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Fermionic zero modes and spontaneous symmetry breaking on the light front
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Spontaneous symmetry breaking is studied in a simple version of the light@@ht sigma model with
fermions. Its vacuum structure is derived by an implementation of global symmetries in terms of unitary
operators in a finite volume with a periodic Fermi field. Because of the dynamical fermion zero mode, the
vector and axialu(1) charges do not annihilate the light-front vacuum. The latter is transformed into a
continuous set of degenerate vacuum states, leading to the spontaneous breakdown of the axial symmetry. The
existence of associated massless Goldstone boson is demonstrated.
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The phenomenon of spontaneous symmetry breaking regsoldstone(NG) boson should be present in the spectrum of
resents a challenge in the light-frofitF) formulation of states. However, as emphasized by Yamawaki and co-
qguantum field theory. In contrast with the usual quantizationvorkers[6], the Goldstone theorem cannot exist on the light
on spacelikgSL) surfaces, the vacuum of the theory quan-front as long as all charges annihilate the LF vacuum. In-
tized at constant LF timg™ can be defined kinematically as stead, charge nonconservation has been suggested as the
a state with minimuntzero longitudinal LF momentunp*, manifestation of the NG phase in the LF scalar theories.
since the operatoP* has a positive spectrufii]. Thus ne- The situation is different for (3 1)-dimensional theories
glecting modes of quantum fields with" =0 [zero modes with fermions. For fermionic LF fields, one usually imposes
(ZM's)], the vacuum of even the interacting theory does notntiperiodic BC's inx~ to avoid subtleties with zero modes.
contain dynamical quanta. This “triviality” of the ground However, periodic BC's, which imply a dynamical zero
state is very advantageous for a Fock-state description of theode in the expansion of the independent compoment
bound state$2], but it seems to forbid important nonpertur- 5re perfectly valid as well, for both massless andssive
bative aspects such as vacuum degeneracy and the formatigfymions (see below Recently, it was demonstrated within
of condensates. Since Dirac’s front form of relativistic dy- the massive LF Schwinger model with antiperiodic fermion

namics[3,4] defines a consistent quantum thedfy5], it - : )
should be a sensible strategy to look for a genuine LF detleld that the residual symmetry under large gauge transfor

scription of spontaneous symmetry breaki®$B [6] and mations, when realized quantum mechanically, gives rise to a

) d’nontrivial vacuum structure in terms of gauge-field zero
related aspects of the vacuum structure, which woul mode as well as of fermion excitatiof®3]. It is the purpose
complement the complicated SL picture of a dynamical ) purp

vacuum state. Various approaches to the LF vacuum problelﬁ’]f the present work to demonstrate that a dynamical fermion

were previously developed in Refg—9], for example. Note <M Provides a similar mechanism for a simple non-gauge
in this context that, in the continuum LF theory, unlike the field theory Wlth. fermions. Qharges, which are generators of
SL quantization[10,11], even those charges which corre- global symmetries of the given system, contain a ZM part

spond to nonconserved currents do annihilate the vacuu@nd consequently transform the trivial vacuum into a con-
[12,13. Thus we may expect similar “surprises” in other tinuous set of degenerate vacuum states. This leads to a SSB

aspects of the LF field theory. in the usual sengd 9—26 with nonzero vacuum expectation

A convenient regularized framework for studying thesevalues of certain operators and a massless NG state in the
and related problems of nonperturbative nature is quantizespectrum of states. Much of what we demonstrate is of a
tion in a finite volume with fields obeying periodic boundary rather general nature.
conditions. This allows one to separate infrared aspedts In string theory, periodic Fermi fields are known as Ra-
operators relevant for vacuum properjibem the remainder mond fermiong27]. The corresponding zero modes lead to
of the dynamic$14]. Note that to have a well-defined theory, degenerate vacu®7,2§. In our approach, vacuum degen-
one also has to specify boundary conditidiC’s) in the  eracy is related to symmetries of the Hamiltonian, and the

continuum formulatiorf15]. operators generating multiple vacua are bilinear in fermion
For self-interacting LF scalar theories a bosonic ZM is notFock operators.
a dynamical degree of freedofit4] but a constrained vari- In the LF field theory, dynamical symmetry breaking

able. Thus the vacuum remains indeed “empty” and on€ 19,20 has been studied so far within the usual mean-field
expects that physics of SSB is contained in solutions of approximation[29,30 and also by means of Schwinger-
complicated operator ZM constraifit6,17]. If a continuous  Dyson equation§31]. In the discrete light cone quantization
symmetry is spontaneously broken, a massless Nambdermulation, the relation between fermion zero modes and
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vacuum degeneracy has been found within a two-

dimensional supersymmetri8U(N) gauge theory32].

