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Mass expansions of screened perturbation theory
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The thermodynamics of masslessf4 theory is studied within screened perturbation theory~SPT!. In this
method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the screening mass to two-loop order,
expanding in powers ofm/T. The truncatedm/T expansion results are compared with numerical SPT results
for the pressure, entropy and screening mass which are accurate to all orders inm/T. It is shown that them/T
expansion converges quickly and provides an accurate description of the thermodynamic functions for large
values of the coupling constant.
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I. INTRODUCTION

The behavior of finite temperature field theory at interm
diate to large coupling is of particular interest due to t
upcoming heavy-ion collision experiments at the BNL Re
tivistic Heavy Ion Collider~RHIC! and CERN Large Hadron
Collider ~LHC!. For years the hope has been that due to
asymptotic freedom of QCD that weak-coupling expans
calculations within finite temperature field theory would su
fice to describe the experimental data. Along these lin
there has been significant progress in recent years in pe
bative calculations within thermal field theory. The press
in QCD, for example, is now known to orderg5 @1–3#. Un-
fortunately, an analysis of the convergence of this expans
shows that the successive perturbative approximations do
converge for experimentally accessible temperatures. T
lack of convergence, while not surprising, needs to be
dressed in order to provide systematic methods for calcu
ing quark-gluon plasma observables.

The lack of convergence of the weak-coupling expans
is not restricted to QCD. In fact, even in simple massl
scalar field theories similar convergence problems are
countered. This indicates that the problem might be univ
sal. The universality of the problem means that the techni
needed might be quite general and since calculations wi
scalar theories are technically simpler than in full QCD the
theories can provide an important testing ground for meth
to deal with this problem. Like QCD, the weak-couplin
expansion for the pressure of a massless scalar field th
with a g2f4/4! interaction, is known to orderg5 @1,4,5#,
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wherePideal5(p2/90)T4 is the pressure of an ideal gas
free massless bosons,a5g2(m)/16p2, and g(m) is the
modified minimal subtraction scheme (MS̄) coupling con-
stant at the renormalization scalem. In Fig. 1, we show the
successive perturbative approximations toP/Pideal as a func-
tion of g(2pT). Each partial sum is shown as a band o
tained by varyingm from pT to 4pT. To expressg(m) in
terms ofg(2pT), we use the numerical solution to the reno
malization group equationm(]/]m)a5b(a) with a five-
loop beta function@6#:

m
]

]m
a53a22

17

3
a3132.54a42271.6a512848.6a6.

~2!

The lack of convergence of the weak-coupling expansion
large coupling is evident in Fig. 1. The band obtained
varyingm by a factor of 2 is not necessarily a good meas
of the error, but it is certainly a lower bound on the theor

FIG. 1. Weak-coupling expansion to ordersg2, g3, g4, andg5

for the pressure normalized to that of an ideal gas as a functio
g(2pT).
©2001 The American Physical Society12-1
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ical error. Another indicator of the theoretical error is t
deviation between successive approximations. We can i
from Fig. 1 that the error grows rapidly wheng(2pT) ex-
ceeds 1.5.

A similar behavior can be seen in the weak-coupling
pansion for the screening mass, which has been calculate
order g4 @5#. In Fig. 2, we show the screening massms

normalized to the leading order resultmLO5g(2pT)T/A24
as a function ofg(2pT), for each of the three successiv
approximations toms

2 . The bands correspond to varyingm
from pT to 4pT. The poor convergence is again evide
The pattern is similar to that in Fig. 1, with a large deviati
between the order-g2 and order-g3 approximations and a
large increase in the size of the band forg4.

There are several ways to reorganize perturbation the
to improve its convergence. One method is Pade´ approxi-
mants @7#. This method is limited to observables like th
pressure, for which several terms in the weak-coupling
pansion are known. Its application is further complicated
the appearance of logarithms of the coupling constant in
coefficients of the weak-coupling expansion. However,
greatest problem with Pade´ approximants is that, with no
understanding of the analytic behavior ofP at strong cou-
pling, it is little more than a numerological recipe.

An alternative with greater physical motivation is a se
consistent approach@8#. In this method, perturbation theor
is reorganized by expressing the free energy as a statio
point of a functionalV of the exact self-energy functio
P(p0 ,p) called the thermodynamic potential@9#. Since the
exact self-energy is not known,P can be regarded as a vari
tional function. The ‘‘F-derivable’’ prescription of Baym@8#
is to truncate the perturbative expansion for the thermo
namic potentialV and to determineP self-consistently as a
stationary point ofV. This gives an integral equation for th
self-energy that is hard to solve numerically, unlessP is
momentum independent. A more tractable approach is to
an approximate solution to the integral equations that is
curate only in the weak-coupling limit. Such an approa

FIG. 2. Weak-coupling expansion to ordersg2, g3, andg4 for
the screening mass normalized to the leading-order expression
function of g(2pT).
10501
er

-
to

.

ry

-
y
e

e

ry

-

d
c-
h

was applied by Blaizot, Iancu, and Rebhan to massless sc
field theories and gauge theories@10,11#.

