runs
from O to n. Hence there are+1 distinct classes of kink
solutions in theSU(N) X Z, model under consideratidi2].

The explicit construction of tha+ 1 classes of kinks has

ThereforeX ,=H/K, whereH is given in Eq.(4) andK in
Eq. (26).

Wheng=n, the analysis is modified a little bit since now
n—q=0 and the last block i@ , is absent. So nhow we have

already been described in Sec. Ill. Equat{@hdescribes the K,=1{[SU(N)]>X U(1)2/Zy. (27)
form of the solution for a fixed value af. A solution of this

form is one member of the class of kinks labeledchyVhat Note that the above classification scheme holds for both
are the other members of the class? topological (r=—1) and non-topological dr=+1) kink

The members of a class of kinks is given by the set ofsglutions.
boundary conditions that will lead to gauge equivalent kinks. The spaceX, (q#0) has interesting topological proper-
In other words, there is a set of transformations belonging t@ies. For example it has a non-trivial second homotopy
the unbroken symmetry groupl_ in Eq. (4) defined by the  group. This suggests that certain spherical configurations of
vacuum expectation valué _, that will leave® _ invariant  domain walls(in three spatial dimensiohsvill be topologi-
but will rotate® , non-trivially. The kink solutions obtained cally non-trivial and may not be able to contract. We post-
by these global gauge transformations will appear differenpone a detailed investigation of the interpretation of the non-

from the original kink at the level of field configurations but trivial topology sz and its consequences for future work.
are degenerate and belong to the same clasky Ifs the
subgroup ofH_ that leaves the|-kink solution,®,, invari- V. KINK SOLUTIONS FOR N=5
ant, then
In this section we will explicitly construct the kink solu-
S,=H_/K, tions whenN=5 and when the potential is quartic:

V(D)= —m?Tr[ 2]+ h(Tr{ ®2])?+ AT P4+ V,.

describes the class gfkinks. 28)

Another way to describ& , is in terms of all perturbative
modes that do not change the energy of the solution i.e. thehe desired symmetry breaking to
zero modes on the solution background. This will include
modes that give spatial translations and internal space rota- H=[SU(3)XSU(2)XU(1)]/[Z3X Z,] (29
tions. The translations have not been include&jpn while ) )
the internal space rotations have been included just as in tH& achieved in the parameter range
case of a “moduli space.” However, the internal zero modes

2
may not vanish ak=+o and hence are not required to be E _ N™+3 - 1 (30)
normalizable. N N(N?—1) N_5 30

Now we will find . for variousag. _ _
Whenq=0, ®, is proportional tod _ andK,=H_ i.e. ~ The vacuum expectation valué,_ is

the symmetry group that leaves the kink invariant is the en- L

tire unbroken symmetry group. Therefdtg=1 and there is _

only one element in thg=0 kink class. ®-= ”\/ﬁ)(z'z’z’_?”_?’) (31
When 0<qg<n, it is clear from Eq.(6) that the elements

of H_ that leave® , invariant areSU(n+1—q) in the first  with

block, SU(q) in the second blockSU(q) in the third block,

andSU(n—q) in the fourth block. In addition, the diagonal _m
generators oH_ commute with® , and these yield another 7= \/— (32
three U(1) factors. Hence the boundary condition »at
+o0 is invariant under
and
{SU(N+1—q)X[SU(q)]1?XSU(n—q) X U(1)3}/Z, N2+ 3 7
(25) A Eh-l—N(—Nz_—l) NZS)\:h‘FS—O)\. (33

where we have modded out the continuous group by its cen-
ter, symbolically denoted b¥y . [ This is necessary since the
center ofSU(n+ 1—q) for example, is also contained in the
U(1) factors] From the form ofM in Eq.(20), it is clear that

the group in Eq(25) is also the symmetry group that leaves mx
M invariant. Hence it is also the symmetry group that leaves ®97%=tann —
the entire kink solutionP, invariant and so )-( \/E

The q=0 topological kink (b . =— P _) has been found
in Ref.[1] and is simply an embeddet} kink for all param-
eters:

D_. (34

105023-4
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As discussed in Sec. IV, there is only one kink solution in
this class.

