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Gravity in dynamically generated dimensions
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A theory of gravity ind+1 dimensions is dynamically generated from a theord idimensions. As an
application we show howl dynamically coupled gravity theories can reduce the effective Planck mass.
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[. INTRODUCTION we wish to obtain through the dynamical generation of a
) _ ) ) dimension in some theory on a (It; 1) dimensional mani-
The idea that a gauge theory in ¢} .dimensions appears fo|d. Our goal is the (1) Einstein-Hilbert Lagrangian,

as the low energy limit of a (#,— 1) theory with many fields \yhich we express in the moving frame drad formalism:
has been recently put forwafd,2]. One starts with (4,

—1) gauge field#\ ,(x,i), ©=0,1, ... d—1 with the range LEH:M?Jfl)f”lﬂz'““dﬂea o
of the discrete index being either infinite of finite and peri- 172
odic[A,(x,1)=A,(x,N)]. Interactions are chosen as to en-
sure that a fieldA; ;. 1(X) is generated dynamically and
whose interactions, in the low energy limit, mimig in a
(1,d) dimensional space withturning into the discrete extra
dimension. A feature of this approach is that thed(1}1)
theory has the desired properties of renormalizability andn the above the’,(x)’s, with flat space, Minkowski, indexes
asymptotic freedom. _ , a=0,1,...d, are the i+ 1)-ad’s and thew®"(x)’s are the

In this work, we extend this approach to gravity, namelygyin connectionsMy is the d dimensional Planck mass,
we generate a (d) dimensional gravity from a theory in M3\ is a cosmological constant, and the curvature tensor

(1,d—1) dimensions. Gravity will be described in a moving _ga, i . )
frame formalism as aSO(1,d—1) gauge theory on a (d, Ruu,(X) iS related to the spin connections by

— 1) manifold. Unlike the situations discussed in R¢is2],

where one started with a gauge theory in some dimension  R2%(x)=3,03°(X) — 03 (X))’ (X) = (n—v). ()
and generated the same gauge theory in a space with one '

higher dimension, in order to generate gravity in the highelin order to see what theory in a (1) space we should
dimension we have to start with an extended gravity in thestart with, we foliate the (i) dimensional manifold into
lower dimensional space. Namely, we start with®@(1,d) (1 4—1) dimensional ones. Specifically we single out the
gauge theory on a (d;-1) manifold and dynamically gen- last coordinatexy. Coordinates in the (@) dimensional
erate theS(1,d) theory on a (1) manifold[3]. Of course,  ¢,500 are written asf,Xq), where nowu=0,1, ... d—1.
the lower dimensional theory includes gravity in the We leave the firstl d-ad’s as they were but separate out the
SO(1,d—1) subgroup ofSO(1,d). “shift” vector [4]

In this case we cannot appeal to renormalizability or to
asymptotic freedom to justify this approach as the lower di-
mensional gravity or extended gravity is unlikely to be renor-
malizable or asymptotically free. What our construction en- ) o )
sures is that the dynamically generated higher dimensiondhe Minkowski indexa still ranges over +1) values. In
theory is no more singular than the lower dimensional onderms of this shift vector, Eq1) becomeg5]
and that coordinate invariance and lo&(1,d) invariance

aiay
Ag 1[ Rm,uz(x)

+M (2d+ N (d+ 1)3211(X)6222(X)]

as as L. edd+1 -
X eﬂs(x)eh(x) eﬂdﬂ(x), (1)

ef(x)=N?¥(x); (€

are maintained at each step. Details, as well as a discussion Ley=LatLg, (4)
of SO(1d) invariant interactions in (#,—1) dimensional
spaces, are presented in Sec. Il. In Sec. Il we apply thisvith

approach to a scenario where in four dimensions the exis-
tence ofl\_l dynamically coupleq gravity theories decreases LA:M?d_+11)fﬂwzmﬂdfa1az'~~ad+1[(d_1)Rilé:f (X)
the effective gravitational coupling by a factor if 172

2 ap az
+(d+
Il. DYNAMICAL GENERATION OF GRAVITY (d 1)M(d“))‘(d”)em(x)eﬂs(x)]

A. Gravity in d+1 dimensions Xez3(x)e‘;4(x)- ~ -eid(x)NadH(x), (5)
3 4 d
We shall first discuss gravity theory on a q}L,dimen-
i i i i TU= i —oppd-
sional manifold with coordinates,, ;u=0,1, d, which LB—ZM(d+11)e“1"2 ”dfa1a2-~-ad+1Rziz(X)
X e3(x)e*(x)- - -e%*1(x). 6
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We note thatL , does not contain any derivatives in tkg  d-ad’s e5(x,i), spin connectionsw??(x,i) and fields
direction nor any terms involvin@gz(x) while Lg does but,  N?(x,i); at this point the range of thigs need not be speci-

in turn, does not involve the shift vectold?(x). Lo will  fied. The Lagrangian for this collection of theories is
determine the (3,—1) theory we start out with, and our
oal will be to generate dynamically; . apd—2 aja, -
’ We may alsg note thal),: describl?s the (@,-1) theory Lo=Myq Z ez Mdealaz'"ad+1[RM1P«2(X’I)
obtained from a (4) gravity by requiring that all fields be
independent of the coordinate; and choosing the gauge +M§)\de211(x,i)ei"‘2(x,i)]
w3P=0. This is the reason we have to start with this La-
grangian in the lower dimension, rather than with purel (1, XEZZ(XJ)GZ‘:(XJ)' : 'GZZ(X,i)Nad”(X,i) . (12

