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Space of kink solutions inSU„N…ÃZ2
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We find (N11)/2 distinct classes~‘‘generations’’! of kink solutions in anSU(N)3Z2 field theory. The
classes are labeled by an integerq. The members of one class of kinks will be globally stable while those of
the other classes may be locally stable or unstable. The kink solutions in theqth class have a continuous
degeneracy given by the manifoldSq5H/Kq , whereH is the unbroken symmetry group andKq#H is the
group under which the kink solution remains invariant. The spaceSq is found to contain two incontractable
spheres for some values ofq, indicating the possible existence of certain incontractable spherical structures in
three dimensions. We explicitly construct the three classes of kinks in anSU(5) model with a quartic potential
and discuss the extension of these ideas to magnetic monopole solutions in the model.
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I. INTRODUCTION
It is relatively easy to determine if a field theory wit

spontaneous symmetry breaking admits topological defe
If the asymptotic field configuration is topologically non
trivial, the interior field configuration must have a topolog
cal defect. However, there can be a large class of asymp
field configurations, all having the same topological char
teristics. Which of the many different boundary conditio
with a given topology should one use when trying to find
topological defect solution?

We will restrict our attention to the simplest kind of top
logical defects, namely kinks in one spatial dimension. Ho
ever the field theories we will consider are rather gene
having symmetry groupsSU(N)3Z2 with N being an odd
integer. The field content will be a scalar fieldF transform-
ing in the adjoint representation ofSU(N), and theZ2 takes
F to 2F. The potential of the field theory is taken to b
such that it gives a vacuum expectation value ofF that
breaks the symmetry spontaneously toH5$SU@(N11)/2#
3SU@(N21)/2#3U(1)%/C, where C5Z(N11)/23Z(N21)/2
is the center ofSU@(N11)/2#3SU@(N21)/2#; other than
having this property the potential is not restricted in any w
The vacuum manifold of the theory is disconnected beca
the Z2 is broken down completely by the vacuum expec
tion value. Hence there are topological kinks in the theor

Suppose we want to find the explicit solution for the
kinks. Let F(x52`)5F2 and F(x51`)5F1 . Then,
to obtain a topological defect, the only constraint is thatF1

and F2 should lie in distinct topological sectors of th
vacuum manifold. In fact, ifF1 is a choice,UF1U† for
UPSU(N) is also a valid choice. In@1# it was shown that
the SU(5)3Z2 kink with F152F2 is unstable to smal
perturbations and that there exists a stable domain wall
lution of lower energy corresponding to a different choice
F1 . These results were generalized toSU(N)3Z2 in @2#
where the concept of different classes of kink solutions w
introduced. Given a kink solution, the rest of the solutio
0556-2821/2001/64~10!/105023~11!/$20.00 64 1050
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from the same class can be constructed by applying glo
gauge transformations from the coset spaceH/I whereH is
the unbroked symmetry group andI #H is the ‘‘internal’’
symmetry group that leaves the original kink solution inva
ant. One such class of solutions was constructed in@2#, how-
ever, several questions of relevance were left unanswe
Will there exist a kink solution for any choice ofF1? Are
the different solutions really distinct? How many distinct s
lutions can one obtain? Are these solutions stable? We
answer these questions in this paper.

In Sec. III we will show that not all choices ofF1 lead to
kink solutions and we find that we must have@F1 ,F2#
50 in order for a solution to exist. This leads to a finit
discrete set of topological boundary conditions that can yi
distinct kink solutions. Each boundary condition determin
a class of continuously degenerate kink solutions in
model. Surprisingly, we also find that there are no
topological kink solutions for which the boundary conditio
do not lie in distinct topological sectors. These solutions c
also be classified and counted. We then find the manifold
describes the continuous degeneracy of every class.
manifold has non-trivial topological properties which su
gests that certain closed domain walls are incontractable
Sec. V we consider the specific example of anSU(5) model
with a quartic potential and construct the topological a
non-topological kink solutions explicitly. In this case we al
analyze the stability of the kink solutions in the three diffe
ent classes. There is one globally stable class of solutio
another is locally stable for some parameters; the remain
classes are unstable for our choice of potential.

In Sec. VII we discuss the extension of our results
domain walls toSU(5) magnetic monopoles. With fixed
asymptotic field configurations, our findings suggest t
there should exist three generations of fundamentalSU(5)
magnetic monopole solutions. We summarize our results
Sec. VIII.
©2001 The American Physical Society23-1
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II. KINK BOUNDARY CONDITIONS

The Lagrangian of our~111 dimensional! model is

L5Tr~]mF!22V~F!. ~1!

V(F) is a potential invariant under

G[SU~N!3Z2 , ~2!

N is taken to be odd, and the parameters inV are such thatF
has an expectation value that can chosen to be

F05hA 2

N~N221!S n1n11 0

0 2~n11!1nD , ~3!

where1p is thep3p identity matrix andh is an energy scale
determined by the minima of the potentialV. Such an expec-
tation value spontaneously breaks the symmetry down to

H5@SU~n11!3SU~n!3U~1!#/C, ~4!

where we have defined

N[2n11, ~5!

with n>1 being an integer. The exact form ofV(F) will not
be important for most of our analysis. However, it does p
a role in the stability of solutions and then we will choose
to be a quartic polynomial inF.

