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Nonlinear Landau damping of a plasmino in the quark-gluon plasma
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On the basis of the Blaizot-Iancu equations, which are a local formulation of the hard thermal loop~HTL!
equations of motion for soft fluctuating quark and gluon fields and their induced sources, the coupled kinetic
equations for plasminos and plasmons are obtained. The equality of matrix elements for nonlinear scattering of
a plasmino by hard particles in covariant and temporal gauges is established by using effective Ward identities.
The model problem of the interaction of two infinitely narrow packets with fermion and boson quantum
numbers is considered. The kinematical relations between wave vectors of the plasmino and plasmon are
derived, when the effective pumping over of the plasma excitation energy from the fermion branch of plasma
excitations to the boson branch and vice versa occur. The expression for the nonlinear Landau damping rate of
a plasmino at rest is found, and a comparison with a plasmino damping constant obtained within the framework
of the hard thermal loop approximation is made. The nonlinear Landau damping rate for normal quark exci-
tations is shown to diverge like 1/Aq2 near the light cone whereq is a four-momentum of excitations, and the
improved Blaizot-Iancu equations removing this divergence are proposed.

DOI: 10.1103/PhysRevD.64.105009 PACS number~s!: 12.38.Mh, 11.15.Kc, 14.65.Bt
e
m
-
ft
is

n
w
ion
p

ex
o

nd
er
re

m

a
n
re
e
e

nc
e
-
h
n

o
Th

he
nd

cu-
en-
and
rob-
wn
ory

ay
ad-

the
of

ion

ast
m.
g

t
rate

tors
ark

ing

-

alcu-
D

I. INTRODUCTION

This work deals with the study of the interactions betwe
soft-fermion and gluon excitations in an off-equilibriu
quark-gluon plasma~QGP! within the hard thermal loop ef
fective theory. The specific problem of the damping of so
collective, fermion excitations is ultimately considered. Th
problem has already been addressed in the literature~see the
review below! in the formalism of thermal perturbatio
theory, but nevertheless it would be interesting to see ho
emerges in a real-time formalism based on kinetic equat
for soft excitations. In addition, the calculation of the dam
ing rate formovingsoft excitations is still incomplete.

The theoretical investigation of properties of plasma
citations bearing fermion quantum numbers in a quark-glu
plasma originated in the pioneering works by Klimov a
Weldon @1#. The gauge-independent dispersion law of f
mion excitations was first derived in a high-temperature
gion within the framework of the imaginary-time formalis
~Matsubara technique! by Klimov and within the framework
of the real-time formalism~Keldysh-Swinger technique! by
Weldon at one-loop order. The quark propagator in the c
of nonzero temperature and massless fermions was show
have two poles corresponding to two different dispersion
lations, both with a positive energy. The first branch d
scribes normal-particle excitations with the relation betwe
chirality and helicity at zero temperature. The second bra
is collective excitations, where the usual relation betwe
chirality and helicity is flipped@2#. It has been called a plas
mino @3# to emphasize that, like the plasmon mode of t
gluons, it is a purely collective branch of plasma excitatio
that have no analog at zero temperature.

The damping rate of plasma modes is one of the m
important characteristics of high-temperature plasma.

*Electronic address: markov@icc.ru
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calculation of the damping rate of fermion excitations in t
rigid one-loop approximation was made by Kapusta a
Toimela @4#. They showed that the standard one-loop cal
lations were incomplete and resulted in an explicit dep
dence of the damping rate on the gauge-fixing condition
were even negative in some gauges. Overcoming this p
lem both in the case of fermion and boson modes is kno
to lead to the development of an effective perturbation the
put forth by Braaten and Pisarski@5# and by Frenkel and
Taylor @6# that enables one to resume in a systematic w
high-loop diagrams contributing to damping rates at the le
ing order in the coupling constantg and gives formal proof
that resummation produces gauge-invariant results for
damping rates of both quarks and gluons. The calculation
the damping rate of a heavy fermion@7# by Pisarski is one of
the first examples of the application of effective perturbat
theory.

The damping rates depend in a nontrivial way on how f
the quasiparticle is moving through the thermal mediu
Within the framework of the imaginary-time formalism usin
a dispersion relation method, Braaten and Pisarski@8# and
independently Kobeset al. @9# present by somewhat distinc
approaches a complete calculation of the quark damping
at zero momentum at leading order ing by evaluating one-
loop diagrams constructed out of the effective propaga
and vertices. It is shown that the damping rate of qu
modes at rest is some pure number timesg2T, whereT is a
temperature.

Much interest has been taken in the so-called damp
rate of moving~hard or soft! quarks in hot QCD plasma.1

The hard thermal loop~HTL! resummation renders the infra

1Here, we have not discussed the problems associated with c
lation of the damping rate of moving fermions in a hot QE
plasma, which possesses proper specific features~see, e.g., Ref.
@10#!.
©2001 The American Physical Society09-1
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red finite damping rate of plasma excitations at rest. Ho
ever, the damping rate of fast moving collective excitatio
is infrared divergent, arising from the exchange of qua
static, magnetic gluons, reflecting the breakdown of
Braaten-Pisarski resummation scheme in deriving the ph
cal quantities that are sensitive toO(g2T) corrections. In hot
QCD plasma this problem is avoided by the introduction
the magnetic screening mass of orderg2T, which is expected
to come from soft-gluon mutual interactions@11#. An accu-
rate calculation of the damping rate for soft moving qua
and gluons has been done by Pisarski in Ref.@12#. He found
that the infrared-singular contributions were proportional
the group velocity of the respective quark and gluon mo
times g2T ln(1/g). In Ref. @13# Flechsiget al. presented a
unified treatment of all next-to-leading-order corrections
fermion and gluon dispersion laws in QGP’s, which are
frared singular due to mass-shell singularities. They rep
duced the result of Pisarski@12# for moving quasiparticle
excitations.

The need for further resummation beyond the scheme
Braaten and Pisarski also arises in an attempt to calculate
production rate of soft real photons from equilibrium QGP
@14#. This rate was shown to be logarithmically diverge
owing to the so-called collinear~mass! singularities of a HTL
diagram. The reason for the collinear singularities is kno
to be the use of bare~massless! hard-quark propagators tha
are on the mass shell. In a somewhat different contex
similar difficulty was encountered in the research of the
havior of the next-to-leading order longitudinal compone
of the polarization function of the hot gluon system near
light cone@15#. Here, the singularity is even more strong a
generated by a premature restriction to soft loop mome
~the detailed study of the light-cone singularity in the simp
gauge theory of scalar electrodynamics was made by Kra
mer et al. @16#!.

The way to solve the problems connected with colline
singularities in hot QCD plasma was proposed by Flech
and Rebhan@17#. They showed that the inclusion o
asymptotic thermal masses for hard transverse gluons2 and
hard quarks removed the collinear singularities of the H
amplitudes without spoiling gauge invariance. The examp
of employment of the effective hard-quark propagator a
effective photon–~hard!-quark vertex for deriving the finite
soft-photon production rate from the equilibrium QGP can
found in Refs.@17,19#.

Here we would like to represent a somewhat differe
view about the study of the above-mentioned problem
based solely on the kinetic theory. More comprehensiv
our purpose is to construct kinetic equations that describe
evolution of off-equilibrium deviations in thenumber densi-
ties of the soft excitations~fermions and gluons!, and to ob-
tain damping rates from the collision terms. As we ha
shown in the case of soft-boson modes@20,21#, there is no
direct connection between the results obtained within

2Notice that the fact of acquiring the transverse gluons in
QCD plasmas of the thermal mass was first mentioned by Shu
@18#.
10500
-
s
i-
e
i-

f

s

s

-
-

of
he

t

n

a
-
t
e

ta
r

-

r
ig

L
s
d

e

t
s,
y,
he

e

e

framework of kinetic theory of soft excitations and the r
sults derived within the framework of effective perturbatio
theory. Here, we would like to extend the analysis, carr
out in Refs.@20,21# on the fermion degree of freedom o
plasma excitations in hot QCD plasma. Our approach
based on the fundamental system of equations derived
Blaizot and Iancu@22#. These equations are obtained on t
basis of a truncation of the Schwinger-Dyson hierarchy. Th
isolate consistently the dominant terms in the coupling c
stant in a set of equations that describe the response o
plasma to weak and slowly varying disturbances and enc
pass all HTL’s. This system of equations is determined on
space-time scale (gT)21. We show how to obtain the infor
mation connected with the damping of soft excitation QG
by using this system, i.e., with the processes determined
the other space-time scale.

In order to allow for the collective excitations with arb
trary quantum numbers, Blaizot and Iancu considered b
fermion and boson soft fields. The pure gauge sector~when
the influence of the soft-fermion field is neglected! of this
system of equations has been studied in detail. The se
connected with a soft-fermion degree of freedom of plas
excitations is not actually studied. In the present paper
have shown that this sector of plasma excitations conta
some extended information on the dynamics not only of s
fermion modes, which are especially interesting for us,
also soft-boson modes interacting with them. Deriving a s
consistent system of the kinetic equations for plasminos
plasmons enables us to have a new look at the known re
obtained from the diagrammatic technique. It also allows
to represent them in a more visual form and to obtain so
new results, in particular, connected with the possibility
observe in more detail the pumping dynamics of plasma
citation energy over the oscillation spectrum and ene
pumping from the fermion branch of excitations into the b
son branch and vice versa. Our strategy for deriving the
evant kinetic equations is similar to that already used in c
nection with the purely~soft! gauge sector@21#.

From most papers close to the subject of our research
recent work by Nie´gawa@23# is to be mentioned. Within the
framework of the closed-time-path formalism the gener
ized Boltzmann equation that describes the evolution of
number-density functions of fermion quasiparticles was
rived by him. The transport equations for ‘‘normal and a
normal modes’’ emerge here from the requirement of
absence of large contributions~which is the result of pinch
singularity! of perturbative scheme proposed in Ref.@23#. In
spite of the generality of a suggested approach, partic
expressions for collision terms unfortunately were not giv
It makes it difficult to establish the connection with oth
approaches, also dealing with the problem of relaxation
plasma excitations, in particular, with hard thermal loop
fective theory.

The paper is organized as follows. In Sec. II, after su
marizing the conventions and the notations used in this
per, we write a starting coupling set of the soft-field equ
tions and dynamical equations describing the motion of h
particles in the presence of the soft quark and gluon fie
The approach to the solution of a given nonlinear syst

t
ak
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NONLINEAR LANDAU DAMPING OF A PLASMINO IN . . . PHYSICAL REVIEW D 64 105009
based on the approximation scheme method—the weak-
expansion—is proposed. In Sec. III, the first-order appro
mation of the induced source is considered, and the corr
tion functions of fermion and boson excitations are int
duced. In Sec. IV, the second- and third-ord
approximations of the induced source and the color cur
induced by the soft-fermion field are studied. In Sec. V,
discuss the consistency with gauge symmetry of the appr
mation scheme used. In Sec. VI we derive the general
kinetic equation for soft-fermion excitations and supplem
it with a generalized kinetic equation for soft bosonic ex
tations. The right-hand side of the last equation contains
terms responsible for the nonlinear interaction between
bosonic and fermionic modes. Section VII presents a deta
consideration of the terms on the right-hand side of the g
eralized kinetic equation obtained in the previous secti
their identification with specific physical processes. Th
kinetic equations describing the nonlinear interactions
tween plasminos and plasmons are extracted. In Sec. VIII
means of the effective Ward identities, we show that
function defining the plasmino–hard-particle scattering m
trix element squared is the same in the covariant gauge a
the temporal one. In Sec. IX, the transformation of the n
linear Landau damping rate for a plasmino similar to t
transformation in a pure gauge sector of soft QGP excitati
is performed. In Sec. X, on the basis of decomposition of
nonlinear Landau damping rate into positive and nega
parts, the model problem of two interacting infinitely narro
packets with fermion and boson quantum numbers is con
ered, and the kinematic relations between wave vector
excitations are defined, so that one or another proces
pumping over of energy occurs. In Sec. XI, an explicit e
pression for the nonlinear Landau damping rate of the p
mino at rest is derived, and a comparison with a sim
expression for the damping rate obtained within the fram
work of the HTL approach is carried out. In Sec. XII, th
behavior of the nonlinear Landau damping rate for norm
particle excitations near the light cone is considered, and
damping rate is shown to diverge owing to the mass sin
larities of quarks. In the Conclusion we briefly discuss
more general statement of the research problem of soft e
tation dynamics in hot QCD plasma within the framework
kinetic approach outlined in this paper.

II. BLAIZOT-IANCU EQUATIONS

We adopt conventions of Blaizot and Iancu@22#. We use
the metricgmn5diag(1,21,21,21), choose units such tha
c5kB51 and noteX5(X0 ,X), p5(p0 ,p), . . . . We con-
sider an SU(Nc) gauge theory withNf flavors of massless
quarks. The color indices for the adjoint representati
a,b, . . . run from 1 toNc

221, while those for the fundamen
tal representation,i , j , . . . , run from 1 toNc . The Greek
indicesa,b, . . . for the spinor representation run from 1
4.

The quark fieldc and the gauge fieldAm5Am
a ta with

Nc
221 Hermitian generators in the fundamental represe

tion obey the field equations
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iD” c~X!5h~X!, ~2.1!

@Dn,Fmn~X!#2j21]m]nAn~X!5gc̄~X!gmtac~X!ta1 j m~X!,

~2.2!

whereD” 5gmDm is the covariant derivative in the fundame
tal representation:

Dm5]m1 igAm~X!,

Fmn5Fmn
a ta is field strength tensor withFmn

a 5]mAn
a2]nAm

a

2g fabcAm
b An

c ; @ , # denotes the commutator andj is a
gauge parameter fixing a covariant gauge.

The induced sourceh(X) on the right-hand side of Eq
~2.1! can be written as an integral over hard momentumk of
a densityL” (k,X)[tagmLm

a (k,X) @22#:

h~X!5gE dk

~2p!3

1

ek
L” ~k,X!, ek[uku. ~2.3!

