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Mass expansions of screened perturbation theory
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The thermodynamics of massleg$ theory is studied within screened perturbation the@pT). In this
method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the screening mass to two-loop order,
expanding in powers af/T. The truncatedn/T expansion results are compared with numerical SPT results
for the pressure, entropy and screening mass which are accurate to all onf#fs imis shown that then/T
expansion converges quickly and provides an accurate description of the thermodynamic functions for large
values of the coupling constant.
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I. INTRODUCTION where Pgea= (72/90)T# is the pressure of an ideal gas of
free massless bosons;=g?(u)/1672, and g(u) is the

The behavior of finite temperature field theory at interme-modified minimal subtraction scheme (MSoupling con-
diate to large coupling is of particular interest due to thestant at the renormalization scale In Fig. 1, we show the
upcoming heavy-ion collision experiments at the BNL Rela-syccessive perturbative approximations¥®,., as a func-
tivistic Heavy lon Collider(RHIC) and CERN Large Hadron tion of g(2#T). Each partial sum is shown as a band ob-
Collider (I__HC). For years the hope has been Fhat due to .thQained by varyingu from «T to 47T. To expresgy(x) in
asymptotic freedom of QCD that weak-coupling expansionerms ofg(27T), we use the numerical solution to the renor-

calculations within finite temperature field theory would suf- majization group equatione(d/du)e=B(a) with a five-
fice to describe the experimental data. Along these linegpop peta functior6]:
there has been significant progress in recent years in pertur-

bative calculations within thermal field theory. The pressure 9 17
in QCD, for example, is now known to ordgP [1—3]. Un- ,u&—a=3a2— §a3+ 32.540%— 271.62°+ 2848.6:5.
fortunately, an analysis of the convergence of this expansion 2

shows that the successive perturbative approximations do not

converge for experimentally accessible temperatures. Thighe |ack of convergence of the weak-coupling expansion for
lack of convergence, while not surprising, needs to be adrarge coupling is evident in Fig. 1. The band obtained by
dressed in order to provide systematic methods for Ca":“'aR?arying,u by a factor of 2 is not necessarily a good measure

ing quark-gluon plasma observables. _ . of the error, but it is certainly a lower bound on the theoret-
The lack of convergence of the weak-coupling expansion

is not restricted to QCD. In fact, even in simple massless 1.04 . , . .

scalar field theories similar convergence problems are en- /

countered. This indicates that the problem might be univer- 1.02 F

sal. The universality of the problem means that the technique

needed might be quite general and since calculations within 1

scalar theories are technically simpler than in full QCD these
theories can provide an important testing ground for methods
to deal with this problem. Like QCD, the weak-coupling &
expansion for the pressure of a massless scalar field theory 0.96 |
with a g2¢*/4! interaction, is known to ordeg® [1,4,5],

ideal
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T, \lngﬂ_T - §|09“_0-72 a”*+O(e’loga) |, FIG. 1. Weak-coupling expansion to order g3, g* andg®
for the pressure normalized to that of an ideal gas as a function of
(1) g(27T).
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1.2 . . . was applied by Blaizot, lancu, and Rebhan to massless scalar
field theories and gauge theorigi,11].

Another variational approach iscreened perturbation
theory (SPT) introduced by Karsch, Patkoand Petreczky
[12]. This approach is less ambitious than thederivable
approach. Instead of introducing a variational function, it
introduces a single variational parameter This parameter
has a simple and obvious physical interpretation as a thermal
mass. The advantage of screened perturbation theory is that it
is straightforward to apply. Higher order corrections are cal-
culable, so one can test whether it improves the convergence
of the weak-coupling expansion. Karsch, Patkand Petrec-
zky applied screened perturbation theory to a massless scalar

field theory with a¢* interaction, computing the two-loop
0-40 1 2 3 4 pressure and the three-loop pressure in the |ardienit.
In Ref. [13], a detailed study of screened perturbation
9(2nT) theory for a massless scalar field theory was presented. The

FIG. 2. Weak-coupling expansion to ordar g?, andg®* for pressure and entropy were calculated to three I_oops and the
the screening mass normalized to the leading-order expression asS§"€€NiNg mass to two loops. It was shown that, in contrast to
function of g(27T). the weak-coupling expansions, the SPT-improved approxi-

mations converge even for rather large values of the coupling
ical error. Another indicator of the theoretical error is the constant. In Ref[13], sum integrals for the three-loop free
deviation between successive approximations. We can infegnergy were evaluated exactly by replacing the sums by con-
from Fig. 1 that the error grows rapidly whey(27T) ex-  tour integrals, extracting the polesénand then reducing the
ceeds 1.5. momentum integrals to integrals that were at most three di-