Another variational approach isscreened perturbation
theory ~SPT! introduced by Karsch, Patko´s and Petreczky
@12#. This approach is less ambitious than theF-derivable
approach. Instead of introducing a variational function,
introduces a single variational parameterm. This parameter
has a simple and obvious physical interpretation as a ther
mass. The advantage of screened perturbation theory is th
is straightforward to apply. Higher order corrections are c
culable, so one can test whether it improves the converge
of the weak-coupling expansion. Karsch, Patko´s, and Petrec-
zky applied screened perturbation theory to a massless s
field theory with af4 interaction, computing the two-loop
pressure and the three-loop pressure in the large-N limit.

In Ref. @13#, a detailed study of screened perturbati
theory for a massless scalar field theory was presented.
pressure and entropy were calculated to three loops and
screening mass to two loops. It was shown that, in contras
the weak-coupling expansions, the SPT-improved appro
mations converge even for rather large values of the coup
constant. In Ref.@13#, sum integrals for the three-loop fre
energy were evaluated exactly by replacing the sums by c
tour integrals, extracting the poles ine, and then reducing the
momentum integrals to integrals that were at most three
mensional and could be evaluated numerically. The resul
expressions, while truncated in the coupling constant, w
‘‘exact’’ in the sense that they included contributions from
orders in m/T. In this paper we continue the study o
screened perturbation theory by performing an analytical
pansion of the sum integrals in powers ofm/T and demon-
strate that the first few terms in the expansion give an ac
rate approximation to the exact SPT result.

The paper is organized as follows. In Sec. II, we descr
the systematics of screened perturbation theory. In Sec.
we calculate the free energy and entropy to three loops,
the screening mass to two loops, expanding in powers
m/T. In Sec. IV, we calculate the screening mass to t
loops using them/T expansion. In Sec. V, we briefly discus
the two-loop tadpole gap that generalizes the one-loop
equation. In Sec. VI, we study the convergence propertie
SPT-improved results for the pressure, entropy, and scr
ing mass using them/T expansion. Finally, in Sec. VII, we
summarize and conclude. Necessary calculational details
collected in four Appendixes.

II. SCREENED PERTURBATION THEORY

The Lagrangian density for a massless scalar field wit
f4 interaction is

L5
1

2
]mf]mf2

g2

24
f41DL, ~3!

whereg is the coupling constant andDL includes counter-
terms. Renormalizability guarantees thatDL is of the form

DL5
1

2
DZ ]mf]mf2

1

24
Dg2f4. ~4!

s a
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Screened perturbation theory, which was introduced by K
sch, Patko´s, and Petreczky@12#, is simply a reorganization o
the perturbation series for thermal field theory. It can
made more systematic by using a framework called ‘‘op
mized perturbation theory’’ that Chiku and Hatsuda@14# ap-
plied to a spontaneously broken scalar field theory. The
grangian density is written as

LSPT52E01
1

2
]mf]mf2

1

2
~m22m1

2!f22
g2

24
f41DL

1DLSPT. ~5!

Here E0 is the vacuum energy density term, and we ha
added and subtracted mass terms. If we setE050 andm1

2

5m2, we recover the original Lagrangian@Eq. ~3!#. Screened
perturbation theory is defined by takingm2 to be of order
unity and m1

2 to of order g2, expanding systematically in
powers ofg2 and settingm1

25m2 at the end of the calcula
tion. This defines a reorganization of the perturbative se
in which the expansion is about the free field theory defin
by

Lfree52E01
1

2
]mf]mf2

1

2
m2f2. ~6!

The interacting term is

Lint5
1

2
m1

2f22
g2

24
f41DL1DLSPT. ~7!

Screened perturbation theory generates new ultraviolet di
gences, but they can be cancelled by the additional coun
term in DLSPT. If we use dimensional regularization an
minimal subtraction, the coefficients of these operators
polynomials ing2 and (m22m1

2). The additional counter-
terms required to remove the new divergences are

DLSPT52DE02
1

2
~Dm22Dm1

2!f2. ~8!

Several terms in the power series expansions of the cou
terms are known from previous calculations at zero temp
ture. The countertermsDg2 andDm2 are known to ordera5

@6#. We will need the coupling constant counterterm only
leading order ina:

Dg25F 3

2e
a1•••Gg2. ~9!