A densityLm
a (k,X) is a generalized one-body density matr

mixing fermion and boson degrees of freedom.
The total induced color currentj m on the right-hand side

of field equation~2.2! is a sum of two parts: the curren
j m
A(X) induced by the soft-gauge field

j m
A~X!5gE dk

~2p!3
vm@Nf„dn1

A ~k,X!2dn2
A ~k,X!…

12NcdNA~k,X!#, ~2.4!

and the currentj m
C(X) induced by the soft-quark field

j m
C~X!5gE dk

~2p!3
vm@dn1

C~k,X!2dn2
C~k,X!#,

vm5~1,v!, v5k/uku, ~2.5!

where dn6
A,C(k,X)5dn6

A,Cata are soft fluctuations in the
quark and antiquark color densities anddNA(k,X)
5dNAata is a soft fluctuation in the gluon color density. Th
superscripts indicate the nature of the background field
induces fluctuations. On the space-time scale (gT)21 these
functions and densityL” (k,X) satisfy the following system of
equations:

@v•DX ,dn6
A ~k,X!#57gv•E~X!

dn~ek!

dek
, ~2.6!

@v•DX ,dNA~k,X!#52gv•E~X!
dN~ek!

dek
, ~2.7!

@v•DX ,dn6
C~k,X!#56

ig

2ek
ta@c̄~X!taL” ~k,X!

2L”̄ ~k,X!tac~X!#, ~2.8!
9-3
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YU. A. MARKOV AND M. A. MARKOVA PHYSICAL REVIEW D 64 105009
~v•DX!L” ~k,X!52 igCF@N~ek!1n~ek!#

3v”c~X!. ~2.9!

Here, E(X)5Ea(X)ta is the chromoelectric field,Ei

5Fi0; n(ek)51/@exp(ek /T)11# and N(ek)51/@exp(ek /T)
21# are the fermion and boson occupation factors,T is the
temperature of the plasma, andCF is the quadratic Casimi
invariant of the fundamental representation. The funct
L”̄ (k,X) is related toL” (k,X) by L”̄ (k,X)5L” †(k,X)g0, where
the Hermitian conjugation refers to color and spinor indic

The self-consistent system of Eqs.~2.1!–~2.9! for the soft
fluctuating fieldsc and Am and their induced sources wa
first derived in Ref.@22#. In the subsequent discussion it w
be called the Blaizot-Iancu equations. However, as dist
from the original paper@22#, we take Eqs.~2.6!–~2.9! not as
kinetic equations, i.e., time-irreversible ones, but as ex
‘‘microscopic’’ dynamical equations coming from the ha
thermal loop effective action and describing the evolution
the collisionless plasma with zero expectation values of
soft fields~or the associated induced sources!.

The Blaizot-Iancu equations are solved by the approxim
tion scheme method—the weak-field expansion. For this pur-
pose first we expand soft fluctuations of the~anti!quark and
gluon color densities as power series in the oscillation a
plitudes of the functionsAm andc,

dn6
A 5 (

n51

`

dn6
A(n) , dNA5 (

n51

`

dNA(n), ~2.10!

dn6
C5 (

n50

`

dn6
C(n,2) , ~2.11!

L”5 (
n50

`

L” (n,1), ~2.12!

where the indexn shows thatdn6
A(n) , dNA(n), dn6

C(n,2) ,
andL” (n,1) are proportional to thenth power ofAm . Since the
fermion fields appear in explicit form on the right-hand si
of Eqs.~2.8! and~2.9!, the functionsdn6

C(n,2) andL” (n,1) also

depend on amplitudesc̄ andc. By virtue of the structure of
the right-hand side of Eqs.~2.8! and ~2.9!, we have

dn6
C(n,2);c̄c, L” (n,1);c

for arbitrary values ofn.
The induced color currents~2.4! and~2.5! and the induced

source~2.3! are expressed as

j m
A5 (

n51

`

j m
A(n) , ~2.13!

j m
C5 (

n50

`

j m
C(n,2) , ~2.14!

where
10500
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j m
A(n)5gE dk

~2p!3
vm@Nf~dn1

A(n)2dn2
A(n)!12NcdNA(n)#,

~2.15!

j m
C(n,2)5gE dk

~2p!3
vm@dn1

C(n,2)2dn2
C(n,2)#, ~2.16!

and

h5 (
n50

`

h (n,1), ~2.17!

where

h (n,1)5gE dk

~2p!3

1

ek
L” (n,1). ~2.18!

Now we turn to the field equations~2.1! and ~2.2!, con-
necting the quark and gluon soft fields with induced sourch
and total color currentj m . Let us rewrite these equation
explicitly separating the free parts in Eqs.~2.1! and ~2.2!
from interaction terms. Taking into account the expansion
induced current~2.13! and~2.14! and induced source~2.17!,
we have

i ]”c2h (0,1)5gA” c1hNL , ~2.19!

]m~Fmn!L2j21]n]mAm2 j A(1)n

5 j NL
n 1gc̄gntacta2 ig]m@Am,An#

2 ig@Am ,~Fmn!L#1g2
†Am ,@Am,An#‡. ~2.20!

Here, the indicesL andNL denote the linear and nonlin
ear parts of strength tensor, the induced source and the c
induced current with respect toAm and c. The approxima-
tion that will be made is the truncation of the seri
expansion~2.13!, ~2.14!, and ~2.17!. The accuracy of this
approximation is controlled by the characteristic amplitud
of the soft fields, which will be discussed in Sec. V. As w
be shown to account for the nonlinear interaction betwe
waves and hard particles in QGP’s at leading order ing, it is
sufficient to restrict the consideration to the third order
total powers ofc and Am in expansions~2.13!, ~2.14!, and
~2.17!.

III. LINEAR APPROXIMATIONS OF THE INDUCED
SOURCE h. CORRELATION FUNCTIONS OF
THE FERMION AND BOSON EXCITATIONS

We now come to the derivation of the kinetic equation f
the soft-fermion modes. The starting point is Eq.~2.19!. Its
left-hand side contains the linear approximation of the
duced sourceh, whose explicit form can be easily foun
9-4
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from Eq. ~2.9!. We prefer to work in momentum space. Th
corresponding equations are obtained by using

c~X!5E dq c~q!e2 iq•X, Am~X!5E dpAm~p!e2 ip•X

and similar transformations fordn6
A ,dNA, etc. Here and in

what follows we denote the momenta of the soft-quark fie
by q,q8,q1 , . . . and the momenta of the soft-gauge fields
p,p8,p1 , . . . .

Let us linearize Eq.~2.9! with respect toc andAm . The
result of the Fourier transformation of the linearized equat
is

L” (0,1)~k,q!5gCF

v”c~q!

v•q1 i e
@N~ek!1n~ek!#, e→10.

~3.1!

By substituting Eq.~3.1! into the Fourier transform of rela
tion ~2.18! ~for n50! and performing the radial integratio
overdek , we obtain the linear approximation with respect
the fermion field of the induced source,

h (0,1)~q!5dS~q!c~q!, ~3.2!

where

dS~q!5v0
2E dV

4p

v”
v•q1 i e

is a well-known HTL expression for the soft-quark~retarded!
self-energy,v0

25g2CFT2/8 is the plasma frequency of th
quark sector of plasma excitations, anddV is an angular
measure.

Furthermore, we rewrite Eq.~2.19! in momentum space
Taking into account Eq.~3.2! we obtain

* S21~q8!c j~q8!52gE A” ~p1!c j~q1!

3d~q82q12p1!dq1dp1

2h (1,1)j~q8!2h (2,1)j~q8!. ~3.3!

Here * S(q)5@2q”1dS(q)#21 is an equilibrium propagato
for a soft quark, corrected to leading order ing.

Let us multiply Eq.~3.3! by the Dirac conjugate ampli
tude c̄ i(2q)5@c i(q)#†g0 and take an expectation valu
over the off-equilibrium ensembles:

^c̄ i~2q! * S21~q8!c j~q8!&

52gE ^c̄ i~2q!@A” ~p1!c~q1!# j&d~q82q1

2p1!dq1dp1

2^c̄ i~2q!h (1,1)j~q8!&2^c̄ i~2q!h (2,1)j~q8!&.

~3.4!
10500
s
y

n

We now introduce the correlation functions of soft-fermio
and -bosonic excitations

Yba
j i ~q8,q!5^c̄a

i ~2q!cb
j ~q8!&,

~3.5!
I mn

ab~p8,p!5^Am*
a~p8!An

b~p!&,

respectively. The asterisk denotes a complex conjugate.
considered soft excitations are necessarilycolorlessand have
zero fermion numberby virtue of the fact that mean field
^Am

a & and^ca
i & or the associated mean induced color curr

and source are assumed to be vanishing. Therefore, for
physical situation of interest, the off-equilibrium two-poin
functions ~3.5! are diagonal in color space, which will b
implied in what follows.

For the conditions of stationary and homogeneous QG
@i.e., when correlation functions~3.5! in the coordinate rep-
resentation depend only on the difference of coordinates
time DX5X82X#, we have

Yba
j i ~q8,q!5Yba

j i ~q8!d~q82q!,

I mn
ab~p8,p!5I mn

ab~p8!d~p82p!.

The QGP state becomes slightly heterogeneous and no
tionary because of the effects of the nonlinear interact
between waves and particles. This leads to ad-function
broadening, andYba

j i and I mn
ab depend on both arguments.

Let us introduceYba
j i (q8,q)5Yba

j i (q,Dq), Dq5q82q
with uDq/qu!1 and I mn

ab(p8,p)5I mn
ab(p,Dp), Dp5p82p

with uDp/pu!1, and insert the correlation functions in th
Wigner form

Yba
j i ~q,x!5E Yba

j i ~q,Dq!e2 iDq•xdDq,

~3.6!

I mn
ab~p,x!5E I mn

ab~p,Dp!e2 iDp•xdDp,

slowly depending onx. In Eq.~3.4!, we replaceq↔q8, i↔ j ,
take a complex conjugation, and then subtract the resul
equation from Eq.~3.4!, expanding beforehand the qua
self-energy into ‘‘Hermitian’’ and ‘‘anti-Hermitian’’ parts:

dS~q!5dSH~q!1dSA~q!,

g0@dSH~q!#†g05dSH~q!,

g0@dSA~q!#†g052dSA~q!.

We assume that the anti-Hermitian partdSA is small relative
to the Hermitian partdSH and is of the same order as th
nonlinear terms on the right-hand side. We can therefore
dSA(q).dSA(q8) and move the term withdSA into the
right-hand side of Eq.~3.4!. We expand the remaining term
in the left-hand side with respect toDq up to the first order.
This corresponds to agradient expansionprocedure usually
used in the derivation of kinetic equations. Multiplying th
resulting equation bye2 iDq•x and integrating overDq, we
obtain
9-5
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trS ]

]qm
@2q”1dSH~q!#

]Y j i ~q,x!

]xm
D 52i tr@dSA~q!Y j i ~q,x!#

2 igE dq8dq1dp1$^@c̄~2q1!A” ~2p1!# ic j~q8!&d~q2q12p1!

2^c̄ i~2q!@A” ~p1!c~q1!# j&d~q82q12p1!%

2 i E dq8$@^h̄ (1,1)i~2q!c j~q8!&2^c̄ i~2q!h (1,1)j~q8!&#1@^h̄ (2,1)i~2q!c j~q8!&

2^c̄ i~2q!h (2,1)j~q8!&#%. ~3.7!

Here, the Dirac trace is represented by tr,h̄(2q)5h†(q)g0, and we take into account the reality of the gauge fi
Am*

a(p)5Am
a (2p). The linear term withdSA on the right-hand side corresponds to the linear Landau damping of soft-fer

excitations.

IV. SECOND AND THIRD APPROXIMATIONS OF THE INDUCED SOURCE h

Now we are concerned with computation of the nonlinear corrections to the induced source on the right-hand sid
~3.7!. At first, we defineL” (1,1). Substituting the series expansion~2.12! into ~2.9! and keeping only the terms of the seco
order in fields, we find

~v•]X!L” (1,1)~k,X!52 ig@v•A~X!#L” (0,1)~k,X!.

Performing the Fourier transformation of the last equation and taking into account an explicit form ofL” (0,1) in Eq. ~3.1!, we
derive

L” (1,1)~k,q!5g2CF@N~ek!1n~ek!#
vmv”

v•q1 i e
taE 1

v•q11 i e
Am

a ~p1!c~q1!d~q2q12p1!dq1dp1 . ~4.1!

Substituting the obtained expression into Eq.~2.18! ~for n51) and performing the radial integration overdek , we find the
required induced source correction

h (1,1)~q!5gv0
2taE dV

4p

vmv”
~v•q1 i e!~v•q11 i e!

Am
a ~p1!c~q1!d~q2q12p1!dq1dp1 . ~4.2!

The expression for the induced source of the third order in the fields is defined by means of reasoning simila
previous one. Here, we have

h (2,1)~q!5g2v0
2tatbE dV

4p

vmvnv”
~v•q1 i e!@v•~q2p1!1 i e#~v•q11 i e!

Am
a ~p1!An

b~p2!c~q1!d~q2q12p12p2!dq1dp1dp2 .

~4.3!

Now we return to the initial equation for the soft-fermion field~3.7!. We substitute nonlinear corrections to the induced sou
h @Eqs.~4.2! and~4.3!# into the right-hand side of this equation. After simple algebraic transformations, instead of Eq.~3.7!,
we find

trS ]

]qm
@2q”1dSH~q!#

]Y j i ~q,x!

]xm
D 52i tr@dSA~q!Y j i ~q,x!#2 igE dq8dq1dp1$^c̄

i~2q!Aam~p1!

3@ * Gm
(Q)a~p1 ;q1 ,2q8!c~q1!# j&d~q82q12p1!

2^@c̄~2q1! * Gm
(Q)a~2p1 ;2q1 ,q!# iA* am~p1!c j~q8!&d~q2q12p1!%

1 ig2E dq8dq1dp1dp2$^A
am~p1!Abn~p2!c̄ i~2q!

