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Effect of weak interactions on the ultrarelativistic Bose-Einstein condensation temperature

D. J. Bedingham* and T. S. Evans†
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~Received 4 June 2001; published 23 October 2001!

We calculate the ultrarelativistic Bose-Einstein condensation temperature of a complex scalar field with
weak l(F†F)2 interaction. We show that at high temperature and finite density we can use dimensional
reduction to produce an effective three-dimensional theory which then requires nonperturbative analysis. For
simplicity and ease of implementation we illustrate this process with the linear delta expansion.
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I. INTRODUCTION

The inclusion of finite densities of conserved charges
thermal field theory poses well known problems in the stu
of phase transitions. On one hand, perturbative analyse
charged scalar fields@1–3# give information about the phas
structure, but cannot probe the critical point. Standard p
turbative calculations are plagued with infrared divergen
and after dealing with these, the asymptotic expansion bre
down. On the other hand, finite charges cannot be ea
represented in lattice Monte Carlo simulations. Encodin
non-zero charge in the grand canonical ensemble render
action complex and therefore useless as a statistical we
ing @4#. These obstacles invoke a demand for alterna
methods.

Several authors have recently considered the effect o
pulsive interactions on the condensation temperature o
dilute Bose gas, a nonrelativistic problem. It was pointed
in Ref. @5# that the leading correction could be isolated in t
static Matsubara mode and a mean field calculation could
performed on this mode alone. Since then the static mode
been studied using the 1/N expansion@6,7#, with the linear
delta expansion@8#, and now numerically@9–11#.

In this paper we consider the effect of interactions on
transition temperature for scalars in the ultrarelativistic lim
By this we mean that we are at the high temperature lim
but that the typical self-energy correctionsS, the chemical
potentialm, or the cube root of the charge density,r, can be
of the same orderT@S,m,r1/3. This limit is appropriate for
the study of high temperature symmetry breaking wh
Bose-Einstein condensation and spontaneous symm
breaking have interesting similarities. The relevant fin
temperature and density 4D Feynman diagrams are diffi
to handle and only Jones and Parkin@12# include the setting-
sun diagram for the self-energy. To avoid these problems
use dimensional reduction@13–16# and this is the main focus
of our paper. In our regime, we will show that dimension
reduction for a relativistic model is much more complicat
than in the nonrelativistic limit of our model which studie
in @5–11#, but we will show it is still manageable. As in th
nonrelativistic case, we take advantage of the good infra
behavior of the nonstatic Matsubara modes. This allows u
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integrate these modes perturbatively in an attempt to s
plify our calculation.

Following dimensional reduction, the problem of relati
istic Bose-Einstein condensation has been reduced to
study of a phase transition in an effective three-dimensio
theory at zero temperature and zero density. Standard
perturbative methods can then be employed to study
model but we do not investigate the many alternatives h
merely choosing one for exemplary purposes. Here we
the linear delta expansion for its simplicity and resemblan
to standard perturbation theory.

By way of contrast, the only other study of a relativist
finite density system using dimensional reduction we kn
of is a study of QCD@17#, rather than the Higgs sector stud
ied here. The resulting 3D action is complex, making sub
quent numerical analysis of@17# more complicated.

II. DIMENSIONAL REDUCTION

We begin by considering a relativistic system of boso
described by a complex scalar field theory. We encod
conserved charge by working in the grand canonical
semble with chemical potentialm. The partition function is
then

Z5E @dC†#@dC#exp$2S% ~1!

where field integrations are periodic over imaginary timeb
51/T and the action is given by

S5E
0

b

dtE d3x$@~]t1m!C†#@~]t2m!C#

1¹C†¹C1m2C†C1l~C†C!2%. ~2!

The charge density is obtained fromZ as follows:

r5
T

V

1

Z

]Z

]m
~3!

where we let the volumeV tend to infinity.
The periodicity of the fields is made explicit by a mod

expansion and the nonstatic modes are integra
©2001 The American Physical Society18-1
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D. J. BEDINGHAM AND T. S. EVANS PHYSICAL REVIEW D64 105018
perturbatively.1 This not only gives an overall factor toZ but
also renormalizes the parameters of the static mode,F. The
result is an effective three-dimensional theory whose dep
dence on the temperature and chemical potential is conta
within its mass and coupling:

Z5exp$bVF~m!%E @dF†#@dF#exp$2S3D%. ~4!