If F(x52`)5F2 , then F(x51`)5F15
2UF2U† for any UPSU(N) implies that the boundary
conditions are topologically non-trivial. For example, ifU
PH, the symmetry group that leavesF2 invariant, then
F152F2 . The first question we ask is: for a fixedF2 ,
for what choices ofF1 can we obtain kink solutions? As w
shall now see, for a solution to exist, we must necessa
chooseF1 such that@F1 ,F2#50.

In Appendix A we will prove the stronger result that
Fk(x) is a solution then@F6 ,Fk(x)#50. Here we will give
a qualitative argument in support of this statement. Once
boundary condition atx52` is fixed, the various smal
excitations of the fieldF aroundF2 can be classified a
massless or massive. The only components ofF that can be
non-trivial in the kink solution are the massive modes sin
the massless modes, also called the Nambu-Golds
modes, if non-vanishing inside the kink, will not decay as
go further away from the kink. The massive modes are gi
precisely by the generators that commute withF2 while the
Nambu-Goldstone modes are those that do not comm
Hence@F2 ,Fk(x)#50 and, in particular,@F2 ,F1#50.

Therefore to construct a kink solution, one needs to
F2 to a vacuum expectation value and consider all poss
commuting vacuum expectation values forF1 . F2 can be
chosen to be diagonal and by performing rotations that le
F2 invariant ~i.e. lie in the unbroken groupH at x52`)
F1 can also be brought to diagonal form.
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Now we can explicitly list all the possible boundary co
ditions~up to gauge rotations! that can lead to kink solutions
At x52`, we fix F25F0 given in Eq.~3!. Then we can
have

F15eThA 2

N~N221!
diag„n1n112q ,2~n11!1q ,n1q ,

2~n11!1n2q…, ~6!

where we have introduced a parametereT561 and another
q50, . . . ,n. The labeleT is 11 when the boundary condi
tions are topologically trivial and is21 when they are topo-
logically non-trivial.q tells us how many diagonal entries o
F2 have been permuted inF1 . The caseq50 is when
F15eTF2 . The caseq5n was considered in detail in Ref
@2#.

III. KINK SOLUTIONS

We now find kink solutions for any allowed bounda
conditionsF6 . As a starting point we take the following
ansatz:

Fk5F1~x!M11F2~x!M21g~x!M , ~7!

where

M15
F11F2

2
, M25

F12F2

2
, ~8!

g(6`)50 and M is yet to be found. Explicitly, foreT5
21, we have

M15hNA 1

2N~N221!
diag~0n112q ,1q ,21q ,0n2q!,

~9!

M25hA 1

2N~N221!
diag„22n1n112q ,1q ,1q ,2~n

11!1n2q…. ~10!

Note that the matricesM6 are orthogonal:

Tr~M1M2!50, ~11!

but are not normalized to 1/2. The boundary conditions
F6 are:

F2~2`!521, F2~1`!511,

F1~2`!511, F1~1`!511. ~12!

The advantage of this form of the ansatz is that, for particu
values of the parameters of a quartic potential in theq5n
topological (eT521) case, one finds the explicit and simp
solutionF2(x)5tanh(sx), F1(x)51 andg(x)50, wheres
is the kink width which can be written in terms of the p
rameters@1,2#. Also, for q50, eT521, the solution is the
embeddedZ2 kink i.e. F1(x)5g(x)50, F2(x)5tanh(sx).
3-2
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SPACE OF KINK SOLUTIONS INSU(N)3Z2 PHYSICAL REVIEW D 64 105023
Now we would like to find the unknown matrixM in the
ansatz~7!. This can be done by treatingg(x)M as a small
perturbation to

Fk
(0)[F1~x!M11F2~x!M2 . ~13!

The perturbation is restricted to generators that are ortho
nal to Fk

(0) :

Tr~Fk
(0)M !50. ~14!

We need to check if the energy density contains any te
that are linear ing(x), otherwise we could always constru
a stable kink solution withg(x)50. The quadratic terms in
the energy density clearly will not have such terms sin
Tr(Fk

(0)M )50. The only terms that may be linear ing(x)
will be from terms in the potential such as Tr(Fs) for even
s>4. (s has to be even since the potential is taken to hav
Z2 symmetry underF→2F.! There will be no terms linea
in g(x) only if

Tr„~Fk
(0)!s21M …50 ~15!

for every possible choice ofM satisfying the conditions

Tr~M !50, Tr~M2M !50, Tr~M1M !50. ~16!

If M is off-diagonal, Eq.~15! is satisfied because the trace
the product of a diagonal and an off-diagonal matrix va
ishes. (Fk

(0) is diagonal.! The non-trivial part is to check the
condition for diagonalM and we shall now concentrate o
this case.

Let us writeM as

M5diag~Un112q ,Vq ,Wq ,Xn21!, ~17!

whereUn112q , Vq , Wq andXn21 are diagonal matrices o
order given by their subscripts. Implementation of the co
ditions in Eq.~16! leads to

Tr Un112q52Tr Vq52Tr Wq5Tr Xn2q . ~18!

Note that if q50 or if q5n, this condition enforces eac
matrix to be traceless.

