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Effect of weak interactions on the ultrarelativistic Bose-Einstein condensation temperature
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We calculate the ultrarelativistic Bose-Einstein condensation temperature of a complex scalar field with
weak \ (®T®)? interaction. We show that at high temperature and finite density we can use dimensional
reduction to produce an effective three-dimensional theory which then requires nonperturbative analysis. For
simplicity and ease of implementation we illustrate this process with the linear delta expansion.
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[. INTRODUCTION integrate these modes perturbatively in an attempt to sim-
plify our calculation.

The inclusion of finite densities of conserved charges in  Following dimensional reduction, the problem of relativ-
thermal field theory poses well known problems in the studyistic Bose-Einstein condensation has been reduced to the
of phase transitions. On one hand, perturbative analyses 6tudy of a phase transition in an effective three-dimensional
charged scalar fieldd—3] give information about the phase theory at zero temperature and zero density. Standard non-
structure, but cannot probe the critical point. Standard perperturbative methods can then be employed to study this
turbative calculations are plagued with infrared divergencegnodel but we do not investigate the many alternatives here,
and after dealing with these, the asymptotic expansion break®erely choosing one for exemplary purposes. Here we use
down. On the other hand, finite charges cannot be easilthe linear delta expansion for its simplicity and resemblance
represented in lattice Monte Carlo simulations. Encoding d0 standard perturbation theory.
non-zero charge in the grand canonical ensemble renders the By way of contrast, the only other study of a relativistic
action complex and therefore useless as a statistical weighfinite density system using dimensional reduction we know
ing [4]. These obstacles invoke a demand for alternativedf is a study of QC17], rather than the Higgs sector stud-
methods. ied here. The resulting 3D action is complex, making subse-

Several authors have recently considered the effect of reguent numerical analysis ¢17] more complicated.
pulsive interactions on the condensation temperature of a
dilute Bose gas, a nonrelativistic problem. It was pointed out
in Ref.[5] that the leading correction could be isolated in the
static Matsubara mode and a mean field calculation could be We begin by considering a relativistic system of bosons
performed on this mode alone. Since then the static mode haiescribed by a complex scalar field theory. We encode a
been studied using theN/expansion[6,7], with the linear conserved charge by working in the grand canonical en-
delta expansiofi8], and now numerically9—11]. semble with chemical potential. The partition function is

In this paper we consider the effect of interactions on thethen
transition temperature for scalars in the ultrarelativistic limit.

By this we mean that we are at the high temperature limit,

but that the typical self-energy correctiols the chemical Z=j [dUT[dW¥]exp—S} (h)
potentialw, or the cube root of the charge densjy,can be

of the same ordeF>3,u,p*3. This limit is appropriate for o _ . o .

the study of high temperature symmetry breaking whergdvhere field integrations are periodic over imaginary tige
Bose-Einstein condensation and spontaneous symmetry 1/T @nd the action is given by
breaking have interesting similarities. The relevant finite

II. DIMENSIONAL REDUCTION

temperature and density 4D Feynman diagrams are difficult _(” 3 T

to handle and only Jones and ParKii2] include the setting- S= o dr [ d{[(0,+m)¥'[(d,—n)¥]

sun diagram for the self-energy. To avoid these problems, we

use dimensional reductigd3—1§ and this is the main focus +VPive + mz\PT\If+)\(\IfT\I')2}. 2

of our paper. In our regime, we will show that dimensional

reduction for a relativistic model is much more complicatedThe charge density is obtained frafnas follows:
than in the nonrelativistic limit of our model which studied
in [5—11], but we will show it is still manageable. As in the
nonrelativistic case, we take advantage of the good infrared p=— = — (3)
behavior of the nonstatic Matsubara modes. This allows us to VZiu

where we let the volum¥ tend to infinity.
*Email address: DJ.Bedingham@ic.ac.uk The periodicity of the fields is made explicit by a mode
"Email address: T.Evans@ic.ac.uk expansion and the nonstatic modes are integrated
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perturbatively* This not only gives an overall factor ®but
also renormalizes the parameters of the static médelhe

result is an effective three-dimensional theory whose depen-
dence on the temperature and chemical potential is contained Q
within its mass and coupling: 6 @