We need the mass countertermsDm2 and Dm1
2 to next-to-

leading order and leading order ina, respectively:

Dm25F 1

2e
a1S 1

2e2 2
5

24e Da21•••Gm2, ~10!

Dm1
25F 1

2e
a1•••Gm1

2 . ~11!
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The counterterm forDE0 has been calculated to ordera4

@15#. We will need its expansion only to second order ina
andm1

2:

~4p!2DE05F 1

4e
1

1

8e2 a1S 5

48e3 2
5

72e2 1
1

96e Da2Gm4

22F 1

4e
1

1

8e2 aGm1
2m21

1

4e
m1

4 . ~12!

III. FREE ENERGY TO THREE LOOPS

In this section, we calculate them/T expansions of the
pressure and entropy density to three loops in screened
turbation theory. In performing the truncationm is treated as
a quantity that isO(g) and include all terms which contrib
ute to orderg5. The diagrams for the free energy that a
included at this order are those shown in Fig. 3 together w
diagrams involving counterterms.

A. One-loop free energy

The free energy at leading order ing2 is

F05E01F0a1D0E0 , ~13!

whereD0E0 is the term of orderg0 in the vacuum energy
counterterm@Eq. ~12!#. The expression for diagram 0a in Fig
3 is

F0a5
1

2 X P log@P21m2#, ~14!

with XP defined in Appendix A.
Treatingm as O(g) and including all terms which con

tribute throughO(g5), we obtain

F0a5
1

2
I 081

1

2
m2I11

1

2
TI082

1

4
m4I21O~m6/T2!,

~15!

whereI 08 andIn are defined in Appendix A andI 08 is defined
in Appendix B.

The resulting expression is logarithmically divergent a
the pole ine is cancelled by the zeroth order termD0E0 in
Eq. ~12!. The final result for the truncated one-loop free e
ergy is

F052
p2T4

90
@1215m̂2160m̂3145m̂4~L1g!#, ~16!

FIG. 3. Diagrams for the one-loop~0a!, two-loop ~1a and 1b!,
and three-loop~2a, 2b, 2c, and 2d! contributions to the free energy
2-3
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wherem̂5m/2pT andL5 log(m/4pT).

B. Two-loop free energy

The contribution to the free energy of orderg2 is

F15F1a1F1b1D1E01
]F0a

]m2
D1m2, ~17!

where D1E0 and D1m2 are the counterterms of orderg2,
respectively. The expressions for the diagrams 1a and 1
Fig. 3 are

F1a5
1

8
g2SX P

1

P21m2D 2

, ~18!

F1b52
1

2
m1

2
X P

1

P21m2 . ~19!

The sum integrals in Eqs.~18! and ~19! are expanded to the
order required

F1a5
1

8
g2@I 1

212TI1I 122m2I1I21T2I 1
222m2TI2I 1#,

~20!

F1b52
1

2
m1

2@I11TI12m2I2#, ~21!

whereI n is defined in Appendix B.
The poles ine in Eqs.~20! and ~21! are cancelled by the

counterterms in Eq.~17!. The final result for the truncate
two-loop free energy is

F15
g2T4

1152
@1212m̂212m̂2~L1g23!172~L1g!m̂3#

2
m1

2T2

24
@126m̂26m̂2~L1g!#. ~22!

C. Three-loop free energy

The contribution to the free energy of orderg4 is

F25F2a1F2b1F2c1F2d1D2E01
]F0a

]m2
D2m2

1
1

2

]2F0a

~]m2!2
~D1m2!21S ]F1a

]m2
1

]F1b

]m2 D D1m2

1
F1a

g2
D1g21

F1b

m1
2

D1m1
2 , ~23!

where we have included all necessary counterterms. The
pressions for diagrams 2a, 2b, 2c, and 2d in Fig. 3 are
10501
in

x-

F2a52
1

16
g4SX P

1

P21m2D 2

( E
Q

1

~Q21m2!2 ,

~24!

F2b52
1

48
g4
X PQR

1

P21m2

1

Q21m2

3
1

R21m2

1

~P1Q1R!21m2 , ~25!

F2c5
1

4
g2m1

2
X P

1

P21m2 XQ

1

~Q21m2!2 ,

~26!

F2d52
1

4
m1

4
X P

1

~P21m2!2 . ~27!

Expanding in powers ofm2 to the appropriate order gives

F2a52
1

16
g4@TI 1

2I 21I 1
2I212T2I1I 1I 21T3I 1

2I 2

12TI1I1I222m2TI1I2I 2#, ~28!

F2b52
1

48
g4@Iball1T3I ball14TI1Isun~0!#, ~29!

F2c5
1

4
g2m1

2@TI1I 21I1I21T2I 1I 21TI2I 1

2m2TI2I 2#, ~30!