Now, to check if Eq.~15! is satisfied, we insert the form
of Fk

(0) from Eq. ~13!. From the boundary conditions in Eq
~12!, it is clear that the functionsF6(x) are linearly indepen-
dent and so Eq.~15! can only be satisfied if:

Tr~M1
a M2

b M !50 ~19!

for integersa, b such that 0<a1b<s21. Explicit evalu-
ation of this trace, together with the relations in Eq.~18!
shows that the condition is satisfied by allM with Tr Vq
50. However, forM with Tr VqÞ0, the condition is not me
if a is an even integer.

How many generators are there for which TrVqÞ0 and
that satisfy the conditions in Eq.~18!? There are a total num
ber ofN21 diagonalSU(N) generators. Of these, the num
ber of generators satisfying the conditions in Eq.~18! to-
gether with TrVq50 are
10502
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~n112q21!1~q21!1~q21!1~n2q21!5N24.

Hence there are (N21)2(N24)53 choices of M for
which the condition in Eq.~18! plus TrVq50 is not met.
However this number includes the two possibilitiesM
5M6 . Hence there is only one remaining possible choice
M and this is

M5m diag„q~n2q!1n112q , 2~n2q!~n112q!1q ,2~n

2q!~n112q!1q ,q~n112q!1n2q… ~20!

with m being a normalization factor in which we also includ
the energy scaleh for convenience:

m5h@2q~n2q!~n112q!$2n~n112q!2q%#21/2.
~21!

Note that the matrixM is not normalizable ifq50 or if q
5n. For these values ofq, we can setg(x)50 and Fk

(0)

coincides with the ansatzFk .
It is easy to see thatFk is a valid ansatz. Any perturba

tions that are orthogonal toFk would have to satisfy Eq.~18!
as well as be orthogonal toM . Such perturbations necessa
ily have TrVq50. Further, all traces of the kind in Eq.~15!
are proportional to TrVq and hence vanish. This justifies th
ansatz in Eq.~7!.

The functionsF6(x) and g(x) can be found by solving
their equations of motion derived from the Lagrangian
gether with the specified boundary conditions. There is
guarantee that a solution will exist and so we find the so
tions explicitly for N55 with a quartic potential in Sec. V.

An interesting point to note is that the ansatz is valid ev
if F6 are not in distinct topological sectors i.e. even ifeT
511. These imply the existence of non-topological kin
solutions in the model. If we include a subscriptNT to de-
note ‘‘non-topological’’ andT to denote ‘‘topological,’’ we
have

FNTk5F1~x!MNT11F2~x!MNT21g~x!MNT . ~22!

SinceFNT152FT1 , we find

MNT15MT2 , MNT25MT1 , MNT5MT . ~23!

Hence

FNTk5F2~x!MT11F1~x!MT21g~x!MT . ~24!

So to getF2 (F1) for the non-topological kink we have to
solve the topologicalF1 (F2) equation of motion with the
boundary conditions forF2 (F1). To obtaing for the non-
topological kink, we need to interchangeF1 andF2 in the
topological equation of motion. The boundary conditions
g are unchanged.

In Sec. V we will find the topological and the non
topological kinks explicitly forN55. Generally the non-
topological solutions, if they exist, will be unstable. How
ever, the possibility that some of them may be locally sta
for certain potentials cannot be excluded.
3-3
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IV. KINK CLASSES

In Sec. II we showed that there is a discrete set of bou
ary conditions that lead to different topological kink sol
tions. The discrete set is labeled by the integerq which runs
from 0 to n. Hence there aren11 distinct classes of kink
solutions in theSU(N)3Z2 model under consideration@2#.

The explicit construction of then11 classes of kinks ha
already been described in Sec. III. Equation~7! describes the
form of the solution for a fixed value ofq. A solution of this
form is one member of the class of kinks labeled byq. What
are the other members of the class?

The members of a class of kinks is given by the set
boundary conditions that will lead to gauge equivalent kin
In other words, there is a set of transformations belonging
the unbroken symmetry group,H2 in Eq. ~4! defined by the
vacuum expectation valueF2 , that will leaveF2 invariant
but will rotateF1 non-trivially. The kink solutions obtained
by these global gauge transformations will appear differ
from the original kink at the level of field configurations b
are degenerate and belong to the same class. IfKq is the
subgroup ofH2 that leaves theq-kink solution,Fk , invari-
ant, then

Sq[H2 /Kq

describes the class ofq-kinks.
Another way to describeSq is in terms of all perturbative

modes that do not change the energy of the solution i.e.
zero modes on the solution background. This will inclu
modes that give spatial translations and internal space r
tions. The translations have not been included inSq , while
the internal space rotations have been included just as in
case of a ‘‘moduli space.’’ However, the internal zero mod
may not vanish atx51` and hence are not required to b
normalizable.

Now we will find Sq for variousq.
When q50, Fk is proportional toF2 and Kq5H2 i.e.

the symmetry group that leaves the kink invariant is the
tire unbroken symmetry group. ThereforeS051 and there is
only one element in theq50 kink class.

