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Fermionic zero modes and spontaneous symmetry breaking on the light front
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Spontaneous symmetry breaking is studied in a simple version of the light-frontO(2) sigma model with
fermions. Its vacuum structure is derived by an implementation of global symmetries in terms of unitary
operators in a finite volume with a periodic Fermi field. Because of the dynamical fermion zero mode, the
vector and axialU(1) charges do not annihilate the light-front vacuum. The latter is transformed into a
continuous set of degenerate vacuum states, leading to the spontaneous breakdown of the axial symmetry. The
existence of associated massless Goldstone boson is demonstrated.

DOI: 10.1103/PhysRevD.64.105016 PACS number~s!: 11.30.Qc, 11.10.Ef, 11.30.Rd
re

io
n
s

no

f t
r-
at
y-

de

ul
ca
le

he
e-
uu
r

se
iz
ry

y,

o
-
n
f

b

of
co-
ht
In-
s the

es
.
o

n
on
for-
to a
ro

ion
ge
of

art
n-
SSB
n

the
f a

a-
to
-

the
ion

g
eld
r-
n
nd
The phenomenon of spontaneous symmetry breaking
resents a challenge in the light-front~LF! formulation of
quantum field theory. In contrast with the usual quantizat
on spacelike~SL! surfaces, the vacuum of the theory qua
tized at constant LF timex1 can be defined kinematically a
a state with minimum~zero! longitudinal LF momentump1,
since the operatorP1 has a positive spectrum@1#. Thus ne-
glecting modes of quantum fields withp150 @zero modes
~ZM’s!#, the vacuum of even the interacting theory does
contain dynamical quanta. This ‘‘triviality’’ of the ground
state is very advantageous for a Fock-state description o
bound states@2#, but it seems to forbid important nonpertu
bative aspects such as vacuum degeneracy and the form
of condensates. Since Dirac’s front form of relativistic d
namics @3,4# defines a consistent quantum theory@1,5#, it
should be a sensible strategy to look for a genuine LF
scription of spontaneous symmetry breaking~SSB! @6# and
related aspects of the vacuum structure, which wo
complement the complicated SL picture of a dynami
vacuum state. Various approaches to the LF vacuum prob
were previously developed in Refs.@7–9#, for example. Note
in this context that, in the continuum LF theory, unlike t
SL quantization@10,11#, even those charges which corr
spond to nonconserved currents do annihilate the vac
@12,13#. Thus we may expect similar ‘‘surprises’’ in othe
aspects of the LF field theory.

A convenient regularized framework for studying the
and related problems of nonperturbative nature is quant
tion in a finite volume with fields obeying periodic bounda
conditions. This allows one to separate infrared aspects~ZM
operators relevant for vacuum properties! from the remainder
of the dynamics@14#. Note that to have a well-defined theor
one also has to specify boundary conditions~BC’s! in the
continuum formulation@15#.

For self-interacting LF scalar theories a bosonic ZM is n
a dynamical degree of freedom@14# but a constrained vari
able. Thus the vacuum remains indeed ‘‘empty’’ and o
expects that physics of SSB is contained in solutions o
complicated operator ZM constraint@16,17#. If a continuous
symmetry is spontaneously broken, a massless Nam
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Goldstone~NG! boson should be present in the spectrum
states. However, as emphasized by Yamawaki and
workers@6#, the Goldstone theorem cannot exist on the lig
front as long as all charges annihilate the LF vacuum.
stead, charge nonconservation has been suggested a
manifestation of the NG phase in the LF scalar theories.