F2d52
1

4
m1

4@I21TI2#, ~31!

where I ball , Isun, andIball are defined in Appendixes B, C
and D respectively.

The poles ine in Eqs. ~28!–~31! are cancelled by the
counterterms in Eq.~23!. The final result for the truncated
three-loop free energy is

F252
g4T4

2304~4p!2m̂
F122m̂S 59

15
2g23L12

z8~23!

z~23!

24
z8~21!

z~21! D212m̂2S 517L13g28 logm̂28 log 2

24
z8~21!

z~21! D G1
g2m1

2T2

48~4p!2m̂
@112m̂~L1g23!

218m̂2~L1g!#2
m1

4

64m̂
@112m̂~L1g!#. ~32!

D. Pressure to three loops

The pressureP is given by2F. The contributions to the
pressure of zeroth, first, and second order ing2 are given by
Eqs. ~16!, ~22!, and ~32!, respectively. Adding these contr
2-4
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MASS EXPANSIONS OF SCREENED PERTURBATION THEORY PHYSICAL REVIEW D64 105012
butions and settingE050 andm1
25m2, we obtain approxi-

mations to the pressure in screened perturbation the
which are accurate toO(g5).

The one-loop approximation to the pressure is

P05Pideal@1215m̂2160m̂3145m̂4~L1g!#. ~33!

The two-loop approximation to the pressure is obtained
adding Eq.~22! with m1

25m2:

P0115PidealH 12
5

4
a115m̂a115m̂2~L1g23!a

230m̂3@113~L1g!a#245m̂4~L1g!J . ~34!

The three-loop approximation to the pressure is obtained
adding Eq.~32! with m1

25m2:

P011125PidealH 12
5

4
a1F2

59

12
1

15

4
L1

5

4
g2

5

2

z8~23!

z~23!

15
z8~21!

z~21! Ga21
15

2
m̂F12S 513g17L28 logm̂

28 log 224
z8~21!

z~21! Da Ga2
15

2
m̂3@126~L

1g!a#

1
5

8m̂
a2J . ~35!

Note that if we substitute the leading-order result for t
screening mass,m5g(2pT)T/A24, in Eq.~35!, we recover
the weak-coupling expansion through orderg5.

E. Entropy to three loops

Given a diagrammatic expansion for the free energyF,
the entropy densityS has a diagrammatic expansion defin
by

Sdiag52
]

]T
F~T,g,m,m1 ,m!, ~36!

where the partial derivative is taken with all the other va
ablesg, m, m1, andm held fixed. The one-, two-, and three
loop approximations toS are then obtained by taking partia
derivatives of the corresponding expressions for the pres
P.

The one-loop approximation to the entropyS is obtained
by differentiating Eq.~33!,

S05SidealF12
15

2
m̂2115m̂32

45

4
m̂4G , ~37!

whereSideal5(2p2/45)T3.
The two-loop approximation to the entropyS is obtained

by differentiating Eq.~34!:
10501
ry
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S0115SidealH 12
5

4
a1

45

4
m̂a1

15

2
m̂2S L1g2

7

2Da

2
15

2
m̂3@113~L1g21!a#1

45

4
m̂4J . ~38!

The three-loop approximation to the the entropyS is ob-
tained by differentiating Eq.~35!:

S011125SidealH 12
5

4
a1S 2

281

48
1

5

4
g1

15

4
L15

z8~21!

z~21!

2
5

2

z8~23!

z~23! Da21
45

8
m̂F12S 16

3
17L13g

28 logm̂24
z8~21!

z~21!
28 log 2Da Ga2

15

8

3m̂3@126~L1g21!a#1
25

32m̂
a2J . ~39!

IV. SCREENING MASS TO TWO LOOPS

In this section, we calculate them/T expansion of the
screening mass to two loops. The diagrams for the self
ergy that are included at this order are those shown in Fi
together with diagrams involving counterterms.

The screening massms is defined by the location of the
pole of the static propagator:

p21m21P~0,p!50 at p252ms
2 , ~40!

where P(p0 ,p) is the self-energy function. This equatio
can be solved order by order in powers ofa and m1

2. The
solution at zeroth order ing2 is simply ms

25m2.

A. One-loop self-energy

The self-energy to leading order ing2 is

P15P1a2m1
21D1m2, ~41!

whereD1m2 is the mass counterterm of ordera given in Eq.
~10!. The expression for the diagram 1a in Fig. 4 is

P1a5
1

2
g2
X P

1

P21m2 .

This diagram is expanded to second order inm2:

FIG. 4. Diagrams for the one-loop~1a and 1b! and two-loop~2a,
2b and 2c! self-energies.
2-5
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P1a5
1

2
g2@I11TI12m2I2#. ~42!

