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Nonlinear Landau damping of a plasmino in the quark-gluon plasma
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On the basis of the Blaizot-lancu equations, which are a local formulation of the hard therm&HIBop
equations of motion for soft fluctuating quark and gluon fields and their induced sources, the coupled kinetic
equations for plasminos and plasmons are obtained. The equality of matrix elements for nonlinear scattering of
a plasmino by hard particles in covariant and temporal gauges is established by using effective Ward identities.
The model problem of the interaction of two infinitely narrow packets with fermion and boson quantum
numbers is considered. The kinematical relations between wave vectors of the plasmino and plasmon are
derived, when the effective pumping over of the plasma excitation energy from the fermion branch of plasma
excitations to the boson branch and vice versa occur. The expression for the nonlinear Landau damping rate of
a plasmino at rest is found, and a comparison with a plasmino damping constant obtained within the framework
of the hard thermal loop approximation is made. The nonlinear Landau damping rate for normal quark exci-
tations is shown to diverge like {47 near the light cone whergis a four-momentum of excitations, and the
improved Blaizot-lancu equations removing this divergence are proposed.
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I. INTRODUCTION calculation of the damping rate of fermion excitations in the
rigid one-loop approximation was made by Kapusta and
This work deals with the study of the interactions betweenToimela[4]. They showed that the standard one-loop calcu-
soft-fermion and gluon excitations in an off-equilibrium lations were incomplete and resulted in an explicit depen-
quark-gluon plasm&QGP within the hard thermal loop ef- dence of the damping rate on the gauge-fixing condition and
fective theory. The specific problem of the damping of soft,were even negative in some gauges. Overcoming this prob-
collective, fermion excitations is ultimately considered. Thislem both in the case of fermion and boson modes is known
problem has already been addressed in the literdg@® the to lead to the development of an effective perturbation theory
review below in the formalism of thermal perturbation put forth by Braaten and Pisarsis] and by Frenkel and
theory, but nevertheless it would be interesting to see how iTaylor [6] that enables one to resume in a systematic way
emerges in a real-time formalism based on kinetic equationsigh-loop diagrams contributing to damping rates at the lead-
for soft excitations. In addition, the calculation of the damp-ing order in the coupling constagtand gives formal proof
ing rate formovingsoft excitations is still incomplete. that resummation produces gauge-invariant results for the
The theoretical investigation of properties of plasma ex-damping rates of both quarks and gluons. The calculation of
citations bearing fermion quantum numbers in a quark-gluonhe damping rate of a heavy fermipr] by Pisarski is one of
plasma originated in the pioneering works by Klimov andthe first examples of the application of effective perturbation
Weldon [1]. The gauge-independent dispersion law of fer-theory.
mion excitations was first derived in a high-temperature re- The damping rates depend in a nontrivial way on how fast
gion within the framework of the imaginary-time formalism the quasiparticle is moving through the thermal medium.
(Matsubara techniqudoy Klimov and within the framework  Within the framework of the imaginary-time formalism using
of the real-time formalisniKeldysh-Swinger techniquéby  a dispersion relation method, Braaten and Pisai8kiand
Weldon at one-loop order. The quark propagator in the casgdependently Kobest al.[9] present by somewhat distinct
of nonzero temperature and massless fermions was shown &pproaches a complete calculation of the quark damping rate
have two poles corresponding to two different dispersion reat zero momentum at leading orderdrby evaluating one-
lations, both with a positive energy. The first branch de-loop diagrams constructed out of the effective propagators
scribes normal-particle excitations with the relation betweerand vertices. It is shown that the damping rate of quark
chirality and helicity at zero temperature. The second brancinodes at rest is some pure number tigé$, whereT is a
is collective excitations, where the usual relation betweenemperature.
chirality and helicity is flipped2]. It has been called a plas- Much interest has been taken in the so-called damping
mino [3] to emphasize that, like the plasmon mode of therate of moving(hard or soft quarks in hot QCD plasma.

gluons, it is a purely collective branch of plasma excitationsThe hard thermal loofHTL) resummation renders the infra-
that have no analog at zero temperature.

The damping rate of plasma modes is one of the most——
important characteristics of high-temperature plasma. The lHere, we have not discussed the problems associated with calcu-
lation of the damping rate of moving fermions in a hot QED

plasma, which possesses proper specific feat(ses, e.g., Ref.
*Electronic address: markov@icc.ru [10)).
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red finite damping rate of plasma excitations at rest. Howframework of kinetic theory of soft excitations and the re-
ever, the damping rate of fast moving collective excitationssults derived within the framework of effective perturbation
is infrared divergent, arising from the exchange of quasitheory. Here, we would like to extend the analysis, carried
static, magnetic gluons, reflecting the breakdown of theout in Refs.[20,21] on the fermion degree of freedom of
Braaten-Pisarski resummation scheme in deriving the physplasma excitations in hot QCD plasma. Our approach is
cal quantities that are sensitive@{g?T) corrections. In hot based on the fundamental system of equations derived by
QCD plasma this problem is avoided by the introduction ofBlaizot and lanc22]. These equations are obtained on the
the magnetic screening mass of ordéT, which is expected basis of a truncation of the Schwinger-Dyson hierarchy. They
to come from soft-gluon mutual interactioptl]. An accu- isolate consistently the dominant terms in the coupling con-
rate calculation of the damping rate for soft moving quarksstant in a set of equations that describe the response of the
and gluons has been done by Pisarski in REZ]. He found  plasma to weak and slowly varying disturbances and encom-
that the infrared-singular contributions were proportional topass all HTL's. This system of equations is determined on the
the group velocity of the respective quark and gluon modespace-time scaleg(l) ~*. We show how to obtain the infor-
times g?T In(1/g). In Ref. [13] Flechsiget al. presented a mation connected with the damping of soft excitation QGP’s
unified treatment of all next-to-leading-order corrections toby using this system, i.e., with the processes determined on
fermion and gluon dispersion laws in QGP’s, which are in-the other space-time scale.
frared singular due to mass-shell singularities. They repro- In order to allow for the collective excitations with arbi-
duced the result of Pisarskil2] for moving quasiparticle trary quantum numbers, Blaizot and lancu considered both
excitations. fermion and boson soft fields. The pure gauge se@tthen
The need for further resummation beyond the scheme dhe influence of the soft-fermion field is neglecteaf this
Braaten and Pisarski also arises in an attempt to calculate tigystem of equations has been studied in detail. The sector
production rate of soft real photons from equilibrium QGP’sconnected with a soft-fermion degree of freedom of plasma
[14]. This rate was shown to be logarithmically divergentexcitations is not actually studied. In the present paper we
owing to the so-called collined@amass singularities of a HTL  have shown that this sector of plasma excitations contains
diagram. The reason for the collinear singularities is knowrsome extended information on the dynamics not only of soft-
to be the use of bar@masslesshard-quark propagators that fermion modes, which are especially interesting for us, but
are on the mass shell. In a somewhat different context also soft-boson modes interacting with them. Deriving a self-
similar difficulty was encountered in the research of the beconsistent system of the kinetic equations for plasminos and
havior of the next-to-leading order longitudinal componentplasmons enables us to have a new look at the known results
of the polarization function of the hot gluon system near theobtained from the diagrammatic technique. It also allows us
light cone[15]. Here, the singularity is even more strong andto represent them in a more visual form and to obtain some
generated by a premature restriction to soft loop momentaew results, in particular, connected with the possibility to
(the detailed study of the light-cone singularity in the simplerobserve in more detail the pumping dynamics of plasma ex-
gauge theory of scalar electrodynamics was made by Kraengitation energy over the oscillation spectrum and energy
mer et al. [16]). pumping from the fermion branch of excitations into the bo-
The way to solve the problems connected with collinearson branch and vice versa. Our strategy for deriving the rel-
singularities in hot QCD plasma was proposed by Flechsigvant kinetic equations is similar to that already used in con-
and Rebhan[17]. They showed that the inclusion of nection with the purelysoft) gauge sectof21].
asymptotic thermal masses for hard transverse gfuand From most papers close to the subject of our research the
hard quarks removed the collinear singularities of the HTLrecent work by Nigawa[23] is to be mentioned. Within the
amplitudes without spoiling gauge invariance. The example§ramework of the closed-time-path formalism the general-
of employment of the effective hard-quark propagator andzed Boltzmann equation that describes the evolution of the
effective photonhard-quark vertex for deriving the finite number-density functions of fermion quasiparticles was de-
soft-photon production rate from the equilibrium QGP can beived by him. The transport equations for “normal and ab-
found in Refs[17,19. normal modes” emerge here from the requirement of the
Here we would like to represent a somewhat differentabsence of large contributiorig/hich is the result of pinch
view about the study of the above-mentioned problemssingularity of perturbative scheme proposed in R&3]. In
based solely on the kinetic theory. More comprehensivelyspite of the generality of a suggested approach, particular
our purpose is to construct kinetic equations that describe thexpressions for collision terms unfortunately were not given.
evolution of off-equilibrium deviations in theumber densi- It makes it difficult to establish the connection with other
ties of the soft excitationgfermions and gluons and to ob-  approaches, also dealing with the problem of relaxation of
tain damping rates from the collision terms. As we haveplasma excitations, in particular, with hard thermal loop ef-
shown in the case of soft-boson mod&$,21], there is no fective theory.
direct connection between the results obtained within the The paper is organized as follows. In Sec. IlI, after sum-
marizing the conventions and the notations used in this pa-
per, we write a starting coupling set of the soft-field equa-
Notice that the fact of acquiring the transverse gluons in hottions and dynamical equations describing the motion of hard
QCD plasmas of the thermal mass was first mentioned by ShuryaRarticles in the presence of the soft quark and gluon fields.
[18]. The approach to the solution of a given nonlinear system
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based on the approximation scheme method—the weak-field iDy(X)=n(X), (2.1

expansion—is proposed. In Sec. lll, the first-order approxi-

matlon of_the induced source is conS|dergd, _and the C_OrrelﬁI)V,Fﬂ,,(X)]—g‘laMaVAV(X)=g¢(X)yMta¢(X)ta+jM(X),

tion functions of fermion and boson excitations are intro-

duced. In Sec. IV, the second- and third-order 2.2

approximations of the induced source and the color currenfyhereld = y“D , is the covariant derivative in the fundamen-

induced by the soft-fermion field are studied. In Sec. V, wetg| representation:

discuss the consistency with gauge symmetry of the approxi-

mation scheme used. In Sec. VI we derive the generalized D,=d,+igA,(X),

kinetic equation for soft-fermion excitations and supplement

it with a generalized kinetic equation for soft bosonic exci-F ,,=F? t* is field strength tensor witk%, = d,A%—3,A%

tations. The right-hand side of the last equation contains thegfabCAzAg; [,] denotes the commutator and is a

terms responsible for the nonlinear interaction between sof§auge parameter fixing a covariant gauge.

bosonic and fermionic modes. Section VI presents a detailed The induced sourcey(X) on the right-hand side of Eq.

consideration of the terms on the right-hand side of the gen¢2. 1) can be written as an integral over hard momentuof

eralized kinetic equation obtained in the previous sectiong gensityA(k,X)=t2y*A? (k,X) [22]:

their identification with specific physical processes. Then, a

kinetic equations describing the nonlinear interactions be-

tween plasminos and plasmons are extracted. In Sec. VIII, by 7(X) =gJ

means of the effective Ward identities, we show that the

function defining the plasmino—hard-particle scattering ma-

trix element squared is the same in the covariant gauge as #density A% (k,X) is a generalized one-body density matrix

the temporal one. In Sec. IX, the transformation of the non:mixing fermion and boson degrees of freedom.

linear Landau damping rate for a plasmino similar to the The total induced color current, on the right-hand side

transformation in a pure gauge sector of soft QGP excitationsf field equation(2.2) is a sum of two parts: the current

is performed. In Sec. X, on the basis of decomposition of thq’,’j(x) induced by the soft-gauge field

nonlinear Landau damping rate into positive and negative

parts, the model problem of two interacting infinitely narrow A dk A A

packets with fermion and boson quantum numbers is consid- JM(X)=gf V[N (8N (K, X) = onZ (K, X))

ered, and the kinematic relations between wave vectors of (2m)

excitations are defined, so that one or another process of +2NSNAK, X) ], (2.4)

pumping over of energy occurs. In Sec. Xl, an explicit ex-

pression for the nonlinear Landau damping rate of the plassng the curren}¥ (X) induced by the soft-quark field

mino at rest is derived, and a comparison with a similar K

expression for the damping rate obtained within the frame- dk

work of the HTL approach is carried out. In Sec. XII, the j‘l'(x):gf ———v, [onT(k,X)—én"(k,X)],

behavior of the nonlinear Landau damping rate for normal- a (2m)3 ¥

particle excitations near the light cone is considered, and this

damping rate is shown to diverge owing to the mass singu- v,=(lv), v= k/|k|, (2.5

larities of quarks. In the Conclusion we briefly discuss a

more general statement of the research problem of soft excivhere sn?'Y (k,X)= sntV3? are soft fluctuations in the

tation dynamics in hot QCD plasma within the framework of quark and antiquark color densities andN”(k,X)

kinetic approach outlined in this paper. = 6NA%2 is a soft fluctuation in the gluon color density. The
superscripts indicate the nature of the background field that
induces fluctuations. On the space-time sca&)( ! these