The situation is different for (311)-dimensional theories
with fermions. For fermionic LF fields, one usually impos
antiperiodic BC’s inx2 to avoid subtleties with zero modes
However, periodic BC’s, which imply a dynamical zer
mode in the expansion of the independent componentc1 ,
are perfectly valid as well, for both massless andmassive
fermions~see below!. Recently, it was demonstrated withi
the massive LF Schwinger model with antiperiodic fermi
field that the residual symmetry under large gauge trans
mations, when realized quantum mechanically, gives rise
nontrivial vacuum structure in terms of gauge-field ze
mode as well as of fermion excitations@18#. It is the purpose
of the present work to demonstrate that a dynamical ferm
ZM provides a similar mechanism for a simple non-gau
field theory with fermions. Charges, which are generators
global symmetries of the given system, contain a ZM p
and consequently transform the trivial vacuum into a co
tinuous set of degenerate vacuum states. This leads to a
in the usual sense@19–26# with nonzero vacuum expectatio
values of certain operators and a massless NG state in
spectrum of states. Much of what we demonstrate is o
rather general nature.

In string theory, periodic Fermi fields are known as R
mond fermions@27#. The corresponding zero modes lead
degenerate vacua@27,28#. In our approach, vacuum degen
eracy is related to symmetries of the Hamiltonian, and
operators generating multiple vacua are bilinear in ferm
Fock operators.

In the LF field theory, dynamical symmetry breakin
@19,20# has been studied so far within the usual mean-fi
approximation@29,30# and also by means of Schwinge
Dyson equations@31#. In the discrete light cone quantizatio
formulation, the relation between fermion zero modes a
©2001 The American Physical Society16-1
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vacuum degeneracy has been found within a tw
dimensional supersymmetricSU(N) gauge theory@32#.

To simplify our discussion of SSB in the LF field theor
we will consider a version of theO(2)-symmetric sigma
model with fermions@6,33# specified by the Lagrangian

L5c̄S i

2
gm ]Jm2mDc1

1

2
~]ms]ms1]mp]mp!

2
1

2
m2~s21p2!2gc̄~s1 ig5p!c, ~1!

where the quartic self-interaction term for the scalar fieldss
and p has been omitted, because it is not relevant for
purpose. Lagrangian~1! is invariant under the globalU(1)
transformationc→exp(2ia)c and form50 also under the
axial transformation:

c→exp~2 ibg5!c, c†→c†exp~ ibg5!, ~2!

s→s cos 2b2p sin 2b,

p→s sin 2b1p cos 2b. ~3!

Rewriting the above Lagrangian in terms of the LF variabl
for the LF Hamiltonian one finds

P25E
V
d3x@~]ks!21~]kp!21m2~s21p2!

1c1
† ~mg02 iak]k!c21gc1

† g0

3~s1 ig5p!c21H.c.#, ~4!

where d3x[ 1
2 dx2d2x'. Our notation is x65x06x3,

pmxm5 1
2 p2x11p x, px5 1

2 p1x22x'p', x'p'[xkpk,
]'

2 []k]k , k51,2 andx1,p2 are the LF time and energy
Correspondingly, we define the Dirac matrices asg65g0

6g3 and ak5g0gk, the LF projection operators asL6

5 1
2 g0g6 andg55 ig0g1g2g3. L6 separates the Fermi fiel

into an independent componentc15L1c and a dependen
onec25L2c.

The infrared-regularized formulation is achieved by e
closing the system into a three-dimensional box2L<x2

<L,2L'<xk<L' with volume V52L(2L')2 and by im-
posing periodic boundary conditions for all fields inx2 and
x'. This leads to a decomposition of the fields into the ze
mode ~subscript 0) and normal-mode~NM, subscript n)
parts. One finds thatc2 ,c2

† ,s0, andp0 are nondynamica
fields with vanishing conjugate momenta, whi
c1 ,c1

† ,sn , andpn are dynamical. For a consistent quan
zation, one should apply the Dirac-Bergmann or a sim
method suitable for systems with constraints. We will po
pone this for a more detailed work@34#, assuming here the
standard~anti!commutators atx150:

$c1 i~x!,c1 j
† ~y!%5

1

2
d i j d

3~x2y!, i , j 51,4, ~5!
10501
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@sn~x!,]2sn~y!#5@pn~x!,]2pn~y!#5
i

4
dn

3~x2y!.