3@dGmn
(Q)ab~2p1 ,2p2 ;q8,2q1!c~q1!# j&d~q82q12p12p2!

2^A* am~p1!A* bn~p2!@c̄~2q1!dGmn
(Q)ba~p2 ,p1 ;2q,q1!# ic j~q8!&d~q2q12p12p2!%.

~4.4!
105009-6
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Here,

* Gm
(Q)a~p;q1 ,q2!5ta * Gm

(Q)~p;q1 ,q2![ta@gm1dGm
(Q)~p;q1 ,q2!# ~4.5!

is an effective~i.e., HTL-resummed! vertex between a quark pair and a gluon, that is, a sum of the bare vertexgm and a
corresponding HTL correction@5,22,24#

dGm
(Q)~p;q1 ,q2!52v0

2E dV

4p

vmv”
~v•q11 i e!~v•q22 i e!

, ~4.6!

and

dGmn
(Q)ab~p1 ,p2 ;q1 ,q2!52v0

2E dV

4p

vmvnv”
~v•q11 i e!~v•q22 i e! S tatb

v•~q11p1!1 i e
1

tbta

v•~q11p2!1 i e D ~4.7!

is an effective vertex between a quark pair and two gluons~this vertex does not exist at tree level, and in the leading ord
arises entirely from the HTL@5,24#!. The superscript~Q! denotes that the vertexdGm(X;Y1 ,Y2) corresponds to the function
~4.6! in the coordinate representation, where the time arguments satisfyY1

0>X0>Y2
0 ~boundary conditions!. The vertex

function ~4.7! corresponds todGm(X1 ,X2 ;Y1 ,Y2), where the time arguments satisfyY1
0>X1

0>X2
0>Y2

0 for the first term in
parentheses on the right-hand side of Eq.~4.7! and for the second term we haveY1

0>X2
0>X1

0>Y2
0, i.e., the time argument o

the external quark leg incoming in the vertex functions~4.6! and ~4.7!, is largest. In deriving Eq.~4.4! we have dropped the
terms proportional tôAmc̄&^Anc& not contributing to the right-hand side of kinetic equation for the soft-fermion excitat
at the leading order ing, in which we are interested.

Because of nonlinear wave interactions, phase correlation effects occur. By virtue of their smallness, the expectat
of a product of four quantitieŝAmAnc̄c& can be expressed approximately as a product of the expectation values of two

^AmAn& and^c̄c&. For a product of three fields this approach yields zero; in this case, the weak correlation between th
is to be taken into account. The third-order correlation functions on the right-hand side of Eq.~4.4! contain amplitudes of
waves with different statistic, nonlinear corrections that are defined by corresponding field equations. Let us conside
all the nonlinear correction to a free quark field. For this purpose, we use field equation~3.3!, keeping in the right-hand side
only the second-order terms~with respect toAm plus c):

* S21~q!c~q!52gE * G (Q)m~p1 ;q1 ,2q!Am~p1!c~q1!d~q2q12p1!dq1dp1 .

The approximate solution of this equation has the form

c~q!5c (0)~q!2g * S~q!E * G (Q)m~p1 ;q1 ,2q!Am
(0)~p1!c (0)~q1!d~q2q12p1!dq1dp1 , ~4.8!

whereAm
(0) andc (0) are solutions of the appropriate homogeneous field equations corresponding to free fields.

Now we consider the nonlinear correction to a free gauge field. For this purpose, we use field equation~2.20! rewritten in
momentum space, keeping on the right-hand side the terms of the second order in fields:

* D 21mn~p!An
a~p!5 j A(2)am~p!1 j C(0,2)am~p!1gE c̄~2q1!gmtac~q2!d~p1q12q2!dq1dq2

2
i

2
g fabcE Gmnl~p,2p1 ,2p2!An

b~p1!Al
c~p2!d~p2p12p2!dp1dp2 . ~4.9!

Here, * D mn(p)52@p2gmn2(11j21)pmpn1dPmn(p)#21 represents the medium-modified~retarded! gluon propagator with
the soft-gluon polarization tensor,

dPmn~p!53vpl
2 S gm0gn02p0E dV

4p

vmvn

v•p1 i e D ,
105009-7
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corrected at the leading order ing, vpl
2 5g2T2(Nf12Nc)/18 is a plasma frequency of the gauge sector of plasma excitat

and Gmnl(p,p1 ,p2) is a bare three-gluon vertex. The first and the last terms on the right-hand side of Eq.~4.9! give the
contribution to a correlation function̂Ac̄c& proportional to^AAc̄c&2^AA&^c̄c&. By replacing interacting fields by free
ones and dividing the fourth-order correlation into a product of the second-order correlators, this contribution va
Therefore these terms in this approximation can be dropped.

Now we consider the remaining terms on the right-hand side of Eq.~4.9!. For determining the explicit form ofj m
C(0,2)a it is

necessary to derive the expressiondn6
C(0,2)a according to Eq.~2.16!. For this purpose, we substitute the expansion~2.11! into

Eq. ~2.8!, keeping only the terms with quark fieldsc̄,c on the right-hand side. Performing the Fourier transformation
taking into account Eq.~3.1!, we find

dn6
C(0,2)a~k,p!56g2CF

1

2ek
@N~ek!1n~ek!#E 1

~v•q12 i e!~v•q21 i e!
c̄~2q1!v” tac~q2!d~p1q12q2!dq1dq2 .

Substituting the obtained expression into Eq.~2.16! and performing the radial integration overdek , we find the required
current correctionj m

C(0,2)a :

j m
C(0,2)a~p!52gv0

2E dV

4p

vm

~v•p1 i e! S 1

v•q21 i e
2

1

v•q12 i e D c̄~2q1!v” tac~q2!d~p1q12q2!dq1dq2 . ~4.10!

Taking into account the discussion above, we obtain the following equation, instead of Eq.~4.9!:

* D 21mn~p!An
a~p!5gE c̄~2q1! * G (G)m~p;q1 ,2q2!tac~q2!d~p1q12q2!dq1dq2 . ~4.11!

Here,

* Gm
(G)~p;q1 ,q2!5gm1dGm

(G)~p;q1 ,q2!,
~4.12!

dGm
(G)~p;q1 ,q2!52v0

2E dV

4p

vmv”
~v•q12 i e!~v•q22 i e!

is the effective two-quark–one-gluon vertex function, where now~in the coordinate representation! the time arguments satisf
X0>max(Y1

0 ,Y2
0) and the chronological order ofY1 and Y2 is arbitrary @22#. The time argument of an external gluon le

incoming in the vertex is largest, as indicated by superscript (G). The approximate solution of Eq.~4.11! ~with accuracy
required for our further calculations! is of the form

Am
a ~p!5Am

(0)a~p!1g * Dmn~p!E c̄ (0)~2q1! * G (G)n~p;q1 ,2q2!tac (0)~q2!d~p1q12q2!dq1dq2 . ~4.13!

At the end of this section we present the expression for the next term in the expansion of currentj m
C , which is needed for

deriving general kinetic equation for soft-gluon modes in Sec. VI. Performing similar calculations, we obtain

j m
C(1,2)a~p!52g2v0

2E dV

4p

vmvn~v” !ab

v•p1 i e F ~Ta!bc~ tc! i j
1

~v•q12 i e!~v•q21 i e!
1~ tatb! i j

1

@v•~q21p1!1 i e#~v•q21 i e!

2~ tbta! i j
1

@v•~q12p1!2 i e#~v•q12 i e!G3An
b~p1!c̄a

i ~2q1!cb
j ~q2!d~p2p11q12q2!dp1dq1dq2 , ~4.14!
e

in
th
ss

of
ce,

an
ons
where (Ta)bc52 i f abc. The appearance of the term with th
production of generators of the SU(Nc) group in other rep-
resentations~the adjoint and the fundamental ones! is a spe-
cial feature of the last expression. This term is not vanish
only in the processes of the higher order in field powers,
processes of Boltzmann type, i.e., the scattering proce
between the soft-fermion and -gluon excitations~see Conclu-
sion!.
10500
g
e
es

V. CHARACTERISTIC AMPLITUDES OF THE SOFT
FIELDS

In this section we will estimate the typical amplitudes
the soft fields, both in coordinate and in momentum spa
such that the truncation of the series expansions~2.13!,
~2.14!, and~2.17! can be made and in the long run one c
derive a closed system of gauge-invariant kinetic equati
for soft plasma excitations.
9-8
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For this purpose, let us discuss in more detail the appr
mation scheme used in this paper. In fact, the valued
[gRAm is a ~dimensionless! parameter of the expansion i
powers of nonlinearities in Eqs.~2.1!–~2.9!, whereR;]X

21

is a typical length for off-equilibrium deviations. It follows
for example, from rewriting the equations of motion for th
soft fields ~2.1! and ~2.2! in the form ~2.19! and ~2.20!,
where the gauge fieldsAm(X) are expanded from the cova
riant derivativesDm5]m1 igAm(X) and the field strength
tensorFmn(X). The disadvantage of the proposed itera
scheme for deriving the terms in expansions~2.13!, ~2.14!,
and ~2.17! is explicit breaking of the non-Abelian gaug
symmetry of the dynamical equations for the soft fluctu
tions ~2.6!–~2.9! at each step of the approximate calcu
tions. Here, the answer to the nontrivial question on the
covery of a gauge symmetry depends directly on the orde
the magnitudes of the soft fields, the dynamics of which
would like to describe. Below, we discuss two relevant cas

Let us assume that the amplitudes of soft-boson
-fermion excitations are of ordersg coinciding with the or-
ders ofAm andc presented in Ref.@22#, i.e.,

uAm~X!u;T @ uAm~p!u;1/g~gT!3#,

uc̄~X!uuc~X!u;gT3 @ uc̄~q!uuc~q!u;1/g2~gT!5#.

In this case, by using the obtained expressions for the te
in the expansion of the induced sourceh ~3.2!, ~4.2!, and
~4.3! and the color currentsj m

A @21# and j m
C ~4.10! and~4.14!,

we have the following estimates:

h (0,1)~q!;h (1,1)~q!;h (2,1)~q!;•••;gTuc~q!u,

j m
A(1)~p!; j m

A(2)~p!; j m
A(3)~p!;•••;

1

g2T
,

j m
C(0,2)~p!; j m

C(1,2)~p!;•••;g~gT!4uc̄~q!uuc~q!u

3S ;
1

g2T
D .

Thus, all terms in each expansion~2.13!, ~2.14!, and ~2.17!
are of the same order of magnitude, and the problem of
summation of all the relevant contributions arises. Th
gauge symmetry is recovered. In a pure-gauge case suc
approach is represented, for instance, in the work of Jac
and Nair@25# dealing with the derivation of the non-Abelia
version of the Kubo formula. Here, the explicit expressi
for the induced currentj m

A(p), including the contribution of
all higher point functions that actually coincide with the
erationsj m

A(1) , j m
A(2) , . . . @21#, is defined. The requirement o

gauge invariance leads to the completely nonlinear the
and principal impossibility of deriving closed kinetic equ
tions for number densities~i.e., two-point functions! of the
soft-fermion and -gluon excitations.
10500
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In this work, we restrict consideration only to a finit
number of terms in expansions of the induced source
color currents. This imposes more rigid restrictions on
order of the magnitudes of soft fields. Blaizot and Iancu@26#
~Sec. I A! showed in the special case when the soft fie
were thermal fluctuations at the soft scalegT ~namely, this
situation takes place in our case!, their typical amplitudes
would be of the orders

uAm~X!u;g1/2TS uAm~p!u;
1

g1/2~gT!3D ,

uc̄~X!uuc~X!u;g2T3S uc̄~q!uuc~q!u;
1

g~gT!5D .

In this case the parameter of expansionsd;g1/2!1 and we
have the estimates

h (0,1)~q!;gTuc~q!u, h (1,1)~q!;g3/2Tuc~q!u,

h (2,1)~q!;g5/2Tuc~q!u, . . . ,

j m
A(1)~p!;

1

g3/2T
, j m

A(2)~p!;
1

gT
,

j m
A(3)~p!;

1

g1/2T
, . . . ,

j m
C(0,2)~p!;g~gT!4uc̄~q!uuc~q!uS ;

1

gTD ,

j m
C(1,2)~p!;g3/2~gT!4uc̄~q!uuc~q!uS ;

1

g1/2T
D , . . . ,

i.e., every successive term in the source and current ex
sions is suppressed by one power ofg1/2 in comparison with
the preceding ones, and the use of the perturbation theo
therefore justified. By taking into account the nonlinear
teraction between soft fields and hard particles at lead
order ing, it is sufficient to keep only the first three terms
the expansions~2.13! and ~2.17!, and first two terms in ex-
pansion~2.14!, as mentioned at the end of Sec. II. The r
covery of a gauge symmetry here occurs another way, by
account of weak correlation in the calculation of the exp
tation value of three soft fields in a slightly heterogeneo
slightly nonstationary quark-gluon plasma~see the following
section!. In this case we derive a closed system of the gau
invariant kinetic equations that describe the evolution of
off-equilibrium deviations in the number densities, and o
tain the damping rates from the collision terms, which a
closely allied in form to the corresponding damping rates
the HTL approximation@8,9#.
9-9
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VI. GENERALIZED KINETIC EQUATION
FOR SOFT-FERMION EXCITATIONS

Now we turn to the equation for the soft-fermion excit
tions ~4.4!. We substitute Eqs.~4.8! and ~4.13! into
third-order correlation functions entering into Eq.~4.4!.
Because of the fact thatc̄ (0), c (0), and Am

(0) represent the
amplitudes of entirely uncorrelated waves, the correlat
function ^Am

(0)c̄ (0)c (0)& drops out. In this case, each term

^c̄ i(2q)Aam(p1)@ * Gm
(Q)ac(q1)# j& and

^(c̄(2q1) * Gm
(Q)a) iA* am(p1)c j (q8)& should be defined

more exactly. In the fourth-order correlation function
within the accepted accuracy, we replace the fieldsc̄, c,
andAm by c̄ (0), c (0), andAm

(0) .
Furthermore, we make the correlation decoupling of

fourth-order correlation functions in terms of the pair cor
lation functions by the rules
10500
n

,

e
-

^c̄ (0)~2q1!c (0)~q2!c̄ (0)~2q3!c (0)~q4!&

5^c̄ (0)~2q1!c (0)~q2!&^c̄ (0)~2q3!c (0)~q4!&

2^c̄ (0)~2q1!c (0)~q4!&^c̄ (0)~2q3!c (0)~q2!&,

^A(0)~p1!A(0)~p2!c̄ (0)~2q1!c (0)~q2!&

5^A(0)~p1!A(0)~p2!&^c̄ (0)~2q1!c (0)~q2!&.