A similar behavior can be seen in the weak-coupling ex-mensional and could be evaluated numerically. The resulting
pansion for the screening mass, which has been calculated éxpressions, while truncated in the coupling constant, were
order g* [5]. In Fig. 2, we show the screening masg  “exact” in the sense that they included contributions from all
normalized to the leading order resuff o=g(27T)T/\24 orders inm/T. In this paper we continue the study of
as a function ofg(2#T), for each of the three successive screened perturbation theory by performing an analytical ex-
approximations tanZ. The bands correspond to varyipg  pansion of the sum integrals in powersrof T and demon-
from #T to 47 T. The poor convergence is again evident.strate that the first few terms in the expansion give an accu-
The pattern is similar to that in Fig. 1, with a large deviationrateé approximation to the exact SPT result.
between the ordey? and orderm® approximations and a The paper is organized as follows. In Sec. I, we describe
large increase in the size of the band &dt the systematics of screened perturbation theory. In Sec. Il

There are several ways to reorganize perturbation theoryv€ calculate the free energy and entropy to three loops, and
to improve its convergence. One method is Pageroxi- the screening mass to two loops, expanding in powers of
mants[7]. This method is limited to observables like the M/T. In Sec. IV, we calculate the screening mass to two
pressure, for which several terms in the weak-coupling exloops using then/T expansion. In Sec. V, we briefly discuss
pansion are known. Its application is further complicated bythe two-loop tadpole gap that generalizes the one-loop gap
the appearance of logarithms of the coupling constant in th@guation. In Sec. VI, we study the convergence properties of
coefficients of the weak-coupling expansion. However, theSPT-improved results for the pressure, entropy, and screen-
greatest problem with Padapproximants is that, with no ing mass using then/T expansion. Finally, in Sec. VII, we
understanding of the analytic behavior Bfat strong cou- summarize and conclude. Necessary calculational details are

pling, it is little more than a numerological recipe. collected in four Appendixes.
An alternative with greater physical motivation is a self-
consistent approack8]. In this method, perturbation theory Il. SCREENED PERTURBATION THEORY

is reorganized by expressing the free energy as a stationary . . , .
point of a functionalQ of the exact self-energy function 4'I"he Lag.ran.glan density for a massless scalar field with a
T1(py,p) called the thermodynamic potentigd]. Since the ¢~ Interaction is

exact self-energy is not knowhl can be regarded as a varia- 1 2

Flonal function. The Tb—derlvgble" prescr|pt|on of Baynj8] L=2d,po d— g_¢4+A£’ @)

is to truncate the perturbative expansion for the thermody- 2k 24

namic potentiak) and to determinél self-consistently as a ) . )

stationary point of). This gives an integral equation for the Whereg is the coupling constant ani£ includes counter-
self-energy that is hard to solve numerically, unidgsis  terms. Renormalizability guarantees tidaf is of the form
momentum independent. A more tractable approach is to find 1 1
an approximate solution to the integral equations that is ac- _=- Lo An244

curate only in the weak-coupling limit. Such an approach AL ZAZ Iu®d"é 24Ag ¢ @
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Screened perturbation theory, which was introduced by Kar-
sch, Patke, and Petreczkyl2], is simply a reorganization of
the perturbation series for thermal field theory. It can be Q
made more systematic by using a framework called “opti-
mized perturbation theory” that Chiku and Hatsyd#] ap-
plied to a spontaneously broken scalar field theory. The La- 92 1a b 2a 2b 2¢ 2d
grangian density is written as FIG. 3. Diagrams for the one-loof®a), two-loop (1a and 1h,
1 1 g2 and three-loog2a, 2b, 2c, and 2dcontributions to the free energy.
Lspr=—Eg+ 59,0 p— = (MP—mi) p?— - p*+ AL
ser= b0t 9,997 51 D229 The counterterm forA&, has been calculated to ordef
+ALepr. ) [15]. \/2\{e will need its expansion only to second orderain
andmj:
Here &, is the vacuum energy density term, and we have 1 1 5 5 1
addtzad and subtracted mass terms. I_f we&et0 andm? (477)2A60=[4—+ WmL (m_ FJF £> a?|lm?
=m?, we recover the original Lagrangi@gg. (3)]. Screened € o€ € € €
perturbation theory is defined by takimg? to be of order 1 1
unity and m? to of orderg?, expanding systematically in —2| —+ s a|m’m?+ —mj. (12)
2 ; 2 2 4e 8e 4e
powers ofg” and settingm{=m< at the end of the calcula-
tion. This defines a reorganization of the perturbative series
in which the expansion is about the free field theory defined lll. FREE ENERGY TO THREE LOOPS
by In this section, we calculate th@/T expansions of the
1 1 pressure and entropy density to three loops in screened per-
Liee= —Eo+ E(gﬂqg(gﬂd)_ §m2¢>2. (6) turbation theory. In performing the truncatiomis treated as

a quantity that ig0(g) and include all terms which contrib-

ute to orderg®. The diagrams for the free energy that are

included at this order are those shown in Fig. 3 together with
P diagrams involving counterterms.