~6!

d3(x)5d0
31dn

3(x) is the periodic delta function withd0
3

52/V being its global zero-mode part. Relation~5! can be
derived using the expansion

c1~x!5 (
p,s561/2

u~s!

AV
„b~p,s!e2 i px1d†~p,2s!ei px

…,

~7!

$b~p,s!,b†~p8,s8!%

5$d~p,s!,d†~p8,s8!%5ds,s8dp,p8 . ~8!

The spinors in the representation with diagonalg5 areu†(s
5 1

2 )5(1 0 0 0), u†(s52 1
2 )5(0 0 0 1), wheres is

the LF helicity. The summations in Eq.~7! run over discrete
momenta p152pL21n, n50,1 . . . ,̀ , pk5pL'

21nk, nk

50,61, . . . ,̀ . The modes withp150 will be denoted by
b0(p' ,s), etc.

The nondynamical fields satisfy the constraints

2i ]2c25@mg02 iak]k1gg0~s1 ig5p!#c1 , ~9!

~]'
2 2m2!s05gE

2L

1Ldx2

2L
~c1

† g0c21H.c.!, ~10!

~]'
2 2m2!p05gE

2L

1Ldx2

2L
~ ic1

† g0g5c21H.c.!.

~11!

Note that atx150, where the interactingc1 field coincides
with the free field, constraint~9! defines aninteractingc2 .
The ZM projection of Eq.~9!,

gFS0c101E
2L

1Ldx2

2L
Snc1nG5~ igk]k2m!c10 , ~12!

where S[s1 ipg5, puts no restrictions onc10 @for free
fermions, Eq.~12! allows no ZM formÞ0 and aglobal ZM,
if m50#. The NM solution of constraint~9! is

c2n~x!5
1

4i E2L

1Ldy2

2
en~x22y2!$~mg02 iak]k!c1n~y!

1gg0@„sn~y!1 ipn~y!g5
…

1~s01 ip0g5!#%c1~y!, ~13!

whereen(x22y2) is the normal-mode part of the period
sign function andy[(y2,x').

In Eqs. ~10! and ~11!, we have assumed the existence
the c20 ZM, so the integrands are given by the diagon
combinations c10g0c201c1ng0c2n , etc. Actually, by
combining all three ZM constraints form50 into one,
6-2
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H g2

]'
2 2m2 Fc10

† g0c201H.c.2~c10
† g0g5c202H.c.!g5

1E
2L

1Ldx2

2L
„c1n

† g0c2n1H.c.2~c1n
† g0g5c2n

2H.c.!g5
…G J c105 igk]kc102gE

2L

1Ldx2

2L
Snc1n ,

~14!

we find that nonzeroc20 is requiredfor consistency: setting
c2050 in Eq. ~14! reduces it into an operator relatio
among independent fields which cannot be satisfied. This
be verified explicitly using the lowest-order approximation
c2n by settings05p050 in Eq. ~13!.

While the free massive fermion Hamiltonian is, unlike t
spacelike quantization, symmetric under the axial vec
transformations@Eq. ~16!# below @35#, the mass term in the
c2-constraint generates interaction terms which are prop
tional tomg and which, due to an extrag0, violate the axial
symmetry explicitly. This is the reason why we shall setm
50 henceforth. Note however that the scalar fields have
be massive@6# to avoid infrared problems.

Using Eq.~9!, the interacting part ofP2 takes the form

Pint
2 5E

V
d3x@m2~s0

21p0
2!1~]ks0!21~]kp0!2#

1 igE
V
d3xc1

† ~x!S†~x!E
2L

1Ldy2

2

1

2
en~x22y2!

3@ igk]kc1n~y2,x'!1H.c.

2gS~y2,x'!c1~y2,x'!#. ~15!