Here, we suppress the color, spinor, and Lorentz indices,
take into consideration the Grassmanian nature of the qu
field. SettingYba5d j i Yba andI mn

ab5dabI mn , taking into ac-
count dabdGmn

ab(p1 ,p2 ;q1 ,q2)[CFdGmn(p1 ,p2 ;q1 ,q2), af-
ter cumbersome calculations, we come to the following g
eralized kinetic equation3 for the soft-fermionic excitation
QGP, instead of Eq.~4.4!
ertex

tic
e
ed
only
trS ]

]qm
@2q”1dSH~q!#

]Y~q,x!

]xm
D

52i tr@dSA~q!Y~q,x!#12g2CFS E dq1 Im$ * Dmn~q2q1!tr@Y~q! * G (Q)m~q2q1 ;q1 ,2q!

3Y~q1! * G (G)n~q2q1 ;q1 ,2q!#%2E dq1dp1I mn~p1!Im$tr@ * G (Q)m~2p1 ;2q1 ,q! * S~q!

3 * G (Q)n~p1 ;q1 ,2q!Y~q1!#%d~q2q12p1!2E dpImn~p!Im„tr$@dG (Q)mn~p,2p;q,2q!

2 * G (Q)m~p;q2p,2q! * S~q2p! * G (Q)n~2p;q,2q1p!2 * G (Q)n~2p;q1p,2q! * S~q1p!

3 * G (Q)m~p;q,2q2p!#Y~q!%…D . ~6.1!

On the right-hand side of Eq.~6.1! the x dependence ofYba(q) and I mn(p) is understood, although not explicitly written.
In deriving Eq.~6.1! we use the following properties of effective two-quark—one-gluon and two-quark—two-gluon v

functions, which immediately follows from initial definitions~4.5!, ~4.6!, ~4.7!, and~4.12!:

g0 * Gm
(Q)†~p;q1 ,q2!g05 * Gm

(Q)~p;q2 ,q1!5 * Gm
(Q)~2p;2q1 ,2q2!,

g0 * Gm
(G)†~p;q1 ,q2!g05 * Gm

(G)~2p;2q1 ,2q2!5 * Gm
(G)~2p;2q2 ,2q1!,

g0dGmn
(Q)†~p1 ,p2 ;q1 ,q2!g052dGmn

(Q)~p1 ,p2 ;q2 ,q1!52dGmn
(Q)~2p1 ,2p2 ;2q1 ,2q2!.

Moreover, we assume that under Hermitian conjugation the Wigner functionY(q,x) behaves like an ordinaryg matrix:

g0Y†~q,x!g05Y~q,x!. ~6.2!

Below this property is shown to ensure that the physical variable such as the fermion number density is real.
Equation~6.1! is incomplete, since the unknown functionI mn(p,x) enters this equation. This function obeys the kine

equation, which is similar to Eq.~6.1!. The soft-field equation~2.20! is initial for derivation of this kinetic equation. We us
the obtained expressions for the induced color currentj m

C ~4.10! and ~4.14! and corresponding expressions for the induc
color currentj m

A defined in Ref.@21#. Performing calculations similar to previous ones and keeping in the right-hand side

3The termgeneralizedhere means that we have not yet restricted ourselves to any mass-shell conditions.
9-10
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the terms responsible for the nonlinear interaction between soft-fermion excitations and soft-gluon ones~purely gauge secto
was considered in detail in Ref.@21#!, we come to the following generalized kinetic equation for soft-gluon excitation QG
~again, thex dependence of most quantities is suppressed!:

]

]pl
@p2gmn2~11j21!pmpn1dPHmn~p!#

]I mn~p,x!

]xl

522idPAmn~p!I mn~p,x!22g2TFS Im@ * Dmn~p!#E dq1dq2 tr$Y~q1! * G (G)m~p;q1 ,2q2!

3Y~q2! * G (G)n~2p;2q1 ,q2!%1I mn~p!E dq Im„tr$@dG (G)mn~p,2p;q,2q!1 * G (Q)n~2p;p2q,q! * S~p2q!

3 * G (G)m~p;2p1q,2q!2 * G (G)m~p;q,2p2q! * S~p1q! * G (Q)n~2p;p1q,2q!#Y~q!%…D . ~6.3!

Here,TF is the index of the fundamental representation,dPHmn(p) anddPAmn(p) are the Hermitian and anti-Hermitian par
of the soft-gluon self-energy, respectively, anddG (G)mn is the effective two-quark–two-gluon vertex function defined by
expression

dG (G)mn~p1 ,p2 ;q1 ,q2!52v0
2E dV

4p

vmvnv”
~v•q12 i e!~v•q22 i e! S 1

v•~q11p1!1 i e
1

1

v•~q11p2!2 i e D , ~6.4!
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where the first term in large parentheses satisfies the chr
logical orderX1

0>Y2
0 , X1

0>X2
0>Y1

0 in the coordinate repre
sentation, and the second term satisfies the chronologica
der X1

0>Y1
0 , X1

0>X2
0>Y2

0; i.e., the time argument of one o
external gluon legs coming into the vertex is largest. T
mean of the superscript~G! is evident here. Notice that in
deriving Eq.~6.3! we use the properties of Hermitian conj
gate of the vertex function~6.4!:

g0dGmn
(G)†~p1 ,p2 ;q1 ,q2!g05dGmn

(G)~p2 ,p1 ;q1 ,q2!

52dGmn
(G)~p1 ,p2 ;q2 ,q1!.

In closing this section we again call attention to the ch
nological order of arguments in the vertex functions enter
into the right-hand side of generalized equations~6.1! and
~6.3!, which appear here in nonevident manner. Also, we c
attention to the fact that the right-hand side of Eq.~6.3! is
proportional to the third group invariantTF as distinct from
the right-hand side of Eq.~6.1!, proportional to the quark
Casimir invariantCF and the kinetic equation forI mn(p,x)

FIG. 1. One-loop diagrams that contribute to the imaginary p
of the self-energy of quarks. The blob stands for HTL resummat
10500
o-

or-

e

-
g

ll

with purely gauge sector on the right-hand side@21#, propor-
tional to the gluon Casimir invariantCA .

VII. CLASSIFICATION OF TYPES OF NONLINEAR WAVE
INTERACTIONS. PLASMINO AND PLASMON

KINETIC EQUATIONS

Now we perform a preliminary analysis of the right-han
sides of the generalized kinetic equations~6.1! and~6.3!, the
purpose of which is the identification of the terms with sp
cific physical processes described by them. To establish
connection it is convenient to use the Feynman diagra
defining the contribution of the leading order in the coupli
constant to the damping of soft-fermion excitations in fram
work of resummed perturbation theory. There are known@5#
to be two diagrams@Figs. 1~a! and 1~b!# with soft loop mo-
mentum that contribute at orderg to the effective self-energy
for quarks: the usual self-energy graph at one-loop or
@Fig. 1~a!#, except that all of the vertices and propagators
effective, and the effective gluon tadpole on the soft-ferm
line @Fig. 1~b!#, which is special to the effective expansion

Let us consider the second term4 on the right-hand side o
Eq. ~6.1!. Physically, this contribution just corresponds to t
stimulated scattering processes of soft-fermion excitations
hard-particle QGP through a soft-virtual-gluonic oscillatio
without the change of statistic type of both soft and ha
excitations, i.e.,

4As was mentioned at the end of Sec. III, the first term on
right-hand side of Eq.~6.1!, involving the imaginary part of the
HTL self-energy, describes linear Landau damping. It vanish
when one studies the decay of on-shell excitations and therefore
be omitted.

rt
.
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YU. A. MARKOV AND M. A. MARKOVA PHYSICAL REVIEW D 64 105009
q1Q~Q̄!→q1Q~Q̄!, q1G→q1G,

and similarly for q̄. Here, q represents fermionic collectiv
excitations~we do not distinguish between normal-partic
excitations and plasminos! and Q, Q̄, and G are quark, an
tiquark, and gluon excitations with characteristic momenta
order T. It can be easily inferred if cutting the usual se
energy graph before spelling out the effective gluon pro
gator, i.e., inserting a hard bubble along the gluon line,
depicted in Fig. 2.

The third term on the right-hand side of Eq.~6.1! is asso-
ciated with the so-called decay processes depicted in Fi
following from the cutting of the usual self-energy graph

q
q1g, q1q̄→g,

where g is the gluonic collective excitations~here, we do not
distinguish between longitudinal and transverse excitatio!.
Similar decay processes have been studied in detail, s
they are immediately connected with the processes of s
dilepton productions in hot QCD plasma. In the hig
temperature QCD plasma in the approach based on u
dispersion relation methods@27#, these processes are co
nected with the so-called pole-pole terms.

Finally, the remaining terms grouped on the right-ha
side of Eq. ~6.1! are connected with the more interestin
process of the nonlinear wave interaction with stimula

FIG. 2. The process of the stimulated scattering of soft fer
onic excitations by hard QGP particles through a resummed g
propagator* D, where a vertex of a three-soft-wave interaction
induced by* Gm

(G) . The double lines denote hard particles.

FIG. 3. ~a!, ~b! Radiation~absorption! of the soft-boson excita-
tions by soft-fermion ones;~c! annihilation of the soft-fermion–
antifermion excitations into soft-boson excitations.
10500
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scattering of soft-fermion excitations by hard-particle QGP
varying with the change of statistics of excitations:

q~ q̄!1G→g1Q~Q̄!, q~ q̄!1Q̄~Q!→g1G.

It is defined by two different physical processes. The fi
represents the Compton scattering type process and is
nected with the effective two-quark–two-gluon vertex fun
tion ~more exactly, with its imaginary part! on the right-hand
side of Eq.~6.1!. This corresponds diagrammatically to th
appropriate cutting of the gluon ‘‘tadpole’’ graph, before
lustrating the effective two-quark–two-gluon vertex fun
tion, as depicted in Fig. 4. The second process conne
with the remaining terms defines the scattering of a fer
onic quantum oscillation through a virtual soft-fermion o
cillation. Diagrammatically this process of scattering is d
fined by the corresponding cutting of the usual self-ene
graph before illustrating out the effective quark propagator
in Fig. 5. As it will be shown in the next section, the term
corresponding to the processes drawn in Figs. 4 and 5 for
gauge-invariant function. The process, described by th
terms, will be called furtherthe nonlinear Landau damping
of the soft-fermion excitationsby virtue of the great similar-

i-
n

FIG. 4. The Compton-like scattering of soft-fermion excitatio
by a hard QGP particle with a change in statistics of soft excitati
(s channel!.

FIG. 5. The process of the stimulated scattering process of
soft-fermion excitations by hard QGP particles through a resumm
quark propagator* S, where a vertex of a three-soft-wave intera
tion is induced by* Gm

(Q) (t channel!.
9-12
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NONLINEAR LANDAU DAMPING OF A PLASMINO IN . . . PHYSICAL REVIEW D 64 105009
ity of the expression defining this process and the co
sponding expression in a purely gauge case@21#.

Here, it is necessary to note that the terms on the rig
hand side of kinetic equation~6.1! corresponding to the pro
cess diagrammatically shown in Fig. 5 are very close
structure to the terms connected with stimulated scatte
processes, without changing the statistic type and which
diagrammatically given in Fig. 2. However, in the last ca
the Compton scattering type contribution is absent, which
turn, is associated with the absence of the effective qu
tadpole on the soft-quark line. For this reason, we not as
this process to the one of the nonlinear Landau damping

Now we turn to the right-hand side of generalized kine
equation~6.3!. The second term on the right-hand side of E
~6.3! is defined by time reversal of the decay processes
are drawn in Figs. 3~a! and 3~c!. The remaining terms on th
right-hand side of Eq.~6.3! are associated with the process
defined by the time reversal of the processes depicte
Figs. 4 and 5, i.e., with the process of the nonlinear Lan
damping of the soft-gluon excitations.

In the remainder of this work, we restrict our attention
the detailed study of the process of nonlinear Landau da
ing, and moreover we restrict ourselves only to the proc
of the nonlinear interaction between plasminos and p
mons, i.e., purely collective excitations in hot QCD plasm
The exception is only Sec. XII, where we consider the di
culties connected with the calculation of the nonlinear La
dau damping rate for normal quark excitations in the vicin
of the light cone.

As it was mentioned in the Introduction in global equili
rium QGP’s for the case of massless quarks and for z
chemical potential there are two branches of fermion exc
tions with a positive energy. In this connection we define
Wigner functionY(q,x) in the form of an expansion

Y~q,x!5h1~ q̂!Ỹ1~q,x!1h2~ q̂!Ỹ2~q,x!, ~7.1!

where Ỹ6 are certain scalar functions andh6(q̂)5(g0

7q̂•g)/2 with q̂[q/uqu. By the condition~6.2! the functions

Ỹ6 are real. Let us define dependence on variableq0.
For this purpose we omit nonlinear terms and the a

Hermitian part of the quark self-energy in Eq.~3.4!. Substi-

tuting the functiond j i @h6(q̂)#baỸ6(q,x)d(q2q8) instead
of ^c̄a

i (2q)cb
j (q8)&, we find

2$q07@ uqu1RedS6~q!#%Ỹ6~q,x!50,

where

dS6~q!56
1

2
tr$h6~ q̂!dS~q!%5

v0
2

uqu F12S 17
uqu

q0 D FS q0

uqu D G
~7.2!

with

F~z!5
z F lnU11zU2 ipu~12uzu!G .
2 12z

10500
-

t-

n
g
re
e
n
rk
n

.
at

in
u

p-
ss
s-
.