K Likx, a=lk. @3
(2 & X asld @

[l. BLAIZOT-IANCU EQUATIONS functions and densitf(k, X) satisfy the following system of

We adopt conventions of Blaizot and lan@P]. We use equations:
the metricg*”=diag(1,-1,—1,—1), choose units such that dn(ey)
c=kg=1 and noteX=(Xo.X), p=(po.p), ... . We con- [v-Dy,on%(k,X)]=Fgv-E(X) g (29
sider an SUN,;) gauge theory withiN; flavors of massless €k
quarks. The color indices for the adjoint representation, dN(e)

2_ i _ €
ab, ... run fro_m L1toNg—1, while those for the fundamen [v- Dy, SNA(K,X)]= — gv-E(X) k @7
tal representationi,j, ..., run from 1 toN.. The Greek deg
indicesa, B, ... for the spinor representation run from 1 to
4. ig _ —
v —

The quark fieldy and the gauge fieldh,=A%t® with [v-Dx,éni(k,X)]—iz—ekta[zp(X)taA(k,X)
NZ—1 Hermitian generators in the fundamental representa- o
tion obey the field equations — Ak, X)t2p(X)], (2.8
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v, [N¢(8nM — 5nAMW) + 2N SNAM],
(2.19

(v-Dy) Ak, X)=—igCe[N(e&) +n(€)] .A(m_f dk
X b (X). o v %)y

Here, E(X)=E}X)t® is the chromoelectric field,E'
=F'% n(e)=1Mexp/T)+1] and N(e)=1lexp(e/T)
—1] are the fermion and boson occupation factdrss the j\l'(n,Z):gf
temperature of the plasma, a@ is the quadratic Casimir
invariant of the fundamental representation. The function
A(k,X) is related taA(k,X) by A(k,X)=AT(k,X)y°, where and
the Hermitian conjugation refers to color and spinor indices.
The self-consistent system of E¢2.1)—(2.9) for the soft
fluctuating fieldsyy and A, and their induced sources was
first derived in Ref[22]. In the subsequent discussion it will n
be called the Blaizot-lancu equations. However, as distinct
from the original papef22], we take Eqs(2.6)—(2.9) not as  where
kinetic equations, i.e., time-irreversible ones, but as exact
“microscopic” dynamical equations coming from the hard
thermal loop effective action and describing the evolution of n(n,l):gf dk iA(n,l) 2.18
- . i 3 . .
the collisionless plasma with zero expectation values of the (27)° €k
soft fields(or the associated induced sources

The Blaizot-lancu equations are solved by the approxima-  Now we turn to the field equation@.1) and (2.2), con-

tion sc;_heme method:he }N?Iak-fiel(_j expafnsioﬁor thii pur(; necting the quark and gluon soft fields with induced souyce
pose first we expand soft fluctuations of trtiquark and 54 total color current .- Let us rewrite these equations,

gluon color densities as power series in the oscillation améxplicitly separating the free parts in Eq@.1) and (2.2
plitudes of the functiong\, and , from interaction terms. Taking into account the expansion of
induced current2.13 and(2.14 and induced sourc&.17),

5ni = E 5n§(n) , 5NA: 2 5NA(n), (21() we have
n=1 n=1

dk
(27

)Svﬂ[ onY (12— sn¥ (2] (2.16

3
M s
S

(nYl)y (217)

Il
o

| 10— nOV=gAy+ ny. (2.19
onY=> sn¥(n2, 2.1
+ nZO - ( :D a’u(F,uV)L_g—laV&MAM_J‘A(l)V
S o = iKYy Yt —iga, [AK A]
A= 2, A", 2.1 ,
n=0 (212 —ig[A, (F*) 1+g%A, [A“A"]]. (2.20

where the indexn shows thatsn2™, SNA®, 5’,11(“2)* Here, the indices andNL denote the linear and nonlin-
andﬁ_&(”’l)_are proportional to thath power ofA,, . Since the gy parts of strength tensor, the induced source and the color-
fermion fields appear in explicit form on the right-hand sidejnquced current with respect #, and . The approxima-

of Egs.(2.8) and(2.9), the functionssnt™? and A" also  tion that will be made is the truncation of the series
depend on amplitudeg and . By virtue of the structure of expansion(2.13, (2.14), and (2.17). The accuracy of this

the right-hand side of Eq$2.8) and(2.9), we have approximation is controlled by the characteristic amplitudes
of the soft fields, which will be discussed in Sec. V. As will
snYD—yyy KOD—y be shown to account for the nonlinear interaction between
waves and hard particles in QGP’s at leading ordeg, iit is
for arbitrary values of. sufficient to restrict the consideration to the third order in
The induced color currentg.4) and(2.5) and the induced total powers ofy and A, in expansiong2.13, (2.14), and
source(2.3) are expressed as (2.17.
jA: E jA(n) , (2.13 I1l. LINEAR APPROXIMATIONS OF THE INDUCED
= R SOURCE 7. CORRELATION FUNCTIONS OF

THE FERMION AND BOSON EXCITATIONS

V= E j¥n2, (2.14 We now come to the derivation _of the _kingtic equation for
mog=oH the soft-fermion modes. The starting point is E2.19. Its
left-hand side contains the linear approximation of the in-
where duced sourcern, whose explicit form can be easily found

105009-4



NONLINEAR LANDAU DAMPING OF A PLASMINO IN ... PHYSICAL REVIEW D 64 105009

from Eq.(2.9). We prefer to work in momentum space. The We now introduce the correlation functions of soft-fermion
corresponding equations are obtained by using and -bosonic excitations

) _ Y]I r, — /o i ’ ’
400= [ dapt@e % A00= [ dpa, (e sl D= V(= D)) .
155 (P’ P)=(AL3(p")AL(P)),
and similar transformations foﬁn_ﬁ ,ONA, etc. Here and in ) ) )
what follows we denote the momenta of the soft-quark fieldd ©SPectively. The asterisk denotes a complex conjugate. The
considered soft excitations are necessardiprlessand have

byd,q’,q;, . .. and the momenta of the soft-gauge fields b ) X -
pypq ?’1 q_l_ N gatgen yzero fermion numbeby virtue of the fact that mean fields

Let us linearize Eq(2.9) with respect tos andA,, . The (A%) and(y,,) or the associated mean i_nduced color current
result of the Fourier transformation of the linearized equatiorf"d source are assumed to be vanishing. Therefore, for the

is physical situation of interest, the off-equilibrium two-point
functions (3.5 are diagonal in color space, which will be
b(q) implied in what follows.
AOCY(Kk,q)=gCr o+ G[N(ek)+ n(e)], e—+0. For the conditions of stationary and homogeneous QGP’s

3.1) [i.e., when correlation function@.5) in the coordinate rep-
' resentation depend only on the difference of coordinates and

By substituting Eq(3.1) into the Fourier transform of rela- time AX=X'—X], we have
tion (2.18 (for n=0) and performing the radial integration Ji o v ey r_
overde,, we obtain the linear approximation with respect to Yi3,(0".0)=Yg,(0")8(q"—q),

the fermion field of the induced source, , / /
ont aHeed SO 125(p",p)=125(p") 8(p’ ~ p).
OY(g)=
77(A) =8 (q)%(a), 32 The QGP state becomes slightly heterogeneous and nonsta-

tionary because of the effects of the nonlinear interaction
between waves and particles. This leads ta-function
a4 broadening, and’};,, andlf‘ﬁ depend on both arguments.

Let us introduceY},(q',9)=Y}%,(9,A0), Ag=q’'—q
with [Ag/g|<1 and 13(p’,p)=135(p.Ap), Ap=p’'—p
with |Ap/p|<1, and insert the correlation functions in the
Wigner form

where

_ 2| 2
92(Q)= g 47 v-Qtie

is a well-known HTL expression for the soft-qudrietarded

self-energy,w§=92CFT2/8 is the plasma frequency of the

quark sector of plasma excitations, ad€ is an angular . )

measure. Yga(q,x)zf Y}, (g,Aq)e 49 *dAg,
Furthermore, we rewrite Eq2.19 in momentum space.

Taking into account Eq(3.2) we obtain (3.6

b _ b —iAp-X
|fw(p,><)—f 155(p,Ap)e 4P XdAp,

*S‘l(q’)w'(q’)=—gfA(pl)tﬁj(ql) , o
slowly depending om. In Eq.(3.4), we replacey—q’, i< |,
X 8(q' —q,—py)dg,dp; take a complex conjugation, and then subtract the resulting
_ _ equation from Eq.(3.4), expanding beforehand the quark
— 7@V —52V(g"). (3.3  self-energy into “Hermitian” and “anti-Hermitian” parts:

Here *S(q)=[—dq+ 62(q)] ' is an equilibrium propagator 83(q)=62"(q) + 624(q),
for a soft quark, corrected to leading ordergn Or ccH 1t 0 "
Let us multiply Eq.(3.3 by the Dirac conjugate ampli- Y62 ()] y"=0%"(q),

tude ¢/ (—q)=[¢'(q)]7y° and take an expectation value

0 A T.0_ _ A
over the off-equilibrium ensembles: Y1627(a)] y"=—6%%(q).

— el We assume that the anti-Hermitian pai” is small relative
(P(—a)*SHa") @) to the Hermitian parsS" and is of the same order as the
nonlinear terms on the right-hand side. We can therefore set
B — o 537(q)=62"(q’) and move the term withs3* into the
- —gJ (' (=) [AlP)¥(a) ) 5(q" —dy right-hand side of Eq(3.4). We expand the remaining terms
in the left-hand side with respect g up to the first order.
—p1)da,dp, This corresponds to gradient expansioprocedure usually
T ey Wi ST ey (2D used in the derivation of kinetic equations. Multiplying the
W=y a") - (=a) 7= (@"). resulting equation by~ '29* and integrating oveiq, we
(3.4 obtain
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JY"(q,x)

X,y

Jd .
tr &q—ﬂ[—m s3M(g)] >=2i tr[ 52A(q) Y (q,%)]

—igJ dg’da,dpy{([¢(—a)A(—p)] ¢ (') 8(q—qy—py)

—( (~D[APL) (a1 1) 8(a" —dr—py)}

—ij da'{[{7* P (=) ¢(@) (' (—a) 7D @I+ (> (—a)g(an)
— (Y (=) 7®D(g")]}. (3.7)

Here, the Dirac trace is represented by #(—q)=7'(q)y°, and we take into account the reality of the gauge field
A;a(p) =AZ(— p). The linear term with53* on the right-hand side corresponds to the linear Landau damping of soft-fermion
excitations.

IV. SECOND AND THIRD APPROXIMATIONS OF THE INDUCED SOURCE 7%

Now we are concerned with computation of the nonlinear corrections to the induced source on the right-hand side of Eq.
(3.7). At first, we defineA*V. Substituting the series expansith1? into (2.9) and keeping only the terms of the second
order in fields, we find

(v- 3x) AXD(k,X)=—ig[v-A(X)]ACD(k,X).