1 g
Lin=5Mi¢? = 52"+ AL+ ALspr. (7)

The interacting term is

A. One-loop free energy

Screened perturbation theory generates new ultraviolet diver- The free energy at leading order g is
gences, but they can be cancelled by the additional counter- _
term in ALgpr. If we use dimensional regularization and Fo=&ot Foat Aoko, (13

minimal subtraction, the coefficients of these operators an\?vhereA ¢ is the term of order® in the vacuum ener
polynomials ing? and (m?—m?). The additional counter- 00 9 gy

terms required to remove the new divergences are go;ntertern{Eq.(lZ)]. The expression for diagram Oa in Fig.

1
- _ 2_ 2\ 42 1
ALZSP'I_ A‘S’O Z(Am Aml)({b . (8) anZE ip Iog[P2+m2], (14)

Several terms in the power series expansions of the counter-. ' . .
. X with ip defined in Appendix A.
terms are known from previous calculations at zero tempera- . X . .
2 2 5 Treatingm as O(g) and including all terms which con-
ture. The counterterm&g“ andAm- are known to ordet tribute throughO(g®), we obtain
[6]. We will need the coupling constant counterterm only to gneitgs.
leading order ina:

FormaTyt ST+ S TIp— +miT +0O(m°/T?)
oa 2 0 1 0 2 )

3 2 2 4
Ag*=|—a+---|g? (9) (15
2€ ’
whereZ | andZ, are defined in Appendix A anlj, is defined
We need the mass countertertven’® and Am? to next-to- in Appel(’)ldix B” PP %
leading order and leading order in respectively: The resulting expression is logarithmically divergent and
1 1 5 the pole ine is cancelled by the zeroth order ternp&, in
Am2=| — a+ S a?+ - |m2, (10) Eq. (12). The final result for the truncated one-loop free en-
2e 2¢°  24e ergy is
214
2|1 2 T ~2 ~3 -4
Ami= 2—ea+-~ m3. (11 Fo=— ) [1—-15m“+60m°+45m*(L+y)], (16)
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wherem=m/27T andL = log(u/4T). . 1, i 1 22 f 1
2=~ 769 | 4P PI 2 o(QZ+m?)?’
B. Two-loop free energy (29
The contribution to the free energy of ordgt is 1 1 1
—_ A4 -
o, Fop= 489 iPQR P2+ m? Q2+ m?
Fi=Frat FaptBaot — SAM?, (17) L L
m
“REAmZ (P+Q+RZ+m?’ @9
where A& and A;m? are the counterterms of ordey,
respectively. The expressions for the diagrams 1a and 1b in 1, zi 1 i 1
Fig. 3 are Fac= 79 Mdir 5z 2 40 (Qrmh2
(26)
Fra= Lo i L) 18
1a= g9 P B2 m?) (18 - =—£m4i 1 -
2d 4 1 P(P2+m2)2'
1 1 PR 2 ; ;
Fip=— _mii b= (19) Expanding in powers ofn“ to the appropriate order gives
2 P+m
i ; Foa=— ig“[TIZ| +T3T,+ 2T2T 141, + T3
The sum integrals in Eq$18) and(19) are expanded to the 28 16 1277172 1t 12
order required )
+ 2T, T, To— 2M2T T, Tl 5], (29)
1
_ N2 g2 —om2 212_ 52 1
Fia 8g [Z1+2TZ11—2m"Ly T+ T {—2m*TI,l ], Fop=— 4_894[Iball+ T3|ball+ AT1, Ty (0)], (29)
(20)
1 F =Egzm2[T11I2+IlIZ+T2I1I2+TIZI1
Fro=— 5 L+ Tl —m°Z, ], (21) Pan
—m?TZ,l 5], (30)
wherel,, is defined in Appendix B. 1
The poles ine in Egs.(20) and(21) are cancelled by the — T T+
counterterms in Eq(17). The final result for the truncated Foq=— g Ml T2+ Tlal, (31)

two-loop free energy is . ) )
wherel pa1, Zsun, @andZyy are defined in Appendixes B, C,

92T A A A and D respectively.
Fi= 41—12m—12m2(L+ y=3)+72(L+ y)m®] The poles ine in Egs. (28)—(31) are cancelled by the
115 counterterms in Eq(23). The final result for the truncated
mez A A three-loop free energy is
Y [1-6m—6m%(L+7)]. (22)
F =—L{1—2ﬁ1<5—9—y—3L+2§,(_3)
2" 23044m)%m 15 {(=3)
C. Three-loop free energy
The contribution to the free energy of ordgt is _4;( _11))) —12m?| 5+ 7L +3y—8 logm—8 log 2
Fam Fogt Fat Fack Fa Moot A ,m? {'(—1) g?miT?
2 2a 2b 2c 2d 2¢0 (9m2 2 —4 ” 1 ,\[1+2I’AT1(L+‘}/—3)
{(=1) 48(41)%m
1 &*F IF1a OF
- 20a2(A1m2)2+<_12a+ 12b> A1m2 . m411 A
2 (9m?) am?>  gm —18m?(L+y)]— —=[1+2m(L+y)]. (32)
64m
JT
1 1b
+ A% =AM, (23)

