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We study the contribution to vacuum decay in field theory due to the interaction between the long- and
short-wavelength modes of the field. The field model considered consists of a scalar field dfl métbsa
cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction.
The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-
wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of
freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a
kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial meta-
stable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero
temperature, for the formation of true vacuum bubbles of Bz€e. This effect makes a substantial contribu-
tion to the total decay rate.
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I. INTRODUCTION mode decomposition of the field is made, there are only a
In this paper we report our preliminary findings within a few long wavelengths modes which are unstable and decay.
larger program which aims at the development of a theory ofThese nearly homogeneous modes may be regarded as an
nonequilibrium first order phase transitions, such as have ompen system, which interacts with the environment provided
curred in the Early Universgrand unified and electroweak by the shorter wavelength modes. It is then possible to de-
symmetry breaking1]) and, possibly, in the first stages of scribe the quantum evolution of the system in terms of an
heavy ion collisiongchiral symmetry breaking and confine- effective dynamics, whereby the interaction with the envi-
ment[2,3]). For this reason, we must seek a description ofronment results in the onset of dissipation and noise.
the decay process which emphasizes the dynamical aspectsThe ultimate reason for the presence of a finite activation
over the static aspects encoded in the effective potential. rate even at zero temperature is that, for a generic field
Vacuum decay in field theory is described with a potentialtheory the dynamics of these homogeneous modes is anhar-
which displays a local minimum, separated from the absolutenonic enough to contain Fourier components with frequen-
minimum by a potential barrier. A system prepared in thecies above the threshold for excitation of the short wave-
false vacuum statémetastable phagewithin the potential |ength modes. This results in an energy transfer from the
well may decay in essentially two different ways: nam@ly  long wavelength or homogeneous modes to the short wave-
by tunneling effect, that is, by going through the barrier in alength or inhomogeneous modes through particle creation.
classically forbidden trajectoriy4—6], or else,(b) by activa- As demanded by the energy balance, and encoded in the
tion, that is, by jumping above the barrigf,8]. In either fluctuation-dissipation theorem, this energy flow is compen-
case, the decay probability follows the lav~ A exp(—B) sated by a stochastic force on the homogeneous modes,
which gives the probability per unit time and unit volume to originated in fluctuations of the inhomogeneous modes. Thus
nucleate a region of the stable phase within the metastable dynamics of the homogeneous modes becomes diffusive,
phase. In the tunneling effeds=S/%, where# is Planck’s  even if, properly speaking, there is no external “environ-
constant andS is the action for the trajectory which goes ment” to the field[13].
under the barrier in imaginary tinj8]. In thermal activation, We wish to stress that this is not only a theoretical possi-
B=V,/(kgT), wherekg is Boltzmann’s constan, the tem-  bility. In this paper, we will show through a detailed analysis
perature, and/g is the height of the free energy measuredof a concrete model that the activation rate makes a substan-
from the false vacuumil0-12. Thus, activation disappears tial contribution to the full decay rate even at zero tempera-
asT—0. ture. In the process, we shall develop the necessary formal-
In systems with few degrees of freedom, there must be aism to compute the activation rate to leading ordefiin
external agent, typically a thermal source, for activation to be The key ingredient will be the description of the quantum
possible. Our thesis is that in field theories there is a phestate of the long wavelength modes of the field by means of
nomenon similar to activation even at zero temperature. Thithe reduced Wigner function. This function has the same
comes from the observation that in a field theory, when anformation as the reduced density matrix of an open quan-
tum system but is similar in many aspects to a distribution
function in phase-space. The dynamical equation for the re-
*Also at Institut de Rica d’Altes EnergiegIFAE), Barcelona, duced Wigner function(master equationincludes noise
Spain. terms produced by the short wavelength modes to quadratic
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order in the parameter coupling the short and long waveneling rate from the analysis of the solutions to the Fokker-
length modes. We shall derive the tunneling rate from arPlanck equation. We discuss our results in the final section. A
analysis of the decay of nontrivial solutions of the mastemumber of Appendixes contain some of the unavoidable
equation, after suitable boundary conditions have been ertechnical details.

forced.