When 0,q,n, it is clear from Eq.~6! that the elements
of H2 that leaveF1 invariant areSU(n112q) in the first
block, SU(q) in the second block,SU(q) in the third block,
andSU(n2q) in the fourth block. In addition, the diagona
generators ofH2 commute withF1 and these yield anothe
three U(1) factors. Hence the boundary condition atx5
1` is invariant under

$SU~n112q!3@SU~q!#23SU~n2q!3U~1!3%/ZK ,
~25!

where we have modded out the continuous group by its c
ter, symbolically denoted byZK . @This is necessary since th
center ofSU(n112q) for example, is also contained in th
U(1) factors.# From the form ofM in Eq. ~20!, it is clear that
the group in Eq.~25! is also the symmetry group that leav
M invariant. Hence it is also the symmetry group that lea
the entire kink solutionFk invariant and so
10502
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Kq5$SU~n112q!3@SU~q!#23SU~n2q!U~1!3%/ZK .
~26!

ThereforeSq5H/Kq whereH is given in Eq.~4! andKq in
Eq. ~26!.

Whenq5n, the analysis is modified a little bit since no
n2q50 and the last block inF1 is absent. So now we hav

Kn5$@SU~n!#23U~1!2%/ZK . ~27!

Note that the above classification scheme holds for b
topological (eT521) and non-topological (eT511) kink
solutions.

The spaceSq (qÞ0) has interesting topological prope
ties. For example, it has a non-trivial second homoto
group. This suggests that certain spherical configuration
domain walls~in three spatial dimensions! will be topologi-
cally non-trivial and may not be able to contract. We po
pone a detailed investigation of the interpretation of the n
trivial topology of Sq and its consequences for future wor

V. KINK SOLUTIONS FOR NÄ5

In this section we will explicitly construct the kink solu
tions whenN55 and when the potential is quartic:

V~F!52m2Tr@F2#1h~Tr@F2# !21lTr@F4#1V0 .
~28!

The desired symmetry breaking to

H5@SU~3!3SU~2!3U~1!#/@Z33Z2# ~29!

is achieved in the parameter range

h

l
.2

N213

N~N221!
U

N55

52
7

30
. ~30!

The vacuum expectation value,F2 is

F25h
1

A60
~2,2,2,23,23! ~31!

with

h[
m

Al8
~32!

and

l8[h1
N213

N~N221!
U

N55

l5h1
7

30
l. ~33!

The q50 topological kink (F152F2) has been found
in Ref. @1# and is simply an embeddedZ2 kink for all param-
eters:

Fk
q505tanhS mx

A2
D F2 . ~34!
3-4
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As discussed in Sec. IV, there is only one kink solution
this class.

To find the q51 topological kink solution, we use th
ansatz found in Sec. III

Fk
q515F1M11F2M21gM ~35!

with

M15hA 5

48
diag~0,0,1,21,0!, ~36!

M25h
1

A240
diag~24,24,1,1,6!, ~37!

M5h
1

2A7
diag~1,1,22,22,2!. ~38!

Inserting the ansatz in the Lagrangian we can derive
equations of motion for the functionsF6 andg. ~These are
given in Appendix B.! The boundary conditions on thes
functions are:

F1~6`!51, F2~6`!561, g~6`!50. ~39!

If we assume thatug9u!m2ugu!1 and uF19 u!m2uF1u, an
approximate analytic solution can be obtained whenh5
23l/70. ~The assumptions can later be checked for s
consistency.! The approximate solution is:

F2.tanhS m

A2
xD , ~40!

g.2
g6F2~a11a2F2

2 !

~a2g12a1g3!1~a2g41a5g6!F2
2 , ~41!

F1.a2
21/2@2a12a5gF2#1/2, ~42!

where the coefficientsa i and g i are given in Appendix B.
This approximate solution can be extended to other nea
parameters and a comparison with the numerically obtai
solutions shows that the approximation is reasonably g
except at the turning points ofF1 andg. However, the quali-
tative features of the numerical solution are captured by
approximation. We show the numerical solution forh5
23l/70 in Fig. 1. A numerical investigation for other value
of h/l shows that a solution always exists for theq51 to-
pological kink.

The class ofq51 kinks is described by the space

S15H/K1 , ~43!

where

K15@SU~2!3U~1!3#/Z2 . ~44!

Theq52 kink has been found in Ref.@1# ~also see@2#!. In
the case when
10502
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~45!

the solution can be written down simply as

Fk
q525

12tanh~sx!

2
F21

11tanh~sx!

2
F1 ~46!

with

F152h
1

A60
~2,23,23,2,2!. ~47!

@F2 is given by Eq.~31! ands5m/A2.#
A more general ansatz, valid for all values ofh/l, is

Fk
q525

F1~x!2F2~x!

2
F21

F1~x!1F2~x!

2
F1 ,

~48!

where functionsF1 andF2 satisfy the same boundary con
ditions as in Eq.~39!. The equations of motion for theq
52 kink along with a numerical solution were presented
@1#.

The class ofq52 kinks is described by the space

S25H/K2 , ~49!

where

K25@SU~2!23U~1!2#/Z2
2 . ~50!

Now we will also construct the nontopological (eT5
11) kinks in the model.

FIG. 1. The profile functionsF1 ~nearly 1 throughout!, F2

~shaped like a tanh function!, and g ~nearly zero! for the q51
topological kink with parametersh523/70, l51 andh51.
3-5
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The q50 non-topological kink is simply the vacuum
FNTk5F1 and there is only one member in this class.

