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Fermion-induced effective action in the presence of a static inhomogeneous magnetic field
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We present a numerical study of the fermion-induced effective action in the presence of a static inhomoge-
neous magnetic field for both (311)- and (211)-dimensional QED using a novel approach. This approach is
appropriate for cylindrically symmetric magnetic fields with a finite magnetic fluxF. We consider families of
magnetic fields, dependent on two parameters: a typical valueBm for the field and a typical ranged. We
investigate the behavior of the effective action for three distinct cases:~1! keepingF ~or Bmd2) constant and
varying d, ~2! keepingBm constant and varyingd, and~3! keepingd constant and varyingF ~or Bmd2). We
note an interesting difference in the limitd→1` ~case 2! between smooth and discontinuous magnetic fields.
In the strong field limit~case 3! we also derive an explicit asymptotic formula for the (311)-dimensional
action. We study the stability of the magnetic field and show that magnetic fields of the type we examine
remain unstable, even in the presence of fermions. In the appropriate regions we check our numerical results
against the Schwinger formula~constant magnetic field!, the derivative expansion, and the numerical work of
Bordag and Kirsten. The role of the Landau levels in the effective action and the appearance of metastable
states for a large magnetic flux are discussed in the Appendixes.

DOI: 10.1103/PhysRevD.64.105011 PACS number~s!: 11.15.Tk
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I. INTRODUCTION

The evaluation of the fermion-induced effective action
the presence of a static magnetic field is important in qu
tum electrodynamics. Historically, the effective action for
homogeneous magnetic field was first computed by Heis
berg and Euler@1#, then by Weisskopf@2#, and later by
Schwinger@3# with the proper time method. The effectiv
action in this case can be expressed by an explicit formula
Ref. @4# Redlich obtained the corresponding results for
11)-dimensional QED.

For inhomogeneous magnetic fields explicit formulas
not available. Approximations can be developed for the c
of ~a! weak magnetic fields~perturbative expansion! and~b!
smooth magnetic fields~derivative expansion!. More re-
cently, for a special form of the magnetic field it has be
possible to derive a closed formula for the effective act
for both 311 and 211 dimensions@5,6#. Another exact re-
sult is presented in Ref.@7#, for a magnetic field with a delta
function profile in two-dimensional Euclidean space.

The aim of this paper is to obtain, bynumericalcompu-
tations, qualitative knowledge of the dependence of
fermion-induced effective action on various quantities ch
acterizing the magnetic field such as its size and its degre
inhomogenity, etc. For this numerical study we use a sim
novel approach for the fast computation of the effective
tion, which is appropriate for static, cylindrically symmetr
magnetic fields with a finite magnetic fluxF. We will call
such fields magnetic flux tubes.

Previous numerical studies of the effective action are
following. In Ref. @8# the effective energy, in 311 dimen-
sions, was computed numerically for a cylindrically symm
ric static magnetic field which is constant inside a cylind
and zero outside it. In more recent work@9# the effective
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action was computed for a cylindrically symmetric sta
magnetic field with a delta function profile, in 311 dimen-
sions. Note that this field has infinite classical energy.

Our purpose in this paper is to go beyond the previo
numerical work, and to study, for the first time, the 211
QED effective energy in the presence of a magnetic fl
tube. In addition, in the case of 311 dimensions we conside
more realistic magnetic field configurations than those of
previous work, for example, the Gaussian magnetic field
Eq. ~2! below.

We study families of magnetic fields dependent on t
parameters, a typical value1 Bm for the field~or the magnetic
flux F5Bmd2/2) and a typical ranged. We investigate the
behavior of the effective action for three distinct cases:~1!
keepingF ~or Bmd2) constant and varyingd, ~2! keepingBm

constant and varyingd, and~3! keepingd constant and vary-
ing F ~or Bmd2). The mass of the fermionmf is assumed to
be constant.

We note a difference in the limitd→1` ~case 2! be-
tween smooth and discontinuous magnetic fields~Sec. V!.
We will see that this difference is related to the fact that
derivative expansion fails for discontinuous magnetic fie
like the magnetic field of Eq.~3! below.

An interesting problem not covered by previous work
the behavior of the effective energy for large magnetic fluxf
~strong magnetic field! and fixedmfd, wheref5eF/2p. In
Sec. VII we present an investigation for largef. In particu-
lar, in the case of 311 dimensions, we derive an explic
asymptotic formula forf@1.

We also consider the question of stability of the magne
field in the presence of fermions. The question is whet
some radius exists that minimizes the total energy~classical

1We define this typical magnetic field strength asBm

5*BW •dSW /pd2.
©2001 The American Physical Society11-1
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PAVLOS PASIPOULARIDES PHYSICAL REVIEW D64 105011
energy plus effective energy! for fixed magnetic fluxF, thus
rendering the magnetic field stable at the quantum level.
same question was considered by the authors of Ref.@8#, for
the magnetic field of Eq.~3! ~below! in the case of 311
dimensions, and the answer was negative. Our purpose
is to study the stability of magnetic flux tubes in the case
211 dimensions. In addition, in the case of 311 dimen-
sions, we generalize the results of Ref.@8# for more realistic
magnetic field configurations like the Gaussian magn
field of Eq.~3!. Note that we answer this question for seve
two-parameter families of magnetic field configurations
the type of the flux tube for both 211 and 311 dimensions
~see the magnetic fields at the end of the present sectio!.

In Appendix C we explain the role of the Landau levels
the effective action, relating them to the metastable sta
that appear in the case of large magnetic fluxF ~see Appen-
dix B!.

The vector potential and the magnetic field for the class
magnetic fields we examine are given by the following eq
tions:

AW ~r !5
r

2
f ~r !eWf , BW ~r !5

1

2r

d

dr
@r 2f ~r !#eW z , ~1!

where f (r ) is a function with asymptotic behavior 2f/r 2 as
r tends to infinity andf5eF/2p. In what follows, we as-
sume the rescalingB→eB except where we state otherwis
We present our numerical results for two magnetic fields,
with a Gaussian profile and one that is constant inside
vanishes abruptly outside a cylinder of radiusd, with respec-
tive field strengths

B1~r !5
2f

d2
expS 2

r 2

d2D , ~2!