Performing the Fourier transformation of the last equation and taking into account an explicit fakfh'ofn Eq. (3.1), we
derive

v*d 1
A(l'l)(k,q)=gch[N(ek)+n(ek)]v,qﬂetaf s gt e k(P ¥(A0) (G —d1—p1)dgydp;. (4.9

Substituting the obtained expression into E218 (for n=1) and performing the radial integration owe,, we find the
required induced source correction

do v*d
(1,1) _ 2va | 7
n (Q) ngt f477 (v.q—|—ie)(v-q1+i6)

A% (P ¥(d1)8(q—ag;—p1)dg.dp; . (4.2

The expression for the induced source of the third order in the fields is defined by means of reasoning similar to the
previous one. Here, we have

dQ vPu Y
(22) 4y — 2,,2¢asb | o0
7o) =g ot f4w (0 q+ielv-(q—py) +iel(v-qi+ie)

A2(p1)AN(P2) (01) 80— a1~ P1— P2)dadpydp,.
(4.3
Now we return to the initial equation for the soft-fermion fi¢B17). We substitute nonlinear corrections to the induced source

7 [Egs.(4.2) and(4.3)] into the right-hand side of this equation. After simple algebraic transformations, instead &. Bg.
we find

Jd H 5YJI(QaX) . A ji H ’ i a,
trl —[—q4+627(q)]———— | =2i tr[ 627(q) Y/ (q,x)]—lgqu da;dp{{¢'(—q)A%*(py)
aqﬂ- 0-'Xlu

X[*TQ%pya,—a") (a0 1) 8(a" —d1—p1)
—([(— ) *T Q% (= py; —qs, @) TA*2(py) ¢ (q')) d(q—a; — p1)}
+ing dq’da;dpydpo{(A*(p1) AP (p,) ¢/ (— Q)

X[ ST Q% (—p1,—paiq’,— A1) (91 1) 8(A — A1~ p1—P2)

— (A% (p) A* P (po) 4 — 40) T (2 (P2, Pa; = 0,00 ' (9')) 8(0— 01— P1—P2)}
(4.4
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Here,

*T%(p;ay,02) =t2* T (p;a,02) =t v, + 6T D (p;01,02)] (4.5

is an effective(i.e., HTL-resummeplvertex between a quark pair and a gluon, that is, a sum of the bare vgftexd a
corresponding HTL correctiofb,22,24

Q). , [(dQ v,0
TP 82) = =0 | 20 (g Fie (0 -gp—ie)” 48
and
dQ v 8 t2P tot
(Q)ab . —_ 2| - r=v
AP e )=~ 03| (v-q1+ie><v-q2—ie)(v-<q1+pl>+ie+v-<q1+pz>+ie @7

is an effective vertex between a quark pair and two gluginis vertex does not exist at tree level, and in the leading order it
arises entirely from the HT[5,24]). The superscriptQ) denotes that the verteX",(X;Y,Y;) corresponds to the function
(4.6) in the coordinate representation, where the time arguments SM?Q%&(O?Y(Z) (boundary conditions The vertex
function (4.7) corresponds taI",(X;,X2;Y1,Y,), where the time arguments satis]=X{=X3=Y? for the first term in
parentheses on the right-hand side of E7) and for the second term we havézxgzxozYo, i.e., the time argument of
the external quark leg incoming in the vertex functidgds) and(4.7), is largest. In deriving Eq4.4) we have dropped the
terms proportional t§A ,#)(A, ) not contributing to the right-hand side of kinetic equation for the soft-fermion excitations
at the leading order ig, in which we are interested.

Because of nonlinear wave interactions, phase correlation effects occur. By virtue of their smallness, the expectation value
of a product of four quantitie§A ,A,#) can be expressed approximately as a product of the expectation values of two fields
(A,A,) and(yy). For a product of three fields this approach yields zero; in this case, the weak correlation between the fields
is to be taken into account. The third-order correlation functions on the right-hand side 6f.Bqgcontain amplitudes of
waves with different statistic, nonlinear corrections that are defined by corresponding field equations. Let us consider first of
all the nonlinear correction to a free quark field. For this purpose, we use field eq(@8nrkeeping in the right-hand side
only the second-order terntwith respect toA, plus #):

*S Y q)w(q) = —gf *TQ4(pyiay, —q)AL(P1) ¥(d1) (A —dy—p1)dgydp; .

The approximate solution of this equation has the form

p(q) =y O(q)—g* S(q)f *T@x(py;a1,— AP (py) ¥ O(a1) 8(q—dy— py)dasdpy, (4.8

whereAEf) and 4% are solutions of the appropriate homogeneous field equations corresponding to free fields.
Now we consider the nonlinear correction to a free gauge field. For this purpose, we use field e@u28amwritten in
momentum space, keeping on the right-hand side the terms of the second order in fields:

*D I (p)AY(p) = jAPAk(p) 4 V(023 (b 4 g J (=) Y*t24(d,) S(p+d;— d2)d gy d s,

i
—ngabcf T#N(p, =Py, — P2 AP AL (P2) S(p— P1— p2)dp.dp;. (4.9

Here, * D#"(p)= —[p?g"*"— (1+ & Y p*p”+ S11#*(p)]~ ! represents the medium-modifiéetarded gluon propagator with
the soft-gluon polarization tensor,

dQ v*v?
Ev~p+ie

6Hﬂ”<p)=3w§.(g“°g”°—p° f

105009-7



YU. A. MARKOV AND M. A. MARKOVA PHYSICAL REVIEW D 64 105009

corrected at the leading orderdn w? 0= 9°T?(N¢+2N.)/18 is a plasma frequency of the gauge sector of plasma excitations,
andI'“"\(p,p1,p,) is a bare three- gluon vertex. The first and the last terms on the right-hand side 6f.8give the
contribution to a correlation functiotA ) proportional to( AAg ) —(AAY( ). By replacing interacting fields by free
ones and dividing the fourth-order correlation into a product of the second-order correlators, this contribution vanishes.
Therefore these terms in this approximation can be dropped.

Now we consider the remaining terms on the right-hand side of48). For determining the explicit form gf; (*?? it is
necessary to derive the expressigm: (“?? according to Eq(2.16). For this purpose, we substitute the expanﬂhﬂ]) into
Eq. (2.8), keeping only the terms with quark er|dB,1,// on the right-hand side. Performing the Fourier transformation and
taking into account Eq3.2), we find

W(0,2)a _ 2 1 s a _
on P (k,p)==g sz—ﬂ([N(ean(ek)] )w< d1)¥t*(g,) 8(p+9;—dz)dg,dds.

(v-qi—ie)(v-qgptie

Substituting the obtained expression into E2.16) and performing the radial integration ovee,, we find the required
current correctiorj (%2

dQ
\If(OZ)a __ ©
(P) gwof A7 (v-p+ie)

1
v q2+|6 v q

v

¢( q1)9t%4(q,) (p+091—0d2)dg,da;. (4.10

Taking into account the discussion above, we obtain the following equation, instead @f.€qg.

*D Y (p)AY(p) = gf P(—qp) *TCH(p;qy, — q2)t24(g) 8(p+ 1 — 42)d g d . (4.1
Here,

*TE(;01,02) = v+ O (7(pi01, ),

do v, 0
(G)( - — 2| == £
51—‘# (p,Q1:Q2) wOf A (U.ql—ie)(v'qz—ie)

(4.12

is the effective two-quark—one-gluon vertex function, where fiovthe coordinate representatjdihe time arguments satisfy
X°=max(Y9,Y9) and the chronological order of, and Y, is arbitrary[22]. The time argument of an external gluon leg
incoming in the vertex is largest, as indicated by supersc@t (The approximate solution of Eq4.11) (with accuracy
required for our further calculatiopss of the form

A2(p)=AD?(p)+g *’D,w(p)f PO(—qy) *TC®¥(p;qy, — q2)t24(9(g,) 8(p+ a1 — 42)d g d . (4.13

At the end of this section we present the expression for the next term in the expansion of pilrmmich is needed for
deriving general kinetic equation for soft-gluon modes in Sec. VI. Performing similar calculations, we obtain

dQ v*v"(¥) . . 1
‘l’(lZ)a — R apB aybc/scyi aybyi
(P) ar vprie |0 O o gmrio T Y [ ilgat py Fiello- dorie)
1

b i j
[0 (Gi=p) —Telo-ai=ie) | < APV ¥a(~ Q) ¥p(A2) (P~ Prt Gy~ Az)dpydyda,  (4.19

where (T?)P°= —ifaP¢ The appearance of the term with the V. CHARACTERISTIC AMPLITUDES OF THE SOFT
production of generators of the SNf) group in other rep- FIELDS

resentationgthe adjoint and the fundamental ohés a spe- In this section we will estimate the typical amplitudes of
cial feature of the last expression. This term is not vanishinghe soft fields, both in coordinate and in momentum space,
only in the processes of the higher order in field powers, thguch that the truncation of the series expansi¢hd3,
processes of Boltzmann type, i.e., the scattering processgg.14), and(2.17 can be made and in the long run one can
between the soft-fermion and -gluon excitati¢eee Conclu-  derive a closed system of gauge-invariant kinetic equations
sion). for soft plasma excitations.
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For this purpose, let us discuss in more detail the approxi- In this work, we restrict consideration only to a finite
mation scheme used in this paper. In fact, the vafle number of terms in expansions of the induced source and
=gRA, is a(dimensionlessparameter of the expan5|on in color currents. This imposes more rigid restrictions on the
powers of nonlinearities in Eq$2.1)—(2.9), whereR~ ax order of the magnitudes of soft fields. Blaizot and laf26]
is a typical length for off-equilibrium deviations. It follows, (Sec. IA) showed in the special case when the soft fields
for example, from rewriting the equations of motion for the were thermal fluctuations at the soft scal@ (namely, this
soft fields (2.1) and (2.2) in the form (2.19 and (2.20), situation takes place in our caseheir typical amplitudes
where the gauge field& ,(X) are expanded from the cova- would be of the orders
riant derivativesD ,=d,+igA,(X) and the field strength
tensorF ,,(X). The disadvantage of the proposed iterated
scheme for deriving the terms in expansid@sl3, (2.14), |AL(X)|~gY?T
and (2.17) is explicit breaking of the non-Abelian gauge
symmetry of the dynamical equations for the soft fluctua-
tions (2.6)—(2.9 at each step of the approximate calcula-
tions. Here, the answer to the nontrivial question on the re-  [y(X)||¢(X)| ~g?T3
covery of a gauge symmetry depends directly on the order of
the magnitudes of the soft fields, the dynamics of which we
would like to describe. Below, we discuss two relevant casesn this case the parameter of expansidhsg?<1 and we

Let us assume that the amplitudes of soft-boson ang¢igve the estimates
-fermion excitations are of ordeig coinciding with the or-

|AL(pP)|~

g1/2(g-|-)3

ZONZOE

=l
9(gT®/)

ders ofA, and ¢ presented in Ref22], i.e., 2O ~gTlw(@)], 7(q)~g¥2T|w(q),
|AM(X)|~T [|Aﬂ(p)|”1/g(9T)3]1 72D(q)~ 5/2T|¢// Q). .
OO0 ~gT®  [[o(a@)li(a)|~1ig*(gT)°]. L X
P R R
In this case, by using the obtained expressions for the terms g 9
in the expansion of the induced sourge(3.2), (4.2), and
(4.3) and the color currentjsﬁ [21] andj;f (4.10 and(4.14), 1
we have the following estimates: 53 (p)~ v
g
7O(a)~ 7D(a) ~ 72 D(a)~ - ~gTly(a)l, .
i ®?p >~g<gT>4|E<q>||¢(q>|(~g—T),
) 1
ID(p)~ia®(p)~t®(p)~-- ST
. — 1
B i Ap)~g¥AgT) w<q>||w<q>|( ~ TZT) ,
VO )~ YD p)~ ... ~g(gT)* ()| ()] g

1 i.e., every successive term in the source and current expan-
x|~ TT . sions is suppressed by one poweigdf in comparison with
9 the preceding ones, and the use of the perturbation theory is
therefore justified. By taking into account the nonlinear in-
Thus, all terms in each expansi¢2.13), (2.14), and(2.17)  teraction between soft fields and hard particles at leading
are of the same order of magnitude, and the problem of reorder ing, it is sufficient to keep only the first three terms in
summation of all the relevant contributions arises. Thusthe expansion$2.13 and(2.17), and first two terms in ex-
gauge symmetry is recovered. In a pure-gauge case such pansion(2.14), as mentioned at the end of Sec. Il. The re-
approach is represented, for instance, in the work of JaCkiV@overy of a gauge symmetry here occurs another way, by the
and Nair[25] dealing with the derivation of the non-Abelian account of weak correlation in the calculation of the expec-
version of the Kubo formula Here, the explicit expressiontation value of three soft fields in a slightly heterogeneous,
for the induced curreni/,(p), including the contribution of slightly nonstationary quark-gluon plasrtsee the following
all higher point functlons that actually coincide with the it- section. In this case we derive a closed system of the gauge-
erationsj 4™V j4®), ... [21], is defined. The requirement of invariant kinetic equations that describe the evolution of the
gauge mvarlance leads to the completely nonlinear theorgff-equilibrium deviations in the number densities, and ob-
and principal impossibility of deriving closed kinetic equa- tain the damping rates from the collision terms, which are
tions for number densitie6.e., two-point functionsof the  closely allied in form to the corresponding damping rates in
soft-fermion and -gluon excitations. the HTL approximatiori8,9].
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VI. GENERALIZED KINETIC EQUATION

TOU= a1 O(q,) O = ga) @
FOR SOFT-FERMION EXCITATIONS (W= A0 97A2) ¥~ d3) ¥(0a)

/70 0 0 0

Now we turn to the equation for the soft-fermion excita- = (= a0 a) (= a3) 9 7(a)
tions (4.4). We substitute Egs.(4.8) and (4.13 into o) () —0), _ (0)
third-order correlation functions entering into E.4). (0= a) A (= a3)¥(02)),
Because of the fact that(®, y(©, andA(”) represent the _
amplitudes of entirely uncorrelated waves, the correlation (AO(p) A(py) (= 1) 1))
function (A @y drops out. In this case, each term in —

V) drop = (AQ(py) A (p)) (O~ a2) ().

