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Confining strings in SU„N… gauge theories
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We calculate the string tensions ofk-strings in SU(N) gauge theories in both 3 and 4 dimensions. We do so
for SU~4! and SU~5! in D5311, and for SU~4! and SU~6! in D5211. In D5311, we find that the ratio of
the k52 string tension to thek51 fundamental string tension is consistent, at the 2s level, with both the
M~-theory! QCD-inspired conjecture thatsk}sin(pk/N) and with ‘‘Casimir scaling,’’sk}k(N2k). In D52
11, where our results are very precise, we see a definite deviation from the MQCD formula, as well as a much
smaller but still significant deviation from Casimir scaling. We find that in bothD5211 andD5311 the
high temperature spatialk-string tensions also satisfy approximate Casimir scaling. We point out that approxi-
mate Casimir scaling arises naturally if the cross section of the flux tube is nearly independent of the flux
carried, and that this will occur in an effective dual superconducting description if we are in the deep-London
limit. We estimate, numerically, the intrinsic width ofk-strings inD5211 and indeed find little variation with
k. In addition to the stablek-strings we investigate some of the unstable strings, which show up as resonant
states in the string mass spectrum. While inD5311 our results are not accurate enough to extract the string
tensions of unstable strings, our more precise calculations inD5211 show that there the ratios between the
tensions of unstable strings and the tension of the fundamental string are in reasonably good agreement with
~approximate! Casimir scaling. We also investigate the basic assumption that confining flux tubes are described
by an effective string theory at large distances, and we attempt to determine the corresponding universality
class. We estimate the coefficient of the universal Lu¨scher correction from periodic strings that are longer than
1 fm, and findcL50.98(4) in theD5311 SU~2! gauge theory andcL50.558(19) inD5211. These values
are within 2s of the simple bosonic string values,cL5p/3 andcL5p/6, respectively, and are inconsistent
with other simple effective string theories such as the fermionic, supersymmetric, or Neveu-Schwartz theory.
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I. INTRODUCTION

It is widely believed that the SU~3! gauge theory tha
underlies QCD is linearly confining and that this explai
why we do not observe quarks~or gluons! in nature. The fact
that confinement is linear suggests that the color-electric
between fundamental charges is localized in a tube betw
those charges and it is attractive to think that the lo
distance physics of such flux tubes is given by an effec
string theory. The simplest possibility is that this strin
theory is bosonic but other possibilities are not excluded
indeed might be natural if QCD is obtained by some kind
reduction from a higher-dimensional theory.

The same comments apply to SU(N) gauge theories for
N5” 3. Indeed there are long-standing ideas that forN→`
the SU(N) gauge theory can be thought of as a string theo
Moreover, SU(N) gauge theories inD5211 also appear to
be linearly confining@1# and all the above comments wi
apply there as well.

In addition to charges in the fundamental representa
~such as quarks! one can consider the potential betwe
static charges in higher representations of the gauge gr
In SU~2! and SU~3! any such charge can be screened
gluons either to the fundamental or to the trivial represen
tion. Since virtual gluons are always present in the vacu
this means that such a potential will, at large distances, ei
rise linearly with a string tension equal to the fundamen
one or will flatten off to some constant value.~This assumes
that the fundamental string tension,s, is the lowest, as ap
pears to be the case.! For N>4, however, this is no longe
0556-2821/2001/64~10!/105019~25!/$20.00 64 1050
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the case and there are new stable strings with string tens
different from the fundamental one. A typical source may
thought of ask fundamental charges located at a point. T
confining string is then usually referred to as ak-string. For
SU(N) we have non-trivial stablek-strings up to a maximum
value ofk given by the integer part ofN/2.

Suchk-strings are interesting for a variety of reasons. T
values of their string tensions,sk , will constrain models of
confinement. In models of glueballs in which the latter co
sist of open or closed strings, the SU(N) mass spectrum
should change withN in a way that is determined by howsk
varies withN and k. In addition there are theoretical idea
concerning the value ofsk . In particular there is a conjec
ture based on M-theory approaches to QCD~MQCD! @2# that
suggestssk}sin$pk/N%. One can contrast this with the ol
‘‘Casimir scaling’’ conjecture@3# that would suggestsk
}k(N2k) and also with the simple possibility that ak-string
consists ofk non-interacting fundamental strings, in whic
casesk5ks.

In a string theory the mass of a flux tube of lengthl will
receive a leading large-l correction that isO(1/l ). Such a
slowly decreasing correction cannot be made negligible s
ply by makingl @1 fm and so it will, in principle, limit the
accuracy of our calculations ofsk . Fortunately this leading
string correction is known to be universal@4# in that its co-
efficient is determined entirely by the central charge of
effective string theory. The universality class is usua
thought to be that of a simple Nambu-Goto bosonic stri
There is, however, no strong direct~numerical! evidence for
this belief that we are aware of. Such evidence would nee
©2001 The American Physical Society19-1
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B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019
be obtained from strings that are longer than 1 fm and
achieve the required accuracy for such strings is a hard
merical problem. Where accurate values are quoted in
literature they typically involve fitting potentials down t
shorter distances, where the fits are almost certainly do
nated by the tail of the Coulomb term which has the sa
functional form as the string correction~and in practice a
similar coefficient!. We have therefore attempted to provide
usefully accurate calculation of this string correction
SU~2! gauge theory, in bothD5311 andD5211. Such a
calculation also addresses the fundamental question
whether a confining flux tube is in fact described by an
fective string theory at large distances.

The contents of this paper are as follows. In Sec. II
describe how we calculatesk from the mass of a flux loop
that winds around the spatial torus. We contrast this met
with one that uses explicit sources; in particular for ‘‘string
that can break. All this requires a classification of strings
all possible representations of the gauge group~the details of
which appear in Appendix A!. In Sec. III we summarize the
lattice aspects of our calculation; we can be brief since i
entirely standard. We then turn to the basic question
whether we really do have strings and, if so, which univ
sality class they belong to. Confining ourselves to flux tub
that are longer than 1 fm we find that in bothD5311 and
D5211 SU~2! gauge theory the leading correction to t
linear dependence of the string mass is consistent, wi
quite small errors, with what one expects from the simpl
effective bosonic string theory and excludes the most ob
ous alternatives. We then turn to our calculation ofk-strings.
We begin by briefly summarizing some of the theoreti
expectations: MQCD, Euclidean and Hamiltonian~lattice!
strong coupling, Casimir scaling, the bag model and sim
flux counting. We then turn to ourD5311 calculations of
sk52 in both SU~4! and SU~5! gauge theories and follow thi
with our ~inevitably! much more accurateD5211 calcula-
tions for SU~4! and SU~6!. @In SU~6! we are able to addres
non-trivial k53 strings.# In D5311 we find consistency a
the 2s level with both MQCD and Casimir scaling. InD
5211 the string tension ratios, while still close to th
MQCD formula, are much closer to Casimir scaling. W
point out that if the flux is homogeneous, then~approximate!
Casimir scaling arises if the flux tube width is~approxi-
mately! independent ofk. ~And, more theoretically, that this
will arise in the deep-London limit of a dual superconducti
vacuum.! To test this idea we perform an explicit calculatio
of the intrinsic size ofk-strings inD5211. We find that the
k-string width is indeed largely independent ofk, albeit with
some interesting if weak differences. We then point out t
the same calculations can be reinterpreted as telling us
the spatial string tension in the high temperature deconfin
phase satisfies approximate Casimir scaling. We complem
this with an explicitD5311 high-T calculation which dem-
onstrates that in that case too the string tension ratio is c
to Casimir scaling. We then attempt to see if there is any s
of other, unstable, strings, which should appear as exc
states in the string mass spectrum. We find reasonably
vincing evidence for such strings, satisfying approximate C
simir scaling, in ourD5211 calculations. We finish with a
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discussion of our results and some of their implications.
A preliminary version of ourD5311 calculations has

appeared in@5#. In the introduction to a recent companio
paper on the mass spectrum and topological propertie
D5311 SU(N) gauge theories@6# we briefly summarized
some of our results onsk /s. In particular we drew attention
to the relevance of these results onk-strings for the Casimir
scaling hypothesis. We remark that all these calculations
intended as a first step to a much more complete and accu
calculation of the properties of SU(N) gauge theories for al
values ofN.

The Appendixes collect detailed proofs of some sta
ments contained in the main exposition. In Appendix A w
will derive the explicit form of the operators carrying th
quantum numbers ofk-strings. In Appendix B we will show
how sources in a given representation can be screene
gluons. Finally, Appendix C will deal with the quadratic C
simirs of irreducible representations of SU(N) and their re-
lationship with Casimir scaling. Our calculations will b
heavily based on group theory. In order to make the App
dixes self-contained, we will recall some general results
group theory. For a wider introduction to the group theor
ical background we refer to@33#.

II. STRINGS AND STRING BREAKING

Consider a static source in some representationR of the
gauge group in, say, 311 dimensions. Suppose we have
conjugate source a distancer away. If r is small then the
potential energy will be dominated by the Coulomb term

VR~r ! 5
r→0CRas~r !

r
1 . . . ~1!

where as(r ) is the usual running coupling andCR is the
quadratic Casimir of the representationR:

CR[TrRTaTa ~2!

with theTa being the generators of the group. If the theory
linearly confining, and if we ignore the fact that the sour
may be screened by gluons, then at larger we expect the
potential energy to be given by

VR~r ! 5
r→`

sRr 2
p~D22!

24

cs

r
1 . . . . ~3!

Here sR is the ‘‘string tension’’ of the confining flux tube
joining the sources and how its value varies with the rep
sentationR is an interesting physical question. If the lon
distance physics of the confining flux tube is described by
effective string theory, then theO(1/r ) correction in Eq.~3!
is the Casimir energy of a string with fixed ends, andcs is
proportional to the central charge. This correction is univ
sal @4#, since it depends only upon the massless modes in
effective string theory and does not depend upon the deta
and complicated dynamics of the flux tube on scales com
rable to its width. The central charge is given@7# by the
number of massless bosonic and fermionic modes that pr
9-2
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CONFINING STRINGS IN SU(N) GAUGE THEORIES PHYSICAL REVIEW D 64 105019
gate along the string. In practice it is usually assumed
cs51, corresponding to the simplest possible~Nambu-Goto!
bosonic string theory. However, these modes are not rel
to the fundamental degrees of freedom of our SU(N) gauge
theory in any transparent way and the presence of fermio
modes is certainly not excluded. For example, we have
following simple possibilities@8#:

cs55
1 bosonic,

1

4
fermionic,

0 supersymmetric,

3

2
Neveu-Schwartz.

~4!

Whether a string description of the confining flux tube is
fact valid and, if so, what its universality class is, are fund
mental questions which are still largely open. The examp
in Eq. ~4! show that one needs to calculatecs to better than,
say, 615% if one is to usefully resolve different possibil
ties.

In reality the vacuum contains virtual gluons which c
screen the static source, and this will complicate any atte
to calculatesR . When and how this happens will depend
the energetics of the system. Suppose the representatioR
can be screened to a different representationR8 by a number
of gluons. Such a screened source will acquire an extra m
of, say, DM . If the string tension corresponding toR8 is
smaller thansR , the screening is certain to become energ
cally favored for sufficiently larger, since asr→`

DM!VR~r !2VR8~r !.sRr 2sR8r . ~5!

The minimum value ofr at which the energetics favor
screening is the string breaking scaler b . ~We shall use the
term ‘‘string breaking’’ when a source is screened to a d
ferent representation, even if the latter is not the trivial on!
So if we calculate the potential for our sources we can exp
the r dependence to be given byVR(r ) for r<r b andVR8 (r )
for r>r b . If r b is large enough then we will be able t
extract sR from the linearly rising potential atr<r b . In
practice, however, the string breaking scale is similar to ot
dynamical scales in the theory and it is not clear whether
apparent linear rise ofV(r ) for r<r b is due to the precociou
formation of a string, from which we can read offsR , or if
it is merely accidental. Indeed it may be that one can
assign an unambiguous meaning to the quantitysR under
these circumstances. However, it is also possible that if
string breaking is relatively weak then one may be able
calculatesR for r>r b by identifying an appropriate excite
string state. In any case it is clear that string breaking cre
substantial extra ambiguities in any attempt to calculate
properties of strings corresponding to higher representa
charges.

For SU~2! and SU~3! any representationR can be
screened by gluons to either the trivial or the fundamen
representation. However, for SU(N>4) this is no longer the
case and one finds new strings that are completely stable
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to which none of the above ambiguities apply. The situat
may be summarized as follows.~We leave a fuller discussion
to the Appendixes.! Suppose the representationR can be
obtained from the product ofnR1k fundamental representa
tions andnR conjugate ones. Letz be an element of the
center,ZN , of the SU(N) gauge group. Under such a cent
gauge transformation the source will transform aszk. We
shall refer tok as theN-ality of the representation. Now
since gluons transform trivially under the center, the sou
will continue to transform in this way even if it is screene
by gluons to some other representation. Thus the same v
of k will label a source and all the sources that can be
tained from it by screening. Indeed one can show that if t
representations have the same value ofk then either one can
be screened by gluons to the other. Within any given clas
such sources there will be a lowest string tensionsk , which,
by string breaking, will provide the potential for any of the
sources at large enough distances. The independent valu
k are constrained: under charge conjugationk→2k, and we
also havezk5zN2k. Thus for SU(N) we have stable strings
labeled byk51, . . . ,kmax wherekmax is the integer part of
N/2 andk51 is, of course, the fundamental string. That is
say, we must go to at least SU~4! to have ak52 string, and
to at least SU~6! to find ak53 string.