B2~r !5
2f

d2
u~d2r !, ~3!

whereu(x) is the step function.
We have performed analogous calculations for six tw

parameter families of magnetic fields other than those
Eqs.~2! and ~3!, with magnetic field strengths

B3~r !5
2f

d2

1

cosh2~r 2/d2!
,

B4~r !5
4f

d2 S r 2

d2D expS 2
r 4

d4D ,

B5~r !5
4f

d2p

1

~r 4/d411!
,

B6~r !5
6f

d2 S 12
r

dD u~d2r !,
10501
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B7~r !5
4f

d2 S 12
r 2

d2D u~d2r !,

B8~r !5
2f

d2

1

~r 2/d211!2
.

Since including the results in detail would make this pap
unnecessarily long it is perhaps sufficient to state that
conclusions~about the stability of the magnetic field or th
dependence ond of the effective action, etc.! for the mag-
netic fields of Eqs.~2! and ~3! are valid also for the above
mentioned magnetic fields.

II. EFFECTIVE ENERGY

We consider the following path integral that correspon
to QED:

Z5E DADC̄DC expS i E dDxF2
1

4
FmnFmn

1C̄~ iD” 2mf !C G D ~4!

in dimensionD (D53,4). Integrating out the fermionic de
grees of freedom in the above-mentioned path integral,
obtain the effective action expressed as the logarithm o
determinant:

Se f f@A#5
1

i
lnE DC̄DC expS i E dDxC̄~ iD” 2mf !C D

5
1

i
tr ln~ iD” 2mf ! ~5!

whereD” 5gm(]m2 ieAm), and g05s3 , g15 is1 , g25 is2
is a two-component representation of the gamma matr
for the (211)-dimensional QED. A four-component repre
sentation will be used for the (311)-dimensional case.

We will use the identity

tr ln~ iD” 2mf !5
1

2
tr ln~D” 21mf

2! ~6!

in order to take advantage of the diagonal form of the ope
tor D” 21mf

2 . It is well known that for (211)-dimensional
QED a parity violating term~Chern-Simons term! is induced
@4,10#. However, this term is zero for the case w
investigate.2 See also the relevant comments in Ref.@11#.

We deal first with the (211)-dimensional problem. The
operatorD” 21mf

2 for a static magnetic field can be put int
the form

2The induced Chern-Simons term is of the for
(k/2)*d3x«mnrAm]nAr and it is zero for our case, sinceA050 and

Ȧ15Ȧ250.
1-2
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FERMION-INDUCED EFFECTIVE ACTION IN THE . . . PHYSICAL REVIEW D 64 105011
D” 21mf
25]0

21~gmDm!21mf
2 ~m51,2!. ~7!

This operator has a complete system of eigenfunctions of
form C$n%(xW ,t)5e2 ivtC$n%(xW ) where C$n%(xW ) satisfies the
eigenvalue equation (gmDm)2C$n%(xW )5E$n%C$n%(xW ) and $n%
is a set of quantum numbers. Note thatE$n%>0 since the
operator (gmDm)2 is positive definite as the square of a He
mitian operator. It is convenient here to refer to the effect
energyEe f f52Se f f /T instead of the effective actionSe f f ,
whereT is the total length of time. The effective energy,
we perform a Wick rotation of the integration variablev
(v→ iv), is given by

Ee f f(211)52
1

2p (
$n%

E
0

1`

dv ln~v21E$n%1mf
2!. ~8!

We make the above integral convergent by subtractin
term that is independent of the magnetic field. We may do
because our purpose is to compute the difference betw
the effective energy in the presence of the magnetic field,
the energy when the magnetic field is absent. If we subt
the term2(1/2p)($n%*0

1`dv ln(v21mf
2) from Eq. ~8! and

integrate, we get

Ee f f(211)52
1

2 (
$n%

~AE$n%1mf
22mf !. ~9!

This expression incorporates the expectation that very m
sive fermions interact weakly with the magnetic flux tu
~i.e., the effective energy tends to zero asmf tends to infin-
ity!.

The extension to the (311)-dimensional case can b
made if we replacemf

2 by k3
21mf

2 in Eq. ~9! and integrate
over thek3 momentum. An overall factor of 2~from the
Dirac trace! must also be included~for details see, e.g., Ref
@6#!:

Ee f f(311)52Lz(
$n%

E
2`

1` dk3

2p
~Ak3

21E$n%1mf
22Ak3

21mf
2!

~10!

whereLz is the length of the space box in thez direction.
Introducing a momentum cutoffL/2 we find

Ee f f(311)5
1

4p (
$n%

~E$n%1mf
2!lnS E$n%1mf

2

mf
2 D 2

1

4p (
$n%

E$n%

2
1

4p
lnS L2

mf
2D($n%

E$n% ~11!

where we have omittedLz and we assume that we calcula
energy per unit length.

For largemf the above expression for the effective ener
must tend to the first diagram~vacuum polarization diagram!
of the perturbative expansion of the effective energy:
10501
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Ee f f(311)
(2) 52

1

8p3E0

1

dxx~12x!

3E
0

1`

dqquB̃~q!u2 lnS mf
21q2x~12x!

mf
2 D

1
1

24p2
lnS L2

mf
2D E d2xWB2~xW ! ~12!

whereB̃(q)5*d2xWe2 iqW •xWB(xW ). Note thatB̃(q) depends only
on q5uqW u as we have assumed that the magnetic field
cylindrically symmetric.

If we compare Eqs.~11! and ~12! for mf→` we find

(
$n%

E$n%52
1

6pE d2xWB2~xW !. ~13!

Thus, the logarithmically divergent part in Eq.~11! can be
dropped if we include an appropriate counterterm in
QED Lagrangian. This counterterm is defined by the on-sh
renormalization condition3 P(0)50. The renormalized ef-
fective energy is then given by the equation

Ee f f(311)
(ren) 5

1

4p (
$n%

~E$n%1mf
2!lnS E$n%1mf

2

mf
2 D

2
1

4p (
$n%

E$n% . ~14!

Note that the renormalized effective energy vanishes
large values ofmf , as expected. For the sake of simplici
we will drop the index (ren) in the rest of this paper.