As discussed at the end of Sec. III, to construct theq
51 nontopological kink we can use the same equations
for the topological case but we should switch the bound
conditions onF1 and F2 @Eq. ~39!#. The system of equa
tions has been solved numerically for a few choices of
rameters. Forh5214l/70, the profile functions are show
in Fig. 2. For h523l/70 we find that theq51 non-
topological kink breaks up into twoq52 topological kinks.
Specifically theq51 kink interpolating betweenF}(2,2,2,
23,23) and (2,2,23,2,23) breaks up into oneq52 kink
interpolating between (2,2,2,23,23) and2(23,23,2,2,2)
and another interpolating between2(23,23,2,2,2) and
(2,2,23,2,23). This suggests that there is a repulsive fo
between differentq52 kinks for parameters close toh5
23l/70 and so there will be no non-topologicalq51 kink
solution in a certain range of parameters. Numerically
have determined the critical parameter where theq51 non-
topological boundary conditions lead to two well-separa
topologicalq52 kinks instead of one bound object. Hen
we find that there are noq51 non-topological kink solutions
for h.20.18l.

The q52 non-topological kink can be found by solvin
the same equations of motion as for the topologicalq52
kink after switching the boundary conditions onF1 andF2

(g50 in this case!. Then, for the parameterh523l/20, one
has

FNTk
q525

12tanh~sx!

2
F21

11tanh~sx!

2
F1 , ~51!

FIG. 2. The profile functionsF1 ~shaped like a tanh function!,
F2 ~nearly constant at 1), andg ~asymptotically zero! for the q
51 non-topological kink with parametersh5214/70, l51 and
h51.
10502
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F151h
1

A60
~2,23,23,2,2!. ~52!

For general values of parameters the profile functions can
found by numerical relaxation.

VI. KINK STABILITY

To analyze the stability of the various kink solutions, w
have to expand the energy density to second order in pe
bations and then look for unstable modes. This would h
to be done on a case by case basis for every different ch
of potential. Here we will analyze the stability of theSU(5)
kinks constructed in the previous section.

Theq50 topological kink is known to be unstable@1#. To
see this, note that the Nambu-Goldstone modes are mas
at x56` and have a negative mass squared at the or
whereFk50. Furthermore, it can be checked that the m
squared for the Nambu-Goldstone modes is everywh
negative for any choice of parameters. We know that an
erywhere negative potential in one dimension always adm
a bound state. Therefore theq50 topological kink is un-
stable towards the growth of the Nambu-Goldstone mo
for all parameters.

Theq51 topological kink is perturbatively unstable. Th
unstable modes correspond to the four generators ofSU(5)
which commute withFk

q51(0)}M1 and do not commute
with F2 andF1 . These modes are massless atx56` and
have a non-zero mass at the origin. The corresponding
tential is given by

Uq51~x!52m21
7

12S h1
2l

5 Dh2F2
2 1

5

12
h2hF1

2

1S h1
l

2Dh2g21A 7

60
h2lF2g. ~53!

We have evaluatedUq51(x) numerically and found that it is
everywhere negative for any choice of parameters.

As shown in Ref.@1#, theq52 topological kink is pertur-
batively stable, at least for a range of parameters around
choice in Eq.~45!.

Next we discuss the perturbative stability of no
topological kinks.

Theq50 non-topological kink is simply the vacuum an
is trivially stable.

We have seen that theq51 non-topological kink solution
may not exist for some parameter values. In other words,
q51 configuration may split and become twoq52 topo-
logical kinks. When theq51 non-topological kink does no
split into two well-separatedq52 topological kinks, we find
that it is locally stable. The potentially unstable modes
the two generators of SU(5) that commute with
Fk

q51NT(0)}M2 and do not commute withF2 and F1 .
The corresponding potential has a particularly simple for
3-6
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UNT
q51~x!5

F19

F1
. ~54!

The plot ofUNT
q51(x) versusx for h/l5214/70 is shown in

Fig. 3. We have checked that the value of the potential ax
50 remains positive for all parameters for which theq
51NT kink solution exists.

The q52 non-topological kink is perturbatively unstab
for all parameter choices. The unstable modes are the e
Nambu-Goldstone modes for which the potential is given
the same expression as in Eq.~54!. Numerically we find that
UNT

q52(x),0 for all x.
A general statement we can make is that the topolog

kinks in one of the classes will be globally stable. This ju
follows from the fact that the kinks are topological and
there must be a lowest energy kink. In the analysis done
theSU(5) case in Sec. V, theq5n kink is the least energetic
while the q50 kink has the largest number of unstab
modes. This suggests that perhaps theq5n topological kink
is the globally stable kink for any choice of potential and n
just the quartic potential considered in this section. Anot
argument in support of this conjecture is that the change
the values of the field components in going fromx52` to
1` is the least for theq5n kink. Only one component nee
vanish inside the core of theq5n kink while a greater num-
ber of components vanish inside the core forq<n21. The
situation with the nontopological kinks is precisely the o
posite. Here we know that theq50 nontopological kink is
the vacuum and hence is the least energy state.

