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We calculate the string tensions lektrings in SUN) gauge theories in both 3 and 4 dimensions. We do so
for SU(4) and SU5) in D=3+1, and for SW4) and SUW6) in D=2+1. InD=3+1, we find that the ratio of
the k=2 string tension to thé&k=1 fundamental string tension is consistent, at tlel@vel, with both the
M(-theory) QCD-inspired conjecture that,ocsin(k/N) and with “Casimir scaling,”o >ck(N—Kk). In D=2
+1, where our results are very precise, we see a definite deviation from the MQCD formula, as well as a much
smaller but still significant deviation from Casimir scaling. We find that in l@th2+1 andD=3+1 the
high temperature spatiéstring tensions also satisfy approximate Casimir scaling. We point out that approxi-
mate Casimir scaling arises naturally if the cross section of the flux tube is nearly independent of the flux
carried, and that this will occur in an effective dual superconducting description if we are in the deep-London
limit. We estimate, numerically, the intrinsic width kfstrings inD =2+ 1 and indeed find little variation with
k. In addition to the stablé&-strings we investigate some of the unstable strings, which show up as resonant
states in the string mass spectrum. Whildir 3+ 1 our results are not accurate enough to extract the string
tensions of unstable strings, our more precise calculatiois=i2+1 show that there the ratios between the
tensions of unstable strings and the tension of the fundamental string are in reasonably good agreement with
(approximate Casimir scaling. We also investigate the basic assumption that confining flux tubes are described
by an effective string theory at large distances, and we attempt to determine the corresponding universality
class. We estimate the coefficient of the universaddher correction from periodic strings that are longer than
1 fm, and findc, =0.98(4) in theD =3+ 1 SU(2) gauge theory and, =0.558(19) inD=2+1. These values
are within 2o of the simple bosonic string values, = 7/3 andc = 7/6, respectively, and are inconsistent
with other simple effective string theories such as the fermionic, supersymmetric, or Neveu-Schwartz theory.
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[. INTRODUCTION the case and there are new stable strings with string tensions
different from the fundamental one. A typical source may be

It is widely believed that the S@) gauge theory that thought of ask fundamental charges located at a point. The
underlies QCD is linearly confining and that this explainsconfining string is then usually referred to ag-atring. For
why we do not observe quarksr gluons in nature. The fact SU(N) we have non-trivial stablk-strings up to a maximum
that confinement is linear suggests that the color-electric fluxalue ofk given by the integer part d¥i/2.
between fundamental charges is localized in a tube between Suchk-strings are interesting for a variety of reasons. The
those charges and it is attractive to think that the longvalues of their string tensions;., will constrain models of
distance physics of such flux tubes is given by an effectiveconfinement. In models of glueballs in which the latter con-
string theory. The simplest possibility is that this stringsist of open or closed strings, the SW( mass spectrum
theory is bosonic but other possibilities are not excluded anghould change witiN in a way that is determined by howy,
indeed might be natural if QCD is obtained by some kind ofvaries withN and k. In addition there are theoretical ideas
reduction from a higher-dimensional theory. concerning the value af. In particular there is a conjec-

The same comments apply to S gauge theories for ture based on M-theory approaches to QGERCD) [2] that
N+#3. Indeed there are long-standing ideas thatNe# suggestsocsin{rk/N}. One can contrast this with the old
the SUN) gauge theory can be thought of as a string theory‘Casimir scaling” conjecture[3] that would suggesioy
Moreover, SUN) gauge theories iD=2+1 also appear to «k(N—k) and also with the simple possibility thakastring
be linearly confining[1] and all the above comments will consists ofk non-interacting fundamental strings, in which
apply there as well. caseo,=ko.

In addition to charges in the fundamental representation In a string theory the mass of a flux tube of lengtill
(such as quarksone can consider the potential betweenreceive a leading large-correction that isO(1/1). Such a
static charges in higher representations of the gauge grouplowly decreasing correction cannot be made negligible sim-
In SU(2) and SU3) any such charge can be screened byply by makingl>1 fm and so it will, in principle, limit the
gluons either to the fundamental or to the trivial representaaccuracy of our calculations ef, . Fortunately this leading
tion. Since virtual gluons are always present in the vacuunstring correction is known to be univerdd] in that its co-
this means that such a potential will, at large distances, eithegfficient is determined entirely by the central charge of the
rise linearly with a string tension equal to the fundamentaleffective string theory. The universality class is usually
one or will flatten off to some constant valu@his assumes thought to be that of a simple Nambu-Goto bosonic string.
that the fundamental string tensiom, is the lowest, as ap- There is, however, no strong dirgetumerical evidence for
pears to be the cage-or N=4, however, this is no longer this belief that we are aware of. Such evidence would need to
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be obtained from strings that are longer than 1 fm and tdliscussion of our results and some of their implications.
achieve the required accuracy for such strings is a hard nu- A preliminary version of ouD=3+1 calculations has
merical problem. Where accurate values are quoted in thappeared if5]. In the introduction to a recent companion
literature they typically involve fitting potentials down to paper on the mass spectrum and topological properties of
shorter distances, where the fits are almost certainly domiP=3+1 SU(N) gauge theorie$6] we briefly summarized
nated by the tail of the Coulomb term which has the sameome of our results om /o In particular we drew attention
functional form as the string correctiofand in practice a to the relevance of these results lestrings for the Casimir
similar coefficient. We have therefore attempted to provide ascaling hypothesis. We remark that all these calculations are
usefully accurate calculation of this string correction inintended as a first step to a much more complete and accurate
SU(2) gauge theory, in botb=3+1 andD=2+1. Such a calculation of the properties of SN} gauge theories for all
calculation also addresses the fundamental question ofalues ofN.
whether a confining flux tube is in fact described by an ef- The Appendixes collect detailed proofs of some state-
fective string theory at large distances. ments contained in the main exposition. In Appendix A we
The contents of this paper are as follows. In Sec. Il wewill derive the explicit form of the operators carrying the
describe how we calculate, from the mass of a flux loop quantum numbers dé-strings. In Appendix B we will show
that winds around the spatial torus. We contrast this metholow sources in a given representation can be screened by
with one that uses explicit sources; in particular for “strings” gluons. Finally, Appendix C will deal with the quadratic Ca-
that can break. All this requires a classification of strings insimirs of irreducible representations of SU)(and their re-
all possible representations of the gauge gr@hp details of lationship with Casimir scaling. Our calculations will be
which appear in Appendix A In Sec. Il we summarize the heavily based on group theory. In order to make the Appen-
lattice aspects of our calculation; we can be brief since it iglixes self-contained, we will recall some general results of
entirely standard. We then turn to the basic question ofroup theory. For a wider introduction to the group theoret-
whether we really do have strings and, if so, which univer-ical background we refer t83].
sality class they belong to. Confining ourselves to flux tubes
that are longer than 1 fm we find that in bdih=3+1 and II. STRINGS AND STRING BREAKING
D=2+1 SU2) gauge theory the leading correction to the ) ) )
linear dependence of the string mass is consistent, within Consider a static source in some representakoaf the
quite small errors, with what one expects from the simplesg@uge group in, say, 81 dimensions. Suppose we have a
effective bosonic string theory and excludes the most obvi¢onjugate source a distanceaway. If r is small then the
ous alternatives. We then turn to our calculatiorketrings. ~ Potential energy will be dominated by the Coulomb term
We begin by briefly summarizing some of the theoretical
expectations: MQCD, Euclidean and Hamiltoniéattice) "—0Cray(r)
strong coupling, Casimir scaling, the bag model and simple Vr(r) = r T
flux counting. We then turn to oud=3+1 calculations of
oy—» in both SU4) and SU5) gauge theories and follow this where a(r) is the usual running coupling an@y is the
with our (inevitably) much more accurate =2+1 calcula- quadratic Casimir of the representatifn
tions for SU4) and SU6). [In SU(6) we are able to address
non-trivial k=3 strings] In D=3+ 1 we find consistency at Cr=TrgTT® 2
the 20 level with both MQCD and Casimir scaling. 1D
=2+1 the string tension ratios, while still close to the
MQCD formula, are much closer to Casimir scaling. We
point out that if the flux is homogeneous, th@pproximatg
Casimir scaling arises if the flux tube width {gpproxi-
mately independent ok. (And, more theoretically, that this
will arise in the deep-London limit of a dual superconducting v e w(D-2)c
vacuum) To test this idea we perform an explicit calculation R(1) = orr 24 1
of the intrinsic size ok-strings inD=2+ 1. We find that the
k-string width is indeed largely independentlgfalbeit with  Here o is the “string tension” of the confining flux tube
some interesting if weak differences. We then point out thajoining the sources and how its value varies with the repre-
the same calculations can be reinterpreted as telling us thaentationR is an interesting physical question. If the long-
the spatial string tension in the high temperature deconfininglistance physics of the confining flux tube is described by an
phase satisfies approximate Casimir scaling. We complemeeffective string theory, then th®(1/r) correction in Eq(3)
this with an explicitD =3+ 1 high-T calculation which dem- is the Casimir energy of a string with fixed ends, ands
onstrates that in that case too the string tension ratio is cloggroportional to the central charge. This correction is univer-
to Casimir scaling. We then attempt to see if there is any sigisal[4], since it depends only upon the massless modes in the
of other, unstable, strings, which should appear as excitedffective string theory and does not depend upon the detailed
states in the string mass spectrum. We find reasonably comnd complicated dynamics of the flux tube on scales compa-
vincing evidence for such strings, satisfying approximate Carable to its width. The central charge is givgn| by the
simir scaling, in ouD =2+ 1 calculations. We finish with a number of massless bosonic and fermionic modes that propa-

€y

with the T2 being the generators of the group. If the theory is
linearly confining, and if we ignore the fact that the source
may be screened by gluons, then at largee expect the
potential energy to be given by

()
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gate along the string. In practice it is usually assumed thato which none of the above ambiguities apply. The situation
cs=1, corresponding to the simplest possitdambu-Gotd  may be summarized as followd\Ve leave a fuller discussion
bosonic string theory. However, these modes are not relatei the Appendixe$. Suppose the representatidd can be

to the fundamental degrees of freedom of our BJgauge  obtained from the product af; + k fundamental representa-
theory in any transparent way and the presence of fermionitions andny conjugate ones. Let be an element of the
modes is certainly not excluded. For example, we have theenter,Zy, of the SUN) gauge group. Under such a center

following simple possibilitied8]: gauge transformation the source will transform s We
) shall refer tok as theN-ality of the representation. Now,
(1 bosonic : o
' since gluons transform trivially under the center, the source
1 o will continue to transform in this way even if it is screened
1 fermionic, by gluons to some other representation. Thus the same value
Ce= ) (4)  of kwill label a source and all the sources that can be ob-
0 supersymmetric, tained from it by screening. Indeed one can show that if two
3 representations have the same valu& tfen either one can
> Neveu-Schwartz. be screened by gluons to the other. Within any given class of
\ such sources there will be a lowest string tensiQn which,

Whether a string description of the confining flux tube is inbPY string breaking, will provide the potential for any of these

fact valid and, if so, what its universality class is, are funda-Sources at large enough distances. The independent values of

mental questions which are still largely open. The example& are cons;c(raln’\elzfjk: under charge conjugaten —k, and we

in Eq. (4) show that one needs to calculaeto better than, also havez’=z""% Thus for SUN) we have stable strings

say, = 15% if one is to usefully resolve different possibili- labeled byk=1, ... knax whereknay is the integer part of

ties. N/2 andk=1 is, of course, the fundamental string. That is to
In reality the vacuum contains virtual gluons which canSay, wWe must go to at least $4) to have e&k=2 string, and

screen the static source, and this will complicate any attempp at least S() to find ak=3 string. _

to calculateor . When and how this happens will depend on [N this paper we shall compare the=2 andk=1 string

the energetics of the system. Suppose the represent@tion tensions in SU) and SUS) gauge theories iD=3+1. We

can be screened to a different representaRdrby a number ~ Shall do the same in S4) and SU6) in D=2+1; and in

of gluons. Such a screened source will acquire an extra madhis last case we shall calculate tke-3 string tension as

of, say, AM. If the string tension corresponding ®' is  Well. In all cases we shall extrapolate to the continuum limit

smaller tharoy, , the screening is certain to become energeti-and the aim is to obtain results that are accurate enough to

cally favored for sufficiently large, since ag — o distinguish between various theoretical expectations. Since
these strings are all stable there is no intrinsic ambiguity in
AM<VR(r)=Vg/(r)=ogr—ogT. (5) defining a string tension and we can, in principle, achieve

this goal.

