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We present a numerical study of the fermion-induced effective action in the presence of a static inhomoge-
neous magnetic field for both (31)- and (2+ 1)-dimensional QED using a novel approach. This approach is
appropriate for cylindrically symmetric magnetic fields with a finite magnetic duVe consider families of
magnetic fields, dependent on two parameters: a typical vBjydor the field and a typical rangd. We
investigate the behavior of the effective action for three distinct c&asp&eeping® (or B,,d?) constant and
varying d, (2) keepingB,, constant and varyind, and(3) keepingd constant and varying (or B,,d?). We
note an interesting difference in the lindt- + o (case 2 between smooth and discontinuous magnetic fields.

In the strong field limit(case 3 we also derive an explicit asymptotic formula for the+(3)-dimensional

action. We study the stability of the magnetic field and show that magnetic fields of the type we examine
remain unstable, even in the presence of fermions. In the appropriate regions we check our numerical results
against the Schwinger formulaonstant magnetic fieldthe derivative expansion, and the numerical work of
Bordag and Kirsten. The role of the Landau levels in the effective action and the appearance of metastable
states for a large magnetic flux are discussed in the Appendixes.

DOI: 10.1103/PhysRevD.64.105011 PACS nuntderll.15.Tk

[. INTRODUCTION action was computed for a cylindrically symmetric static
magnetic field with a delta function profile, in+31 dimen-
The evaluation of the fermion-induced effective action insions. Note that this field has infinite classical energy.
the presence of a static magnetic field is important in quan- Our purpose in this paper is to go beyond the previous
tum electrodynamics. Historically, the effective action for anumerical work, and to study, for the first time, the-2
homogeneous magnetic field was first computed by Heisenr9ED effective energy in the presence of a magnetic flux
berg and Eulef1], then by Weisskopf2], and later by type. In addition, in the case ofi3L dimensions we consider
Schwinger[3] with the proper time method. The effective mgre realistic magnetic field configurations than those of the

action in this case can be expressed by an explicit formula. 'Brevious work, for example, the Gaussian magnetic field of
Ref. [4] Redlich obtained the corresponding results for (2Eq. (2) below.

+1)-dimensional QED.

For inhomogeneous magnetic fields explicit formulas ar
not available. Approximations can be developed for the caseg
of (a) weak magnetic field§perturbative expansigrand (b)

We study families of magnetic fields dependent on two
arameters, a typical valti8,, for the field(or the magnetic
ux ®=Bd?*/2) and a typical range. We investigate the
L S . _ behavior of the effective action for three distinct casés:
smooth magnetic fieldgderivative expansion More re keeping® (or B,.d2) constant and varying, (2) keepingB,.

cently, for a special form of the magnetic field it has been d . d4(3) keepinad d
possible to derive a closed formula for the effective actionconstant and varyingd, and(3) keepingd constant and vary-

for both 3+1 and 2+ 1 dimensiong5,6]. Another exact re- N9 @ (or B,d?). The mass of the fermiom is assumed to
sult is presented in Ref7], for a magnetic field with a delta b€ constant. _ o
function profile in two-dimensional Euclidean space. We note a difference in the limiti— +o (case 2 be-
The aim of this paper is to obtain, yumericalcompu-  tween smooth and discontinuous magnetic fiel@ec. ).
tations, qualitative knowledge of the dependence of théVe will see that this difference is related to the fact that the
fermion-induced effective action on various quantities charderivative expansion fails for discontinuous magnetic fields
acterizing the magnetic field such as its size and its degree dke the magnetic field of Eq(3) below.
inhomogenity, etc. For this numerical study we use a simple An interesting problem not covered by previous work is
novel approach for the fast computation of the effective acthe behavior of the effective energy for large magnetic fux
tion, which is appropriate for static, cylindrically symmetric (strong magnetic fieldand fixedm;d, where¢=e®/27. In
magnetic fields with a finite magnetic fluk. We will call ~ Sec. VII we present an investigation for large In particu-

such fields magnetic flux tubes. lar, in the case of 31 dimensions, we derive an explicit
Previous numerical studies of the effective action are th@symptotic formula forp>1.
following. In Ref.[8] the effective energy, in 31 dimen- We also consider the question of stability of the magnetic

sions, was computed numerically for a cylindrically symmet-field in the presence of fermions. The question is whether
ric static magnetic field which is constant inside a cylindersome radius exists that minimizes the total endiggssical
and zero outside it. In more recent woi8] the effective

We define this typical magnetic field strength &8,
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energy plus effective energjor fixed magnetic flux®, thus 4¢ r2
rendering the magnetic field stable at the quantum level. The B.(r)= —2< 1-—/6(d=r),
same question was considered by the authors of [Rgffor d d

the magnetic field of Eq(3) (below) in the case of 31

dimensions, and the answer was negative. Our purpose here 2¢ 1

is to study the stability of magnetic flux tubes in the case of Bg(r)
2+1 dimensions. In addition, in the case of-3 dimen-

sions, we generalize the results of Réf] for more realistic Since including the results in detail would make this paper

magnetic field configurations like the Gaussian magnetic . s .
field of Eqg.(3). Note that we answer this question for severalunnecessarlly long it is perhaps sufficient to state that our

two-parameter families of magnetic field configurations Ofconclusmns(about the stability of the magnetic field or the

. : dependence od of the effective action, ettcfor the mag-
the type of the ﬂl.JX t_ube for both21 and 3+ 1 d|men3|or]s netic fields of Eqs(2) and(3) are valid also for the above-
(see the magnetic fields at the end of the present sgction mentioned magnetic fields

In Appendix C we explain the role of the Landau levels in '
the effective action, relating them to the metastable states
that appear in the case of large magnetic fluxsee Appen- Il. EFFECTIVE ENERGY
dix B). : - -

The vector potential and the magnetic field for the class of gEDc:on&der the following path integral that corresponds
magnetic fields we examine are given by the following equa-
tions:

T (r¥d2+1)?