-
-

ro
-

e

i-

The solutions of these equations have the structure

Ỹ6~q,x!5Y6~q,x!d„q02v6~q!…1Y7~2q,x!

3d„q01v7~q!…. ~7.3!

Here,Y6(q,x)[Yq
6 are certain functions of a wave vectorq

andv6(q)[vq
6 are frequencies of the normal-particle exc

tations and plasminos, respectively. The solutions~7.3! de-
scribe what is called aquasiparticle approximation. In this
approximation we assume that the off-equilibrium two-po

functionsỸ6(q,x) have the same mass-shell conditions as
equilibrium, with an off-equilibrium deviation in the spectra
densitiesYq

6 .
Furthermore, let us represent the functionI mn(p,x)5I mn

in the form of an expansion

I mn5Qmn~p!I p
l 1Pmn~p!I p

t , I p
l ,t[I l ,t~p,x!, ~7.4!

where

Qmn~p!5
ūm~p!ūn~p!

ū2~p!
,

Pmn~p!5gmn2Dmn~p!2Qmn~p!,

Dmn5pmpn /p2, ūm~p!5p2um2pm~pu!,

um5~1,0,0,0!

are longitudinal and transverse projections in the Lore
covariant form, respectively, and we take the functionsI p

l ,t in
the form of the quasiparticle approximation

I p
l 5I p

l d~p02vp
l !1I 2p

l d~p01vp
l !,

~7.5!

I p
t 5I p

t d~p02vp
t !1I 2p

t d~p01vp
t !.

In Eq. ~7.5! I p
l ,t are certain functions of a wave vectorp, and

vp
l ,t[v l ,t(p) are frequencies of the gluonic longitudinal an

transverse eigenwaves in a QGP.
The equations describing the variation of the spectral d

sitiesYq
2 andI p

l are obtained from Eqs.~6.1! and~6.3! by the
replacements

Y~q,x!→h2~ q̂!Yq
2d~q02vq

2!,
~7.6!

I mn~p,x!→Qmn~p!@ I p
l d~p02vp

l !1I 2p
l d~p01vp

l !#

for Eq. ~6.1!, and
9-13
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I mn~p,x!→Qmn~p!I p
l d~p02vp

l !,

Y~q,x!→h2~ q̂!Yq
2d~q02vq

2!1h1~ q̂!Y2q
2 d~q01vq

2!

for Eq. ~6.3!. d functions enable us to remove integratio
over q0 and p0. Retaining on the right-hand side the term
responsible for the process of nonlinear Landau damp
only, we have instead of Eqs.~6.1! and ~6.3!
se
La

r t
o-

10500
g

2S ]

]qm
@q01uqu1RedS2~q!# D

q05vq
2

]Yq
2

]xm

52g2CFYq
2E dpI p

l Im T(Q)~q,p!, ~7.7!

where
T(Q)~q,p![tr$@dG (Q)mn~p,2p;q,2q!2 * G (Q)m~p;q2p,2q! * S~q2p! * G (Q)n~2p;q,2q1p!

2 * G (Q)n~2p;q1p,2q! * S~q1p! * G (Q)m~p;q,2q2p!#h2~ q̂!%Qmn~p!uq05vq
2 , p05vp

l , ~7.8!

and

S ]

]pm
@p21RedP l~p!# D

p05vp
l

]I p
l

]xm
522g2TFI p

l E dqYq
2 Im T(G)~q,p!, ~7.9!

where

T(G)~q,p![tr$@dG (G)mn~p,2p;q,2q!1 * G (Q)n~2p;p2q,q! * S~p2q! * G (G)m~p;2p1q,2q!

2 * G (G)m~p;q,2p2q! * S~p1q! * G (Q)n~2p;p1q,2q!#h2~ q̂!%Qmn~p!uq05vq
2 , p05vp

l . ~7.10!
ies
.
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The expressionsT(Q)(q,p) andT(G)(q,p) contain the factors

1

v•q1 i e
,

1

v•q2 i e
,

1

v•~q2p!1 i e
, . . . .

The imaginary parts of the first two factors should be
equal to zero because they are connected with the linear
dau damping of a plasmino~which is absent in a QGP! and
therefore, the imaginary part of the expressions~7.8! and
~7.10! will be defined as

Im
1

v•~q2p!1 i eU
q05vq

2 , p05vp
l

52pd„vq
22vp

l 2v•~q2p!…, . . . .

Because of the absence of the linear Landau damping fo
plasmino from the definitions of effective two-quark–tw
gluon vertex functions~4.7! and ~6.4! and two-quark–one-
gluon vertex functions~4.6! and ~4.12!, the next equalities
are as follows:

dG (Q)mn~p,2p;q,2q!5dG (G)mn~p,2p;q,2q!,

* G (Q)m~p;q2p,2q!5 * G (G)m~p;q2p,2q!, . . . ,
~7.11!

and as consequence, we have

T(Q)~q,p!5T(G)~q,p!. ~7.12!
t
n-

he

Therefore, in the subsequent discussion the superscripts~Q!
and~G! will be dropped. Let us emphasize that the equalit
~7.11! and ~7.12! hold only for on-shell plasma excitations

VIII. GAUGE INVARIANCE OF Im T„q,p…

The issue of the gauge dependence of the plasmino n
linear Landau damping rate is closely associated with
issue of the gauge dependence of ImT(q,p). In the next
section the expression ImT(q,p) is shown to define the
plasmino–hard-particle scattering matrix element squa
i.e., it has direct physical relevance. To establish the ga
invariance of the matrix element for plasmino–hard-parti
scattering we need to show that the expression ImT(q,p) in
the covariant gauge equals a similar one in the temp
gauge.

We prove the gauge invariance for a more general exp
sion, which in a covariant gauge has the form

* G̃~p1 ,p2 ;q1 ,q2!

[$dGmn~p1 ,p2 ;q1 ,q2!2 * Gm~p1 ;q11p2 ,q2!

3 * S~q11p2! * Gn~p2 ;q1 ,q21p1!

2 * Gn~p2 ;q11p1 ,q2! * S~q11p1!

3 * Gm~p1 ;q1 ,q21p2!%ūm~p1!ūn~p2!uon shell.
~8.1!

Here,p11p21q11q250. Notice that the order of the Lor
entz indices of the last two terms in curly brackets on
9-14
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NONLINEAR LANDAU DAMPING OF A PLASMINO IN . . . PHYSICAL REVIEW D 64 105009
right-hand side of Eq.~8.1! is important. The association o
the expression~7.8! with ~8.1! is given by

Im T~q,p!

5
1

Aū2~p!ū2~p1!

3Im tr$ * G̃~p1 ,p2 ;q1 ,q2!h2~ q̂1!%up152p25p, q152q25q .

A similar expression~8.1! in the temporal gauge is obtaine
with the replacements

ūm~p!→ũm~p![p2@pm2um~p•u!#/~p•u!, etc.

The gauge-invariance proof is based on using identi
analogous to the effective Ward identities in hot gauge the
@5,24#. It can be shown that the following equalities hold:

dGmn~p1 ,p2 ;q1 ,q2!p1m5 * Gn~p2 ;q1 ,q21p1!

2 * Gn~p2 ;q11p1 ,q2!,
~8.2!

dGmn~p1 ,p2 ;q1 ,q2!p2n5 * Gm~p1 ;q1 ,q21p2!

2 * Gm~p1 ;q11p2 ,q2!,

* Gm~p;q1 ,q2!pm5 * S21~q1!2 * S21~q11p!.

Initially we calculate the convolution with the effectiv
two-quark–two-gluon vertex functiondGmn. Slightly cum-
bersome but not complicated computations by using the
fective Ward identities~8.2! and the mass-shell condition
lead to the following expression:

dGmn~p1 ,p2 ;q1 ,q2!ūm~p1!ūn~p2!uon shell

5p1
2p2

2dG00~p1 ,p2 ;q1 ,q2!1J~p1 ,p2 ;q1 ,q2!,

~8.3!

where

J~p1 ,p2 ;q1 ,q2!5p1
0p2

2$ * G0~p2 ;q11p1 ,q2!

2 * G0~p2 ;q1 ,q21p1!%

1p2
0p1

2$ * G0~p1 ;q11p2 ,q2!

2 * G0~p1 ;q1 ,q21p2!%

2p1
0p2

0$ * S21~q11p2!

1 * S21~q11p1!%.

Furthermore, we calculate the convolution with the ter
containing the two-quark–one-gluon effective vertex in E
~8.1!. Here, we derive the expression
10500
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$ * Gm~p1 ;q11p2 ,q2! * S~q11p2! * Gn~p2 ;q1 ,q21p1!

1~p1↔p2 ,m↔n!%ūm~p1!ūn~p2!uon shell

5p1
2p2

2$ * G0~p1 ;q11p2 ,q2! * S~q11p2!

3 * G0~p2 ;q1 ,q21p1!1~p1↔p2!%

1J~p1 ,p2 ;q1 ,q2!. ~8.4!

Subtracting Eq.~8.4! from ~8.3!, we arrive at the desired
expression

* G̃~p1 ,p2 ;q1 ,q2!

5p1
2p2

2$dG00~p1 ,p2 ;q1 ,q2!2 * G0~p1 ;q11p2 ,q2!

3 * S~q11p2! * G0~p2 ;q1 ,q21p1!

2 * G0~p2 ;q11p1 ,q2! * S~q11p1!

3 * G0~p1 ;q1 ,q21p2!%. ~8.5!

Now we consider the structure of* G̃ in the temporal
gauge. For this purpose we replaceūm by ũm in Eq. ~8.1!.
The convolution with an effective two-quark–two-gluon ve
tex function leads to

dGmn~p1 ,p2 ;q1 ,q2!ũm~p1!ũn~p2!uon shell

5p1
2p2

2dG00~p1 ,p2 ;q1 ,q2!1J̃~p1 ,p2 ;q1 ,q2!,

~8.6!

where

J̃~p1 ,p2 ;q1 ,q2!5
p1

2p2
2

p1
0p2

0 $@p1
0 * G0~p1 ;q11p2 ,q2!

2 * S21~q11p2!#1~p1↔p2!%.

Convolution with the terms containing* Gm yields

$ * Gm~p1 ;q11p2 ,q2! * S~q11p2! * Gn~p2 ;q1 ,q21p1!

1~p1↔p2 ,m↔n!%ũm~p1!ũn~p2!uon shell

5p1
2p2

2$ * G0~p1 ;q11p2 ,q2! * S~q11p2!

3 * G0~p2 ;q1 ,q21p1!1~p1↔p2!%

1J̃~p1 ,p2 ;q1 ,q2!. ~8.7!

Subtracting Eq.~8.7! from ~8.6!, we obtain a similar expres
sion ~8.5!. Thus, we have shown that at least in the class
covariant and temporal gauges, the expression ImT(q,p) is
gauge invariant.

IX. NONLINEAR LANDAU DAMPING RATE
OF A PLASMINO

In our work @21# the transformation of the nonlinear Lan
dau damping rate for a plasmon in a purely gauge secto
9-15
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YU. A. MARKOV AND M. A. MARKOVA PHYSICAL REVIEW D 64 105009
soft QGP excitations was performed. An expression sim
to ImT(q,p) was transformed to module squared of a sum
the terms, which are interpreted as the scattering amplit
of specific physical processes. In this section we represe
similar transformation for the function ImT(p,q). Since this
function is not dependent on the choice of a gauge,
choose a temporal gauge for simplicity.

The right-hand side of Eq.~7.7! contains the contribution
of two different processes. The first is associated with
sorption of a plasmino by QGP particles with frequencyvq

2

and wave vectorq, and consequent radiation of a plasm
with frequencyvp

l and wave vectorp. It is defined by the
second term on the right-hand side of Eq.~7.8!. The frequen-
cies and wave vectors of an incident plasmino and a re
plasmon satisfy the conservation law

vq
22vp

l 2v•~q2p!50. ~9.1!

The second process represents simultaneous radiation~or ab-
sorption! of a plasmino and plasmon with frequenci
vq

2 , vp
l and wave vectorsq, p satisfying the conservation

law

vq
21vp

l 2v•~q1p!50, ~9.2!

and is defined by the third term in Eq.~7.8!. The contribution
of the second process to the order of interest is not import
The first term on the right-hand side of Eq.~7.8!, associated
with an effective two-quark–two-gluon vertex function, co
tains both processes. Furthermore, we take into accoun
terms in Eq.~9.1! and we drop the terms that contain thed
function of Eq.~9.2!. Notice that the conservation law~9.1!
defines, in a very nontrivial manner, accessible kinem
regions of wave vectorsq andp in the process of nonlinea
Landau damping for a plasmino. In Sec. XI we consider o
the simplest limiting case of accessible kinematic region
plasmon wave vectorp for the case of theq50 mode.

Now we consider the expression withdGmn. With regard
to the discussion above and to the definition~6.4!, the con-
tribution of a given term to ImT(q,p) can be represented a

2pv0
2F p2

p2~p0!2E dV

4p

~11v•q̂!~v•p!2

~v•q!2

3d„vq
22vp

l 2v•~q2p!…G
on shell

. ~9.3!

Let us consider now a more complicated second term
Eq. ~7.8! associated with the two-quark–one-gluon vertic
By the definition~4.5! and ~4.6!, the following equality is
obeyed:

* Gm~p; l ,2q!5 * Gm~2p;q,2 l ![ * Gm

~hereafter,l[q2p). By using this relation and the decom
position of the effective quark propagator* S( l ) ontoh6( l̂),

* S~ l !5h1~ l̂ ! * D1~ l !1h2~ l̂ ! * D2~ l !,
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where

* D6~ l !52
1

l 07@ u lu1dS6~ l !#
, ~9.4!

the contribution to ImT(q,p) of the term associated with th
effective two-quark–one-gluon vertex functions can be r
resented as

F p2

p2~p0!2
Im@ * D1~ l !tr$h2~ q̂!~ * G i pi !h1~ l̂ !~ * G j pj !%

1 * D2~ l !tr$h2~ q̂!~ * G i pi !h2~ l̂ !~ * G j pj !%#G
on shell

.