VII. SU„5… MAGNETIC MONOPOLES

A possible ansatz for a spherically symmetricSU(5) fun-
damental magnetic monopole solution is@3,4#:

FIG. 3. UNT
q51(x) versusx for h5214l/70 with l51 andh

51.
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FM[ (
a51

3

P~r ! r̂ aTa1M ~r !T41N~r !T5, ~55!

where the subscriptM denotes the monopole field configu
ration,

Ta5
1

2
diag~0,0,sa,0!, T45

1

2A3
~1,1,0,0,22!,

T55
1

2A15
~2,2,23,23,2!, ~56!

sa are the Pauli spin matrices,r 5Ax21y21z2 is the spheri-
cal radial coordinate, andr̂ a denotes the unit radial vecto
The ansatz for the gauge fields for the monopole can also
written down

Wi
a5e i j

a r̂ j

er
@12K~r !# ~a51,2,3!,

Wi
b50 ~bÞ1,2,3!, ~57!

wheree is the gauge coupling.P(r ), M (r ), N(r ) andK(r )
are profile functions.

In the Bogomol’nyi-Prasad-Sommerfield~BPS! case,
when theSU(5) potential vanishes, the exact, minimal e
ergy solution is known@5#:

P~r !5
1

er S Cr

tanh~Cr !
21D , K~r !5

Cr

sinh~Cr !
, ~58!

M ~r !5
2

A3

C

e
, N~r !5

1

A15

C

e
, ~59!

whereC is a constant.
We can also write the monopole aysmptotic field config

ration in more transparent form asFM(r 5`)5U34
† F1U34

where

U34~u,f!5e2 ifT3
e2 iuT2

e1 ifT3
,

u, f are spherical angular coordinates and the generatorTa

are given in Eq.~56!. Note that the winding of the monopol
lies entirely in the (3,4) block ofF. We are now — in
contrast to the earlier sections — also choosing

F15h
1

A60
~2,2,2,23,23!. ~60!

Any other choice can be transformed to this choice by
global SU(5) rotation.

The existence of the BPS solution does not preclude
existence of other higher energy magnetic monopole s
tions even for fixed asymptotics since the boundary con
tions at the origin can be chosen in different ways.~Ansatze¨
with other asymptotics can be found in@3#.! One possible
route to determining the different monopole boundary con
3-7
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tions atr 50 is to assume that the cores of magnetic mo
poles are like the cores of domain walls. Then we would l
to find the different spherical domain walls that have t
asymptotics of the BPS solution. This will provide th
spherical domain walls with monopole topology. If the
spherical domain walls can shrink to zero size, the colla
will produce a monopole whose core is the same as tha
the spherical domain wall that we started out with. In th
way we might hope to determine the different possibilit
for the boundary conditionFM(0).

We have three classesq50,1,2 each of topological an
non-topological walls. Let us consider each of these clas
one by one.

The q50NT (q50, non-topological! kink is trivial and
we need not discuss it any further. Theq50T (q50, topo-
logical! kink has

Fk
q50~x!5tanh~sx!F1 .

Using the kink solution, we can write down a field config
ration corresponding to a sphericalq50T domain wall:

Fq50T~r ,u,f!'tanh„s~r 2R!…F1,

whereR, the radius of the spherical domain wall, is taken
be very large. Next we would like to introduce monopo
topology as a boundary condition to get an object that i
monopole in which all the energy resides in a shell made
a domain wall. @We call this object a ‘‘monopole wall’’
~MW!.# To do this we need to apply anSU(5) rotationU34
on F. This will generally be ill-defined at the center (r
50) of the spherical domain wall since the field there w
then become multivalued. However, we are ultimately int
ested in letting the radius of the spherical domain wall go
zero and hence we need only apply the gauge transforma
on F for r>R. ThereforeF for the monopole wall is

FMW
q50T~r ,u,f!' tanh„s~r 2R!…U34

† F1U34, r .R.

Note that the value of the field in the core of the wall is t
same everywhere on the wall, that is,FMW

q50(R,u,f)50 re-
gardless of the spherical angular coordinates. Therefore
monopole-wall can collapse to a point and the field will r
main single-valued. The resulting monopole will ha
FM(r 50)50. That is, the new boundary conditions o
M (r ) and N(r ) suggested by this argument are:M (0)50
5N(0).

Next consider theq51NT kink. HereFq51NT(0)}(4,4,
21,21,26) in the core of the domain wall. Once again w
may construct the monopole-wall by applying the transf
mationU34. Since

U34
† Fq51NT~0!U34}F~0!,

the monopole-wall can collapse into a monopole. This s
gests that we should be able to find a monopole solution w
FM(r 50)}(4,4,21,21,26). This is precisely the mono
pole with boundary conditions given in Eq.~59!.

The q51T kink hasFq51T(0)}(0,0,1,21,0) and this is
not invariant under rotations byU34. Therefore once we im-
10502
-
e

e
of

es

a
f

-
o
on

he
-

-

-
th

pose monopole boundary conditions on a spherical dom
wall of this type, the field in the core of the domain wall wi
depend on the angular coordinates. Such a wall cannot
ply collapse to zero radius since that would violate sing
valuedness of the field. Hence we do not expect to fin
monopole whose center hasF proportional to (0,0,1,21,0).