1
— ZF, Fr

szDAD\IfD\If exp(if d®X = 7 Fp

- r - - 1d ) -
AN =5f(re,, B(=5 g rf(nle, @)

+W(iD —m) W ) (4)

wheref(r) is a function with asymptotic behaviorgdr? as

r tends to infinity andg$=e®/27. In what follows, we as- in dimensionD (D =3,4). Integrating out the fermionic de-
sume the rescalinB— eB except where we state otherwise. grees of freedom in the above-mentioned path integral, we
We present our numerical results for two magnetic fields, ongbtain the effective action expressed as the logarithm of a
with a Gaussian profile and one that is constant inside angeterminant:

vanishes abruptly outside a cylinder of raddysith respec-

tive field strengths 1 — _
SerlAl= i—Inf DYDY exy{ i J dPxW¥ (iD —m) W

2¢ r?
Bi(r)=—exg — /|, 2 1 .
d d = i—trln(lu) —my) 5
Bz(r)zz_d)a(d—l’) 3 whereD = y*(d,—ieA,), andy’=o3, y'=ioy, y’=io,
2 ' is a two-component representation of the gamma matrices

for the (2+1)-dimensional QED. A four-component repre-
where 8(x) is the step function. sentation will be used for the (31)-dimensional case.
We have performed analogous calculations for six two- We will use the identity
parameter families of magnetic fields other than those of L
Egs.(2) and(3), with magnetic field strengths trin(iD —my) = Etrln(IZ)2+ mfz) (6)

2¢ 1

Balr)= ra cosi(r?/d?)’

in order to take advantage of the diagonal form of the opera-
tor D2+ mfz. It is well known that for (2+1)-dimensional
QED a parity violating terniChern-Simons terins induced
4¢p [ r? r4 [4,10]. However, this term is zero for the case we
Ba(r)= ?(E) eXF’( - g) ' investigate’ See also the relevant comments in Héfl].
We deal first with the (2 1)-dimensional problem. The
operatorD?+ mf2 for a static magnetic field can be put into

44 1 the form

Bs(r)=———,
S @2 (rYdY+ 1)
6 °The induced Chern-Simons term is of the form
Be(r)= d_f( 1— é) 6(d—r), (_K/2)_fd3x,s””PAM3VAp and it is zero for our case, sinég=0 and
A1:A2:0.
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D2+mi=d5+(y"Dp)2+m;  (m=12.  (7) , 1 (1
EC e 1y=" Ffo dxx(1-x)
This operator has a complete system of eigenfunctions of the T
form W, (X,t)=e "W, (X) where ¥,,,(X) satisfies the +oo 5 m?+g2x(1—x)
eigenvalue equationy"D )2V (1 (X) = Egn ¥y (X) and{n} X fo dqqB(q)|*In| —————
is a set of quantum numbers. Note thHat,=0 since the M
operator §/™D,,)? is positive definite as the square of a Her-
mitian operator. It is convenient here to refer to the effective +
energyE.= — Se¢/ T instead of the effective actioBqs, 247?
whereT is the total length of time. The effective energy, if _ . _
we perform a Wick rotation of the integration variable — whereB(q)= fd?Xe '9*B(X). Note thatB(q) depends only
(w—iw), is given by on q=|q| as we have assumed that the magnetic field is
cylindrically symmetric.

If we compare Egs(11) and(12) for m;—oc we find

A?
PP
In(—mf2> f d“xB~(X) (12

1 4o
Eetr2+1)= — 5= > fo do IN(w?+Egpy+mp). (8)

2m n 1
> Epy=— o J d2XB2(X). (13)
. . m 6m

We make the above integral convergent by subtracting a
term that is independer)t of the magnetic fie!d. We may do S&hus, the logarithmically divergent part in E€L1) can be
because our purpose is to compute the difference betwegfyopped if we include an appropriate counterterm in the
the effective energy in the presence of the magnetic field, an@gp | agrangian. This counterterm is defined by the on-shell
the energy when the magnetic field is absent. If we subtragla,ormalization conditichTI(0)=0. The renormalized ef-

the term — (1/2m) 2y f ¢ “dw In(w?+m) from Eq. (8) and  fective energy is then given by the equation
integrate, we get

1 E/n+m?
(ren) _ 2 {n} f
1 eff(3+1) = 4 = > (E{n}+mf)|n( 5 )
Eefiz+)=~ 5 % (NEqm+mi—my). ) 4m (o) m;
1
This expression incorporates the expectation that very mas- 4x % Ein}- (14

sive fermions interact weakly with the magnetic flux tube _ _ .
(i.e., the effective energy tends to zeromastends to infin-  Note that the renormalized effective energy vanishes for

ity). large values ofn;, as expected. For the sake of simplicity
The extension to the (81)-dimensional case can be we will drop the index (en) in the rest of this paper.
made if we replacen? by k3+m? in Eq. (9) and integrate In order to define the effective action for massless fermi-

over thek; momentum. An overall factor of Zfrom the  ons for which the right-hand side of E(L4) is singular, we
Dirac tracé must also be includetfor details see, e.g., Ref. should impose the renormalization condition for the vacuum

[6]): polarization funtionlI(g?) at a spacelike momentum M?
[II1(—M?)=0]. Accordingly, a formula for the effective ac-
+2 dks tion for massless fermions is given in Appendix A.
Eeffa+1)=— Lo J' 2—(\/k§+ En+m?—k3+m?) In cylindrical coordinates and for the special magnetic
{n} m field of Eq. (1), the operator ™D,,)? has the following

—

(10 diagonal form:
wherelL, is the length of the space box in tkelirection. (y"Dp)?=—D?—D3—sB
Introducing a momentum cutof&/2 we find
#? 10 1 42 1af()

1 Ey+m? 1 T2 rar (2942 09 r
Eeff(3+1):_2 (Egm+m)in| ——=—]—-= > En ' r=aé

4 {n} m% 4m {n} erZ(r)

1 [ A2 2 —sB(r), (15
mg / An} wheress takes the values-1 which correspond to the two

possible spin states of the electron. Because the operator
where we have omittetl, and we assume that we calculate
energy per unit length.
For largem; the above expression for the effective energy Sror the definition of the vacuum polarization functififg?) and
must tend to the first diagrafwacuum polarization diagram for details about the renormalization condition 1di(q?) see, for
of the perturbative expansion of the effective energy: example, Ref[12].
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(y™D,)? is invariant under rotations around theaxis, the ~ The asymptotic behavior of the phase shifts [igz-kd is
eigenfunctions W ,(X) have the form W, (X) I— |