In order to define the effective action for massless ferm
ons for which the right-hand side of Eq.~14! is singular, we
should impose the renormalization condition for the vacu
polarization funtionP(q2) at a spacelike momentum2M2

@P(2M2)50#. Accordingly, a formula for the effective ac
tion for massless fermions is given in Appendix A.

In cylindrical coordinates and for the special magne
field of Eq. ~1!, the operator (gmDm)2 has the following
diagonal form:

~gmDm!252D1
22D2

22sB

52
]2

]r 2
2

1

r

]

]r
2

1

r 2

]2

]f2
2

1

i

]

]f
f ~r !

1
r 2f 2~r !

4
2sB~r !, ~15!

wheres takes the values61 which correspond to the two
possible spin states of the electron. Because the ope

3For the definition of the vacuum polarization functionP(q2) and
for details about the renormalization condition forP(q2) see, for
example, Ref.@12#.
1-3
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PAVLOS PASIPOULARIDES PHYSICAL REVIEW D64 105011
(gmDm)2 is invariant under rotations around thez axis, the

eigenfunctions C$n%(xW ) have the form C$n%(xW )
5eil fu(r )/Ar , wherel is the quantum number of the angul
momentum (l 50,61,62, . . . ). Thefunction u(r ) satisfies
the equation

S 2
d2

dr2
1

l 22 1
4

r 2
1v l ,s~r !D u~r !5k2u~r ! ~16!

where

v l ,s~r !52 l f ~r !2sB~r !1
r 2f 2~r !

4
~17!

and k2 is the corresponding eigenvalue~we may setE$n%
5k2 sinceE$n%>0). The spectrum of the radial Schro¨dinger
equation ~16!, in addition to the continuous spectrum (
1`), may also have zero modes according to the Aharon
Casher theorem4 @13#. Note that for our special case$n%
5$k,l,s%.

III. DENSITY OF STATES

In order to sum up over the continuous modes of Eq.~16!,
we shall need the density of statesdn/dk5r l ,s(k) ~i.e., the
number of states per unitk):

r l ,s~k!5r l ,s
( f ree)~k!1

1

p

dd l ,s~k!

dk
~18!

wherer l ,s
( f ree)(k)5p/L is the density of states for free spac

andd l ,s(k) is the phase shift that corresponds to thel th par-
tial wave with momentumk and spins. The relation~18! is
shown, e.g., in Ref.@14#.

A noteworthy feature of the functiond l ,s(k) is that it
exhibits jumps that correspond to metastable states for l
values off. This is shown in Fig. 8 of Appendix A.

If we use the relations~18! and ~9!, the effective energy
for (211)-dimensional QED is

Ee f f(211)52
1

2pE0

1`

~Ak21mf
22mf !

d

dk F(
l ,s

d l ,s~k!Gdk

~19!

wherer l ,s
( f ree)(k) was dropped since it contributes a field i

dependent term. Note that the zero modes do not contri
explicitly in Eq. ~19!.

The series of the phase shifts overl in Eq. ~19! is not
absolutely convergent. The simplest way to define it is
sum symmetrically overl. We define the function

D~k!5 lim
L→1`

(
s,l 52L

L

d l ,s~k!. ~20!

4According to this theorem a zero mode exists if the conditio
1, l 11,f ands51 are satisfied.
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The asymptotic behavior of the phase shifts foru l u@kd is

d l ,s~k!→S 2
u l 2fu

2
1

u l u
2 Dp ~21!

and the sumd l ,s(k)1d2 l ,s(k) vanishes for large enough va
ues ofl so the limit in Eq.~20! exists.

The largel asymptotic behavior can be obtained from t
WKB approximation for the phase shifts:

d l ,s~k!5ReH E
0

1`SAk22v l ,s~r !2
l 2

r 2
2Ak22

l 2

r 2D drJ .

~22!

For largel only the asymptoticO(1/r 2) tail of the potential
contributes to the above integral. Replacingv l ,s(r ) by its
asymptotic form (f222f l )/r 2 yields Eq.~21!.

Note that an asymmetric sum would give the same re
since limL→1` (s,l 52L

L1DL d l ,s(k)5D(k)1c8 and c8 is inde-
pendent ofk.

In Appendix B we describe two methods for numeric
calculation of the phase shifts by solving an ordinary diffe
ential equation. The numerical calculation shows thatD(k)
for largek tends to a constant valuec52pf2. An analytical
proof for this result can be obtained using the WKB appro
mation~22! for the phase shift. In Fig. 1 we have plotted th
functionD(k)2c for f54.5 andd51. The numerical com-
putation was performed for the magnetic fieldsB1 andB2 of
Eqs. ~2! and ~3!, respectively. In order to achieve conve
gence of Eq.~20! for f54.5 we summed up tol max520 for
the magnetic fieldB2 and tol max530 for the Gaussian mag
netic fieldB1.

Figure 1 shows that the functionD(k)2c tends rapidly to
zero, apparently as 1/k4 for the magnetic fieldB2 and faster
for the magnetic fieldB1, so the integral~19! is highly con-
vergent. This is remarkable because it means that the s
function D(k) can be used for the (311)-dimensional case
as can be seen from Eq.~26!.

The result that the functionD(k)2c corresponding to the
magnetic fieldB1 tends faster to zero than that for the ma
netic fieldB2 suggests that in general the functionD(k)2c
spreads when the corresponding magnetic field beco
more localized. This has been checked by calculations
magnetic fields other thanB1 andB2 ~see Sec. I!. In addition
we observed that when the magnetic field becomes m
localized we need fewer values ofl in order to achieve con-
vergence of Eq.~20!.

The value of the functionD(k) at k50 is independent of
the magnetic field configuration and depends only onf. This
becomes evident if we take into account the Levinson th
rem which is presented in Appendix A. Thus the two curv
in Fig. 1 intersect atk50. Now from the relations~19! and
~20! we obtain

Ee f f(211)52
1

2pE0

1`

~Ak21mf
22mf !

d@D~k!2c#

dk
dk.

~23!
s

1-4
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FIG. 1. D(k)2c as a function ofk for f
54.5 andd51.
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Integrating by parts we find

Ee f f(211)5
1

2p E
0

1` k

Ak21mf
2 @D~k!2c#dk. ~24!