Writing F5F (0)1lF (1)1O(l2), the quadratic part of
the action can be integrated to give

F (0)~m!5T(
n5” 0

E d3p

~2p!3
ln D~vn ,p! ~5!

where D(vn ,p)5@(vn2 im)21p21m2#21 and, since we
are dealing with bosons,vn52pnT. The leading perturba
tive correction is given by the figure-of-eight diagram:

F (1)~m!522T2F (
n5” 0

E d3p

~2p!3
D~vn ,p!G 2

. ~6!

We use dimensional regularization in the modified minim
subtraction~MS! scheme, making the replacement

E d3p

~2p!3
→E

p
5S egM2

4p D eE d322ep

~2p!322e
~7!

and subtracting only the terms which are divergent ae
→0. M is an arbitrary renormalization scale andg is the
Euler-Mascheroni constant.

The ultrarelativistic limit is defined byr@m3 or, equiva-
lently, T@m. In order to avoid confusion over the differen
expansion parameters we will setm50. Since we shall
handle the infrared region nonperturbatively, this does
create additional problems. We keep corrections
O(m2/T2) as we will find these are in factO(l) for the
critical theory. Ignoring anym-independent terms, the facto
F is then given by~see@2# for details!

F~m!5
m2T2

6 F12
m2

4p2T2
1

l

4p2
1O~l2!G , ~8!

where byO(l2) we meanO(m4/T4,lm2/T2,l2).
The nonstatic modes also give corrections to the st

mode action. We write the effective 3D action as

S3D5E d3x@¹F†¹F1rF†F1u~F†F!2#, ~9!

where we neglect the higher dimensional operators (F†F)n

for n>3. This is first on the grounds that their coefficien

1Alternatively, one can calculate static quantities in the 3D eff
tive theory and in the full 4D theory. By matching these results o
can then relate the coefficients of the 3D effective theory to thos
the 4D one@16#. However there is a lack of results in the literatu
for our model at high densities.
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are high order inl and further that all nonrenormalizabl
interactions are suppressed by factors of 1/T2 ~for further
discussion of this point see@16#!. It can be checked that in
the calculation which follows, these neglected terms cont
ute at higher order in thel expansion than is considered.

The fields should be scaled byAT in order to remove an
overall factor of 1/T from the action and to the order w
work they undergo no field renormalization from the no
static mode integration.

Referring to Fig. 1, the 3D mass is given by

r 52m21S11S21S31S41S51O~l3!, ~10!

where

S154lT(
n5” 0

E
p
D~vn ,p! ~11!

5
lT2

3 F12
3m2

2p2T2
1O~l2!G ; ~12!

S25216l2T2 (
n15” 0

E
p1

D~vn1
,p1! (

n25” 0
E

p2

D2~vn2
,p2!

~13!

52
l2T2

6p2 F 1

2e
12 ln

Meg

4pT
112g1

z /~21!

z~21!
1O~l!G .

~14!

Though S4 involves a static internal line it should b
included since it will not arise from the effective static 3
theory.2 This contribution is in fact well behaved in the in
frared and to leading order we find~see Appendix!

-
e
of

2Note that at this order, integrating out the heavy modes actu
leaves one with a nonlocal action with terms such
*d3xd3x8uF(x)u2B(x,x8)uF(x8)u2 where B is an O(l2) bubble
diagram. It is when approximating the 3D theory by the purely lo
one~9! that contributions, such asS4, coming purely from nonlocal
terms in the exact nonlocal effective theory must not be forgott
For instance, the same type of non-localB term should also lead to
a diagram similar toS2 but with a light petal on the top and one ha
to check that this is of lower order than required. Such proble
suggest that the matching of Green functions approach to dim
sional reduction@16# might be simpler.