=e''%u(r)/r, wherel is the quantum number of the gn_gular 8 (K)—| — ﬂjLU) - (21)
momentum (=0,+1,+2,...). Thefunction u(r) satisfies ' 2 2

the equation

and the sum; ¢(k) + 5_, s(k) vanishes for large enough val-

42 12-1 ues ofl so the limit in Eq.(20) exists.
- S~ Tuis(r) ju(r)= k2u(r) (16) The largel asymptotic behavior can be obtained from the
dr r WKB approximation for the phase shifts:
where o 2 12
r2£2(r) 5|,s(k)=R€'| fo ( \/kz—m,s(f)— e \/kz— r—z) dr].
vy s(N)=—1f(r)=sB(r)+ — 17

(22)

and k? is the corresponding eigenvalfere may setEy,
=K? sinceE,,=0). The spectrum of the radial Scldinger
equation(16), in addition to the continuous spectrum (O
+ ), may also have zero modes according to the Aharon
Casher theorefn[13]. Note that for our special casg}
={kl,s}.

For largel only the asymptoti€(1/r?) tail of the potential
contributes to the above integral. Replacings(r) by its

' asymptotic form ¢2—2¢1)/r? yields Eq.(21).

OV" Note that an asymmetric sum would give the same result
since lim ... 3525 & ((k)=A(k)+c’ and ¢’ is inde-
pendent ofk.

In Appendix B we describe two methods for numerical

Ill. DENSITY OF STATES calculation of the phase shifts by solving an ordinary differ-

ential equation. The numerical calculation shows thék)

for largek tends to a constant valwe= — 7 ¢2. An analytical

proof for this result can be obtained using the WKB approxi-

mation(22) for the phase shift. In Fig. 1 we have plotted the
1 ds (k) functionA(k) —c¢ for #=4.5 andd=1. The numerical com-
p1.s(K)=p{Te (k) + = i (18)  putation was performed for the magnetic fieBisandB, of
™ Egs. (2) and (3), respectively. In order to achieve conver-
gence of Eq(20) for ¢=4.5 we summed up th,,,= 20 for
' the magnetic field, and tol ,,5,= 30 for the Gaussian mag-
netic fieldB;.
Figure 1 shows that the functiak(k) — ¢ tends rapidly to
zero, apparently as k¥ for the magnetic field, and faster

for the magnetic field,, so the integra(19) is highly con-

€{(;ergent. This is remarkable because it means that the same

function A(k) can be used for the (81)-dimensional case,
as can be seen from ER6).
The result that the functioA (k) — ¢ corresponding to the
1 [ d magnetic fieldB, tends faster to zero than that for the mag-
Eetr2+1)= — _f (VK2 + m?— mf)_[z 5I,s(k)}dk netic fieldB, suggests that in general the functiaifk) —c
2mJo dk| 75 spreads when the corresponding magnetic field becomes
(19 more localized. This has been checked by calculations for
(free) ) ) ) ) . magnetic fields other tha; andB, (see Sec.)l In addition
wherep; =~ (k) was dropped since it contributes a field in- \ye “ghserved that when the magnetic field becomes more
dependent term. Note that the zero modes do not contribug-zjized we need fewer values bin order to achieve con-

In order to sum up over the continuous modes of #&6),
we shall need the density of states/dk=p, (k) (i.e., the
number of states per urki:

wherep('1®® (k) = 7/L is the density of states for free space

and 8 4(k) is the phase shift that corresponds to ktrepar-
tial wave with momentunk and spins. The relation(18) is
shown, e.g., in Ref.14].

A noteworthy feature of the functiod, ,(k) is that it
exhibits jumps that correspond to metastable states for lar
values of¢. This is shown in Fig. 8 of Appendix A.

If we use the relation$18) and(9), the effective energy
for (2+ 1)-dimensional QED is

eXplICItly in. Eq (19) ) ] ] vergence of Eq(zo)

The series of the phase shifts ovein Eqg. (19 is not The value of the functior (k) atk=0 is independent of
absolutely convergent. The simplest way to define it is tohe magnetic field configuration and depends onlyfoiThis
sum symmetrically ovel. We define the function becomes evident if we take into account the Levinson theo-

rem which is presented in Appendix A. Thus the two curves
in Fig. 1 intersect ak=0. Now from the relation$19) and

L
A= lm X 5 4(k). 20 (20) we obtain

L—+o sl=-L

1 [+ d[A(k)—c]
Eeffo+1)= — ﬁf (\/k2+mf2_mf)Tdk-

4According to this theorem a zero mode exists if the conditions 0
1<l+1<¢ ands=1 are satisfied. (23
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Integrating by parts we find whered is a typical range of the magnetic fidlsee Eqs(2)
and (3)].

1 (+= Kk In Fig. 2 we see tha 5241y, for the Gaussian magnetic

Eeff(2+1):ﬁ fo W[A(k)_c]dk' (24 field B4, is a positive decreasing function dffor fixed ¢.

f The asymptotic behavior @&+, + 1) for small values ofl is

For the (3+ 1)-dimensional case, from the relatiofis}), proportional to 1d. This can be seen from _relaticﬁﬂ?). For
(18), and(20), again dropping the free part from the density large values ofd we are in the weak field regime and

of states, we find Eeti2+1) IS given approximately from the vacuum polariza-
tion diagram
1 [+= k?+m?\ d[A(K)—c]
= :_f (k2+m2)ln( !
eff(3+1) 472 Jo f m? dk Eng)f(2+l):_zf dxx(1—x)
8mdJo

_ L [rediatozel (25) J+x ~ y[B(y/d)P?

472 Jo dk ,
0 y\/(mfd)2+x(1—x)y2

(29

Integrating by parts we obtain
where we have made the change of variaptey/d and
B(q) is the Fourier transform of the magnetic field. From the
relation(29) we find thatEq¢(, 4 1) is proportional to 1d? for
(26) large values ofl.