D. Pressure to three loops

The pressuréP is given by — F. The contributions to the
where we have included all necessary counterterms. The epressure of zeroth, first, and second ordegirare given by
pressions for diagrams 2a, 2b, 2c, and 2d in Fig. 3 are Egs.(16), (22), and(32), respectively. Adding these contri-
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butions and setting,=0 and m1 m?, we obtain approxi-

mations to the pressure in screened perturbation theory
which are accurate t@(g®). O % Q

The one-loop approximation to the pressure is

Po=Pigeal 1= 15m>+60m3+45m*(L+y)]. (33
FIG. 4. Diagrams for the one-lodfia and 1lhand two-loop(2a,
The two-loop apprOX|mat|on to the pressure is obtained byp and 2¢ self-energies.
adding Eq.(22) with m1

5 s _s 5 4. 15 7
PO+1:PideaI[ 1- Za’+ 15ma+ lSﬁ]Z(L-i- v—3)a 0+17 ©ideall -7 2 Ja 4 Ma > m vy 5 a
D14+ 3(L 4 y— Dal+ ot 38
—30m*[1+3(L+y)a]—45m*(L+7y) ;. (39 SML+3(L+y—1)a]+mt. (39)

The three-loop approxma'uon to the pressure is obtained byhe three-loop approximation to the the entrafyis ob-

adding Eq.(32) with ml _ ained by differentiating Eq.35):
5 59 15 5 57'(—3) 5 281 5 15 {'(=1)
Po+1+2= Peal 1= 7+ |~ 5 +Zy—§m So+1+2= Sldeal{ T2t T gt gt ZL+5§(—1)
g( 1) 15 5¢(- 3)) ) 45A[ 16
+—m/1—|—+7L+3
(-1 15, (-1 ) 15
— —8logm— 4 —8log 2 - =
8log2—-4 - 1)) m[l 6(L g (-1 geja|a 3
+ n 25
va] Xm3[l—6(L+y—l)a]+—Aa2}. (39)
5 32m
+—Aa2]. (35
8m

IV. SCREENING MASS TO TWO LOOPS
Note that if we substitute the leading-order result for the
screening massn=g(2=7T)T/\/24, in Eq.(35), we recover
the weak-coupling expansion through orggr

In this section, we calculate the/T expansion of the
screening mass to two loops. The diagrams for the self en-
ergy that are included at this order are those shown in Fig. 4
together with diagrams involving counterterms.

E. Entropy to three loops The screening mass is defined by the location of the

Given a diagrammatic expansion for the free enefgy Pole of the static propagator:
the entropy densitys has a diagrammatic expansion defined
by p2+m?+II(0p)=0 at p’=-m?, (40)
where Il1(pg,p) is the self-energy function. This equation
can be solved order by order in powers @fand mf. The

solution at zeroth order ig? is simply m2=m?.
where the partial derivative is taken with all the other vari-

ablesg, m, m;, andu held fixed. The one-, two-, and three-
loop approximations t& are then obtained by taking partial . T
derivatives of the corresponding expressions for the pressure The self-energy to leading order gt is
P.

d
Sdiag:_ﬁf(-rvgrmvmluuv)y (36)

A. One-loop self-energy

1T 2 2
The one-loop approximation to the entrofyis obtained Iy =11y~ mi+A,m?, (41)

by differentiating Eq(33), . . .
y 9 Ea(33 whereA ;m? is the mass counterterm of ordergiven in Eq.

15 45. , (10). The expression for the diagram la in Fig. 4 is
So=Sigeal 1— =M?+15m°— —m?|, 37)
2 4"
2 3 Hla:_gzi PDB2r 2"
whereSjea= (27/45)T". 2 P<+m
The two-loop approximation to the entrogyis obtained
by differentiating Eq.(34): This diagram is expanded to second ordemi
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1
M4=5 Q1+ Tl —m?Z,]. (42)

The pole in Eq(42) is cancelled by the counterterym?.
The final result for the one-loop self-energy is

g2-|-2

==z

[1—6m—6m?(L+7y)]—m?.

(43

B. Two-loop self-energy

The contribution to the self-energy of second ordegin
is

oIl I1
[5(P) =Moot I (P) + I+ _1aA1m2_|_ _laA192
Im2 92

The expressions for the diagrams 2a, 2b, and 2c in Fig. 4 are

1 1 1
IMy=— Zg4$Q Q2+m2$R (RZ+m?)2’ (45)

1 4 1
sz(P):—gg iQRm

1 1
“REFM? (P+Q+RZ+m?’