In this paper we shall compare thek52 andk51 string
tensions in SU~4! and SU~5! gauge theories inD5311. We
shall do the same in SU~4! and SU~6! in D5211; and in
this last case we shall calculate thek53 string tension as
well. In all cases we shall extrapolate to the continuum lim
and the aim is to obtain results that are accurate enoug
distinguish between various theoretical expectations. Si
these strings are all stable there is no intrinsic ambiguity
defining a string tension and we can, in principle, achie
this goal.

We shall calculatesk not from the potential between
static charges but from the mass of ak-string that winds once
around the spatial torus. If the string lengthl is sufficiently
large, its mass will be given by an expression similar to E
~3!:

mk~ l ! 5
l→`

skl 2
p~D22!

6

cs

l
1 . . . . ~6!

We note that because of the different boundary conditions
the ends of the string~periodic rather than fixed! the O(1/r )
universal string correction is four times as large as for
static potential@9#. We further note that because there are
explicit sources there is no analogue, at smalll, of the Cou-
lomb potential in Eq.~1!. That is to say, this is a particularl
favorable context in which to calculate the string correctio
its coefficient is large, and there is no danger of confusin
with a Coulomb interaction which has the same functio
form.

One can of course consider such closed but n
contractible winding strings in any representationR. How-
ever, just as with the static potential, such a string can
screened to a different string, corresponding to a represe
tion R8, as long as both strings possess the sameN-ality.
9-3
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B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019
One can picture the string breaking as follows: a pair
gluons pops out of the vacuum somewhere along the str
These then move away from each other along the string
they do so the section of string between them will no lon
belong toR but rather to the product ofR and the adjoint
representation. If the two gluons propagate all the w
around the torus they can meet and annihilate leaving a
string that is entirely in this different representation. Clea
one can extend this to any number of gluons. This is just
the breaking of the string between static sources except
here the gluons eventually annihilate rather than adherin
a source. Thus there is no extra massDM to consider and the
breaking can occur for smalll if this lowers the mass of the
loop. That is to say, there is no regionr<r b where one might
hope to see a portion of the original string prior to its brea
ing. Of course, just as for static charges, one might hop
see the unstable string as an excited ‘‘resonant’’ string in
string mass spectrum.

In addition to the complete string breaking describ
above, the gluons may propagate only some short dista
along the string before returning and annihilating. These
tual processes will renormalizesR , and simple theoretica
expectations for the string tension need to take this ef
into account.

Since we are considering larger SU(N) groups~partly in
order to calculatesk for largerk) one immediate question i
how this screening will depend onN. In particular we know
that particle decay widths vanish in the large-N limit @10#
and so it is natural to ask if screening will vanish in a simi
way. The answer is yes and no. To appreciate this cons
say, the decayr→2p in large-N QCD. This is suppressed b
a factor of 1/N. However, this suppression does not ar
from the decayper se, but is a consequence of confineme
constraining the pions to be color singlets. If the theory w
not confining, so that the ‘‘p ’’ mesons belonged to the ad
joint representation of the color group, then this decay of
r would be unsuppressed once we summed over all the
ored 2p final states. Thus the large-N suppression of particle
decays can be thought of as a phase-space suppression
confinement. In just the same way the process of glu
screening~and renormalization! of strings will be unsup-
pressed at largeN. However, the screening of a string
representationR to a particular representationR8 in the
sameN-ality class may be suppressed. Whether it is or is
will depend on the number of states inR8. So, for example,
adjoint string breaking, i.e., the adjoint sources be
screened by gluons to singlets, will be suppressed asN→`.
So will be the screening ofk51 strings down to the funda
mental and in general the screening ofk-strings to the repre-
sentation withk quarks. On the other hand the transformati
of the mixed to totally antisymmetrick52 representations is
not suppressed.~See Appendix B for details.! Of course these
general counting arguments should be supplemented by
dynamical information we have. For example we expectsk
→ks asN→` from the suppression of fluctuations in th
limit ~and the dominance of a single Master field!. This has
implications for decays as well.
10501
f
g.
s
r

y
w

e
at
to

-
to
e

ce
r-

ct

r
er,

t
e

e
l-

e to
n

t

g

ny

III. LATTICE PRELIMINARIES

The way we perform our lattice calculations is entire
standard and follows the pattern described in@6#. For com-
pleteness we shall provide a brief summary here.

We shall work on a hypercubic lattice with period
boundary conditions. The degrees of freedom are SU(N) ma-
trices,Ul , residing on the links,l, of the lattice. In the par-
tition function the fields are weighted with exp$S% whereS is
the standard plaquette action

S52b(
p

S 12
1

N
Re TrUpD , ~7!

i.e., Up is the ordered product of the matrices on the bou
ary of the plaquettep. For smooth fields this action reduce
to the usual continuum action withb52N/g2 in D5311
and b52N/ag2 in D5211 ~whereg2 has dimensions of
mass and the theory is super-renormalizable!. By varying the
inverse lattice couplingb we vary the lattice spacinga.

The Monte Carlo we use mixes standard heat-bath
over-relaxation steps in the ratio1:4.These are implemente
by updating SU~2! subgroups using the Cabibbo-Marina
prescription@11#. We use 3 subgroups in the case of SU~3!, 6
for SU~4!, 10 for SU~5! and 15 for SU~6!. To check that we
have enough subgroups for efficient ergodicity we use
same algorithm to minimize the action. We find that with t
above number of subgroups, the SU(N) lattice action de-
creases more-or-less as effectively as it does in the SU~2!
gauge theory. We calculate correlation functions every
sweep.

We calculate correlations of gauge-invariant operat
f(t), which depend on field variables within a given tim
slice, t. The basic component of such an operator will typ
cally be the ~traced! ordered product of theUl matrices
around some closed contourc. A contractible contour, such
as the plaquette itself, is used for glueball operators. If,
the other hand, we use a non-contractible closed cont
which winds once around the spatial hyper-torus, then
operator will project onto winding strings of fundament
flux. In the confining phase the theory is invariant unde
class of center gauge transformations and this ensures
the overlap between contractible and non-contractible op
tors is exactly zero, i.e.; the string cannot break. For
lattice action the correlation function of such an operator
good positivity properties; i.e., we can write

C~ t !5^f†~ t !f~0!&5(
n

z^Vufun& z2exp$2Ent% ~8!

where un& are the energy eigenstates, withEn the corre-
sponding energies, anduV& is the vacuum state. If the opera
tor has^f&50 then the vacuum will not contribute to thi
sum and we can extract the mass of the lightest state with
quantum numbers off from the large-t exponential decay of
C(t). To make the mass calculation more efficient we u
operators with definite momentum.~We will often use pW
50; however, as we will see, when better precision is
quired, it can be useful to extract extra information from t
9-4
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CONFINING STRINGS IN SU(N) GAUGE THEORIES PHYSICAL REVIEW D 64 105019
smallest non-zero momenta.! Note that on a lattice of spac
ing a we will have t5ant , wherent is an integer labeling
the time slices, so that what we actually obtain from Eq.~8!
is aEn , the energy in lattice units.

In practice a calculation using the simplest lattice str
operator is inefficient because the overlap onto the ligh
string state is small and so one has to go to large valuest
before the contribution of excited states has died away;
at larget the signal has disappeared into the statistical no
There are standard methods@12# for curing this problem,
using blocked~smeared! link operators and variational tech
niques. Here we use the simple blocking technique descr
in detail in @1#. We then have a set of trial operators corr
sponding to different blocking levels. From the space of o
erators spanned by these we can determine the best ope
using standard variational techniques@1#.

Having determined our ‘‘best’’ operator, we then attem
to fit the corresponding correlation function, normalized
that C(t50)51, with a single exponential int ~actually a
cosh to take into account the temporal periodicity!. We
choose fitting intervals@ t1 ,t2# where initially t1 is chosen to
be t150 and then is increased until an acceptable fit
achieved. The value oft2 is chosen so that there are at lea
3, and preferably 4, values oft being fitted~since our fitting
function has two parameters!. Wheret150 and the errors on
C(t5a) are much smaller than the errors att>2a, this pro-
cedure provides no significant evidence for the validity of
exponential fit, and so we use the much larger error fr
C(t52a) rather thanC(t5a). ~This typically only arises on
the coarsest lattices and/or for very massive states.! We ig-
nore correlations between statistical errors at differentt and
attempt to compensate for this both by demanding a lowex2

for the best acceptable fit and by not extending unnecess
the fitting range.~Although in practice the error on the be
fit increases as we increase the fitting range, presumably
cause the correlation int of the errors is modest and th
decorrelation of the operator correlations is less efficientt
increases.! The relatively rough temporal discretization of
few of our calculations means that, at the margins, there
inevitable ambiguities in this procedure. These, however,
crease asa→0. Once a fitting range is chosen, the error
the mass is obtained by a jack-knife procedure which de
correctly with any error correlations as long as the binn
data are statistically independent. Typically we take 50 b
each involving between 2000 and 40 000 sweeps depen
on the calculation. It is plausible that bins of this size a
independent; however, we have not stored our results
sufficiently differential form that we can calculate the au
correlation functions so as to test this in detail. A crude tes
provided by recalculating the statistical errors using bins t
are twice as large. We find the errors are essentially
changed when we do so, which provides some evidence
the statistical independence of our original bins.

In addition to the tension of the fundamentalk51 string
we also calculate tensions ofk52 andk53 strings. Denote
by Pc the ordered product of theUl around a non-
contractible loopc that winds once around the spatial toru
So TrPc will project onto a winding loop of fundamenta
flux. The operators TrPc

2 and $Tr Pc%
2 will project onto k
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52 loops, while the operators TrPc
3 , Tr Pc$Tr Pc%

2, and
$Tr Pc%

3 will project onto k53 loops. These operators, to
gether with the same ones using blocked links, are summ
so as to havepW 50 and are then used as the basis of o
variational calculation for thek52 andk53 strings, respec-
tively.

We shall frequently perform fits to our extracted mass
or string tension ratios. This may be to extract a continu
limit, or to calculate the Lu¨scher string correction. The bes
fit is obtained by minimizing thex2 and the value of the
latter is used to determine whether the fit is accepta
Equally conventional is our estimate of the error. Suppo
we wish to calculate some quantityA through the fit. Let us
suppose that the calculated ‘‘data’’ values arexi with corre-
sponding errorss i . An estimate of the errorsA is provided
by

sA
25(

i
s i

2H ]A

]xi
J 2

. ~9!

When the errors are small this formula is adequate, but m
become unreliable for larger errors and poorer fits. It is, ho
ever, widely used and we therefore adopt it to facilitate co
parison with other work.

IV. A UNIVERSAL STRING CORRECTION?

Whether the long-distance dynamics of a confining fl
tube is described by an effective string theory and, if
what is its universality class are fundamental theoreti
questions. These are also important practical questions,
ticularly for an accurate determination of the string tens
since the answer will determine how large is the slowly fa
ing O(1/l ) correction to the mass of a long flux tube in Eq
~3! and~6!. These are, however, difficult questions to answ
numerically requiring, as they do, the accurate calculation
flux tube masses when these are very long and very mas
Thus, although this problem has been addressed many t
in the past, the numerical evidence is, as yet, far from c
vincing. In this section we shall describe some calculatio
which aim to improve significantly upon this unsatisfacto
situation.

Ideally we would like to perform calculations for the var
ous SU(N) gauge groups that are of interest to us in th
paper. In practice our limited computational resources fo
us to focus upon the SU~2! group. Ideally, again, we would
wish to perform calculations for several values ofa but again
this is not practical. Instead we shall perform calculations
a single value ofa which is small enough,aAs.0.16, that
we can be confident that we are on the weak-coupling sid
any roughening transition. We shall perform such calcu
tions separately for 211 and 311 dimensions since both
cases are of interest and they need not be the same.

When is a string ‘‘long?’’ Since we expectjs[1/As to
provide the natural length scale for the physics of the c
fining flux tube, a string of lengthl 5aL will be long if
l /js5LaAs@1. We can translate to more familiar physic
units by recalling that in the real world 1/As.0.45 fm.
9-5
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B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019
Since quenched QCD provides a good approximation
QCD, we can, for qualitative purposes, use the same sca
the D5311 SU~3! gauge theory. Since it appears that
D5311 SU(N) gauge theories are ‘‘close’’ to each oth
@6#, it should not be too misleading to use the same scal
all cases. For purposes of orientation~and nothing else! we
shall also use this scale inD5211 SU(N) gauge theories
@where again all SU(N) gauge theories are close to ea
other @1# #.

A. SU„2… in 2¿1 dimensions

We perform calculations onL2Lt lattices atb59.0. @Re-
call that inD5211 SU(N) gauge theories@1# the coupling
g2 has dimensions of mass, the theory is sup
renormalizable, andb→2N/ag2 as a→0.# The flux tube
winds around the spatial torus and so has lengthl 5aL. We
perform calculations for a large number of lattice sizes, ra
ing from L58 to L540. Recall that at this value ofb one
hasaAs.0.162@1# so that the length of our flux tube range
from l 58a.1.33js to l 540a.6.53js . In our ‘‘fermi’’
units the latter translates tol .3 fm. This should certainly be
long enough to be governed by the long distance effec
string dynamics if that indeed provides the correct desc
tion.