For the (311)-dimensional case, from the relations~14!,
~18!, and~20!, again dropping the free part from the dens
of states, we find

Ee f f(311)5
1

4p2 E0

1`

~k21mf
2!lnS k21mf

2

mf
2 D d@D~k!2c#

dk
dk

2
1

4p2 E0

1`

k2
d@D~k!2c#

dk
dk. ~25!

Integrating by parts we obtain

Ee f f(311)52
1

2p2 E0

1`

k lnS k21mf
2

mf
2 D @D~k!2c#dk.

~26!

IV. DEPENDENCE ON THE RANGE d FOR FIXED
MAGNETIC FLUX f

A dimensional analysis shows thatD(k) is a function of
the form F(kd,f). If we make the change of variabley
5kd and setD(k)5F(kd,f), we find

Ee f f(211)5
1

2pdE0

1` y

Ay21mf
2d2

@F~y,f!2c#dy,

~27!

Ee f f(311)52
1

2p2d2E0

1`

y lnS y21mf
2d2

mf
2d2 D

3@F~y,f!2c#dy, ~28!
10501
whered is a typical range of the magnetic field@see Eqs.~2!
and ~3!#.

In Fig. 2 we see thatEe f f(211) , for the Gaussian magneti
field B1, is a positive decreasing function ofd for fixed f.
The asymptotic behavior ofEe f f(211) for small values ofd is
proportional to 1/d. This can be seen from relation~27!. For
large values ofd we are in the weak field regime an
Ee f f(211) is given approximately from the vacuum polariz
tion diagram

Ee f f(211)
(2) 5

1

8p2d
E

0

1

dxx~12x!

3E
0

1`

dy
yuB̃~y/d!u2

A~mfd!21x~12x!y2
, ~29!

where we have made the change of variableq5y/d and
B̃(q) is the Fourier transform of the magnetic field. From t
relation~29! we find thatEe f f(211) is proportional to 1/d2 for
large values ofd.

The curves in Fig. 2 appear to approach each other ad
tends to infinity. Thus the effective energy for larged is
proportional tof2. This is expected because the effecti
energy for larged is given approximately by the vacuum
polarization diagram, which is proportional tof2.

In Fig. 3 we present our numerical results for the ma
netic fieldB2. We see that the effective energy as a functi
of d for fixed f has the same features as those of the Ga
ian magnetic field of Eq.~2!.5 Also we can see that the ef
fective energy ofB2 is always bigger than the effective en
ergy of B1 for the samef and d ~this is also true for the

5We have checked that this is also true for the (311)-dimensional
case. So the effective energy, in 311 dimensions, is a negative
increasing function ofd for fixed magnetic flux~as shown in Fig. 4!
for all magnetic fields of the form of the magnetic field of Eq.~1!.
1-5
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FIG. 2. f22dEe f f(211) as a function ofd for
f52.5,4.5,6.5,8.5 andmf51 for the Gaussian
magnetic field of Eq.~2!.
a

n
y ms
corresponding classical energies!. This fact seems to be
consequence of the flux of the magnetic fieldB2 being more
concentrated than the flux ofB1.

The (311)-dimensional case, for the case ofB2, has al-
ready been studied with a different method by Bordag a
Kirsten in Ref. @8#. Our results are shown in Fig. 4. The
agree closely with those of Fig. 3 of Ref.@8#.

The (311)-dimensional effective energy, for larged, is
given by

Ee f f(311)
(2) 52

1

8p3d2E0

1

dxx~12x!

3E
0

1`

dyyuB̃~y/d!u2 lnS mf
2d21y2x~12x!

mf
2d2 D .

~30!
10501
d

For d→1` we find

Ee f f(311)
(2) 52

1

240p3mf
2d4E0

1`

dyy3uB̃~y/d!u2. ~31!

For further discussion we will need the Fourier transfor
of the magnetic fields of Eqs.~2! and ~3!:

B̃1~q!52pf expS 2
q2d2

4 D , ~32!

B̃2~q!54pf
J1~qd!

qd
. ~33!

From the relation~31! we see that for larged the effective
energy is proportional to 1/d4. This is true only for magnetic
fields for which the integral~31! over y is convergent. An
FIG. 3. f22dEe f f(211) as a function ofd for
f52.5,4.5,6.5,8.5 andmf51 for the magnetic
field of Eq. ~3!.
1-6
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FIG. 4. f22d2Ee f f(311) as a function ofd for
f50.4,5,10 andmf51 for the magnetic field of
Eq. ~3!.
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example is the magnetic fieldB1 with the Gaussian profile
For the magnetic fieldB2 the integral~31! is divergent. We
found numerically from Eq.~30! that in this case the
asymptotic behavior isO(1/da), where 3,a,4.

For small values ofd, from the relations~28! and~13! we
find the following asymptotic formula:

Ee f f(311)52
1

12p2
lnS 1

mfd
D E d2xWB2~xW !. ~34!

The asymptotic formula~34! is the same as the one derive
in Ref. @8#. From the relation~34! we obtain Ee f f(311)
5(2f2/3pd2)ln(1/mfd) for the magnetic fieldB2 and
Ee f f(311)5(2f2/6pd2)ln(1/mfd) for the magnetic fieldB1.

The total energy forB2 is given by

Etot(311)5Eclass(311)1Ee f f(311)

5
2pf2

e2d2
1

1

d2
f ~mfd,f! ~35!

where we have setEe f f(311)5(1/d2) f (mfd,f). The physical
meaning of the total energy is the energy we need to spen
order to create the magnetic flux tube. In this article we h
computed this energy at one-loop order~i.e., we have not
taken into account virtual photons!. This approximation is
valid only for small values of the coupling constante.

For small values ofd we find

Etot(311)5
2pf2

e2d2
2

f2

3pd2
lnS 1

mfd
D . ~36!

We see that the logarithm, which comes from the effect
energy part, dominates for small values ofd. This asymptotic
behavior of the total energy is not reliable. The reason is
small values ofd correspond to magnetic fields whose Fo
10501
in
e

e

at
-

rier transforms have contributions from high momenta
which the running coupling constant cannot be assum
small.

The asymptotic relation~36! for the total energy can be
written in the form

Etot(311)5
2pf2

ee f f
2 ~d!d2

~37!

where we have defined ad-dependent effective coupling con
stant, for small values ofd, according to

1

ee f f
2 ~d!