FIG. 1. Contributions to the mass of the static mode. Bold lin
correspond to nonstatic internal lines; thin lines correspond to
static mode. The last diagram contains the one-loop vertex cou
term.
8-2
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EFFECT OF WEAK INTERACTIONS ON THE . . . PHYSICAL REVIEW D 64 105018
S31S4501O~l3T2!. ~15!

Finally we include the diagram with the one-loop vert
counterterm which is given by (5l2T/8p2e)(F†F)2. This is

S554
5l2T

8p2

1

e (
n5” 0

E
p
D~vn ,p! ~16!

5
5l2T2

12p2 F 1

2e
1 ln

Meg

4pT
112g1

z /~21!

z~21!
1O~l!G .

~17!

We may now sum all the contributions to Eq.~10! giving

r 52m21
lT2

3 F12
3m2

2p2T2
1

3l

4p2 S 1

2e
1

1

3
ln

Meg

4pT

112g1
z /~21!

z~21! D1O~l2!G . ~18!

We shall find the coupling to be given with sufficie
accuracy by

u5lT1O~l2!. ~19!

The coupling is now dimensionful due to the scaling of t
static fields byAT.

Use of Eqs.~3! and ~4! with Eqs. ~8!, ~9!, ~18! and ~19!
gives

r5
]F

]m
12mTF11

l

2p
1O~l2!G^F†F& ~20!

5
mT2

3 F12
m2

2p2T2
1

l

4p2
1O~l2!G

12mTF11
l

2p2
1O~l2!G ^F†F&, ~21!

where ^F†F& denotes the Green function evaluated in t
effective 3D theory. This we cannot calculate perturbativ
since the expansion will break down when probing lar
length scales greater than 1/u.

III. LINEAR DELTA EXPANSION

To evaluate the quantitŷF†F& we need a nonperturba
tive method as the 3D sector retains all the infrared div
gences of the 4D theory. The effective 3D theory is studie
zero temperature and density so the problem is greatly s
plified. Any standard non-perturbative method can be use
this point.

We will use the linear delta expansion~LDE!, though the
method is also known by several other names~see@20# for a
brief summary!. LDE has been used successfully in ma
situations, including studies of scalar theories at nonz
density such as@8,18,19,12,20#. In toy models, where exac
results are achievable, LDE is known to produce converg
10501
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results and to do so much faster than alternatives, for
stance see@21,22# and references therein. In full quantu
field theory~QFT!, LDE has also often proved to be bett
than other methods@23#.

We begin by definingSd which interpolates between ou
3D action~from which we now drop the subscript! and some
soluble actionS0 asd varies from 1 to 0:

S→Sd5dS1~12d!S0 . ~22!

We are free to choose

S05E d3x@¹F†¹F1V2F†F# ~23!

such that

Sd5E d3x@¹F†¹F1~V22dV21dr !F†F

1du~F†F!2#. ~24!

Any physical quantityP is evaluated as a power series
d to some finite order. This quantity will generally hav
some dependence onV which we fix by some specified cri
terion which we take to be the principle of minimal sensiti
ity ~PMS! @24#:

dP
dV U

d51,V5V̄

50. ~25!

This variational procedure allows for the emergence of n
perturbative behavior.

The Green function we require can now be written as

^F†F&5E d3p

~2p!3
Gd~p! ~26!

where

Gd~p!5@p21V22dV21dr 1Sd~p!#21. ~27!

The criterion defining the transition temperature is that
correlation length in the original theory be infinite. This ca
be expressed asGd

21(0)ud5150 which is satisfied by impos
ing

dr 1Sd~0!50. ~28!

Use of this relation in Eq.~26! gives

^F†F&5E d3p

~2p!3
@p21V22dV21Sd~p!2Sd~0!#21

~29!

and expanding to second order ind we have
8-3



elf

nd

a

red

-

in

on-

D

D. J. BEDINGHAM AND T. S. EVANS PHYSICAL REVIEW D64 105018
^F†F&5E d3p

~2p!3

1

p21V2 F11
dV2

p21V2
1

d2V4

~p21V2!2

2
Sd~p!2Sd~0!

p21V2 G1O~d3!. ~30!

The only momentum dependent contribution to the s
energy results from the setting sun diagram~see Fig. 2!:

S3
3D~p!528d2u2E d3k

~2p!3

d3q

~2p!3

1

~k21V2!