In addition to the masses, as extracted from thepW 50
operators, we also calculate the energies corresponding t
lowest five non-zero momenta transverse to the string:ap
52pn/L for n51, . . . ,5. If wewant to use these energies
provide extra information on the flux loop mass, care
needed because the continuum energy-momentum dispe
relation, E25p21m2, suffers lattice corrections. To dete
mine these we have fitted the energies on our largest lat
with a more general dispersion relation

~aE!25~am!21~ap!21g~ap!4. ~10!

We find that for the largest lattices the size of the latt
correctiong is consistent with zero within small errors. Fo
example on theL540 lattice we obtaing50.06(8) for n
<5. Thus in these cases we can simply setg50 and use the
continuum dispersion relation. For smaller lattices the g
between momenta becomes larger and, not surprisingly,
number of momenta that can be well fitted withE25p2

1m2 decreases. Since these larger values ofE have larger
statistical errors there is not much to be gained by attemp
to include them and so we simply exclude them from the fi
For the same reason we do not bother withpW 5” 0 for lattices
with L,20.

We note that the lattice correction in Eq.~10! is g(ap)4

5g(2pn/L)4 and this is of the same order as the high
order non-universal string corrections that we have igno
in Eq. ~6!. We also note that the tree-level lattice dispers
relation provides very bad fits to our calculated energies
clearly contains lattice corrections that are far too large.
nally we remark that if we generalize Eq.~10! so as to allow
a renormalization of theO(p2) term, we find that the fitted
coefficient is unity within very small errors.
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We list the masses that we obtain from ourp50 correla-
tors in Table I. To obtain the values in the first column w
have used fits to the correlation functions,C(t), down to the
lowest plausible values oft, so as to minimize the error
~which grow with t). In some cases there are indicatio
from the effective masses at largert that this mass estimat
might be optimistic. So we have listed in the second colu
mass estimates that we regard as very safe, but which m
as a result of being overcautious, overstate the errors
hence weaken the statistical significance of our final fi
Table I also contains, in the third column, the mass estima
obtained by using bothp50 andp5” 0 energies in the way
described above. Statistically these are the most accurat
sults, although they run the risk of possessing a small s
tematic bias from lattice corrections to the continuu
energy-momentum dispersion relation. However, any s
bias will be smallest on the largest lattices and it is only
these that thep5” 0 energies make a significant difference

An immediately striking feature of the listed masses
that they rise more-or-less linearly with length, all the w
out to the longest loops. This demonstrates directly tha
D5211 SU~2! gauge theories we have linear confineme
out to at leastl;3 fm. However, this is no more than ex
pected and so we shall not dwell upon it any further here

We turn now to the real question of interest here: h
accurately can we test theO(1/l ) string correction term in
Eq. ~6!? As a first step we calculate the effective value of t
coefficient cs that one obtains from pairs of flux loops o
length l and l 8, respectively:

cs
e f f~ l ,l 8!5

6

p~D22!
3

H m~ l !

l
2

m~ l 8!

l 8 J
H 1

l 82 2
1

l 2 J .

~11!

In Table II we list the values ofcs
e f f( l ,l 8) that one obtains for

TABLE I. The lightest massaml of a fundamental string
wrapped around a spatial torus. The first column comes from g
fits to p50 correlators, chosen so as to minimize the errors. T
second column contains cautious ‘‘very safe’’ estimates with lar
errors. The third column uses bothp50 and, where useful,p5” 0
correlators.

aml ; SU(2); D5211
Lattice MC sweeps p50 ‘‘Safe’’ p50 low p

8264 43105 0.1703~4! 0.1703~4! 0.1703~4!

10248 83105 0.2167~5! 0.2167~5! 0.2167~5!

12236 106 0.2696~5! 0.2696~5! 0.2696~5!

14236 23106 0.3219~6! 0.3210~8! 0.3219~6!

16232 23106 0.3812~4! 0.3806~6! 0.3812~4!

20232 23106 0.4917~7! 0.4906~9! 0.4917~5!

24232 23106 0.5998~13! 0.5998~13! 0.6004~8!

28232 23106 0.7101~10! 0.7089~18! 0.7083~9!

32232 23106 0.8131~23! 0.8131~23! 0.8150~15!

36232 23106 0.9175~33! 0.9167~38! 0.9195~19!

40232 23106 1.0238~53! 1.0238~53! 1.0284~24!
9-6
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CONFINING STRINGS IN SU(N) GAUGE THEORIES PHYSICAL REVIEW D 64 105019
neighboring values ofl and l 8 using the masses listed i
Table I. Any given value gives us no information on th
validity of the O(1/l ) string correction. However, if we find
thatcs

e f f( l ,l 8) has a finite non-zero limit asl ,l 8→` then we
will have shown that the leading correction is indeed of t
form and the limiting value will provide us with an estima
of the coefficientcs .

Our most accurate values ofcs
e f f are those that incorpo

rate p5” 0 energies, and we display these in Fig. 1. We
from the plot that for small loop lengths the value ofcs

e f f is
small and increases as the loop length grows. However,
behavior is not monotonic: at intermediatel the value ofcs

e f f

increases through the bosonic string value and perhaps p
close to the value for a Neveu-Schwartz string. This occ
at a loop sizel;1 fm which is typically the longest loop fo
which older calculations had usefully accurate results. Th
by focusing on slightly different intervals close tol;1 fm it
is possible to either confirm or contradict the bosonic str

TABLE II. Estimating the effective string correction coefficien
from the masses of pairs of flux loops of lengthl 5aL and l 8
5aL8, respectively, using Eq.~11!.

cs
e f f( l ,l 8); SU(2); D5211

L L8 p50 ‘‘Safe’’ p50 Low p

8 10 0.130~24! 0.130~24! 0.130~24!

10 12 0.498~41! 0.498~41! 0.498~41!

12 14 0.546~62! 0.479~73! 0.546~62!

14 16 1.329~79! 1.37~11! 1.329~79!

16 20 1.046~58! 1.01~8! 1.032~48!

20 24 0.99~16! 1.15~18! 1.08~10!

24 28 1.53~27! 1.35~35! 1.16~19!

28 32 0.31~51! 0.6~6! 1.10~36!

32 36 0.7~1.1! 0.5~1.2! 0.68~66!

36 40 1.4~2.1! 1.7~2.2! 2.2~1.0!

FIG. 1. TheD5211 effective string correction coefficient es
timated from the masses of flux loops of different lengths~indicated
by the span of the horizontal error bar! using Eq.~11!. The solid
line is what one expects for a simple bosonic string.
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value, but, in either case, incorrectly. To obtain real evide
one must go to longer strings and if one does so, as in Fig
one finds that the value ofcs

e f f decreases again to somethin
that appears consistent with the bosonic string value.

To obtain our estimate ofcs we use Eq.~6! to fit all the
loop masses that are longer than some reference valuel 0. If
l 0 is small there is no acceptable fit. As we increasel 0 even-
tually the fit becomes acceptable. We can then increasel 0 to
check the stability of the best fit. In Table III we list th
results of this procedure for each of our three sets of lo
masses. The most accurate values are obtained from the
set, and are plotted in Fig. 2. From the second column
Table III we extract a ‘‘safe’’ estimate for the string corre
tion:

cs51.06660.036. ~12!

This is close to the bosonic string value and far from that
other simple string theories.

The above analysis assumes that the leading correctio
the linear dependence of the mass is}1/l . The fact thatcs

e f f

becomes independent, within errors, ofl once l>16a, tells
us that our results are certainly consistent with such a str

TABLE III. Estimating the string correction coefficient from
fit of Eq. ~6! to the masses of all the flux loops of lengthl> l 0

5aL0. In each case we show thex2/do f of the best fit.

cs( l> l 0); SU(2); D5211
L0 p50 x2/do f ‘‘Safe’’ p50 x2/do f Low p x2/do f

14 1.118~28! 1.3 1.104~18! 1.6
16 1.071~26! 1.2 1.066~36! 0.4 1.070~22! 0.4
20 1.091~63! 1.4 1.11~8! 0.5 1.105~42! 0.3
24 1.02~16! 1.9 1.01~16! 0.5 1.12~9! 0.4
28 0.52~28! 0.2 0.69~35! 0.1 1.10~17! 0.6
32 0.9~7! 0.1 0.88~75! 0.2 1.21~40! 1.0

FIG. 2. TheD5211 string correction coefficient estimated b
fitting the masses of all flux loops with length greater thanL as a
function of L.
9-7
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TABLE IV. The lightest massaml of a fundamental string wrapped around a spatial torus. The
column comes from good fits top50 correlators, chosen so as to minimize the errors. The second co
contains cautious ‘‘very safe’’ estimates with larger errors. The third and fourth columns use bothp50 and,
where useful,p5” 0 correlators.

aml ; SU(2); D5311
Lattice MC sweeps p50 ‘‘Safe’’ p50 Low p ‘‘Safe’’ low p

10360 105 0.1679~14! 0.1679~14! 0.1679~14! 0.1679~14!

12348 23105 0.2073~14! 0.2073~14! 0.2073~14! 0.2073~14!

14336 43105 0.2632~13! 0.2606~16! 0.2636~12! 0.2606~16!

16328 63105 0.3230~18! 0.3230~18! 0.3302~11! 0.3230~18!

204 63105 0.4468~15! 0.4416~23! 0.4408~20! 0.4408~20!

244 83105 0.5476~22! 0.5476~22! 0.5459~15! 0.5459~15!

32324 43105 0.7598~75! 0.7469~115! 0.7549~50! 0.7496~58!
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like correction. It is interesting to ask how well our calcul
tions exclude other choices. We have therefore performed
to

m~ l !5s l 1
c

l p . ~13!

We find that the there are no acceptable fits if any val
with l ,14a are included. The fit tol>14a has a mediocre
but acceptablex2, and we find that the possible range
powers isp51.460.5. For l>16a the best fit is very good
and one findsp50.960.5. Fits tol>20a are equally good
but no longer provide a useful constraint onp. In short, our
results are consistent with theO(1/l ) string-like correction
term and, in any case, the power of 1/l is constrained to be
within the rangep50.960.5. So if we constrain the powerp
to be an integer, we find that it indeed has to bep51.

B. SU„2… in 3¿1 dimensions

We perform calculations onL3Lt lattices atb52.55. At
this value ofb one hasaAs.0.159@6#, so that the size ofa
is very similar to that in ourD5211 calculations. The cal-
culations inD5311 are, of course, slower and so our ran
of lattice sizes and our statistics are somewhat less. One
hope that this will be partly compensated for by the fact t
the expected string correction, (D22)pcs/6L, will be twice
as large~for a given universality class!. We perform calcula-
tions on lattices ranging fromL58 to L532. Thus our long-
est flux loop isl 532a.2.3 fm which, if our experience in
D5211 is relevant, should be long enough to see the le
ing correction.

Our calculation and analysis is precisely as inD5211,
except that the values of the momenta transverse to the
loop that we use arep250,1,2,4. The mass estimates a
listed in Table IV. As in theD5211 case we list two sets o
masses extracted from thep50 correlators. In general ou
mass estimates are chosen to be those with the smalle
rors while still giving plausible fits. In some cases the pla
sibility is less than convincing and we then also selec
‘‘safer’’ mass estimate, which will have larger errors. T
former numbers provide the first column of masses in Ta
IV while the latter provide the second column. The two c
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umns only differ in some cases. The mass estimates obta
usingp5” 0 as well asp50 correlators are also divided int
two sets~a division that did not appear useful inD5211).
The first set~third column of masses! differs from the second
principally in that on theL514,16 lattices we chose les
plausiblep50 masses in order to be consistent with thep
51 values with which they were then averaged. In the l
‘‘safe’’ column we dealt with this discrepancy by not usin
the p5” 0 values~which, in any case, become much less u
ful on the smaller lattices!. Thus this range of mass estimat
gives some indication of any systematic error that ari
from our procedure for extracting masses. We first note t
the loop mass increases approximately linearly with the lo
length confirming, as expected, that the theory is linea
confining ~up to ;2.3 fm).

In Table V we list the values of the effective string co
rection coefficient,cs

e f f , defined in Eq.~11!. As in D52
11 our most accurate values ofcs

e f f are those that incorpo
ratep5” 0 energies, and we display one set of these in Fig
We see in the plot a behavior similar to what we observed
D5211: the value ofcs

e f f increases as the loop length in
creases, attains a maximum value atl .1 fm that is signifi-
cantly larger than the bosonic string value, and then
creases to a value consistent with the value for a boso
string.

Just as inD5211 we estimatecs by using Eq.~6! to fit
all the loop masses that are longer than some reference v
l 0. If l 0 is small there is no acceptable fit. As we increasel 0

TABLE V. Estimating the effective string correction coefficien
from the masses of pairs of flux loops of lengthl 5aL and l 8
5aL8, respectively, using Eq.~11!.

cs
e f f( l ,l 8); SU(2); D5311

L L8 p50 ‘‘Safe’’ p50 Low p ‘‘Safe’’ low p

10 12 0.15~6! 0.15~6! 0.15~6! 0.15~6!

12 14 0.79~8! 0.69~9! 0.81~8! 0.69~9!

14 16 1.11~12! 1.26~13! 1.44~9! 1.26~13!

16 20 1.46~9! 1.28~11! 0.95~8! 1.26~10!