Z:eXp{ﬁVF(M)}f [dDT][dP]exp{ — Ssp}. 4 FIG. 1. Contributions to the mass of the static mode. Bold lines
correspond to nonstatic internal lines; thin lines correspond to the
Writing F=F©O+\FM+O(\?), the quadratic part of static mode. The last diagram contains the one-loop vertex counter-

the action can be integrated to give term.
o d®p are high order in\ and further that all nonrenormalizable
R )(M)=T§O f (277)3”1 A(wn,p) (5 interactions are suppressed by factors of?1ffor further
n

discussion of this point sgé 6]). It can be checked that in
the calculation which follows, these neglected terms contrib-

where A(w,,p)= —ip)2+p2+m?] ! and, since we
(@n,p)=[(@n—in)"+p ! ute at higher order in the expansion than is considered.

are dealing with bosonsy,=2mnT. The leading perturba-

tive correction is given by the figure-of-eight diagram: The fields should be scaled bﬁ in order to remove an
overall factor of 1T from the action and to the order we
d3p 2 work they undergo no field renormalization from the non-
FO(u)=-2T1% X 3A(wq,p) | . (6)  static mode integration.
nto J (2m) Referring to Fig. 1, the 3D mass is given by

We use dimensional regularization in the modified minimal

= = —p2+ 3+ 3,+ 33+ 3,4+ 35+ O\, 10
subtraction(MS) scheme, making the replacement ' PAR R F R R 25T OO (10

d*p e"M2\ € [ g3 2¢p where
f (2w)3HJp:( 4 ) f(zw)“f "
S5.=M\T>, | A(w,,p) (11)
and subtracting only the terms which are divergenteas no Jp
—0. M is an arbitrary renormalization scale andis the ) 5
Euler-Mascheroni constant. _M T 1— Su +O0\?) |; (12)
The ultrarelativistic limit is defined by>m? or, equiva- 3 2212 '
lently, T>m. In order to avoid confusion over the different
expansion parameters we will set=0. Since we shall
handle the infrared region nonperturbatively, this does not 3,=—16\2T2 >, A(wq,,P1) > Az(wnz,pz)
create additional problems. We keep corrections of ng#0 Jpy n2#0 Jp
O(u?1T?) as we will find these are in faad(\) for the (13
critical theory. Ignoring anyu-independent terms, the factor s , /
F is then given by(see[2] for detail9 AT {i+2 InMe 1ot (=1 +O()\)}.
s 5 672 | 2€ 47T (=1
=1L Do), @ a4
6 47°T?  4x? ’
Though %, involves a static internal line it should be
where byO(\?) we meanO(u*/ T4\ u?/T?\?). included since it will not arise from the effective static 3D
The nonstatic modes also give corrections to the statitheory? This contribution is in fact well behaved in the in-
mode action. We write the effective 3D action as frared and to leading order we findee Appendix

33D=f dX[VOTVO+rdTd+u(dTd)?], (9 ) _ _ _
Note that at this order, integrating out the heavy modes actually