5
1

e2
2

1

6p2
lnS 1

mfd
D . ~38!

It is interesting to compare this to theB-dependent effective
coupling constant of Ref.@15#, for a homogeneous magnet
field, which for largeB reads

1

ee f f
2 ~B!

5
1

e2
2

1

12p2
lnS B

mf
2D . ~39!

V. DEPENDENCE ON THE RANGE d FOR FIXED
MAGNETIC FIELD STRENGTH BmÄ2fÕd2

It is convenient to define a characteristic magnetic fi
strength asBm5*BW •dSW /pd2, in order to estimate the inten
sity of the magnetic field, whered is the range of the mag
netic field. In the previous section we examined the dep
dence ond of the effective energy for fixed magnetic fluxf.
Here, we study the dependence ond ~or mfd) for fixed mag-
netic field strengthBm52f/d2 ~or Bm /mf

2).
First, we examine the magnetic field of Eq.~3! @the

Gaussian magnetic field of Eq.~2! is examined in the nex
section#. An interesting feature of this field@of Eq. ~3!# is that
when its ranged increases it tends to a homogeneous m
netic field. Thus, in the homogeneous limit (d@1/ABm), we
1-7
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FIG. 5. Ee f f(211) /d2 as a function ofd for
Bm55 andmf51 for the magnetic field of Eq.
~3!. The discrete points correspond to our nume
cal results and the continuous line to the best
curve of the form a02a1 /d. The asymptotic
value a050.82960.002 agrees quite well with
that calculated from the Schwinger formula
0.829. Our numerical results fora0 and a1 are
rounded to three decimal points.
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expect our numerical results to approach the result calcul
from the Schwinger formula, which for the cases of 211
and 311 dimensions reads

Ee f f(211)
Sch 5A B3/2

8p3/2 E0

1` ds

s3/2S coth~s!2
1

sDe2smf
2/B,

~40!

Ee f f(311)
Sch 5A B2

8p2 E0

1` ds

s2 S coth~s!2
1

s
2

s

3De2smf
2/B,

~41!

whereA is the area of the space box on thex-y plane andB
is the magnetic field strength of the homogeneous magn
field.

In Fig. 5 we have plotted the effective energy divided
d2 for Bm55 andmf51 for the magnetic field of Eq.~3!.
We see thatEe f f(211) /d2 is a positive increasing function o
d which tendsvery slowlyto an asymptotic value. The dete
mination of this asymptotic value is not possible with a
rectly numerical computation, as for large values ofd the
numerical error of our method becomes significant. Ho
ever, we see in Fig. 5 that our numerical results~for d
>0.4) lie on a curve of the forma02a1 /d. Fitting a curve
of this form to our data we obtaina050.82960.002 and
a150.13360.001. The asymptotic valuea050.82960.002
agrees quite well with that calculated from the Schwing
formula: Ee f f(211)

Sch /d250.829. This asymptotic behavior ha
also been observed for other values ofBm andmf covering
the whole range of the characteristic ratioBm /mf

2 that deter-
mines how strong is the magnetic field.

For small values ofd, if we take into account the vacuum
polarization diagram of Eq.~29! which is a good approxima
tion for the effective energy, we find thatEe f f(211) /d2 is
proportional tod. This is in agreement with the linear beha
ior of Ee f f(211) /d2 for d→0, which is seen in Figs. 5 and
below.
10501
ed

tic
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In the case of 311 dimensions, we see in Fig. 6 that o
numerical results are negative and tend slowly to
asymptotic value, which also agrees closely with that cal
lated from the Schwinger formula of Eq.~41!. The
asymptotic behavior for larged is the same as that observe
in the case of 211 dimensions (a02a1 /d).

For smalld we obtain from the vacuum polarization dia
gram of Eq.~30! thatEe f f(211) /d2 is proportional to lnd. We
see that this logarithmic behavior is not clear in Fig. 7 sin
we have not plotted enough points for small values ofd. We
avoided this, as in the region of smalld (d'0.1) the numeri-
cal accuracy we could achieve was not satisfactory.

A different way of finding the behavior of the effectiv
energy for small d is to replace F(y,f)5fF (1)(y)
1f2F (2)(y) in Eqs.~27! and~28! and take into account tha
the linear term is identically zero (F (1)(y)50). We can
prove thatF (1)(y)50 using the first Born approximation fo
the phase shifts.

Our numerical work shows that there is a significant p
sibility that the 1/d term in the above-mentioned asymptot
behavior (a02a1 /d) is accurate. If, indeed, this behavio
occurs, it would be interesting if one could give an analytic
proof.

Note that this asymptotic behavior is expected only
discontinuous magnetic fields like the one of Eq.~3!. In Fig.
7 we see that in the case of the Gaussian magnetic fiel
Eq. ~2!, our results for larged have the same asymptoti
behavior as that of the derivative expansionb02b1 /d2. This
means that there is a remarkable difference between sm
and discontinuous magnetic fields, in the way their effect
energies~divided byd2) tend to their asymptotic values. It i
obvious that this difference is related to the fact that
derivative expansion fails for discontinuous magnetic fiel
like the magnetic field of Eq.~3!.

VI. DERIVATIVE EXPANSION

An approximate way to compute the effective action
the presence of a static magnetic field is the derivative
1-8



ri-
fit

:

FERMION-INDUCED EFFECTIVE ACTION IN THE . . . PHYSICAL REVIEW D 64 105011
FIG. 6. Ee f f(311) /d2 as a function ofd for
Bm55 andmf51 for the magnetic field of Eq.
~3!. The discrete points correspond to our nume
cal results and the continuous line to the best
curve of the form a02a1 /d. The asymptotic
value a050.12960.002 agrees quite well with
that calculated from the Schwinger formula
0.130. Our numerical results fora0 and a1 are
rounded to three decimal points.
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pansion. This method should give accurate results for slo
varying magnetic fields. Our aim is to examine cases
which the derivative expansion fails to provide a good a
proximation. Also, we can test our numerical results by co
paring then with those of the derivative expansion in
homogeneous limit (Bmd2@1), where the derivative expan
sion is expected to give accurate results.