20 24 0.60~15! 0.92~18! 0.88~15! 0.88~15!

24 32 1.17~32! 0.66~47! 1.06~21! 0.85~24!
9-8
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CONFINING STRINGS IN SU(N) GAUGE THEORIES PHYSICAL REVIEW D 64 105019
we find that the fit eventually becomes acceptable. We t
increasel 0 to check the stability of the best fit. In Table V
we list the results of this procedure for each of our last th
sets of loop masses.~For the first set there are no acceptab
fits, perhaps indicating that some of the mass choices w
indeed too optimistic.! The most accurate values are obtain
from the last two sets, and we use these to obtain our
estimate for the string correction:

cs50.9460.04. ~14!

This is close to the bosonic string value and far from that
other simple string theories.

V. K-STRINGS

In the previous section we accumulated some evide
that SU~2! flux tubes in the fundamental representation
described by an effective bosonic string theory at large
tances. In this section we consider flux tubes in higher r
resentations: thek-strings described in the Introduction. W
will not be able to perform comparable checks on the strin
nature of these flux tubes although we will perform so

FIG. 3. TheD5311 effective string correction coefficient es
timated from the masses of flux loops of different lengths~indicated
by the span of the horizontal error bar! using Eq.~11!. The solid
line is what one expects for a simple bosonic string. For compar
the dashed line indicates the value for the Neveu-Schwartz st
We use masses from the third column in Table V.

TABLE VI. Estimating the string correction coefficient from
fit of Eq. ~6! to the masses of all the flux loops of lengthl> l 0

5aL0. In each case we show thex2/do f of the best fit.

cs( l> l 0); SU(2); D5311

L0

‘‘Safe’’
p50 x2/do f Low p x2/do f

‘‘Safe’’ low
p x2/do f

14 1.19~4! 1.5 1.150~32! 2.2
16 1.14~6! 1.7 0.94~4! 0.2 1.087~52! 2.2
20 0.88~16! 0.2 0.95~12! 0.4 0.87~11! 0.0
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crude finite volume analyses that are primarily designed
confirm the presence of linear confinement in SU(N>4)
gauge theories. In our analysis of the string tension rat
sk /s, we shall make the plausible assumption that the le
ing correction is that of a simple bosonic string. Howev
for completeness we shall also point out how the results
affected if this should not be the case.

In order to provide some theoretical context within whi
to view our numerical results, we shall first briefly summ
rize some of the existing ideas about how such ratios m
behave. This is not intended to be an exhaustive review,
our references are merely designed to provide an entry
the literature rather than aiming at completeness.

We then describe our calculations ofk52 and ~funda-
mental! k51 strings inD5311 SU~4! and SU~5! gauge
theories. We follow this with a description of ourD5211
calculations which are for SU~4! and SU~6!. In this last case
we also have non-trivialk53 strings that we are able t
analyze.

We shall find that inD5311 the string tension ratios lie
between the predictions of MQCD and Casimir scalin
straddling both within two standard deviations; with SU~4!
slightly favoring Casimir scaling and SU~5! leaning towards
MQCD. In D5211 our results are again close to both C
simir scaling and to MQCD, but now they are much mo
accurate and so we can begin to see significant deviati
Although we see deviations from both sets of predictio
those from MQCD are much larger than those from Casi
scaling. We point out that near-Casimir scaling occurs na
rally if the confining flux tube has a cross section that
nearly independent of the flux carried. We perform expli
calculations inD5211 that suggest that this is in fact so
These calculations give us, as a side product, the value o
k-string tensions at high temperature, and we find ne
Casimir scaling there as well. Motivated by this we perfo
a high T calculation in theD5311 SU~4! gauge theory
where we again find near-Casimir scaling.

It is interesting to ask if all this also occurs for the u
stable strings. We shall show that ourD5211 calculations
provide some evidence that points to this.

A. Some expectations fork-strings

The interest in strings that emanate from sources in hig
representations goes back a long way. The early discuss
were framed in terms of unstable strings in SU~2! and SU~3!
gauge theories as were the lattice calculations.~See, for ex-
ample,@3#.! Despite the uncertainties of this kind of calcul
tion, these early results were already seen as being ab
discriminate against particular theoretical ideas; in particu
@13# against the bag model@13,14#. There have been recen
much more accurate SU~3! calculations@15,16# that support
this earlier work, and this has sparked some interest in
possible dynamics@17–19#. The recent interest@20,5#, in-
cluding our own, in stablek-strings in SU(N>4) has been
largely due to conjectures arising in M~-theory!QCD @2#.
Here we briefly allude to some of these theoretical ide
with a particular focus on MQCD and ‘‘Casimir scaling

n
g.
9-9
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B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019
since their predictions turn out to be closest to the results
obtain @5,6# for the tensions ofk-strings.

1. Unbound strings

The simplest possibility is that

sk5 k̃sk51 , k̃5min$k,N2k%. ~15!

That is to say the total flux is carried byk ~or N2k if that is
smaller! independent fundamental flux tubes. This would o
cur if the interaction between fundamental flux tubes was
weak that there were no bound or resonant multi-str
states. One may regard this as the trivial scenario with wh
the actual calculated values ofsk can be contrasted.

2. Casimir scaling

The idea that the confining flux tube between sources
be proportional to the quadratic Casimir,CR , of the repre-
sentation of those sources

sR}CR ~16!

is an old idea. An early motivation@3# arose from a model o
‘‘random fluxes’’ for the vacuum and the observation that
certain solid state systems this leads to a dimensional re
tion D→D22. ThusD54 theories would reduce toD52
gauge theories in which the Coulomb linear potential is
deed proportional to the quadratic Casimir. The numer
calculations supporting this were inD54 SU~2! @3# and in-
volved potentials at relatively short distances. The obse
tion soon after that one seemed to see a similar Cas
scaling inD53 theories@3# forced a generalization of th
dimensional reduction idea@3#. The most accurate early ca
culations involved the adjoint string tension. Recently, ho
ever, there have been accurate calculations@15,16# for a va-
riety of representations in SU~3! and this has sparke
renewed interest in this idea@17–19#.

There are obvious ambiguities in calculating the str
tension of unstable strings from the intermediate dista
behavior of the static potential. At short distances we kn
that we have a Coulomb potential which, of course, displ
Casimir scaling. As the potential interpolates between
and the long-distance behavior one expects some contin
If, as is usually done, one fits the potentialV(r ) by a simple
sum of a Coulomb term and a linear piece,V(r )5V01c/r
1sr , and then performs the fit in a limited range ofr im-
mediately beyond the Coulomb region, then it might be t
simple continuity artificially forces approximate Casim
scaling on the fitted linear term. While this is no more tha
possibility, it does underscore the utility of using stab
strings, as we shall do, where one can go to larger distan
and doing the calculation in a way, as we shall also do,
does not involve explicit sources and associated Coulo
terms.

Since the sources may be screened by gluons, which
in the adjoint representation and do not feel center ga
transformations, it is appropriate, as we remarked earlie
categorize the representations of SU(N) sources by how they
transform under the center of the group. If the source
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quires a factorzk with kPZN , then we shall generically refe
to the corresponding flux tube as ak-string. Anyk-string can
be transformed into any otherk-string by appropriate gluon
screening. Thus the stablek-string will be the one with the
smallest string tension. Any otherk-string will, at sufficiently
large distances, find it energetically favorable to be tra
formed into the lightest stable string through gluon scre
ing. If we have Casimir scaling then the lowest string tens
corresponds to the representation with the smallest quad
Casimir, and this is the totally antisymmetric representati
~See Appendix C.! The ratio of these quadratic Casimi
gives us the Casimir scaling prediction for stablek-strings

sk

s
5

k~N2k!

N21
. ~17!

3. MQCD

A number of calculations in brane~M-!theory of QCD-
like theories~see@2# and references therein!, which are ge-
nerically referred to as MQCD, find that the string tension
k-strings satisfies

sk

s
5

sin
kp

N

sin
p

N

. ~18!

This led to the conjecture@2# that this might be a universa
result and that QCD@and SU(N) gauge theories# fall into
this universality class.

This prediction has reasonable properties: it has the
quired k↔N2k symmetry and takes sensible values forN
52,3. However, the MQCD derivation neglects potentia
important quantum fluctuations which might@2# renormalize
the simple and elegant formula in Eq.~18!.

The MQCD calculations are, strictly speaking, for SU(N)
gauge theories in 311 dimensions. It is not clear how muc
evidence there would be for a corresponding MQCD conj
ture in D5211, although a naive reading suggests that
brane constructions in@2# would lead to the same conclusio
for the sk ratios. In any case the trigonometric formula
Eq. ~18! has the correct qualitative properties and so we s
compare our results to it not only inD5311 but also in
D5211 and, indeed, at finite temperature.

4. Bag model

In the bag model~see e.g.,@14,13#! the flux between dis-
tant sources is confined to a cylindrical bag of cross sec
A. The flux is homogeneous,

EaA5gTa , ~19!

and the vacuum energy difference between the inside
outside of the bag is given by the bag constantB. Thus the
energy per unit length is@14,13#

E

l
52pas

CR
A

1AB ~20!
9-10
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whereCR is the quadratic Casimir of the source andas is the
strong coupling constant. One now fixes the areaA by mini-
mizing the energy. This gives the string tension to be

sR}$CR%1/2 ~21!

which differs markedly from Casimir scaling. The fact th
the early numerical calculations gave an adjoint string t
sion that satisfied Eq.~16! rather than Eq.~21! was picked up
@13# as providing critical evidence against conventional b
dynamics@14,13#, in that it suggested a flux tube cross se
tion that was independent of the size of the flux.

5. Strong coupling

In the strong coupling limit,b→0, of our action, a Wil-
son loop involving k-strings will need to be tiled with
plaquettes at leastk ~or N2k) times. The leading term in this
limit will therefore reproduce Eq.~15!: sk5 k̃sk51 , k̃
5min$k,N2k%. However, the non-leading terms will intro
duce interactions between these tiled surfaces, and
simple ratio will change as we move away from the stro
coupling limit.

Strong coupling predictions are, of course, not univers
however, this one is more universal than most. If we gen
alize the action to contain any combination of closed loo
so long as these are linear in the SU(N) link matrices, we
will still obtain Eq. ~15!. However, if we include loops o
products of loops that are not linear in the links then we c
obtain other results. One can think of the action as hav
loops in different representations, and the value ofsk /s will
depend only on what these representations are and wha
their relative weights. By choosing an action in an approp
ate ‘‘universality’’ class, one can essentially obtain forsk /s
any value one wants.

Hamiltonian strong coupling~see e.g.,@21#! is more inter-
esting. The leading term, asg2→`, is simply the quadratic
Casimir for each spatial link. Gauss’s law means that our
k-sources are joined by excited links, and that the lightesk-
string will satisfy Casimir scaling as in Eq.~17!. Of course
the magnetic perturbation will spoil this result as we mo
away fromb50.

B. k-strings in DÄ3¿1

We will now calculate the ratio of thek52 and funda-
mental string tensions,sk52 /s, in both SU~4! and SU~5!
gauge theories. There are no other stablek-strings for these
values ofN but having results for two values ofN will al-
ready provide significant constraints. We are, of course,
terested in the continuum limit, so we calculate this ratio
several lattice spacings and then extrapolate to the c
tinuum limit using the fact that for the plaquette action t
leading lattice correction to dimensionless mass ratios
O(a2):

sk~a!

s~a!
5

sk~0!

s~0!
1ca2s. ~22!
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We calculate the string tension from the mass of a flux lo
that winds around the spatial torus. We assume that the l
ing correction to the linear dependence of the mass is
appropriate to a simple bosonic string:

mk~ l ! 5
l→`

skl 2
p~D22!

6

1

l
. ~23!

This assumption has some support from the calculation
the previous section, but it is not guaranteed that what ho
for SU~2! holds also for largerN. So we shall occasionally
pause to state how sensitive are our results to this assu
tion.

We begin by listing in Table VII the~fundamental! string
tensions@6# corresponding to the variousb values at which
we perform our calculations. This sets the scale ofa in physi-
cal units. In Table VIII we list our lattices and calculate
values of thek51 andk52 flux loop masses for the case o
SU~4!, and in Table IX for SU~5!. ~Note that in these calcu
lations we only usep50 correlators.!

In order to extract a string tension from the flux loop ma
we must ensure that our loop length is long enough for
corrections to Eq.~23! to be negligible within our statistica
errors. In Sec. IV B we have seen that in the case of SU~2!
this appears to be the case for strings longer thanlAs
[LaAs.3 ~see Tables V and VI!. Here we perform an

TABLE VII. Setting the scale ofa: the string tension for our
SU~4! and SU~5! lattice calculations inD5311.

D5311
SU~4! SU~5!

b aAs b aAs

10.55 0.372 16.755 0.384
10.70 0.306 16.975 0.303
10.90 0.243 17.270 0.245
11.10 0.202 17.450 0.222
11.30 0.170

TABLE VIII. Masses of thek51 andk52 flux loops that wind
once around the spatial torus inD5311 SU~4! for the lattices and
couplings shown.

D5311; SU(4)
b lattice MC sweeps amk51 amk52

10.55 84 23105 0.973~17! 1.456~30!

10.70 6316 53104 0.268~8! 0.329~12!

10.70 8312 105 0.564~10! 0.763~24!

10.70 104 105 0.8375~92! 1.197~18!

10.70 124 105 1.033~11! 1.456~37!