The curves in Fig. 2 appear to approach each othet as
tends to infinity. Thus the effective energy for lardeis
proportional to¢?. This is expected because the effective
energy for larged is given approximately by the vacuum

A dimensional analysis shows tha(k) is a function of  Polarization diagram, which is proportional .

2 2

£ 1 fmkl K+ ms
=—— n
eff(3+1) 22 Jo mfz

[A(K)—c]dk.

IV. DEPENDENCE ON THE RANGE d FOR FIXED
MAGNETIC FLUX ¢

the form F(kd,¢). If we make the change of variable In Fig. 3 we present our numerical results for the mag-
=kd and setA (k) =F(kd, #), we find netic fieldB,. We see that the effective energy as a function
of d for fixed ¢ has the same features as those of the Gauss-
1 (+= y ian magnetic field of Eq(2).°> Also we can see that the ef-
Eeti2+1)= 27rdJ ——==[F(y,¢)—cldy, fective energy o3, is always bigger than the effective en-
0y +mid 27) ergy of B, for the same¢ andd (this is also true for the
1 (= (y*+mid? “We h isi imensi
E _ f yIn e have checked_that this is a_Iso true_a for ther(B)-fmmensmngl
eff(3+1) 27242 ) 0 mf2d2 case. So the effective energy, int3 dimensions, is a negative
increasing function ofl for fixed magnetic fluxas shown in Fig. #
X[F(y,¢)—c]dy, (28 for all magnetic fields of the form of the magnetic field of Ed).
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0.16

0.14
0.12

01 F™

FIG. 2. ¢~ 2dEg¢y2+1) as a function ofd for
$»=2.5,45,6.5,8.5 andn;=1 for the Gaussian
magnetic field of Eq(2).

0.08

0.06

0.04

002 | R

corresponding classical energie¥his fact seems to be a Ford— +«~ we find
consequence of the flux of the magnetic fiBlgbeing more
concentrated than the flux &;. @)

The (3+1)-dimensional case, for the caseBY, has al- Eetiz+1)=
ready been studied with a different method by Bordag and
Kirsten in Ref.[8]. Our results are shown in Fig. 4. They
agree closely with those of Fig. 3 of R¢8].

The (3+1)-dimensional effective energy, for largk is

a0 Zd‘J dyy?|B(y/d)|2. (3D

For further discussion we will need the Fourier transforms
of the magnetic fields of Eq$2) and(3):

given by 5 q°d?
Bi(q)=2w¢expg — ) (32
E(2) 1 fld (1 )
eff(3+1)~ — o g4 | OXXL—X ~ Ji(qd)
Brdte Baa) =47~ g 33)

m2d?+y?x(1— x))

+ oo
X dyy/B(y/d)|ZIn
fo yy|B(y/d)| ( e

From the relation(31) we see that for large the effective
energy is proportional to d#. This is true only for magnetic
(30 fields for which the integral31) overy is convergent. An

0.2

0.15 k.

FIG. 3. ¢~ 2dEq¢s2+1) as a function ofd for
$»=2.5,45,6.5,8.5 andn;=1 for the magnetic
field of Eq. (3).

0.1

0.05
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FIG. 4. ¢~ 2d®E¢q¢(3+1 as a function ofl for
$=0.4,5,10 andn;=1 for the magnetic field of
Eqg. (3).

-0.2

-0.25

-0.3

-0.35

-0.4 .r: 1 1 1 1
0 0.5 1 1.5 2
d

example is the magnetic fiel; with the Gaussian profile. rier transforms have contributions from high momenta at

For the magnetic field®, the integral(31) is divergent. We which the running coupling constant cannot be assumed

found numerically from Eq.(30) that in this case the small.

asymptotic behavior i©(1/d“), where < a<4. The asymptotic relatiori36) for the total energy can be
For small values ofl, from the relationg28) and(13) we  written in the form

find the following asymptotic formula:
2w h?

e2¢1(d)d? 37

1 tot(3+1) —

1 P
Eeffa+1)=— E|n<m_fd) f d*XB?(X). (34
where we have defineddadependent effective coupling con-

The asymptotic formul#34) is the same as the one derived stant, for small values df, according to

in Ref. [8]. From the relation(34) we obtain Egtf341) 1 1 1 1
=(— ¢?/37d?)In(1/md) for the magnetic fieldB, and _:___m(_)_ (39)
Eett(z+1)= (— $*/6md?)In(1/m;d) for the magnetic field;. e2(d) e 672 \md

The total energy foB, is given by o ) ) )
It is interesting to compare this to tizdependent effective

coupling constant of Refl5], for a homogeneous magnetic
field, which for largeB reads
2m¢? 1 1 101 B
= 2 +¥f(mfd,¢>) (35 _ n F) (39)
f

Etot(3+1)= Eclasgz+1) T Eefi(z+1)

egff(B) 62 12’77'2

where we have séqtf341)= (1/d?)f(m¢d, ¢). The physical
meaning of the total energy is the energy we need to spend in V- DEPENDENCE ON THE RANGE d FOR FIXED
order to create the magnetic flux tube. In this article we have MAGNETIC FIELD STRENGTH By,=2¢/d

;:okmpu_tetd this enetrgytatlonﬁ-ltoopT(;]r_dEB., we ha\t/_e not It is convenient to define a characteristic magnetic field
aken into account virtual photonsThis approximation is strength as3,,= [ B-dS wd?, in order to estimate the inten-

Val;g only for small values qf the coupling constant sity of the magnetic field, wheré is the range of the mag-
or small values ofl we find e ; ; ;
netic field. In the previous section we examined the depen-
) ) dence ord of the effective energy for fixed magnetic flux
2m¢ _ ¢ (i) (36) Here, we study the dependencedfor m;d) for fixed mag-
e?d?  3md? \md/ netic field strengttB,=2¢/d? (or B,/m?).
First, we examine the magnetic field of E@) [the
We see that the logarithm, which comes from the effectiveGaussian magnetic field of E() is examined in the next
energy part, dominates for small valuesdofhis asymptotic ~ sectior]. An interesting feature of this fiel®df Eq. (3)] is that
behavior of the total energy is not reliable. The reason is thatvhen its rangal increases it tends to a homogeneous mag-
small values ofd correspond to magnetic fields whose Fou-netic field. Thus, in the homogeneous limitst 1/y/B,,), we