Pint
2 and solution~13! are not closed expressions due to t

presence ofs0 andp0, which in turn are given by their own
constraints~10! and~11!, depending onc2n . However, this
is not an obstacle for determining the symmetry propertie
the Hamiltonian, which are of primary importance in th
present approach. First we observe that the LF analog o
axial vector transformation@Eq. ~2!# is

c1~x!→exp~2 ibg5!c1~x!, ~16!

while the NM fieldssn ,pn transform according to Eq.~3!.
As for the constrained variables, we shall demand thatc2n
has a well defined transformation law, which is unambig
ously fixed by the terms withak,sn andpn in solution~13!.
It follows that s01 ip0g5 will transform exactly assn
1 ipng5 and that the wholec2n as well asc20 will trans-
form for m50 in the same way asc1 . As a result, we find
that Pint

2 is invariant underUA(1) transformations in addi
tion to U(1). The symmetries give rise to the conserve
~normal-ordered! vector currentj m5:c†g0gmc:, ]m j m50
and the conserved axial-vector currentj 5

m5c†g0gmg5c
12(s]mp2p]ms) (m51,2,k):

]m j 5
m52m~ ic1

† g0g5c21H.c.!50 for m50. ~17!
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These symmetries are implemented by the unitary opera
U(a)5exp(iaQ), V(b)5exp(ibQ5):

c1~x!→e2 iac1~x!5U~a!c1~x!U†~a!,

c1~x!→e2 ibg5
c1~x!5V~b!c1~x!V†~b!.

~18!

While the NM parts of the charge operatorsQ andQ5,

Q5E
V
d3x j1~x!52E

V
d3xc1

† c1 , ~19!

Q552E
V
d3x@c1

† g5c1

12~sn]2pn2pn]2sn!#, ~20!

are diagonal in creation and annihilation operators, the
parts contain also off-diagonal terms:

Q05 (
p' ,s

@b0
†~p' ,s!b0~p' ,s!2d0

†~p' ,s!d0~p' ,s!

1b0
†~p' ,s!d0

†~2p' ,2s!1d0~p' ,s!b0~2p' ,2s!#,

~21!

Q0
55 (

p' ,s
2s@b0

†~p' ,s!b0~p' ,s!1d0
†~p' ,s!d0~p' ,s!

1b0
†~p' ,s!d0

†~2p' ,2s!2d0~p' ,s!b0~2p' ,2s!#.

~22!

The commuting ZM chargesQ0 andQ0
5 do notannihilate the

LF vacuumu0& defined byb(p,s)u0&5d(p,s)u0&50. How-
ever, their vacuum expectation values are zero, as they h
to be. In this way, the vacuum of the model transform
under U(a),V(b) as u0&→ua&5exp(iaQ0)u0&, u0&→ub&
5exp(ibQ0

5)u0&, where

ub&5expS ib (
p' ,s

2s@b0
†~p' ,s!d0

†~2p' ,2s!1H.c.# D u0&,

ua&5expS ia (
p' ,s

@b0
†~p' ,s!d0

†~2p' ,2s!1H.c.# D u0&.

~23!

The vacua contain an infinite number of ZM fermio
antifermion pairs with opposite helicities.

Thus the global symmetry of Hamiltonian~15! leads to an
infinite set of translationally invariant states labeled by tw
real parameters. SinceU(a) and V(b) commute withP2,
the vacua are degenerate in the LF energy. The Fock s
can be built from any of them since they are unitarily equiv
lent.

We are in a position now to demonstrate the existence
the Goldstone theorem in the considered model. We have
the ingredients for the usual proof of the theorem@21–25#:
the existence of the conserved currentj 5

m , the operators
6-3



r

k

on

e

nd

e

es
nt
lve

ous

h

e
he
his

to
ra-

la-

-
nite
w-

on
nt

its
.

tion,
if-
ses
s
de-

me-

sent
s to
e-

ith
and
u-

8,
n-
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A, namely c̄c5c1
† g0c21c2

† g0c1 and c̄g5c
5c1

† g0g5c21c2
† g0g5c1 , which are noninvariant unde

the axial transformation

A→V~b!AV†~b!ÞA⇒dA52 ib@Q5,A#Þ0, ~24!

and the propertyQ5ua,b&5Q0
5ua,b&Þ0. Of course, the

above Fermi bilinears are symmetric underU(1), so the
commutator@Q,A# vanishes and there is no symmetry brea
ing associated with this symmetry.