. ) ) leaves one with a nonlocal action with terms such as
where we nggllect.the higher dimensional ope.ratdri:qg)_” S| @ (x)[2B(x,x")|®(x’)|> where B is an O(\?) bubble
for n=3. This is first on the grounds that their coefficients diagram. It is when approximating the 3D theory by the purely local
one(9) that contributions, such &s,, coming purely from nonlocal
terms in the exact nonlocal effective theory must not be forgotten.
IAlternatively, one can calculate static quantities in the 3D effec-For instance, the same type of non-loBalerm should also lead to
tive theory and in the full 4D theory. By matching these results onea diagram similar t&,, but with a light petal on the top and one has
can then relate the coefficients of the 3D effective theory to those ofo check that this is of lower order than required. Such problems
the 4D ond 16]. However there is a lack of results in the literature suggest that the matching of Green functions approach to dimen-
for our model at high densities. sional reductiorf16] might be simpler.
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33+3,=0+0O\°T?). (15) results and to do so much faster than alternatives, for in-
stance se¢21,22 and references therein. In full quantum
Finally we include the diagram with the one-loop vertexfield theory (QFT), LDE has also often proved to be better
counterterm which is given by (§T/87%¢)(®T®)2. Thisis  than other methodg23].

We begin by definingSs which interpolates between our

5N?T 1 3D action(from which we now drop the subscrjpnd some
25=4 82 € gfo LA(“’“ P) (18 soluble actionS, as & varies from 1 to O:
S\TP[ 1 Mer (1) +O()\)} $—8,=385+(1-9)Sp. (22
= —+In -yt )
212 47T -1
1277 L2€ 4 (=1 We are free to choose
17
We may now sum all the contributions to E4.0) giving So_f PVDTVD+ 020D 23
B 2+)\T2 L 3u? L3 ( 1,1 Me
W T T S o2 42\ 2e 3 AT such that
{(-1)
+1-y+ (1) +O(\?) |. (18 sng dX[VOTVD + (02— 802+ 6r)dTd
t
We shall find the coupling to be given with sufficient +ou(@TP)?]. (24)

accuracy by
Any physical quantityP is evaluated as a power series in
U=AT+O(\?). (19 6 to some finite order. This quantity will generally have
some dependence dh which we fix by some specified cri-

The coupling is now dimensionful due to the scaling of theierion which we take to be the principle of minimal sensitiv-

static fields byy/T. ity (PMS) [24]:
Use of Egs.(3) and (4) with Egs.(8), (9), (18) and (19
gives dp
_ T outl1e X v ond|@te 20 e (25)
=g, T2 2, FOY) ( ) (20)

This variational procedure allows for the emergence of non-

uT? 2 N perturbative behavior.
=3 |1- P + F+O()\2) The Green function we require can now be written as
a a
20T 14 2) (DT 21 <<I>T<I>>=f LS (p) (26)
+2u +2—Tr2+0(7\ ) < >, ( ) (277.)3 3

where (®'d) denotes the Green function evaluated in thewhere
effective 3D theory. This we cannot calculate perturbatively
since the expansion will break down when probing large Gy(p)=[p?+ 02— 602+ 6r+3 4(p)] L. (27)

length scales greater tharul/ The criterion defining the transition temperature is that the

correlation length in the original theory be infinite. This can
be expressed $51(0)|5:1=0 which is satisfied by impos-
To evaluate the quantityd'®) we need a nonperturba- N9
tive method as the 3D sector retains all the infrared diver-
gences of the 4D theory. The effective 3D theory is studied at or+240)=0. (28
zero temperature and density so the problem is greatly sim-
plified. Any standard non-perturbative method can be used afise of this relation in Eq(26) gives
this point.
We will use the linear delta expansi¢bDE), though the d%p
method is also known by several other narte=e[20] for a <q>Tq>>:f
brief summary. LDE has been used successfully in many (2m)
situations, including studies of scalar theories at nonzero (29)
density such a$8,18,19,12,20 In toy models, where exact
results are achievable, LDE is known to produce convergergnd expanding to second order dnwe have

Ill. LINEAR DELTA EXPANSION

(PP + Q2= 60243 5(p) —24(0)]
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- 2 4 1/2
Q= +—(—In ) . (36

a
O E ; /\ @ The question of which solution to choose can be answered

by comparison with the solution in the largecase forN

— 2. Referring to[6] and[7] we find that the positive solu-
FIG. 2. Contributions to the self-energy for the effective 3D tion is appropriate, giving

theory. The filled dot corresponds tosér — 2?) mass insertion.