To find theg=1 topological kink solution, we use the
ansatz found in Sec. lll

PI"I=F, M, +F_M_+gM (35
with
5
M,=73 \/4:8d|ag(o,o,1,— 1,0), (36)
1
M_=np——diag —4,—-4,1,1,6, (37)
\240
1
M= n—=diag1,1-2,—2,2). (39
2\7

Inserting the ansatz in the Lagrangian we can derive the _

equations of motion for the functiorfs. andg. (These are
given in Appendix B). The boundary conditions on these
functions are:
F,(xw)=1, F_(xw)==*x1, g(*xx)=0. (39
If we assume thatg”|<m?/g|<1 and|F’.|<m?|F.|, an

approximate analytic solution can be obtained when

PHYSICAL REVIEW D 64 105023

0.5
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X
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FIG. 1. The profile functiond, (nearly 1 throughoyt F_
(shaped like a tanh functipnand g (nearly zer9 for the q=1

topological kink with parameters=—3/70,A\=1 andn=1.

h 3

—3\/70. (The assumptions can later be checked for self-

consistency. The approximate solution is:

m
F_=tanh —x |, (40
2
'yGF_(al-I-aze_)
=- 7 (41)
(apy1—aiy3) +(axyat asye)F2
Fo=a; "~ a;—asgF 1" 42)

where the coefficients; and y; are given in Appendix B.

X~ 20 43

the solution can be written down simply as

1—-tanh(ox 1+tanh ox
-2 Hox) ) o g

2 2
with
(ONES ! (2,-3,-3,2,2 47
—+ 77\/6—0 ] ] 164, .

[®_ is given by Eq.(31) ando=m/\2.]
A more general ansatz, valid for all valuestof\, is

This approximate solution can be extended to other near-by

parameters and a comparison with the numerically obtained
solutions shows that the approximation is reasonably good

except at the turning points &, andg. However, the quali-

_FL(0)—F_(x)
B 2

F.(X)+F_(x)

q=2

+

(48)

tative features of the numerical solution are captured by the

approximation. We show the numerical solution for
—3\/70 in Fig. 1. A numerical investigation for other values
of h/\ shows that a solution always exists for the 1 to-
pological kink.

The class ofyj=1 kinks is described by the space

3.=H/Ky, (43

where
K,=[SU(2)xU(1)%]/Z,. (44)

Theg=2 kink has been found in Rdf1] (also se¢2]). In
the case when

where functiond=, andF_ satisfy the same boundary con-
ditions as in Eq.(39). The equations of motion for thg
=2 kink along with a numerical solution were presented in
[1].
The class ofy=2 kinks is described by the space
2,=H/K,, (49

where

K,=[SU(2)?x U(1)?]/Z3. (50)

Now we will also construct the nontopologicak+{=
+1) kinks in the model.

105023-5
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where

1
1 . O, =+79—(2,-3,-322). 52
» +7760( ) (52)

=

For general values of parameters the profile functions can be
found by numerical relaxation.

o 7 VI. KINK STABILITY

To analyze the stability of the various kink solutions, we
have to expand the energy density to second order in pertur-
bations and then look for unstable modes. This would have
to be done on a case by case basis for every different choice
of potential. Here we will analyze the stability of tis8J(5)

A 7 kinks constructed in the previous section.

Theqg=0 topological kink is known to be unstallg]. To

| see this, note that the Nambu-Goldstone modes are massless

L E— at x=*o and have a negative mass squared at the origin

0 ° %0 where®,=0. Furthermore, it can be checked that the mass
squared for the Nambu-Goldstone modes is everywhere

FIG. 2. The profile function& | (shaped like a tanh function  negative for any choice of parameters. We know that an ev-
F_ (nearly constant at 1), ang (asymptotically zerpfor theq  erywhere negative potential in one dimension always admits
=1 non-topological kink with parametefs=—14/70,A=1 and  a bound state. Therefore tlgg=0 topological kink is un-
n=1. stable towards the growth of the Nambu-Goldstone modes

for all parameters.