10.70 144 105 1.201~34! 1.780~60!

10.70 164 105 1.316~78! 2.35~27!

10.90 124 105 0.622~7! 0.896~11!

11.10 164 105 0.585~8! 0.836~21!

11.30 204 105 0.5265~56! 0.740~16!
9-11
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B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019
additional finite size study, this time in SU~4!, which, while
less accurate, will probe the behavior ofk52 as well ask
51 strings.

Our finite size study is atb510.7 and involves loops
ranging fromL56 to L516 with masses as listed in Tab
VIII. The longest length translates intol .4.9/As.2.2 fm.
We observe that both thek52 andk51 masses grow ap
proximately linearly with l, demonstrating that the SU~4!
theory linearly confines bothk51 andk52 charges~at least
over this distance range!. Using Eq.~23! we extract the ratio
sk52 /s which we plot in Fig. 4. We see that within erro
the ratio becomes independent of the flux loop length fol
>10a.3/As. For comparison we also show what happen
we do not include any string correction at all, i.e.,sk52 /s
5mk52( l )/mk51( l ). We see that while the ratio changes by
few percent, it becomes independent ofl, within errors, at the
same length,l 510a. By the same token it is clear that th
results of this calculation are not accurate enough to dis
guish between different possible string corrections.

Our finite volume study has taught us that higher or
corrections in 1/l to the string tension ratio will be negligibl
~within our typical errors! if we make sure that our loop
length satisfieslAs>3. Comparing the values ofaAs in
Table VII with the corresponding lattice sizes listed in Tab

TABLE IX. Masses of thek51 andk52 flux loops that wind
once around the spatial torus inD5311 SU~5! for the lattices and
couplings shown.

D5311; SU(5)
b Lattice MC sweeps amk51 amk52

16.755 84 105 1.051~13! 1.70~7!

16.975 104 2.03105 0.816~12! 1.239~51!

17.270 124 1.43105 0.638~9! 1.061~28!

17.450 164 105 0.723~10! 1.168~62!

FIG. 4. The ratio ofk52 and k51 string tensions inD53
11 SU~4! at b510.7 extracted from flux loops of lengthl 5aL.
We show values extracted using a bosonic string correction, (d),
and no string correction at all (s).
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VIII and Table IX we see that our loop lengths have be
chosen to fulfill this bound; more generously at smallera
where the errors are smaller.

Assuming Eq.~23!, we extract our string tension ratio
and plot them againsta2s in Fig. 5.~At b510.7 we use only
the L510,12 lattices since the larger volumes have err
that are too large to be useful.! On such a plot the continuum
extrapolation, Eq.~22!, is a simple straight line. We show th
best such fits in Fig. 5. We find that if we use all the poin
we get an excellentx2 for SU~4! and an acceptable one fo
SU~5!. From these fits we obtain the following continuu
values:

lim
a→0

sk52

s
5H 1.35760.029 SU~4!

1.58360.074 SU~5!.
~24!

One might worry that these fits could be biased by includ
the coarsesta value ~where we know@6# the lattice correc-
tions to the scalar glueball mass to be large!. If we exclude
this coarsesta point our best values in Eq.~24! are changed
to

lim
a→0

sk52

s
5H 1.37760.035 b>10.70 SU~4!

1.7660.14 b>16.975 SU~5!.
~25!

This gives us some idea of the direction of any such bia
It is interesting to compare our results with the expec

tions of MQCD

sk52

s
5

MQCD sin
2p

N

sin
p

N

5H 1.41 . . . SU~4!

1.61 . . . SU~5!
~26!

and Casimir scaling

FIG. 5. The ratio ofk52 and k51 string tensions in ourD
5311 SU~4! (d) and SU~5! (s) lattice calculations plotted as
function of a2s. Extrapolations to the continuum limit, using
leadingO(a2) correction, are displayed.
9-12
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sk52

s
5
CSk~N2k!

N21
5H 1.33̄ SU~4!

1.50 SU~5!.
~27!

We see that our results in Eq.~24! and~25! are consistent a
the 2s level with both these expectations within quite sm
errors, with perhaps a slight bias towards favoring MQCD
is because the two sets of predictions are numerically v
similar that we cannot, at present, choose between them
the other hand we clearly exclude the unbound string va
of 2: i.e., if we do wish to think of thek52 string as being
composed of twok51 strings then it must be a tightly boun
state of such strings. We also clearly exclude the bag mo
prediction:

sk52

s
5
BagAk~N2k!

N21
5H 1.15 . . . SU~4!

1.22 . . . SU~5!.
~28!

In order to distinguish clearly between MQCD and Casim
scaling we need to reduce our statistical errors by abo
factor of two; a feasible goal but one for the future.

Thus our conclusions are essentially unchanged fr
those of our earlier paper@5# although our SU~4! calculation
now has smaller statistical errors, and our SU~5! calculation
is now free of the potentially large systematic errors t
concerned us earlier.

A final remark. Our above analysis assumed that the
tubes behave like simple bosonic strings. What differe
does it make if we do not make this assumption? Supp
first that we use the result we obtained in Sec. IV B for t
coefficient of the string correction:cs5(1.2560.25)p/3
~where we take very generous errors!. Repeating our analysi
with such a string correction we find that our results in E
~24! are lowered by about 10% of the statistical error; tha
to say, insignificantly. Even if we were to ignore what w
knew and simply assumed some range likecs5(161)p/3
we would find that the maximum shift would be less than o
quoted statistical error.~For cs50 the ratios are close to
MQCD while for cs52p/3 they drop very close to Casim
scaling.!

C. k-strings in DÄ2¿1

Our calculations inD5211 follow the same pattern a
in D5311 except that our calculations are in SU~4! and

TABLE X. Setting the scale ofa: the string tension for our
SU~4! and SU~6! lattice calculations inD5211.

D5211
SU~4! SU~6!

b aAs b aAs

18.0 0.442 42.0 0.436
21.0 0.361 49.0 0.353
28.0 0.252 60.0 0.274
33.0 0.208 75.0 0.211
45.0 0.147 108.0 0.141
60.0 0.108
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SU~6!. The main reason for SU~6! rather than SU~5! is that
with the former one also has stablek53 strings that one can
study. On the other hand the calculations take longer wh
is why we contented ourselves with SU~5! in four dimen-
sions. Our calculations are summarized in Tables XI and
and the scale ofa, in units of the fundamental string tensio
is given in Table X.

We begin with a finite volume study in SU~4! at b
528.0 that parallels ourD5311 study. The loop lengths
range fromL54 to L516, with the largest loop correspond
ing to l 516a.4/As.1.6 fm. We extractsk52 /s using Eq.
~23! and plot the result in Fig. 6. We see that the ratio
string tensions is independent of the loop length~within er-
rors! once l>10a.2.5/As.1.1 fm. This is a somewha
shorter length than the one we found inD5311. We shall
later see that the flux tube is thinner~in units of s) in D
5211 than in D5311 and this is presumably why th
corrections are smaller. We also show in Fig. 6 the str
tension ratios one obtains if one assumes no correction.
also plateaus forl>10a. Moreover, we see that the value o
the ratio differs by only about 1%.~Note the string correction
is }(D22) and so is larger inD5311 than inD5211.!

We observe that the loop lengths we shall use, as liste
Tables XI and XII, satisfy the above bound,l>2.5/As, by a
good margin. So assuming Eq.~23!, we plot our string ten-
sion ratios in Fig. 7 againsta2s. We also show the straigh

TABLE XI. Masses of thek51 andk52 flux loops that wind
once around the spatial torus inD5211 SU~4! for the lattices and
couplings shown.

D5211; SU(4)
b Lattice MC sweeps amk51 amk52

18.0 83 23105 1.497~18! 2.022~66!

21.0 103 23105 1.223~11! 1.690~38!

28.0 4248 105 0.1347~12! 0.1836~21!

28.0 6228 105 0.2724~15! 0.3630~26!

28.0 8216 105 0.4276~33! 0.5652~64!

28.0 10216 1.53105 0.5720~30! 0.7824~63!

28.0 123 23105 0.7152~39! 0.9718~95!

28.0 163 23105 0.9937~58! 1.345~14!

33.0 163 23105 0.6622~29! 0.914~6!

45.0 243 23105 0.4974~22! 0.6815~40!

60.0 323 23105 0.3571~14! 0.4888~15!

TABLE XII. Masses of thek51, k52, andk53 flux loops that
wind once around the spatial torus. InD5211 SU~6! for the lat-
tices and couplings shown.

D5211; SU(6)
b Lattice MC sweeps amk51 amk52 amk53

42.0 83 33105 1.453~14! 2.51~10! 2.85~30!

49.0 103 23105 1.194~9! 2.030~42! 2.21~9!

60.0 123 23105 0.8575~47! 1.443~15! 1.621~25!

75.0 163 23105 0.6825~31! 1.1305~72! 1.275~11!

108.0 243 33105 0.4552~13! 0.7534~21! 0.8424~98!
9-13
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line continuum extrapolations, using Eq.~22!. We find that
we get an acceptablex2 using all the points. We thus obtai
the following continuum values:

lim
a→0

sk52

s
5H 1.354860.0064 SU~4!

1.616060.0086 SU~6!
~29!

and

lim
a→0

sk53

s
51.80860.025 SU~6! . . . . ~30!

FIG. 6. The ratio ofk52 and k51 string tensions inD52
11 SU~4! at b528.0 extracted from flux loops of lengthl 5aL.
We show values extracted using a bosonic string correctiond)
and no string correction at all (s).

FIG. 7. The ratio ofk52 and k51 string tensions in ourD
5211 SU~4! (d) and SU~6! (s) lattice calculations plotted as
function of a2s. Also shown is thek53 to k51 ratio (L) in
SU~6!. Extrapolations to the continuum limit, using a leadin
O(a2) correction, are displayed.
10501
We note that the errors here are much smaller than in
~24! and the MQCD expectation is excluded. We also see
our k52 SU~4! ratio, a deviation from Casimir scaling at th
level of about 3.5 standard deviations. In SU~6! the expecta-
tions are

sk52

s
SU~6!5H 1.73 . . . MQCD

1.60 CS
~31!

and

sk53

s
SU~6!5H 2.0 MQCD

1.8 CS.
~32!

We see that in this case our results are far from the MQ
values and agree well with Casimir scaling.

Given our very small statistical errors one might wor
that our assumption of a bosonic string correction might
troduce a relatively large systematic error. In fact this is n
so. If we take our SU~2! string analysis in Sec. IV A to be
telling us that the coefficient of the 1/l term is cs5(1.1
60.1)p/6, then we find a negligible shift in our above pr
dictions. Even if we were to assumecs50 this would shift
our values upwards by less than 2%. While this would
crease the deviation from Casimir scaling, it would be
from enough to bridge the gap to the MQCD predictio
However,cs50 is a contrived and extreme example, and
appears to us that any reasonable estimate of the system
error arising from the uncertainty in the string correcti
shows it to be negligible.

D. Width of k-strings

We have seen that in bothD5211 and D5311 the
ratio sk /s is close to the Casimir scaling value. InD53
11 it is also consistent with MQCD, but the MQCD an
Casimir scaling predictions are in fact quite close. If o
imagines modelling the flux tube then this is a somew
counterintuitive result. It would be natural to think of the flu
as homogeneous, as in Eq.~19!, and that the vacua insid
and outside the flux tube differ by some energy densitydEv .
These are of course the ideas embodied in the Bag mo
One would then expect that as the representation of the
increases, so that the chromoelectric energy density
creases, the area will increase so as to minimize the t
energy increase. This is just the variational calculation of
naive bag model which leads to a ratiosk /s that grows as
the square root of the quadratic Casimir. This is definit
excluded by our calculated values. One might imagine
tending this simple-minded model by providing the flux tu
with a surface tension. However, this would have no effec
D5211 where the ‘‘surface’’ is independent of the flux tub
width.

If the flux is homogeneous and if the flux tube width
independent of the total flux carried, then one naturally o
tains Casimir scaling. If one considers a superconductor
phase that exhibits the Meissner effect and supports~mag-
netic! flux carrying flux tubes, there is a range of parame
values, called the deep-London limit, where the flux tu
9-14
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CONFINING STRINGS IN SU(N) GAUGE THEORIES PHYSICAL REVIEW D 64 105019
cross section is indeed independent of the flux~see e.g.,
@22#!. This corresponds to a penetration depth, related to
photon mass, being much larger than the inverse scalar H
mass. The deviation from Casimir scaling would be rela
to the ratio of these masses.

It is interesting to test these ideas. Here we shall atte
to calculate the widths of the flux tubes corresponding
different k-strings and see how close the width is to bei
independent ofk. We shall do so inD5211 because it is
faster; but the same technique can be used inD5311. We
shall perform calculations fork51,2 flux tubes in SU~4! and
for k51,2,3 flux tubes in SU~6!.

We use a technique that was employed in@23# to calculate
the width of SU~2! flux tubes inD5211. Consider a lattice
of sizeL3L'3Lt . Lt refers to the Euclidean time in whic
we calculate correlations. The flux loop is of lengthL, and
L' is the spatial size transverse to the flux tube. By reduc
L' we can squeeze the flux tube. If the flux tube oscilla
with simple harmonic modes then it will not be affected
reducing the finite~periodic! transverse width until it reache
the ‘‘intrinsic’’ width of the flux tube @23#. Once L' is
smaller than this width, which we shall calll w5aLw , we
expect the mass of the flux loop to increase as@23#

am~L;L'!5am~L;`!3
Lw

L'

. ~33!