(46)

I :Egzmzi S (47)
2c 2 1 Q (Q2+m2)2'

The diagramdlI,, andIl,. are independent of the momen-

tum P. Expanding to first order im?, we obtain

1
== =g Tl ,+ T, T+ T2 41,].

a Z (48)

1
o= 59°mi[T,+ T1;] (49

The diagramll,, depends on the external momentun

PHYSICAL REVIEW D64 105012

g4T2

768m2m

(=1
—8Iog2—2§(_1) ”Jr

+2(L+y)m].

I1,(0,p)| 2= — 2= — 1+2m| 3L+ y+1—4logm

g%m? 1
327%m

(51)

C. Screening mass

Since the dependence of the self-energy on the momen-
tum enters only at ordeg* and since the leading-order solu-
tion to the screening massng=m, the solution to Eq(40)
to orderg* is simply

mZ=m?+T1(0,p?)| 2= — 2. (52
The result for the one-loop screening mass is
~, 1 R ~s
mszga[l—Gm—6m (L+y]. (53

The solution to ordeg? is obtained by inserting the sum
of Egs.(43) and(51) into Eq(52). Settingm§= m?, the result

3L+ y+1+4logm—8log2

(54)

If we substitute the leading-order result for the screening
massm=g(27T)T/\/24, in Eq.(54), we recover the weak-
coupling expansion through ordgf [5].

V. GAP EQUATION

The mass parameten in screened perturbation theory is
completely arbitrary. To complete the calculation it is neces-
sary to specifym as a function ofy andT. One of the com-
plications from the ultraviolet divergences is that the param-
eters&y, m?, g, andm? all become running parameters that
depend on a renormalization scale In our prescription for

Equation(40) for the screening mass involves the self-energyrecovering the original theory, we must therefore specify the
at po=0. To calculate the screening mass to second order irenormalization scalg, at which Lagrangiari5) reduces to

g%, we need an analytic continuation ®f(0,p) to p?=

—m?. The diagram is calculated in Appendix C. The result is

1
sz(oap)|p2:7m2: - 694[Isun(0) + lsunl, (50)

wherel,, is defined in Appendix B.

Eq. (3). The prescription can be written
Eolps) =0, (59
M*( ) =Mi () =M (T), (56)

wherem, (T) is some prescribed function of the tempera-

The poles in Eqs48)—(50) are cancelled by the counter- ture.

terms in Eq.(44). The final result for the truncated two-loop

contribution to the self-energy @h=0 andp?=—m? is

The prescription of Karsch, Patkpand Petreczky for
m, (T) is the solution to the one-loop gap equation:

105012-6
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4 (@) p=2aT .- () p=m, where the partial derivative is taken before setting=m.
' o ' o The one-loop expression for the tadpole mass is given
o 09f 1 09 F N - differentiating Eq.(16):
£ Sy
~ 08 [ E 0.8 a—
é exact ~ 2 1 ~ ~ 2
07} { o7l —¢ : mt=€a[1—6m—6m (L+9)]. (62
-------- ¢
0.6 : : : 0.6 i : ‘ In Fig. 5, we show the truncated solutions, (T) to the
0 ! 2 8 * 0 ! 2 8 4 one-loop tadpole gap equation as a functiorg(@«T) for
g(@nT) g(2rT) p tadpole gap eq g

FIG. 5. Solutionsm, (T) to the one-loop tadpole gap equation

as a function ofg(2#T) for (@) u=2#T and(b) u=m, . Exact

SPT curves are taken from Re¢f.3)].

Jy(m, /T)TZ—(Z |og$—*+ 1) mi}.
(57)

Their choice for the scale was, =T. The functiond,(8m)
is defined as

2 1
m, :Ea(ﬂ*)

k2
K2+ m2)Y2 eﬁ(k2+ m2)2_

Jl(,Bm)=8,82J:dk( T (58)

In the limit Bm— 0, this integral reduces to

2 gm 1 )
Jl(,Bm)—>T— 477,8m—2( Iogﬂ— §+ y) (Bm)“.

(@ u=27T and(b) w=m, . The solutions have been nor-
malized to the leading order screening mass g
=g(27T)T/\/24. The truncated solutions were determined
by treatingm as a quantity that i€)(g) and truncating at a
fixed order ing. A g2 truncation of Eq.(60), for example,

yields rﬁiza/G, which corresponds to the leading order
screening mass. The nontrivial truncatiog$ and g* are
shown as gray dashed lines along with “exact” curves from
Ref. [13] which are accurate to all orders m/T. As can
been seen from the figure, the gap equation converges very
quickly to the exact solutions fo=2#T while for u

=m, they do not seem to be converging. The primary dif-
ference between the two scales is that in the gasem,

there are additional Ioﬁp. It is possible that these logs need
to be further resummed. Note that as the renormalized cou-
pling constant becomes larger thg(27T)~4 the uncer-
tainty due to the variation of the renormalization scale
becomes rather large due to the Landau singlarity present in
the running ofg. For this reason, in all results presented, we

(59)  restrict ourselves tg(27T)<4.
In the same limit, Eq(57) reduces to
1 VI. SPT-IMPROVED VARIABLES
r:fﬁ:gcv[l—f)l:f\,.c—‘Sﬁﬁ(LJr Y] (60) In this section, we use the solutions to the tadpole gap

equation obtained in Sec. V to obtain successive approxima-

The one-loop gap equation is identical to the one-loogions to the pressure, screening mass, and entropy in

screening mass if we chooge=mgs=m,
Various mass prescriptions that generalize &3) were

extensively studied in Ref.13]. In this paper, we confine
ourselves to using the tadpole mass which is definemby
— 1.2 2 H . .