OTP)=— , 3
(@)= UL T Gy 7
2 )3 2+QZ p2+ QZ (p2+ QZ)Z s
S ()= <0 f_=(6ln—> ~1.314. (38)
—% +O(6). (30 3

Inserting this into Eq(21) we have for the critical density
The only momentum dependent contribution to the self-

energy results from the setting sun diagrésee Fig. T2 2 A _
9 9 grésee Fig. 2 o= (4-6H)+002) |. (39
3 27°T?  (4m)?
D)~ g2 ZJ d*k dq 1 1
3 (P)= u (2m)3 (2m)® (K*+Q?) (g°+03?) The chemical potential is an unwanted free variable in
this expression and we must use relat{@B) to constrainu
1 at the transition temperature. Along with the setting sun con-
X [(k+q+p)2+02] (3D t2r)ibution to the self-energy, we also have to ord@rsee Fig.
We continue our use of dimensional regularization in®
scheme, using the same sceas in our 4D heavy mode 230245uf (40)
calculations. The required integralsee, for example|8] p p2+Q2’
and[25]) are
1 1
1 33P= —166%02 f f ,
————=——|1+2¢|In 1|+0(ed)|, (32 p (p2+0%)2)q g%+ 0?2
fp p2+ Q2 4w >at (p )Jaq an
23D0_852u2 1+| M+1+O 33 D o 1
3 )_w 4e TN3g 20 (33 2, =40u(Q =) o (21 077 (42
1 Evaluating and summing these contributions gives
J’ QZ 3 (p)
) (p=0) suQ 8522 M 1+52uQ
25U M 25p=0)=—————— |-tz — 5|+ 55—
= | 4+3In— T (4m)? 30 2 2w
(4m)3Q | 2€ 2Q
s%ur
50 +0(68%), (43
+1-21In2+0(e)|. (34) 2m
which upon substituting into Eq28) gives
Further integrals may be derived from E§2) by successive
differentiations with respect to). uQ S2uQ)  S52u? M
Summing the contributions to the Green function, we find  r= oy o2 4—+Inm+ > +0(5%).
5Q 20 45 4 (44)
()=t S Y 8am  amg "3 =
m " 2(4m) " 8(4m) (4m)°Q) We apply the PMS condition tq giving Q = u/ s, and insert
this value into Eq(44):
The divergences cancel and there is no need to invoke any W21
counterterms. We now apply the PMS condition(tbd) r=— 4—+In +e,l, (45)
and arrive at 27 4€ u
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T 3
c,=In-+ s~1.546.

3 2 (46)

The dependence af on the scaleM is exact because of

PHYSICAL REVIEW D 64 105018

IV. DISCUSSION

The leading term in our expressions for the critical chemi-
cal potential(48) or equivalently for the critical densit§s0),
are the usual leading high temperature resyligs VA/3T

super-renormalizability and agrees with that noted elsewhergnd p,= \/27T3.

(e.g.,[11]) even though it appears here in the context of a The A?In(T/M) term is exactly that expected from the
particular nonperturbative calculation. Comparing with Ed.running of the 4D coupling. in the leading term using per-

(18) we have

turbation theory where one finds

AT? 32 3N (1 1 Me 2 2
TR I S i [ - 5\ M
T R 4772(26+3|n47TT+1 Y MM2) =\ (My)+ —In| =2 . (52
8w M1
(-1 ) T?[1 M
+ [(—1) +OY) | = 2 E+Inﬁ+cr ' The perturbative result is appropriate as the leading behavior

(47)

The divergences cancel and we can objaim terms of the
critical temperature:

T
"5

+0O(N\?)

A T
1+ Q amulnm—i— 7]mu|n AN tan,

(48)

:51 77mu:6!