The pole in Eq.~42! is cancelled by the countertermD1m2.
The final result for the one-loop self-energy is

P15
g2T2

24
@126m̂26m̂2~L1g!#2m1

2 . ~43!

B. Two-loop self-energy

The contribution to the self-energy of second order ing2

is

P2~P!5P2a1P2b~P!1P2c1
]P1a

]m2
D1m21

P1a

g2
D1g2

1D2m22D1m1
2 . ~44!

The expressions for the diagrams 2a, 2b, and 2c in Fig. 4

P2a52
1

4
g4
XQ

1

Q21m2XR

1

~R21m2!2 , ~45!

P2b~P!52
1

6
g4
XQR

1

Q21m2

3
1

R21m2

1

~P1Q1R!21m2 , ~46!

P2c5
1

2
g2m1

2
XQ

1

~Q21m2!2 . ~47!

The diagramsP2a and P2c are independent of the momen
tum P. Expanding to first order inm2, we obtain

P2a52
1

4
g4@TI1I 21I1I21T2I 1I 2#. ~48!

P2c5
1

2
g2m1

2@I21TI2# ~49!

The diagramP2b depends on the external momentumP.
Equation~40! for the screening mass involves the self-ene
at p050. To calculate the screening mass to second orde
g2, we need an analytic continuation ofP(0,p) to p25
2m2. The diagram is calculated in Appendix C. The resul

P2b~0,p!up252m252
1

6
g4@Isun~0!1I sun#, ~50!

whereI sun is defined in Appendix B.
The poles in Eqs.~48!–~50! are cancelled by the counte

terms in Eq.~44!. The final result for the truncated two-loo
contribution to the self-energy atp050 andp252m2 is
10501
re

y
in

P2~0,p!up252m252
g4T2

768p2m̂
H 112m̂F3L1g1124 logm̂

28 log 222
z8~21!

z~21! G J 1
g2m1

2

32p2m̂
@1

12~L1g!m̂#. ~51!

C. Screening mass

Since the dependence of the self-energy on the mom
tum enters only at orderg4 and since the leading-order solu
tion to the screening mass isms5m, the solution to Eq.~40!
to orderg4 is simply

ms
25m21P~0,p2!up252m2. ~52!

The result for the one-loop screening mass is

m̂s
25

1

6
a@126m̂26m̂2~L1g!#. ~53!

The solution to orderg4 is obtained by inserting the sum
of Eqs.~43! and~51! into Eq~52!. Settingm1

25m2, the result
is

m̂s
25

1

6
aH 12

1

2m̂
a2F3L1g1114 logm̂28 log 2

22
z8~21!

z~21! Ga23m̂J . ~54!

If we substitute the leading-order result for the screen
mass,m5g(2pT)T/A24, in Eq.~54!, we recover the weak-
coupling expansion through orderg4 @5#.

V. GAP EQUATION

The mass parameterm in screened perturbation theory
completely arbitrary. To complete the calculation it is nec
sary to specifym as a function ofg andT. One of the com-
plications from the ultraviolet divergences is that the para
etersE0 , m2, g2, andm1

2 all become running parameters th
depend on a renormalization scalem. In our prescription for
recovering the original theory, we must therefore specify
renormalization scalem* at which Lagrangian~5! reduces to
Eq. ~3!. The prescription can be written

E0~m* !50, ~55!

m2~m* !5m1
2~m* !5m

*
2 ~T!, ~56!

where m* (T) is some prescribed function of the temper
ture.

The prescription of Karsch, Patko´s, and Petreczky for
m* (T) is the solution to the one-loop gap equation:
2-6
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m
*
2 5

1

2
a~m* !FJ1~m* /T!T22S 2 log

m*
m*

11Dm
*
2 G .

~57!

Their choice for the scale wasm* 5T. The functionJ1(bm)
is defined as

J1~bm!58b2E
0

`

dk
k2

~k21m2!1/2

1

eb(k21m2)1/2
21

. ~58!

In the limit bm→0, this integral reduces to

J1~bm!→ 4p2

3
24pbm22S log

bm

4p
2

1

2
1g D ~bm!2.

~59!

In the same limit, Eq.~57! reduces to

m̂
*
2 5

1

6
a@126m̂* 26m̂

*
2 ~L1g!#. ~60!

The one-loop gap equation is identical to the one-lo
screening mass if we choosem5ms5m*

Various mass prescriptions that generalize Eq.~57! were
extensively studied in Ref.@13#. In this paper, we confine
ourselves to using the tadpole mass which is defined bymt

2

5 1
2 g2^f2&. This can also be expressed as a derivative of

free energy,

mt
25g2

]

]m2F~T,g,m,m1 ,m!U
m15m

, ~61!