Eiotz+1)=

105011-7
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o8| ]
RSt e B
-
06 | o 4
.-97
. A FIG. 5. Eefy2+1y/d® as a function ofd for
04r 7 T B,=5 andm;=1 for the magnetic field of Eq.
o (3). The discrete points correspond to our numeri-
cal results and the continuous line to the best fit
02r o ‘out numerical results’ i curve of the formay—a;/d. The asymptotic
/ 0.829.00529 value a,=0.829+0.002 agrees quite well with
0 that calculated from the Schwinger formula:
0.829. Our numerical results fax, and a; are
rounded to three decimal points.
0.2 | .
-0.4 .:: -
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expect our numerical results to approach the result calculated In the case of 3-1 dimensions, we see in Fig. 6 that our
from the Schwinger formula, which for the cases of 2 numerical results are negative and tend slowly to an
and 3+ 1 dimensions reads asymptotic value, which also agrees closely with that calcu-
lated from the Schwinger formula of Eq(41). The
B32 (ix(s 1 asymptotic behavior for large is the same as that observed
j le( coth's)— g) e‘s"‘?’B, in the case of 2 1 dimensions §,—a;/d).
S For smalld we obtain from the vacuum polarization dia-
(40) gram of Eq.(30) thatEeff(ZH)/d2 is proportional to Ird. We
see that this logarithmic behavior is not clear in Fig. 7 since
1 s —sn/B we have not plotted enough points for small valuesl.olVe
coth(s) - s 3/¢ : avoided this, as in the region of smél{d~0.1) the numeri-
(42) cal accuracy we could achieve was not satisfactory.
A different way of finding the behavior of the effective

where.A is the area of the space box on thy plane and8 ~ €nergy. for smalld is to replace F(y,¢)= dFD(y)
is the magnetic field strength of the homogeneous magnetit #°F*)(y) in Egs.(27) and(28) and take into account that
field. the linear term is identically zeroF(Y)(y)=0). We can
In Fig. 5 we have plotted the effective energy divided byprove that=)(y)=0 using the first Born approximation for
d? for B,,=5 andm;=1 for the magnetic field of Eq:3).  the phase shifts. . o
We see thaEeff(ZH)/dz is a positive increasing function of Qur numerical work shows that there is a significant pos-
d which tendsvery slowlyto an asymptotic value. The deter- Sibility that the 1d term in the above-mentioned asymptotic
mination of this asymptotic value is not possible with a di-behavior @,—a;/d) is accurate. If, indeed, this behavior
rectly numerical computation, as for large valuesdofhe  occurs, it would be interesting if one could give an analytical
numerical error of our method becomes significant. How-Proof.
ever, we see in Fig. 5 that our numerical resuffisr d Note that this asymptotic behavior is expected only for
=0.4) lie on a curve of the form,—a, /d. Fitting a curve  discontinuous magnetic fields like the one of E8). In Fig.
of this form to our data we obtaia,=0.829+0.002 and 7 We see that in the case of the Gaussian magnetic field of
a;=0.133+0.001. The asymptotic valua,=0.829+0.002  Ed. (2), our results for larged have the same aszympFotic
agrees quite well with that calculated from the Schwingeroehavior as that of the derivative expansigy-b,/d”. This
formula: ngcff(\zﬂ)/dZ:o_gzg_ This asymptotic behavior has Means that there is a remarkable difference between smooth
also been observed for other valuesByf andm; covering ~ and discontinuous mzagnetlc fields, in the way their effective
the whole range of the characteristic rﬁg/m? that deter-  energiegdivided byd®) tend to their asymptotic values. It is
mines how strong is the magnetic field obvious that this difference is related to the fact that the
For small values ofl. if we take into a.ccount the vacuum derivative expansion fails for discontinuous magnetic fields,

polarization diagram of Eq29) which is a good approxima- K€ the magnetic field of Eq(3).
tion for the effective energy, we find thﬁeff(zﬂ)/dz is
proportional tod. This is in agreement with the linear behav-
ior of Eeff(2+1)/d2 for d—0, which is seen in Figs. 5 and 7 An approximate way to compute the effective action in
below. the presence of a static magnetic field is the derivative ex-

Sch —
Ee]?f(2+ 1) A87TS/2

2 o
ESfoTs = 4_B f+ _ds
e + 2 2
87 Jo s

VI. DERIVATIVE EXPANSION
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0 T T T T T T T T
02 | -
et A oo
.-"'6"
04 | “_‘,0’ 4
e - FIG. 6. Eety3+1y/d® as a function ofd for
06 k o J B,=5 andm;=1 for the magnetic field of Eq.
(3). The discrete points correspond to our numeri-
o/ cal results and the continuous line to the best fit
08 ) curve of the formag—a;/d. The asymptotic
value a;=0.129+-0.002 agrees quite well with
AF e - that calculated from the Schwinger formula:
] 0.130. Our numerical results fax, and a; are
2k | rounded to three decimal points.
1.4 | ‘our numericalyresults: ° E
' -0.129-0.158/d -+~
1.6 - L L L L L L L
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
pansion. This method should give accurate results for slowly B32 (1o 1 1
varying magnetic fields. Our aim is to examine cases in Egg)ﬂ):j d?x 3/2f 72(cotr(s)——)e3m%/3ds
which the derivative expansion fails to provide a good ap- 87 S
proximation. Also, we can test our numerical results by com- (43
paring then with those of the derivative expansion in the
homogeneous limitB,,d?>1), where the derivative expan- 1/ 1 \32 (V B)?
sion is expected to give accurate results. EE%)H): §(E) f 2x 5372