The master equation contains all required information on
vacuum decay, including both the “tunneling” aspect of the
homogeneous mode as well as “activation,” i.e. the effect A. vacuum decay in systems with one degree of freedom
due to the backreaction of the inhomogeneous modes, but in

this paper we concentrate on the activation aspect. Thus, The _twm issues of therma_l gctlvanon ar_1d Sp.ontaneous
whereas the instanton methl, for instance, seems to be nucleation have a long and distinguished history; see Refs.

best suited to describe the pure tunneling of the homoge[-14’1q for a review. In its simplest formulation, we deal

neous mode, the effect due to the backreaction of the inhov-vith a quantum mechanical system with one degree of free-

H H —Rn2
mogeneous modes seems to be best described by the presgﬂfn X and Hamllton!anH—p 2+ V().()’ whereV_has the
method. Another advantage of this approach, which was on eneric form shown in the figure. It is an experimental fact

of our first motivations, is that whereas the instanton method &t ﬁg er;] i c\iNef {)r:ee}'alrle the Sysrtri,T Oto bz tc;omgneq to the
works well for processes not far from equilibrium, this neighborhood of the "false vacuu » and ine barrneris

method should work also for out of equilibrium situations much higher than the typical energies accessible to the sys-

—~ " H H
since it is based on a real time evolution equation such as tHEM [E hV (0) in the quantum mechqn|c_al probler,
master equation. ~kT at finite temperature the system will find a way to

Our conclusion shall be that, for a physically well moti- €5¢@Pe from the potential well after some typical timbas

vated system-environment separation, the contribution to th§/2Psed. The problem is to estimate the *mean lifeor
exponent coming from quantum fluctuations in the shor€duivalently the “tunneling rate’".
wavelength modes is comparable to, but distinguishable

II. VACUUM DECAY: A SURVEY

Vacuum decay can be formulated as a steady state prob-

from, the contribution from tunneling under the barrier by '€M if we inject particles into the system in order to keep a

the long wavelength modes themselves. Which contributiofOnstant population in the false vacuum state. We then have

is actually dominant will depend on the specifics of each? constant flux of particles impinging on the barrler from the

model. Therefore, the approaches that underplay backreal€ft; @nd the problem reduces to the computation of the trans-

tion from the short wavelength modes, underestimate th@Ssion coefficient4]. In quantum mechanics, this is readily

tunneling rate, and may even miss the largest contribution. °Ptained within the WKB approximation, and the result is
Comparing with the literature on tunneling in open andth€ Arrhenius-like expression

driven systems, the main difference is that we do not assume Xexit

a priori any features of the noise and dissipation, but rather T I~Aexp—Sh), S:f dxy2V(x), 1)

derive them from the underlying unitary field theory. In prac- 0

tice, this means that we shall have to deal with non-local

dissipation and colored noise. Also for simplicity, we shall .

focus[,) on computing the exponent in the tEnneIing rate tOwhereA is a prefactor of order 1, and we have set the clas-

leading order %, and at zero temperature. As a matter ofS'C_?_Lﬁsnfeor?%uolfatggsfgrlisbee:icauctrsn:o dg.ca throuah tunnelin
fact, this is the difficult case, since at high temperature th Y g 9.

interaction of the short and long wavelength modes is jus hatis, an _essentlallyr(]quantum phT”O’T‘e”O”- If we T}”OW the
another aspect of the interaction with the heat bath. System to mtera(_:t with an external noise soufigpically a

The paper is organized as follows. In Sec. Il we brieflyheat bath at a given temperaturg, then the energy of the
review current theories of vacuum decay and place our worRYStem alone is no longer conserved, and the system can

in that context. In Sec. Ill we present the basic derivation ofUMp Over the barrier, resulting in vacuum decay through

. : . activation. The activation rate has been computed, within the
the master equation for the reduced Wigner function for a‘constant flux” approach, by Kramerf7] and Langer8].