(W (=) A (p)[ * T D%y(q)]) and
((h(—an) * T A*a2(py) yi(q")) should be defined pere we suppress the color, spinor, and Lorentz indices, and
more exactly. In the fourth-order correlation functions, (ke into consideration the Grassmanian nature of the quark
within the accepted accuracy, we replace the figldsy, field. SettingY g, = 5“Y5a andl‘;'iz 5ablw, taking into ac-
andA, by 19, ¢, andAELO). count 5ab5F‘;t,’,(p1,pz;ql,qz)ECF5FW(p1,p2;q1,q2), af-

Furthermore, we make the correlation decoupling of theter cumbersome calculations, we come to the following gen-
fourth-order correlation functions in terms of the pair corre-eralized kinetic equatichfor the soft-fermionic excitation
lation functions by the rules QGP, instead of Eq4.4)

aY(q,x)>

1% SH
| Jgel 4 OX @I

=2i tr[ézA(q)Y(q,x)HZgZCFUdqlIm{*Dﬂv(q—ql)tr[Y(q)*F‘Q’ﬂ(q—ql;ql,—q)
><Y(q1)*F‘G)”(q—ql:ql,—q)]}—f daydpyl ,,(p)IM{t] *T(Q#(—p;;—q;,q) *S(q)

X *F‘Q)“(pl:ql,—q)Y(ql)]}é(q—ql—pl)—f dpl,,(p)Im(tr{[ 8T Q**(p,~p;q,—q)
—*TQx(p;q—p,—q)*S(q—p) *T@*(—p;q,—q+p)— *T'V”(—p;q+p,—q) *S(q+p)
X *F(Q’“(p;q,—q—p)]Y(q)})). (6.1)

On the right-hand side of Eq6.1) the x dependence oY 4,(q) andl ,,(p) is understood, although not explicitly written.
In deriving Eq.(6.1) we use the following properties of effective two-quark—one-gluon and two-quark—two-gluon vertex
functions, which immediately follows from initial definitiond.5), (4.6), (4.7), and(4.12):

YT (p;01,02) Y= *T(p;2,00) = *TQ (= p; — a1, — ),
YT (p;a1,02) Y= *T(—p;— a1, — q) = *T (= p; — g, — ),
YOST D (p1,p2;01,02) ¥°= — 6T (p1,p2; s, A1) = — 0T D (—p1, — P2 —d1,— ).
Moreover, we assume that under Hermitian conjugation the Wigner fun¥t{gnx) behaves like an ordinary matrix:
Y'Y T(0,%)7°=Y(q,%). (6.2
Below this property is shown to ensure that the physical variable such as the fermion number density is real.
Equation(6.1) is incomplete, since the unknown functiop,(p,x) enters this equation. This function obeys the kinetic

equation, which is similar to Eq6.1). The soft-field equatiori2.20 is initial for derivation of this kinetic equation. We use

the obtained expressions for the induced color curf%’n(4.1® and (4.14) and corresponding expressions for the induced
color currentjﬁ defined in Ref[21]. Performing calculations similar to previous ones and keeping in the right-hand side only

3The termgeneralizechere means that we have not yet restricted ourselves to any mass-shell conditions.
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the terms responsible for the nonlinear interaction between soft-fermion excitations and soft-glugpuoelgsgauge sector
was considered in detail in Rd21]), we come to the following generalized kinetic equation for soft-gluon excitation QGP’s
(again, thex dependence of most quantities is suppressed

., (p,X)
ax™

d
&—[ng’“‘”—(1+§_l)p"p”+ S+ (p)]
P\
=—2i5HA””(D)|MV(D,X)—292TF(|m[*D,w(p)]f dg,da, tr{Y(qy) *T©*(p;q;,—qs)
><Y(q2)*F‘G’”(—p;—ql,qz)}HW(p)J dgIm(tr{[ T~ (p,—p;q,— )+ *TQ*(—p;p—0q,q9) *S(p—q)
><*F(G)“(p;—p+q,—q)—*F(G)“(p;q,—p—q)*S(p+q)*F‘Q’”(—p;p+q,—q)]Y(q)})). (6.3

Here, Tk is the index of the fundamental representatiéi*“*(p) and SI1*#*(p) are the Hermitian and anti-Hermitian parts
of the soft-gluon self-energy, respectively, af(®)*" is the effective two-quark—two-gluon vertex function defined by an
expression

dQ vHu Y 1 1
, (6.4

(G - Y et
LT (P1,P23 01, 2) “°J4w(v-q1—ie><v-q2—ie> 0 (G p)tie v (Gutpy)—ie

where the first term in large parentheses satisfies the chronweth purely gauge sector on the right-hand Sig&|, propor-
logical orderX?=Y9, X%=x5=Y? in the coordinate repre- tional to the gluon Casimir invariar@, .
sentation, and the second term satisfies the chronological or-

0 y0  y0— 30— \0. i ;
detrX IY I’ X | Xp=Y ’.I'e". t?e :Lme ar?um.enf of Onte 'IO'];] VII. CLASSIFICATION OF TYPES OF NONLINEAR WAVE
external gluon legs coming into the vertex is largest. The INTERACTIONS. PLASMINO AND PLASMON

mean of the superscrigt) is eviden_t here. Noti_c_e that i_n KINETIC EQUATIONS
deriving Eq.(6.3) we use the properties of Hermitian conju-
gate of the vertex functiof6.4): Now we perform a preliminary analysis of the right-hand

sides of the generalized kinetic equatigfsl) and(6.3), the
purpose of which is the identification of the terms with spe-

yoéFLGV)T(pl,pg;ql,qz))/O: 5F§LGV)(p2,P1;Q1,Q2) cific phy;ica_l processes.described by them. To esta_blish this
connection it is convenient to use the Feynman diagrams,
=— 8T (p1,p2:02.,0). defining the contribution of the leading order in the coupling

constant to the damping of soft-fermion excitations in frame-
work of resummed perturbation theory. There are kn¢®in

In closing this section we again call attention to the chro-to be two diagraméFigs. 1@ and 1b)] with soft loop mo-
nological order of arguments in the vertex functions enteringnentum that contribute at ordgrto the effective self-energy
into the right-hand side of generalized equati¢fsl) and  for quarks: the usual self-energy graph at one-loop order
(6.3), which appear here in nonevident manner. Also, we callFig- 1(&)], except that all of the vertices and propagators are
attention to the fact that the right-hand side of B3 is  €ffective, and the effective gluon tadpole on the soft-fermion
proportional to the third group invariaft: as distinct from  In€ [Fig. Ub)], which is special to the effective expansion.
the right-hand side of Eq6.1), proportional to the quark Let us consider the second tévon the right-hand side of

Casimir invarianiC,. and the kinetic equation far, (p,x) Eq. (6.1). Physically, this contribution just corresponds to the
F q P stimulated scattering processes of soft-fermion excitations by

hard-particle QGP through a soft-virtual-gluonic oscillation,
without the change of statistic type of both soft and hard

G excitations, i.e.,
b .

4As was mentioned at the end of Sec. IlI, the first term on the
(a) (b) right-hand side of Eq(6.1), involving the imaginary part of the
HTL self-energy, describes linear Landau damping. It vanishes,
FIG. 1. One-loop diagrams that contribute to the imaginary partwhen one studies the decay of on-shell excitations and therefore can
of the self-energy of quarks. The blob stands for HTL resummationbe omitted.
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Y
Y

q g9 q 9
q q > g ;: :
Q G G Q
‘ Q . . . L
= > > FIG. 4. The Compton-like scattering of soft-fermion excitations

by a hard QGP particle with a change in statistics of soft excitations

FIG. 2. The process of the stimulated scattering of soft fermi-(S channel.

onic excitations by hard QGP particles through a resummed gluon . f soft-f . o by hard icl GP’
propagator* D, where a vertex of a three-soft-wave interaction is scattering of soft-fermion excitations by hard-particle QGP's

induced by*l“ﬁf). The double lines denote hard particles. varying with the change of statistics of excitations:

0O) oY +G—0+ , + —g+G.
g+Q(Q)—g+Q(Q), g+G—qg+G, aa) g+Q(Q) ) +QQ—g
It is defined by two different physical processes. The first
and similarly for q Here, q represents fermionic collective represents the Compton scattering type process and is con-
excitations(we do not distinguish between normal-particle nected with the effegtivg t\(vo-qgark—two-gluon vertex func-
excitations and plasminpsnd Q, Q and G are quark, an- tion (more exactly, with its imaginary parén the right-hand
tiquark, and gluon excitations with characteristic momenta ofide of Eq.(6.1). This corresponds diagrammatically to the

orderT. It can be easily inferred if cutting the usual self- appropriate cutting of the gluon *tadpole” graph, before il-

energy graph before spelling out the effective gluon propalustratlng the effective two-quark—two-gluon vertex func-

gator, i.e., inserting a hard bubble along the gluon line, aéi(_)n’ as depic;e_d in Fig. 4. The second process connect_ed
depicted in Fig. 2. with the remaining terms defines the scattering of a fermi-

The third term on the right-hand side of E6.1) is asso- onic quantum oscillation through a virtual soft-fermion os-

ciated with the so-called decay processes depicted in Fig. ?Ilaéiot?. %iagrammaticzal_ly this procefsshof scattlerinlgf; is de-
following from the cutting of the usual self-energy graph Ined by the corresponding cutting o the usual self-energy
graph before illustrating out the effective quark propagator as

— in Fig. 5. As it will be shown in the next section, the terms
0=a+g. qto—g, corresponding to the processes drawn in Figs. 4 and 5 form a
] ) ] o gauge-invariant function. The process, described by these
where g is the gluonic collective excitatioftsere, we do not  teyms, will be called furthethe nonlinear Landau damping

distinguish between longitudinal and transverse excitalions of the soft-fermion excitatiortsy virtue of the great similar-
Similar decay processes have been studied in detail, since

they are immediately connected with the processes of soft- !
dilepton productions in hot QCD plasma. In the high- '

temperature QCD plasma in the approach based on using
dispersion relation method®7], these processes are con-
nected with the so-called pole-pole terms. P

Finally, the remaining terms grouped on the right-hand !
side of Eq.(6.1) are connected with the more interesting
process of the nonlinear wave interaction with stimulated

G Q

A N
NF 7

ol
0]

(a) (b)

FIG. 5. The process of the stimulated scattering process of the
FIG. 3. (a), (b) Radiation(absorption of the soft-boson excita- soft-fermion excitations by hard QGP particles through a resummed
tions by soft-fermion ones(c) annihilation of the soft-fermion— quark propagato’ S, where a vertex of a three-soft-wave interac-
antifermion excitations into soft-boson excitations. tion is induced by*l“ﬁLQ) (t channel.
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ity of the expression defining this process and the correThe solutions of these equations have the structure
sponding expression in a purely gauge cigxg.
Here, it is necessary to note that the terms on the right-

hand side of kinetic equatiof®.1) corresponding to the pro- ?i(q,x)=Y:(q,x) 5% w+(@)+Y=(—q,x)
cess diagrammatically shown in Fig. 5 are very close in 0
structure to the terms connected with stimulated scattering X 8(q"+ 0=(0)). (7.3

processes, without changing the statistic type and which are . . .
diagrammatically given in Fig. 2. However, in the last caseH€"®Y =(a,X)=Yq are certain functions of a wave vectpr
the Compton scattering type contribution is absent, which, if"d@=(q)=wq are frequencies of the normal-particle exci-
turn, is associated with the absence of the effective quarkdtions and plasminos, respectively. The solutiéns) de-
tadpole on the soft-quark line. For this reason, we not assigicribe what is called guasiparticle approximationin this
this process to the one of the nonlinear Landau damping. @PProximation we assume that the off-equilibrium two-point