The q52T kink hasFq52T(0)}(0,1,1,21,21) and, as
this is not invariant underU34, a monopole withFM(0)
}(0,1,1,21,21) is not possible.

The q52NT kink as described in Sec. V ha
Fq52NT(0)}(24,1,1,1,1) and this is invariant underU34.
This suggests that a monopole withFM(0)}(24,1,1,1,1) is
possible. However, this monopole-wall does not quite fit
form of the monopole solution given in Eq.~55!. We find that
if we chooseM (0)52A5N(0), thecenter of the monopole
has FM(0)}(1,1,1,1,24) and not (24,1,1,1,1). A global
SU(5) rotation on the monopole solution could be used
makeFM(0)}(24,1,1,1,1), however this would then rota
the asymptotic field toFM(z5`)}(23,2,2,23,2), once
again providing a mismatch between the monopole-wall a
the monopole ansatz in Eq.~55!. In spite of this mismatch,
the monopole-wall has the same topologically non-triv
asymptotic field configuration as the BPS solution and c
also contract to a point without any conflict with singl
valuedness. Hence we think that a monopole solution w
FM(0)}(24,1,1,1,1) should exist.

The above discussion, suggesting that there could be
eral monopole solutions corresponding to different bound
conditions on the scalar field atr 50, clearly applies to glo-
bal monopoles. In the case of gauge monopoles, the o
non-trivial gauge fields are the three fields associated w
the SU(2) group of the embedded monopole, as in the B
case above. These fields still satisfy the form in Eq.~57! and
the only quantity that will depend on the ‘‘monopole gene
tion’’ is the profile functionK(r ).

This completes an analysis of all the cases. Three of
five non-trivial cases led to the possibility of a monopo
solution. This suggests the existence of three classes of
damental monopoles inSU(5) with the same asymptotics a
the BPS monopole.

VIII. CONCLUSIONS

We have shown that the kink solutions inSU(N)3Z2
occur in (N11)/2 classes. All the kink solutions, regardle
of class, have the same topological charge. Borrowing
terminology of the standard model where particles come
‘‘generations’’ ~or ‘‘families’’ !, we dub the kink classes
‘‘kink generations.’’ We have determined the continuous d
generacy associated with every kink generation. The deg
eracy is described by certain manifolds which themsel
have interesting topological properties. In particular, t
manifolds have non-trivial second homotopy, suggesting t
certain configurations of closed domain walls in three spa
dimensions may be incontractable.

We have also examined the stability of the various clas
of kinks in an SU(5) model with quartic potential. Ou
analysis shows that two classes of solutions are pertu
3-8
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tively stable ~for some parameters! while the other non-
trivial kinks are unstable.

The generation structure of domain walls suggests a g
eration structure for the magnetic monopoles in the gau
version of the model — a possibility that seems worth ex
ploring further in the context of the dual standard model@6#.
We have found that spherical domain walls of theq
50T,1NT,2NT classes can collapse into monopoles that
have the same asymptotic field configurations. Hence mo
pole solutions withFM(0)50 and FM(0)}(24,1,1,1,1)
should be possible to construct in addition to the known c
where FM(0)}(4,4,21,21,26). If all these different
boundary conditions lead to magnetic monopole soluti
and there are none others,1 it would indicate that there are
exactly three generations ofSU(5) magnetic monopole so
lutions. To confirm this statement would require an expli
construction of theSU(5) monopole solutions with the vari
ous possible boundary conditions.

We anticipate that a survey of the space ofSU(N) mag-
netic monopole solutions will show novel features, similar
those we have discovered in the case of kinks.
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APPENDIX A: PROOF THAT SOLUTIONS REQUIRE
†F¿ ,FÀ‡Ä0

Let Fk(x) be a kink solution. We can expand the soluti
in an orthonormal set ofSU(N) generatorsTa @Tr(TaTb)
5dab/2#:

Fk~x!5(
a

fa~x!Ta. ~A1!

Here an alternate expansion will be more convenient:

Fk~x!5(
a

ca~x!Ra, ~A2!

where

R1[
1

h
F2[R2 , R2[

1

h
F1[R1 , ~A3!

whereh is a normalization factor so that Tr(R6
2 )51/2 and

the remainingRa complete the set of generators. Depend
on the boundary conditions, it may well turn out th
Tr(R1R2)Þ0 and so these generators are not orthogo
However, we shall choose the other generators, i.e.,Ra with

1While the onlySU(5) monopole solution known to us is the BP
solution, an exhaustive list of spherically symmetric ansatze con
tent with monopole topology is given in@3#. Some of these could
possibly lead to other monopole solutions with different asympto
field configurations.
10502
n-
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aÞ1,2, to satisfy the orthogonality conditions Tr(R1Ra)
505Tr(R2Ra) and also normalize them to satisf
Tr(RaRa)51/2. We define new structure constantsr abc by

@Ra,Rb#5 ir abcR
c. ~A4!

Next we need to state certain properties of the functio
ca(x). Due to the boundary conditionsF(x→6`)→F6 ,
we have

c1~2`!5h, ca~2`!50 ~aÞ1!, ~A5!

c2~1`!5h, ca~1`!50 ~aÞ2!. ~A6!