The minimum value ofr at which the energetics favors  we shall calculates, not from the potential between
screening is the string breaking scale (We shall use the static charges but from the mass dé-atring that winds once
term “string breaking” when a source is screened to a dif-around the spatial torus. If the string lendtfs sufficiently

ferent representation, even if the latter is not the trivial ))ne.large, its mass will be given by an expression similar to Eq.
So if we calculate the potential for our sources we can expeqR):

ther dependence to be given M (r) for r<ry, andVz(r)
for r=ry. If ry is large enough then we will be able to | oo B
; e : m(D—-2) ¢

extract o from the linearly rising potential at<ry. In my(l) = Uk|_—_5
practice, however, the string breaking scale is similar to other 6 |
dynamical scales in the theory and it is not clear whether any
apparent linear rise of(r) for r=<r is due to the precocious We note that because of the different boundary conditions on
formation of a string, from which we can read @ff;, or if  the ends of the strin¢periodic rather than fixedhe O(1/r)
it is merely accidental. Indeed it may be that one cannouniversal string correction is four times as large as for the
assign an unambiguous meaning to the quantifyunder  static potentia[9]. We further note that because there are no
these circumstances. However, it is also possible that if thexplicit sources there is no analogue, at srhatif the Cou-
string breaking is relatively weak then one may be able tdomb potential in Eq(1). That is to say, this is a particularly
calculateoy, for r=ry by identifying an appropriate excited favorable context in which to calculate the string correction:
string state. In any case it is clear that string breaking createss coefficient is large, and there is no danger of confusing it
substantial extra ambiguities in any attempt to calculate thevith a Coulomb interaction which has the same functional
properties of strings corresponding to higher representatioform.
charges. One can of course consider such closed but non-

For SU2) and SU3) any representatiorfR can be contractible winding strings in any representatign How-
screened by gluons to either the trivial or the fundamentakver, just as with the static potential, such a string can be
representation. However, for SNE4) this is no longer the screened to a different string, corresponding to a representa-
case and one finds new strings that are completely stable atidn R’, as long as both strings possess the savhality.

(6)
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One can picture the string breaking as follows: a pair of lll. LATTICE PRELIMINARIES
gluons pops out of the vacuum somewhere along the string.
These then move away from each other along the string. A§t

they do so the section of string between them will no "?ngerpleteness we shall provide a brief summary here.

belong toR_ but rather to the product ok and the adjoint We shall work on a hypercubic lattice with periodic
representation. If the two gluons propagate all the way,oundary conditions. The degrees of freedom areNgUtia-
around the torus they can meet and annihilate leaving a NeYices, U, , residing on the linksl, of the lattice. In the par-

string that is entirely in this different representation. Clearlytition function the fields are weighted with efg whereSis
one can extend this to any number of gluons. This is just likehe standard plaquette action

the breaking of the string between static sources except that

here the gluons eventually annihilate rather than adhering to

a source. Thus there is no extra masd to consider and the S=- '8%
breaking can occur for smdllif this lowers the mass of the

loop. That is to say, there is no regior:r, where one might j.e., U, is the ordered product of the matrices on the bound-
hope to see a portion of the original string prior to its break-ary of the plaquett@®. For smooth fields this action reduces
ing. Of course, just as for static charges, one might hope t@ the usual continuum action with=2N/g? in D=3+1
see the unstable string as an excited “resonant” string in thend 8=2N/ag? in D=2+1 (whereg? has dimensions of
string mass spectrum. mass and the theory is super-renormalizalBg varying the
In addition to the complete string breaking describedinverse lattice couplingd we vary the lattice spacing.
above, the gluons may propagate only some short distance The Monte Carlo we use mixes standard heat-bath and
along the string before returning and annihilating. These virover-relaxation steps in the ratlo4. These are implemented
tual processes will renormalize,, and simple theoretical by updating SW2) subgroups using the Cabibbo-Marinari
expectations for the string tension need to take this effederescription/11]. We use 3 subgroups in the case of(S1J6
into account. for SU(4), 10 for SU5) and 15 for SW6). To check that we
Since we are considering larger S groups(partly in have enough subgrqu_ps. for efficient ergod_icity we use the
order to calculater, for largerk) one immediate question is S&M€ algorithm to minimize the action. We find that with the
how this screening will depend dx. In particular we know above number of subgroups, t_he EN)(Igttlce aqtlon de-
that particle decay widths vanish in the laigelimit [10] creases more-or-less as effectively as it does in th€2SU

and so it is natural to ask if screening will vanish in a similar 9349¢ theory. We calculate correlation functions every 5th

way. The answer is yes and no. To appreciate this conside?weep' . - -
' ' '’ We calculate correlations of gauge-invariant operators

say, the decay— 2 in largeN QCD. This is suppressed by ;) “\yhich depend on field variables within a given time
a factor of 1N. However, this suppression does not arisegjice t The basic component of such an operator will typi-
from the decayper se but is a consequence of confinement cq1y pe the (traced ordered product of thdJ, matrices
constraining the pions to be color singlets. If the theory werey,ound some closed contoar A contractible contour, such
not confining, so that the #” mesons belonged to the ad- a5 the plaquette itself, is used for glueball operators. If, on
joint representation of the color group, then this decay of thghe other hand, we use a non-contractible closed contour,
p would be unsuppressed once we summed over all the colyhich winds once around the spatial hyper-torus, then the
ored 2 final states. Thus the large-suppression of particle operator will project onto winding strings of fundamental
decays can be thought of as a phase-space suppression duélia. In the confining phase the theory is invariant under a
confinement. In just the same way the process of gluorlass of center gauge transformations and this ensures that
screening(and renormalizationof strings will be unsup- the overlap between contractible and non-contractible opera-
pressed at largéN. However, the screening of a string in tors is exactly zero, i.e.; the string cannot break. For our
representatioriR to a particular representatioR’ in the lattice action the correlation function of such an operator has
sameN-ality class may be suppressed. Whether it is or is no0od positivity properties; i.e., we can write

will depend on the number of states®RY. So, for example,

adjoint string breaking, i.e., the adjoint sources being C)=(T(1)$(0))=>, Q| S|n)Pexp{—Et} (8)
screened by gluons to singlets, will be suppressed-as-. n

So will be the screening dé=1 strings down to the funda-

mental and in general the screeningkestrings to the repre- Where [n) are the energy eigenstates, willy the corre-
sentation withk quarks. On the other hand the transformationsPonding energies, aij) is the vacuum state. If the opera-
of the mixed to totally antisymmetric=2 representations is or has(¢)=0 then the vacuum will not contribute to this
not suppressedSee Appendix B for detailsOf course these SUm and we can extract the mass of the lightest state with the
general counting arguments should be supplemented by arfjgantum numbers ap from the larget exponential decay of
dynamical information we have. For example we expect C(t). To make the mass calculation more efficient we use
—ko asN—o from the suppression of fluctuations in that operators with definite momentunfwe will often usep

limit (and the dominance of a single Master fjel@ihis has =0; however, as we will see, when better precision is re-
implications for decays as well. quired, it can be useful to extract extra information from the

The way we perform our lattice calculations is entirely
andard and follows the pattern described@h For com-

1
1—NRe TrUp

: )
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smallest non-zero momenkalote that on a lattice of spac- =2 loops, while the operators Hﬁ’ TrPTr pc}Z, and
ing a we will havet=an;, wheren, is an integer labeling {1y p 13 will project ontok=3 loops. These operators, to-
the time slices, so that what we actually obtain from &).  gether with the same ones using blocked links, are summed

° Elirils f ,régﬁcingrggllctlﬁgzeuusrilllth.the simplest lattice string>> 23 to havep=0 and are then used as the basis of our
P g P Yvariational calculation for th&=2 andk=3 strings, respec-

operator is inefficient because the overlap onto the Iightes{ﬁvely

string state is small and so one has to go to large valués of We shall frequently perform fits to our extracted masses

before the contribution O.f excited sta_ltes has die_d away, ._angr string tension ratios. This may be to extract a continuum
at larget the signal has disappeared into the statistical NOISYmit, or to calculate the Lscher string correction. The best

T e ey L5 btaine by miimizng e and the vlue of th
ni ugs Here we use the simple blocking techniaue describ latter is used to determine whether the fit is acceptable.
ques. P 9 q qually conventional is our estimate of the error. Suppose

in det;ul in [1]: We then ha_ve a set of trial operators COITe" e wish to calculate some quantifythrough the fit. Let us
sponding to different blocking levels. From the space of op- . . .
Uppose that the calculated “data” values arewith corre-

erators spanned by these we can determine the best opera?o di A timate of th . ided

using standard variational technigjd3. Epon ing errorsr; . An estimate of the erros-, is provide
Having determined our “best” operator, we then attempt y

to fit the corresponding correlation function, normalized so JA) 2

that C(t=0)=1, with a single exponential ih (actually a U/ZFE 0-2[—) i 9)

cosh to take into account the temporal periodicityVe [ IX;

choose fitting intervalgt, ,t,] where initiallyt, is chosen to

be t;=0 and then is increased until an acceptable fit isWhen the errors are small this formula is adequate, but may

achieved. The value df, is chosen so that there are at leastbecome unreliable for larger errors and poorer fits. It is, how-

3, and preferably 4, values bbeing fitted(since our fitting  ever, widely used and we therefore adopt it to facilitate com-

function has two parametgraVheret, =0 and the errors on parison with other work.

C(t=a) are much smaller than the errorstat2a, this pro-

cedure provides no significant evidence for the validity of the IV. A UNIVERSAL STRING CORRECTION?
exponential fit, and so we use the much larger error from _ _ o
C(t=2a) rather tharC(t=a). (This typically only arises on Whether the long-distance dynamics of a confining flux

the coarsest lattices and/or for very massive stawfe.ig-  tube is described by an effective string theory and, if so,
nore correlations between statistical errors at diffetesmtd  What is its universality class are fundamental theoretical
attempt to compensate for this both by demanding a loyfer questions. These are also important practical questions, par-
for the best acceptable fit and by not extending unnecessarificularly for an accurate determination of the string tension
the ﬁtting range(Anhough in practice the error on the best since the answer will determine how Iarge is the S|OW|y fall-
fit increases as we increase the fitting range, presumably b&g O(1/) correction to the mass of a long flux tube in Egs.
cause the correlation ih of the errors is modest and the (3) and(6). These are, however, difficult questions to answer
decorrelation of the operator correlations is less efficiert ashumerically requiring, as they do, the accurate calculation of
increases. The relatively rough temporal discretization of a flux tube masses when these are very long and very massive.
few of our calculations means that, at the margins, there aréhus, although this problem has been addressed many times
inevitable ambiguities in this procedure. These, however, den the past, the numerical evidence is, as yet, far from con-
crease as—0. Once a fitting range is chosen, the error onvincing. In this section we shall describe some calculations
the mass is obtained by a jack-knife procedure which deal#hich aim to improve significantly upon this unsatisfactory
correctly with any error correlations as long as the binnedblituation.

data are statistically independent. Typically we take 50 bins, Ideally we would like to perform calculations for the vari-
each involving between 2000 and 40 000 sweeps dependir@)s SUN) gauge groups that are of interest to us in this
on the calculation. It is plausible that bins of this size arepaper. In practice our limited computational resources force
independent; however, we have not stored our results in &S to focus upon the S®) group. Ideally, again, we would
sufficiently differential form that we can calculate the auto-Wish to perform calculations for several valuesadfut again
correlation functions so as to test this in detail. A crude test ighis is not practical. Instead we shall perform calculations at
provided by recalculating the statistical errors using bins tha@ single value of which is small enougha/o=0.16, that

are twice as large. We find the errors are essentially unwe can be confident that we are on the weak-coupling side of
changed when we do so, which provides some evidence fany roughening transition. We shall perform such calcula-

the statistical independence of our original bins. tions separately for 21 and 3+1 dimensions since both
In addition to the tension of the fundamenkat 1 string  cases are of interest and they need not be the same.
we also calculate tensions kf2 andk= 3 strings. Denote When is a string “long?” Since we expeéi,=1/\/o to

by P. the ordered product of theJ, around a non- provide the natural length scale for the physics of the con-
contractible loopc that winds once around the spatial torus. fining flux tube, a string of length=al will be long if

So TrP. will project onto a winding loop of fundamental 1/¢,=Lao>1. We can translate to more familiar physical
flux. The operators TIPﬁ and {Tr P.}2 will project onto k units by recalling that in the real world {&=0.45 fm.
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Since quenched QCD provides a good approximation to TABLE I. The lightest massam of a fundamental string
QCD, we can, for qualitative purposes, use the same scale irapped around a spatial torus. The first column comes from good
the D=3+1 SU{3) gauge theory. Since it appears that all fits to p=0 correlators, chosen so as to minimize the errors. The
D=3+1SU(N) gauge theories are “close” to each other second columh contains cautious “very safe” estimates with larger
[6], it should not be too misleading to use the same scale ifTors: The third column uses bofh=0 and, where usefup+0

all cases. For purposes of orientatiand nothing elgewe  correlators.