~9.5!

Let us compute the traces in the last expression. For
purpose we research the matrix structure of the funct
* G i pi in more detail. From the analysis of the correspond
expressions for HTL functions, derived by Frenkel and Ta
lor „in particular, the expression~3.38! in Ref. @6#!, it is easy
to see that* G i pi can be represented in the form of the e
pansion

* G i pi5g0dG01~ l•g! * G i1@~n3 l!•g# * G' , ~9.6!

wheren[q3p and the coefficient functions are defined a

dG05v0
2E dV

4p

v•p

~v• l 1 i e!~v•q!
,

* G i5
p• l

l2
1dG i[

p• l

l2

2
v0

2

l2
E dV

4p

~v•p!~v• l!

~v• l 1 i e!~v•q!
, ~9.7!

* G'5
1

l2
1dG'[

1

l2

2
v0

2

l2n2E dV

4p

~v•p!@v•~n3 l!#

~v• l 1 i e!~v•q!
.

The matrix basis in the expansion~9.6! is convenient in that
it is ‘‘orthogonal’’ in trace computing. Substituting expres
sion ~9.6! into ~9.5! we can compute desired traces in E
~9.5! in terms of the functions~9.7!. However, this direct
approach is not quite convenient in view of its nontransp
9-16
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ency and the necessity of cumbersome calculations. We o
determine the expansion~9.6!, which enables us to represe
the function* G i pi in a more appropriate form for trace com
puting. Instead of expansion~9.6! we can write~the details
of overdetermination are given in Appendix A!

* G i pi52h2~ l̂ ! * G12h1~ l̂ ! * G212h2~ q̂!l2uqu * G' ,
~9.8!

where

* G6[2dG07u lu * G i1
n2

uqu
1

17q̂• l̂
* G' . ~9.9!

The explicit selectivity of the matrixh2(q̂) in the expansion
~9.8! is connected with the fact that we have restricted
consideration to the study of a plasmino branch of ferm
excitations only. In the case of the branch describing norm
particle excitations, it is necessary to use the following
pansion instead of Eq.~9.8!:

* G i pi52h2~ l̂ ! * Ǵ12h1~ l̂ ! * Ǵ222h1~ q̂!l2uqu * G' ,
~9.10!

where now

* Ǵ6[2dG07u lu * G i2
n2

uqu
1

16q̂• l̂
* G' . ~9.11!

Substituting expression~9.8! into ~9.5!, and using the
identities forh6( l̂) matrices,
.
c
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h6~ l̂ !h6~ l̂ !50, h6~ l̂ !h7~ l̂ !h6~ l̂ !5h6~ l̂ !,

after computing the trivial traces, we obtain

F p2

p2~p0!2
$~12q̂• l̂ !Im@ * D1~ l !~ * G1!2#

1~11q̂• l̂ !Im@ * D2~ l !~ * G2!2#%G
on shell

. ~9.12!

Furthermore, we use the relation

Im@ * D6~ l !~ * G6!2#52Im@ * D6
21~ l !#u * D6~ l ! * G6u2

12 Im~ * G6!Re@ * D6~ l !* G6#.

Taking into consideration the last relation and the equ
ties

Im* D6
21~ l !52pv0

2E dV

4p
~17v• l̂ !d~v• l !,

Im * G65pv0
2E dV

4p

v•p

v•q

3S 17v• l̂1
v•~n3 l!

uqu l2~17q̂• l̂ !
D d~v• l !,

subtracting Eq.~9.12! from ~9.3!, we define the desired ex
pression for ImT:
Im T~q,p!5pv0
2F p2

p2~p0!2E dV

4p H 2
~v•p!2

~v•q!2
~11v•q̂!1~12q̂• l̂ !~12v• l̂ !u * D1~ l ! * G1u2

12
v•p

v•q
%1~v;q̂,p̂!Re@ * D1~ l ! * G1#1~11q̂• l̂ !~11v• l̂ !u * D2~ l ! * G2u2

12
v•p

v•q
%2~v;q̂,p̂!Re@ * D2~ l ! * G2#J d~v• l !G

on shell

. ~9.13!
the
Here,

%6~v;q̂,p̂![~17q̂• l̂ !~17v• l̂ !1
v•~n3 l!

uqu l2
. ~9.14!

The expression~9.13! can be led to a more descriptive form
For this purpose we add to the expression in the curly bra
ets on the right-hand side of Eq.~9.13! the term
k-

v•~n3 l!

uqu l2
@ u * D1~ l ! * G1u21u * D2~ l ! * G2u2#,

equals zero over solid integration. In addition, we rewrite
first term in curly brackets by using the relation

2~11v•q̂!5%1~v;q̂,p̂!1%2~v;q̂,p̂!,

which is a consequence of the definitions~9.14!. Taking into
account the discussion, above we rewrite expression~9.13!
in the following form:
9-17
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Im T~q,p!5pv0
2
~vp

l !22p2

~vp
l !2p2 E dV

4p

3d„vq
22vp

l 2v•~q2p!…

3$%1~v;q̂,p̂!wv
1~q,p!1%2~v;q̂,p̂!wv

2~q,p!%,

~9.15!

where

wv
6~q,p!5uM6~q,p!u2[Uv•p

v•q
1 * D6~ l ! * G6U

on shell

2

.

~9.16!

The denominatorv•q in Eq. ~9.16! is eikonal, which was
expected in an approximation to the small-angle scatterin
a high-energy particle. It defines the effective~here, effec-
tiveness is not in terms of HTL resummation! propagator in
the Compton type scattering process depicted in Fig. 4.
factor v•p is connected with the effective vertex with on
soft external leg and two hard ones. Accordingly, the sec
term in the amplitudesM6(q,p) represents the second typ
of scattering process depicted in Fig. 5. Here, the qu
propagator transfers the soft momentum and is defined by
scalar functions* D1 or * D2 , and a vertex with soft exter
nal momenta is defined by the scalar functions* G1 or * G2

for corresponding propagators.
Furthermore, we are relating the Wigner functionsYq

2

andI p
l to the plasmino and plasmon number densities, set

accordingly as

nq
252 Z2

21~q!Yq
2 , Np

l 522vp
l Zl

21~p!I p
l . ~9.17!

Here,

Z2
21~q!511S ] RedS2~q!

]q0 D
q05vq

2

,

Zl
21~p!511S ] RedP l~p!

]~p0!2 D
p05vp

l

are the residues of the effective quark and gluon propaga
at the appropriate poles, respectively. The factor 2 in fron
Z2

21(q) takes into account the presence in QGP’s of antip
minos. By using the definition~9.17!, Eqs. ~7.7! and ~7.9!
can be rewritten in the usual form of kinetic equations~con-
taining on the left-hand side drift terms, and on the rig
hand side the terms responsible for collisions!, where the
role distribution functions of quasiparticles—plasminos a
plasmons—fulfill the functions~9.17!:

]nq
2

]t
1Vq

2
•

]nq
2

]x
52g2~q!nq

2[2g2CFnq
2E dpQ~q,p!Np

l ,

~9.18!
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]Np
l

]t
1Vp

l
•

]Np
l

]x
51g l~p!Np

l [1g2TFNp
l E dqQ~q,p!nq

2 ,

~9.19!

whereVq
2[]vq

2/]q andVp
l []vp

l /]p are group velocities of
plasminos and plasmons respectively, and the kernelQ(q,p)
is defined by

Q~q,p!5
1

2vp
l
Z2~q!Zl~p!Im T~q,p!. ~9.20!

The functionsg2(q) and g l(p) on the right-hand side o
Eqs.~9.18! and~9.19! represent the nonlinear Landau dam
ing rates for plasminos with momentumq and for plasmons
with momentump, respectively.

The structure of kernel~9.20! is rather unexpected. As w
see from the expression~9.15!, this kernel is not reduced to
the squared modulus of one scalar function, as this occur
a purely gauge case@21#. Here,Q(q,p) is defined by a sum
of the squared moduli of two independent scalar function5

amplitudesM1(q,p) andM2(q,p). This is a point that we
find difficult to interpret and therefore additional analysis
this problem is required. The only remark that may be ma
is that the interference between the scattering processes
picted in Fig. 5 proceeding through intermediate quark v
tual oscillations with propagators* D1( l ) and * D2( l ) ac-
cordingly, vanishes by the relation

h2~ l̂ !F E dV

4p
v” d„vq

22vp
l 2v•~q2p!…Gh1~ l̂ !50.

This relation is the analog of the relation in a purely gau
case@21#,

~p2! iF E dV

4p
v iv jd~vp

l 2vp1

l 2v•~p2p1!!G~ ň3p2! j50,

ň[p3p1 , p2[p2p1 ,

that is responsible for the absence of interference betw
the scattering of plasmon by a QGP thermal particle throu
the longitudinal and transverse virtual gluon oscillations.

X. DECOMPOSITION OF KERNEL Q„q,p…
INTO POSITIVE AND NEGATIVE PARTS

In this section we consider the problem of the direction
the effective pumping over of plasma excitation energy in
process of the nonlinear interaction of plasminos and p
mons. For this purpose, first, we study in more detail
structure of the functions%6(v;q̂,p̂).

By using the expansion~A4!, we represent the%6 func-
tions ~9.14! in the form

5As will be shown in the next section, the coefficient functions%6

in Eq. ~9.15! are not, in general, case definite; therefore in princi
it is impossible to express the expression ImT as the squared modu
lus of one scalar function—the total scattering amplitude.
9-18
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%6~v;q̂,p̂!511v•q̂7~ q̂• l̂1v• l̂ !. ~10.1!

Let us introduce the coordinate system in which axis 0Z is
aligned with vectorl̂ ; then the coordinates of vectorsq̂ andv
are equal toq̂5(1,a,b) andv5(1,u,w), respectively. ByF
we denote the angle betweenv and q̂: v•q̂5cosF. The
angleF can be expressed as

cosF5sinu sina cos~w2b!1cosu cosa. ~10.2!

In the fixed coordinate system expression~10.1! reads

%6~a,b;u,w!511sinu sina cos~w2b!1cosu cosa

7~cosa1cosu!. ~10.3!

By using trigonometric formulas, it is easily to show that t
last expression can be represented in the homogeneous

dratic form with respect to the variables cos1
2(u2a) and

cos1
2(u1a):

%6~a,b;u,w!5y†A6y, ~10.4!

where

y[y~a,u![S cos
1

2
~u2a!

cos
1

2
~u1a!

D ,

A6[A6~b,w![S 2 cos2
1

2
~w2b! 71

71 2 sin2
1

2
~w2b!

D .

The eigenvalues of matricesA6 are equal to

l (1)511A11cos2~w2b!.0,

l (2)512A11cos2~w2b!<0. ~10.5!

From the theory of matrices@28# it is known that the real
symmetric quadratic form is indefinite if and only if the e
genvaluesl of matrix A have the different signs. Thus, b
virtue of Eq.~10.5! we have proved that the coefficient fun
tions %6 are indefinite. By the linear transformation of th

variables cos12(u2a) and cos12(u1a), the quadratic form
~10.4! can be expressed as the canonical one, where the
tive and negative parts of%6 are explicitly displayed:

%6~a,b;u,w!5l (1)~x6
(1)!21l (2)~x6

(2)!2. ~10.6!

Here, x6
(1) and x6

(2) are certain linear functions of cos1
2(u

2a) and cos12(u1a).
The explicit expressions forx6

(1) and x6
(2) are defined

with the help of the transformations
10500
ua-

si-

S x6
(1)

x6
(2)D 5U6S cos

1

2
~u2a!

cos
1

2
~u1a!

D , ~10.7!

where, in turn, the transformation matricesU6 are defined by
the solutions of the corresponding matrix equations

U6A65diag~l (1),l (2)!U6 .

The solutions of the last equations have the following str
ture:

U65S cosq 6sinq

7sinq cosq
D ,

tanq52
1

cos~w2b!1A11cos2~w2b!
.

By using a given expression and Eq.~10.7!, we derive the
desired expressions forx6

(1) and x6
(2) . The functionsx6

(1)

andx6
(2) can be easily rewritten in the terms of initial vecto

l, q, andv. For example, from Eq.~10.2! it follows that

cos~w2b!52
n•~v3 l!

unuuv3 lu
, etc.

By substituting the expansion~10.6! into ~9.15!, we can
represent the kernelQ(q,p) in the form of a sum of positive
and negative parts:

Q~q,p!5Q (1)~q,p!2Q (2)~q,p!, Q (6)~q,p!>0,
~10.8!

where

Q (6)~q,p!56pv0
2F ~vp

l !22p2

2~vp
l !3p2

Z2~q!Zl~p!G
3E dV

4p
d„vq

22vp
l 2v•~q2p!…

3$l (6)@~x1
(6)!2wv

1~q,p!1~x2
(6)!2wv

2~q,p!#%.

~10.9!

We use the decomposition~10.8! in general analysis of the
problem of a direction of the pumping over of excitatio
energy in the study of the process of nonlinear interact
between plasminos and plasmons.

To consider the model problem of interaction of two in
nitely narrow packets with typical wave vectorsq0 and p0,
let us introduce the number densitiesnq

2 andNp
l as follows:

nq
2~ t !5n2~ t !d~q2q0!, Np

l ~ t !5Nl~ t !d~p2p0!.

We have restricted ourselves to the spatially homogene
case. Substituting the last expressions into Eqs.~9.18! and
~9.19!, we obtain the coupled nonlinear equations:
9-19
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]n2

]t
52g2CFQn2Nl , n2~ t0!5n0

2 ,

~10.10!
]Nl

]t
51g2TFQn2Nl , Nl~ t0!5N0

l .