The derivative expansion for (311)- and (211)-
dimensional QED has been investigated in Refs.@17,16#, re-
spectively. For the case of 211 dimensions, if we keep the
first two terms~a zeroth order term plus a first order corre
tion! the effective energy for a static magnetic field is giv
by

Ee f f(211)
der 5E(211)

(0) 1E(211)
(1) ~42!

where
10501
ly
n
-
-
e

E(211)
(0) 5E d2xW

B3/2

8p3/2E0

1` 1

s3/2S coth~s!2
1

sDe2smf
2/Bds,

~43!

E(211)
(1) 5

1

8 S 1

4p D 3/2E d2xW
~¹ B!2

B3/2

3E
0

1` 1

s1/2
e2smf

2/BS d

dsD
3

@s coth~s!#ds. ~44!

For the special case of static magnetic fields, the above
mulas were obtained in Refs.@18,19#.

In Fig. 7 we have plotted the effective energ
Ee f f(211) /d2 as a function ofd, for fixed magnetic field
strengthBm55 andmf51 for the Gaussian magnetic fiel
c
o
e

FIG. 7. Ee f f(211) /d2 as a function ofd for
Bm55 and mf51 for the Gaussian magneti
field of Eq.~2!. The discrete points correspond t
our numerical results and the continuous lin
0.44820.034/d2 to the derivative expansion.
1-9
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FIG. 8. Ee f f(211) as a function off for d
51 andmf50 for the magnetic fields of Eqs.~2!
and~3!. The discrete points correspond to our n
merical results and the continuous lines to t
best fit curves of the formw0f3/22w1f for the
magnetic field of Eq.~3! andv0f3/22v1f1/2 for
the magnetic field of Eq.~2!. Our numerical re-
sults for the coefficients are rounded to thr
decimal points.
t (
e

gy
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e

t
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-

a

f
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r-
B1. We see, as expected, that in the homogeneous limid
@1/ABm) our results agree quite well with those of the d
rivative expansion. In the smalld limit ( d!1/ABm), the de-
rivative expansion fails to approximate the effective ener
See the deviations in Fig. 7 ford,0.8.

The case of 311 dimensions has not been included, as
is similar to the case of 211 dimensions.

VII. THE STRONG MAGNETIC FIELD „Bmšmf
2
…

In order to study the strong magnetic field (Bm@mf
2) be-

havior of the effective energy, we setD(k)
5G(kBm

21/2,Bmd2) and make the change of variabley
5kBm

21/2 in relations~26! and ~24!:

Ee f f(211)5
Bm

1/2

2p E
0

1` y

Ay21mf
2/Bm

@G~y,Bmd2!2c#dy,

~45!

Ee f f(311)52
Bm

2p2E0

1`

y lnS y21mf
2/Bm

mf
2/Bm

D
3@G~y,Bmd2!2c#dy, ~46!

whereBm is a characteristic magnetic field strength defin
asBm5F/pd2 andF is the magnetic flux.

For Bm@mf
2 we find the asymptotic expressions

Ee f f(211)5
Bm

1/2

2p E
0

1`

@G~y,Bmd2!2c#dy, ~47!

Ee f f(311)52
Bm

2p2
ln~Bm /mf

2!

3E
0

1`

y@G~y,Bmd2!2c#dy. ~48!
10501
-
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t

d

In the case of 311 dimensions, if we take into accoun
Eq. ~13!, we obtain an asymptotic formula for the case
strong magnetic field:

Ee f f(311)52
1

24p2
ln~Bm /mf

2!E
0

1`

d2xWB2~xW !. ~49!

The above equation is more general than Eq.~34!, which was
obtained in the limitmfd→0 for fixed f.

For fixed mfd, Eq. ~49! yields an asymptotic formula in
the case of large magnetic fluxf:

Ee f f(311)52
1

24p2
ln~2f!E

0

1`

d2xWB2~xW !. ~50!

From Eq. ~50! we obtain Ee f f(311)52(1/6pd2)f2ln(2f)
for the magnetic field of Eq. ~3! and Ee f f(311)
52(1/12pd2)f2 ln(2f) for the magnetic field of Eq.~2!.
We see that for largef the (311)-dimensional effective
energy is proportional to2f2ln f. Also, this analytical re-
sult explains the weak dependence onf of Ee f f(311) /f2 for
the magnetic field of Eq.~3!, which was observed numeri
cally in Ref. @8#.

In the case of 211 dimensions, the asymptotic formul
for f→1` is obtained from Eq.~45! by settingmf50. In
Fig. 8 we have plotted the effective energy as a function of
for d51 andmf50, for the magnetic fields of Eqs.~2! and
~3!. Also, in the same figure we see that the curvesw0f3/2

2w1f and v0f3/22v1f1/2, which correspond to the mag
netic fields of Eq.~2! and~3!, fit our data very well. Thus, for
large f the (211)-dimensional effective energy is propo
tional to f3/2. Also, we observe that the coefficientsw0
50.41360.008 andv050.276960.0005 agree closely with
the coefficients obtained from the formula
1-10
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Ee f f(211)52
z~21/2!

A2p
E d2xW B3/2~xW !, ~51!

which are 0.416 for the magnetic field of Eq.~3! and 0.2772
for the magnetic field of Eq.~2!. This formula is obtained
from the leading term of the derivative expansion@given by
Eq. ~43!# if we set mf50. Our numerical results show tha
formula ~51! gives the asymptotic behavior for largef, in
the case of 211 dimensions. Note that formula~51! does not
include all the cases of strong magnetic fieldBm52f/d2. In
the case of smallmfd and fixedf it is not correct. In this
case the effective energy is proportional to 1/d as shown by
Eq. ~27! in Sec. IV.

VIII. CONCLUSIONS

We presented a numerical study of the fermion-induc
311 and 211 QED effective actions in the presence of a
static cylindrically symmetric magnetic field with a finit
magnetic flux. We used a simple novel approach for f
computation of the effective action. The numerical work w
greatly facilitated by the observation that the functionD(k)
2c @see Eq.~20!# tends rapidly to zero for largek. The
integrals~27! and ~28! for the effective energy for (211)-
and (311)-dimensional QED, respectively, are render
convergent due to this fact.