Now we turn to the right-hand side of generalized kineticfunctionsY -.(q,x) have the same mass-shell conditions as in
equation(6.3). The second term on the right-hand side of Eq.equilibrium, with an off-equilibrium deviation in the spectral
(6.3 is defined by time reversal of the decay processes thajensitiesYg )
are drawn in Figs. @) and 3c). The remaining terms onthe  Furthermore, let us represent the functign(p,x)=1,,
right-hand side of Eq(6.3) are associated with the processesin the form of an expansion
defined by the time reversal of the processes depicted in
Figs. 4 and 5, i.e., with the process of the nonlinear Landau
damping of the soft-gluon excitations. lw=Quu(Pp+ P, (1, 1'=1"(p,x), (7.9

In the remainder of this work, we restrict our attention to
the detailed study of the process of nonlinear Landau dampwzhere
ing, and moreover we restrict ourselves only to the process L
of the nonlinear interaction between plasminos and plas- u,(p)u,(p)
mons, i.e., purely collective excitations in hot QCD plasmas. Quu(P)= T
The exception is only Sec. XIl, where we consider the diffi- P
culties connected with the calculation of the nonlinear Lan-
dau damping rate for normal quark excitations in the vicinity —-q — _
of the light cone. Pu(P)=9,,—D,u(P) = Quu(p),

As it was mentioned in the Introduction in global equilib-
rium QGP’s for the case of massless quarks and for zero
chemical potential there are two branches of fermion excita-
tions with a positive energy. In this connection we define the
Wigner functionY (q,x) in the form of an expansion u,=(1,0,0,0

D,,=P.P./P% U,(p)=p?u,—p,(pu),

Y(@.x)=h (@Y (@x)+h_(@Y_(a.x), (7D are longitudinal and transverse projections in the Lorentz
- _ _ ~ covariant form, respectively, and we take the functidd‘\s'n
where Y. are certain scalar functions anul.(q)=(»°  the form of the quasiparticle approximation

¥q- )/2 with q=q/|q|. By the condition(6.2) the functions

Y. are rgal. Let us define dgpend_ence on varigfle . =10 5(pC— wh)+1'S(p°+ o),

For this purpose we omit nonlinear terms and the anti- PP P P P 5
Hermitian part of the quark self-energy in E.4). Substi- (7.5
tuting the functiond'[h.(q)]s,Y +(q,x)5(q—q’) instead |L=|;5(p0—wtp)+|‘_p5(p0+ w:))_

of (Yu(—q)¥5(a’)), we find
In Eq. (7.5 I'p't are certain functions of a wave vecforand
o - wy'=w"'(p) are frequencies of the gluonic longitudinal and
—{9°*[lal+Res% . (q)]}Y +(g,x) =0, transverse eigenwaves in a QGP.
The equations describing the variation of the spectral den-
sitiesY, andl'p are obtained from Eq$6.1) and(6.3) by the

replacements

where

1 . 2 0
m@-=ganai-la- (=

72 Y (9,)—h_(q)Y 4 8(0°~ wg),

(7.6

with | (PX)— QD)1 8(PO— wh) 41" 3(p°+ wh) ]

In for Eq. (6.1, and

1+z
—|—imh(1—|z|)

Ep)e 2
(Z)_E 1-z
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2 aYq
2| -l rlal+Reax(@]]

(P X) = Q. (P, 8(p°— w)),

Y (0,%)—h_(a)Yq 8(0°— wg) +h ()Y Z,8(0°+ oy ) =0 ©
for Eq. (6.3). & functions enable us to remove integration —on2 —f I Q)
over g° and p°. Retaining on the right-hand side the terms 20°CeYq | dplpIMTEE(G,P), 7.9

responsible for the process of nonlinear Landau damping
only, we have instead of Eq&.1) and (6.3 where

|
TQ(q,p)=tr{[ T D~(p,—p;q,— ) — *T'Q*(p;q—p,—q) *S(q—p) *T'V"(—p;q,—q+p)
—*TQv(—p;q+p,—q) *S(q+p) *T'D¥(p;q,—q- p)]hf(ti)}QM(p)lqu; 0=l (7.8

o —

and
I

J
@[p2+ Resll'(p)] —p=—292TFI'pf dqY, ImT)(q,p), (7.9

where
T®(q,p)=tr{[ T ©*(p,—p;q,— )+ *T'Q”(—p;p—0q,q) *S(p—q) *T'©*(p;—p+q,—q)

—*T©@%(p;q,—p—q) *S(p+q) *T'Q"(—- p;p+q,—q)]h_(ti)}QW(p)lqo:w; Pl (7.10

The expression$(@(q,p) andT(®)(q,p) contain the factors Therefore, in the subsequent discussion the supers¢apts
and(G) will be dropped. Let us emphasize that the equalities
1 1 1 (7.1 and(7.12 hold only for on-shell plasma excitations.

v-q+ie’ v-q—ie’ v-(q—p)tie T

VIII. GAUGE INVARIANCE OF Im  T(q,p)

The imaginary parts of the first two factors should be set The issue of the gauge dependence of the plasmino non-
equal to zero because they are connected with the linear Lafjpear Landau damping rate is closely associated with the
dau damping of a plasmin@vhich is absent in a QQRand  isq e of the gauge dependence ofTifg,p). In the next
therefore, the imaginary part of the expressiéiisd) and  ¢action the expression (q,p) is shown to define the

(7.10 will be defined as plasmino—hard-particle scattering matrix element squared,
i.e., it has direct physical relevance. To establish the gauge

1 invariance of the matrix element for plasmino—hard-particle

v-(q—p)tie =0, po=o scattering we need to show that the expressioif (mqmp) in
a P the covariant gauge equals a similar one in the temporal
=—78(wg —w,—V-(d=p)), . . . . gauge.

We prove the gauge invariance for a more general expres-
Because of the absence of the linear Landau damping for th&on. which in a covariant gauge has the form
plasmino from the definitions of effective two-quark—two- o
gluon vertex functiong4.7) and (6.4) and two-quark—one- I'(p1,P2;d1,02)

egllrltjaoerllsvfiﬁce)\j(vsfu netions.6) and(4.12, the next equalities ={oI'*"(p1,P2:01,d2) = *I'*(p1;d1+P2,d2)

X * +p2) *I'"(p2;01,02+
ST 4 (p,—p;q,—q)= o @*"(p,~p;q, ), S P2 TP Gt P

—*I'"(p2;d1+P1,d2) *S(Q1+p1)
*TQu(p;q—p,—q)=*T©xp;q—p,—q), .

(.13 X *TH(Py:0y. 0ot P2) U, (POUL(P)lon et
and as consequence, we have '

Here,p;+p,+0d;+g,=0. Notice that the order of the Lor-
TQ(q,p)=T®)(q,p). (7.12  entz indices of the last two terms in curly brackets on the

105009-14
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right-hand side of Eq(8.1) is important. The association of
the expressiol(7.8) with (8.1) is given by

ImT(q,p)
1
Vu?(p)u(py)

X Imtr{ *T(p1,P2:01.92)h—(G0) Hp,— —p,=p, - —ap=a-

A similar expressior(8.1) in the temporal gauge is obtained
with the replacements

u,(p)—U,(P)=pAp,—u,(p-u)l/(p-u), etc.

The gauge-invariance proof is based on using identities

PHYSICAL REVIEW D 64 105009

{*T*(p1;01+P2,d2) *S(A1+P2) *I'"(p2:0d1,d2+ P1)
+(p1e P2, pe V)}U#(pl)ay(l)zﬂon shell
=pip3{ *I'(P1:01+p2.02) * S(A1+Py)
X *T%(pp;d1,Gp+P1)+(Pr=po)}
+E(P1,P2:01,02)-

Subtracting Eq.(8.4) from (8.3), we arrive at the desired
expression

(8.9

*T(pl,p2JQ1,Q2)
_ 2,25 o700 ) _ *T0/
=p1Po{ S (P1,P2;01.02) — *I°(P1;01+ P2,02)

X *S(d1+P2) *T0(p2:d1,92+ P1)

—*T%py;a:+P1,a2) *S(d1+p1)

analogous to the effective Ward identities in hot gauge theory

[5,24]. It can be shown that the following equalities hold:

SI'*"(P1,P2:01,92)P1,= *T'"(P2;d1,d2+ P1)

= *T"(p2;0:+P1,02),
(8.2

OI'*¥(P1,P2:01,92) P2, = *T*(P1;d1,d2+ P2)
—*I'*(p1;01+P2.02),

*TH(p;d1,02)P,= *S™H(qy) — *S™Ha; +p).

X *TO(p1;01,02+ P2)}- (8.5

Now we consider the structure ofT in the temporal
gauge. For this purpose we replagg by TJ# in Eq. (8.2).
The convolution with an effective two-quark—two-gluon ver-
tex function leads to

STA(p1,P2:01,d2) U, (P UL(P2)|on shel

=p2p3oT %Py ,p2;01,02) + E(P1,P2:d1.02),
8.6

Initially we calculate the convolution with the effective where

two-quark—two-gluon vertex functio@l'#”. Slightly cum-

bersome but not complicated computations by using the ef-

fective Ward identitieg8.2) and the mass-shell conditions
lead to the following expression:
ST (P1,P2391,02)U,.(PDUL(P2) |on shel
=pIp5oT %Py, P2:d1,02) + E(P1,P2:01,02),
(8.3

where

E(P1,P2;01,02) =p3p3{ *T°(P2;d1+P1,02)
—*T%(p2;ay,d2+ 1)}
+p9p3{ *TO(py1; 01+ Pz, 02)
—*T%p1;01,02+ P2)}
—pIpa{ *S M (A1t p2)
+*S7H(ay+ po)}-

Furthermore, we calculate the convolution with the terms
containing the two-quark—one-gluon effective vertex in Eq.
(8.1). Here, we derive the expression

105009

pips

0,0
1M2

—*S N ay+p) ]+ (pP1—p2)}

é(plypzifha%): {[PY*T%(p1;01+P2.,0y)

Convolution with the terms containingI"# yields

U TA(P1:d1+P2,92) *S(d1+P2) *I'(P2:91,92+ P1)
+(P1= P2, = )}UL(PDULP2) |on sher
=pip5{ *I'(p1; a1+ P2.d2) * S(A1+p2)
X *TO(p2;dy,dz2+ P1) +(P1P2)}

+E(p1,P2:01,02). 8.7

Subtracting Eq(8.7) from (8.6), we obtain a similar expres-
sion (8.5). Thus, we have shown that at least in the class of
covariant and temporal gauges, the expressiofi (Igyp) is
gauge invariant.

IX. NONLINEAR LANDAU DAMPING RATE
OF A PLASMINO

In our work[21] the transformation of the nonlinear Lan-

dau damping rate for a plasmon in a purely gauge sector of

-15
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soft QGP excitations was performed. An expression similawhere
to ImT(q,p) was transformed to module squared of a sum of
the terms, which are interpreted as the scattering amplitude
of specific physical processes. In this section we represent a % _ 1
C . : ; ; Ac(h)=—- , (9.9
similar transformation for the function I(p,q). Since this OF[I]+ 63 .(1)]
function is not dependent on the choice of a gauge, we a
choose a temporal gauge for simplicity.

The right-hand side of Eq7.7) contains the contribution the contribution to InT(q,p) of the term associated with the
of two different processes. The first is associated with abeffective two-quark—one-gluon vertex functions can be rep-
sorption of a plasmino by QGP particles with frequergy resented as
and wave vectoq, and consequent radiation of a plasmon
with l‘requencyou'p and wave vectop. It is defined by the 2
second term on the right-hand side of Ef.8). The frequen-
cies and wave vectors of an incident plasmino and a recoil | p?(p®)?
plasmon satisfy the conservation law

w5 — wh—v-(q—p)=0. 9. +*A-(trfh-(@(*T'pHh-(D(*TIpH}]

Im{*A (Otr{h_(@)(*T'pHh, (H(*Tipi)}

on shell

The second process represents simultaneous radiatii- (9.5
sorption of a plasmino and plasmon with frequencies
wgq w'p and wave vectorg, p satisfying the conservation

law Let us compute the traces in the last expression. For this

purpose we research the matrix structure of the function
(9.2) *T'p' in more detail. From the analysis of the corresponding
expressions for HTL functions, derived by Frenkel and Tay-

and is defined by the third term in E7.8). The contribution 1or (in particular, the expressiai3.38) in Ref.[6]), it is easy
of the second process to the order of interest is not important® see that*I"'p' can be represented in the form of the ex-
The first term on the right-hand side of HJ.8), associated Pansion
with an effective two-quark—two-gluon vertex function, con-
tains both processes. Furthermore, we take into account the *ini_ A0 )k T
terms in Eq.(9.1) and we drop the terms that contain the Fp=yolot -y L+lnxh)->]"T, (9.6
function of Eq.(9.2). Notice that the conservation la(9.1)
defines, in a very nontrivial manner, accessible kinematiavheren=qgXp and the coefficient functions are defined as
regions of wave vectorg andp in the process of nonlinear
Landau damping for a plasmino. In Sec. XI we consider only
the simplest limiting case of accessible kinematic region of ol o= ng
plasmon wave vectap for the case of thg=0 mode.