The onset of the increase is atL'5Lw and provides us with
an estimate ofLw . Our main interest is to see ifLw varies
with k or not.

Of course the above arguments are very simple. There
also changes in the vacuum asL' becomes small which we
have neglected. In particular there is a phase transition
critical value ofL' ~see Sec. V E! which is characterized by
the development of a non-zero vacuum expectation value
the Polyakov loops that wind around the shortL' torus.
However, the string tensions we calculate behave smoo
through this transition, suggesting that our simple analy
should not be invalidated. In any case, our main conclus
that ask grows the flux tube width does not grow ever larg
will remain valid since such a growth would mean th
higherk flux tubes would begin to be squeezed whenL' was
greater than its critical value, and this would certainly
visible.

We show in Table XIII howamk(L;L') varies withL'

for k51 and k52 flux tubes; all atb528 in the SU~4!
gauge theory inD5211. We do so forL'52, . . . ,20 and
for two values of the flux tube length,L. The minimum trans-
verse size isl'5aL'52a.0.5/As which we expect to be
smaller than l w . The loop lengths arel 5aL58a, 12a
.0.9,1.35 fm which should be long enough to allow we
formed flux tubes. The fact that we have calculated mas
for two values ofL at eachL' allows us to check whethe
the mass is growing nearly linearly withL and that we do
indeed have a flux tube. We see from the masses liste
Table XIII that this is so for all values ofL' .

We plot theL58 flux loop masses in Fig. 8. We see th
both mk51 andmk52 start increasing at a very similar valu
of L' . Moreover, the masses for the smallest two values
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L' are consistent with Eq.~33!. If we take these to fix the
value of Lw in Eq. ~33!, we find thatLw.5.2 for bothk
51 andk52 flux tubes. That is to say, the flux tube width
indeed independent of the flux, and has a valuel w.1.3/As.

In addition to these gross features we also see in Ta
XIII and Fig. 8 that there is a decrease in the mass at va
of L' that are just above the values where the mass star
increase. Moreover, this decrease is more pronounced fo
k52 string than for thek51 string. Such an effect indicate
that there are some difference between the sizes of the
flux tubes—if only in their tails—and an analysis of th
might provide information on the dynamics, e.g., the para
eters of the effective dual superconductor referred to ear
However, anything quantitative needs calculations with m
resolution, i.e., at smaller values ofa.

We display in Fig. 9 howsk52 /s varies withL' . We see
that the ratio is close to Casimir scaling not only at largeL'

TABLE XIII. Masses of flux loops that wind once around
spatial torus of lengthL as a function of the length,L' , of the other
spatial torus.

D5211; SU(4); b528
amk51(L) amk52(L)

L' L58 L512 L58 L512

2 1.188~10! 1.811~23! 1.552~28! 2.27~10!

3 0.738~9! 1.1900~73! 1.008~11! 1.45~15!

4 0.5093~37! 0.819~13! 0.667~9! 1.04~4!

5 0.4297~36! 0.6814~83! 0.5583~62! 0.899~12!

6 0.4207~28! 0.6965~46! 0.5504~57! 0.869~22!

8 0.4276~33! 0.710~5! 0.5652~64! 0.947~9!

10 0.4274~30! 0.706~5! 0.5770~56! 0.971~11!

12 0.4327~30! 0.715~4! 0.5985~58! 0.972~10!

16 0.4347~28! 0.721~5! 0.598~7! 0.948~24!

20 0.4331~30! 0.713~4! 0.600~5! 0.991~12!

FIG. 8. The masses of thek51 andk52 flux loops of length
L58 in theD5211 SU~4! gauge theory atb528 versus the size
of the transverse spatial torusLperp[L' . Shown is the dependenc
in Eq. ~33! fitted to the smallest values ofLperp .
9-15
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~something we have seen already! but also at smallL' .
There is only a small range ofL' , coinciding with the dip in
mk , where the ratio drops below this. Of course, at ve
small values ofL' our D5211 system is effectively re-
duced to aD5111 gauge-scalar theory, and we recall th
the linear confinement of pure gauge theories inD5111
arises through the Coulomb interaction which automatica
satisfies Casimir scaling.

Our SU~6! analysis closely parallels our SU~4! analysis
except for the fact that we now have additionalk53 strings.
Our calculations are atb560 which, as we see from Tabl
X, has a similara to that atb528 in SU~4!.

Our masses are listed in Table XIV. They are for fl
loops of lengthl 510a andl 512a and we see evidence for
linearly growing mass for allk and for allL' . We plot the
L510 flux loop masses in Fig. 10 and we see, once again
increasing loop mass at smallL' that is consistent with Eq
~33!. Indeed we find a common flux tube width,Lw.4.5, for
all three values ofk. So, just as in SU~4!, the flux tube width

FIG. 9. The ratio of thek52 to k51 string tensions in theD
5211 SU~4! gauge theory atb528 versus the size of the trans
verse spatial torusLperp[L' . With (d) and without (s) a
~bosonic! string correction.
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is independent of the flux, and has a valuel w.4.5a
.1.2/As that is also very similar. Again, just as in SU~4!,
the loop mass decreases just before it begins to increas

We plot sk /s in Fig. 11. We again see consistency wi
Casimir scaling at small as well as at largeL' , except pos-
sibly in the region of the dip.

This analysis thus appears to confirm that the confin
flux tube has a cross section that is largely independent of
flux carried. The minor differences betweenk-strings might,
however, be useful in telling us about the details of the c
finement mechanism.

E. High-T spatial string tensions

In our above calculations we have calculated the mas
a long flux loop in a spatial volume with a limited transver
spatial dimension,L' . Let us relabel the axes of ou
L3L'3Lt lattice so that the short spatial torus becomes
time torus and our time torus becomes a long spatial to

FIG. 10. The masses of thek51, k52, andk53 flux loops of
lengthL510 in theD5211 SU~6! gauge theory atb560 versus
the size of the transverse spatial torusLperp[L' . Shown is the
dependence in Eq.~33! fitted to the smallest values ofLperp .
TABLE XIV. Masses of flux loops that wind once around a spatial torus of lengthL as a function of the
length,L' , of the other spatial torus.

D5211; SU(6); b560
amk51(L) amk52(L) amk53(L)

l' L510 L512 L510 L512 L510 L512

2 1.40~13! 2.055~8! 2.66~20! 2.70~41! 3.11~4! 2.63~91!

3 1.050~29! 1.227~56! 1.785~38! 2.069~51! 1.929~70! 2.33~21!

4 0.692~12! 0.841~18! 1.178~14! 1.419~28! 1.360~27! 1.611~54!

5 0.6767~66! 0.8455~65! 1.064~14! 1.280~11! 1.163~16! 1.389~31!

6 0.6915~67! 0.8462~59! 1.084~12! 1.368~23! 1.200~21! 1.531~31!

8 0.7005~52! 0.8671~54! 1.137~14! 1.390~23! 1.194~65! 1.590~37!

10 0.7015~49! 0.843~13! 1.180~14! 1.435~16! 1.327~27! 1.658~55!

12 0.8575~47! 1.443~15! 1.621~25!
9-16
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We are now on aLx3Ly3Lt lattice with Lt5L' and
Lx ,Ly@Lt . This corresponds to a system at temperat
aT51/L' and, as we decreaseL' , we will pass through the
deconfining phase transition atT5Tc . In this rotated coor-
dinate system the flux loop ‘‘mass’’ that we have calcula
is obtained from the spatial correlation of spatial loops; it
a screening mass, from which we can calculate what is u
ally referred to as the ‘‘spatial string tension’’~usually ob-
tained from spatial Wilson loops!. Thus our finite width stud-
ies have in fact provided us with a calculation of thek51,
k52, andk53 spatial string tensions as a function ofT in
SU~4! and SU~6! D5211 gauge theories.@All this parallels
previous studies@23,24# of SU~2! in D5211.#

Simple arguments~see for example@24#! tell us to expect
s}g2T for T@Tc . In our case, whereaT51/Lt51/L' , this
translates toa2s}1/L' asL'→0. This is precisely what we
have already inferred from the SU~4! and SU~6! calculations
in Tables XIII and XIV. Indeed we see that the linear i
crease withT sets in very close toT5Tc , and does so si-
multaneously for all k-strings—presumably due to th
squeezing of a flux tube whose width is;1/Tc . @Although
we do not have precise calculations of the deconfining te
peratures in SU~4! and SU~6! gauge theories, we expect from
extrapolations of previous SU~2! and SU~3! calculations that
Tc.0.95As in D5211 and this tells us that the critica
value ofL' is ;4 at these values ofb.# Moreover, as we see
from Figs. 9 and 11, the string tension ratio is close to
value expected from Casimir scaling. This is not a great s
prise: the high-T dimensional reduction of theD5211
theory takes us to aD5111 theory, and in aD5111
gauge theory even the Coulomb potential is linearly con
ing; and the latter will automatically satisfy Casimir scalin
This is of course simplistic; the dimensional reduction lea
to ~adjoint! scalars as well as gauge fields, in the reduc
theory and, in any case, the linear potential may have o
sources than just the Coulomb potential.

FIG. 11. The ratio of thek52 to k51 (d) and k53 to k
51 (L) string tensions in theD5211 SU~6! gauge theory atb
560 versus the size of the transverse spatial torusLperp[L' . The
~bosonic! string correction has been included.
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We now turn to the more interesting case ofD5311. We
shall not attempt a systematic study but, just as inD52
11, we shall work at one single value ofb and will vary T
in the rather coarse steps allowed by varyingLt . Our calcu-
lation is in SU~4! at b510.7. Although we do not have pre
cise information on the deconfining temperature, an extra
lation of previous SU~2! and SU~3! calculations@25# using a
simple O(1/N2) correction suggests thatTc.0.62As for
SU~4!. Since aAs.0.306 atb510.7 ~see Table VII! the
critical value of Lt is ;5. Thus a spatial volume of 103

should be adequately large for our exploratory calculati
Accordingly we work on the 103Lt lattices listed in Table
XV. In the table we also include our earlier calculations on
104 lattice, to provide the ‘‘T50’’ reference value.

We first wish to establish the rough location ofTc . To do
so we calculatê l p&, the average of the thermal line~an
unblocked Polyakov loop that winds once around the Euc
ean time torus!, the lightest mass,amt , that contributes to
spatially separated correlations of such lines, and^Q2&, the
average value of the fluctuations of the topological chargeQ.
It is clear from Table XV that there is indeed a phase tran
tion close toLt55: the thermal line develops a non-ze
vacuum expectation value, and consequently the ligh
mass becomes;0 ~the energy of the vacuum!. We also see a
very striking suppression of the topological susceptibili
a4x t[^Q2&/(L3Lt) acrossLt55. One observes a similar bu
much less dramatic behavior in SU~3! @26#, and this suggests
thatx t might be an order parameter for the deconfining ph
transition, at least asN→`, with appropriate consequence
for the axial U~1! anomaly. This is a topic we shall expan
upon elsewhere.

Having established what is ‘‘high’’T in our calculation,
we show in Table XVI the~screening! masses one obtain
from spatially separated correlators ofk51 andk52 loops
that wind once around the spatial torus. At highT we expect
s}T2 ~since g2 is now dimensionless!. We see that while
our flux loop masses grow faster thanT they grow less fast
than T2. This should be no surprise; rather one should
surprised by the precociously early onset of the linear highT
behavior in the case ofD5211.

From the flux loop masses we calculate the string tens
in two ways: assuming no string correction, i.e., settingcs
50 in Eq.~6!, and assuming a bosonic string correction. O

TABLE XV. Calculations at finite temperature,T, on 1033Lt

lattices. In SU~4! at b510.7. We show the thermal line averag
^ l p&, the lightest mass coupled to the thermal line,amt , and the size
of the topological fluctuations,̂Q2&.

D5311; SU(4); finite T
Lt T/As ^ l p& amt ^Q2&

2 1.63 0.5669~1! 0.000
3 1.09 0.3414~1! 0.003
4 0.82 0.1922~2! 0.005 0.002~1!

5 0.65 0.0041~40! 0.052~1! 0.150~15!

6 0.54 -0.0006~10! 0.230~8! 1.363~53!

10 ‘‘0.33’’ 0.838~9! 2.56~9!
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might expect that at highT one should use a string correctio
that is halfway between because one has lost one of
transverse dimensions. In any case it is clear that the higT
ratio is consistent with Casimir scaling but probably not w
the MQCD formula. Just as forD5211 we see a dip in the
masses atT just belowTc . By contrast, for this lattice cal
culation, the low-T calculation on the 104 lattice is consistent
with MQCD but not really with Casimir scaling.

Once again one might try to use dimensional reduction
relate the Casimir scaling we observe at highT in D53
11 to our observation of it, earlier on in this paper, at lowT
in D5211. However, any such argument must address
caveats created by the presence of extra adjoint scalars
the reduction. We also note that Casimir scaling—at least
k-strings and at very highT—has been predicted in a rece
model calculation@27# which speculates that at highT there
is a plasma of adjoint magnetic pseudoparticles ‘‘dual’’ to t
gluon plasma.~Again one might try to relate@27# this to low-
T near-Casimir scaling inD5211 via dimensional reduc
tion.!