The q=0 non-topological kink is simply the vacuum The g=1 topological kink is perturbatively unstable. The
O\ =P, and there is only one member in this class. unstable modes correspond to the four generatoSU(5)

As discussed at the end of Sec. lll, to construct the which commute WithCI)E:l(O)OCMJr and do not commute
=1 nontopological kink we can use the same equations awith ® _ and® , . These modes are masslesxat*+«~ and
for the topological case but we should switch the boundarnhave a non-zero mass at the origin. The corresponding po-
conditions onF, andF_ [Eqg. (39)]. The system of equa- tential is given by
tions has been solved numerically for a few choices of pa-
rameters. Foh= —14\/70, the profile functions are shown 7
in Fig. 2. Forh=—3\/70 we find that theq=1 non- qul(x):—mzwtl—2 5 7
topological kink breaks up into twg=2 topological kinks.

Specifically theq=1 kink interpolating betweed«(2,2,2, \ 7

—3,—3) and (2,2-3,2,—3) breaks up into ong=2 kink +(h+ > g’ + \/6:0772)\F—9- (53
interpolating between (2,2,23,—3) and—(—3,—3,2,2,2)
and another interpolating between (—3,—3,2,2,2) and . . o
(2,2—3,2,—3). This suggests that there is a repulsive force?Ve have evaluatetd 9~ *(x) numerically and found that it is
between differeng=2 kinks for parameters close to=  €vVerywhere negative for any choice of parameters.

—3\/70 and so there will be no non-topologicg1 kink As shown in Ref[1], theq=2 topological kink is pertur-
solution in a certain range of parameters. Numerically Wéoatlyely_ stable, at least for a range of parameters around the
have determined the critical parameter wheredhel non-  choice in Eq.(49). _ -

topological boundary conditions lead to two well-separated Next we discuss the perturbative stability of non-
topologicalq=2 kinks instead of one bound object. Hence {OPological kinks. _ o

we find that there are ng=1 non-topological kink solutions . 1h€d=0 non-topological kink is simply the vacuum and
for h>—0.18\. is trivially stable.

The g=2 non-topological kink can be found by solving We have_ seen that thg=1 non-topological kink solution
the same equations of motion as for the topologigal2 may not exist for some parameter values. In other words, the

AN 5
h+ —| 7?F% +

?hF3

kink after switching the boundary conditions 6n andF 9= 1 configuration may split and become tvge=2 topo-
(g=0 in this casg Then, for the parametér= — 3\/20, one logical kinks. When the&j=1 non-topological kink does not
has split into two well-separated= 2 topological kinks, we find

that it is locally stable. The potentially unstable modes are
the two generators ofSU(5) that commute with
q—2_ 1—tanh(oX) 1+tani(ox) ®I=INT(0)cM _ and do not commute witld_ and @, .
P\i=——— P+ ——-5——d,, (5] . . . .
2 2 The corresponding potential has a particularly simple form:
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3
Py= Zl P(r)raTa+M(n)T*+N(r)T®, (59

0.06 [~ T
where the subscrip¥l denotes the monopole field configu-

ration,
004 7 1 Taidiago,oga,O), T“:i(l,l,o,o,—z),
A ] 2 23
0.02 i 1 T5=L(2,2,—3,—3,2). (56)
_ ] 215

o are the Pauli spin matrices= \x?+ y?+ Z? is the spheri-

or — cal radial coordinate, ant® denotes the unit radial vector.
1 The ansatz for the gauge fields for the monopole can also be
written down

002 | . | L . N . | . . N . | . | a a rJ
50 0 50 Wi=e ija[l_K(r)] (a=1,2,3,
X
FIG. 3. U33%(x) versusx for h=—14\/70 with A\=1 and 7 Wib=0 (b#1,2,3, (57
=1.