shall also use this scale D=2+1 SU(N) gauge theories
[where again all SUY) gauge theories are close to each

am;; SU(2); b=2+1

other[1] 1. Lattice  MC sweeps p=0 “Safe” p=0 low p
8%64 4x10° 0.17034) 0.17034) 0.17034)
A. SU(2) in 2+1 dimensions 10748 8x 10 0.21675)  0.21675  0.21675)
12236 16 0.26965)  0.26985)  0.26985)
We perform calculations oh?L, lattices at3=9.0.[Re- 14235 2% 10P 0.32196) 0.321G8) 0.32196)
call that inD=2+1 SU(N) gauge theorieEl] the COUpling 16232 2% 10P 0.38124) 0.38066) 0.38124)
g?> has dimensions of mass, the theory is superops, 2% 10P 0.49177)  0.49069) 0.49175)
renormalizable, ang3—2N/ag? as a—0.] The flux tube 2232 2% 10P 0599813 0.599813  0.60048)
winds around the spatial torus and so has lehgtlL. We 54, 2% 10P 0.710110) 0.708918)  0.70839)

perf;)rm cLaI_chatloLnEZ%r a;qlargﬁ n#mbert(:.f Iattllce sizes, rangz 24, 2% 10P 0813123 0813123  0.815G15)
ing from L =8 to L=40. Recall that at this value g8 one 303, 516 (917533 0916738 0.919819)

hasa+/o=0.162[1] so that the length of our flux tube ranges
40732 2x10° 1.023853 1.023853 1.028424)
from | =8a=1.3X¢, to |=40a=6.5X¢,. In our “fermi” ~ 39 39 429

units the latter translates te=3 fm. This should certainly be

long enough to be governed by the long distance effective \yg |ist the masses that we obtain from qu 0 correla-
string dynamics if that indeed provides the correct descriptors in Table I. To obtain the values in the first column we
tion. R have used fits to the correlation functio@(t), down to the

In addition to the masses, as extracted from the0  lowest plausible values df so as to minimize the errors
operators, we also calculate the energies corresponding to tli@hich grow witht). In some cases there are indications
lowest five non-zero momenta transverse to the strafy: from the effective masses at largethat this mass estimate
=2mn/L forn=1, ... 5. If wewant to use these energies to might be optimistic. So we have listed in the second column
provide extra information on the flux loop mass, care ismass estimates that we regard as very safe, but which might,
needed because the continuum energy-momentum dispersias a result of being overcautious, overstate the errors and
relation, E2=p?+m?, suffers lattice corrections. To deter- hence weaken the statistical significance of our final fits.
mine these we have fitted the energies on our largest latticéRable | also contains, in the third column, the mass estimates

with a more general dispersion relation obtained by using botp=0 andp+#0 energies in the way
5 ) 5 4 described above. Statistically these are the most accurate re-
(aE)*=(am)*+(ap)™+ y(ap)™. (100 gults, although they run the risk of possessing a small sys-

tematic bias from lattice corrections to the continuum

energy-momentum dispersion relation. However, any such
bias will be smallest on the largest lattices and it is only on
these that the+# 0 energies make a significant difference.

<5. Thus in these cases we can simply get0 and use the An immediately striking feature of the listed masses is

continuum dispersion relation. For smaller lattices the gaf)hat they rise more-or-less Imearly with Iength,_ all the way
ut to the longest loops. This demonstrates directly that in

between momenta becomes larger and, not surprisingly, tH& k . ;
number of momenta that can be well fitted will?=p? D=2+1 SU?2) gauge theories we _haye linear confinement
+m? decreases. Since these larger value€ dfave larger ©Ut 10 at least~3 f?' I:—|owever,"th|s IS no m?re ;ha'; ex-
statistical errors there is not much to be gained by attemptinBe%t/ed and so we s ha n°t| dwell upon flt_any urther .e;e.
to include them and so we simply exclude them from the fits. /€ turn now to the real question of interest here: how

- . accurately can we test tH@(1/) string correction term in
\I/:v(i)tLtEiszaome reason we do not bother vith0 for lattices Eq. (6)? As a first step we calculate the effective value of the

. . . fficientcg that btains f i f flux | f
We note that the lattice correction in EG.0) is y(ap)* ;onegt;?;e;ngls’ raesgtra](?ti\c/)elims fom pairs of Tiix foops ©
=y(27n/L)* and this is of the same order as the higher ' '

We find that for the largest lattices the size of the lattice
correctiony is consistent with zero within small errors. For
example on thd=40 lattice we obtainy=0.06(8) forn

order non-universal string corrections that we have ignored m(l) m(l")

in Eq. (6). We also note that the tree-level lattice dispersion 6 - I—’]

relation provides very bad fits to our calculated energies—it e 1= X (1)
clearly contains lattice corrections that are far too large. Fi- s m(D-2) 11

nally we remark that if we generalize E@.0) so as to allow 1’2 12"

a renormalization of th@©(p?) term, we find that the fitted

coefficient is unity within very small errors. In Table Il we list the values orfg”(l ,I") that one obtains for
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TABLE II. Estimating the effective string correction coefficient TABLE IlIl. Estimating the string correction coefficient from a

from the masses of pairs of flux loops of lendgtkal and |’ fit of Eq. (6) to the masses of all the flux loops of lengt& |,
=al’, respectively, using Eq11). =al,. In each case we show th&/dof of the best fit.
c(1,1"); su(2); b=2+1 c(I1=1y); SU(2); D=2+1
L L’ p=0 “Safe” p=0 Low p Lo, p=0 x%dof “Safe” p=0 y%dof Lowp x?dof
8 10 0.13024) 0.13024) 0.13024) 14 1.11828) 1.3 1.10418 1.6
10 12 0.49841) 0.49841) 0.49841) 16 1.07126) 1.2 1.06636) 0.4 1.07022 0.4
12 14 0.54662) 0.47973) 0.54662) 20 1.09163 14 1.118) 0.5 1.10%42 0.3
14 16 1.32979) 1.3711) 1.32979) 24 1.0216) 1.9 1.0116) 0.5 1.129) 0.4
16 20 1.04668) 1.01(8) 1.032498) 28 0.5228 0.2 0.6935) 0.1 1.1@17) 0.6
20 24 0.9916) 1.1518) 1.0810) 32 097 0.1 0.8875) 0.2 1.2140) 1.0
24 28 1.5827) 1.3535) 1.1619)
28 32 0.3151) 0.6(6) 1.1036)
32 36 0.71.1) 0.51.2) 0.6866) value, but, in either case, incorrectly. To obtain real evidence
36 40 1.42.) 1.72.2 2.21.0 one must go to longer strings and if one does so, as in Fig. 1,

one finds that the value af'’ decreases again to something
that appears consistent with the bosonic string value.
neighboring values of and|’ using the masses listed in  To obtain our estimate af; we use Eq(6) to fit all the
Table I. Any given value gives us no information on the loop masses that are longer than some reference Vgluie
validity of the O(1/) string correction. However, if we find 1, is small there is no acceptable fit. As we incregseven-
thatci”(l ,I") has a finite non-zero limit dsl’ —« then we tually the fit becomes acceptable. We can then increate
will have shown that the leading correction is indeed of thischeck the stability of the best fit. In Table Il we list the
form and the limiting value will provide us with an estimate results of this procedure for each of our three sets of loop
of the coefficientcs. masses. The most accurate values are obtained from the last
Our most accurate values ngf are those that incorpo- set, and are plotted in Fig. 2. From the second column of
rate p#0 energies, and we display these in Fig. 1. We Segable Il we extract a “safe” estimate for the string correc-
from the plot that for small loop lengths the valueaf'is ~ tion:
small and increases as the loop length grows. However, the
behavior is not monotonic: at intermediatthe value ofcg'’
increases through the bosonic string value a_nd perhaps peajfﬁis is close to the bosonic string value and far from that of
close to the value for a Neveu-Schwartz string. This occurs

) . . other simple string theories.
at a loop sizd ~ 1 fm which is typically the longest loop for ; . .
; . The above analysis assumes that the leading correction to
which older calculations had usefully accurate results. Thu

ST, : eff
by focusing on slightly different intervals close lte- 1 fm it the linear dependence of the mass:&. The fact thatcs

is possible to either confirm or contradict the bosonic stringbecomes independent, W'th_'n errors_,lodince I_>16a, tells .
us that our results are certainly consistent with such a string-

c<=1.066+0.036. (12)

2

2 T T T

——
05 | ++
05 |
,_._,
0 . . .
0 10 20 30 40 o . . .
L 0 10 20 30 40
L
FIG. 1. TheD=2+1 effective string correction coefficient es-

timated from the masses of flux loops of different lendihdicated FIG. 2. TheD=2+1 string correction coefficient estimated by
by the span of the horizontal error barsing Eq.(11). The solid fitting the masses of all flux loops with length greater thaas a
line is what one expects for a simple bosonic string. function of L.
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TABLE IV. The lightest massam, of a fundamental string wrapped around a spatial torus. The first
column comes from good fits fo=0 correlators, chosen so as to minimize the errors. The second column
contains cautious “very safe” estimates with larger errors. The third and fourth columns usp-6tland,
where usefulp#0 correlators.

am;; SU(2); b=3+1

Lattice MC sweeps p=0 “Safe” p=0 Low p “Safe” low p
10°60 16 0.167914) 0.167914) 0.167914) 0.167914)
12848 2X 10° 0.207314) 0.207314) 0.207314) 0.207314)
14336 4x10° 0.263213) 0.260616) 0.263612) 0.260616)
16°28 6x 10° 0.323318) 0.323@18) 0.330211) 0.323318)
20* 6x10° 0.446815) 0.441623) 0.440820) 0.440820)
24 8x10° 0.547622) 0.547622) 0.545915) 0.545915)
32324 4X10° 0.759875) 0.7469115) 0.754950) 0.749658)

like correction. It is interesting to ask how well our calcula- umns only differ in some cases. The mass estimates obtained
tions exclude other choices. We have therefore performed fitssingp+0 as well agp=0 correlators are also divided into
to two sets(a division that did not appear useful ih=2+1).

The first sefthird column of massedliffers from the second
principally in that on theL=14,16 lattices we chose less
plausiblep=0 masses in order to be consistent with the
=1 values with which they were then averaged. In the last
We find that the there are no acceptable fits if any valuessafe” column we dealt with this discrepancy by not using
with <14a are included. The fit té=14a has a mediocre the p+0 values(which, in any case, become much less use-
but acceptabley?, and we find that the possible range of ful on the smaller latticds Thus this range of mass estimates
powers isp=1.4+0.5. Forl=16a the best fit is very good gives some indication of any systematic error that arises
and one findp=0.9+0.5. Fits tol=20a are equally good from our procedure for extracting masses. We first note that
but no longer provide a useful constraint pnin short, our  the loop mass increases approximately linearly with the loop
results are consistent with tt@(1/1) string-like correction |ength confirming, as expected, that the theory is linearly
term and, in any case, the power of g constrained to be confining (up to ~2.3 fm).

c
m(|)=a'|+|—p. (13

within the rangegp=0.9+0.5. So if we constrain the power In Table V we list the values of the effective string cor-
to be an integer, we find that it indeed has tosel. rection coefficient,c’’, defined in Eq.(11). As in D=2
+1 our most accurate values cf'" are those that incorpo-
B. SU(2) in 3+1 dimensions ratep# 0 energies, and we display one set of these in Fig. 3.

We perform calculations oh3L, lattices at@=2.55. At We see in the plot a behavior similar to what we observed in

this value ofg one hasayo—0.159[6], so that the size i D=2+ 1: the value ofc.§ff increases as the loop length in-
is very similar to that in oub=2+1 calculations. The cal- C¢€aSes, attains a maximum valuel atl fm that is signifi-

culations inD=3+1 are, of course, slower and so our rangeCantly larger than the bosonic string value, and then de-

of lattice sizes and our statistics are somewhat less. One m&y€ases to a value consistent with the value for a bosonic

hope that this will be partly compensated for by the fact that'™9- , , _

the expected string correctior) - 2)c4/6L, will be twice Just as iD=2+1 we estimate by using Eq.(6) to fit

as large(for a given universality clagsWe perform calcula- all the I(_)op masses thf’it are longer than.some refgrence value

tions on lattices ranging from=8 to L =32. Thus our long- lo. If I is small there is no acceptable fit. As we increhse

est flux Ic?Op Isl =32a=2.3 fm which, if our experience in TABLE V. Estimating the effective string correction coefficient

a;g;rjéé?i(;ﬁ!evam, should be long enough to see the Ie‘Fidf-rom ,the masses of pairs of flux loops of lendgtkal and |’
Our calculation and analysis is precisely asdDr-2+1, —aL’, respectively, using Eq11).

except that the values of the momenta transverse to the flux cM(1,1"); SU(2): D=3+1

loop that we use ar@”=0,1,2,4. The mass estimates are S e '

listed in Table IV. As in thed =2+ 1 case we list two sets of

L’ p=0 “Safe” p=0 Lowp “Safe”low p

masses extracted from thp=0 correlators. In general our 10 12  0.1%6) 0.156) 0.156) 0.156)
mass estimates are chosen to be those with the smallest a2 14  0.798) 0.699) 0.81(8) 0.699)
rors while still giving plausible fits. In some cases the plau-14 16 1.1112) 1.26113) 1.449) 1.2613)

sibility is less than convincing and we then also select al6 20  1.469) 1.2811) 0.958) 1.2610)
“safer” mass estimate, which will have larger errors. The2o 24 0.6015 0.9218) 0.89115) 0.8915)
former numbers provide the first column of masses in Tables 32 1.17132 0.6647) 1.0621) 0.8524)
IV while the latter provide the second column. The two col-
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2 - - - crude finite volume analyses that are primarily designed to
confirm the presence of linear confinement in 8I&{4)
gauge theories. In our analysis of the string tension ratios,
N o/ o, we shall make the plausible assumption that the lead-
+ ing correction is that of a simple bosonic string. However,
for completeness we shall also point out how the results are
affected if this should not be the case.
g 1 ; In order to provide some theoretical context within which
+ R to view our numerical results, we shall first briefly summa-
rize some of the existing ideas about how such ratios might
behave. This is not intended to be an exhaustive review, and
our references are merely designed to provide an entry into
the literature rather than aiming at completeness.
4 We then describe our calculations k2 and (funda-
. . . menta) k=1 strings inD=3+1 SW4) and SU5) gauge
0 10 s % “ theories. We follow this with a description of olr=2+1
calculations which are for S4) and SU6). In this last case
we also have non-triviak=3 strings that we are able to
analyze.