To simplify our discussion of SSB in the LF field theory,

we will consider a version of th&®(2)-symmetric sigma
model with fermiong6,33] specified by the Lagrangian

[N 1
£=d§yﬂa#— m) ¢+§(r9ﬂ(rr9”0'+ d,mok )
(1)

—%u2<oz+w2>—g%+wsw>w,

where the quartic self-interaction term for the scalar fietds

and 7 has been omitted, because it is not relevant for ou

purpose. Lagrangiafil) is invariant under the global(1)
transformationyy— exp(—i«) and form=0 also under the
axial transformation:

y—exd—ipyY) i, Y-ylexdipy), ()
o— 0 COS 28— 7 Sin 283,
7— o sin 28+  cos 28. (3

Rewriting the above Lagrangian in terms of the LF variables,

for the LF Hamiltonian one finds
P~ = f d3X[ (90 )%+ (dm) >+ u?(o?+ m2)
oo

+yl(my—ia o) y_+gyl y°

X(o+iy’m)y_+H.cl, (4)
where d®x=3dx d?x‘. Our notation is x*=x%+x3,
P“x,=3p X" +px px=3p'x —x‘pt,  x‘pt=x‘pk,

afzakak, k=1,2 andx*,p~ are the LF time and energy.
Correspondingly, we define the Dirac matrices jas= y°
++° and «*=+%yX, the LF projection operators a .
=149y" andy°=iy°yty?y°. A. separates the Fermi field
into an independent componept = A | ¢ and a dependent
oney_=A_u.
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[00(X),3- (Y=L w300 m(y)]= 5 SExY).
©

83(x)= 63+ 63(x) is the periodic delta function withss
=2/ being its global zero-mode part. Relati@®) can be
derived using the expansion

‘/’+(§):D’ 2 %(b(g,s)ei%+ dT(E,—s)eiﬁ),

s==*1/2
)

{b(p,s),b™(p’.s")}
={d(p,s),d"(p’,s")} =655 8y p - ®

The spinors in the representation with diagogalareu®(s
=%)=(1 0 0 0), u(s=—%)=(0 0 0 1), wheres is
the LF helicity. The summations in E¢7) run over discrete
momentap®=27L"n, n=0,1..., pk==L 'nk nk
=0,+1,... . The modes wittp* =0 will be denoted by
bo(p, ,S), etc.

The nondynamical fields satisfy the constraints

2ig_y_=[my’—iaka+gy°(a+iy’m) s, (9
2 2 _ Thdx” T .0
(&L_lu‘ )0'0_9 2L ( +Y $*+H'C')1 (10)
—-L
2 2 _ Thdx” iyt 0.5
(97 —m9)mo=g S (igiy y’_+H.c).
-L
(11

Note that atx™ =0, where the interacting, field coincides
with the free field, constrain®) defines annteracting _ .
The ZM projection of Eq(9),

+LdX

9[20¢+0+ J'—L I2n¢+n} =(i Vkak_m) Vio, (12

The infrared-regularized formulation is achieved by en-WhereX=o+imy>, puts no restrictions on, , [for free

closing the system into a three-dimensional bex<x"
<L,—L,<x*<L, with volumeV=2L(2L,)? and by im-
posing periodic boundary conditions for all fieldsxn and

x'. This leads to a decomposition of the fields into the zero- b (X)= 1 f
n

mode (subscript 0) and normal-modé\M, subscriptn)
parts. One finds thay_ " o, and 7, are nondynamical

fermions, Eq(12) allows no ZM form#0 and aglobal ZM,
if m=0]. The NM solution of constraint9) is

+Ldy~

=37 e =y UM =it a0 (y)

fields with vanishing conjugate momenta, while +97°[(on(y) +ima(y) ¥°)

/a ,4111 ,o,, andr, are dynamical. For a consistent quanti- +(oo+imeY®) 1 (y),

zation, one should apply the Dirac-Bergmann or a similar -

method suitable for systems with constraints. We will postyyhere e, (x " —y ™) is the normal-mode part of the periodic
pone this for a more detailed wof4], assuming here the gjgn function and/=(y~,x*).

standardantjcommutators ax* =0: In Egs.(10) and(11), we have assumed the existence of
the _o ZM, so the integrands are given by the diagonal
combinations ¢, oy’ _o+ . nY°_,, etc. Actually, by
combining all three ZM constraints fan=0 into one,

(13

1
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i o f o . These symmetries are implemented by the unitary operators
Yoy Y_otHC— (¢ oy vy_o—HcC)y U(a) =exp(aQ), V(B) =expiBQ®):

Yo (X)—e Y, (x)=U(a) ¢, (x)U'(a),

gz
[&L_P«Z
+LdXx™
+f %(lﬂnvow-ﬁH-C-—(¢T+n7°75¢—n .
B P (X)—e P YL () =V(B) ¥ (X)VT(B).