~Just as for the generators,c2[c1 and c1[c2.! These
boundary conditions ensure that there is no non-trivial so
tion of the kindca(x)5const.

Let us now perturb the kink solutionFk(x). For this,
consider the field configuration

F1~x!5U~x!FkU
†~x!, ~A7!

where U(x)PSU(N). Note thatV(F1)5V(Fk) since the
potential is invariant underSU(N) local gauge transforma
tions. Then the energy of the configurationF1 is:

E@F1#5E@Fk#12Tr~]xFk@U†]xU,Fk# !

1Tr~@U†]xU,Fk#
2!. ~A8!

If we now consider infinitesimal rotations, the second term
linear in these while the last term is quadratic. IfFk is to be
a solution, the linear variation must vanish. Therefore,

Tr~]xFk@U†]xU,Fk# !50 ~A9!

for all U(x) infinitesimally close to unity and for allx.
The condition in Eq.~A9! can also be rewritten as:

Tr~@Fk ,]xFk#U
†]xU !50, ~A10!

which should hold for anyU(x)PSU(N). „For infinitesimal
rotations this condition is

Tr~@Fk ,]xFk#T
a!50, ;x,a , ~A11!

whereTa form a complete set ofSU(N) generators.… Hence
the solution must necessarily satisfy

@Fk ,]xFk#50 ~A12!

for all x.
Next use the expansion ofFk of Eq. ~A2! in Eq. ~A12!

and that gives us:

(
b.a

r abc@ca~x!cb8~x!2cb~x!ca8~x!#50, ;c,x.

~A13!

If the functions

Fab[ca~x!cb8~x!2cb~x!ca8~x!

s-

c

3-9
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are linearly independent, Eq.~A13! implies that r abc50
wheneverFabÞ0. It is easy to see thatFabÞ0 provided both
ca and cb are non-trivial and linearly independent. Hen
the ~assumed! linear independence ofFab implies thatr abc
50 wheneverca and cb are non-trivial and linearly inde
pendent. It is sufficient to assume that all theca are linearly
independent since if two components are linearly depend
the basis of generators,Ra, can be redefined so that on
linearly independent functions occur in the expansion in
~A2!. This shows that ifFab are linearly independent the
@Ra,Rb#50 if ca andcb are non-trivial. Therefore the solu
tion Fk can be expanded in a Cartan basis and in partic
@F1 ,F2#50.

Without assuming the linear independence of the fu
tions Fab , we can still show the desired result@F6 ,Fk#
50 by examining the condition in Eq.~A13! asx→1`. In
this spatial region, the only non-vanishing function
c1(x)→h. The termc1ca8 is small because all derivative
vanish at infinity. The termscacb8 with caÞc1 are also
small since bothca and cb8 tend to zero atx51`. In this
region, where the field is nearly at its vacuum value, we
examine the behavior of the fields by perturbing the poten
around the vacuum. This tells us thatca (aÞ1) falls off
exponentially asx→`. Therefore,

c1ca8@cacb8

for all aÞ1. So the condition in Eq.~A13! in the large,
positivex region yields

(
bÞ2

r 2bccb8~x!50. ~A14!

An integration over the interval (x,1`) then gives

(
bÞ2

r 2bccb~x!50, ~A15!

where we have used the boundary conditionscb(1`)50
except for b52 ~which does not appear in the sum!. As
discussed above, it is sufficient to consider the case when
set of functionscb(x) are linearly independent. Therefore,
cb is non-trivial, we get

r 2bc50, ;b,c. ~A16!

Similarly, by considering the region withx→2`,

r 1bc50, ;b,c. ~A17!

This shows that@R1 ,Ra#505@R2 ,Ra# if caÞ0 for any
choice ofa and hence@F6 ,Fk(x)#50. In particular, we can
only get a kink solution if@R1 ,R2#50 which is equivalent
to @F1 ,F2#50.

APPENDIX B: EQUATIONS OF MOTION FOR THE qÄ1
KINK IN SU„5…

The equations of motion for the topologicalq51 kink
functionsF6 andg are:
10502
nt,
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ar
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2F19 1a1F11a2F1
3 1a3F1F2

2 1a4g2F11a5gF2F1

50, ~B1!

2F29 1b1F21b2F2
3 1b3F1

2 F21b4g2F21b5g~3F2
2

2F1
2 !1b6g350, ~B2!

2g91g1g1g2g31g3gF1
2 1g4gF2

2 1g5g2F21g6F2~F2
2

2F1
2 !50, ~B3!

where

a15b15g152m2,

a25h2
5

12S h1
1

2
l D ,

a35h2
7

12S h1
3

70
l D ,

a45h2S h1
6

7
l D ,

a552h2lA 3

35
,

b25h2
7

12S h1
181

490
l D ,

b35h2
5

12S h1
3

70
l D ,

b45h2S h1
138

245
l D ,

b55h2l
5

14
A 3

35
,

b65h2l
12

49
A 3

35
,

g25h2S h1
25

98
l D ,

g35h2
5

12S h1
6

7
l D ,

g45h2
7

12S h1
138

245
l D ,

g55h2l
3

7
A 3

35
,

g65h2l
5

24
A 3

35
. ~B4!
3-10
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