wheree is the gauge couplind?(r), M(r), N(r) andK(r)
" are profile functions.
Ungl(x): F_+ (54) In the Bogomol'nyi-Prasad-Sommerfiel(BPS case,
+ when theSU(5) potential vanishes, the exact, minimal en-

The plot ofUﬂ,?l(x) versusx for h/A=—14/70 is shown in ergy solution is knowrS]

Fig. 3. We have checked that the value of the potentia at Cr
=0 remains positive for all parameters for which the P(N=¢; tanr(—Cr)_1>’ K(UZmy (58
=1NT kink solution exists.
The g=2 non-topological kink is perturbatively unstable > C 1 C
for all parameter choices. The unstable modes are the eight M(r)=——, N(r)=——, (59)
Nambu-Goldstone modes for which the potential is given by J3e Jis e
the same expression as in E§4). Numerically we find that
Ud72(x)<0 for all x. whereC is a constant.

A general statement we can make is that the topological We can also write the monopole aysmptotic field configu-
kinks in one of the classes will be globally stable. This justration in more transparent form mM(r:oo)=U§4<D+U34
follows from the fact that the kinks are topological and sowhere
there must be a lowest energy kink. In the analysis done for e,
theSU(5) case in Sec. V, thg=n kink is the least energetic Usy(0,¢)=e 4T e 10Tet1¢T
while the gq=0 kink has the largest number of unstable ) .
modes. This suggests that perhapsdken topological kink 0, ¢ are s_pherlcal angular coordlna_tes_ and the generafors
is the globally stable kink for any choice of potential and not2€ 9iveén in Eq(56). Note that the winding of the monopole
just the quartic potential considered in this section. Anothei€S entirely in the (3,4) block ofb. We are now — in
argument in support of this conjecture is that the change ifontrast to the earlier sections — also choosing
the values of the field components in going fromm —« to
+oo.is the 'Ieast for theg=n kink. iny one component need P, = ni(z,z,z,—:s,— 3). (60)
vanish inside the core of thegg=n kink while a greater num- /60
ber of components vanish inside the core §gEn—1. The
situation with the nontopological kinks is precisely the op-Any other choice can be transformed to this choice by a
posite. Here we know that thg=0 nontopological kink is global SU(5) rotation.

the vacuum and hence is the least energy state. The existence of the BPS solution does not preclude the
existence of other higher energy magnetic monopole solu-
VII. SU(5) MAGNETIC MONOPOLES tions even for fixed asymptotics since the boundary condi-

tions at the origin can be chosen in different waymsatze
A possible ansatz for a spherically symmeit)(5) fun-  with other asymptotics can be found i8].) One possible
damental magnetic monopole solution 84 route to determining the different monopole boundary condi-
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tions atr =0 is to assume that the cores of magnetic monopose monopole boundary conditions on a spherical domain
poles are like the cores of domain walls. Then we would likewall of this type, the field in the core of the domain wall will

to find the different spherical domain walls that have thedepend on the angular coordinates. Such a wall cannot sim-
asymptotics of the BPS solution. This will provide the ply collapse to zero radius since that would violate single-

spherical domain walls with monopole topology. If theseyaluedness of the field. Hence we do not expect to find a

spherical domain walls can shrink to zero size, the collapsenonopole whose center hds proportional to (0,0,%; 1,0).
will produce a monopole whose core is the same as that of The q=2T kink has®9=27(0)«(0,1,1-1,—1) and, as