guantum Brownian motiofQBM) model which is of rel- They show that Eq(1) still holds, but the exponer®/#

evance for our problem. The model is an open quantum sys- mes=. /kT. whereFE. is th tivation fr nerav. i
tem consisting of a massive particle in an arbitrary potentiast)eCO €S~/ 1, WNErers IS the activation Iree energy, 1.€.
he height of the free energy barrier to be overcome.

coupled to an infinite set of harmonic oscillators, the cou- Al tificial h att s t te th tual
pling is linear in the system variables but quadratic in the. ess artilicial approach attempts 1o compute the actua

oscillator coordinates. For our problem the master equatioﬂmef evolution of the false vacuum S.t‘r’ﬂeF' This is not a .

reduces to a Fokker-Planck-like equation. In Sec. IV we conStationary state of the system., but it may be expan_ded n
iel§neray eigenstates: . The amplitude of/¢ in the expansion

tof ¥ peaks aroundE=~0, and for small energy may be

ith i i tential term. The | h
with a negative cubic potential term e long and shor proximated by the Breit-Wigner forfs,6|

wavelength modes of the field are separated and we redud®
the problem to a system-environment interaction similar to
the QBM model discussed in the previous section. The rel-
evant kernels for the corresponding Fokker-Planck equation \pF(X,t)NJ dE e—iEt/ﬁ‘ﬁE_(X)_ 2)
are calculated. Section V contains the derivation of the tun- E2+\?2

105008-2



VACUUM DECAY IN QUANTUM FIELD THEORY PHYSICAL REVIEW D 64 105008

At long, but not too long, times we obtaidf~Ce M/ Hamilton-Jacobi equation for a particle moving in an in-
The false vacuum behaves as an energy eigenstate with cowerted potential, the same dynamical problem one confronts
plex energyEr~—iN (complex energies and eigenstatesin the instanton method, although now the potential may be
may be defined within an extended formalism of quantummodified by terms arising from the zero point energies of the
mechanicg15]), and the mean life is~AX"". transversal modes; but not afitself [21]. This solution is
The calculation of activation rates in the “complex en- then matched to oscillatory solutions on either side of the
ergy” approach has been worked out by Lan@&6]. The  parrier.
idea is to define a “free energy” for an ensemble of unstable Conceptually, the WKB method has some advantages
configurations including the critical droplet. This “free en- oyer the instanton methd@2]. In the first place, the connec-
ergy” is complex, and its imaginary part is related to the o, 1o the Schirdinger equation is much more straightfor-
mean life as in the quantum mechanical problem. The physi a4 Also, one has more control of the quantum state of the
cal free energy, of course, is real, and it is given by Max_transversal degrees of freedom, which then allows one to ask

well’'s construction17]. . like wheth ling i ated il
Coleman and collaborators have proposed a simple an%qestlons ke whether tunneling Is associated to particle cre-
tion [23—-25. Finally, it has proved easier to define the

elegant way to compute the complex false vacuum energ = R . :
[9]. The idea is that the vacuum energy can be expressed nge of validity of the approximations involved in the WKB
ramework than in the Euclidean path integral one. However,

terms of a path integral over Euclidean histories with appro- . . , X
priate boundary conditions. For unstable systems, the pafiyeY are likely to be equivalent in last analysis, and the con-
integral must be computed by analytic continuation, and aflusion that these methods work best when the tunneling
imaginary part appears. In certain cases it is possible to shoypriablexis slow compared with the transversal modes prob-
that the path integral is dominated by the contributions fromPly holds equally well for both approachg2s]. We refer
a discrete set of saddle points, corresponding to sequencesBf reader to Ref.27] for recent developments along these
“bounces” against the inner sides of the barrier with little or lines, and to Ref[28] for an example of similar techniques
no overlap between bounces. Then the formula in(Egis N & different context.
recovered, wherSis now interpreted as the Euclidean action ~SOme nonequilibrium aspects of vacuum decay have been
for the one bounce solution, also called the “instanton.”  the focus of work by Boyanovskst al.[29]. They show that
The instanton method is easily generalized to the therme{lea"St'C initial conditions usually imply a nonzero prob_abll—
case[11]. The idea is to write the partition function for the 'Y for the system to be at the unstable configuration in the
unstable system as a path integral over Euclidean configur§2ddie of the free energy surface. Starting from this configu-
tions with periodicitys# (8= 1/kT) in Euclidean time, and ration, the roll down of the system_t_ovyards_the true vacuum
then to evaluate the path integral in the saddle point approxi@y be analyzed by usual nonequilibrium field theory meth-
mation. Due to new boundary conditions, the thermal instan®ds- However, the initial amplitude is still computed by con-
ton may not be the same as the instantoriTat0. The Ventional methods, such as discussed so far.
change in the nature of the instanton gives a simple and
compelling interpretation of the crossover from spontaneous C. Tunneling in quantum field theory