05

FIG. 3. TheD=3+1 effective string correction coefficient es-
timated from the masses of flux loops of different lendihdicated

by the span of the horizontal error barsing Eq.(11). The solid We shall find that irD=3+ 1 the string tension ratios lie
line is what one expects for a simple bosonic string. For comparisore)etween the predictions of MQCD and Casimir scaling
the dashed line indicates the value for the Neveu-Schwartz strings. ddling both withi dard deviations: with @ ’
We use masses from the third column in Table V. t_ra ng O.t wit n FWO st_an ar eVIatlon_S, with @)J
slightly favoring Casimir scaling and $8) leaning towards

we find that the fit eventually becomes acceptable. We theMQ.CD' In. D=2+1 our results are again close to both Ca-
increasd , to check the stability of the best fit. In Table VI SIM!" scaling and to MQCD, but how th?‘y are much more
we list the results of this procedure for each of our last thredccurate and so we can begin to see significant deyla_\tlons.
sets of loop masse§ror the first set there are no acceptable'A‘IthOUQJh we see deviations from both sets of predlcthns_,
fits, perhaps indicating that some of the mass choices werIQOS.e from MQ.CD are much larger thn tho_se from Casimir
indeed too optimistig.The most accurate values are obtained>c2/ing: We point out that near-Casimir scaling occurs natu-

from the last two sets, and we use these to obtain our beé?"y if _the confining flux tube has. a cross section that_ i.S
estimate for the string correction: nearly independent of the flux carried. We perform explicit

calculations inD=2+1 that suggest that this is in fact so.
cs=0.94+0.04. (14) These calculations give us, as a side product, the value of the
k-string tensions at high temperature, and we find near-
This is close to the bosonic string value and far from that ofCasimir scaling there as well. Motivated by this we perform

other simple string theories. a high T calculation in theD=3+1 SU4) gauge theory
where we again find near-Casimir scaling.
V. K-STRINGS It is interesting to ask if all this also occurs for the un-

stable strings. We shall show that ddDr=2+ 1 calculations
In the previous section we accumulated some evidencprovide some evidence that points to this.
that SU2) flux tubes in the fundamental representation are
described by an effective bosonic string theory at large dis-
tances. In this section we consider flux tubes in higher rep- A. Some expectations foik-strings

resentations: thé-strings described in the Introduction. We  Tha interest in strings that emanate from sources in higher

will not be able to perform comparable checks on the stringy.enresentations goes back a long way. The early discussions
nature of these flux tubes although we will perform someyare framed in terms of unstable strings in(@Uand SU3)
gauge theories as were the lattice calculati¢Bge, for ex-
ample,[3].) Despite the uncertainties of this kind of calcula-
tion, these early results were already seen as being able to
discriminate against particular theoretical ideas; in particular
[13] against the bag mod¢l3,14]. There have been recent
much more accurate $B) calculationg[15,16| that support

TABLE VI. Estimating the string correction coefficient from a
fit of Eq. (6) to the masses of all the flux loops of lendt& |,
=al,. In each case we show th&/dof of the best fit.

c(I=1g); SU(2); D=3+1

Ly iifg \Jdof Lowp ydof Saf?o low ldof this garlier worK, and this has sparked_some interes_t in the
possible dynamic$17-19. The recent interedi20,5], in-

14 1.194) 1.5 1.15032) 2.2 cluding our own, in stablé-strings in SUN=4) has been

16 1.146) 1.7 0.944) 0.2 1.08752) 2.2 largely due to conjectures arising in (Nheory)QCD [2].

20 0.8816) 0.2 0.9512 04 0.8711) 0.0 Here we briefly allude to some of these theoretical ideas,

with a particular focus on MQCD and “Casimir scaling”
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since their predictions turn out to be closest to the results weuires a factoeX with ke Zy, then we shall generically refer

obtain[5,6] for the tensions ok-strings. to the corresponding flux tube askastring. Anyk-string can
be transformed into any othérstring by appropriate gluon
1. Unbound strings screening. Thus the stablestring will be the one with the
The simplest possibility is that smalle;t string ten.sion_. Any othlgfstring will, at sufficiently
large distances, find it energetically favorable to be trans-
o =Ko, k= min{k,N—K}. (15) formed into the lightest stable string through gluon screen-

ing. If we have Casimir scaling then the lowest string tension
That is to say the total flux is carried ty(or N—k if thatis ~ corresponds to the representation with the smallest quadratic
smalley independent fundamental flux tubes. This would oc-Casimir, and this is the totally antisymmetric representation.
cur if the interaction between fundamental flux tubes was s¢See Appendix G.The ratio of these quadratic Casimirs
weak that there were no bound or resonant multi-stringgives us the Casimir scaling prediction for stakistrings
states. One may regard this as the trivial scenario with which

the actual calculated values of, can be contrasted. Tk _ k(N—k) (17)
T N—1
2. Casimir scaling
The idea that the confining flux tube between sources will 3. MQCD
be proportional to the quadratic Casim@y, of the repre- A number of calculations in bran@M-)theory of QCD-
sentation of those sources like theories(see[2] and references therginwhich are ge-
nerically referred to as MQCD, find that the string tension of
or*Cp (16)  k-strings satisfies
is an old idea. An early motivatigf8] arose from a model of kw
“random fluxes” for the vacuum and the observation that in o SIHW
certain solid state systems this leads to a dimensional reduc- . (18)
tion D—D—2. ThusD=4 theories would reduce t© =2 T Gint
gauge theories in which the Coulomb linear potential is in- N

deed proportional to the quadratic Casimir. The numerical

calculations supporting this were =4 SLXZ) [3] and in- This led to the ConjeCtUr@] that this mlght be a universal

volved potentials at relatively short distances. The observatesult and that QCliand SUN) gauge theorigsfall into

tion soon after that one seemed to see a similar Casimifis universality class. o

scaling inD =3 theories[3] forced a generalization of the ~ This prediction has reasonable properties: it has the re-

dimensional reduction idg@]. The most accurate early cal- duiredk—N-—k symmetry and takes sensible values for

culations involved the adjoint string tension. Recently, how-=2,3. However, the MQCD derivation neglects potentially

ever, there have been accurate calculatfdis16 for a va-  important quantum fluctuations which midt®] renormalize

riety of representations in §B) and this has sparked the simple and elegant formula in EG.8).

renewed interest in this idda7—-19. The MQCD calculations are, strictly speaking, for $U(
There are obvious ambiguities in calculating the stringdauge theories in-81 dimensions. It is not clear how much

tension of unstable strings from the intermediate distanc&vidence there would be for a corresponding MQCD conjec-

behavior of the static potential. At short distances we knowfure inD=2+1, although a naive reading suggests that the

that we have a Coulomb potential which, of course, display$rane constructions if2] would lead to the same conclusion

Casimir scaling. As the potential interpolates between thidor the oy ratios. In any case the trigonometric formula in

and the long-distance behavior one expects some continuit{zd. (18) has the correct qualitative properties and so we shall

If, as is usually done, one fits the potenti&lr) by a simple  compare our results to it not only iD=3+1 but also in

sum of a Coulomb term and a linear pies&r)=V,+c/r D=2+1 and, indeed, at finite temperature.

+or, and then performs the fit in a limited range rofim-

mediately beyond the Coulomb region, then it might be that 4. Bag model

simple continuity artificially forces approximate Casimir  |n the bag modeisee e.g.[14,13) the flux between dis-

scaling on the fitted linear term. While this is no more than aant sources is confined to a cylindrical bag of cross section

possibility, it does underscore the utility of using stableA,. The flux is homogeneous,

strings, as we shall do, where one can go to larger distances,

and doing the calculation in a way, as we shall also do, that E,A=QT,, (19
does not involve explicit sources and associated Coulomb
terms. and the vacuum energy difference between the inside and

Since the sources may be screened by gluons, which afdtside of the bag is given by the bag constnihus the
in the adjoint representation and do not feel center gaugénergy per unit length igl4,13
transformations, it is appropriate, as we remarked earlier, to
categorize the representations of 8l)(sources by how they E _ %
=27mas——+AB (20)
transform under the center of the group. If the source ac- I A
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whereCy, is the quadratic Casimir of the source angis the TABLE VII. Setting the scale of: the string tension for our
strong coupling constant. One now fixes the akday mini-  SU(4) and SU5) lattice calculations iD=3+1.
mizing the energy. This gives the string tension to be
D=3+1
SuU4) SuU(5)
or*{Cr}"? 2) g ayo B aJo

. . o . 10.55 0.372 16.755 0.384
v;/]mch dllffers ma}rkeldlylfrolm_Casmw scalln%.. The fa_ct that 14 70 0.306 16.975 0.303
the early numerical calculations gave an adjoint string ten;j o, 0243 17270 0.245
sion that satisfied Eq16) rather than Eq(21) was picked up 11.10 0.202 17.450 0.999
[13] as providing critical evidence against conventional ba 1'30 0'170 ' '

dynamics[14,13, in that it suggested a flux tube cross sec-
tion that was independent of the size of the flux.

_ We calculate the string tension from the mass of a flux loop
5. Strong coupling that winds around the spatial torus. We assume that the lead-
In the strong coupling limit3— 0, of our action, a Wil-  Ing correction to the linear dependence of the mass is that

son loop involving k-strings will need to be tiled with a@ppropriate to a simple bosonic string:
plaquettes at leagt(or N—k) times. The leading term in this

limit will therefore reproduce Eq.(15): oy=Koy_q, K I—ee m(D—-2) 1
=min{k,N—k}. However, the non-leading terms will intro- m() = o =—F%— 7
duce interactions between these tiled surfaces, and this

simple ratio will change as we move away from the strongrpis assumption has some support from the calculations of
coupling limit. . _ the previous section, but it is not guaranteed that what holds
Strong coupling predictions are, of course, not universalior Siy2) holds also for largeN. So we shall occasionally
however, this one is more universal than most. If we generpayse to state how sensitive are our results to this assump-
alize the action to contain any combination of closed loopsijgn.
so long as these are linear in the $Y(link matrices, we We begin by listing in Table VII théfundamental string
will still obtain Eq. (15). However, if we include 100ps or  (ensiong 6] corresponding to the varioys values at which
products of loops that are not linear in the links then we canye perform our calculations. This sets the scala iof physi-
obtain other results. One can think of the action as havingg| ynits. In Table VIII we list our lattices and calculated
loops in different representations, and th_e valuerofo will values of thek=1 andk=2 flux loop masses for the case of
depend o_nIy on.what these rep_resentatlolns are and what a&R)(4), and in Table IX for SU). (Note that in these calcu-
their relative weights. By choosing an action in an appropri-stions we only us@=0 correlators.
ate “universality” class, one can essentially obtain i/ o In order to extract a string tension from the flux loop mass
any value one wants. _ _ _ we must ensure that our loop length is long enough for the
Hamiltonian strong couplingsee e.g.[21]) is more inter-  cqrrections to Eq(23) to be negligible within our statistical
esting. The leading term, ag'—, is simply the quadratic errors. In Sec. IVB we have seen that in the case of25U
Casimir for each spatial link. Gauss’s law means that our twqy,g appears to be the case for strings longer theor

k-sources are joined by excited links, and that the lightest _ - _ Tables V | H f
string will satisfy Casimir scaling as in EqL7). Of course aJo=3 (see Tables V and VI Here we perform an

the magnetic perturbation will spoil this result as we move
away frompB=0.

(23

TABLE VIIl. Masses of thek=1 andk=2 flux loops that wind
once around the spatial torusin=3+1 SU4) for the lattices and
couplings shown.