F. Unstable strings

Our calculations have so far focussed on stablek-strings.
In addition to these, there are also unstable strings, which
energetically unfavorable. An unstable string should app
as a nearly stable excited state in thek-string spectrum. It is
clearly interesting to find out how the string tensions of the
strings depend on their representations and onN. We note
that this is precisely the question addressed by the calc
tions in, for example,@3,15,16#. In this section we will in-
vestigate closed strings with the quantum numbers of str
connectingk quarks in a given irreducible representation f
k52,3.

The tensions of strings connecting sources in a given
reducible representation can be extracted from correla
functions of operators carrying the quantum numbers of
representation. Fork52 the irreducible representations wi
two quarks are the symmetric and the antisymmetric rep
sentations. Atk53 the irreducible representations with thr
quarks are the totally antisymmetric, the totally symmet
and the mixed symmetry representation, which enters tw
the decomposition of the tensor product. The general pro

TABLE XVI. Calculations at the finite temperatures listed
Table XV. We list the ‘‘spatial’’ loop masses and the correspond
ratio of spatial string tensions calculated with and without a boso
string correction.

D5311; SU(4); finite T
sk52 /s

Lt amk51 amk52 cs50 cs51

2 2.71~17! 2.7~7!

3 1.523~28! 2.11~10! 1.385~70! 1.361~66!

4 1.044~9! 1.40~3! 1.341~30! 1.310~28!

5 0.800~9! 1.101~20! 1.376~30! 1.333~26!

6 0.727~16! 0.90~4! 1.238~55! 1.208~54!

10 0.838~9! 1.197~18! 1.429~27! 1.382~23!
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dure to construct the relevant operators for a given repre
tation and the explicit form of the operators corresponding
the cases we shall investigate in this section are given
Appendix A.

At eachN-ality ~and at finiteN) only the string with the
smallest tension is stable. For anyk, this string is expected to
be the string connectingk sources in the totally antisymme
ric representation. Hence the smallest mass in the antis
metric channel is related to the string tension at the giv
N-ality. Our calculations fulfill this expectation: the smalle
mass extracted with the variational procedure and the sm
est mass in the antisymmetric channel always agree
within errors, both inD5211 andD5311.

At fixed length an unstablek-string is more massive tha
the stable string of the sameN-ality. This is likely to give
problems when looking at the exponential decay in time
correlation functions: the signal will decay too rapidly
allow a reliable extraction of masses. Indeed this is w
happens in ourD5311 calculations: given the precision o
our numerical data, it proves to be impossible to extract
liable masses. To overcome this problem, we should
closer to the continuum limit or use anisotropic lattices. W
leave such a study for the future. Another crucial point is
overlap between the operators and the interesting st
which, if the operators are constructed using standard te
niques~as we have done in the present study!, can get as bad
as 0.5 for unstable strings inD5311. ~For comparison, still
in D5311, the overlap between the stringy state cor
sponding to the antisymmetric representation and our op
tors is typically around 0.6.! Hence, to address question
connected to unstable strings a better overlap is requi
This requires in turn an improvement of the standard sme
ing techniques. This is another problem we will investiga
in the future.

While we cannot deal at the moment with unstable strin
in D5311, our numerical results inD5211 allow us to
address the question there. In fact, ourD5211 calculations
do not suffer from the same drawbacks as theD5311 ones:
our D5211 results are accurate enough to see a clear
ponential decay of the correlation functions over several
tice spacings and inD5211 the overlap between the op
erators and the unstable strings is not worse than 0.85.
numerical results for SU~4! and SU~6! are reported, respec
tively, in Tables XVII and XVIII. Apart from the symmetric
representation of SU~6!, for which we have masses for jus
two values of the lattice spacing, we can extrapolate
string tensions extracted from the masses listed in the ta
to the continuum limit by applying the same procedure us

ic

TABLE XVII. Masses of flux loops in thek52 symmetric rep-
resentation inD5211 SU~4! for the lattices and couplings shown

D5211; SU(4)
b Lattice amk52S

28.0 123 1.601~23!

33.0 163 1.352~15!

45.0 243 0.979~40!

60.0 323 0.7694~70!
9-18
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for stable strings. We then find

lim
a→0

sk52S

s
5H 2.1460.03 SU~4!

2.1960.02 SU~6!
~34!

for the string tensions in thek52 symmetric channels and

lim
a→0

sk53M

s
52.7160.09 SU~6! ~35!

for the k53 mixed symmetry channel.~All these string ten-
sions have been extracted using the bosonic string cor
tion.! For the continuum value of thek53S string tension,
an estimate based on our data gives

lim
a→0

sk53S

s
'3.7260.12 SU~6!. ~36!

Our numerical results can be compared with the predicti
coming from Casimir scaling

sk52S

s
5
CSH 2.40 SU~4!

2.28 . . . SU~6!,
~37!

sk53M

s
5
CS

2.82 . . . SU~6!, ~38!

sk53S

s
5
CS

3.85 . . . SU~6!. ~39!

We see that, at least for SU~6!, these ratios satisfy approx
mate Casimir scaling, just like the stablek-strings. As far as
comparison with MQCD is concerned, we are not aware
calculations in that framework aimed to determine the str
tensions of unstable strings.

VI. DISCUSSION

Our calculations in this paper were in two parts. In t
first part we investigated directly the stringy nature of lo
flux tubes by calculating how the mass of a flux tube var
with its lengthl, and attempting to identify theO(1/l ) term
that is the leading string correction at largel. The coefficient
of this term,cL , is directly related to the central charge
the effective string theory describing the long-distance ph

TABLE XVIII. Masses of flux loops in thek52 symmetric (k
52S), k53 mixed (k53M ) andk53 symmetric (k53S) repre-
sentations inD5211 SU~6! for the lattices and couplings shown

D5211; SU(6)
b Lattice amk52S amk53M amk53S

49.0 103 2.58~19!

60.0 123 1.928~41! 2.44~12!

75.0 163 1.512~15! 1.845~37! 2.270~87!

108.0 243 1.0210~47! 1.274~25! 1.646~17!
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ics of the confining flux tube, and thus characterizes its u
versality class. By considering flux tubes that wind aroun
spatial torus we were able to avoid the presence of exp
sources and the accompanying Coulomb term which can
so easily confused with the string correction. Working
SU~2! and at a reasonably small value of the lattice spac
a, we obtained in 311 dimensions a valuecL50.9860.04
which is consistent with the simple bosonic string, for whi
cL5p/3. In 211 dimensions we obtainedcL50.558
60.019, which is again consistent with the bosonic str
value, which iscL5p/6 in this case. In both dimensions ou
results would appear to exclude other plausible possibili
with, for example, some massless fermionic modes along
string. In addition, in the case ofD5211 our results were
accurate enough to constrain the power of 1/l to be unity
~assuming it to be an integer! as one expects for an effectiv
string theory. These results considerably increase, we
lieve, the evidence for the simple bosonic string mod
There is, however, much scope for improving these calcu
tions; not only in their accuracy and in the range of flux tu
lengths studied, but also in exploring other values ofa, so as
to be confident of the continuum physics, and in extend
the calculations to other SU(N) groups.

The second part of the paper dealt withk-strings in
SU(N>4) gauge theories and, in particular, with the rati
of their string tensions,sk /s. Here we performed a range o
calculations so as to be able to extrapolate to the continu
limit. In our D5311 SU~4! and SU~5! calculations we
found that thek52 string tension is much less than twice th
fundamentalk51 tension: thek-string is ‘‘strongly bound.’’
Moreover, the values are consistent, at the 2s level, with
both the M~-theory!QCD conjecture and with Casimir sca
ing ~the two being numerically quite similar!. In our SU~4!
and SU~6! calculations inD5211 we also found strongly
boundk-strings. However, although the calculated string te
sion ratios were again numerically close to both Casim
scaling and the MQCD formula, the results were accur
enough for us to see that the former works much better,
to observe deviations from both formulas. In addition
these continuum calculations we performed some finite te
perature calculations at fixeda which showed that at highT,
above the deconfinement transition, ‘‘spatial’’k-string ten-
sions are consistent with Casimir scaling in both 211 and
311 dimensions. Moreover, we found fairly convincing ev
dence, inD5211, for the approximate Casimir scaling o
unstable strings. While it might be elegant if~approximate!
Casimir scaling were to hold inD5311 as well as inD
5211, and at highT as well as at lowT, the fact is that
311 dimensions may well differ from 211 dimensions, and
it is important to perform calculations that are accura
enough to resolve between MQCD and Casimir scaling
D5311. Essentially this would require reducing our erro
by a factor of two, an entirely feasible goal.

We observed that near-Casimir scaling will arise natura
if the chromo-electric flux is homogeneous and the cr
section of the flux tube is~nearly! independent of the flux
carried. We pointed out that the latter is not as implausible
it might at first seem: indeed it is what occurs in the dee
London limit of a superconductor. To address this possibi
we performed some explicit numerical calculations of t
9-19
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k-string width and these indicated that the width is inde
largely independent ofk. The smallk dependence that we di
observe can, in principle, be related to the parameters of
dual superconductor, if such is the dynamics of confinem
and we intend to address this question elsewhere. There
number of other interesting theoretical questions that
work suggests. How closely is the observed near-Cas
scaling of the~spatial! k-strings at highT in D5311 and at
low T in D5211 related by dimensional reduction
Equally, is the near-Casimir scaling at high-T in D5211 a
simple reflection of the Casimir scaling of the linearly co
fining Coulomb interaction inD5111? This requires un-
derstanding whether the adjoint scalars, present after dim
sional reduction, significantly affect the string tension rati
Another interesting question is how the string tension rat
whether given by MQCD or Casimir scaling, reflect them
selves ink-vortex condensates, in the dual disorder loop
proach to confinement@28#, and whether this exposes an
simple duality between Wilson loops and ’t Hooft disord
loops. A calculation, illustrating how one might proceed, w
outlined in@5,24#. A similar question can be posed in mon
pole models of confinement, following upon the simp
model calculations of higher charged string tensions in@29#,
after Abelian projection, and in@27# with adjoint monopoles
~at highT). A quite different question is what are the impl
cations of these tightly boundk-strings for the mass spectrum
of SU(N) gauge theories. A simple and attractive model s
the glueball spectrum as arising from excitations of clos
loops of fundamental flux@30#. In such a model a non-trivia
k-string would provide a new sector of states whose mas
are scaled up by a simple factor ofsk /s @31#. The observa-
tion of something like this, when comparing the SU~3! and
SU~4! spectra for example, would provide striking inform
tion on glueball structure. While ourD5311 mass spec-
trum calculations@6# are too crude to usefully explore th
question, this is not the case inD5211 ~see e.g.,@1#! and
work on this question is proceeding.

Note added. As this paper was being completed, a pap
appeared@32# containing a calculation ofk51,2,3 string ten-
sions inD5311 SU~6! and addressing some of the que
tions addressed in this work.
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APPENDIX A: IRREDUCIBLE REPRESENTATIONS OF
SU„N… AND k-STRINGS

SU(N) is the group ofN3N unitary matrices. By defini-
tion, an objectqi ( i 51, . . . ,N) transforms under the funda
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mental representation of SU(N) if under the action of the
group

qi →
SU(N)

U j
i qj , ~A1!

UPSU(N) being the matrix that implements the transform
tion.

The conjugated representation is related to the fundam
tal one by complex conjugation. Following the standard n
tation, we indicate byqi an object transforming under th
conjugated representation. ForN>3 the fundamental and th
conjugated representations are independent. In the follow
we will call quarks objects transforming under the funda
mental representation andantiquarks objects transforming
under the conjugated representation of SU(N). This termi-
nology reflects the physics of QCD.

Objects transforming under higher representations can
constructed from the tensor product of quarks and a
quarks, and their transformation laws can be easily dedu
from the transformation law of the fundamental constituen
For instance (q^ q) i j 5qiqj under the action of SU(N) trans-
forms as follows:

qiqj →
SU(N)

Uk
i Ul

jqkql . ~A2!

The N-ality of a representation is defined as the number
quarks minus the number of antiquarks moduloN. N-alities
k<N/2 andN2k are related by complex conjugation. Th
operation corresponds to charge conjugation.

The concept ofN-ality at zero temperature is related
the symmetry under the center of the gauge group,ZN : un-
der such symmetry an object ofN-ality k picks up a phase
e(2p ikn)/N, n50,1, . . . ,N21. Since the center symmetry a
zero temperature is a good symmetry of the gauge theory
the gluons carry zeroN-ality, states with differentN-ality
cannot mix.

In this paper we are interested in the tensions of stri
connecting sources withN-ality k>1. Because of charge
conjugation, the string tension associated to states ofN-ality
k<N/2 andN2k is the same. Hence we restrict ourself
k<N/2, that is to say to states constructed from the ten
product ofk quarks.1 At a givenN the independent numbe
of stablek-strings is given by the integer part ofN/2.

As for the fundamental string, the string tension of ak
string can be extracted by looking at the exponential de
of correlators of loop operators with the quantum numbers
that string. In order to identify the relevant operators, it
useful to decompose the tensor product ofk quarks into irre-
ducible representations.2 To this purpose, the Young tablea
technique can be used.

1Here we are neglecting states with more thanN quarks; this is
correct as far as we are not interested in unstable strings orN is
large enough.