Here, Q[Q(q0 ,p0). The system of the equations~10.10!
possesses the integral of motion

C[TFn2~ t !1CFNl~ t !5TFn0
21CFN0

l .

The general solution of this system, with regard to deco
position of the kernel~10.8!, has the form

n2~ t !5n0
2C e2g2CQ (1)(t2t0)

CFN0
l e2g2CQ (2)(t2t0)1TFn0

2e2g2CQ (1)(t2t0)
,

Nl~ t !5N0
l C e2g2CQ (2)(t2t0)

CFN0
l e2g2CQ (2)(t2t0)1TFn0

2e2g2CQ (1)(t2t0)
.

Let us analyze the behavior of these solutions in the limit
t→`.

~1! Let us assume that the values of the wave vectorsq0
andp0 are such that the following inequality

Q (1)~q0 ,p0!.Q (2)~q0 ,p0! ~10.11!

is true. Then in the limit fort→` we have

n2~ t !→0, Nl~ t !→N0
l 1~TF /CF!n0

2 . ~10.12!

Thus we see that as a result of the nonlinear interaction
two infinitely narrow packets with fermion and boson qua
tum numbers, the effective pumping over of energy from
first packet to the second one takes place.

~2! If the inverse inequality holds,

Q (1)~q0 ,p0!,Q (2)~q0 ,p0!, ~10.13!

then in the limit fort→` we have

n2~ t !→n0
21~CF /TF!N0

l , Nl~ t !→0.

Here, we have an inverse case—the damping of bosonic
citations and the growth of fermionic excitations.

~3! Finally, in the limiting case Q (1)(q0 ,p0)
5Q (2)(q0 ,p0), the interaction between wave packets is a
sent.

The inequalities~10.11! and ~10.13! define the kinematic
relations between wave vectors of excitations with differ
statistics, such that one or another process of pumping
of energy occurs. However, the general analysis of these
equalities is a complicated problem by virtue of the compl
ity of the expressions for positive and negative parts of
kernelQ. In the next section we shall study in detail only th
simplest limiting case of the interaction of a ‘‘standing’’ pla
mino (q50) with a plasmon. Here, the direction of the e
fective pumping-over energy is easily defined.
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XI. THE DAMPING RATE OF A PLASMINO AT REST

The solution of the kinetic equation~9.18!, defining a
change of the plasmino number density, can be formally r
resented in the form~for a spatially homogeneous case!

nq
(2)~ t !5nq

(2)~ t0!expH 2g2CFE
t0

t

dt8E dpQ~q,p!Np
l ~ t8!J .

Let us approximate the plasmon number densityNp
l by its

equilibrium value or Planck distribution

Np
l .Neq

l ~ upu!5
1

~2p!3

1

evp
l /T21

and define the quasiparticledamping rateof the standing
plasmino by means of the relation

g2~0!5
1

2
g2CF lim

uqu→0
E dpQ~q,p!Neq

l ~ upu!. ~11.1!

Now we represent a complete calculation ofg2(0). We
start with a representation of a kernelQ(q,p) in the form
~9.20!, where the function ImT(q,p) is determined through
Eqs.~9.15! and~9.16!. Here, it is convenient for us to intro
duce a new coordinate system in which axis 0Z is aligned
with the vectorp̂; then the coordinates of vectorsq̂ andv are
equal to q̂5(1,a8,b8) and v5(1,u8,w8), respectively. By
F8 we denote the angle betweenv and q̂. The angleF8 is
connected witha8, b8, u8, andw8 via the relation~10.2!
with a corresponding changea→a8, etc.

In the limit for uqu→0, the kernelQ(q,p) is reduced to

Q~0,p!5pv0
2

~vp
l !22p2

8~vp
l !3upu3

Zl~p!E dV

4p
d~cosu82rp

l !

3$%1~v;q̂,p̂!uM1~0,p!u2

1%2~v;q̂,p̂!uM2~0,p!u2%, ~11.2!

where rp
l [(vp

l 2v0)/upu; dV5sinu8du8dw8. The expres-

sions for %6(v;q̂,p̂) are defined by Eq.~10.1!. In a new
coordinate system, instead of Eq.~10.3!, we have the func-
tion representation%6 in terms of angles

%6~a8,b8;u8,w8!511sinu8 sina8cos~w82b8!

1cosu8 cosa86~cosa81cosu8!.

~11.3!

The limits of the scattering amplitudesM6 , by its defini-
tions ~9.16! equals
9-20
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M6~0,p!5
upu
v0

cosu81 lim
uqu→0

@ * D6~ l ! * G6#. ~11.4!

Thus, the problem of computing ofg2(0) is reduced to the
calculation of limits of scalar functions: the effective prop
gators* D6 and the effective vertices* G6 .

By using the definitions of the* G6 effective scalar ver-
tex functions~9.9! and~9.7!, after slightly cumbersome com
putations, we define

lim
uqu→0

* G652
upu
v0

rp
l lim

uqu→0

* D6
21~ l !

2Fv07upu7
p2

v0
rp

l ~16rp
l !G . ~11.5!

In the last equality we use the* D6
21(q) definition ~9.4! as
10500
the F(q0 /uqu) function ~7.2! ~see Braaten and Pisarski@8#!.
Inserting Eq.~11.5! into ~11.4!, we reduce the scattering am
plitudes to

M6~0,p!5
upu
v0

cosu82
upu
v0

rp
l

2Fv07upu7
p2

v0
rp

l ~16rp
l !G lim

uqu→0

* D6~ l !.

By the d function in Eq.~11.2!, all terms inM6(0,p) not
containing the propagators* D6 , are relatively reduced in
the limit of theq50 mode.

The remaining terms, after substitution into Eq.~11.2! and
integration over the solid angle with regard to Eq.~11.3!,
yield
the

xcitation

given
Q~0,p!5pv0
2

~vp
l !22p2

16~vp
l !3upu3

Zl~p!u~12urp
l u!H ~11cosa8!~11rp

l !Fv02upu2
p2

v0
rp

l ~11rp
l !G2U lim

uqu→0

* D1~ l !U2

1~12cosa8!~12rp
l !Fv01upu1

p2

v0
rp

l ~12rp
l !G2U lim

uqu→0

* D2~ l !U2J . ~11.6!

We note that this expression is not dependent on the angleb8. This enables us to represent the integration measure in
right-hand side of Eq.~11.1! in the form

E dp52pE
0

`

p2dupu E
1

21

d~cosa8!.

Substituting Eq.~11.6! into ~11.1! and performing an angular integration overa8, we finally obtaing2(0):

g2~0!5g2CFE
0

`

dupuu~12urp
l u!Q 2~ upu!Neq

l ~ upu!, ~11.7!

where the kernelQ 2(upu) has the form

Q 2~ upu!5p2v0
2
~vp

l !22p2

4~vp
l !3upu

Zl~p!H ~11rp
l !Fv02upu2

p2

v0
rp

l ~11rp
l !G2U lim

uqu→0

* D1~ l !U2

1~12rp
l !Fv01upu1

p2

v0
rp

l ~12rp
l !G2U lim

uqu→0

* D2~ l !U2J . ~11.8!

By virtue of theu function in integrand~11.7!, the kernelQ 2(upu) is positive; therefore

g2~0!.0,

i.e., the standing plasmino is damped. Thus, in the process of nonlinear Landau damping, the pumping over of the e
energy of standing plasminos into plasmon branch of plasma excitations occurs, and therefore the first case~10.12! is true.

The functionrp
l , entering the argument ofu function and in a kernel~11.8!, decreases with momentumupu from 1`

reaching a minimum, and then monotonically increases at largeupu, asymptotically tending to11 from below. The equation
rp

l 51 defines a lower limit of integration over the momentum of the recoil plasmon. The numerical solution of a
equation yields
9-21
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up* u.0.447vpl for Nf52, up* u.0.495vpl for Nf53

@hereafter, the numerical estimates are presented for the SU~3! color group#. The functionrp
l reaches an absolute minimum

up** u.1.236vpl , rp**
l .0.664 for Nf52, up** u.1.305vpl , rp**

l .0.692 for Nf53.

Notice that the value of the functionrp
l at a minimum point coincides with the value of the plasmon group velocitydvp

l /dupu.
Thus, if the incident plasmino is initially at rest, both the recoil plasmon and the effective quark that propagates below t
cone carry nonzero energies and momenta of ordergT.

At the end of this section we compare derived expressions for the damping rate~11.7! and~11.8! of standing plasminos with
the similar expression obtained in the framework of the HTL approximation@8,9#. For this purpose in Eqs.~11.7! and ~11.8!
we rescalevp

l →v0ṽp
l and upu→v0up̃u. The Planck distributionNeq

l (upu) in the integrand in Eq.~11.7! should be set equal to

T/@(2p)3v0ṽp
l #, since the energy is soft. Further rewriting the kernel~11.8! in terms of the functions accepted in the paper@9#

and defining the damping constant as

g2~0!5ǎ~Nc ,Nf !
g2TCF

4p
,

we derive the expression for the coefficientǎ(Nc ,Nf) required for comparison:

ǎ~Nc ,Nf !5
1

2E0

` up̃u2dup̃u

ṽp
l

R̃l~ṽp
l ,up̃u!u~ up̃u2uṽp

l 21u!$@ up̃u1ṽp
l 22#2b̃1~12ṽp

l ,up̃u!1@ up̃u2ṽp
l 12#2b̃2~12ṽp

l ,up̃u!%,

where

R̃l~ p̃0 ,up̃u!52
p̃0

p̃2

p̃0
22p̃2

3r 2 p̃0
21p̃2

, r 5
vpl

2

v0
2

.

For the definitions of more cumbersome functionsb̃6(p̃0 ,up̃u) see Ref.@9#. The coefficientǎ(Nc ,Nf) exactly coincides with
the corresponding part in a similar coefficienta(Nc ,Nf) in the expression of the damping rate of the standing plasm
responsible for the scattering process of plasminos by hard-particle QGP’s varying with the change of excitation
derived by Kobes, Kunstatter, and Mak@@9#, Eq. ~5.11!#. We have shown in doing so, by really remaining in the context of
Blaizot-Iancu equations~2.1!–~2.9!, we are able to compute not only a spectrum of fermionic excitations in QGP’s, but
their ~gauge-invariant! damping rate at the leading order in the coupling constant, which corresponds to the damping ra
the resummed perturbation theory@8,9#.

XII. LIGHT-CONE SINGULARITY: IMPROVED BLAIZOT-IANCU EQUATIONS

In this section we discuss the behavior of the nonlinear Landau damping rate for normal-particle excitations, when th
spectrumvq

1 approaches the light cone. Here, the initial expression is

g1~q!5
1

2
g2CFE dpQ́~q,p!Neq

l ~p!, Q́~q,p!5
1

2vp
l
Z1~q!Zl~p!Im T́~q,p!, ~12.1!

where

Im T́~q,p!5pv0
2
~vp

l !22p2

~vp
l !2p2 E dV

4p
d„vq

12vp
l 2v•~q2p!…$%́1~v;q̂,p̂!ẃv

1~q,p!1%́2~v;q̂,p̂!ẃv
2~q,p!% ~12.2!

and

%́6~v;q̂,p̂![~16q̂• l̂ !~17v• l̂ !2
v•~n3 l!

uqu l2
, ~12.3!

ẃv
6~q,p!5uḾ6~q,p!u2[Uv•p

v•q
1 * D6~ l ! * Ǵ6U

on shell

2

. ~12.4!
105009-22
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The scalar vertex functions* Ǵ6 are defined by Eq.~9.11!. On the right-hand side of Eq.~12.1! we have taken into account fo
simplicity only the contribution from the nonlinear interaction with longitudinal bosonic excitations, but all subse
derivations easily extend to the case of the nonlinear interaction with transverse excitations.

Near the light cone, the HTL-vertex piecesdG0 , dG i , anddG' , the explicit forms of which are given by Eq.~9.7!, are the
origin of the strongest singularity of order 1/«, where«2[@(vq

1)22q2#/q2. The terms linear indG in the ẃv
6 probabilities

~12.4! can lead to the logarithm of« only @15# ~the first term in the amplitudesḾ6 , defining Compton-like scattering
processes, also results only in logarithmic divergence!. Hence we restrict our consideration to the terms quadratic indG.

Now let us single out in the HTL-vertex pieces the terms generating near-light-cone 1/« contributions tog1(q). As an
example we consider the scalar functiondG0. By using the explicit expression for HTL amplitudes derived by Frenkel
Taylor @6#, we find

dG05v0
2E dV

4p

v•p

~v• l 1 i e!~v•q!
.v0

2E dV

4p
P

1

v• l

v•p

v•q
.

1

n2
@ l 0~n3q!•p2q0~n3 l!•p#M~ l ,q!52v0

2p0M~ l ,q!.

In the above expression, P indicates the principal-value prescription; here and in the following. indicates that we have
dropped less-divergent terms. The Lorentz-invariant function M(l ,q) is defined by

M~ l ,q!55
1

2A2D~ l ,q!
lnS l •q1A2D~ l ,q!

l •q2A2D~ l ,q!
D , D~ l ,q![ l 2q22~ l •q!2,0

1

AD~ l ,q!
arctanSAD~ l ,q!

l •q D , D~ l ,q!.0.

~12.5!

Similarly, the terms containing the function M(l ,q) in the HTL-vertex piecesdG i anddG' are singled out. Substituting nex
thus derived expressions into Eq.~9.11!, we obtain

* Ǵ6.v0
2F ~q02 l 0!6~q01 l 0!

q0uqu7 l 0u lu
uquu lu6q• l GM~ l ,q![v0

2f 6~ u lu,uqu, l̂•q̂!M~ l ,q!.

Furthermore, substituting the last expression into theẃv
6 probabilities ~12.4! and keeping only the terms quadratic

M( l ,q), we have

ẃv
6~q,p!.v0

4u * D6~ l !u2f 6
2 uM~ l ,q!u2, f 6[ f 6~ u lu,uqu, l̂•q̂!.