B. k-strings in D=3+1
D=3+1; SU(4)

We will now calculate the ratio of th&=2 and funda- latice ~ MC sweeps ame_, am_,
mental string tensionsg,_,/o, in both SU4) and SU5)
gauge theories. There are no other stabtgrings for these 10.55 g 2x10° 0.97317) 1.45630)
values ofN but having results for two values &f will al-  10.70 616 5x 10" 0.2688) 0.32912)
ready provide significant constraints. We are, of course, in10.70 812 10 0.56410)  0.76324)
terested in the continuum limit, so we calculate this ratio for10.70 14 10° 0.837%92  1.19718)
several lattice spacings and then extrapolate to the cort0.70 12 10° 1.03311) 1.45637)
tinuum limit using the fact that for the plaquette action the10.70 14 10° 1.20%34) 1.78060)
leading lattice correction to dimensionless mass ratios i30.70 16 10° 1.31879) 2.3527)
O(a%): 10.90 12 10° 0.6227)  0.89611)
11.10 16 10° 0.5858) 0.83621)
7@ _ al0) +calo (220 11.30 20 1 0.526556)  0.74016)
o(@ o(0) '
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TABLE IX. Masses of thek=1 andk=2 flux loops that wind 2
once around the spatial torush=3+ 1 SU5) for the lattices and

couplings shown.
D=3+1; SU(5) 15 M
B Lattice MC sweeps ame, ame_,

16.755 g 10° 1.05113 1.707)

16.975 16 2.0x10° 0.81612) 1.23951)
17.270 12 1.4x 10° 0.6389) 1.06129)
17.450 16 10° 0.72310) 1.16862)

c, /o

05
additional finite size study, this time in $4), which, while
less accurate, will probe the behaviorlot2 as well ask
=1 strings.

Our finite size study is ap=10.7 and involves loops % 0.05 o 015 02
ranging fromL=6 to L=16 with masses as listed in Table s
VIII. The longest length translates inte=4.9/\/o=2.2 fm. ac
We observe that both the=2 andk=1 masses grow ap- [, 5. The ratio ofk=2 andk=1 string tensions in oub
proximately linearly withl, demonstrating that the $4  —341 Su@4) (@) and SU5) (O) lattice calculations plotted as a

theory linearly confines botk=1 andk=2 chargesat least function of a%s. Extrapolations to the continuum limit, using a
over this distance rangeUsing Eq.(23) we extract the ratio  |eadingO(a?) correction, are displayed.

oy—o/o which we plot in Fig. 4. We see that within errors
the ratio becomes independent of the flux loop lengthl for VIII and Table IX we see that our loop lengths have been
= 10a=3/\/o. For comparison we also show what happens ifchosen to fulfill this bound; more generously at smaker
we do not include any string correction at all, i.e,—,/c  where the errors are smaller.
=my—,(1)/m_1(l). We see that while the ratio changes by a  Assuming Eq.(23), we extract our string tension ratios
few percent, it becomes independent,afithin errors, at the and plot them against?s in Fig. 5.(At 8=10.7 we use only
same lengthl =10a. By the same token it is clear that the the L=10,12 lattices since the larger volumes have errors
results of this calculation are not accurate enough to distinthat are too large to be usefuDn such a plot the continuum
guish between different possible string corrections. extrapolation, Eq(22), is a simple straight line. We show the
Our finite volume study has taught us that higher ordetbest such fits in Fig. 5. We find that if we use all the points
corrections in 1/to the string tension ratio will be negligible we get an excellent? for SU(4) and an acceptable one for
(within our typical errory if we make sure that our loop SU(5). From these fits we obtain the following continuum
length satisfied Jo=3. Comparing the values af\/o in  values:
Table VII with the corresponding lattice sizes listed in Table

lim

a—0 o

(24)

oy—p [1.357+0.029 SU4)
| 1.583:0.074 SU5).
One might worry that these fits could be biased by including

the coarsesa value (where we know[6] the lattice correc-
tions to the scalar glueball mass to be largewe exclude

R % % % ] this coarsesa point our best values in Eq24) are changed
to
0 !
6 4| | i oy-, [1.377:0.035 B=10.70 SU4) )
im =
a0 O 1.76:0.14 B8=16.975 SU5). @9

This gives us some idea of the direction of any such bias.

05
It is interesting to compare our results with the expecta-
tions of MQCD
° : 0 2 T 20 2T
L o ,MeeDS N (141, su4)
= = (26)
FIG. 4. The ratio ofk=2 andk=1 string tensions irD=3 o i 161... SU5)
+1 SU4) at B=10.7 extracted from flux loops of length-al. N
We show values extracted using a bosonic string correcti®), (
and no string correction at allX). and Casimir scaling

105019-12
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o2 OSk(N—k) [1.33 SU4)
o N-1 |150 sus).

(27)

We see that our results in E4) and(25) are consistent at

the 20 level with both these expectations within quite small g
errors, with perhaps a slight bias towards favoring MQCD. It
is because the two sets of predictions are numerically very8- &
similar that we cannot, at present, choose between them. OH-0
the other hand we clearly exclude the unbound string valu@8.0

of 2: i.e., if we do wish to think of th&=2 string as being

composed of twd= 1 strings then it must be a tightly bound 28.0
state of such strings. We also clearly exclude the bag modéei8.0

prediction:
ow-2%9 [k(N-k) [115... SU4)
o YV N-1 |122... sus).

(28)

In order to distinguish clearly between MQCD and Casimir
scaling we need to reduce our statistical errors by about

factor of two; a feasible goal but one for the future.

Thus our conclusions are essentially unchanged fro

those of our earlier pap¢b] although our S(#) calculation
now has smaller statistical errors, and our(SUtalculation

is now free of the potentially large systematic errors that®

concerned us earlier.

A final remark. Our above analysis assumed that the flu
tubes behave like simple bosonic strings. What difference
does it make if we do not make this assumption? Suppose
first that we use the result we obtained in Sec. IV B for the

coefficient of the string correctioncs=(1.25+0.25)7/3
(where we take very generous ernoiRepeating our analysis

with such a string correction we find that our results in Eq.

PHYSICAL REVIEW D 64 105019

TABLE Xl. Masses of the&k=1 andk=2 flux loops that wind
once around the spatial torusih=2+1 SU4) for the lattices and
couplings shown.

D=2+1; SU(4)

Lattice MC sweeps ame_; ame_»

2X10° 1.49718) 2.02266)

16 2X10° 1.22311) 1.69038)
£48 16 0.134712)  0.183§21)
28.0 628 16 0.272415  0.363026)
&16 1¢ 0.427633)  0.565264)
1616 1.5x10° 0.572q30)  0.782463)
28.0 12 2X10° 0.715239)  0.971895)
28.0 16 2Xx10° 0.9937598) 1.34514)

33.0 16 2X10° 0.662229) 0.9146)
45.0 28 2X10° 0.497422)  0.681540)
60.0 32 2X10° 0.357114)  0.488815)

gU(6). The main reason for S6) rather than S(b) is that

rHvith the former one also has stalde 3 strings that one can

study. On the other hand the calculations take longer which
is why we contented ourselves with &) in four dimen-
ions. Our calculations are summarized in Tables XI and XII
and the scale o4, in units of the fundamental string tension,

)'&s given in Table X.

We begin with a finite volume study in S4 at B
=28.0 that parallels oub=3+1 study. The loop lengths
range fromL=4 to L =16, with the largest loop correspond-
ing tol =16a=4/\/c=1.6 fm. We extractr,_,/o using Eq.
(23) and plot the result in Fig. 6. We see that the ratio of
string tensions is independent of the loop lengtlithin er-

(24) are lowered by about 10% of the statistical error; that isory once I=10a=2.5//g=1.1fm. This is a somewhat
to say, insignificantly. Even if we were to ignore what we Shorter length than the one we foundir=3+1. We shall

knew and simply assumed some range lies (1+1)#/3

later see that the flux tube is thinnén units of o) in D

we would find that the maximum shift would be less than our=2+1 than inD=3+1 and this is presumably why the

quoted statistical errortFor c,=0 the ratios are close to
MQCD while for cg=2/3 they drop very close to Casimir
scaling)

C. k-strings in D=2+1
Our calculations irD=2+1 follow the same pattern as
in D=3+1 except that our calculations are in @Y and

TABLE X. Setting the scale of: the string tension for our
SU(4) and SU6) lattice calculations ilD=2+1.

D=2+1
SU(4) Su(6)

B a\o B a\o
18.0 0.442 42.0 0.436
21.0 0.361 49.0 0.353
28.0 0.252 60.0 0.274
33.0 0.208 75.0 0.211
45.0 0.147 108.0 0.141
60.0 0.108

corrections are smaller. We also show in Fig. 6 the string
tension ratios one obtains if one assumes no correction. This
also plateaus for=10a. Moreover, we see that the value of
the ratio differs by only about 1%Note the string correction

is «(D—2) and so is larger iD=3+1 than inD=2+1.)

We observe that the loop lengths we shall use, as listed in
Tables XI and XlI, satisfy the above bourldz 2.5/, by a
good margin. So assuming E@®3), we plot our string ten-
sion ratios in Fig. 7 against?s. We also show the straight

TABLE XII. Masses of thek=1, k=2, andk=3 flux loops that
wind once around the spatial torus.Ih=2+1 SU6) for the lat-
tices and couplings shown.

D=2+1; SU(6)

B Lattice MC sweeps am_; ame», amg_s3
42.0 g 3x10°  1.45314) 251100 2.8530)
49.0 16 2Xx10° 1.1949) 2.03042  2.219)
60.0 12 2Xx10°  0.857%47) 1.44315 1.62125)
75.0 16 2x10° 0.682%31) 1.130%72 1.27511)
108.0 24 3x10° 0.455213) 0.753421) 0.842498)
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FIG. 6. The ratio ofk=2 andk=1 string tensions irD=2
+1 SU4) at 3=28.0 extracted from flux loops of length=al.
We show values extracted using a bosonic string correct®i (
and no string correction at all).

line continuum extrapolations, using E@2). We find that
we get an acceptablg? using all the points. We thus obtain
the following continuum values:

ok, [1.3548:0.0064 SU4)

;ITO o - 1.6160-0.0086 SU6) (29
and
. Ok=3
li =1.808+-0.025 SU6) ... . (30
a—0 g
25
2 L
& <% > i>
15 N
(o) *—& L - ® &
b-&
1t
05
0 L L .
0 0.05 0.1 0.15 0.2

2
ac

FIG. 7. The ratio ofk=2 andk=1 string tensions in oub
=2+1 SU4) (@) and SU6) (O) lattice calculations plotted as a
function of a?¢. Also shown is thek=3 to k=1 ratio (¢) in

PHYSICAL REVIEW D64 105019

We note that the errors here are much smaller than in Eqg.
(24) and the MQCD expectation is excluded. We also see, in
ourk=2 SU4) ratio, a deviation from Casimir scaling at the
level of about 3.5 standard deviations. In (Blthe expecta-
tions are

Ok=2 1.73... MQCD
SU(6)_ (31
o 1.60 CS
and
_ 2.0 MQCD
Ok=3
o SU(6)={ 1.8 CsS. (32

We see that in this case our results are far from the MQCD
values and agree well with Casimir scaling.

Given our very small statistical errors one might worry
that our assumption of a bosonic string correction might in-
troduce a relatively large systematic error. In fact this is not
so. If we take our S(2) string analysis in Sec. IV A to be
telling us that the coefficient of the Ilterm is cs=(1.1
+0.1)7/6, then we find a negligible shift in our above pre-
dictions. Even if we were to assuneg=0 this would shift
our values upwards by less than 2%. While this would in-
crease the deviation from Casimir scaling, it would be far
from enough to bridge the gap to the MQCD prediction.
However,c,=0 is a contrived and extreme example, and it
appears to us that any reasonable estimate of the systematic
error arising from the uncertainty in the string correction
shows it to be negligible.

D. Width of k-strings

We have seen that in both=2+1 andD=3+1 the
ratio o /o is close to the Casimir scaling value. =3
+1 it is also consistent with MQCD, but the MQCD and
Casimir scaling predictions are in fact quite close. If one
imagines modelling the flux tube then this is a somewhat
counterintuitive result. It would be natural to think of the flux
as homogeneous, as in Ed.9), and that the vacua inside
and outside the flux tube differ by some energy densiy .
These are of course the ideas embodied in the Bag model.
One would then expect that as the representation of the flux
increases, so that the chromoelectric energy density in-
creases, the area will increase so as to minimize the total
energy increase. This is just the variational calculation of the
naive bag model which leads to a ratiQ/o that grows as
the square root of the quadratic Casimir. This is definitely
excluded by our calculated values. One might imagine ex-
tending this simple-minded model by providing the flux tube
with a surface tension. However, this would have no effect in
D=2+ 1 where the “surface” is independent of the flux tube
width.

If the flux is homogeneous and if the flux tube width is
independent of the total flux carried, then one naturally ob-
tains Casimir scaling. If one considers a superconductor in a
phase that exhibits the Meissner effect and supp@ntzg-

SU(6). Extrapolations to the continuum limit, using a leading netic) flux carrying flux tubes, there is a range of parameter

0O(a?) correction, are displayed.

values, called the deep-London limit, where the flux tube

105019-14
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cross section is indeed independent of the flsge e.g., TABLE XIIl. Masses of flux loops that wind once around a
[22]). This corresponds to a penetration depth, related to thepatial torus of length as a function of the lengtit,, , of the other
photon mass, being much larger than the inverse scalar Higg®atial torus.

mass. The deviation from Casimir scaling would be related

to the ratio of these masses. D=2+1; SU(4); B=28
It is interesting to test these ideas. Here we shall attempt amy-(L) amy_»(L)
to calculate the widths of the flux tubes corresponding to-: L=8 L=12 L=8 L=12

different k-strings and see how close the width is to being2
independent ok. We shall do so irD=2+1 because it is
faster; but the same technique can be used #3+1. We
shall perform calculations fdt= 1,2 flux tubes in S#) and
for k=1,2,3 flux tubes in S(H).