=350 ¢°). This can also be expressed as a derivative of the

free energy,

screened perturbation theory.

A. Pressure

The two-loop SPT-improved approximation to the pres-
sure is obtained by inserting the solution to the one-loop gap
equation(57) into the two-loop pressurgEq. (34)]. We can

s 5 0 simplify the expression by using E§57) to eliminate the
mg =9 - > F(T.9.mmy, 1) : (61)  explicit appearance of logarithms @f. This eliminates all
my=m the terms of orderr and the expression reduces to
(a) (b)
1.00 1.00 1.00
e
5 il Q8 | ] 8 FIG. 6. The one-, two- and
S 0.96 0.96 | 4 0.96 three-loop SPT improved approxi-
& i i [ mations to the pressure as a func-
@ 0.94 i 0.94 [ ] 0.94 [ tion of g(2#T) for u=2nT. Ex-
0.92 092 F {1 092 act SPT curves are taken from
I I | I Ref.[13].
0.90 0.90 "——~4——t— 0.90 S
0 1 2 3 4 o 1 2 3 4
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(a) (b) (c)
1.00 T 1 51 1.00 T 1 51 1.00 T 1 ' 1
0.98 | { o098} N R "
T s Y 4 ! N i —— FIG. 7. The one-, two- and
8 0.96 . 1 0.96 | ~3 0.96 A three-loop SPT improved approxi-
Ay i N I 1 i Z’z‘act 1 mations to the pressure as a func-
~~ 094 i J 094 [ j 0.94 (| —- ¢ 7 tion of g(2#T) for u=m, . Ex-
092 | 4 o092} 0.92 | ———g act SPT curves are taken from
| | | R ¢ Ref. [13].
0.90 M 1 " 1 " 1 0.90 " 1 " 1 " 1 0.90 " 1 M 1 L 1 € [ ]
0O 1 2 3 4 0 1 2 3 4 0O 1 2 3 4
g(2nT) g(2nT) g(2rT)

equation(61). A two-loop SPT-improved approximation can
2 be obtained by inserting the solution to the gap equation for
. . the mass parameter into EG4).

In Figs. 6 and 7, we show truncations of the one-, two-, Fig. 9, we show theg* truncations of the one- and

ang th_ree-loop app;oxnmz#c;:) ns tq thetpressgre;tef&r'lr'] two-loop approximations to the screening mass. The bands
andu=m, , respectively. ev_arlcius ruyry1ca Ions are SNOWNg 4y correspond to the results obtained by varying the
as gray dashed lines along with “exact” curves from Ref.

. ) renormalization scaleuw over (a) #T<u<4wT and (b)

[13] wh|ch' are accurate to all o_rders m/T. As can be seen 1m, <pu<2m, . One can see from this figure that the con-
from the figure, then/T truncations converge very quickly vergence of then/T expansion for the screening mass is not
for the one- and two-loop approximations with the final two .. impressive as for the pressure meaning that higher order
truncations being virtually indistinguishable from the exacty. o ~tions are necessary to reliably describe the screening

SPT solutions. At three loops, however, one needs to includﬁqass Also, we again see that tméT truncations converge
all terms up tog® before a reasonable approximation is ob- better' for,u'=27rT than for u=m
1 %

tained. We therefore conclude that it is necessary to include
higher order terms in order to fully converge to the exact
SPT result at three loops. Also it appears thatriid@ trun-
cations converge better fat=2=T than foru=m, . De- The one, two-, and three-loop SPT-improved entropies are
spite these caveats, at all loop orders presented here, tlbtained by replacinghin the expression&37)—(39) for Sy,
highest ordem/T truncation provide an excellent approxi- Sp+1, and Sy.14, With the solution to the one-loop gap
mation to the exact SPT results. equation. As was the case with the two-loop pressure we can
In Fig. 8 we show the one-, two-, and three-loop approxi-use the gap equation to eliminate the logarithnyielding
mations obtained using ogr truncation to the pressure. The the following expression for the two-loop entropy
bands shown correspond to the results obtained by varying
the renormalization scalg over (a) #T<u<4#xT and (b)
im, <up<2m, . This figure demonstrates that tigé trun-
cations of the pressure yield a convergent series of approxi-

mations which have very small variations with respect to thel Nis is identical to the one-loop expressidiy. (37)], which
renormalization scale. is the entropy of an ideal gas of particles with mass

In Fig. 10, we show the)(g®) truncations of the one-,
two-, and three-loop approximations to the entropy as a func-
tion of g(2#T). The bands shown correspond to the results

The one-loop SPT-improved approximation to the screenpptained by varying the renormalization scateover (a)
ing massmg is given by the solution to the tadpole gap

. (63)

15. “
Po+1= Pideal 1~ —m?+15m3

C. Entropy

15A2 ~3 45A4
80+l:Sidea 1-—mT+15m°— —m"|.