The derivative expansion for (B81)- and (2+1)-
dimensional QED has been investigated in REIg,16, re- 3
. . . : +e ] d
spectively. For the case of21 dimensions, if we keep the Xf —_esniiB[ — [scoth(s)]ds. (44)
first two terms(a zeroth order term plus a first order correc- o st2 ds
tion) the effective energy for a static magnetic field is given

by For the special case of static magnetic fields, the above for-
§ o L mulas were obtained in Refgl8,19.
Efio+ y=Eh 1)+ EBL 1) (42 In Fig. 7 we have plotted the effective energy
Eeff(zﬂ)/dz as a function ofd, for fixed magnetic field
where strengthB,,=5 andm;=1 for the Gaussian magnetic field
05 T T T T T T T T
045 Py
% Q_.e...e...e..e..e.._e..9-—9—-9---°"°"°"°" T
041 o @ '<;>___e_ """" 1
° o
0.35 [ o O 4
> P g
03} oS . 2 .
N FIG. 7. Eet12+1)/d” as a function ofd for
025 L ° i B,=5 and m;=1 for the Gaussian magnetic
. field of Eq.(2). The discrete points correspond to
02 i our numerical results and the continuous line
° i 0.448-0.03447 to the derivative expansion.
015 | .
o ’.‘
0.1 "our numerical results’ < 1
i '0.448" --—-
o / 0.448-0.034/d? ------
0.05 | i i
0 1 1 1 1 ] 1 1 1
0 0.2 0.4 0.6 0.8 d 1 1.2 1.4 1.6
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FIG. 8. Egt2+1) as a function of¢ for d
e b yd P =1 andm;=0 for the magnetic fields of Eq&2)
o and(3). The discrete points correspond to our nu-
S - merical results and the continuous lines to the
r & T ] best fit curves of the formy¢®°—w, ¢ for the
................ magnetic field of Eq(3) andvy¢*?—v,¢*? for
..... e 4 the magnetic field of Eq(2). Our numerical re-
sults for the coefficients are rounded to three

decimal points.

1F ‘'magnetic field of Eq. (3)' < -
0.413 ¢32-0.112¢ -
'magnetic field of Eq. (2)' +

0.277 $%2-0.075 ¢ 12 o

1 1 1 1 1 1 1

0 1 2 3 4 5 6

B,. We see, as expected, that in the homogeneous lidnit (  In the case of 3-1 dimensions, if we take into account
>1/\/B_m) our results agree quite well with those of the de-Eq. (13), we obtain an asymptotic formula for the case of
rivative expansion. In the smadll limit (d<1/\B,,), the de-  strong magnetic field:
rivative expansion fails to approximate the effective energy.
See the deviations in Fig. 7 far<0.8. 1

The case of 3-1 dimensions has not been included, as it Eetia+1)=— —IN(By/m )f d2XB2(X).  (49)
is similar to the case of 21 dimensions.

> 2
VIIl. THE STRONG MAGNETIC FIELD  (Bn>mp) The above equation is more general than B4), which was

In order to study the strong magnetic fiel(>m¢) be- ~ obtained in the limitm;d—0 for fixed ¢. _ .
havior of the effective energy, we setA(k) For fixedmd, Eq. (49 .y|elds an asymptotic formula in
=G(kB,'?,B,d® and make the change of variable the case of large magnetic flug

=kB,,*?in relations(26) and (24):

Bl/2

Eeff(2+1)_ 2 m

XB2(X). (50)

L [G(y.Bu) ~cIdy, Betitar1
(45)
From Eq. (50) we obtain Eetgz1y= — (1/6md?) ¢?In(2¢)
y2+m?/B,, for the magnetic field of Eq.(3) and Eeqz+1)
Eetig+ny=— - ( ) =—(1/12md?) $%In(2¢) for the magnetic field of Eq(2).
/B We see that for largep the (3+1)-dimensional effective
X[G(y,Bde)—C]dy, (46)  energy is proportional to- $?In ¢. Also, this analytical re-
sult explains the weak dependence@mof Eeff(3+1)/¢>2 for
whereB,, is a characteristic magnetic field strength definedthe magnetic field of Eq(3), which was observed numeri-
asB,,=®/7d? and® is the magnetic flux. cally in Ref.[8].
For B,,> mf we find the asymptotic expressions In the case of 21 dimensions, the asymptotic formula
for ¢— + o0 is obtained from Eq(45) by settingm;=0. In
m ) Fig. 8 we have plotted the effective energy as a functios of
Eefi(2+1)= Zfo [G(y,Bmd?) —c]dy, (47)  for d=1 andm;=0, for the magnetic fields of Eq2) and
(3). Also, in the same figure we see that the curvgsh>?
B —w;¢ and Vo> P—v 92, which correspond to the mag-
— —In(B,,/m?) netic fields of Eq(2) and(3), fit our data very well. Thus, for
2 large ¢ the (2+1)-dimensional effective energy is propor-
» tional to ¢*2 Also, we observe that the coefficienig,
Xf y[G(y,B,d?) —c]dy. (48) =0.413+0.008 andvy=0.27690.0005 agree closely with
0 the coefficients obtained from the formula

Bl/2

Eetfz+1)=

105011-10
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{(—1/2) sion fails, we expect a different asymptotic behavior of the
Eefr2+1)= — —f d2 B¥4x), (51)  formag—a,/d.
V2 We studied the case of large magnetic fthixstrong mag-
netic field when the spatial size of the magnetic flux tube is

which are 0.416 for the magnetic field of E§) and 0.2772  fixed. We showed that the effective energy for largeis
for the magnetic field of Eq(2). This formula is obtained proportional to— ¢?In ¢ in the case of 3 1 dimensions and
from the leading term of the derivative expansigiven by  to ¢°? in the case of 2 1 dimensions. In particular, in the
Eq. (43)] if we setm;=0. Our numerical results show that case of 3+ 1 dimensions, we derived an explicit formula for
formula (51) gives the asymptotic behavior for largk in large magnetic flux ¢=1).
the case of 2- 1 dimensions. Note that formu({&1) does not It would be interesting if for largeb the effective energy
include all the cases of strong magnetic fiBlg=2#/d”. In  in the presence of an inhomogeneous magnetic field became
the case of smalin;d and fixed¢ it is not correct. In this greater than the classical energy. In view of the above-
case the effective energy is proportional td & shown by mentioned results we can exclude this possibility at least for