The dependence on the unit vectorv in the integrand of the expression~12.2! is defined only by thed function and%́6 function
~12.3!, that enables easily to perform the angular integration in Eq.~12.2! and thus to derive instead of Eq.~12.2!

Im T́~q,p!.pv0
6
~vp

l !22p2

~vp
l !2p2

1

2u lu
u~2 l 2!F S 12

l 0

u lu D ~11q̂• l̂ ! f 1
2 u * D1~ l !u21S 11

l 0

u lu D ~12q̂• l̂ ! f 2
2 u * D2~ l !u2G uM~ l ,q!u2.

~12.6!

The function ImT́(q,p) is different from zero forl 25(q2p)2,0. It is not difficult to show that the conditionl 2,0 on the
mass shell of plasma excitations leads toD( l ,q),0, and therefore in Eq.~12.5! it is necessary to take the first expression

With q2→0, the square of M(l ,q) becomes 1/« times a representation of thed function

uM~ l ,q!u2 ——→
q2→0 1

«

p3

uquA2 l 2
d~q• l !. ~12.7!

Substituting further the expression~12.6! into ~12.1! and taking into account Eq.~12.7! and Z1(q)→q2→01, we find the most
singular contribution to the nonlinear Landau damping rate of the normal quark excitations near the light cone:

g1~q!.
1

«

p3v0
6

2uqu
g2CFE dV p̂

4p E
0

`

dupu
~vp

l !22p2

~vp
l !3u luA2 l 2

Zl~p!Neq
l ~p!3H S 12

l 0

u lu D ~11q̂• l̂ ! f 1
2 u * D1~ l !u21S 11

l 0

u lu D
3~12q̂• l̂ ! f 2

2 u * D2~ l !u2J u~2 l 2!d~q• l !. ~12.8!
105009-23
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Here, the solid integral is over the directions of the unit vectorp̂. Thed function in integrand~12.8! enables us in principle to
perform the angular integration. Because of the fact that the functions Zl(p) andNeq

l (p) vanish exponentially at largeupu, the
above expression is ultraviolet convergent. Notice also that by virtue of theu function in the integrand, the damping rate~12.8!
is positive. Thus we have shown that really the nonlinear Landau damping rate of the normal quark mode near the li
diverges as 1/Aq2, and thus signals the need to have further improvement of the Blaizot-Iancu equations, beyond th
approximation.

As mentioned in the Introduction, the light-cone singularities are associated with the massless basic constituents
plasma, in our case, with massless hard quarks and hard transverse gluons. The inclusion of the asymptotic thermal m
the basic constituents removes this type of singularity. The effective way of entering thermal masses into the re
perturbation theory without spoiling gauge invariance was suggested by Flechsig and Rebhan@17#. Below we use this
approach, reformulating it into a ‘‘kinetic’’ language.

The light-cone singularity is generated by the HTL piece of the effective two-quark–one-gluon vertex function~4.6! @or
~4.12!#. In turn, the expression fordG(p;q1 ,q2) is defined with the help of the Blaizot-Iancu equation~2.8! for the function
dn6

C or by application of Eq.~2.9! for functionL” . To derive the expression fordG(p;q1 ,q2), which is free from the light-cone
singularity, we use improved Blaizot-Iancu equations instead of Eqs.~2.8! and~2.9! ~the details of deriving these equations a
given in Appendix B!

@v•DX ,dn6
C~k,X!#56

ig

2ek
ta@c̄~X!taL” 6~k,X!2L”̄ 6~k,X!tac~X!#, ~2.88!

~v•DX!L” 6~k,X!6
Dm`

2

2i ek
L” 6~k,X!52 igCF@N~ek!1n~ek!#v”c~X!, ~2.98!

whereL”̄ 6(k,X)5@L” 6(k,X)#†g0, Dm`
2 5mq,`

2 2mg,`
2 , andmq,` andmg,` are asymptotic thermal masses for hard quarks

gluons, respectively. Instead of the expression~2.3! for the induced source now we have

h~X!5gE dk

~2p!3

1

2ek
L” 1~k,X!1gE dk

~2p!3

1

2ek
L” 2~k,X!. ~2.38!

The expression for the color current induced by the soft-quark field~2.5!, is not changed.
Employing the improved Blaizot-Iancu equations~2.88! and~2.98!, and expressions for induced source~2.38! and the color

current~2.5!, it is not difficult to obtain the improved soft-quark self-energy and the effective two-quark–one-gluon v
function used above. These expressions coincide with similar ones derived in the context of thermal field theory@17#. Thus, for
example, instead of Eq.~4.6! now we have

dGm
(Q)~p;q1 ,q2!522v0

2K E dV

4p H vmv”

~v•q11Dm`
2 /2Ta1 i e!~v•q22Dm`

2 /2Ta2 i e!

1
vmv”

~v•q12Dm`
2 /2Ta1 i e!~v•q21Dm`

2 /2Ta2 i e!
J L

a

. ~12.9!
u
s

e

ar
of

onic

ec-
se
he

-
n

Here,

^O~a!&a[
2

p2E da
aea

e2a21
O~a!, a[ek /T.

The use of expression~12.9! gives a finite nonlinear Landa
damping rateg1(q) near the light cone. The additional term
in denominators of Eq.~12.9! lead to the replacement of th
divergence factor 1/« on the right-hand side of Eq.~12.8!:

1

«
→^a1/2&a

1

2 S Tuqu

Dm`
2 D 1/2

,

10500
where ^a1/2&a5(3/4p3/2)(12222/3)z(5/2) andz is a Rie-
mann zeta function.

At the end of this section notice that we run into simil
divergence in research of a behavior near the light cone
the nonlinear Landau damping rate for the transverse bos
excitations in the purely gauge sector@21#. The light-cone
singularity here is generated by the HTL piece of the eff
tive three-gluon vertex function. It is clear that in this ca
for elimination of this singularity it is necessary to use t
improved Blaizot-Iancu equations for functionsdn6

A and
dNA instead of Eqs.~2.6! and ~2.7!. Here, we have not pre
sented their explicit forms, noting only that their derivatio
is rather different from deriving improved equations~2.88!
and ~2.98!.
9-24
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XIII. CONCLUSION

In Sec. X the nonlinear interaction of plasminos with pla
mons is shown to lead to the effective pumping over
plasma excitation energy from the fermionic branch
plasma oscillations to the bosonic branch and vice versa,
the kinematic relations between wave vectors of excitati
are defined, such that one or another process of pum
over of energy occurs. However, it is clear that conclusio
made in Sec. X are somewhat restricted since they w
made with allowance only for one process—the process
nonlinear Landau damping. For precise study of nonlin
dynamics of soft-fermion and soft-boson excitations in h
QCD plasma it is necessary also to take into account in
plasmino and plasmon kinetic equations the remaining te
on the right-hand sides of generalized kinetic equations~6.1!
and~6.3!, responsible for the decay processes, etc., and
sider the existence of soft normal quark excitations and
transverse gluon ones@the kinetic equations for them ar
defined from Eqs.~6.1! and~6.3! by the replacements simila
to Eq. ~7.6!#. In addition to the right-hand side of the gene
alized kinetic equation~6.3! should be supplemented wit
the terms from purely gauge sector@21#.

Thus obtained self-consistent nonlinear system of four
netic equations will contain the maximum comprehens
information on soft excitations dynamics in hot QC
plasma, which may be obtained in the context of the ini
Blaizot-Iancu equations~2.1!–~2.9! ~or its improved variant!
in the first nonvanishing approximation6 in the expansion
over the small parametergRAm , where R;(gT)21 and
uAmu!T. Certain nonlinear processes will be kinematica
forbidden and therefore relevant contributions on the rig
hand side of kinetic equations will drop out. However, ev
with allowance for the last case, this system of equation
especially complicated for any analytical research~similar to
studies carried out in Sec. X of the present work and in S
10 in Ref. @21#!, and therefore here invoking numeric
methods is required.
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APPENDIX A

By using the relationsg05h2( l̂)1h1( l̂) and l•g

5h2( l̂)2h1( l̂), we rewrite the expansion~9.6! in the form

6The following term in the expansion over this small parame

leads to the processes of Boltzmann type: q1q(q̄)
q1q(q̄), q

1q̄
g1g, g1g
g1g, etc., going without exchange of energ
between hard thermal particles and soft plasma waves. The exa
of the construction of the Boltzmann equation, describing the ela
scattering process of colorless plasmons between themselves c
found in Ref.@29#.
10500
-
f
f
nd
s

ng
s
re
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r
t
e
s

n-
ft

i-
e

l

t-

is

c.

t

* G i pi5h2~ l̂ !~dG01u lu * G i!1h1~ l̂ !~dG02u lu * G i!

1@~n3 l!•g# * G' . ~A1!

Let us add to the expression in the first parentheses on
right-hand side of Eq.~A1! and then subtract from it the
function n2/@ uqu(12q̂• l̂)#, and in the second parenthes
add and subtract the functionn2/@ uqu(11q̂• l̂)# correspond-
ingly. Let us introduce the following functions:

* G6[2dG07u lu * G i1
n2

uqu
1

17q̂• l̂
* G' .

Instead of Eq.~A1!, now we have

* G ipi52h2~ l̂ ! * G12h1~ l̂ ! * G21F n2

uqu S 1

12q̂• l̂
h2~ l̂ !

1
1

11q̂• l̂
h1~ l̂ !D 1@~n3 l!•g#G * G' . ~A2!

Furthermore, we transform the expression in the paren
ses on the right-hand side of Eq.~A2!. By using the defini-
tions of matricesh6( l̂), this expression can be rewritten i
the form

1

2 Fg0S 1

12q̂• l̂
1

1

11q̂• l̂
D 1~ l̂•g!S 1

12q̂• l̂
2

1

11q̂• l̂
D G

5
q2l2

n2
@g01~ l̂•g!~ q̂• l̂ !#52

q2l2

n2
h2~ q̂!2

uqu

n2
@~n3 l!•g#.

~A3!

In deriving the last equality we have used the expansion
vectorq into two mutually ortogonal vectors,l andn3 l:

q5
q• l

l2
l1

1

l2
~n3 l!. ~A4!

Substituting Eq.~A3! into ~A2! and reducing the terms with
vector product, finally we derive the expression~9.8! for
convolution* G i pi , instead of Eq.~9.6!.

APPENDIX B

Here we show how one can obtain the improved Blaiz
Iancu equations, used in Sec. XII for deriving the finite no
linear Landau damping rate for normal-particle excitatio
near the light cone. As the initial equations for obtaining
improved equation for a one-body density matrix mixing fe
mion and boson degrees of freedom, we take Eqs.~3.33! and
~3.34! in the original paper of Blaizot and Iancu@22# ~see the
accepted notations and definitions therein!

r

ple
ic
be
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@]s
21]s•]X12igA~X!•]s#Ka

m,~s,X!5 ig~]” sD!gmtac~X!, ~B1!

@dabgmn~]s
22]s•]X!2g fabcGmnrlAc

r~X!]s
l#Kb

n,~s,X!52gS0
,~s!gmtac~X!. ~B2!
ua
te
th

w
.

r

l
p
qs
qs

in
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n

tion
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n

s

ion
Furthermore, we expandK,5K (0)1K (1)1•••, with K (1)

;gK(0), etc. The dominant terms in Eqs.~B1! and~B2! lead
to the consistency condition

]s
2K (0)~s,X!50. ~B3!

Equation~B3! can be considered as the Klein-Gordon eq
tion for hard, massless, free particles. However, due to in
action with the hot medium, the basic constituents of
plasma are known to acquire the dynamical~asymptotic!
temperature-induced masses. To account for this fact
modify the condition~B3!, replacing it in the case of Eq
~B1! by

]s
2K (0)~s,X!'2mq,`

2 K (0)~s,X!, ~B4!

wheremq,`
2 5g2T2CF/4 is the asymptotic thermal mass fo

hard quark, and in the case of Eq.~B2! by

]s
2K (0)~s,X!'2mg,`

2 K (0)~s,X!, ~B5!

where mg,`
2 5g2T2(Nf12Nc)/12 is the asymptotic therma

mass for the hard transverse gluon. It is necessary to kee
terms]s

2 inside the brackets on the left-hand sides of E
~B1! and~B2! setting them equals the right-hand side of E
~B4! and ~B5!, accordingly. Further, subtracting Eq.~B2!
from ~B1! and performing transformations similar to those
Ref. @22#, we come to improved equation for a dens
K” (k,X)5tagmKm

a (k,X):

~v•DX!K” ~k,X!2
i

2
Dm`

2 K” ~k,X!

52 igCFr0~k!@N~k0!1n~k0!#k”c~X!.
10500
-
r-
e

e

the
.
.

Here,Dm`
2 [mq,`

2 2mg,`
2 . Substituting into the last equatio

the expansion

K” ~k,X!52pd~k2!$u~k0!L” 1~k,X!1u~2k0!L” 2~2k,X!%,
~B6!

replacingk→2k, where it is necessary, and dividing byek ,
we obtain the improved Eq.~2.98!. By virtue of the fact that
Dm`

2 Þ0, the discrepancyL” 1(k,X)ÞL” 2(k,X) will hold.
The last case is an actual reflection at the kinetic descrip
level of the discrepancy of the two terms in the integrands
the improved hard thermal loops with external fermio
when exchangingk→2k, found by Flechsig and Rebha
@17#.

Now we turn to deriving the improved kinetic equation
for dn6

C . The equations for functionsdn6
C are defined from

the equation for the current densityJm
C(k,X) @22#:

@v•DX ,Jm
C~k,X!#5 igkmta$c̄~X!taK” ~k,X!

2H” ~k,X!tac~X!% ~B7!

by substituting to it the expansion Jm
C(k,X)

5km4pd(k2)$u(k0)dn1
C(k,X)1u(2k0)dn2

C(2k,X)%. The
relevant modification of the equation fordn6

C here is
achieved by the simple requirement of using the expans
~B6! on the right-hand side of Eq.~B7!, where the functions
L” 6 obey the improved equations~2.88!.
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