2 4 649

B. Screening mass

(@) nT<pu<4nT (b) M, <p<2m,
(@) nT<p<4nT (b) zM.<p<2m, 1.0 ; : , 1.0 . : :
1.00 r . . 1.00 T . .
098 098 o 08| 0.8
B i
g_ﬁ 0.96 0.96 E 06k 06
~ L | *
@ 0.94 - [Joneloop 0.94 [ oneLoop e 0.4 [onetoop 0.4 OoneLoop
1 Two Loop ] Two Loop ' B oL é B wo Lo
0.92 - [ Three Loop 0.92 & Three Loop wo Loop P
f f f L L L 0.2 L L 0.2 L L L
0Be ] 5 4 0.90 1 2 3 0 1 2 3 4 1 2 3
g(2nT) g(2nT) g(@rT) g(@nT)

FIG. 8. The one-, two- and three-loop SPT improved approxi-

mations to the pressure as a functionggR#T) for () #T<pu
<47T and(b) 3m, <u<2m, .

(b) m, <u<2m, .
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(@) nT<B< 4nT (b) Im.sm<2m, supported in part by the Stichting Fundamenteel Onderzoek
148 = 108 T der Materie(FOM), which is supported by the Nederlandse
Organisatie voor Wetenschapplijk Onderzo@WO0O), and
g W88 0.98 1 by the U. S. Department of Energy Division of High Energy
c,f Physics(grant DE-FG03-97-ER41014
~
N0 0.96 - [ Two Loop ] 0.96 - [ Two Loop
[H Three Loop & Three Loop APPENDIX A: SUM INTEGRALS
0%, 1 2 s 4 % 1 2 s 4 In the imaginary-time formalism for thermal field theory,
g(2nT) 9(2nT) the 4-momentumP=(P,,p) is Euclidean with P?>=P3

2 . .
FIG. 10. The SPT-improved two- and three-loop approximationsij - The Euclidean energy, has discrete valuesb,

to the entropy as a function (27 T) (8 #T<u<4xT:and(b) 27T for bosons andPo=(2n+1)«T for fermions,
Im, <u<2m, . wheren is an integer. Loop diagrams involve sums oRyr

and integrals ovep. With dimensional regularization, the
integral is generalized td=3—2e¢ spatial dimensions. We
define the dimensionally regularized sum integral by

€ 3—25p
T — Al
P0=22nqu f (24r)32¢ (A1)

VII. CONCLUSIONS where 3-2¢ is the dimension of space apdis an arbitrary

In this paper, we have continued the systematic study oflomentum scale. The factoeY/4)* is introduced so that,
screened perturbation theory from R3] We applied it to after minimal subtraction of the poles indue to ultraviolet
the pressure and the entropy calculated to three loops and tRi/ergencesu cc'Jlnc-ldes with the renormalization scale of
screening mass calculated to two loops. By performing athe MSrenormalization scheme.
expansion of the sum integrals in powersmfT, we were The one-loop sum-integrals that arise in the calculations
able to obtain purely analytical results, without having tohave the following form:
evaluate integrals numerically.

Our calculations show that a truncation of théT expan- T4= i o log P2,
sion atO(g®) is sufficient to obtain accurate approximations
to the exact one- and two-loop results. For the one- and 1
two-loop approximations to the pressure and entropy, the nu- Iﬂ:i P =7 (A2)
merical results obtained in Rgf13] and the truncated/T (P%)
expansions are virtually |nd|st|ngu5|shable as can b_e seen IExpanding ine to the required order, the specific one-loop
Figs. 6 and 7. At three loops th®(g>) truncation provides a sum-inte

o ) -integrals needed are
reasonable description of the pressure, but it seems that

7T<u<4wT and (b) 3m, <u<2m, . In both cases the
O(g®) truncation provides an excellent approximation to the
exact SPT result. Again we see that thET truncations con- v 2
_ _ e’'u
verge better fow=2=T, than foru=m, . ip E(

4

higher-order truncations are necessary to provide accurate ) w |\ 7Tt
descriptions. The fact that the/T expansions converge To=-— m) 5 [1+0(e)], (A3)
quickly is important since performing the “exact” SPT cal-
culations is much more difficult than tme/ T expansions. An wo\%€T? ['(—1)
additional benefit of then/T expansion method is that the le(m) Z1t|2+2 =1 )6 (A4)
final results can be determined completely analytically.