1

~q21V2!

3
1

@~k1q1p!21V2#
. ~31!

We continue our use of dimensional regularization in theMS
scheme, using the same scaleM as in our 4D heavy mode
calculations. The required integrals~see, for example,@8#
and @25#! are

E
p

1

p21V2
52

V

4p F112eS ln
M

2V
11D1O~e2!G , ~32!

S3
3D~0!5

8d2u2

~4p!2 F 1

4e
1 ln

M

3V
1

1

2
1O~e!G , ~33!

E
p

1

p21V2
S3

3D~p!

52
2d2u2

~4p!3V
F 1

2e
13 ln

M

2V

1122 ln 21O~e!G . ~34!

Further integrals may be derived from Eq.~32! by successive
differentiations with respect toV.

Summing the contributions to the Green function, we fi

^F†F&52
V

4p
1

dV

2~4p!
1

d2V

8~4p!
2

4d2u2

~4p!3V
ln

4

3
.

~35!

The divergences cancel and there is no need to invoke
counterterms. We now apply the PMS condition to^F†F&
and arrive at

FIG. 2. Contributions to the self-energy for the effective 3
theory. The filled dot corresponds to ad(r 2V2) mass insertion.
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V̄56
u

p S 2

3
ln

4

3D 1/2

. ~36!

The question of which solution to choose can be answe
by comparison with the solution in the large-N case forN
→2. Referring to@6# and @7# we find that the positive solu
tion is appropriate, giving

^F†F&52
u f̄

~4p!2
, ~37!

f̄ 5S 6 ln
4

3D 1/2

'1.314. ~38!

Inserting this into Eq.~21! we have for the critical density

r5
mT2

3 F12
m2

2p2T2
1

l

~4p!2
~426 f̄ !1O~l2!G . ~39!

The chemical potential is an unwanted free variable
this expression and we must use relation~28! to constrainm
at the transition temperature. Along with the setting sun c
tribution to the self-energy, we also have to orderd2 ~see Fig.
2!

S1
3D54duE

p

1

p21V2
, ~40!

S2
3D5216d2u2E

p

1

~p21V2!2Eq

1

q21V2
,

~41!

S4
3D54d2u~V22r !E

p

1

~p21V2!2
. ~42!

Evaluating and summing these contributions gives

Sd~p50!52
duV

p
2

8d2u2

~4p!2 F 1

4e
1 ln

M

3V
2

1

2G1
d2uV

2p

2
d2ur

2pV
1O~d3!, ~43!

which upon substituting into Eq.~28! gives

dr 5
duV

p
2

d2uV

2p
1

d2u2

2p2 F 1

4e
1 ln

M

3V
1

1

2G1O~d3!.

~44!

We apply the PMS condition tor, giving V̄5u/p, and insert
this value into Eq.~44!:

r 5
u2

2p2 F 1

4e
1 ln

M

u
1cr G , ~45!
8-4
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cr5 ln
p

3
1

3

2
'1.546. ~46!

The dependence ofr on the scaleM is exact because o
super-renormalizability and agrees with that noted elsewh
~e.g., @11#! even though it appears here in the context o
particular nonperturbative calculation. Comparing with E
~18! we have

2m21
lT2

3 F12
3m2

2p2T2
1

3l

4p2 S 1

2e
1

1

3
ln

Meg

4pT
112g

1
z /~21!

z~21! D1O~l2!G5
l2T2

2p2 F 1

4e
1 ln

M

lT
1cr G .

~47!

The divergences cancel and we can obtainm in terms of the
critical temperature:

m5
AlT

A3
F11

l

8p2 S amuln
T

M
1hmuln l1amuD1O~l2!G ,

~48!

amu55, hmu56,

amu5 lnS eg

4p D1113S 2g1
z~1,21!

z~21! D26cr

'3.27026cr'26.007. ~49!

It is now clear that for the critical theory,m2/T2;O(l).
Substituting into the equation for the charge density give

r5
AlT3

3A3
F11

l

8p2 S a rho lnS T

M D1h rho ln~l!1arhoD
1O~l2!G , ~50!

a rho55, h rho56,
~51!

arho5amu1
2

3
23 f̄ '3.923626cr23 f̄ '221.759.