We use a technique that was employe@28] to calculate
the width of SU2) flux tubes inD=2+ 1. Consider a lattice 0.42733) 0.7105) 0.565264) 0.9419)
of sizeL XL, XL,. L, refers to the Euclidean time in which 10 0.427430) 0.7065) 0.577056)  0.97X11)
we calculate correlations. The flux loop is of lendthand 12 0.432730) 0.7134) 0.598%58)  0.97210)
L, is the spatial size transverse to the flux tube. By reducing6 0.434728)  0.7215) 0.5987)  0.94824)
L, we can squeeze the flux tube. If the flux tube oscillates© 0433130  0.7134) 0.6005)  0.99112)
with simple harmonic modes then it will not be affected by

reducing the finitéperiodig transverse width until it reaches | are consistent with Eq33). If we take these to fix the

1.18810) 1.81123) 1.55228) 2.2710)
0.7389) 1.190473)  1.00811) 1.4515)
0.509337)  0.81913) 0.6679) 1.044)
0.429736)  0.681483  0.558362  0.89912)
0.420728)  0.696346)  0.550457)  0.86922)

o o U~ W

smaller than this width, which we shall cdl,=al.,,, we =1 andk=2 flux tubes. That is to say, the flux tube width is
expect the mass of the flux loop to increase 28] indeed independent of the flux, and has a valye 1.3/
L In addition to these gross features we also see in Table
am(L;LL):am(L;oo)X—W‘ (33 Xl and Fig. 8 that there is a decrease in the mass at values
L. of L, that are just above the values where the mass starts to

The onset of the increase islat =L, and provides us with
an estimate ot,,. Our main interest is to see If,, varies
with k or not.

k=2 string than for th&k=1 string. Such an effect indicates

flux tubes—if only in their tails—and an analysis of this
rﬁ\ight provide information on the dynamics, e.g., the param-
eters of the effective dual superconductor referred to earlier.

ha_l\(e ?eg:ectegl._ In partg:ularvther?].|shg phhase tran5|t(|jort1) at Bowever, anything quantitative needs calculations with more
critical value ofL, (see Sec. V Ewhich is characterized by resolution, i.e., at smaller values af

the development of a non-zero vacuum expectation value for We display in Fig. 9 howr,_, /o varies withL, . We see
the Polyakov qups that. wind around the shhut torus. that the ratio is close to Casimir scaling not only at lakge
However, the string tensions we calculate behave smoothly

through this transition, suggesting that our simple analysis 2
should not be invalidated. In any case, our main conclusion,
that ask grows the flux tube width does not grow ever larger,

will remain valid since such a growth would mean that
higherk flux tubes would begin to be squeezed whenwas 15T
greater than its critical value, and this would certainly be
visible.

We show in Table XIII howam(L;L,) varies withL ~
for k=1 andk=2 flux tubes; all at3=28 in the SU4) § 17
gauge theory ilD=2+1. We do so for., =2, ...,20 and
for two values of the flux tube length, The minimum trans-

also changes in the vacuum las becomes small which we

!
|
|
1
\
|
)
|

verse size i$, =al, =2a=0.5//c which we expect to be os | o o @ © ©

smaller thanl,. The loop lengths ard=alL=8a, 12a ' o o . . .

=0.9,1.35 fm which should be long enough to allow well-

formed flux tubes. The fact that we have calculated masse:

for two values ofL at eachL, allows us to check whether 0 . . . .

the mass is growing nearly linearly with and that we do 0 5 °, 15 2 %
indeed have a flux tube. We see from the masses listed in o

Table XIII that this is so for all values df, . FIG. 8. The masses of tHe=1 andk=2 flux loops of length

We plot thelL. =8 flux loop masses in Fig. 8. We see that =g in theD=2+1 SU4) gauge theory a8= 28 versus the size
bothm,_, andm,_ start increasing at a very similar value of the transverse spatial torlge,,=L, . Shown is the dependence
of L, . Moreover, the masses for the smallest two values ofn Eq. (33) fitted to the smallest values of,¢,p.
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FIG. 9. The ratio of the&k=2 to k=1 string tensions in th® FIG. 10. The masses of the=1, k=2, andk=3 flux loops of

=2+1 SU4) gauge theory aB=28 versus the size of the trans- lengthL=10 in theD=2+1 SU®) gauge theory 88=60 versus
verse spatial torud yo,,=L,. With (@) and without O) a the size of the transverse spatial tolug,,=L, . Shown is the

(bosonig string correction. dependence in Ed33) fitted to the smallest values &fyqp.
(something we have seen alreadyut also at small, . is independent of the flux, and has a vallg=4.5a
There is only a small range &f, , coinciding with the dip in ~ =1.2A/o that is also very similar. Again, just as in 81,
my, where the ratio drops below this. Of course, at verythe loop mass decreases just before it begins to increase.
small values ofL, our D=2+1 system is effectively re- We plot o /o in Fig. 11. We again see consistency with

duced to D =1+1 gauge-scalar theory, and we recall thatCasimir scaling at small as well as at larige, except pos-

the linear confinement of pure gauge theorieDir1+1 sibly in the region of the dip.

arises through the Coulomb interaction which automatically This analysis thus appears to confirm that the confining
satisfies Casimir scaling. flux tube has a cross section that is largely independent of the

Our SU6) analysis closely parallels our $4) analysis  flux carried. The minor differences betwekistrings might,
except for the fact that we now have additiokal 3 strings.  however, be useful in telling us about the details of the con-
Our calculations are g8=60 which, as we see from Table finement mechanism.

X, has a similara to that at3=28 in SU4).

Our masses are listed in Table XIV. They are for flux
loops of lengtH = 10a andl =12a and we see evidence for a
linearly growing mass for alk and for allL, . We plot the In our above calculations we have calculated the mass of
L =10 flux loop masses in Fig. 10 and we see, once again, aalong flux loop in a spatial volume with a limited transverse
increasing loop mass at smal| that is consistent with Eq. spatial dimension,L, . Let us relabel the axes of our
(33). Indeed we find a common flux tube width,=4.5, for ~ LXL, XL, lattice so that the short spatial torus becomes our
all three values ok. So, just as in S, the flux tube width  time torus and our time torus becomes a long spatial torus.

E. High-T spatial string tensions

TABLE XIV. Masses of flux loops that wind once around a spatial torus of lehgdls a function of the
length,L, , of the other spatial torus.

D=2+1; SU(6); B=60

amy_4(L) amy_»(L) amy_3(L)

i L=10 L=12 L=10 L=12 L=10 L=12

2 1.4413 2.0558) 2.6620) 2.7041) 3.11(4) 2.6391)
3 1.05@29) 1.22756) 1.78539) 2.06951) 1.92970) 2.3321)
4 0.69212) 0.84118) 1.17814) 1.41928) 1.36Q27) 1.61154)
5 0.676766) 0.8455%65) 1.06414) 1.280111) 1.16316) 1.38931)
6 0.691%67) 0.846259) 1.08412) 1.368293 1.20421) 1.53131)
8 0.700%52) 0.867154) 1.13714) 1.390123 1.19465) 1.590137)
10 0.701%49) 0.84313) 1.18014) 1.43516) 1.32727) 1.65855)
12 0.857%47) 1.44315) 1.621(25)
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25 ' ; TABLE XV. Calculations at finite temperaturd, on 16 L
lattices. In SW4) at B=10.7. We show the thermal line average,
(Ip), the lightest mass coupled to the thermal liagy , and the size
a2l i of the topological fluctuationgQ?).
P ®
i o O % . D=3+1; SU(4); finiteT
15| * e e 1 L T/o (Ip) am (Q?
L 2 1.63 0.5666L) 0.000
© 3 1.09 0.34141) 0.003
! 4 0.82 0.1922) 0.005 0.0021)
5 0.65 0.004040) 0.0521) 0.15Q15)
os | 6 0.54 -0.000610) 0.2308) 1.363593)
’ 10 “0.33” 0.838(9) 2.5609)
0 . ‘
0 4 L 8 12 We now turn to the more interesting caseDof 3+ 1. We
pere shall not attempt a systematic study but, just ais 2

FIG. 11. The ratio of the&k=2 to k=1 (@) and k=3 to k +1, we shall work at one single value gfand will vary T
=1(0) string tensions in th®=2+1 SU®) gauge theory ag  In the rather coarse steps allowed by varying Our calcu-

=60 versus the size of the transverse spatial torys,=L, . The  lation is in SU4) at 8=10.7. Although we do not have pre-
(bosonig string correction has been included. cise information on the deconfining temperature, an extrapo-

lation of previous S(R) and SU3) calculationg25] using a

We are now on al,xL,XL, lattice with Ly=L, and simple O(1/N?) correction suggests thak,=0.62/c for
Ly,Ly>L;. This corresponds to a system at temperaturéSU(4). Sinceao=0.306 at3=10.7 (see Table VIJ the
aT= 1/Ll and, as we decrease , we will pass through the critical value ofL, is ~5. Thus a spatial volume of %0
deconfining phase transition &=T.. In this rotated coor- should be adequately large for our exploratory calculation.
dinate system the flux loop “mass” that we have calculatedAccordingly we work on the 1%, lattices listed in Table
is obtained from the spatial correlation of spatial loops; it isXV. In the table we also include our earlier calculations on a
a screening mass, from which we can calculate what is usuk0* lattice, to provide the T=0" reference value.
ally referred to as the “spatial string tensioftisually ob- We first wish to establish the rough locationTf. To do
tained from spatial Wilson loopsThus our finite width stud- so we calculate(l,), the average of the thermal lin@n
ies have in fact provided us with a calculation of ke 1,  unblocked Polyakov loop that winds once around the Euclid-
k=2, andk=3 spatial string tensions as a function®in  ean time torus the lightest massam,, that contributes to
SU(4) and SU6) D=2+ 1 gauge theorie$All this parallels  spatially separated correlations of such lines, é@ﬁ), the
previous studie$23,24] of SU(2) in D=2+1.] average value of the fluctuations of the topological ch&¥ge

Simple argumentgsee for examplg24]) tell us to expect It is clear from Table XV that there is indeed a phase transi-
oocg?T for T>T.. In our case, wheraT=1/L,=1/L, , this  tion close toL,=5: the thermal line develops a non-zero
translates t@?c«1/L, asL, —0. This is precisely what we vacuum expectation value, and consequently the lightest
have already inferred from the $4) and SU6) calculations mass becomes 0 (the energy of the vacuumwe also see a
in Tables Xlll and XIV. Indeed we see that the linear in- very striking suppression of the topological susceptibility,
crease withT sets in very close td=T,, and does so si- a*y;=(Q?)/(L3L,) acrosd ,=5. One observes a similar but
multaneously for all k-strings—presumably due to the much less dramatic behavior in 8)[26], and this suggests
squeezing of a flux tube whose width4s1/T.. [Although thaty,; might be an order parameter for the deconfining phase
we do not have precise calculations of the deconfining temtransition, at least all— o, with appropriate consequences
peratures in SY) and SU6) gauge theories, we expect from for the axial U1) anomaly. This is a topic we shall expand
extrapolations of previous SP) and SU3) calculations that upon elsewhere.
Tc:0.95\/3 in D=2+1 and this tells us that the critical Having established what is “highT in our calculation,
value ofL, is ~4 at these values ¢8.] Moreover, as we see we show in Table XVI the(screening masses one obtains
from Figs. 9 and 11, the string tension ratio is close to therom spatially separated correlatorslof 1 andk=2 loops
value expected from Casimir scaling. This is not a great surthat wind once around the spatial torus. At hiflwe expect
prise: the highf dimensional reduction of th&=2+1  o=T? (sinceg? is now dimensionlegs We see that while
theory takes us to &=1+1 theory, and in ab=1+1 our flux loop masses grow faster tha@rthey grow less fast
gauge theory even the Coulomb potential is linearly confinthan T2. This should be no surprise; rather one should be
ing; and the latter will automatically satisfy Casimir scaling. surprised by the precociously early onset of the linear figh-
This is of course simplistic; the dimensional reduction leadsehavior in the case dd=2+1.
to (adjoiny scalars as well as gauge fields, in the reduced From the flux loop masses we calculate the string tension
theory and, in any case, the linear potential may have othdn two ways: assuming no string correction, i.e., setting
sources than just the Coulomb potential. =0 in Eqg.(6), and assuming a bosonic string correction. One
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TABLE XVI. Calculations at the finite temperatures listed in TABLE XVII. Masses of flux loops in thé&=2 symmetric rep-
Table XV. We list the “spatial” loop masses and the correspondingresentation irD=2+1 SU4) for the lattices and couplings shown.
ratio of spatial string tensions calculated with and without a bosoni

string correction. D=2+1; SU(4)
B Lattice amy-og
D=3+1; SU(4); finiteT
— 28.0 12 1.60123)
L, ame_, am_, =0 c=1 33.0 16 1.35215)
45.0 24 0.97940)
2 2.7417) 2.7(7) 60.0 32 0.769470)
3 1.52328) 2.11(10) 1.38570) 1.36166)
4 1.0449) 1.4013) 1.34130) 1.31Q0298) .
5 0.80G9) 1.10120) 1.37630) 1.33326) dure to construct the relevant operators for a given represen-
tation and the explicit form of the operators corresponding to
6 0.72716) 0.904) 1.23§55  1.20854) plicit torm ot the oper orresponding
the cases we shall investigate in this section are given in
10 0.8389) 1.19718) 1.42927) 1.38223) )
Appendix A.