‘ +LdX™ (18)
_ 5 —i _ el
H.c)v") ]lp*o AT L 2L Znin, While the NM parts of the charge operatdpsand Q°,
(14
o= | exitw=2] @xslu.. a9
v T - v

we find that nonzer@s_ is requiredfor consistency: setting
¥_o=0 in Eq. (14) reduces it into an operator relation
among independent fields which cannot be satisfied. This can
be verified explicitly using the lowest-order approximation to
¥_, by settingog=m;=0 in Eq. (13).

While the free massive fermion Hamiltonian is, unlike the +2(ond-mn—mad_0y) ], (20
spacelike quantization, symmetric under the axial vector . . , o
transformationgEq. (16)] below [35], the mass term in the are dlagongl in creat|or_1 and annihilation operators, the ZM
J_-constraint generates interaction terms which are propoarts contain aiso off-diagonal terms:
tional tomg and which, due to an extrg’, violate the axial
symmetry explicitly. This is the reason why We.shall get  Qp= ), [bi(p. ,s)bo(p. ,s)—di(p. ,S)do(p. ,S)
=0 henceforth. Note however that the scalar fields have to PL.S
be massivd6] to avoid infrared problems. +pt s)di(— —s)+d S)bn( — —s

Using Eq.(9), the interacting part oP~ takes the form o(P1:)do(—P. . =S+ do(PL . S)Do(—P1, = S)],

Q%=2 fvd%[ AR/

(22)
Pin= J d3X[ u2( a5+ 7) + (9o 0) >+ (37m0) %]
v Q8=pES 2s[b}(p. ,S)bo(p. ,8) +d(p. ,5)do(p. ,S)
) +Ldy_ 1 B B L
+'9JVd35¢1(5)2@J,LTzfn(x -y +bY(p, S~ L —S)—do(p. .S)bo(— P, .~ 9)].
(22

X[y apan(y” x5 +H.c.
_ - xt - x5 15 The commuting ZM chargeQ, andQg do notannihilate the
920y Xy ly X)) @9 £ vacuum|0) defined byb(p,s)|0)=d(p,s)|0)=0. How-
P;.. and solution(13) are not closed expressions due to the€Ver, their vacuum expectation values are zero, as they have
presence ofr, and o, which in turn are given by their own 0 be. In this way, the vacuum of the model transforms
constraints(10) and (11), depending ony_,. However, this ~ under U(a),V(B) as 0)—|a)=exp(aQy)|0), [0)—|B)
is not an obstacle for determining the symmetry properties of=exp(5Qp)|0), where
the Hamiltonian, which are of primary importance in the

present approach. First we observe that the LF analog of thq,@:exr{ i,GE Zs[b*(pl s)d*(— D, —s)+H.c.]) |0)
axial vector transformatiofEq. (2)] is LS oML =IO ' '

P (X)—exp —iBY°) ¢ (X), (16)

) =exp ia > [bi(p, ,S)db(—p, ,—s)+H.c.])|0>-
while the NM fieldso, , 7, transform according to Eq3). Pi-s
As for the constrained variables, we shall demand that (23
has a well defined transformation law, which is unambigu-The vacua contain an infinite number of ZM fermion-
ously fixed by the terms wit¥, o, and 7, in solution(13).  gntifermion pairs with opposite helicities.