Now we consider the expression wigi'#”. With regard
to the discussion above and to the definitiém), the con-

wg +w,—V-(q+p)=0,

dQ v-p
4 (v-1+ie)(v-q)’

tribution of a given term to InT(q,p) can be represented as o Pl _p-l
Ij”——-]zr'-F ¢$I*H== _IE_
o2 p’ f@ (1+v-q)(v-p)? .
I a7 weqp _obfde_(pveh oo
2) 47 (v-1+ie)(v-q)’
X 8(wg — wy—V- (q—p))l . 9.3
on shell 1
; . . T ==+6I' ==
Let us consider now a more complicated second term in |2 12
Eq. (7.8) associated with the two-quark—one-gluon vertices.
By the definition(4.5 and (4.6), the following equality is wy (dQ (v-p)[v-(nX1)]
obeyed: TPl dm wriowq)

*THp;l,—aq)=*T*(=p;q,—)=*I'*
) ) ) The matrix basis in the expansi@8.6) is convenient in that
(hereafter|=q—p). By using this relation and the decom- j; js «orthogonal” in trace computing. Substituting expres-
position of the effective quark propagatb(l) ontoh.(I),  sjon (9.6) into (9.5 we can compute desired traces in Eq.
R . (9.5 in terms of the functiong9.7). However, this direct
*S(hy=h (h*A (H+h_()*A_(I), approach is not quite convenient in view of its nontranspar-
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ency and the necessity of cumbersome calculations. We over- h.(Hh.(H=0, h.(NHhs(NHh.(DH=h.(D,
determine the expansidf.6), which enables us to represent R B B
the function*I"'p' in a more appropriate form for trace com- after computing the trivial traces, we obtain
puting. Instead of expansio®.6) we can write(the details

of overdetermination are given in Appendix A )

-G him AL ()(*T )7
*Iipl=—h_()*I', —h, () *I'_+2h_(§)?|q|*T , PP)
(9.8

+(1+q-DIM[*A_(D(*T)2] . (9.12

on shell

where

2

n 1
* I‘+»EE — ol =+l * I+ q— ————77—:*‘[‘ . 9.9
+ 0+|| I |q| 11q.| 1 (9.9

The explicit selectivity of the matrik_(q) in the expansion

(9.8) is connected with the fact that we have restricted our +2Im(*T' )R *AL(1)*T'.].
consideration to the study of a plasmino branch of fermion o . . ) .
excitations only. In the case of the branch describing normal- Taking into consideration the last relation and the equali-
particle excitations, it is necessary to use the following ex1l€s

pansion instead of E(9.8):

Furthermore, we use the relation

IM[*AL(D)(*T )2 ==Im[* AT D] *AL()*T .2

- dQ -
) ) Im*Ail(I)=—7rwa 2o (1Fv:-Da(-D),
*T'p'=—h_()*I', —h. () *I'_—2h,(@)q|*T , i

(9.

e 2 dQ v-p
where now Im*T'e=mwp | 7— v-q
¥, =— 6T, % |I|*T "’ *T (9.11) | 15y XD S(v-1)
+=— —+ T A~ = . . +V- S v-l),
- 0 ol 127 1215 q-1)
Substituting expressioit9.8) into (9.5), and using the subtracting Eq(9.12 from (9.9, we define the desired ex-
identities forh..(I) matrices, pression for InT:

(v-p)?
(v-q)?

ImT(q,p)= mwf (1+v-@)+(1=q-D(1-v-D*A ()*T.[?

p? J’dQ )
p2(p°)2) 4m

+2%e+(v;d,|6)Re[*A+(|)*F+]+(1+d-i)(1+v-f)l*A—(')*HZ

V- A
+2£Q(V;q,p)Re[*A(l)*F]]ﬁ(wl)l : 9.13
on shell
|
Here, v-(nXxl)
—* AL *T P+ *A_()*T 2,
L]l
aa o Ve(nX) equals zero over solid integration. In addition, we rewrite the
e-(viq.p)=(1xg-hH(@xv-hH+ gz 919 first term in curly brackets by using the relation

2(1+v-q)=0.(v;q,p)+e_(v;q,p),

The expressioif9.13 can be led to a more descriptive form. which is a consequence of the definitid8s14). Taking into
For this purpose we add to the expression in the curly brackaccount the discussion, above we rewrite expreséoid)
ets on the right-hand side of E(@.13 the term in the following form:
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| |
(wh)2=p? [ dQ N N B
QP =rod bt [ o S Vb S by (pINp= +g2TeN | dagra.ping |
(@p)°P 9.19

X 8wy — )~ V- (q—
(@q ~@p=Vv-(q=p) whereV, =dw, /9q andV,=dw,/Jp are group velocities of
x {0, (V;:a,PIW (q.p)+o_(v:a.p)w; (q,p)},  Plasminos and plasmons respectively, and the ke@(elp)

is defined by
(9.15
1
where Q(q,p)=2—,27(q)2|<p)lm T(9,p). (9.20

w

P
2
W (q,p)=| M- (q,p)|2= QJF*At(D*Fi . The functionsy (q) and y'(p) on the _right—hand side of
v-q on shell Eqgs.(9.18 and(9.19 represent the nonlinear Landau damp-

9.16 ing rates for plasminos with momentugnand for plasmons
' with momentump, respectively.

The denominatow - q in Eq. (9.16 is eikonal, which was The structure of kerndP.20 is rather unexpected. As we
expected in an approximation to the small-angle scattering o¥e€ from the expressid®.19), this kernel is not reduced to
a high-energy particle. It defines the effectitreere, effec- the squared modulus of one scalar function, as this occurs in
tiveness is not in terms of HTL resummatjgoropagator in & purely gauge cade1]. Here, Q(q,p) is defined by a sum
the Compton type scattering process depicted in Fig. 4. Thef the squared moduli of two independent scalar functrons:
factor v-p is connected with the effective vertex with one amplitudesM ., (q,p) and M _(q,p). This is a point that we
soft external leg and two hard ones. Accordingly, the secondind difficult to interpret and therefore additional analysis of
term in the amplitudes\ . (q,p) represents the second type this problem is required. The only remark that may be made
of scattering process depicted in Fig. 5. Here, the quarls that the interference between the scattering processes de-
propagator transfers the soft momentum and is defined by theicted in Fig. 5 proceeding through intermediate quark vir-
scalar functionst A, or *A_, and a vertex with soft exter- tual oscillations with propagator$A () and *A (1) ac-
nal momenta is defined by the scalar functidris, or *I'_  cordingly, vanishes by the relation
for corresponding propagators.

Furthermore, we are relating the Wigner functiofig h_(1)
andl L to the plasmino and plasmon number densities, setting
accordingly as

h,(I)=0.

o
| Gt otwq —ov-(a-p)

This relation is the analog of the relation in a purely gauge

_ _ _ _ case[21],
Ng=2Z- )Yy, Ny=—20,Z *(p)l,. (9.17
| rda . . . _
Here, (pz)'“Ev'v’&(w:)—w:ol—v(p—pl)) (nXp,)'=0,

Z7 Y g)=1+ yReo=(9) Re(SE(q)) N=pxXp;, P,=pP—Pi,

— 0 b
7 QO=w, that is responsible for the absence of interference between

the scattering of plasmon by a QGP thermal particle through
JRedIl'(p) the longitudinal and transverse virtual gluon oscillations.

zZ; 1(|0)=1+( - )

a(p”) pO=0 X. DECOMPOSITION OF KERNEL ©Q(q.,p)

INTO POSITIVE AND NEGATIVE PARTS

are the residues of the effective quark and gluon propagators |, s section we consider the problem of the direction of
at_tlhe appropriate poles, respectively. The factor 2 in front ofo effective pumping over of plasma excitation energy in the
Z_7(q) takes into account the presence in QGP’s of antiplasygcess of the nonlinear interaction of plasminos and plas-

minot;c,. By u.sing'theh de1‘initi|0;69-17),f Eq& (7.7) and (7.9 mons. For this purpose, first, we study in more detail the
can be rewritten in the usual form of kinetic equatidosn- structure of the functiongi(v;fq,ﬁ).

taining on the left-hand side drift terms, and on the right- By using the expansiotAd), we represent the . func-

hand side the terms responsible for collisipnshere the .. y 9 P ' P @
S . . . ) tions (9.14) in the form

role distribution functions of quasiparticles—plasminos and

plasmons—fulfill the function$9.17):

on- an- 5As will be shown in the next section, the coefficient functigns
q - q - -_ - i .(9. i inite; in princi
+Vq . ——y (q)nq = _gchnq f dpQ(q,p)N'p, !n_E_q 9 15_ are not, in general, case Qeflnlte, therefore in principle
ot X it is impossible to express the expressionTras the squared modu-
(9.18 lus of one scalar function—the total scattering amplitude.
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L(v;@,p)=1+v-qF(q-T+v-1). 10. 1
0.(v;q,p) v-q+(q-1+v-1) (10.1) ) cos; (6-a)
Let us introduce the coordinate system in which axzsi® (_) =U- 1 , (10.9
aligned with vectof ; then the coordinates of vectagsandv A cos; (6+ )

are equal tai=(1,a,ﬂ) andv=(1,0,¢), respectively. Byb
we denote the angle betweenand g: v-g=cos®. The  where, in turn, the transformation matridés are defined by

angle® can be expressed as the solutions of the corresponding matrix equations
cos®=sin@dsina cog ¢ — B)+cosf cosa. (10.2) U, A =diag N\ NN,
In the fixed coordinate system expressid0.l) reads The solutions of the last equations have the following struc-
ture:

o+(a,B;60,p)=1+sinfsina cog ¢— B)+ Cc0oSH CoSa

cosd  =*sind
¥ (cosa+cosh). (10.3 U.= )

Fsind  cosd
By using trigonometric formulas, it is easily to show that the

last expression can be represented in the homogeneous qua- tand— — 1
dratic form with respect to the variables ¢(#—«a) and cogo—pB)+ \/1+c03(<p—ﬂ)'
cos(6+ a):

By using a given expression and Ed0.7), we derive the
(10.4 desired expressions forl”) and y{"). The functionsy!"

Qt(avﬂ;eygo):yTAiyv (_) . . . .
andy’ ’ can be easily rewritten in the terms of initial vectors

where I, g, andv. For example, from Eq.10.2 it follows that

1 n-(vxl)

CO%(H_C() COE(@_E):_W’ etc.
yEy(a’e)E 1 ! T . .
cos- (0+ a) By substituting the expansiof10.6 into (9.15, we can
9 represent the kern&l(q,p) in the form of a sum of positive
and negative parts:
1 _

2 cos5 (9= p) +1 2,p=2M(q,p)-2(a.p, 2%(a,p)=0,

A=A (B,p)= 1 . (10.8
+1 2 3"125(90—[3) where
. . 1\2 2
The eigenvalues of matrice4.. are equal to - )*=p
g - aeed Q)(q,p) =+ mwd — 55 Z(NZ(p)
2(wp)°p
AP =1+ 1+co(¢—B)>0,
dQ .
AN =1— 1+ co(o— B)=<O. (10.5 X f 27 Owqg —@0p=Vv-(a=p))

From the theory of matricef28] it is known that the real XN 2w (a,p) + (x)2wy (a,p) 1}
symmetric quadratic form is indefinite if and only if the ei- (10.9

genvalues\ of matrix .4 have the different signs. Thus, by

virtue of Eq.(10.9 we have proved that the coefficient func- We use the decompositiaf10.8 in general analysis of the
tions ¢ are indefinite. By the linear transformation of the problem of a direction of the pumping over of excitation
variables co¥6—a) and cog(6+a), the quadratic form energy in the study of the process of nonlinear interaction
(10.4) can be expressed as the canonical one, where the pod§letween plasminos and plasmons.

tive and negative parts af . are explicitly displayed: To consider the model problem of interaction of two infi-
B nitely narrow packets with typical wave vectagg and pg,

0. (a,B;0,0) =\ (N2 N ()2 (10.6  let us introduce the number densities andN;, as follows:

- _ ey — | _
Here, x\") and ) are certain linear functions of ch® Ng (D=n"()8(q=0o),  Ny() =N'(t)5(p—Po).
—a) and cog(6+a). We have restricted ourselves to the spatially homogeneous
The explicit expressions fox”) and x\) are defined case. Substituting the last expressions into Egsl8 and
with the help of the transformations (9.19, we obtain the coupled nonlinear equations:

105009-19



YU. A. MARKOV AND M. A. MARKOVA PHYSICAL REVIEW D 64 105009

an~ ) | XI. THE DAMPING RATE OF A PLASMINO AT REST

—=—-0g°CrOn "N, n (tg)=ng, . L . -
dat 9°Cre (to)=Ng The solution of the kinetic equatiofd.18), defining a

(10.10 change of the plasmino number density, can be formally rep-

: resented in the fornffor a spatially homogeneous case

N 2 N/ | |
Wz‘f'g T,:Qn N, N(to)zNo

t
Here, 9= 0Q(0o,Po). The system of the equatior40.10 né)(t)zné)(to)exp{ —gZCFf dt’f dpQ(q,p)N'p(t’)}.
possesses the integral of motion to

— — _ — |
C=Ten () + CeN'(t)=Teng +CeNp. Let us approximate the plasmon number denlfyby its

. . ) equilibrium value or Planck distribution
The general solution of this system, with regard to decom-

position of the kerne{10.8, has the form

o970 M(t-1g) Nlp:Nleq(|p|):

—g2co () (t— — —q2co0 M (t—tn)?
CFNloe g°cQ (t t0)+TFnOe 9°CQ (t tO)

1 1

(277.)3 e‘”p/T— 1

n (t)=n,C

and define the quasipartickamping rateof the standing

—g2co (T (t—t : ;
e 9 (1) plasmino by means of the relation

iy — !
N NOCCFN'oe’QZCQH(Ho)+TFn6e*92‘39(”(‘*‘0) '

1
Let us analyze the behavior of these solutions in the limit for y (0)= EgZCFI Iilm f dpQ(a.p)Neg[pl).  (11.2)
t—o0, q/—0
(1) Let us assume that the values of the wave veatgrs
andp, are such that the following inequality Now we represent a complete calculationf(0). We
(+) ) start with a representation of a kern@(q,p) in the form
Q" (do.Po)>2 ' (do.Po) (10.13 (920, where the function Iri(q,p) is determined through
Egs.(9.15 and(9.16. Here, it is convenient for us to intro-
duce a new coordinate system in which axis 8 aligned
n(1)—0, N()—N +(Te/Co)ng. (10.12  Withthe \/Aectorﬁ; then the coordinates of vectaysandyv are
equal toq=(1,¢',B") andv=(1,6',¢"), respectively. By
Thus we see that as a result of the nonlinear interaction o’ we denote the angle betweenandq. The angled’ is

two infinitely narrow packets with fermion and boson quan-connected withe’, B’, 6', and¢’ via the relation(10.2)
tum numbers, the effective pumping over of energy from theyjth a corresponding change— o, etc.

is true. Then in the limit fot—c we have

first packet to the second one takes place. In the limit for |g|—0, the kernelQ(q,p) is reduced to
(2) If the inverse inequality holds,
Q™)(d,Po) <2 (do, o), (10.13 (@p)?—p° d0
Q0p)= w5 —52i(P) f 2 d(cost’ —pp)
then in the limit fort—o we have (wp)*[p]
A A 2
ni(t)_’na—’_(CF/TF)NIO! N'(t)—»O X{Q+(V,q,p)|M+(0,p)|
+e-(v;a,p)|M_(0p)[%}, (11.2

Here, we have an inverse case—the damping of bosonic ex-
citations and the growth of fermionic excitations.

(3 Finally, in the limiting case Q()(qo.po)  Where pp=(w,—wo)/|p|; dQ=sing'd¢’de’. The expres-
=0)(qo,po), the interaction between wave packets is ab-sions for o (v;q,p) are defined by Eq(10.). In a new
sent. coordinate system, instead of H4.0.3, we have the func-

The inequalitieg10.11) and(10.13 define the kinematic tion representatio . in terms of angles
relations between wave vectors of excitations with different
statistics, such that one or another process of pumping over

of energy occurs. However, the general analysis of these in- =(a’,B"0",¢")=1+sing’ sina’cod ¢’ — )

equalities is a complicated problem by virtue of the complex- +cosé’ cosa’ £ (cosa’+cosé’).
ity of the expressions for positive and negative parts of the
kernel Q. In the next section we shall study in detail only the (11.3

simplest limiting case of the interaction of a “standing” plas-
mino (q=0) with a plasmon. Here, the direction of the ef- The limits of the scattering amplitude®t.., by its defini-
fective pumping-over energy is easily defined. tions (9.16 equals
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Ip| . the F(qo/|q|) function (7.2) (see Braaten and Pisardd]).
M. (0p)=—cosh'+ lim[*A.(1)*T'.]. (11.4 |nserting Eq.11.5 into (11.4), we reduce the scattering am-
@0 lal—0 plitudes to

Thus, the problem of computing af (0) is reduced to the
calculation of limits of scalar functions: the effective propa- Ip| . Ipl
gators*A . and the effective vertice$I'-. . M- (0p)= w_OC059 - w_OPp

By using the definitions of th& IT".. effective scalar ver-
tex functions(9.9) and(9.7), after slightly cumbersome com-
putations, we define

2
P N
—lwoF|p|F=—p,(L£p,) | lim *A.(1).
0 wo P P |q|~>0

lim *Fiz—mplp lim *AZY(1)

lg—0 @0 Plg—0 By the 6 function in Eq.(11.2, all terms in M_..(0,p) not

containing the propagatorsA .., are relatively reduced in
P | the limit of theg=0 mode.
- “’0+|p|+w_opp(1ipp) . (119 The remaining terms, after substitution into Etf1.2 and
integration over the solid angle with regard to EG1.3),
In the last equality we use theA;'(q) definition (9.4) as  yield

2

2 (")lp)z_pz | , | P NP * 2
Q(O,D)IWwomzmp)wl—mpb (1+cosa’)(1+pp) w0_|p|_w_opp(1+pp) |<L||T0 A+(|)‘
p? 2 2
+(1—cosa’)(1-py) w0+|p|+—p|p(1—p|p)} lim *A(I)‘ ] (11.6
wO \q\ﬂo

We note that this expression is not dependent on the gBgldhis enables us to represent the integration measure in the
right-hand side of Eq(11.1) in the form

o -1
j dp=21-rf p2d|p|f d(cosa’).
0 1

Substituting Eq(11.6) into (11.1) and performing an angular integration ovet, we finally obtainy™(0):

¥ (0)=0°Ce | “dlplacL oo (oINSl a1y

where the kerneR ~(|p|) has the form

) (wp)?—p? p? - 2
Q (|p|>=w2wémz|(p>[(1+p'p> wo= [Pl = T-pp(1+pp) Jim *A+()
| P Nl 2
A=) wotlpl+ oen(1=pp)| | lim *A-(D] (118
q—>0

By virtue of the @ function in integrand11.7), the kernelQ ~(|p|) is positive; therefore
y (0)>0,

i.e., the standing plasmino is damped. Thus, in the process of nonlinear Landau damping, the pumping over of the excitation
energy of standing plasminos into plasmon branch of plasma excitations occurs, and therefore the fitét t2se true.

The functionp'p, entering the argument of function and in a kerne{11.8, decreases with momentufp| from +
reaching a minimum, and then monotonically increases at lgig@symptotically tending te- 1 from below. The equation
p|p=l defines a lower limit of integration over the momentum of the recoil plasmon. The numerical solution of a given
equation yields
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|p*[=0.44%w, for N¢=2, |p*[=0.495w, for N;=3
[hereafter, the numerical estimates are presented for k@) 8blor groug. The functionp'p reaches an absolute minimum at
| |[=1.2360y, ppes =0.664 for Ny=2, [p** |=1.3050y, pp.s =0.692 for N;=3.

Notice that the value of the functiqﬂ) at a minimum point coincides with the value of the plasmon group velmizuéld|p|.
Thus, if the incident plasmino is initially at rest, both the recoil plasmon and the effective quark that propagates below the light
cone carry nonzero energies and momenta of ogder
At the end of this section we compare derived expressions for the dampindtateand(11.8 of standing plasminos with
the similar expression obtained in the framework of the HTL approximd8g#. For this purpose in Eq$11.7) and(11.9

we rescalav,— wow), and|p|— wo|p|. The Planck distributioN(|p|) in the integrand in Eq(11.7) should be set equal to
T/[(27T)3w0;)|p], since the energy is soft. Further rewriting the ker(idl.8 in terms of the functions accepted in the paj8dr
and defining the damping constant as

9°TCk

y~(0)=a(N¢,Ny)

we derive the expression for the coefficié(NC,Nf) required for comparison:

°°|p|2 ||0|~
a(Nc,Nf)—Zf Ri(wp.[p) 6([pl = wp—1D{[ [Pl + wp,— 2128 (1 =y, [p) +[[p| — wp+ 21°B-(1—w,.[pD},
where
-~ T2 T2 2
~ o~ i~ Po Po—P Wp|
R y =T L T =5 =~ r=—.
1(Po. [P 5 3 o2

For the definitions of more cumbersome functigs(py.|p|) see Ref[9]. The coefficien&(N,,N;) exactly coincides with

the corresponding part in a similar coefficieatN.,N;) in the expression of the damping rate of the standing plasmino,
responsible for the scattering process of plasminos by hard-particle QGP’s varying with the change of excitation statistic,
derived by Kobes, Kunstatter, and MER], Eq.(5.11)]. We have shown in doing so, by really remaining in the context of the
Blaizot-lancu equation&.1)—(2.9), we are able to compute not only a spectrum of fermionic excitations in QGP’s, but also
their (gauge-invariantdamping rate at the leading order in the coupling constant, which corresponds to the damping rate from
the resummed perturbation thed;9].

XIl. LIGHT-CONE SINGULARITY: IMPROVED BLAIZOT-IANCU EQUATIONS

In this section we discuss the behavior of the nonlinear Landau damping rate for normal-particle excitations, when the quark
spectrumwar approaches the light cone. Here, the initial expression is

1 . 1
v*(q)=5920FJ dpQ(a.PINeP),  Q(4p)= —Z+(q)Z|(p)lmT(q P, (12.3
where
( p) __p dQ AAl L, -, AAls
ImT(q,p)=7w OW 27 0wg —wp=v-(q=p){e+ (v;a.pWwy (q.p)+e-(viapWw, (a.p)} (122
p
and
, “ o~ N ~ V-(nXl)
ei(v;q,p)f(liq-I)(11V~I)—MT, (12.3
2| VP i
Wy (0,p)=|M=(q,p)|?= q+*A+(I)*F+ : (12.4
on shell
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The scalar vertex functionsI'-. are defined by Eq9.11). On the right-hand side of E¢12.1) we have taken into account for
simplicity only the contribution from the nonlinear interaction with longitudinal bosonic excitations, but all subsequent
derivations easily extend to the case of the nonlinear interaction with transverse excitations.

Near the light cone, the HTL-vertex piecéE,, oI 3 andﬁl“L , the explicit forms of which are given by E(B 7), are the
origin of the strongest singularity of orderel/wheres? —[(wq )2—q?]/g?. The terms linear inSI" in the w, probabilities
(12.4 can lead to the logarithm of only [15] (the first term in the amplltude.sé/h, defining Compton-like scattering
processes, also results only in logarithmic divergeéngence we restrict our consideration to the terms quadratiilin

Now let us single out in the HTL-vertex pieces the terms generating near-light-ceneodtributions toy* (q). As an
example we consider the scalar functiéh,. By using the explicit expression for HTL amplitudes derived by Frenkel and
Taylor [6], we find

5To= ZJQL: fdﬂpiﬂ~i[|°(nx) °(nx1)-pIM(1,q) = — ©3p°M(1,q).
0T ) 4r w+iow-a) ) dr vluvq 2 @pa PIM(1.0) =~ wgp’M(l.a

In the above expression, P indicates the principal-value prescription; here and in the follswimdjcates that we have
dropped less-divergent terms. The Lorentz-invariant functioh,&)(is defined by

1 I~q+\/—A(I,q)) - ,
I . A(Lg)=lg —(lI-g)°<0
S EXE ] n(l-q—J—A(Lq) 2
! arctar( A(I,q)), A(l,g)>0.
VA(l,q) I-q

Similarly, the terms containing the function M{) in the HTL-vertex piece$l’j and éI", are singled out. Substituting next
thus derived expressions into E§.11), we obtain

*I' ~w

2 (@010 o1y AN
lalllf=a-1

M(l,a)=wdf . (I].|al,T-a)M(,q).

Furthermore, substituting the last expression into \ifje probabilities (12.4 and keeping only the terms quadratic in
M(l,q), we have

Wy (g,p)=wg| *AL(DZFZIM(,a)2,  fo=f.(l],lal,]-0).