the spherical domain wall that we started out with. In thisthis is not invariant undeb)z,, a monopole withd,,(0)
way we might hope to determine the different possibilitiesx(oyl,l'_1,_1) is not possible.
for the boundary conditiod,(0). _ The gq=2NT kink as described in Sec. V has
We have three classep=0,1,2 each of topological and ®I=2NT(0)ec(—4,1,1,1,1) and this is invariant unders,.
non-topological walls. Let us consider each of these classefy;g suggests that a monopole with,(0)ec(—4,1,1,1,1) is
one by one. o possible. However, this monopole-wall does not quite fit the
The q=0NT (q=0, non-topological kink is trivial and  form of the monopole solution given in EG5). We find that
we_need.not discuss it any further. The-0T (q=0, topo- it we chooseM (0)= — \BN(0), thecenter of the monopole
logical) kink has has @, (0)=(1,1,1,1-4) and not (4,1,1,1,1). A global
q=0,y\ _ SU(5) rotation on the monopole solution could be used to
P ) =tan(ex) ., . make®,,(0)«(—4,1,1,1,1), however this would then rotate

Using the kink solution, we can write down a field configu- the asymptotic field to®(z=2=)=(-3,2,2;-3,2), once

ration corresponding to a spherigg=0T domain wall: again providing a mismatch between the monopole-wall and
the monopole ansatz in E¢5). In spite of this mismatch,
®I=T(r 6, ¢)~tanh(o(r —R))D ., the monopole-wall has the same topologically non-trivial

asymptotic field configuration as the BPS solution and can
whereR, the radius of the spherical domain wall, is taken toalso contract to a point without any conflict with single-
be very large. Next we would like to introduce monopole valuedness. Hence we think that a monopole solution with
topology as a boundary condition to get an object that is @b y,(0)=<(—4,1,1,1,1) should exist.
monopole in which all the energy resides in a shell made of The above discussion, suggesting that there could be sev-
a domain wall.[We call this object a “monopole wall” eral monopole solutions corresponding to different boundary
(MW).] To do this we need to apply @®U(5) rotationU;,  conditions on the scalar field at=0, clearly applies to glo-
on ®. This will generally be ill-defined at the center ( bal monopoles. In the case of gauge monopoles, the only
=0) of the spherical domain wall since the field there will non-trivial gauge fields are the three fields associated with
then become multivalued. However, we are ultimately interthe SU(2) group of the embedded monopole, as in the BPS
ested in letting the radius of the spherical domain wall go tocase above. These fields still satisfy the form in &) and
zero and hence we need only apply the gauge transformatidhe only quantity that will depend on the “monopole genera-

on ® for r=R. Therefore® for the monopole wall is tion” is the profile functionK(r).
- This completes an analysis of all the cases. Three of the
D (r,0,¢)~ tani(o(r —R)ULD Uz, >R five non-trivial cases led to the possibility of a monopole

solution. This suggests the existence of three classes of fun-

Note that the value of the field in the core of the wall is thEdamenta| monopo|es ISU(S) with the same asymptotics as
same everywhere on the wall, that@ﬁ,l:\,\‘,)(R,e, #)=0re-  the BPS monopole.

gardless of the spherical angular coordinates. Therefore the
monopole-wall can collapse to a point and the field will re-

main single-valued. The resulting monopole will have VIIl. CONCLUSIONS

dy(r=0)=0. That is, the new boundary conditions on

M(r) and N(r) suggested by this argument aMd:(0)=0 We have shown that the kink solutions 8WU(N)X Z,
=N(0). occur in (N+1)/2 classes. All the kink solutions, regardless

Next consider thgj=1NT kink. Here®9=1NT(0)c (4,4,  of class, have the same topological charge. Borrowing the
—1,—1,—6) in the core of the domain wall. Once again we terminology of the standard model where particles come in
may construct the monopole-wall by applying the transfor-‘generations” (or “families”), we dub the kink classes

mationUsg,. Since “kink generations.” We have determined the continuous de-
generacy associated with every kink generation. The degen-
UL ®I=INT(0)U 4,5 D (0), eracy is described by certain manifolds which themselves

have interesting topological properties. In particular, the
the monopole-wall can collapse into a monopole. This sugmanifolds have non-trivial second homotopy, suggesting that
gests that we should be able to find a monopole solution witltertain configurations of closed domain walls in three spatial
Oy (r=0)=(4,4-1,—1,—6). This is precisely the mono- dimensions may be incontractable.
pole with boundary conditions given in E(p9). We have also examined the stability of the various classes
Theq=1T kink has®9=17(0)=(0,0,1~1,0) and thisis of kinks in an SU(5) model with quartic potential. Our
not invariant under rotations by,. Therefore once we im- analysis shows that two classes of solutions are perturba-
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tively stable (for some parameterswhile the other non- a#12, to satisfy the orthogonality conditions R(R?)