At eachN-ality (and at finiteN) only the string with the

might expect that at high one should use a string correction smallest tension s St"_ible' For ah;_/thls string I expected to
that is halfway between because one has lost one of thl%e the string cc_)nnectlnlgsources in the totally antisymmet-
transverse dimensions. In any case it is clear that the Tigh-/I¢ representation. Hence the smallest mass in the antisym-

ratio is consistent with Casimir scaling but probably not with metr_lc channel is re_:lated to_ thg string ten_S|on at the given

the MQCD formula. Just as fd =2+ 1 we see a dip in the N-ality. Our calculations fulfill this expectation: the smallest

masses aT just belowT, . By contrast, for this lattice cal- MaSS extracted with the variational procedure and the small-
c- )

culation, the lowT calculation on the 1Dlattice is consistent est mass in the antisymmetric channel always agree well
with MQCD but not really with Casimir scaling. within Eerrors, both inD=2+1 an<_jD=_3+1. .

Once again one might try to use dimensional reduction tq At fixed qugth an unstablbst(mg IS more massive .than
relate the Casimir scaling we observe at highin D=3 the stable string of t.he samyg-ality. Th|sl|s likely tq give
+ 1 to our observation of it, earlier on in this paper, at [dw problems when looking at the exponential decay in time of

in D=2+ 1. However, any such argument must address th(gorrelation functions: the signal will decay too rapidly to

caveats created by the presence of extra adjoint scalars a IIIOW a rf—:-llablg _egt:_alcnorll Olf tr.nassjes:. Ind;ed th's. 1S wr;at
the reduction. We also note that Casimir scaling—at least fo appens In oub=s-+ 1 calcuialions. given the precision o
k-strings and at very highi—has been predicted in a recent our numerical data, it proves to _be impossible to extract re-
model calculatiof27] which speculates that at highthere liable masses. T(.) overcome this problem, we should get
is a plasma of adjoint magnetic pseudoparticles “dual” to thecloser to the continuum limit or use anisotropic Iattlpes_. We
gluon plasma(Again one might try to relati27] this to low- leave such a study for the future. Another crucial point is the
T near-Casimir scaling i =2+ 1 via dimensional reduc- overlap between the operators and the interesting states
tion.) which, if the operators are constructed using standard tech-

nigues(as we have done in the present stydyan get as bad
as 0.5 for unstable strings =3+ 1. (For comparison, still
in D=3+1, the overlap between the stringy state corre-
Our calculations have so far focussed on stddtrings.  sponding to the antisymmetric representation and our opera-
In addition to these, there are also unstable strings, which atters is typically around 0.6.Hence, to address questions
energetically unfavorable. An unstable string should appeaconnected to unstable strings a better overlap is required.
as a nearly stable excited state in #astring spectrum. It is  This requires in turn an improvement of the standard smear-
clearly interesting to find out how the string tensions of theseng techniques. This is another problem we will investigate
strings depend on their representations andNowWe note in the future.
that this is precisely the question addressed by the calcula- While we cannot deal at the moment with unstable strings
tions in, for example[3,15,16. In this section we will in- in D=3+1, our numerical results iD=2+1 allow us to
vestigate closed strings with the quantum numbers of stringaddress the question there. In fact, Bue 2+ 1 calculations
connectingk quarks in a given irreducible representation for do not suffer from the same drawbacks asfhe3+ 1 ones:
k=2,3. our D=2+1 results are accurate enough to see a clear ex-
The tensions of strings connecting sources in a given irponential decay of the correlation functions over several lat-
reducible representation can be extracted from correlatiotice spacings and iD=2+1 the overlap between the op-
functions of operators carrying the quantum numbers of thagrators and the unstable strings is not worse than 0.85. Our
representation. Fdt=2 the irreducible representations with numerical results for Si4) and SU6) are reported, respec-
two quarks are the symmetric and the antisymmetric repretively, in Tables XVII and XVIII. Apart from the symmetric
sentations. Ak= 3 the irreducible representations with three representation of S@), for which we have masses for just
quarks are the totally antisymmetric, the totally symmetrictwo values of the lattice spacing, we can extrapolate the
and the mixed symmetry representation, which enters twicstring tensions extracted from the masses listed in the tables
the decomposition of the tensor product. The general procee the continuum limit by applying the same procedure used

F. Unstable strings
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TABLE XVIII. Masses of flux loops in th&k=2 symmetric k ics of the confining flux tube, and thus characterizes its uni-
=2S), k=3 mixed k=3M) andk=3 symmetric k=3S) repre-  versality class. By considering flux tubes that wind around a
sentations iD=2+1 SU) for the lattices and couplings shown. spatial torus we were able to avoid the presence of explicit
sources and the accompanying Coulomb term which can be

D=2+1; SU(6) so easily confused with the string correction. Working in
B Lattice am_os am_sm am_ss SU(2) and at a reasonably small value of the lattice spacing
a, we obtained in 31 dimensions a value_ =0.98+0.04

49.0 16 2.5819) which is consistent with the simple bosonic string, for which

60.0 12 1.92841) 2.4412) c.=m/3. In 2+1 dimensions we obtainect, =0.558

75.0 16 1.51215) 1.84537)  2.27087) +0.019, which is again consistent with the bosonic string

108.0 24 1.021Q47)  1.27425  1.64617) value, which isc_ = #/6 in this case. In both dimensions our
results would appear to exclude other plausible possibilities
with, for example, some massless fermionic modes along the

for stable strings. We then find string. In addition, in the case @=2+1 our results were
accurate enough to constrain the power df tt/ be unity

lim Ok=25 2.14£0.03 su4) (34) (assuming it to be an integeas one expects for an effective

a0 O - 12.19+0.02 SU6) string theory. These results considerably increase, we be-

lieve, the evidence for the simple bosonic string model.
for the string tensions in the=2 symmetric channels and TNere is, however, much scope for improving these calcula-
tions; not only in their accuracy and in the range of flux tube
lengths studied, but also in exploring other values,afo as
lim =2.71+0.09 SU6) (35  to be confident of the continuum physics, and in extending
as0 7 the calculations to other SBI) groups.

The second part of the paper dealt wikhstrings in
SU(N=4) gauge theories and, in particular, with the ratios
B their string tensionsy /0. Here we performed a range of
calculations so as to be able to extrapolate to the continuum
limit. In our D=3+1 SU4) and SU5) calculations we
found that thek= 2 string tension is much less than twice the

lim ~3.72+0.12 SU6). (36) fundamentak=1 tension: thek-string is “strongly bound.”
as0 9 Moreover, the values are consistent, at the [Bvel, with
both the M-theory QCD conjecture and with Casimir scal-
Our numerical results can be compared with the predictionghg (the two being numerically quite similarin our SUA4)

Ok=3Mm

for the k=3 mixed symmetry channelAll these string ten-
sions have been extracted using the bosonic string corre
tion.) For the continuum value of thie=3S string tension,
an estimate based on our data gives

Ok=3s

coming from Casimir scaling and SU6) calculations inD=2+1 we also found strongly
boundk-strings. However, although the calculated string ten-
0 =25°5( 2.40 Su4) sion ratios were again numerically close to both Casimir
o |228... Sue), (37) scaling and the MQCD formula, the results were accurate
enough for us to see that the former works much better, and
cs to observe deviations from both formulas. In addition to
Mzz_gz ...Sue), (38)  these continuum calculations we performed some finite tem-
o perature calculations at fixedwhich showed that at higi,
above the deconfinement transition, “spatidstring ten-
o=35°S sions are consistent with Casimir scaling in both12and
=3.85...5U6). (39 3+1 dimensions. Moreover, we found fairly convincing evi-

dence, inD=2+1, for the approximate Casimir scaling of
We see that, at least for $6), these ratios satisfy approxi- unstable strings. While it might be elegant(épproximate
mate Casimir scaling, just like the stalitestrings. As far as  Casimir scaling were to hold iD=3+1 as well as inD
comparison with MQCD is concerned, we are not aware of=2+1, and at highT as well as at lowT, the fact is that
calculations in that framework aimed to determine the string3+1 dimensions may well differ from-21 dimensions, and

tensions of unstable strings. it is important to perform calculations that are accurate
enough to resolve between MQCD and Casimir scaling in
VI. DISCUSSION D=3+ 1. Essentially this would require reducing our errors

by a factor of two, an entirely feasible goal.

Our calculations in this paper were in two parts. In the We observed that near-Casimir scaling will arise naturally
first part we investigated directly the stringy nature of longif the chromo-electric flux is homogeneous and the cross
flux tubes by calculating how the mass of a flux tube variessection of the flux tube ignearly independent of the flux
with its lengthl, and attempting to identify th©(1/1) term  carried. We pointed out that the latter is not as implausible as
that is the leading string correction at larigd he coefficient it might at first seem: indeed it is what occurs in the deep-
of this term,c, is directly related to the central charge of London limit of a superconductor. To address this possibility
the effective string theory describing the long-distance physwe performed some explicit numerical calculations of the

105019-19



B. LUCINI AND M. TEPER PHYSICAL REVIEW D64 105019

k-string width and these indicated that the width is indeedmental representation of SNJj if under the action of the
largely independent &€ The smalk dependence that we did group

observe can, in principle, be related to the parameters of the

dual superconductor, if such is the dynamics of confinement, SuN)

and we intend to address this question elsewhere. There are a q — Uid, (A1)
number of other interesting theoretical questions that this ] ) )

work suggests. How closely is the observed near—CasimiP e SU(N) being the matrix that implements the transforma-

scaling of the(spatia) k-strings at highT in D=3+1 and at  tON- _ o
low T in D=2+1 related by dimensional reduction? The conjugated representation is related to the fundamen-

Equally, is the near-Casimir scaling at highin D=2+1 a tallone by f:onjplex conjugation. Following the standard no-
simple reflection of the Casimir scaling of the linearly con-t&tion, we indicate byj; an object transforming under the
fining Coulomb interaction id=1+17 This requires un- Cconjugated representation. AYE3 the fundamental and the
derstanding whether the adjoint scalars, present after dimefzoniugated representations are independent. In the following,
sional reduction, significantly affect the string tension ratios W& Will call quarks objects transforming under the funda-

Another interesting question is how the string tension ratiosMental representation anhtiquarks objects transforming

whether given by MQCD or Casimir scaling, reflect them-Under the conjugated representation of BY(This termi-
selves ink-vortex condensates, in the dual disorder loop aphology reflects the physics of QCD. .
proach to confinemeri28], and whether this exposes an Objects transforming under higher representations can be

simple duality between Wilson loops and 't Hooft disorder constructed from the tensor product of quarks and anti-
loops. A calculation, illustrating how one might proceed, wasduarks, and their transformation laws can be easily deduced
outlined in[5,24]. A similar question can be posed in mono- from the transformation law of the fundamental constituents.

pole models of confinement, following upon the simple FOr instance®q)" =q'q’ under the action of SUY) trans-
model calculations of higher charged string tensionf2gj, ~ forms as follows:
after Abelian projection, and if27] with adjoint monopoles

(at highT). A quite different question is what are the impli-

cations of these tightly boundstrings for the mass spectrum

of SU(N) gauge theories. A simple and attractive model seeshe ALality of a representation is defined as the number of
the glueball spectrum as arising from excitations of closedyyarks minus the number of antiquarks modiloN-alities
loops of fundamental fluk30]. In such a model a non-trivial K <N/2 andN—k are related by complex conjugation. That
k-string would provide a new sector of states whose massesyeration corresponds to charge conjugation.
are scaled up by a simple factor @f/o [31]. The observa- The concept of\-ality at zero temperature is related to
tion of something like this, when comparing the @Jand e symmetry under the center of the gauge gra, un-
SU(4) spectra for example, would provide striking informa- gar such symmetry an object df-ality k picks up a phase
tion on glueball structure. While oub=3+1 mass spec- g@2kn/N n—0 1 " N—1.Since the center symmetry at
trum f:alculgthns[G] are too crude to usefully explore this ;oo temperature is a good symmetry of the gauge theory and
question, this is not the case di=2+1 (see e.g.[1]) and  the gluons carry zerdV-ality, states with different\-ality
work on this question is proceeding. cannot mix.