The functionD(k)2c is the only quantity we need to
know in order to compute the effective energy@see Eqs.~27!
and ~28!#. We have performed computations for eight ma
netic field configurations~see Sec. I!. The form6 of the func-
tion D(k)2c is similar for all these fields. This means th
our conclusions for the effective energy are quite general
are not valid just for the magnetic fields of Eqs.~2! and~3!.

For e2/4p51/137, our numerical work shows that for th
families of magnetic fields we examined, there is no radiud
of the magnetic flux tube that minimizes the total energy
fixed magnetic flux. The main reason for this is the sm
contribution~of the order of 1%) of the effective energy t
the total energy. An exception, where the contribution is
small, is the case of (311)-dimensional effective energy fo
small d, as may be seen from Eq.~36!.

In Sec. V, we observed that our numerical results
Ee f f /d

2, in the case of the magnetic field of Eq.~3!, con-
verge slowly to an asymptotic value given by the Schwin
formula for a homogeneous magnetic field. In addition,
showed numerically that this asymptotic behavior for largd
is of the forma02a1 /d. The case of the Gaussian magne
field of Eq. ~2! is different, as the convergence to th
asymptotic value is considerably faster than the case of
magnetic field of Eq.~3!. The asymptotic behavior o
Ee f f /d

2;b02b1 /d2 in this case, as we see in Fig. 7, is th
same as that given by the derivative expansion. Generaliz
we expect that this behavior will be valid for all smoo
magnetic fields of the form we examine. In the case of d
continuous magnetic fields, for which the derivative expa

6See Sec. III and Fig. 1.
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sion fails, we expect a different asymptotic behavior of t
form a02a1 /d.

We studied the case of large magnetic fluxf ~strong mag-
netic field! when the spatial size of the magnetic flux tube
fixed. We showed that the effective energy for largef is
proportional to2f2ln f in the case of 311 dimensions and
to f3/2 in the case of 211 dimensions. In particular, in the
case of 311 dimensions, we derived an explicit formula fo
large magnetic flux (f@1).

It would be interesting if for largef the effective energy
in the presence of an inhomogeneous magnetic field bec
greater than the classical energy. In view of the abo
mentioned results we can exclude this possibility at least
the class of inhomomogeneous magnetic fields of the form
a flux tube. An exception may be the case of 311 dimen-
sions for very largef. However, for very largef the
asymptotic behavior2f2ln f is not reliable, as the contri
butions of the higher loop corrections~two-loop corrections,
three-loop corrections, etc.! to the QED effective energy can
not be assumed small.
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APPENDIX A: EFFECTIVE ENERGY FOR MASSLESS
FERMIONS

In this appendix we derive an expression for the effect
energy for massless fermions, since Eq.~14! contains a sin-
gularity atmf50. It is remarkable that this singularity doe
not exist in the unrenormalized effective energy of Eq.~12!.
It arises due to the renormalization procedure used to rem
the ultraviolet divergent part of the effective energy. Ho
ever, the above-mentioned singularity does not appear if
stead of the renormalization conditionP(0)50 we use the
off-shell renormalization conditionP(2M2)50.

Settingmf50 in the unrenormalized effective energy
Eq. ~12! we find

Ee f f(311)5
Lz

4p (
{ n%

E$n% lnS E$n%

L2 D 2
1

4p (
$n}

E$n% .

~A1!

The ultraviolet divergent part in the above equation is
moved if we include the following counterterm in the QE
Lagrangian:

Scount5~Z321!E d4x~2 1
4 FmnFmn! ~A2!

where
1-11
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Z3512
1

2p2 F1

6
lnS L2

M2D 1
5

18G . ~A3!

This counterterm is defined uniquely by the off-shell ren
malization conditionP(2M2)50. In this case the renor
malized effective action for massless fermions is

Ee f f(311)
(ren) 5

Lz

4p (
{ n%

E$n% lnS E$n%

L2 D 1
Lz

6p (
$n}

E$n% .

~A4!

In a similar way to that of Sec. III, we obtain

Ee f f(311)
(ren) 5

1

d2
@c1~f!ln~dM!1c2~f!# ~A5!

where

c1~f!5
1

p2E0

1`

y@F~y,f!2c#dy5
d2

12p2E BW 2~xW !d2xW ,

~A6!

c2~f!52
1

p2E0

1`

y ln~y!@F~y,f!2c#dy2
5

6
c1~f!.

~A7!

The total energy is given by the equation

Etot5Eclass1Ee f f

5
1

2eM
2 E BW 2~xW !d2xW1

1

d2
@c1~f!ln~dM!1c2~f!#

~A8!

whereeM is the charge of the fermion defined at the scaleM.
The transformation law for the chargeeM is given by the
equation

1

eM8
2 5

1

eM
2

2
1

6p2
lnS M 8

M D ~A9!

which also guarantees that the total energy is independe
the renormalization scaleM.

APPENDIX B: THE APPEARANCE OF METASTABLE
STATES FOR LARGE MAGNETIC FLUX f

In this appendix we examine the appearance of metast
states for large magnetic fluxf. Note that in the large mag
netic flux f5Bmd2/2 limit we distinguish two cases:~a! a
large magnetic field strengthBm keepingd constant and~b! a
long ranged of the magnetic field keepingBm constant.

In Fig. 9, we see that the functiond l ,s(k) exhibits jumps
at a finite number of values ofk. Every jump increases th
phase shift byp and corresponds to a metastable state of
electron. It is remarkable that these jumps occur in a sm
but nonzero intervalDk where the density of states appea
10501
-

of

le

e
ll

as a very sharp peak. For the calculation of the phase s
in this case we have used the differential equation~D14! of
Appendix D, which is appropriate for largef. For the plot
we calculated the phase shifts with a step equal to 0.1. It m
be noted, incidentally, that our numerical results for t
phase shifts atk50 are in agreement with Levinson’s theo
rem @20#. Levinson’s theorem, for a two-dimensional Schr¨-
dinger equation and for a potential with asymptotic behav
O(1/r 2) for larger, has been investigated in Ref.@21#. Thus
for our special case

d l ,s~0!5H p1
p

2
~ u l u2u l 2fu! if a zero mode exists,

p

2
~ u l u2u l 2fu! otherwise.

~B1!