transition to thermal activatiof2]. _ Gervais, Sakita and De Vega have applied the WKB
The tunneling rate can also be derived from the largamethod to tunneling in quantum field thedi§0]; see Refs.
order behavior of perturbation theofy8]. [31,37 for instanton and complex-time methods. In spite of
the obvious similarities, there are some important differences
between the problem of tunneling in field theory and in sys-
tems with few degrees of freedom. Some of these differences
All approaches discussed so far have natural generalizare technical in nature, such as the need to carefully account
tions to systems with few degrees of freedom. In the case dbr loop corrections to the effective potentigd3], and to
the instanton approach, the generalization is almost immedadopt a regularization procedure to compute the prefactor in
ate, only one has to take care of symmetries of the systeithe Arrhenius formuld34—36, which would be divergent if
which may appear as zero modes in the spectrum of perturaively computed. There is also a fundamental conceptual
bations around the instanton solution, thus causing an appatlifference which we now discuss.
ent divergence of the path integral. These symmetries may be A field theory only makes sense, from the physical point
handled by isolating them as collective modes prior to theof view, if it is understood as an effective theory describing
saddle point evaluation of the path integia8]. the low frequency sector of a more fundamental theory,
The “constant flux” approach is implemented by seekingwhose high frequency degrees of freedom may be totally
a solution to the Schiobnger equation within the WKB or unlike continuous fields; such as strings in elementary par-
Born-Oppenheimer approximatig@0]. The idea is to iden- ticle physics, discrete lattices in condensed matter applica-
tify a single variablex which parametrizes the “most prob- tions, and molecules in hydrodynami&7].
able scape path,” namely the path across the saddle separat-One clear way to bring this point home is by explicitly
ing the false and true vacua. Then one uses a mixed ansatzegrating out all modes with wave number A, whereA
for the wave function, whereby it is assumed to be Gaussiais some cutoff. The remaining modes are described by a
on all other variables, and of WKB form with respectxo coarse grained effective potenti@d8—43. As A decreases
“Under the barrier,” the WKB approximation leads to a from « to 0, the coarse grained effective potential interpo-

B. Tunneling in systems with few degrees of freedom
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lates between the “bare” potential shown in the figure to the E. Tunneling and the semiclassical approximation

Maxwell construction free enerdid4], showing the drastic  gemiclassical field theories, where some fields are treated
effect of the short wavelength modes or high frequency secys c-number, while the rest are described quantum mechani-
tor on the physics of the long wavelength modes or lowcally, may be seen as open systems, with the classical fields
frequency sector. At some point the barrier separating th@s the system and the quantum fields as the environment.
different metastable points disappears, reflecting the effect adbuantum fluctuations in the system are registered as noise by
averaging the field over distances much larger than a domaitthe environment, and may induce transitions.
An early application of these ideas appeared within Star-
D. Tunneling in open systems obinsky’s “stochastic inflation” prograni58]. Here the su-

A h f lier studi f1h . perhorizon modes of the inflaton field during inflation are the
S We have seen from earlier studies ot the coarse grameg/stem whereas all other shorter wavelength modes are the

effective potential, tunneling in field theory should be prop- g ironment; for a discussion of the validity of the semiclas-
erly posed as an open quantum system problem. Howevelico| approximation, sed59,60. Cosmological redshift
the nature of tunneling in an open system cannot be desauses a continuous streaming of modes from the environ-
scribed adequately by just computing changes in an effectivg,ent to the system, which may be regarded as a white noise
potential. Besides the static changes reflected by the scalgyurce. This noise may allow the system to hop over poten-
dependent effective potential, the dynamics of the longial barriers, seeking the absolute minima. Eventually, a
wavelength modes will become both dissipative and stochassteady state distribution of cosmological domains is reached,
tic. The onset of dissipation and noise is also generic tgot unlike that predicted by the Hartle and Hawking “wave
semiclassical13] and effective theorief45]. function of the Universe22,61].