Equation~50! relates the critical density to the critical tem
perature for the Bose-Einstein condensation of a comp
scalar field in the ultrarelativistic limit. Though Eq.~50!
looks like an expansion inl we stress that the result is non
perturbative because of the severe IR problems in calcula
^F†F& and self-energies at the critical point in the thre
dimensional theory. We should expectr to have some renor
malization scale dependence since we have included a
loop vertex counterterm in the calculation.
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IV. DISCUSSION

The leading term in our expressions for the critical chem
cal potential~48! or equivalently for the critical density~50!,
are the usual leading high temperature results,m05Al/3T
andr05Al/27T3.

The l2 ln(T/M) term is exactly that expected from the
running of the 4D couplingl in the leading term using per
turbation theory where one finds

l~M2!5l~M1!1
5l2

8p2
lnS M2

2

M1
2D . ~52!

The perturbative result is appropriate as the leading beha
comes only from the heavy modes, and these are dealt
perturbatively in this calculation. Thus we find that once t
implicit scale dependence ofl is accounted for, our result
for m and r are actually independent of the scaleM as all
exact physics results should be.

The l2 ln(l) term comes directly from our expressio
~45! for r and in particular comes from dependence on
scale M which is exact for for the super-renormalizab
theory. In the context of a Green function matching a
proach, as discussed for instance in@16#, this term might be
described as running the 3D massr from the scaleM;T,
used when dealing with the heavy modes, down tou5lT
appropriate for the 3D static theory. Overall then our expr
sions for the critical chemical potential and density ag
with our expectations from other calculations.

In terms of actual numbers, forl51/8 the fractional cor-
rections to this leading term are of the order of a few perce
e.g., in units of the scaleM, for T510.0, the critical chemi-
cal potential ism5m03(120.010),m052.04 and the criti-
cal density isr5r03(120.058),r0568.0.

A good test of our central result, the dimensional redu
tion, is to compare our formulas for the critical chemic
potential with that extracted from the results of Jones a
Parkin@12#. They also use the linear delta expansion but th
apply it directly to the full four-dimensional theory anywhe
in the symmetric phase. They can in principle study a
temperature and density, though they limit their analysis
high temperatures. We use dimensional reduction so
method is always limited to high temperatures. However, t
brings several benefits to us as further fields, including
mions, can be added with great ease and our nonperturb
effort is much less. The effective three-dimensional the
derived here can in principle be studied using any nonper
bative technique, including Monte Carlo since the effect
action is real. While we have only looked at the critic
point, we have also given the critical density which is t
actual measured quantity. Finally, our results are comple
analytic, while Jones and Parkin can only find numeri
solutions to their equations, though the numerics are r
tively straightforward.

Turning to the details of the results, we find that t
Jones-Parkin method gives the same qualitative behavio
our results forl51/8, T/M50.5 . . .10.0. However, their
results for these parameters@28# are best fitted with slightly
8-5



no
rt
al
b

o
si

g
ou
a

te
n
s
on
o
te

al

fe

-

i
ba

he
an
o
ist
a

an

ro
b

ca

-

-

by
use
ry.

D. J. BEDINGHAM AND T. S. EVANS PHYSICAL REVIEW D64 105018
different coefficients,3 namely a rho,JP/a rho51.2(1), and
choosing h rho,JP5h rho we find arho,JP1h rho,JPln l
5217.8(2) compared with our value218.5. In our calcula-
tion theamu value was set by perturbation theory and can
be exact. Since Jones and Parkin use an entirely nonpe
bative method, even though both methods ought to be v
in the parameter range considered, there are likely to
small differences between the two results. These ought t
O(l) fractional corrections so the results seem to be con
tent as far as they go.