FIG. 5. Solutionsm* (T) to the one-loop tadpole gap equatio
as a function ofg(2pT) for ~a! m52pT and ~b! m5m* . Exact
SPT curves are taken from Ref.@13#.
10501
p

e

where the partial derivative is taken before settingm15m.
The one-loop expression for the tadpole mass is gi

differentiating Eq.~16!:

m̂t
25

1

6
a@126m̂26m̂2~L1g!#. ~62!

In Fig. 5, we show the truncated solutionsm* (T) to the
one-loop tadpole gap equation as a function ofg(2pT) for
~a! m52pT and ~b! m5m* . The solutions have been no
malized to the leading order screening massmLO

5g(2pT)T/A24. The truncated solutions were determin
by treatingm as a quantity that isO(g) and truncating at a
fixed order ing. A g2 truncation of Eq.~60!, for example,
yields m̂

*
2 5a/6, which corresponds to the leading ord

screening mass. The nontrivial truncationsg3 and g4 are
shown as gray dashed lines along with ‘‘exact’’ curves fro
Ref. @13# which are accurate to all orders inm/T. As can
been seen from the figure, the gap equation converges
quickly to the exact solutions form52pT while for m
5m* they do not seem to be converging. The primary d
ference between the two scales is that in the casem5m*
there are additional logm̂. It is possible that these logs nee
to be further resummed. Note that as the renormalized c
pling constant becomes larger thang(2pT);4 the uncer-
tainty due to the variation of the renormalization scalem
becomes rather large due to the Landau singlarity presen
the running ofg. For this reason, in all results presented, w
restrict ourselves tog(2pT)<4.

VI. SPT-IMPROVED VARIABLES

In this section, we use the solutions to the tadpole g
equation obtained in Sec. V to obtain successive approxi
tions to the pressure, screening mass, and entropy
screened perturbation theory.

A. Pressure

The two-loop SPT-improved approximation to the pre
sure is obtained by inserting the solution to the one-loop
equation~57! into the two-loop pressure@Eq. ~34!#. We can
simplify the expression by using Eq.~57! to eliminate the
explicit appearance of logarithms ofm. This eliminates all
the terms of ordera and the expression reduces to
-
c-
FIG. 6. The one-, two- and
three-loop SPT improved approxi
mations to the pressure as a fun
tion of g(2pT) for m52pT. Ex-
act SPT curves are taken from
Ref. @13#.
2-7
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FIG. 7. The one-, two- and
three-loop SPT improved approxi
mations to the pressure as a fun
tion of g(2pT) for m5m* . Ex-
act SPT curves are taken from
Ref. @13#.
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2
m̂2115m̂3G . ~63!

In Figs. 6 and 7, we show truncations of the one-, tw
and three-loop approximations to the pressure form52pT
andm5m* , respectively. The various truncations are sho
as gray dashed lines along with ‘‘exact’’ curves from R
@13# which are accurate to all orders inm/T. As can be seen
from the figure, them/T truncations converge very quickl
for the one- and two-loop approximations with the final tw
truncations being virtually indistinguishable from the exa
SPT solutions. At three loops, however, one needs to incl
all terms up tog5 before a reasonable approximation is o
tained. We therefore conclude that it is necessary to incl
higher order terms in order to fully converge to the ex
SPT result at three loops. Also it appears that them/T trun-
cations converge better form52pT than for m5m* . De-
spite these caveats, at all loop orders presented here
highest orderm/T truncation provide an excellent approx
mation to the exact SPT results.

In Fig. 8 we show the one-, two-, and three-loop appro
mations obtained using ourg5 truncation to the pressure. Th
bands shown correspond to the results obtained by var
the renormalization scalem over ~a! pT,m,4pT and ~b!
1
2 m* ,m,2m* . This figure demonstrates that theg5 trun-
cations of the pressure yield a convergent series of appr
mations which have very small variations with respect to
renormalization scale.

B. Screening mass

The one-loop SPT-improved approximation to the scre
ing massms is given by the solution to the tadpole ga

FIG. 8. The one-, two- and three-loop SPT improved appro
mations to the pressure as a function ofg(2pT) for ~a! pT,m
,4pT and ~b! 1

2 m* ,m,2m* .
10501
,

n
.

t
e

-
e
t

the

-

g

i-
e

-

equation~61!. A two-loop SPT-improved approximation ca
be obtained by inserting the solution to the gap equation
the mass parameter into Eq.~54!.

In Fig. 9, we show theg4 truncations of the one- and
two-loop approximations to the screening mass. The ba
shown correspond to the results obtained by varying
renormalization scalem over ~a! pT,m,4pT and ~b!
1
2 m* ,m,2m* . One can see from this figure that the co
vergence of them/T expansion for the screening mass is n
as impressive as for the pressure meaning that higher o
truncations are necessary to reliably describe the scree
mass. Also, we again see that them/T truncations converge
better form52pT, than form5m* .

