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Gravity in dynamically generated dimensions
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A theory of gravity ind11 dimensions is dynamically generated from a theory ind dimensions. As an
application we show howN dynamically coupled gravity theories can reduce the effective Planck mass.
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I. INTRODUCTION

The idea that a gauge theory in (1,d) dimensions appear
as the low energy limit of a (1,d21) theory with many fields
has been recently put forward@1,2#. One starts with (1,d
21) gauge fieldsAm(x,i ), m50,1, . . . ,d21 with the range
of the discrete indexi being either infinite of finite and peri
odic @Am(x,1)5Am(x,N)#. Interactions are chosen as to e
sure that a fieldAi ,i 11(x) is generated dynamically an
whose interactions, in the low energy limit, mimicAd in a
(1,d) dimensional space withi turning into the discrete extra
dimension. A feature of this approach is that the (1,d21)
theory has the desired properties of renormalizability a
asymptotic freedom.

In this work, we extend this approach to gravity, name
we generate a (1,d) dimensional gravity from a theory in
(1,d21) dimensions. Gravity will be described in a movin
frame formalism as anSO(1,d21) gauge theory on a (1,d
21) manifold. Unlike the situations discussed in Refs.@1,2#,
where one started with a gauge theory in some dimen
and generated the same gauge theory in a space with
higher dimension, in order to generate gravity in the hig
dimension we have to start with an extended gravity in
lower dimensional space. Namely, we start with anSO(1,d)
gauge theory on a (1,d21) manifold and dynamically gen
erate theSO(1,d) theory on a (1,d) manifold @3#. Of course,
the lower dimensional theory includes gravity in th
SO(1,d21) subgroup ofSO(1,d).

In this case we cannot appeal to renormalizability or
asymptotic freedom to justify this approach as the lower
mensional gravity or extended gravity is unlikely to be ren
malizable or asymptotically free. What our construction e
sures is that the dynamically generated higher dimensio
theory is no more singular than the lower dimensional o
and that coordinate invariance and localSO(1,d) invariance
are maintained at each step. Details, as well as a discus
of SO(1,d) invariant interactions in (1,d21) dimensional
spaces, are presented in Sec. II. In Sec. III we apply
approach to a scenario where in four dimensions the e
tence ofN dynamically coupled gravity theories decreas
the effective gravitational coupling by a factor ofN.

II. DYNAMICAL GENERATION OF GRAVITY

A. Gravity in d¿1 dimensions

We shall first discuss gravity theory on a (1,d) dimen-
sional manifold with coordinatesxm ;m50,1, . . . ,d, which
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we wish to obtain through the dynamical generation o
dimension in some theory on a (1,d21) dimensional mani-
fold. Our goal is the (1,d) Einstein-Hilbert Lagrangian,
which we express in the moving frame ord-ad formalism:

LEH5M (d11)
d21 em1m2•••md11ea1a2•••ad11

@Rm1m2

a1a2 ~x!

1M (d11)
2 l (d11)em1

a1 ~x!em2

a2 ~x!#

3em3

a3 ~x!em4

a4 ~x!•••emd11

ad11 ~x!; ~1!

in the above theem
a (x)’s, with flat space, Minkowski, indexes

a50,1, . . . ,d, are the (d11)-ad’s and thevm
ab(x)’s are the

spin connections.Md is the d dimensional Planck mass
Md

2ld is a cosmological constant, and the curvature ten
Rm1m2

a1a2 (x) is related to the spin connections by

Rmn
ab~x!5]mvn

ab~x!2vm,n
a ~x!vn

nb~x!2~m↔n!. ~2!

In order to see what theory in a (1,d21) space we should
start with, we foliate the (1,d) dimensional manifold into
(1,d21) dimensional ones. Specifically we single out t
last coordinatexd . Coordinates in the (1,d) dimensional
space are written as (xm ,xd), where nowm50,1, . . . ,d21.
We leave the firstd d-ad’s as they were but separate out th
‘‘shift’’ vector @4#

ed
a~x!5Na~x!; ~3!

the Minkowski indexa still ranges over (d11) values. In
terms of this shift vector, Eq.~1! becomes@5#

LEH5LA1LB , ~4!

with

LA5M (d11)
d21 em1m2•••mdea1a2•••ad11

@~d21!Rm1m2

a1a2 ~x!

1~d11!M (d11)
2 l (d11)em1

a1 ~x!em3

a3 ~x!#

3em3

a3 ~x!em4

a4 ~x!•••emd

ad ~x!Nad11~x!, ~5!

LB52M (d11)
d21 em1m2•••mdea1a2•••ad11

Rdm1

a1a2~x!

3em2

a3 ~x!em3

a4 ~x!•••emd

ad11~x!. ~6!
©2001 The American Physical Society21-1



r

e
a
,

en
g
n

e
on

d
th

an

-

he
on-
, for

en-

i-

MYRON BANDER PHYSICAL REVIEW D 64 105021
We note thatLA does not contain any derivatives in thexd

direction nor any terms involvingvdm
ab(x) while LB does but,

in turn, does not involve the shift vectorsNa(x). LA will
determine the (1,d21) theory we start out with, and ou
goal will be to generate dynamicallyLB .

We may also note thatLA describes the (1,d21) theory
obtained from a (1,d) gravity by requiring that all fields be
independent of the coordinatexd and choosing the gaug
vd

ab50. This is the reason we have to start with this L
grangian in the lower dimension, rather than with pure (1d
21) dimensional gravity. For gauge theories such a dim
sional reduction results in just a lower dimensional gau
theory with a group structure identical to the higher dime
sional one, permitting the procedure of Refs.@1,2#.