Finally, we can illustrate the power of our work by notin
that any nonperturbative calculation can be used with
formulae4 for dimensional reduction in the presence of
large density. For instance, since this work was comple
two lattice Monte Carlo studies of the 3D action releva
here have appeared@9–11#. While these numerical result
were produced for the nonrelativistic 4D Bose-Einstein c
densation problem, we can just as easily apply them to
relativistic case. The two studies are completely consis
but for definiteness we use the values in@11# which gives
cr,lat50.671(1) andf̄ lat50.57(1). In this case, thea andh
terms of bothm andr expressions are fixed by dimension
reduction so the only difference is in thea parameters, and
we find that the lattice data leads toamu, lat520.756 and
arho,lat5213.2 compared to our values of26.01 and
221.8 respectively. While these appear to be large dif
ences, in physical quantities such as the critical densityr the
constant coming froma is in fact overwhelmed by the con
tribution from the lnl term for l!1 which is where the
dimensional reduction process is valid. The difference
more of a comment on the efficacy of different nonpertur
tive approximations in 3D calculations~see@10# for a good
comparison! than particularly important to our results.

In conclusion, we have shown that by organizing t
modes into those which can be perturbatively integrated
those which cannot, we minimize the nonperturbative eff
needed to study Bose-Einstein condensation at relativ
temperatures and densities. The method is economical
provides a reliable estimate of the critical temperature
critical density.
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APPENDIX

In this appendix we consider how the sunset diagram
be decomposed into contributions from different modes.

We begin by considering them50 case and state the re
sults ~see, for example,@26,27#!

3A shift from MS to MS scales is needed.
4Note that the normalization of fields and the definition ofu or l

often differ from those used here by simple constant factors.
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(
n1 ,n252`

` E
p1,p2

1

~vn1

2 1p1
21m2!

1

~vn2

2 1p2
21m2!

3
1

@~vn1
1vn2

!21~p11p2!21m2#

5
1

~4p!2 F 1

4e
1 ln

M

3m
1

1

2G1OS m

T D ~A1!

and

E
p1,p2

1

~p1
21m2!

1

~p2
21m2!

1

@~p11p2!21m2#

5
1

~4p!2 F 1

4e
1 ln

M

3m
1

1

2G . ~A2!

We shall split Eq.~A1! into purely nonstatic internal lines
(n15” 0;n25” 0;n15” n2), one static internal line (n15” 0;n2
50;n15n2 andn15” 0;n250 andn150;n25” 0), and purely
static internal lines (n150;n250). This covers all the pos
sibilities and we may write

(
n1 ,n252`

`

5 (
n1 ,n25” 0

n15” n2

16dn1 (
n2.0

1dn1
dn2

. ~A3!

Denoting these contributions to Eq.~A1! as I nonstatic, I mixed,
and I static, we immediately see thatI static is given by Eq.
~A2!.

The contribution with one static line can be calculated
taking the static line to be massless. This does not ca
infrared divergences and is appropriate for the critical theo
We may also setm50 in the other propagators sinceT@m.
We thus have

I mixed56(
n.0

E
p1,p2

1

p1
2

1

p2
21vn

2

1

~p11p2!21vn
2

1OS m

T D
~A4!

56(
n.0

S egM2

4p D e G3~1/21e!

~4p!3/22eG~112e!

3E
p1

1

p1
2

1

~p1
21vn

2!1/21e
1OS m

T D ~A5!

56(
n.0

2S egM2

4pvn
2D 2e

G2~1/21e!

2e~e21/2!~4p!322e
1OS m

T D
~A6!
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52S egM2

16p3T2D 2e
3z~4e!G2~1/21e!

e~e21/2!~4p!322e
1OS m

T D
~A7!

52
3

~4p!2 F 1

4e
1 ln

M

2T
1

1

2G1OS m

T D . ~A8!

Finally, the purely nonstatic contribution can be found
subtracting the other contributions from Eq.~A1!:
e

s.

10501
I nonstatic5
3

~4p!2 F 1

4e
1 ln

M

2T
1

1

2G1OS m

T D . ~A9!

Turning to the case wherem5” 0, I nonstaticis unchanged at
leading order in the high temperature expansion sincem
!T and we may clearly take them→0 limit without causing
infrared divergences.I mixed is also unchanged upon choosin
the static line to be critical. Up to corrections ofO(m2/T2)
and O(m/T), the non-static and mixed contributions to th
sunset diagram sum to zero.
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