For the present discussion it is essential to realize that Much more generally, within the semiclassical approxi-
noise and dissipation are actually two aspects of a singlenation the backreaction to cosmological particle creation
phenomenon, the dynamical action and back-reaction begrocesses always has a stochastic compdri@htfor which
tween “system” and “environment.” In equilibrium situa- reason the correct semiclassical description of the Early Uni-
tions, this inner relationship can be made explicit through thezerse ought to be formulated in terms of a stochastic
“fluctuation-dissipation” relation[46]. “Einstein-Langevin” equation[62]. If we consider an en-

A simple way to deal with tunneling in open systems is tosemble of Universes, then we may introduce a distribution
model the environment explicitly within a larger system-function obeying a Fokker-Planck-like equatip®3]. This
environment complex, in effect reducing the problem to tun-equation describes activation phenomena, which are the
neling in many degrees of freedom7-49. However, it is  semiclassical version of Vilenkin's “creation from nothing”
essential to avoid approximatiofsuch as assuming that the scenarig 64].
environment degrees of freedom perform linear oscillations
around a prescribed trajectory of the systemich in prac- Ill. OPEN SYSTEMS AND THE REDUCED WIGNER
tice underplay the backreaction of the environment on the EUNCTION
system, and thus break the balance between fluctuation and ] S ) . o
dissipation. The relevance of the fluctuation-dissipation rela- Before dealing with field theory we will consider in this
tion to tunneling has been emphasized in R5€. seqtlon a quantum Brownh_em motig®@BM) model which is

The broadening of the reduced Wigner function of thetypically used as a paradigm of an open quantum system.
open system by external noise has been discussed in Réf1€ System has an arbitrary potential and the coupling be-
[51]. Unlike the present work, these authors consider an exieen the system and the environment is linear in the system
ternal noise source, whose spectral features may be chosenVafiables but quadratic in the environment variables. That
will. In order to give an adequate account of backreactionf€ature will be of relevance when dealing in Sec. IV with our
Bruinsma and Bak52] have proposed treating the system asfield-theory model. The main result of this section is the
propagating in a random medium, the randomness being ag_erlv_atlon of the master equatlor:l for the redu(.:ed ngner
sociated to the environmental variables. In a second step, fnction of the QBM model to leading order in This equa-
path integration over histories of the bath allows the compulion turns out to be a Fokker-Planck equation which is simi-
tation of the tunneling rate. As in the present work, a seriousar t0 that used by Kramei§] to study the activation prob-
consideration of backreaction leads to describing the syste#§m in statistical physics.
as a driven system, subject to stochastic forces originating
from the environment. _ _ A. A QBM model

The theory of vacuum decay in open systems has points
of contact with the problem of decay in driven systems As our QBM model we consider a system consisting of a
[53,54, although in these later studies usually the propertiegarticle of unit massNl =1) described with a variableand
of the driving force are assumedpriori, rather than derived subject to an arbitrary potential with a quadratic part corre-
from a more comprehensive model. It is also possible tgsponding to an oscillator of frequen€y, and an anharmonic
obtain a path integral representation of the solution of gpart V(")(x), i.e. V(x)=(1/2)Q5x2+V("(x), which is
Langevin equation, whereby an open system may be sulsoupled to an environment consisting of an infinite set of
sumed into a larger field theofp5,56. See Ref[57] for  harmonic oscillators with coordinateg. The action for the
further developments. whole set of degrees of freedom is defined by
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SIx{a;}]=Sx]+ S{aj} 1+ Snd x.{a;}], 3) , gy [a M,