Eq. (27) in Sec. IV. the class of inhomomogeneous magnetic fields of the form of
a flux tube. An exception may be the case of B dimen-
VIIl. CONCLUSIONS sions for very large¢. However, for very large¢ the

asymptotic behavior ¢?In ¢ is not reliable, as the contri-
We presented a numerical study of the fermion-inducedutions of the higher loop correctiofisvo-loop corrections,
3+1 and 2+ 1 QED effective actions in the presence of anythree-loop corrections, ejdo the QED effective energy can-
static cylindrically symmetric magnetic field with a finite not be assumed small.
magnetic flux. We used a simple novel approach for fast

computation of the effective action. The numerical work was ACKNOWLEDGMENTS
greatly facilitated by the observation that the functid(k) _
—c [see EQ.(20)] tends rapidly to zero for larg& The | am grateful to Professor G. Tiktopoulos, who proposed

integrals(27) and (28) for the effective energy for (21)-  this topic to me and supervised the work. I also would like to
and (3+1)-dimensional QED, respectively, are renderedthank him for numerous valuable discussions and the careful
convergent due to this fact. reading of the manuscript, as well as Dr. J. Alexandre, and
The functionA(k)—c is the only quantity we need to Professor K. Farakos, Professor G. Koutsoumbas, and Pro-
know in order to compute the effective enefgge Eqs(27) fessor A. Kehagias for useful comments and suggestions.
and (28)]. We have performed computations for eight mag-This work was partially supported by NTUA program
netic field configurationgsee Sec.)l The fornf of the func-  Archimides.
tion A(k) —c is similar for all these fields. This means that
our conclusions for the effective energy are quite general and APPENDIX A: EFFECTIVE ENERGY FOR MASSLESS
are not valid just for the magnetic fields of Eq2) and(3). FERMIONS
For e2/47=1/137, our numerical work shows that for the . . ) ) )
families of magnetic fields we examined, there is no radius !N this appendix we derive an expression for the effective
of the magnetic flux tube that minimizes the total energy foreN€rgy for massless fermions, since Et) contains a sin-
fixed magnetic flux. The main reason for this is the smali9ularity atm;=0. It is remarkable that this singularity does
contribution (of the order of 1%) of the effective energy to NOt €xist in the unrenormalized effective energy of Ep).
the total energy. An exception, where the contribution is noft &rises due to the renormalization procedure used to remove
small, is the case of (81)-dimensional effective energy for the ultraviolet divergent part of the effective energy. How-
smalld, as may be seen from E(B6). ever, the above-mennpne_d smgulqnty does not appear if in-
In Sec. V, we observed that our numerical results forStéad of the renormalization C_c_’nd't'dh(oz)zo we use the
E.;//d? in the case of the magnetic field of EE), con-  Off-Shell renormalization conditiohl (—M?)=0.
verge slowly to an asymptotic value given by the Schwinger_ S€ttingm;=0 in the unrenormalized effective energy of
formula for a homogeneous magnetic field. In addition, weEd- (12 we find
showed numerically that this asymptotic behavior for ladge
is of the formay—a; /d. The case of the Gaussian magnetic E :i E E i ln Efny _ i 2 E
field of Eq. (2) is different, as the convergence to the e D 4 5 M\ A2 4mf/ TV
asymptotic value is considerably faster than the case of the (A1)
magnetic field of Eq.(3). The asymptotic behavior of
Eefs/d?~bo—b; /d? in this case, as we see in Fig. 7, is the The ultraviolet divergent part in the above equation is re-
same as that given by the derivative expansion. Generalizingnoved if we include the following counterterm in the QED
we expect that this behavior will be valid for all smooth Lagrangian:
magnetic fields of the form we examine. In the case of dis-
continuous magnetic fields, for which the derivative expan-

Scount:(zs_l)f d4x(_%F,qulw) (A2)
See Sec. Ill and Fig. 1. where
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1 A2 -30F
Zs=1 — shn 2] " 18| (A3)
-40
This counterterm is defined uniquely by the off-shell renor-
malization conditionII(—M?)=0. In this case the renor-
malized effective action for massless fermions is =50

L E L
(rem) 2 by =2 -60
Eeri(3+1)= 7, {Zn} EfmyIn AZ) o {En;, Efny -
(A4)
-70
In a similar way to that of Sec. Ill, we obtain 5 0 3 30 20
(ren) 1 FIG. 9. 6, ,(k) as a function ok for I=1, o=1, d=1, and
eff(3+1):¥[cl(¢)|”(dM)+C2(¢)] (A5) ¢ =50 for the Gaussian magnetic field of Hg).

as a very sharp peak. For the calculation of the phase shifts
in this case we have used the differential equatibth4) of
Appendix D, which is appropriate for largé. For the plot
f B2(x)d2x, we calculated the phase shifts with a step equal to 0.1. It may
be noted, incidentally, that our numerical results for the
(A6) phase shifts ak=0 are in agreement with Levinson’s theo-
L 5 rem[20]. Levinson’s theorem, for a two-dimensional Schro
I _ 2 dinger equation and for a potential with asymptotic behavior
Cal )= WZJO y )Ry, ¢)=cldy=gei(d). O(1/r?) for larger, has been investigated in RE¢21]. Thus
(A7)  for our special case

where

2

1 [+
cl(¢)=;fo y[F(y,¢)—c]dy= Tom?