The dependence on the unit vectdn the integrand of the expressiéi2.2) is defined only by the function ande .. function
(12.3, that enables easily to perform the angular integration in(E2.2 and thus to derive instead of E{.2.2)

0

(0p)®—p? LI ) i
(wp2p? 201 Lt ) A=a-DE A O MOl

(12.6

ImT(q,p) = mel—? o(—12) (1+9-DF2|* AL (D)[2+

The function ImT(q,p) is different from zero foi 2= (q— p)2<0. It is not difficult to show that the conditiolf<0 on the
mass shell of plasma excitations leadsitd,q) <0, and therefore in Eq12.5 it is necessary to take the first expression.
With g>—0, the square of M(q) becomes ¥ times a representation of thfunction

2 e 1 ’

Substituting further the expressioh2.6 into (12.1) and taking into account E412.7) and Z, (q) — 4201, we find the most
singular contribution to the nonlinear Landau damping rate of the normal quark excitations near the light cone:

(12.7)

~_7T wo 9 (o p)z_p 1° AR o, ) _0
yH(q)= = 2[q g Cpf f VT2 Z(PINgp) X1 | 1- Il (1+qg-DfL[*A L (D]*+ 1+|||
x(l—a-T)f2|*A(I)|2]0(—I2)5(q-l). (12.89
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Here, the solid integral is over the directions of the unit vef;toThe&function in integrand12.8 enables us in principle to
perform the angular integration. Because of the fact that the functidp3 @nd N'eq(p) vanish exponentially at large|, the

above expression is ultraviolet convergent. Notice also that by virtue df fhection in the integrand, the damping r&fe.8

is positive. Thus we have shown that really the nonlinear Landau damping rate of the normal quark mode near the light cone
diverges as 1/g?, and thus signals the need to have further improvement of the Blaizot-lancu equations, beyond the HTL
approximation.

As mentioned in the Introduction, the light-cone singularities are associated with the massless basic constituents of a hot
plasma, in our case, with massless hard quarks and hard transverse gluons. The inclusion of the asymptotic thermal masses fo
the basic constituents removes this type of singularity. The effective way of entering thermal masses into the resummed
perturbation theory without spoiling gauge invariance was suggested by Flechsig and R&BhaBelow we use this
approach, reformulating it into a “kinetic” language.

The light-cone singularity is generated by the HTL piece of the effective two-quark—one-gluon vertex fuAdidror
(4.12]. In turn, the expression fasl'(p;q,,q,) is defined with the help of the Blaizot-lancu equati@) for the function
5n‘i’ or by application of Eq(2.9) for function A. To derive the expression fél (p;q;,q,), which is free from the light-cone
singularity, we use improved Blaizot-lancu equations instead of ¢3.and(2.9) (the details of deriving these equations are
given in Appendix B

[v-Dy,onY(k,X)]= iz'—gkta[E(X)taAi(k,X) — AT (K, X)t2g(X)], (2.8)

2

. +Amoc
(v-Dy) A~ (k,X) = Die

A= (k,X) = —igCe[N(ep) +n( &) 6 4(X), (2.9)

whereA™ (k,X)=[A*(k,X)]T°, Am? m - mg »» andmg .. andmg ., are asymptotic thermal masses for hard quarks and
gluons, respectively. Instead of the express(@:?») for the induced source now we have

B dc 1 dk 1 ,
”(X)_gf(zw)SZ_ekA (k,X)+gf(2W)32—€kA (k,X). (2.3)

The expression for the color current induced by the soft-quark 2B, is not changed.

Employing the improved Blaizot-lancu equatiof®s8') and(2.9'), and expressions for induced souf@e3’) and the color
current(2.5), it is not difficult to obtain the improved soft-quark self-energy and the effective two-quark—one-gluon vertex
function used above. These expressions coincide with similar ones derived in the context of thermal field #edhys, for
example, instead of Eq4.6) now we have

v 0
(V- O+ AM2/2Ta+i€)(v-ga— Am2/2Ta—i€)

dQ
6F§?’(p;ql,q2)=—2w3< f .

v 0
+ > - 5 - (12.9
(v- Q= AM/2Tat+ie)(v-Qut AmM/2Ta—ie)] [

T
Here, where (a?) = (3/47%?) (1— 223 ¢(5/2) and{ is a Rie-

mann zeta function.

At the end of this section notice that we run into similar
O(a)) = j da o(a) a=¢lT. divergence in research of a behavior near the light cone of

the nonlinear Landau damping rate for the transverse bosonic

excitations in the purely gauge sec{@1]. The light-cone
The use of expressiofi2.9 gives a finite nonlinear Landau singularity here is generated by the HTL piece of the effec-
damping ratey* (q) near the light cone. The additional terms tive three-gluon vertex function. It is clear that in this case
in denominators of E¢(12.9 lead to the replacement of the for elimination of this singularity it is necessary to use the
divergence factor %/ on the right-hand side of E¢12.9: improved Blaizot-lancu equations for function®” and

SNA instead of Eqs(2.6) and (2.7). Here, we have not pre-

1 T|q| sented their explicit forms, noting only that their derivation
—_>< 1/2> , is rather different from deriving improved equatio(&8')
@
Am, and(2.9).
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XIIl. CONCLUSION *Fipi — h_(i)(5F0+ ||| *F”)+ h+(T)(5F0—||| *1“”)
In Sec. X the nonlinear interaction of plasminos with plas-
mons is shown to lead to the effective pumping over of
plasma excitation energy from the fermionic branch of o i
plasma oscillations to the bosonic branch and vice versa, arfcEt US add to the expression in the first parentheses on the
the kinematic relations between wave vectors of excitation&ight-hand side of Eq(A1) and then subtract from it the
are defined, such that one or another process of pumpirfgnction n?/[|q|(1—g-1)], and in the second parentheses
over of energy occurs. However, it is clear that conclusionsadd and subtract the functiow/[|g|(1+q-1)] correspond-
made in Sec. X are somewhat restricted since they werigly. Let us introduce the following functions:
made with allowance only for one process—the process of
nonlinear Landau damping. For precise study of nonlinear 2
. . 2 . n 1
dynamics of soft-fermion and soft-boson excitations in hot *To=—6TgF|l| T+ —=="T..
QCD plasma it is necessary also to take into account in the |al 1¥qg-1
plasmino and plasmon kinetic equations the remaining terms
on the right-hand sides of generalized kinetic equatiénb Instead of Eq(A1), now we have
and(6.3), responsible for the decay processes, etc., and con-
sider the existence of soft normal quark excitations and soft
transverse gluon onelghe kinetic equations for them are  *pigi— —ph_(h)*r,—h, ()*I_+
defined from Eqgs(6.1) and(6.3) by the replacements similar
to Eq.(7.6)]. In addition to the right-hand side of the gener- L
alized kinetic equatior(6.3 should be supplemented with A
the terms from purely gauge sec{@i]. + 1+a_fh+(|)) FL(nx1)-v]
Thus obtained self-consistent nonlinear system of four ki-
netic equations will contain the maximum comprehensive
information on soft excitations dynamics in hot QCD . . . L
plasma, which may be obtained in the context of the initials_es on the ”th'hanﬂd Sld_e of E((Az)_' By using the d_ef|n|-_
Blaizot-lancu equation€2.1)—(2.9) (or its improved variant tions of matricesh_. (1), this expression can be rewritten in
in the first nonvanishing approximatidrn the expansion the form
over the small parametegyRA,, where R~(gT) ! and
|A,|<T. Certain nonlinear processes will be kinematically 1 ( 1 1 ) - ( 1 1 1
»° —+——=|+(l-y) —
1-qg-1 1+q-I 1-qg-1 1+q-l

+(nXD)-y]* I, . (A1)

"1 )
lal\1—-q.7

T, . (A2)

Furthermore, we transform the expression in the parenthe-

forbidden and therefore relevant contributions on the right-5
hand side of kinetic equations will drop out. However, even

with allowance for the last case, this system of equations is 212 A . g2 -l
especially complicated for any analytical reseafsgimilar to = —2['y0+(| -M(@-D]=2—-h (@) ——[(nXx1])-y].
studies carried out in Sec. X of the present work and in Sec. n n n
10 in Ref.[21]), and therefore here invoking numerical (A3)

methods is required.

In deriving the last equality we have used the expansion of
ACKNOWLEDGMENTS vectorq into two mutually ortogonal vector$,andnXI:

This work was supported by an INTAS graiMo. 2000- gl 1
15) and the Grant of the 6th Competition for Young Scientist g= —2I+—2(n>< . (A4)
of RAS (No. 1999-80. =

Substituting Eq(A3) into (A2) and reducing the terms with
APPENDIX A vector product, finally we derive the expressihg) for
. . convolutiorf I''p', instead of Eq(9.6).

By using the relationsy°=h_(I)+h,(I) and |-y
=h_(I)—h, (1), we rewrite the expansiof9.6) in the form APPENDIX B
Here we show how one can obtain the improved Blaizot-

The following term in the expansion over this small parameterlancu equations, used in Sec. XlI for deriving the finite non-
leads to the processes of Boltzmann type:qfq)=q+q(q), q linear Landau damping rate for normal-particle excitations
+0=g+g, g+g=g+g, etc., going without exchange of energy Near the light cone. As the initial equations for obtaining an
between hard thermal particles and soft plasma waves. The exampi@proved equation for a one-body density matrix mixing fer-
of the construction of the Boltzmann equation, describing the elastiénion and boson degrees of freedom, we take E3)83 and
scattering process of colorless plasmons between themselves can (234 in the original paper of Blaizot and lan¢B2] (see the
found in Ref.[29]. accepted notations and definitions theyein
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[92+ dg- dy+ 2igACX) - A5]KE=(8,X) =ig(4A) y*t2y(X), (B1)
[6%°9,,(92— ds- 3x) = 9T 1 N ALOX) A8 K ™(8,X) = = 955 (8) 7, X). (B2)
|
Furthermore, we expanf ==K +K®+... with KO Here,AmZ=mZ_.—mj .. Substituting into the last equation

~gK(©, etc. The dominant terms in Eq®1) and(B2) lead  the expansion
to the consistency condition

92K O(s,X)=0. (B3) K(k,X)=278(K>){O(KO) AT (k,X)+ 0(—KO)Y A~ (—k,X)},

Equation(B3) can be considered as the Klein-Gordon equa- (B6)

tion for hard, massless, free particles. However, due to inter-

action with the hot medium, the basic constituents of the . - -
plasma are known to acquire the dynamicabymptotig replacm_gkﬂ —_k, where it is ngcessar_y, and dividing by,
temperature-induced masses. To account for this fact w¥e Obtain the improved Ed2.9'). By virtue of the fact that

2 . — .
modify the condition(B3), replacing it in the case of Eq. AM»#0, the _dlscrepancwﬁ(k,)_()#z)& (k,X) will hold.
(B1) by The last case is an actual reflection at the kinetic description

level of the discrepancy of the two terms in the integrands of
TeKO(s,X)~ —m; .KO(s,X), (B4)  the improved hard thermal loops with external fermions
when exchangindk— —k, found by Flechsig and Rebhan
wherem; .=g?T?C¢/4 is the asymptotic thermal mass for [17].
hard quark, and in the case of E&2) by Now we turn to deriving the improved kinetic equations
for sn¥ . The equations for functionsn? are defined from

21 (0) ~—m2 (0) . .
IsK(8,X) ~ —mg ..KT(s,X), (BS)  the equation for the current density (k,X) [22]:

where m; .= g?T2(N;+2N)/12 is the asymptotic thermal

mass for the hard transverse gluon. It is necessary to keep the v . A nea

terms 42 inside the brackets on the left-hand sides of Egs. [v-Dx.,J, (kX)]=igk (X)L (k,X)

(B1) and(B2) setting them equals the right-hand side of Egs. KO U(X B7
(B4) and (B5), accordingly. Further, subtracting E¢B2) AKX TGO} B7)
from (B1) and performing transformations similar to those in

Ref. [22], we come to improved equation for a density I . . v
ISC(k,X)=tay”Ki(k,X): by substituting to it the expansion J, (K, X)

:kﬂ4w5(k2){0(k0)5n‘i’(k,X)+6(—ko)5n‘f(—k,X)}. The
relevant modification of the equation foénY here is

i
(v-Dx) K (k,X)— EAmiGC(k,X) achieved by the simple requirement of using the expansion
(B6) on the right-hand side of Eq4B7), where the functions
=—igCrpo(K)[N(kg) +n(kp) JKes(X). K™ obey the improved equatiorfg.8').
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