2In the following, even if we will omit for simplicity the word
irreducible from time to time, we will consider only irreducible
representations of the gauge group.
9-20
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A Young diagram is a two-dimensional ensemble of box
joined by one edge that respects the following rules:

~1! Counting the rows from the top to the bottom, th
number of boxes in the rowi is greater than or equal to th
number of boxes in the rowj if i , j .

~2! Counting the columns from the left to the right, th
number of boxes in the columni is greater than or equal t
the number of boxes in the columnj if i , j .

A valid Young tableau is for instance the following:

the Young tableau language, a quark is a single box, an
tiquark is a column ofN21 boxes and an object transform
ing under the adjoint representation~gluon! hasN21 boxes
in the first column and 2 boxes in the first row:

There is a one-to-one correspondence between Young
grams and irreducible representations of SU(N). Given a
Young diagram withk boxes, the object transforming und
re
e

10501
s

n-

ia-

the corresponding irreducible representation is construc
from the tensor product ofk quarks by assigning an index t
each box, symmetrizing the product with respect to the in
ces that are on a given row for all rows and then antisy
metrizing the result with respect to the indices that are o
given column for all columns.~Obviously, after the antisym-
metrization the result is no longer symmetric under perm
tation of indices on the same row.!

The tensor product of two objects transforming under t
given representations of the gauge group is constructed f
the corresponding Young diagrams,A andB, according to the
following rules:

~1! Write down the two tableauxA and B labeling each
box in the rowi of B by i.

~2! Starting from the first row ofB, add the boxes ofB to
A one-by-one in all the possible positions respecting the
lowing rules: ~a! the augmented diagramA8 at each stage
must be a legal Young diagram;~b! boxes with the same
label must not appear in the same column ofA8; ~c! if we
define at any given box positionJ numbersn1 , . . . ,nJ (J
being the number of rows inB), each of them counting how
many times the corresponding label of the boxes inB ap-
pears above and to the right of such a box, we must h
n1>n2> . . . >nJ ~this is to take into account the origina
antisymmetries ofB).

~3! Two diagrams with the same shape and the same
bels are the same diagram.

~4! Columns withN boxes must be canceled, since th
correspond to the trivial representation of SU(N).

According to the above rules, the tensor product of t
quarks decomposes as

i.e., the irreducible representations of a state with two qua
are the symmetric and antisymmetric representations.
three quarks we have
an
y to
on
sym-
le-

ing
where in addition to the symmetric and antisymmetric rep
sentation there is a representation with mixed symmetry
tering twice the decomposition.

The above results are the generalization in SU(N) of the
familiar decompositions in SU(3)3^ 356% 3̄ and 3̂ 3^ 3
510% 8% 8% 1.
-
n-

Once the symmetry of the states transforming under
irreducible representation has been worked out, it is eas
construct the operators implementing the transformation
such states, since those operators must have the same
metry as the states on which they act. For the matrix e
ments ofk52 operators associated with strings connect
9-21
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sources with two quarks we obtain

Alm
i j 5

1

2
~Ul

iUm
j 2Ul

jUm
i !, ~A3!

Slm
i j 5

1

2
~Ul

iUm
j 1Ul

jUm
i !, ~A4!

while for k53 strings connecting three quarks we have

Almn
i jk 5

1

6
~Ul

iUm
j Un

k2Ul
iUm

k Un
j 2Ul

jUm
i Un

k1Ul
jUm

k Un
i

1Ul
kUm

i Un
j 2Ul

kUm
j Un

i !, ~A5!

Slmn
i jk 5

1

6
~Ul

iUm
j Un

k1Ul
iUm

k Un
j 1Ul

jUm
i Un

k1Ul
jUm

k Un
i

1Ul
kUm

i Un
j 1Ul

kUm
j Un

i !, ~A6!

Mlmn
i jk 5

1

3
~Ul

iUm
j Un

k2Ul
kUm

j Un
i 1Ul

jUm
i Un

k2Ul
jUm

k Un
i !,

~A7!

A, S, andM being, respectively, the tensors corresponding
the antisymmetric, the symmetric and one of the two mix
symmetry representations.@The other mixed symmetry rep
resentation hask and j interchanged in Eq.~A7!.#

Taking the trace, we get

Tr A5
1

2
~$Tr U%22Tr U2!, ~A8!

Tr S5
1

2
~$Tr U%21Tr U2!, ~A9!

for k52 and

Tr A5
1

6
~$Tr U%323 TrU$Tr U%212 TrU3!, ~A10!

Tr S5
1

6
~$Tr U%313 TrU$Tr U%212 TrU3!,

~A11!

Tr M5
1

3
~$Tr U%32Tr U3! ~A12!

for k53. ~The two differentM ’s have the same trace.!
After identifying U with the path ordered product of link

around a non-contractible loopc that winds once around th
spatial torus,Pc , we get that the relevant operators fork
52 are TrPc

2 and $Tr Pc%
2, while for k53 we will be con-

cerned with TrPc
3 , Tr Pc$Tr Pc%

2, and $Tr Pc%
3. These op-

erators can be taken as a starting point for a variational
cedure to extract the mass of flux tubes ofN-ality k winding
once around the periodic lattice, while studying directly t
10501
o
d

o-

combination corresponding to a given irreducible represe
tion is relevant in the context of unstable strings~see the
following section!.

The construction here explicitly provided fork52 andk
53 can be easily generalized to anyk.

APPENDIX B: GLUON SCREENING

Since the gluons transform under a non-trivial represen
tion of SU(N), the interaction between them and the sourc
can change the original representation of the sources.
change of representation of the source is expected to re
malize the string tension associated with the original rep
sentation and to make unstable heavier strings of gi
N-ality.

From the point of view of group theory, the product of th
interaction between sources and gluons transforms as the
sor product of the original representation and the adjoint r
resentation. Consider for instance the following interactio

where the first tableau correspond to a source withk quarks
and the second diagram is associated with a gluon. The
teraction will produce an object transforming under a red
ible representation. The irreducible representations ente
the product of the interaction can be worked out according
the rules for the decomposition of a tensor product given
the previous section. Those representations fall into two
egories: representations withk quarks and representation
with N1k quarks.

Let us consider the first case. In order to have a final s
with k quarks, in the tensor productN boxes must be can
celed~i.e., they are combined in such a way that they tra
form under the trivial representation!. Given the diagram of a
source withm boxes in the first column, the cancellation ofN
boxes in the tensor product requires thatN2m boxes from
the gluon are attached to the first column of the source. T
can be done in two inequivalent ways: by taking the requi
objects all from rows other than the first one or by taking o
box from the first row.3 The possible ways of recombinin
the diagrams after the cancellation define possible repre
tations of the interacting state. Those representations dep
on the original representation of the sources, but not onN.
Similar considerations hold for the irreducible represen
tions with N1k quarks entering the decomposition.

3This argument should be refined if we were interested to
multiplicity with which each irreducible representation enters t
decomposition of the tensor product.
9-22
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An interacting state will be energetically favorable whe
ever it has a smaller string tension, so we expect that
interaction tends to transform the sources in a given re
sentation ofN-ality k to sources in the representation wi
the smallest string tension~which is the antisymmetric rep
resentation withk quarks in both the Casimir scaling and th
MQCD scenario!, i.e., that the gluons screen the sourc
down to the states with the smallest string tension.4 However
unstable strings are expected to be visible, since they sh
appear as nearly-stable excited states in the mass spectru
the strings.

Note that not all states withN-ality k are accessible to a
given state. For instance, the interaction with one gluon d
not allow it to pass from the symmetric to the antisymmet
representation atk53. However, any state can be access
by multiple interaction.

APPENDIX C: QUADRATIC CASIMIR OPERATOR AND
CASIMIR SCALING

The quadratic Casimir operator of a representationR is
defined as

cR[(
a

TaTa ~C1!

where the sum ranges over all the generators of the grou
the given representation. It can be easily seen that the
dratic Casimir operator commutes with all the generators
the group. Hence, by virtue of the Schur’s lemma, on a giv
representation it is proportional to the identity, i.e., it is ide
tified by a number depending on the representation. We
such a number quadratic Casimir and we indicate it byCR .
If we normalize the trace of the identity in each represen
tion to 1, we can write

CR[Tr TaTa. ~C2!

CR can be easily computed starting from the Young table
associated to the representationR as follows. For SU(N)
define theN-dimensional vectors

LW 15
1

N
~N21,21,21,21, . . . ,21!,

LW 25
1

N
~N22,N22,22,22, . . . ,22!,

4Note, however, that there is a phase-space suppression facto
the screening of sources with a given number of quarks dow
sources with a minor number of quarks inside the sameN-ality
class. Consider for instance the screening of a representation
N1k quarks to a representation withk quarks. Since the dimensio
of the former is proportional toNk12, while the dimension of the
latter is proportional toNk, there is a suppression due to the lack
final states proportional to 1/N2.
10501
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LW 35
1

N
~N23,N23,N23,23, . . . ,23!,

A

LW N215
1

N
@1,1,1,,1, . . . ,2~N21!#,

2RW 5@N21,N23,N25, . . . ,2~N23!,2~N

21!#.

With the vectorsLW i , we define

LW 5 (
i 51

N21

wiLi ~C3!

wherewi is given by the difference between the number
boxes in the rowi and the number of boxes in the rowi
11 of the Young tableau. The quadratic Casimir is th
given by

CR5
1

2
~LW •LW 12RW •LW !. ~C4!

It is now easy to see that for an irreducible representa
composed byk quarks the quadratic Casimir is given by th
formula

CR5
1

2 S Nk1(
i 51

m

ni~ni1122i !2
k2

N D ~C5!

where i ranges over the rows of the Young tableau~with m
number of rows! and ni is the number of boxes in thei th
row. For the antisymmetric and the symmetric represen
tions of N-ality k we have

CA5Cf

k~N2K !

N21
~C6!

and

CS5Cf

k~N1K !

N11
, ~C7!

Cf5
N221

2N
~C8!

being the quadratic Casimir of the fundamental represe
tion.

For k53 in addition to the symmetric and antisymmetr
representations, there is~among others! the mixed symmetry
representation, whose quadratic Casimir is

CM5Cf

3~N223!

N221
. ~C9!

Casimir scaling is the hypothesis that the string tension fo
given representation is proportional to the quadratic Casim

for
to

ith
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Hence, according to this hypothesis, atN-ality k the smallest
string tension is associated with sources in the representa
with the smallest quadratic Casimir. By using Eq.~C5!, it can
be easily seen that the representation having the sma
quadratic Casimir is the totally antisymmetric representat
composed byk quarks. To show this, let us prove as a p
liminary step that if we increase the antisymmetries o
diagram keeping constant the number of boxes the quad
Casimir decreases. In fact the difference between the q
dratic Casimir of a given representation and of the repres
tation obtained by moving a box of the original Young di
gram from thej th row to thehth row with h. j is

DC5nj2nh1h2 j 21.0. ~C10!

It is now easy to prove the main statement: at given num
of boxes k<N/2, the antisymmetric representation is o
tained from any given representation by iterating the ab
procedure, with a series of steps where at each stage
quadratic Casimir decreases. Thus at givenk the antisymmet-
ric representation withk quarks has the smallest quadra
Casimir and for this reason the smallest string tension wit
the class of the representations withN-ality k in the Casimir
scaling hypothesis. This fact holds even if we consider sta
with N1k quarks: the difference between the quadratic C
simir of the most antisymmetric representation withN1k
quarks~which is the smallest at that number of quarks! and
the totally antisymmetric representation withk quarks is
,

,
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DC5N2k. ~C11!

Not all the representations withk quarks have a large
quadratic Casimir than a given representation withN1k
quarks. For instance, the difference between the quad
Casimir of the most antisymmetric representation withN
1k quarks and the totally symmetric representation withk
quarks is

DC5N2k2, ~C12!

which is negative ifk2.N. However, at large enoughN and
at a givenk such a difference is positive and increases asN.
That is to say, we expect that the only relevant states
N-ality k in the large N limit are those composed byk
quarks.

The prediction of Casimir scaling for the ratio betwe
the string tensions associated with states composed bN
1k quarks and the string tension of the fundamental rep
sentation in the limitN→` is k12. This result can be easily
understood in terms of string counting: a state withN1k
quarks can be seen as a possible state among those origi
by the interaction between a state withk quarks and a gluon
The above result then tells us that at largeN the energy
of the composite state is equal to the sum of the energie
the constituents.
E.

v.

y

@1# M. Teper, Phys. Rev. D59, 014512~1999!.
@2# A. Hanany, M. Strassler, and A. Zaffaroni, Nucl. Phys.B513,

87 ~1998!; M. Strassler, Nucl. Phys.~Proc. Suppl.! 73, 120
~1999!; M. Strassler, Prog. Theor. Phys. Suppl.131, 439
~1998!.

@3# J. Ambjorn, P. Olesen, and C. Peterson, Nucl. Phys.B240, 189
~1984!; B240, 533 ~1984!; B244, 262 ~1984!; Phys. Lett.
142B, 410 ~1984!.

@4# M. Lüscher, K. Symanzik, and P. Weisz, Nucl. Phys.B173,
365 ~1980!.

@5# B. Lucini and M. Teper, Phys. Lett. B501, 128 ~2001!.
@6# B. Lucini and M. Teper, J. High Energy Phys.06, 050 ~2001!.
@7# J. Polchinski, String Theory ~Cambridge University Press

Cambridge, England, 1998!, Vols. I and II.
@8# P. Olesen, Phys. Lett.160B, 408 ~1985!; M. Flensburg, A.
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