Amuy

Y

amu=ln<ﬂ +1+3

) §(1,—1))_
v+ =1 6¢c,

~3.270- 6¢,~ —6.007. (49)

It is now clear that for the critical theory:?/T?~O(\).
Substituting into the equation for the charge density gives

_T
pP= 3\/§

+ DenoIN(N) +8rpo

A T
1+ Q poln M

+0O(\?) |, (50)

@ho=95,  7Mmo=6,

(51)

2 — —
5 —3f~3.9236- 6¢,— 3f~—21.759.

Ano=amyt
rho mu 3

comes only from the heavy modes, and these are dealt with
perturbatively in this calculation. Thus we find that once the
implicit scale dependence af is accounted for, our results
for u and p are actually independent of the scadleas all
exact physics results should be.

The N2In(\) term comes directly from our expression
(45) for r and in particular comes from dependence on the
scale M which is exact for for the super-renormalizable
theory. In the context of a Green function matching ap-
proach, as discussed for instancd 18], this term might be
described as running the 3D masg$rom the scaleM ~T,
used when dealing with the heavy modes, dowrnutoA T
appropriate for the 3D static theory. Overall then our expres-
sions for the critical chemical potential and density agree
with our expectations from other calculations.

In terms of actual numbers, for=1/8 the fractional cor-
rections to this leading term are of the order of a few percent,
e.g., in units of the scal®l, for T=10.0, the critical chemi-
cal potential isu= uyx(1—0.010), uo=2.04 and the criti-
cal density isp=pyx(1—0.058), py=68.0.

A good test of our central result, the dimensional reduc-
tion, is to compare our formulas for the critical chemical
potential with that extracted from the results of Jones and
Parkin[12]. They also use the linear delta expansion but they
apply it directly to the full four-dimensional theory anywhere
in the symmetric phase. They can in principle study any
temperature and density, though they limit their analysis to
high temperatures. We use dimensional reduction so our
method is always limited to high temperatures. However, this
brings several benefits to us as further fields, including fer-
mions, can be added with great ease and our nonperturbative
effort is much less. The effective three-dimensional theory
derived here can in principle be studied using any nonpertur-
bative technique, including Monte Carlo since the effective
action is real. While we have only looked at the critical

Equation(50) relates the critical density to the critical tem- point, we have also given the critical density which is the
perature for the Bose-Einstein condensation of a compleactual measured quantity. Finally, our results are completely
scalar field in the ultrarelativistic limit. Though E¢50)  analytic, while Jones and Parkin can only find numerical
looks like an expansion in we stress that the result is non- solutions to their equations, though the numerics are rela-
perturbative because of the severe IR problems in calculatintively straightforward.

(®'d) and self-energies at the critical point in the three- Turning to the details of the results, we find that the
dimensional theory. We should expecto have some renor- Jones-Parkin method gives the same qualitative behavior as
malization scale dependence since we have included a oneur results forn=1/8, T/M=0.5...10.0. However, their
loop vertex counterterm in the calculation. results for these parametdi23] are best fitted with slightly
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)

different coefficients, namely tnoae @no=1.2(1), and f 1 1
Ny,np=-= Jp

choosing 7o 5= 7me  We  find &g st 7rmo,aplN A
=—17.8(2) compared with our value 18.5. In our calcula-
tion the a,,, value was set by perturbation theory and cannot

2 2 2 2
l*pZ(wnl—’_ pl+ mZ) (wn2+ p2+ m2)

be exact. Since Jones and Parkin use an entirely nonpertur- X 1

bative method, even though both methods ought to be valid [(wp, + @p)%+ (Pt Po)2+m?]

in the parameter range considered, there are likely to be ' 2

small differences between the two results. These ought to be 1 1 M m

O(\) fractional corrections so the results seem to be consis- =——| N-=—+=|+0 —) (A1)
(4)%|4e 3m 2 T

tent as far as they go.