In a little more detail, from the axial current conservati
and the periodicity inx2 andx' we obtain the condition of
the time independence of the vacuum expectation valu
the commutator@Eq. ~24!#,

]1^vacu@Q5~x1!,A#uvac&50, uvac&[ua,b&, ~25!

in addition to

^vacu@Q5~x1!,A#uvac&Þ0. ~26!

Note that relation~26! is only possible due to the fact thatQ5

does not annihilate the vacuum, and this crucially depe
on the existence of the ZM part ofQ5. Inserting a complete
set of four-momentum eigenstates into Eqs.~25! and ~26!
and using the translational invariance

e2 iPmxm
uvac&5uvac&, j 5

1~x!5e2 iPmxm
j 5

1~0!eiPmxm
,
~27!

we arrive in the usual way@21,23,25,26# at the conclusion
that there must exist a stateun&5uG& such, that

^vacuAuG&^Gu j 5
1~0!uvac&Þ0, ~28!

with PG
250 for PG

15PG
'50. Thus M G

2 5P G
1 P G

22(P G
' )2

50. From the infinitesimal rotation of the Fock vacuum w
have explicitly

Q0
5u0&5 (

p' ,s
2sb0

†~p' ,s!d0
†~2p' ,2s!u0&[uG&. ~29!

Using the transformation law of thec6 fields and anticom-
mutator~5!, one can show that

@c̄c,Q5#52c̄g5c, @c̄g5c,Q5#52c̄c ~30!
A

,

D

10501
-

of

s

and thus relation~26! implies nonzero vacuum condensat
^vacuAuvac&. They will depend on the coupling consta
throughc2n . To obtain quantitative results, one has to so
constraint~9! approximately@33#.

To summarize, we have demonstrated that spontane
symmetry breaking can occur in thefinite-volumeformula-
tion of the fermionic LF field theory. While in contrast wit
the usual expectation within the spacelike field theory~see
Ref. @36#, for example!, this is related to the explicit presenc
of a discrete infinity of dynamical fermion zero modes in t
finite-volume LF quantization. One of the advantages of t
infrared-regularized formulation is that one does not need
introduce test functions and complicated definitions of ope
tors to obtain a mathematically rigorous framework@23#. For
example, contrary to the standard infinite-volume formu
tion, the norm of the stateQ5uvac&5Q0

5uvac& is finite and
volume independent. The issue of continuum limit and vol
ume independence of the physical picture obtained in a fi
volume requires a further study. We would like to stress ho
ever that the Goldstone boson state@Eq. ~29!# is not an arti-
fact of using boundary conditions but is a reliable predicti
of the theory. Without boundary conditions, the light fro
theory is not mathematically well defined@1,5#. Quantization
in a finite volume is then a natural next step which perm
one to study the infrared phenomena in a consisent way

In the usual treatment of fermionic theories@19,36,37#,
the considered vacua, related by a canonical transforma
are free-field vacua corresponding to fermion fields with d
ferent masses. In the LF picture, fields with different mas
are unitarily equivalent@1# and if one neglects zero mode
the vacuum is unique. Our approach relates the vacuum
generacy to the unitary operators implementing the sym
tries, making use of the ‘‘triviality’’ of the LF vacuum in the
sector of normal Fourier modes.

Nevertheless, there are still a few aspects of the pre
approach that have to be understood better. First, one ha
perform a full constrained quantization of the model to d
rive the ~anti!commutation relations for all relevant~ZM!
degrees of freedom. Also, the connection of our picture w
the standard one, based on the mean-field approximation
the new vacuum with lower energy above the critical co
pling, has to be clarified.
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