The metastable states are due to the potential well form
the effective potentialv l ,s(r )1( l 221/4)/r 2 as shown in Fig.
10. It is interesting to compare our results with the WK
approximation for the eigenvalueskn

2 of the metastable state
as roots of the equation

E
a

bSAkn
22v l ,s~r !2

l 2

r 2D dr5~n1 1
2 !p, n50,1,2, . . . ,

~B2!

wherea andb are the turning points. In Table I we see th

FIG. 9. d l ,s(k) as a function ofk for l 51, s51, d51, and
f550 for the Gaussian magnetic field of Eq.~2!.

TABLE I. We compare the energies of the metastable state
they are obtained from Fig. 9 with the WKB approximation resu
for d51, l 51, s51, andf550.

n WKB approximationkn Numerical computation

1 13.721 13.7–13.8
2 19.051 19.0–19.1
3 22.881 22.8–22.9
4 25.854 25.8–25.9
5 28.200 28.1–28.2
6 29.997 29.9–30.0
1-12
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FIG. 10. v l ,s(r )1( l 221/4)/r 2 as a function
of r for l 51, s51, d51, and f550 for the
Gaussian magnetic field of Eq.~2!.
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our numerical results agree closely with those of WKB a
proximation. Note that the electron metastable state ener
corresponding to the eigenvalueskn

2 areAkn
21mf

2.

APPENDIX C: THE ROLE OF THE LANDAU LEVELS
FOR THE EFFECTIVE ACTION

Taking into account Eqs.~9! and ~14!, it is obvious that
the effective energy is determined uniquely by the spectr
of the eigenvalue equation (gmDm)2C$n%(x)5E$n%C$n%(x).
In Sec. V, it was shown numerically that the effective ene
of a magnetic flux tube of the form of Eq.~3! tends~for d
@1/ABm) to the result calculated from the Schwinger fo
mula for a homogeneous magnetic field. One may think t
this is unexpected, as the spectrum of a magnetic flux tub
continuous~with zero modes iff.1) whereas the spectrum
of a homogeneous magnetic field, has a differ
structure—it is discrete and consists of the well known La
dau levels. According to Appendix C these two spectra
related in the limit of larged. Indeed, if in the analysis o
Appendix C, instead of the Gaussian magnetic field of
~2!, we used the magnetic field of Eq.~3! we would find
metastable states with energies almost identical with thos
the Landau levels~we have checked this numerically!. Thus,
the continuous spectrum of the magnetic field of Eq.~3!
approaches, ford@1/ABm, the discrete spectrum of a homo
geneous magnetic field in a straightforward way: each m
stable energy level approaches a corresponding Landau
and at the same time more metastable states are added
high energy end.

APPENDIX D: NUMERICAL CALCULATION OF THE
PHASE SHIFTS

In this appendix we describe two methods for the num
cal calculation of the phase shifts.

We will adapt the method presented by Farhyet al. in
@22,23# to our problem. We consider two linearly indepe
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dent solutionsuk,l ,s
(1) (r ), uk,l ,s

(2) (r ) of the radial equation

S 2
d2

dr2
1

l 22 1
4

r 2
1v l ,s~r !2k2D uk,l ,s~r !50 ~D1!

with asymptotic behaviore6 ikr as r tends to infinity.
We can put these solutions into the form

uk,l ,s
(1) ~r !5eib l ,s(k,r )ArH l

(1)~kr !, ~D2!

uk,l ,s
(2) ~r !5eib l ,s* (k,r )ArH l

(2)~kr !, ~D3!

whereHl
(1)(x) and Hl

(2)(x) are the Hankel functions of the
first and second kind, respectively. The complex funct
b l ,s(k,r ) tends to zero asr tends to infinity.

The scattering solutionsuk,l ,s(r ) of the radial equation
~D1! satisfy the following boundary conditions:

uk,l ,s~0!50, ~D4!

uk,l ,s~r→1`!;cosS kr2
p

4
2

lp

2
1d l ,s~k! D . ~D5!

The solutionsuk,l ,s(r ) are expressed as a linear combinati
of the solutions~D2! and ~D3!:

uk,l ,s~r !5eid l ,seib l ,sArH l
(1)~kr !1e2 id l ,se2 ib l ,s* ArH l

(2)~kr ! .
~D6!

Imposing the boundary condition~D4! on the solution~D6!
we obtain

d l ,s~k!52Reb l ,s~k,0!. ~D7!

Substituting the solution~D2! into Eq. ~D1! we obtain the
differential equation
1-13
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ib l ,s9 ~k,r !12ik ql~kr !b l ,s8 ~k,r !2@b l ,s8 ~k,r !#22v l ,s~r !50

~D8!

where

ql~x!5
d

dx
$ ln@AxHl

(1)~x!#%. ~D9!

The functionsb l ,s(k,r ) should satisfy the following condi
tions:

b l ,s~k,1`!50, ~D10!

b l ,s8 ~k,1`!50. ~D11!

Because the potential tends to zero very slowlyO(1/r 2), we
begin the numerical integration of the differential equati
~D8! from a large numberr max toward zero, with the condi-
tions

b l ,s~k,r max!5~22lf1f2!
1

2k rmax
, ~D12!

b l ,s8 ~k,r max!52~22lf1f2!
1

2k rmax
2

. ~D13!

The above asymptotic behavior of the functionsb l ,s(k,r )
can be obtained from Eq.~D8!.
,’’
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Another way to compute the phase shifts is by solving
differential equation

dd l ,s~k,r !

dr
52

p

2
r v l ,s~r !@Jl~kr !cosd l ,s~k,r !

2Nl~kr !sind l ,s~k,r !#2 ~D14!

with the boundary conditiond l ,s(k,0)50, whereJl(x) and
Nl(x) are the Bessel and Neumann functions, respectiv
The phase shift is given by the limit

d l ,s~k!5 lim
r→1`

d l ,s~k,r !. ~D15!

This method was formulated by Calogero in Ref.@24# for the
three-dimensional case. It was obtained for two dimensi
in Ref. @25#.

For the numerical computations of the phase shifts
have used mainly the differential equation~D8! because it
gives results faster and more accurately than Eq.~D14!.
However, this differential equation is stiff for large values
f and small values ofl. In that region off and l we have
used Eq.~D14!.

We also compared our numerical results with those of
WKB approximation~22! and we found good agreement fo
large l or largek.
r
’
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