—1) dimensional gravity. For gauge theories such a dimen-
sional reduction results in just a lower dimensional gauge _
theory with a group structure identical to the higher dimen-It is invariant under the product group--XxXS0O(1d)

sional one, permitting the procedure of Rdfs,2). XSO d)x-- -,
In order to couple theories at differens we have to
B. SO(1,d) gauge theory ind dimension introduce several more fields. For each paji € 1) there is

a non-Abelian gauge field’; “*(x); the only requirement on

the groupG under which these fields transforms and the

strength of the gauge coupling is that certain fermion con-
) densates, to be discussed below, are induced. In addition, for

—1) gauge theory on a (d;-1) manifold. We shall now ISeu W neu »

. . i hi, we h Weyl fermion fields. One!(x), I
obtain some of the properties of this extended model; theseac , we have two Weyl fermion fields. Ong;(x), couples

ii+1 .
properties are needed by other fields and their interactionf(.)- A, (x) as a fundamental und& while the other one,

i : i—1i
Following Ea.(5 ite the L : X'(X), couples as an antifundamental undeAtp (x). We
ollowing Eq.(5) we rewrite the Lagrangian as assume that th&0(1,d)x SO *1(1,d) symmetry is bro-

The Lagrangiark  in Eq. (5) describes asO(1,d) gauge
theory in on a (Id—1) manifold; asSO(1,d—1) is a sub-
group of SO(1,d), this model includes gravity, aBO(1,d

Lsowa= M3~ 2emna Hdeg o .. 'ad+1[Riljl«22(X) ken by a condensate
+M3iNge™ (x)€%2(x)] o i
121 Mo <¢'(x)X'+l(X)>~f?31exl{§2ab0ia,ib+1(x) ; (13
a a, E ag.
X elfs(x)eﬂ‘:(x)- . ~eﬁd(x)N d+1(X). (7)

As €%(x) is not a square matrix we may not defineefffx) O, 1(x) is anSO(1,d) Lorentz transformation matrix and
as its inverse. We can, however, introducel@gd metric  fc parametrizes the strength of the condensate. The low en-
tensor ergy effective theory for the field@ﬁ? +1(X) is governed by

the Lagrangian

9,0(X) =€, a(X)€5(X) )
as well as its inversg””(x), thus allowing us to raise and d—1 an
) : | > L,=2f M1f2 B ST (x
lower the curved space coordinate indexes. Using the ! G Z € €aray -ag. 1 rival )

SO(1,d) Clifford algebra

XD, 0% | (0e3(x, e (x,i)- e i(x,i);
{1%ar Yo} =27ap 9 Mo M3 Lg

M170,i+1n

(14)
and its associated spin matricBg,=| va,vpl/2i the Dirac
Lagrangian for ar8O(1,d) spinor field(x) is the covariant derivative is
LD: Elulluz"Mdealaz-“adJrlE(X) '}’alD,u,ldf(X) ] ) )
DO 1(X)=[3,0%, (X)+ @d. (X,i) O, 1(X)
X200 - eRONY(X),  (10) e e e
2 3 d — 0%, 1 () 0b (X +1)]. (15)
with the covariant derivative
1 ) In the continuum limit we may expar@ﬁibﬂ(x)
D ()= 4, = 5 S ap0 | AX). (19
OfY 100 =7+ a0ty () + -, (16

C. Dynamical generation of gravity in d+1 dimensions

In order to generate an extra dimension we study manyherea is the lattice separation. With the following identi-
mutually noninteractingSO(1,d) theories described by fications we recover the discrete versionlgf [Eq. (6)]:
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a:Mg_z/fdG_l, Egs. (12) and (14) with d=3,i=0,1,... N—1, and peri-
odic conditions on the discrete index, ei(x,N)
fe=(d—=1)My, 1, =ei(x,0), ... . All other nongravity fields appear only once
and couple only tmi(x,O); in the continuum language this
MaNg=(d+1)Mg 1Ng 1. (170 would indicate that these extra fields do not propagate into
the extra dimension. The dynamical mechanism discussed in
IIl. EXTRA DISCRETE DIMENSIONS Sec. Il generates a fifth dimension of circumferehtae Us-

) ) ing techniques similar to those discussed in R&f.we find
Recently, extensive research has been carried out on thgat the potential for two masses coupled only to itked
possibility that extra compact but large dimensions may acyrayity is
count for the apparently large value of the Planck nj&sg.

The present work shows how to formulate a discrete version N-1

. mym, 1 r . mm
of such schemes. In the continuum case phenomenology de- V(r)= - 2 ex —2—sm—). (18
mands that we have more than one extra dimension. For NMjz I m=o a N

simplicity we shall discuss only one extra “large” discrete
dimension[8]. We envisage a four dimensional manifold For r>Na we recover the 1/ potential with an effective

with many SO(1,4) theories. The Lagrangian is the sum of Planck massvi2=NM3.
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