In Ref. [16], a generalization of SPT to gauge theories 2 (-1 "(-1)
based on hard thermal logpiTL) perturbation theory was + T+4+4 =1 +2 a=1) )62
proposed. The thermodynamic functions such as the pressure
and entropy were calculated to one-loop order. The two-loop
calculation of the pressure in QCD based on HTL perturba- +0(€e%)|, (AS)
tion theory requires not only HTL propagators, but HTL ver-
tices as well. The exact calculation appears to be very diffi- 1 w \21 w2
cult. Expansions like the one presented here provide the  Z,= W(m) Z+27+ 7—43/1)5
simplification needed to complete the two-loop HTL calcu-
lation [17]. The rapid convergence of the/T expansion in w2 7
screened perturbation theory is very encouraging in this re- IR ARICaET{C) e€+0(e%|, (AB)
gard.

The numbersy,; and vy, are the first and second Stieltjes
ACKNOWLEDGMENTS gamma constants defined by the equation
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The specific two-loop sum integral needed is

1
$ro prgimrgr O "o

It was first calculated by Arnold and Zhai in Réfl]. The
specific three-loop sum-integral needed is

1
i POR P2Q2R2(P4Q+R)?
T4 [ w \S1 91 '(-1) _{(-3)
:24<4w)2(m) PR NIy ey
+0(e€)|. (A9)

It was first calculated by Arnold and Zhai in RéL].

APPENDIX B: INTEGRALS

PHYSICAL REVIEW D64 105012

| _J’ 1 1 1
sun qrq2+m2r2+m2(p+q+r)2+m2

p2=—m2

1

B n )46 1
(8m)°

% ;+6_8|092+O(6)}

(B6)
The only three-loop integral needed[ 5|

| f 1 1 1 1
P P+ m? g2+ m? 124 m? (piqtr)2+ m2

m w 6e 1
=_W(%> ;+8—4log 2+(’)(e)}.

APPENDIX C: SETTING SUN DIAGRAM

(B7)

The only nontrivial sum-integral required to calculate the
self-energy to two loops is the sunset diagram, which de-

We also need some three-dimensional integrals. Wi
choose dimensional regularization to regulate infrared an
ultraviolet divergences. The integrals are generalized to

=3—2e dimensions of space, andis an arbitrary momen-
—m?. The setting-sun sum integral involves a double sum

tum scale:
eyMZ € d3—2sp
fp_( 477) f(z,n_)3—2f. - - !
integral, so there are three momentum regions. The region

The factor £?/4)€ is introduced so that, after minimal sub- Where bothQ andR are hard is denoted byrf), the region
traction of the poles ire due to ultraviolet divergenceg,  where one momentum is hard and the other soft is denoted

coincides with the renormalization scale of the M®ormal-  PY (ns), and the regions where both momenta are soft is
ization scheme. denoted by §s). The contribution from each of these regions

The integrals that arise in the calculations have the fol2'€

ends on the external four-momentu®s (pg,p):

1 1 1
IS“”(P):iQR Q%+ m? R*+m? (P+Q+R)*+m*’
(CD

Sum integral(C1) must be evaluated gi,=0 and p?=

(B1)

lowing forms: 1
hh) _ 2
) 5 ) Z(sun QR QZRZ(Q+ R)Z +O(m )1 (CZ)
lo=flog(p +m?),
' 740 =0(m), (C3)
1 —_T2 2
W= fpm (B2) I8 =T gt O(MP). (CH
Expanding ine to the required order, the specific one-loop APPENDIX D: BASKETBALL SUM-INTEGRAL
integrals needed are Toan is the basketball sum integral:
m3 2¢l 8 2 2
I(’)z——(i l+—e+(7r—+— 62+O(e3)}, T :i 1 . 1 1
6m\2m/ [~ 3 4 9 ball POR B2 m? Q%7+ m? R2+m? S+ m?’
(B3) (D1)
2¢€ 2
_ mie " 2 3 whereS=—(P+Q+R).
l= 477(2m) _1+26+ g T4+ 0(e )}’ The basketball sum integréEq. (D1)] involves a triple
(B4) sum-integral, so there are four momentum regiomght),
(hhy), (hs9, and (ss9. The contributions from each of
. 1 [ w\? . 2 21 o3 (5 these regions to orden? are
2787m| 2m 4 €O
h“h>=i‘, ! +0(m?), (D2)
The only two-loop integral needed [i§] ball PQRP2Q2R2(P+Q+R)? '
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1
M9=4T1, 2} or ?REO+R)? +0O(m?),
(D3)
IS =0(m?), (D4)

PHYSICAL REVIEW@2 105012

I5 =T gt O(m?). (D5)
The (hhh) contribution is given by Eq(A9), while the
(hhs) contribution vanishes due to EGA8). The (ss9 con-
tribution is given by Eq(B7).
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