B. SO„1,d… gauge theory ind dimension

The LagrangianLA in Eq. ~5! describes anSO(1,d) gauge
theory in on a (1,d21) manifold; asSO(1,d21) is a sub-
group of SO(1,d), this model includes gravity, anSO(1,d
21) gauge theory on a (1,d21) manifold. We shall now
obtain some of the properties of this extended model; th
properties are needed by other fields and their interacti
Following Eq.~5! we rewrite the Lagrangian as

LSO(1,d)5Md
d22em1m2•••mdea1a2•••ad11

@Rm1m2

a1a2 ~x!

1Md
2ldem1

a1 ~x!em2

a2 ~x!#

3em3

a3 ~x!em4

a4 ~x!•••emd

ad ~x!Nad11~x!. ~7!

As em
a (x) is not a square matrix we may not define anea

m(x)
as its inverse. We can, however, introduce ad3d metric
tensor

gmn~x!5em,a~x!en
a~x! ~8!

as well as its inversegmn(x), thus allowing us to raise an
lower the curved space coordinate indexes. Using
SO(1,d) Clifford algebra

$ga ,gb%52hab ~9!

and its associated spin matricesSab5@ga ,gb#/2i the Dirac
Lagrangian for anSO(1,d) spinor fieldc(x) is

LD5em1m2•••mdea1a2•••ad11
c̄~x!ga1Dm1

c~x!

3em2

a2 ~x!em3

a3 ~x!•••emd

ad ~x!Nad11~x!, ~10!

with the covariant derivative

Dmc~x!5S ]m2
1

2
Sabvm

abDc~x!. ~11!

C. Dynamical generation of gravity in d¿1 dimensions

In order to generate an extra dimension we study m
mutually noninteractingSO(1,d) theories described by
10502
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d-ad’s em
a (x,i ), spin connectionsvm

ab(x,i ) and fields
Na(x,i ); at this point the range of thei ’s need not be speci
fied. The Lagrangian for this collection of theories is

L05Md
d22(

i
em1m2•••mdea1a2•••ad11

@Rm1m2

a1a2 ~x,i !

1Md
2ldem1

a1 ~x,i !em2

a2 ~x,i !#

3em3

a3 ~x,i !em4

a4 ~x,i !•••emd

ad ~x,i !Nad11~x,i ! . ~12!

It is invariant under the product group•••3SOi(1,d)
3SO( i 11)(1,d)3•••.

In order to couple theories at differenti ’s we have to
introduce several more fields. For each pair (i ,i 11) there is
a non-Abelian gauge fieldAm

i ,i 11(x); the only requirement on
the groupG under which these fields transforms and t
strength of the gauge coupling is that certain fermion c
densates, to be discussed below, are induced. In addition
eachi, we have two Weyl fermion fields. One,c i(x), couples
to Am

i ,i 11(x) as a fundamental underG while the other one,
x i(x), couples as an antifundamental under toAm

i 21,i(x). We
assume that theSOi(1,d)3SO( i 11)(1,d) symmetry is bro-
ken by a condensate

^c i~x!x i 11~x!&; f G
d21expF i

2
SabOi ,i 11

ab ~x!G ; ~13!

Oi ,i 11
ab (x) is anSO(1,d) Lorentz transformation matrix and

f G parametrizes the strength of the condensate. The low
ergy effective theory for the fieldsOi ,i 11

ab (x) is governed by
the Lagrangian

L152 f G
d21(

i
em1m2•••mdea1a2•••ad11

Oi ,i 11
a1n

~x!

3Dm1
Oi ,i 11;n

a2 ~x!em2

a3 ~x,i !em3

a4 ~x,i !•••emd

ad11~x,i !;

~14!

the covariant derivative is

DmOi ,i 11
ab ~x!5@]mOi ,i 11

ab ~x!1vm;n
a ~x,i !Oi ,i 11

nb ~x!

2Oi ,i 11
an ~x!vm;n

b ~x; i 11!#. ~15!

In the continuum limit we may expandOi ,i 11
ab (x)

Oi ,i 11
ab ~x!5hab1 a v i ,i 11

ab ~x!1•••, ~16!

wherea is the lattice separation. With the following ident
fications we recover the discrete version ofLB @Eq. ~6!#:
1-2
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a5Md
d22/ f G

d21 ,

f G5~d21!Md11 ,

Md
2ld5~d11!Md11ld11 . ~17!

III. EXTRA DISCRETE DIMENSIONS

Recently, extensive research has been carried out on
possibility that extra compact but large dimensions may
count for the apparently large value of the Planck mass@6,7#.
The present work shows how to formulate a discrete vers
of such schemes. In the continuum case phenomenology
mands that we have more than one extra dimension.
simplicity we shall discuss only one extra ‘‘large’’ discre
dimension @8#. We envisage a four dimensional manifo
with manySO(1,4) theories. The Lagrangian is the sum
ev

n
ob
t

at
d
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Eqs. ~12! and ~14! with d53, i 50,1, . . . ,N21, and peri-
odic conditions on the discrete indexi, em

a (x,N)
5em

a (x,0), . . . . All other nongravity fields appear only onc
and couple only toem

a (x,0); in the continuum language thi
would indicate that these extra fields do not propagate
the extra dimension. The dynamical mechanism discusse
Sec. II generates a fifth dimension of circumferenceNa. Us-
ing techniques similar to those discussed in Ref.@1# we find
that the potential for two masses coupled only to thei 50
gravity is

V~r !5
m1m2

NM4
2

1

r (
m50

N21

expS 22
r

a
sin

mp

N D . ~18!

For r @Na we recover the 1/r potential with an effective
Planck massM P

2 5NM4
2 .
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