trivial kinks are unstable. . =0=Tr(R_R® and also normalize them to satisfy
The generation structure of domain walls suggests a gerry(Rr_.Ra)=1/2. We define new structure constanig, by
eration structure for the magnetic monopoles in the gauged

version of the mode— a possibility that seems worth ex- [R3,RP]=ir 4,RC. (A4)
ploring further in the context of the dual standard mddg!
We have found that spherical domain walls of tle Next we need to state certain properties of the functions

=0T,1NT,2NT classes can collapse into monopoles that ali/a(X). Due to the boundary conditionB(x— +©)—®.,
have the same asymptotic field configurations. Hence monove have

pole solutions with®,,(0)=0 and ®,(0)><(—4,1,1,1,1)

should be possible to construct in addition to the known case Ya(=2)=n, Pa(—=)=0 (a#1), (AS)
where ®,,(0)x(4,4~1,—1,—6). If all these different
boundary conditions lead to magnetic monopole solutions
and there are none othérét would indicate that there are

: . (Just as for the generatorg, =, and . =4,.) These
eX?C“Y three generations &fLY5) magnetic m_onopole S0~ boundary conditions ensure that there is no non-trivial solu-
lutions. To confirm this statement would require an explicit

) ) . .~ “tion of the kind ,(x) =const.
construction of the&sU(5) monopole solutions with the vari- Let us now perturb the kink solutiod,(x). For this,

ous possible boundary conditions. . . . :

We anticipate that a survey of the spaceSdf(N) mag- consider the field configuration
netic monopole solutions will show novel features, similar to P ,(x)=U(x) P UT(x), (A7)
those we have discovered in the case of kinks.

Yo(+2)=7, Pa(+2)=0 (a#2). (A6)

where U(x) e SU(N). Note thatV(d,)=V(d,) since the
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APPENDIX A: PROOF THAT SOLUTIONS REQUIRE

[®, ®_]=0 If we now consider infinitesimal rotations, the second term is
+oE =1

linear in these while the last term is quadratic®if is to be
Let ®,(x) be a kink solution. We can expand the solution a solution, the linear variation must vanish. Therefore,

in an orthonormal set oSU(N) generatorsT? [Tr(T,Ty) t
= 8.0/2]: Tr(dy @ [U'o,U, P ])=0 (A9)

for all U(x) infinitesimally close to unity and for ai.
D (X)= D da(X) T2 (A1) The condition in Eq(A9) can also be rewritten as:
a

T =
Here an alternate expansion will be more convenient: TPy, 0xPJU V) =0, (A10)

which should hold for anyJ (x) e SU(N). (For infinitesimal

D (X)=2, Pa(X)R?, (A2)  rotations this condition is
a
Tr([ Py, 0xP] T =0, Vx,a , (A11)
where
1 1 whereT? form a complete set d6U(N) generators.Hence
Rl=-¢_=R_, R?= 77(1,+E R, , (A3) the solution must necessarily satisfy
[Py, dxPy]=0 (A12)

where 7 is a normalization factor so that R¢)=1/2 and

the remainingR?® complete the set of generators. Dependingfor all x.

on the boundary conditions, it may well turn out that Next use the expansion @b, of Eq. (A2) in Eq. (A12)
Tr(R,R_)#0 and so these generators are not orthogona@nd that gives us:

However, we shall choose the other generators, R with

g Fand Ya(X) ¥(X) — Pp(X) ¥a(x)]=0, Ve, x.