. . " . F[x,x ]:H f qu(f)qu(I)dqj (l)J’qj:) Dq; J'qc_l/](i)in
where the system, environment and interaction actions are : :
given, respectively, by

x expy (ST{0y}] - SI{a]}1+ Sl {a)]
1. _ _
S[X]:f dt(EXZ‘WX))’ ) —Sndx" {0/ Dpe({a}{a] OLt),  (10)

1 1 where q{"=q;(t;), a/"’=q/(t), and at the final times
S{al=2 fdt(gmqu_gmwquz)’ 5  ailt)=a;"=qj(ty.
i Assuming a Gaussian initial state for the environmept,
is Gaussian and the influence functional can be computed
perturbatively ing from the path integral. Up to second order

Sint[xv{qj}]:; gf dtxq, (®) in g[65] we have for the influence action,

. . t t
Where_g is a <_:oupI|_ng constant, and we have assume(_j that the Sielx,x']=— zf 'dtJ' dt’ A(H)D(t,t")X(t")
coupling is linear in the system variable but quadratic in the t; t;
environment variables. The environment oscillators have all .
the same mass and their frequencies axe; . At this point i I—ftfdtjtfdt’A(t)N(t tYA(t), (1)
the potentialvV(")(x) is arbitrary, but later we will take a 2)y g ' '
cubic potential, V(") (x) = — (A/6)x3, in this way the total
potential will present a local minimum and a barrier as re-where we have introduced the average and difference coor-
quired to represent the system in a metastable phase. Also taghates defined, respectively, by
parametera andg are unrelated, however when we consider
the application to a field theory these parameters will coin- 1
cide. X(t)= E[x’(t)+x(t)], A(t)=x"(t)—x(t). (12
The reduced density matrix for our open quantum system
at a certain final time; is defined from the density matrjx o
of the whole system by tracing out the environment degreedNe kernelsD(t,t") andN(t,t") are called dissipation and

of freedom at that time noise kernels, respectively, and are definedbyX;D; and
N=2;N; where
pr(Xs Xt ’tf):J' H dagjp(xs {a;b.xs faiht). (7 D,(t.t) %([Ej(t),Ej(t’)]), 13
The reduced density ma_\trix at ;ime can _b(_a_wriFten in
:ﬁ;mjvgru';ihoenrggllj;teizgn(,jensny matrix at the initial titeoy Nj(tt) = %({Ej(t),Ej(t')}>—(E,-(t))
X(E;(t), (14

pr(Xs ,X¢ !tf):f dxidx; I(xs, X .t 5%, X, t) (XX L),
(8)  with Ej:gqu. It is now convenient to introduce the kernels
Hj(t,t")=—-2D;(t,t")6(t—t') and we can write the influ-
in terms of the propagatal whose path integral representa- €nce action in the form
tion is
% y i SEe[X, X' ]=A-H- X+ IEA-N-A, (15
J(X¢ ,X{ X, X/ ,ti)=J 'DXJ Dx’ expﬁ(S[x]—S[x’]
X Xi
where we have introduced the notatiénB= [dtA(t) B(t)
+Sie[x,x']), (9 and definedH=X;H; which we may write formally as
H(t,t")=—-2D(t,t")6(t—t"). This last equality is however
where x;=x(t;), X;=x(t¢) and similarly for the primed a formal expression since being the product of two distribu-
quantities, and5g[x,x"] is the Feynman and Vernon influ- tions, H is not well defined and suitable regularization and
ence actior{65]. When the system and the environment arerenormalization are required. This term, in fact, has local
initially uncorrelated the initial density matrix factorizes, i.e. divergent parts that may be reabsorbed into the parameters of
p(t) =p: () pe(t;) (herep, stands for the environment den- the bare action, sefé6] for details. Thus, from now on we
sity matrix); the influence functional, which is defined by will assume thatd is a well defined distribution in the pre-
F[x,x"]=exp(Se[x. X ]/%), can be expressed by vious sense.
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B. The reduced Wigner function 1 g@n+1)y
[ - 2n+1
Our main purpose in this subsection is to write the re- V(“)[A,X]—Zgl (2n+1)! gx(2n+1) (—A72)*
duced Wigner function for the system in a suitable way. This X,A=0 (21)

is a phase space function which is defined from the reduced

density matrix by the following integral transform In particular, for the cubic potential™(x) = — (\/6)x® we