C. Entropy

The one, two-, and three-loop SPT-improved entropies
obtained by replacingm in the expressions~37!–~39! for S0 ,
S011, and S01112 with the solution to the one-loop ga
equation. As was the case with the two-loop pressure we
use the gap equation to eliminate the logarithmL yielding
the following expression for the two-loop entropy

S0115SidealF12
15

2
m̂2T115m̂32

45

4
m̂4G . ~64!

This is identical to the one-loop expression@Eq. ~37!#, which
is the entropy of an ideal gas of particles with massm.

In Fig. 10, we show theO(g5) truncations of the one-
two-, and three-loop approximations to the entropy as a fu
tion of g(2pT). The bands shown correspond to the resu
obtained by varying the renormalization scalem over ~a!

- FIG. 9. The one- and two-loop SPT improved approximations
the screening mass as a function ofg(2pT); ~a! pT,m,4pT and
~b! 1

2 m* ,m,2m* .
2-8
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pT,m,4pT and ~b! 1
2 m* ,m,2m* . In both cases the

O(g5) truncation provides an excellent approximation to t
exact SPT result. Again we see that them/T truncations con-
verge better form52pT, than form5m* .

VII. CONCLUSIONS

In this paper, we have continued the systematic study
screened perturbation theory from Ref.@13#. We applied it to
the pressure and the entropy calculated to three loops an
screening mass calculated to two loops. By performing
expansion of the sum integrals in powers ofm/T, we were
able to obtain purely analytical results, without having
evaluate integrals numerically.

Our calculations show that a truncation of them/T expan-
sion atO(g5) is sufficient to obtain accurate approximatio
to the exact one- and two-loop results. For the one-
two-loop approximations to the pressure and entropy, the
merical results obtained in Ref.@13# and the truncatedm/T
expansions are virtually indistinguishable as can be see
Figs. 6 and 7. At three loops theO(g5) truncation provides a
reasonable description of the pressure, but it seems
higher-order truncations are necessary to provide accu
descriptions. The fact that them/T expansions converg
quickly is important since performing the ‘‘exact’’ SPT ca
culations is much more difficult than them/T expansions. An
additional benefit of them/T expansion method is that th
final results can be determined completely analytically.

In Ref. @16#, a generalization of SPT to gauge theori
based on hard thermal loop~HTL! perturbation theory was
proposed. The thermodynamic functions such as the pres
and entropy were calculated to one-loop order. The two-lo
calculation of the pressure in QCD based on HTL pertur
tion theory requires not only HTL propagators, but HTL ve
tices as well. The exact calculation appears to be very d
cult. Expansions like the one presented here provide
simplification needed to complete the two-loop HTL calc
lation @17#. The rapid convergence of them/T expansion in
screened perturbation theory is very encouraging in this
gard.

ACKNOWLEDGMENTS

The authors would like to thank E. Braaten and E. Pe
girard for useful discussions and suggestions. This work

FIG. 10. The SPT-improved two- and three-loop approximatio
to the entropy as a function ofg(2pT) ~a! pT,m,4pT; and~b!
1
2 m* ,m,2m* .
10501
of

the
n

d
u-

in

at
te

ure
p
-

-
e

-

e-

-
s

supported in part by the Stichting Fundamenteel Onderz
der Materie~FOM!, which is supported by the Nederlands
Organisatie voor Wetenschapplijk Onderzoek~NWO!, and
by the U. S. Department of Energy Division of High Energ
Physics~grant DE-FG03-97-ER41014!.

APPENDIX A: SUM INTEGRALS

In the imaginary-time formalism for thermal field theor
the 4-momentumP5(P0 ,p) is Euclidean with P25P0

2

1p2. The Euclidean energyp0 has discrete values:P0
52npT for bosons andP05(2n11)pT for fermions,
wheren is an integer. Loop diagrams involve sums overP0
and integrals overp. With dimensional regularization, th
integral is generalized tod5322e spatial dimensions. We
define the dimensionally regularized sum integral by

X P [S egm2

4p D e

T (
P052npT

E d322ep

~2p!322e
, ~A1!

where 322e is the dimension of space andm is an arbitrary
momentum scale. The factor (eg/4p)e is introduced so that,
after minimal subtraction of the poles ine due to ultraviolet
divergences,m coincides with the renormalization scale
the MS̄renormalization scheme.

The one-loop sum-integrals that arise in the calculatio
have the following form:

I 085X P log P2,

In5X P

1

~P2!n . ~A2!