Note addedAs this paper was being completed, a paper | this paper we are interested in the tensions of strings
appeared32] containing a calculation df=1,2,3 string ten-  connecting sources wit\-ality k=1. Because of charge
sions inD=3+1 SU6) and addressing some of the ques-¢onjygation, the string tension associated to states-afity

) _SU(N) _ )
q'q’ — U Ulgg". (A2)

tions addressed in this work. k<N/2 andN—k is the same. Hence we restrict ourself to
k=<N/2, that is to say to states constructed from the tensor
ACKNOWLEDGMENTS product ofk quarks! At a givenN the independent number

i o ) of stablek-strings is given by the integer part bif/2.
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IHere we are neglecting states with more tidimuarks; this is
APPENDIX A: IRREDUCIBLE REPRESENTATIONS OF correct as far as we are not interested in unstable strinds isr

SU(N) AND k-STRINGS large enough.
2In the following, even if we will omit for simplicity the word

SU(N) is the group oNX N unitary matrices. By defini- irreducible from time to time, we will consider only irreducible
tion, an objecy' (i=1, ... N) transforms under the funda- representations of the gauge group.
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AYoung diagram is a two-dimensional ensemble of boxeghe corresponding irreducible representation is constructed
joined by one edge that respects the following rules: from the tensor product d quarks by assigning an index to

(1) Counting the rows from the top to the bottom, the each box, symmetrizing the product with respect to the indi-
number of boxes in the rowis greater than or equal to the ces that are on a given row for all rows and then antisym-
number of boxes in the royif i<j. metrizing the result with respect to the indices that are on a

(2) Counting the columns from the left to the right, the given column for all columngObviously, after the antisym-
number of boxes in the columinis greater than or equal to metrization the result is no longer symmetric under permu-
the number of boxes in the colunrf i<j. tation of indices on the same row.

A valid Young tableau is for instance the following: The tensor product of two objects transforming under two
given representations of the gauge group is constructed from
the corresponding Young diagramsandB, according to the
following rules:

(1) Write down the two tableauX and B labeling each
box in the rowi of B by i.

(2) Starting from the first row oB, add the boxes dB to
A one-by-one in all the possible positions respecting the fol-
lowing rules: (a) the augmented diagra®d’ at each stage
must be a legal Young diagranih) boxes with the same
label must not appear in the same columnAdf (c) if we
define at any given box positiod numbersn,,...,n; (J
r?J'eing the number of rows iB), each of them counting how
many times the corresponding label of the boxeBimap-
pears above and to the right of such a box, we must have
n;=n,=...=n; (this is to take into account the original
- _ antisymmetries o0B).

I (3) Two diagrams with the same shape and the same la-
] bels are the same diagram.
_._.J — (4) Columns withN boxes must be canceled, since they
: N-1 . correspond to the trivial representation of $U)(
According to the above rules, the tensor product of two
l:’ — — quarks decomposes as

Je0=Cef

the Young tableau language, a quark is a single box, an a
tiquark is a column oN— 1 boxes and an object transform-
ing under the adjoint representatitgluon hasN—1 boxes

in the first column and 2 boxes in the first row:

quark antiquark gluon

There is a one-to-one correspondence between Young di@e., the irreducible representations of a state with two quarks
grams and irreducible representations of B)(Given a are the symmetric and antisymmetric representations. For
Young diagram withk boxes, the object transforming under three quarks we have

el Jel[J=L[[]e ® ®

where in addition to the symmetric and antisymmetric repre- Once the symmetry of the states transforming under an
sentation there is a representation with mixed symmetry eritreducible representation has been worked out, it is easy to
tering twice the decomposition. construct the operators implementing the transformation on
The above results are the generalization in BJOf the  such states, since those operators must have the same sym-
familiar decompositions in S(3)3®3=6®3 and 3¥3®3 metry as the states on which they act. For the matrix ele-
=100898a1. ments ofk=2 operators associated with strings connecting
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sources with two quarks we obtain

1 -

Aim=75 (UiUn=UlUp), (A3)
L1 o
=2 (Ujul+Ujul), (A4)

while for k=3 strings connecting three quarks we have
ijk 1 ik ik NI LRI LNl
AImn_g(UIUmUn_UIUmUn_LJI'*JmLJn_|'LJILJmLJn

+UfULUL-UfuL Uy, (A5)

Sihn=g (UIURUn+UjURUL+UURUR+UTURU,
Ky yip 1 Ky i g
+UUUn+UpURUL), (AB)

Mifn=3 (UIURUn—U{URUL+UJULUR = UUR U,
(A7)

PHYSICAL REVIEW D64 105019

combination corresponding to a given irreducible representa-
tion is relevant in the context of unstable stringee the
following section.

The construction here explicitly provided fer=2 andk
=3 can be easily generalized to aky

APPENDIX B: GLUON SCREENING

Since the gluons transform under a non-trivial representa-
tion of SU(N), the interaction between them and the sources
can change the original representation of the sources. The
change of representation of the source is expected to renor-
malize the string tension associated with the original repre-
sentation and to make unstable heavier strings of given
N-ality.

From the point of view of group theory, the product of the
interaction between sources and gluons transforms as the ten-
sor product of the original representation and the adjoint rep-
resentation. Consider for instance the following interaction:

| ® ||

A, S andM being, respectively, the tensors corresponding to
the antisymmetric, the symmetric and one of the two mixed
symmetry representationgThe other mixed symmetry rep-

resentation hak andj interchanged in EqA7).]
Taking the trace, we get

1
TrA= E({TrU}Z—TrUZ), (A8)

TrS=-({TrU}?2+Tru?),

N| -

(A9)
for k=2 and

1
TrA=c({Tr UBP—-3Tru{Trul?+2Tru3), (A10)

1
TrS= g ({Truf+3 Tru{Tru}?+2 Tru?),
(A11)
1
TrM= §({TrU}3—TrU3) (A12)

for k=3. (The two differentM’s have the same trage.

After identifying U with the path ordered product of links
around a non-contractible loapthat winds once around the

spatial torus,P., we get that the relevant operators for
=2 are TrPZ and{Tr P.}?, while for k=3 we will be con-
cerned with TP2, TrP{TrP.}?, and{TrP.}>. These op-

where the first tableau correspond to a source Wwitiuarks

and the second diagram is associated with a gluon. The in-
teraction will produce an object transforming under a reduc-
ible representation. The irreducible representations entering
the product of the interaction can be worked out according to
the rules for the decomposition of a tensor product given in
the previous section. Those representations fall into two cat-
egories: representations with quarks and representations
with N+k quarks.

Let us consider the first case. In order to have a final state
with k quarks, in the tensor produdt boxes must be can-
celed(i.e., they are combined in such a way that they trans-
form under the trivial representatiprGiven the diagram of a
source withm boxes in the first column, the cancellationNf
boxes in the tensor product requires thit m boxes from
the gluon are attached to the first column of the source. This
can be done in two inequivalent ways: by taking the required
objects all from rows other than the first one or by taking one
box from the first row The possible ways of recombining
the diagrams after the cancellation define possible represen-
tations of the interacting state. Those representations depend
on the original representation of the sources, but noiNon
Similar considerations hold for the irreducible representa-
tions with N+ k quarks entering the decomposition.

erators can be taken as a starting point for a variational pro-3this argument should be refined if we were interested to the

cedure to extract the mass of flux tubes\éhlity k winding

multiplicity with which each irreducible representation enters the

once around the periodic lattice, while studying directly thedecomposition of the tensor product.

105019-22



CONFINING STRINGS IN SUN) GAUGE THEORIES PHYSICAL REVIEW D 64 105019

An interacting state will be energetically favorable when- .1
ever it has a smaller string tension, so we expect that the La=(N=3N-3N=3,-3,...,-3),
interaction tends to transform the sources in a given repre-
sentation of\-ality k to sources in the representation with
the smallest string tensiofwhich is the antisymmetric rep-
resentation wittk quarks in both the Casimir scaling and the . 1
MQCD scenarig, i.e., that the gluons screen the sources LN,1=N[1,1,1,,1. ..,—(N=1)],
down to the states with the smallest string tendibtowever
unstable strings are expected to be visible, since they should =
appear as nearly-stable excited states in the mass spectrum of 2R=[N—1IN—-3N-5,... ~(N=3),=(N
the strings. -1)].

Note that not all states with/-ality k are accessible to a
given state. For instance, the interaction with one gluon doegyith the vectors;, we define
not allow it to pass from the symmetric to the antisymmetric

representation dt=3. However, any state can be accessed N1
by multiple interaction. L= 21 wiL; (C3
APPENDIX C: QUADRATIC CASIMIR OPERATOR AND wherew; is given by the difference between the number of
CASIMIR SCALING boxes in the rowi and the number of boxes in the row
) . . +1 of the Young tableau. The quadratic Casimir is then
The quadratic Casimir operator of a representafims given by
defined as
1. . ..
Cr==(L-L+2R-L). (Co
Cr=>, TaT? (C1) 2
a

It is now easy to see that for an irreducible representation

where the sum ranges over all the generators of the group ffPMPOosed bk quarks the quadratic Casimir is given by the
the given representation. It can be easily seen that the quiRrmula

dratic Casimir operator commutes with all the generators of m

the group. I—]enpe_, by virtug of the Schgr’s Igmma, on a_given CR:E Nk-+ 2 ni(n+1-2i)—
representation it is proportional to the identity, i.e., it is iden- 2 i=1

tified by a number depending on the representation. We call . )
such a number quadratic Casimir and we indicate iChy. ~ Wherei ranges over the rows of the Young table@ith m

If we normalize the trace of the identity in each representalumber of rows and n; is the number of boxes in thih
tion to 1, we can write row. For the antisymmetric and the symmetric representa-

tions of NV-ality k we have

2

N (CH

j— aTa
Cr=TrToT4 (C2 K(N—K)
Ca=Ci—y—7— (Co)
Cx can be easily computed starting from the Young tableau N-1
associated to the representati as follows. For SUK) and
define theN-dimensional vectors
k(N+K)
.1 Cs=Cr—71 (C7)
Ll:N(N_l’_ 1-1-1,...,-1),
O NZ-1
.1 C =N 8
LZZN(N—Z,N—Z,—Z,—Z, ceo—2),

being the quadratic Casimir of the fundamental representa-
tion.
For k=3 in addition to the symmetric and antisymmetric

INote. h that there i h ion fact frepresentations, there (@mong othersthe mixed symmetry
ote, however, that there is a phase-space suppression factor fot o centation, whose quadratic Casimir is

the screening of sources with a given number of quarks down to
sources with a minor number of quarks inside the safality
class. Consider for instance the screening of a representation with Cy=Ci——
N+k quarks to a representation wiklguarks. Since the dimension N?—1
of the former is proportional t&N"2, while the dimension of the

latter is proportional tdN¥, there is a suppression due to the lack of Casimir scaling is the hypothesis that the string tension for a
final states proportional to NI7. given representation is proportional to the quadratic Casimir.

(C9
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Hence, according to this hypothesis Nality k the smallest AC=N-k. (C1y
string tension is associated with sources in the representation
with the smallest quadratic Casimir. By using &Q5), it can Not all the representations witk quarks have a larger
be easily seen that the representation having the sma"eahadratic Casimir than a given representation whth k
quadratic Casimir is the totally ant?symmetric representationquarks_ For instance, the difference between the quadratic
‘?Omposed by quar_ks. To show this, let US Prove as a Pré- . qimir of the most antisymmetric representation with
liminary step that if we increase the antisymmetries of A\ quarks and the totally symmetric representation viith
diagram keeping constant the number of boxes the quadratic CII( . y sy P
Casimir decreases. In fact the difference between the quéq_uar SIS
dratic Casimir of a given representation and of the represen-

tation obtained by moving a box of the original Young dia- AC=N-Kk?, (C12

gram from thejth row to thehth row with h>j is

AC=n;—n,+h—j—1>0. (c109  Wwhich is negative ik?>N. However, at large enough and
at a givenk such a difference is positive and increasedas

It is now easy to prove the main statement: at given numbefhat is to say, we expect that the only relevant states of
of boxesk=N/2, the antisymmetric representation is ob-A-ality k in the largeN limit are those composed bl
tained from any given representation by iterating the abovejuarks.
procedure, with a series of steps where at each stage the The prediction of Casimir scaling for the ratio between
quadratic Casimir decreases. Thus at gikéime antisymmet- the string tensions associated with states composedl by
ric representation witkk quarks has the smallest quadratic +k quarks and the string tension of the fundamental repre-
Casimir and for this reason the smallest string tension withirsentation in the limilN— oo is k+ 2. This result can be easily
the class of the representations withality k in the Casimir  understood in terms of string counting: a state withk
scaling hypothesis. This fact holds even if we consider stateguarks can be seen as a possible state among those originated
with N+k quarks: the difference between the quadratic Caby the interaction between a state witlquarks and a gluon.
simir of the most antisymmetric representation with-k ~ The above result then tells us that at lafyethe energy
guarks(which is the smallest at that number of quarked  of the composite state is equal to the sum of the energies of

the totally antisymmetric representation wkhguarks is the constituents.
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