a

"While the onlySU(5) monopole solution known to us is the BPS (A13)
solution, an exhaustive list of spherically symmetric ansatze consis- )
tent with monopole topology is given if8]. Some of these could If the functions
possibly lead to other monopole solutions with different asymptotic , ,
field configurations. Fab= tha(X) ¥p(X) = hp(X) h5(X)
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are linearly indepe_ndent, EqA13) implies thaF lape=0 —F" 4+ aF, + aF> + agF  F2 + a,0%F . + asgF _F,
whenevelF,,# 0. It is easy to see th&t,,# 0 provided both

¥, and i, are non-trivial and linearly independent. Hence =0, (B1)
the (assumedlinear independence df ,, implies thatr 4. , 3 5 5 )
=0 whenevery, and ¢4, are non-trivial and linearly inde- ~ —F-+B1F_+BFZ+BsFiF_+B49°F _+ Bsg(3F<

pendent. It is sufficient to assume that all theare linearly
independent since if two components are linearly dependent,
the basis of generatorf®?, can be redefined so that only _ _, 3 2 2 2 2
linearly independent functions occur in the expansion in Eq. 9 10+ ¥207 Y3GFL + yaQFS + ysg -t yeF (T
(A2). This shows that ifF,, are linearly independent then -F2)=0, (B3)
[R® R°]=0 if , and, are non-trivial. Therefore the solu-

tion ®, can be expanded in a Cartan basis and in particulawhere

—F%)+B69°=0, (B2)

[, ,P_]=0. S,
Without assuming the linear independence of the func- a;=B1=y,=—m",
tions F,,, we can still show the desired resgi® . , ]
=0 by examining the condition in EGA13) asx— +c°. In o= 23 h+ E)\
R . N . . . 2=7n y
this spatial region, the only non-vanishing function is 12 2
¥ (X)— 5. The termy, ) is small because all derivatives
vanish at infinity. The termsy,y, with ,# ¢, are also @g= 7721 h+i)\>
small since bothy, and ¢, tend to zero ak= +. In this 12 707 )
region, where the field is nearly at its vacuum value, we can
examine the behavior of the fields by perturbing the potential ar=r2 h+ g)\
around the vacuum. This tells us that (a# +) falls off a= 7 7))
exponentially ax— <. Therefore,
3
' ' = _ 2 —
U i Yt 5= =7 \gs
for all a# +. So the condition in Eq(A13) in the large, 7 181
ositivex region yields =2 -
p giony Bo=17 1 h+490)\),
2 Tanclh(x)=0. (AL4) , 3
Bs=n 75| h+ oM

An integration over the intervalx(+ ) then gives

B 2( h-+ 138)\)
=y N
> Topthp(X)=0, (A15) 4 245
b7 2
. 5 /3
where we have used the boundary conditigig+)=0 Bs= nz)\ﬂ 35
except forb=2 (which does not appear in the sunf\s
discussed above, it is sufficient to consider the case when the 12 [3
set of functionsfy,(x) are linearly independent. Therefore, if Be= 72\ _\/:
Y is non-trivial, we get 49 V 35
ropc=0, Vb,c. Al6 25
2bc ( ) v 7]2 h+ 9_8)\) ,
Similarly, by considering the region witk— — oo,
5
ripe=0, Vb,c. (A17) _ 2> e
C ’}/3 n 12 h+ 7)\ y

This shows thafR, ,R¥]=0=[R_,R?] if ¢,#0 for any

choice ofaand henc¢®d. ,®,(x)]=0. In particular, we can , 138
only get a kink solution if R, ,R_]=0 which is equivalent Ya= N 1o h+ ﬁ57‘ '
to[®,,P_]=0.
,.3 |3
APPENDIX B: EQUATIONS OF MOTION FOR THE g¢g=1 Ys=7 )\7 3_5-
KINK IN SU(5)
The equations of motion for the topologicgk=1 kink _ 2)\3\/3 (B4)
functionsF . andg are: Y6~ T 54N 35
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