The total energy is given by the equation . g(“ I—I—g|) ifazero mode exists,
Etot=Eclasst Eeft 0 (0)=
. . g(|l|—|l—¢>|) otherwise.
=— J B2(X)d?X+ —[c1(¢)IN(dM)+ ()] (B1)
2ey d
(A8) The metastable states are due to the potential well form of

the effective potentiad, ,(r)+ (12— 1/4)/r? as shown in Fig.
10. It is interesting to compare our results with the WKB
approximation for the eigenvaluk§ of the metastable states
as roots of the equation

M’ 2
n V) (A9) jb( W)dr=(n+%>m n=012...,
a r

(B2)

whereey, is the charge of the fermion defined at the sddle
The transformation law for the chargg, is given by the
equation

1 1 1

== -
eMr eM 6’772

which also guarantees that the total energy is independent of

the renormalization scali. wherea andb are the turning points. In Table | we see that

APPENDIX B: THE APPEARANCE OF METASTABLE TABLE I. We compare the energies of the metastable states as
STATES FOR LARGE MAGNETIC FLUX ¢ they are obtained from Fig. 9 with the WKB approximation results

In this appendix we examine the appearance of metastabjg’ 9=1: =1, =1, and$=>50.

states for large magnetic flu4. Note that in the large mag-

netic flux ¢=B,d%/2 limit we distinguish two casega) a n WHKB approximationk, Numerical computation
large magnetic field streng®y,, keepingd constant andb) a 1 13.721 13.7-13.8
long ranged of the magnetic field keepinB,, constant. 2 19.051 19.0-19.1

In Fig. 9, we see that the functio) (k) exhibits jumps 3 22.881 22.8-22.9
at a finite number of values &€ Every jump increases the 4 25.854 25.8-25.9
phase shift byr and corresponds to a metastable state of thg 28.200 28.1-28.2
electron. It is remarkable that these jumps occur in a smal 20.997 20.9-30.0

but nonzero intervalk where the density of states appears
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1200 T T T T T T T T T
"effective potentiall —

1000 | —
800 H

800 1 FIG. 10. v} ,(r)+(1?—1/4)/r? as a function

of r for =1, 0=1, d=1, and ¢=50 for the

400 | Gaussian magnetic field of E(R).

200

our numerical results agree closely with those of WKB ap-dent solutionai{} ((r), u{?(r) of the radial equation
proximation. Note that the electron metastable state energies

corresponding to the eigenvaluk$ are \/k2n+ mzf. d2 12-1
— ot oK ugdn=0 @Y
APPENDIX C: THE ROLE OF THE LANDAU LEVELS
FOR THE EFFECTIVE ACTION with asymptotic behavioe™'*" asr tends to infinity.
Taking into account Eqg9) and (14), it is obvious that We can put these solutions into the form
the effective energy is determined uniquely by the spectrum )
of the eigenvalue equationy{'D ;) ?W ) (X) = E{n W ny(X). ul (r)=e'PstenJrH D(kr), (D2)
In Sec. V, it was shown numerically that the effective energy
of a magnetic flux tube of the form of E¢3) tends(for d u(kzl)s(r):eiﬁﬁs(k,r) JrH® k), (D3)

>1/\B,,) to the result calculated from the Schwinger for-

mula for a homogeneous magnetic field. One may think thafhere H(M(x) andH®(x) are the Hankel functions of the
this is unexpected, as the spectrum of a magnetic flux tube gt and second kind, respectively. The complex function
continuous(with zero modes ifp>1) whereas the spectrum | «(k,r) tends to zero as tends to infinity.

of a homogeneous magnetic field, has a different "The ‘seattering solutionsy  ((r) of the radial equation
structure—it is discrete and consists of the well known La”'(Dl) satisfy the following boUhdary conditions:

dau levels. According to Appendix C these two spectra are

related in the limit of larged. Indeed, if in the analysis of U <(0)=0 (D4)
Appendix C, instead of the Gaussian magnetic field of Eq. e '

(2), we used the magnetic field of E¢) we would find |

metastable states with energies almost identical with those ofy, = (r— +OC)NCO5< ke =T 8 «(K)|. (D5)
the Landau leveléwe have checked this numericaliyThus, B 4 2 ’

the continuous spectrum of the magnetic field of E8).

approaches, foi>1/\/B,,, the discrete spectrum of a homo- The solutionauy | 4(r) are expressed as a linear combination
geneous magnetic field in a straightforward way: each meta@f the solutions(D2) and (D3):

stable energy level approaches a corresponding Landau level

and at the same time more metastable states are added at thg, ((r)=e'%.se!is\rH(kr) +e 195~ BlsJrH(®(kr) .

high energy end. (D6)

APPENDIX D: NUMERICAL CALCULATION OF THE Impo;itng the boundary conditiofD4) on the solution(D6)
PHASE SHIFTS we obtain

In this appendix we describe two methods for the numeri- 01 s(k)=—Reg, «(k,0). (D7)

cal calculation of the phase shifts.
We will adapt the method presented by Famyal. in  Substituting the solutioiD2) into Eq. (D1) we obtain the
[22,23 to our problem. We consider two linearly indepen- differential equation
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Bl (k1) +2ik qi(kr) B (k1) =B s(k,1) = v, 4(r)=0

(D)

where
d
a0 = g {INLVXHP 0 T} (D9)
The functionsp, s(k,r) should satisfy the following condi-

tions:

B s(k,+2)=0, (D10)

Bl s(k,+*)=0. (D11)

Because the potential tends to zero very slo@fi/r?), we
begin the numerical integration of the differential equation
(D8) from a large number ., toward zero, with the condi-

tions
1
Bro(Kil mad=(—21 ¢+ ¢?)5— (D12)
Bl (man) =~ (=214 8= 013
heima 2k rrznax.

The above asymptotic behavior of the functiofigs(k,r)
can be obtained from E¢D8).

PHYSICAL REVIEW D64 105011

Another way to compute the phase shifts is by solving the
differential equation

d5|’s(k,r) w
—ar 2" vy s(N[Ji(kr)coss o(k,r)

—N(kr)sing; ¢(k,r)]? (D14)
with the boundary conditior$; 4(k,0)=0, whereJ;(x) and
N,(x) are the Bessel and Neumann functions, respectively.
The phase shift is given by the limit

8 (k)= lim & y(K,r).

r—+o

(D15)

This method was formulated by Calogero in He#] for the
three-dimensional case. It was obtained for two dimensions
in Ref. [25].

For the numerical computations of the phase shifts we
have used mainly the differential equatidn8) because it
gives results faster and more accurately than €&l4).
However, this differential equation is stiff for large values of
¢ and small values of. In that region of¢ and|l we have
used Eq(D14).

We also compared our numerical results with those of the
WKB approximation(22) and we found good agreement for
largel or largek.
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