Expanding ine to the required order, the specific one-loo
sum-integrals needed are

I 0852S m

4pTD 2e p2T4

45
@11O~e!#, ~A3!

I15S m

4pTD 2e T2

12F11S 212
z8~21!

z~21! D e ~A4!

1S p2

4
1414

z8~21!

z~21!
12

z9~21!

z~21! D e2

1O~e3!G , ~A5!

I25
1

~4p!2S m

4pTD 2eF1

e
12g1S p2

4
24g1D e

1S p2

2
g14g22

7

3
z~3! D e21O~e3!G , ~A6!

The numbersg1 and g2 are the first and second Stieltje
gamma constants defined by the equation

z~11z!5
1

z
1g2g1z1

1

2
g2z21O~z3!. ~A7!

s

2-9
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The specific two-loop sum integral needed is

X PQ

1

P2Q2~P1Q!2 50. ~A8!

It was first calculated by Arnold and Zhai in Ref.@1#. The
specific three-loop sum-integral needed is

X PQR

1

P2Q2R2~P1Q1R!2

5
T4

24~4p!2 S m

4pTD 6eF1

e
1

91

15
18

z8~21!

z~21!
22

z8~23!

z~23!

1O~e!G . ~A9!

It was first calculated by Arnold and Zhai in Ref.@1#.

APPENDIX B: INTEGRALS

We also need some three-dimensional integrals.
choose dimensional regularization to regulate infrared
ultraviolet divergences. The integrals are generalized td
5322e dimensions of space, andm is an arbitrary momen-
tum scale:

E
p
5S egm2

4p D eE d322ep

~2p!322e
. ~B1!

The factor (eg/4p)e is introduced so that, after minimal sub
traction of the poles ine due to ultraviolet divergences,m
coincides with the renormalization scale of the MS̄renormal-
ization scheme.

The integrals that arise in the calculations have the
lowing forms:

I 085E
p
log~p21m2!,

I n5E
p

1

~p21m2!n . ~B2!

Expanding ine to the required order, the specific one-loo
integrals needed are

I 0852
m3

6p S m

2mD 2eF11
8

3
e1S p2

4
1

52

9 D e21O~e3!G ,
~B3!

I 152
m

4p S m

2mD 2eF112e1S p2

4
14D e21O~e3!G ,

~B4!

I 25
1

8pm S m

2mD 2eF11
p2

4
e21O~e3!G . ~B5!

The only two-loop integral needed is@5#
10501
e
d

l-

I sun5E
qr

1

q21m2

1

r 21m2

1

~p1q1r !21m2U
p252m2

5
1

~8p!2S m

2mD 4eF1

e
1628 log 21O~e!G .

~B6!

The only three-loop integral needed is@5#

I ball5E
pqr

1

p21m2

1

q21m2

1

r 21m2

1

~p1q1r !21m2

52
m

~4p!3S m

2mD 6eF1

e
1824 log 21O~e!G .

~B7!

APPENDIX C: SETTING SUN DIAGRAM

The only nontrivial sum-integral required to calculate t
self-energy to two loops is the sunset diagram, which
pends on the external four-momentumP5(p0 ,p):

Isun~P!5XQR

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 .

~C1!

Sum integral~C1! must be evaluated atp050 and p25
2m2. The setting-sun sum integral involves a double s
integral, so there are three momentum regions. The reg
where bothQ andR are hard is denoted by (hh), the region
where one momentum is hard and the other soft is deno
by (hs), and the regions where both momenta are sof
denoted by (ss). The contribution from each of these region
are

Isun
(hh)5XQR

1

Q2R2~Q1R!2 1O~m2!, ~C2!

Isun
(hs)5O~m!, ~C3!

Isun
(ss)5T2I sun1O~m2!. ~C4!

APPENDIX D: BASKETBALL SUM-INTEGRAL

Iball is the basketball sum integral:

Iball5X PQR

1

P21m2

1

Q21m2

1

R21m2

1

S21m2 ,

~D1!

whereS52(P1Q1R).
The basketball sum integral@Eq. ~D1!# involves a triple

sum-integral, so there are four momentum regions: (hhh),
(hhs), (hss), and (sss). The contributions from each o
these regions to orderm2 are

Iball
(hhh)5X PQR

1

P2Q2R2~P1Q1R!2 1O~m2!, ~D2!
2-10
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Iball
(hhs)54TI1XQR

1

Q2R2~Q1R!2 1O~m2!,

~D3!

Iball
(hss)5O~m2!, ~D4!
10501
Iball
(sss)5T3I ball1O~m2!. ~D5!

The (hhh) contribution is given by Eq.~A9!, while the
(hhs) contribution vanishes due to Eq.~A8!. The (sss) con-
tribution is given by Eq.~B7!.
ett.
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