Finally, we can illustrate the power of our work by noting
that any nonperturbative calculation can be used with ougng
formulag for dimensional reduction in the presence of a
large density. For instance, since this work was completed,
two lattice Monte Carlo studies of the 3D action relevant f 1 1 1
here have appeard®-11]. While these numerical results 21 2) (12 2 2, 2
were produced for the nonrelativistic 4D Bose-Einstein con- PPz (P1+M%) (Pa+m%) [(p1+p2)°+m’]

densation problem, we can just as easily apply them to our 1 1 M 1
relativistic case. The two studies are completely consistent = 5 4—+In3—m+ At (A2)
but for definiteness we use the values[ii] which gives (4m)°L7€

Cria=0.671(1) andf;=0.571). In this case, ther and »

terms of bothu andp expressions are fixed by dimensional We shall split Eq.(Al) into purely nonstatic internal lines
reduction so the only difference is in tleeparameters, and (n;#0;n,#0;n,#n,), one static internal line n;#0;n,
we find that the lattice data leads &, ;= —0.756 and =0:;n;=n, andn;#0;n,=0 andn,=0;n,#0), and purely
Qrhoja—= —13.2 compared to our values of 6.01 and static internal linesrf;=0;n,=0). This covers all the pos-
—21.8 respectively. While these appear to be large differsibilities and we may write

ences, in physical quantities such as the critical denpsttye

constant coming frona is in fact overwhelmed by the con-

tribution from the In\ term for A<<1 which is where the S

. . . . . . . > = > + >+ .
dimensional reduction process is valid. The difference is Npfig= =% nying40 60n, a0 Sn, On, (A3)
more of a comment on the efficacy of different nonperturba- nytny

tive approximations in 3D calculatior(see[10] for a good
comparison than particularly important to our results.

In conclusion, we have shown that by organizing the
modes into those which can be perturbatively integrated an‘?
those which cannot, we minimize the nonperturbative effor o ) o
needed to study Bose-Einstein condensation at relativistic 1N€ contribution with one static line can be calculated by

temperatures and densities. The method is economical af@king the static line to be massless. This does not cause
provides a reliable estimate of the critical temperature andlfrared divergences and is appropriate for the critical theory.
critical density. We may also sein=0 in the other propagators sinde>m.

We thus have

Denoting these contributions to EQAL) as! onstatio | mixed:
nd | g, We immediately see thdt,.. is given by Eq.
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APPENDIX 6y (e7|v|2>f I3(1/2+e)
. . . . =0\ 47 | (47)%2 T (1+2¢)
In this appendix we consider how the sunset diagram can
be decomposed into contributions from different modes. 1 1 m
We begin by considering the=0 case and state the re- Xf — erO(T) (A5)
sults (see, for exampld;26,27) P P1 (P1F @)
YAA 2 2e 2
3A shift from MS to MS scales is needed. = 62 — e'™ ["(1/2+€) (T)
“Note that the normalization of fields and the definitioruasr A =0\ 4mw?| 2e(e—1/2)(4m)3 2 T
often differ from those used here by simple constant factors. (AB)
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[ em? 263((46)F2(1/2+e)+0(m)
167°T2)  e(e—12)(4m)372¢ | T
(A7)
3 |1 I|v| 1 oM A8
——w 4_E+ nﬁ+§+ ? . ( )
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8
(4m)?

1+| +1
zetinoTt s

Inonstatic=

&

Turning to the case wherg#0, | jonstaiiciS UNchanged at
leading order in the high temperature expansion sipce
<T and we may clearly take the— 0 limit without causing
infrared divergencesixeqiS also unchanged upon choosing
the static line to be critical. Up to corrections 6 2/ T?)

Finally, the purely nonstatic contribution can be found byand O(m/T), the non-static and mixed contributions to the

subtracting the other contributions from H#\1):

sunset diagram sum to zero.
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