It follows that oo+imy° will transform exactly aso, Thus the global symmetry of Hamiltonigh5) leads to an

+im,y° and that the wholey_, as well asy_o will trans-  infinite set of translationally invariant states labeled by two

form for m=0 in the same way ag . As a result, we find  rea| parameters. Sindg(a) and V(8) commute withP~,

that Py, is invariant undetU,(1) transformations in addi- the vacua are degenerate in the LF energy. The Fock space

tion to U(1). The symmetries give rise to the conserved can be built from any of them since they are unitarily equiva-

(normal-orderef vector currentj“=:¢"y%y*y:, 3,j*=0  Jlent.

and the conserved axial-vector currejf= TPy ySy We are in a position now to demonstrate the existence of

+2(cd*m—wito) (u=+,—,K): the Goldstone theorem in the considered model. We have all

_ - the ingredients for the usual proof of the theorgzi—23:

duis=2m(iyly’y*y_+Hc)=0 for m=0. (17  the existence of the conserved currgdt, the operators
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A, namely yy=y YOy +y Oy, and yy®y  and thus relatiori26) implies nonzero vacuum condensates

— " Y9950+ 4" %45y, . which are noninvariant under (vadA|vag. They will depend on the coupling constant

the axial transformation through_,,. To obtain quantitative results, one has to solve
constraint(9) approximately 33].

A—V(B)AV!(B)#A=5A=—iB[Q%A]#0, (24 To summarize, we have demonstrated that spontaneous

symmetry breaking can occur in tHimite-volumeformula-

and the propertyQ5|a,,B):Qg|a”3>¢o_ Of course, the tion of the fermioni_c LF f_iel_d theory. Whi.Ie in_ contrast with

above Fermi bilinears are symmetric undéf1), so the the usual expectation within the spacelike field thetzye

commutatof Q,A] vanishes and there is no symmetry break-Ref.[36], for example, this is related to the explicit presence
ing associated with this symmetry. of a discrete infinity of dynamical fermion zero modes in the

In a little more detail, from the axial current conservation finite-volume LF quantization. One of the advantages of this
and the periodicity i<~ andx" we obtain the condition of infrared-regularized formulation is that one does not need to

. . . introduce test functions and complicated definitions of opera-
:Eg (t:lg]n?n:r&(tj:t%%gge?;;]m the vacuum expectation value Q[ﬂrs to obtain a mathematically rigorous framewfi2B]. For
’ ' example, contrary to the standard infinite-volume formula-
9. (vad[Q%(x*),A]lvad=0, |vad=|a,B), (25  tion, the norm of the ste_1té25|vac>=Q8|vac> is finite and
volume independenthe issue of continuum limit and vol-
in addition to ume independence of the physical picture obtained in a finite
volume requires a further study. We would like to stress how-
(vad[Q°%(x™),A]|vag #0. (26)  ever that the Goldstone boson stfe. (29)] is not an arti-
fact of using boundary conditions but is a reliable prediction
Note that relatior{26) is only possible due to the fact th@®  of the theory. Without boundary conditions, the light front
does not annihilate the vacuum, and this crucially dependgheory is not mathematically well defin¢d,5]. Quantization
on the existence of the ZM part @°. Inserting a complete in a finite volume is then a natural next step which permits
set of four-momentum eigenstates into E¢85) and (26)  one to study the infrared phenomena in a consisent way.

and using the translational invariance In the usual treatment of fermionic theorifs9,36,31,
_ _ _ the considered vacua, related by a canonical transformation,
e Pwlvag=|vag, je(x)=e P"jl(0)eP", are free-field vacua corresponding to fermion fields with dif-

(27)  ferent masses. In the LF picture, fields with different masses
o _ are unitarily equivalenf1] and if one neglects zero modes
we arrive in the usual waj21,23,25,26 at the conclusion the vacuum is unique. Our approach relates the vacuum de-

that there must exist a stafie) =|G) such, that generacy to the unitary operators implementing the symme-
- tries, making use of the “triviality” of the LF vacuum in the
(vadA|G)(Gljs (0)|vag #0, (28)  sector of normal Fourier modes.

] _ oo 2 4 o Nevertheless, there are still a few aspects _of the present
with Pg=0 for Pg=P5=0. Thus Mc=P P c—(PY) approach that have to be understood better. First, one has to
=0. From the infinitesimal rotation of the Fock vacuum we perform a full constrained quantization of the model to de-
have explicitly rive the (antjcommutation relations for all relevazM)

degrees of freedom. Also, the connection of our picture with
Q3|0y= > 2sbi(p, ,s)di(—p, ,—s)|0)=|G). (29) the standard one, based on the mean-field approximation and
P s the new vacuum with lower energy above the critical cou-

. i . ] pling, has to be clarified.
Using the transformation law of th¢.. fields and anticom-

mutator(5), one can show that This work was supported by the grants VEGA 2/5085/98,
. . . o NSF No. INT-9515511 and by the U.S. Department of En-
(4, Q%1=2¢°y, [¢¥°4,Q%]=2¢¢y  (30)  ergy, Grant No. DE-FG02-87ER40371.
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