1 (= haveV("[A,X]=— (N /24)A%.
fXpt)=5— dAePAp (X—AIRX+A/2}). Let us now introduce the functional Fourier transform

(16) P[g]:KJ DA eiA~§/fie—A-N-A/2h, (22)
The reduced density matri8) at timet; can be computed
from the path integrals of Eq9). To carry out this compu- yyperek = l/det(2r#i1), the interpretation of this functional

tation WefW'” f?IIow closely Ref.[6|7] Wlhere ? similar com- iy he discussed below. With expressit22) we may write
putation for a linear system coupled linearly to an envIron-,a reduced Wigner function as

ment was described. For this reason we will describe here
only the main steps and will concentrate on those which are 1

peculiar to the nonlinear system. This is performed in several f(X¢,ps,tf)= m[ dxidAif D¢ PLE]
steps in which a key role is played by the use of the coordi-
natesX and A instead ofx andx’. The first step is to inte- o _

grate the system action in E¢) by parts using the new X fﬁdife'pfA‘mJ'
coordinatesX and A,

Xf . .
DX eflAfX(tf)/fz
X

Ag . - ry(nh) s
Xf DA el (LIXI= &)1 g [V g AX(t) 1

A

2
EX(U-}- &

t
S[x]—S[x']=—>'<A|§if+f "dtA(t)

! a=0 X pr(Xi— A2 X+ AJ21):

+..., a7
and using that\ = exp(A-&h)(ihdl s&)exp(—iA-E&h), it may

where the ellipsis stands for the terms nonlineatinhat  be rewritten as
come from the potentiaV(x) which involve higher deriva-
tives in X (see beloyw. Note that due to the fact that the
potential gradient is evaluated at=0 this term can also be
written asV'(X) where V(X) is functionally the same as

V(x). , v foc dA, Qilpr=X(t)1A¢ /A
The change of integration variableg ;fDx i) zf,Dx’ o
! i

1 X
f(vapfitf):mf dXidAifX‘fDxf DEPGLEX;ty)

Hf;fDXfi_'DA involves a Jacobian which is unity and thus % JAfDA ol A+ (LIX1 = &)/h i AjX(t))
the path integration of the propagai® can be written as A
X pr(xi - Ai/2,Xi + Ai/2,ti),

X A ,
f f7.7Xf fDAe('/ﬁ)A'L[X]F[A,X], (18
X Aj where
\k/)vhereL[X] is a functional ofX and a function ot defined Po[£X:t)=] ex i—Jtdt’V(“') —iﬁi,x -
y 7l 58
23
P2 v t (23
L[Xt)= @X(t)ﬂ;_x +Jt_dt H(t,t)X(t"), A convenient way to perform the path integration Xt)
A=0 ' (19 is to introduce the following functional change:

and the functionaF[A,X] incorporates in the exponent all X(O)—={X;=X(t),p=X(t), &) =L[X;t)}. (24

the terms that are not linear ik which come from the in- ) ) . ) )
fluence action and from the nonlinear potential of the systenW'th this transformation the functioX(t) becomes sybsh-
action, when expressed in the variab¥) andA(t). More  tuted by the initial conditionsX;,p;) and the functiorg(t)
precisely, in the path integration. This functional change is invertible,
in the sense thdiX; , p; ,~§(t)}—>X(t), since the solutiofX(t)

of the integro-differential equation involved {24) is unique
given initial conditions X; ,p;). A subtler point concerns the
Jacobian of the transformatig24). Even though this trans-
where formation is nonlinear, one can show that the Jacobian is

F[A,X]=exp;;(i§A-N-A+Jtdt’ V(“')[A,X]), (20)
§
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constant. This can be seen by discretizing the tigreek
+t; (k=1,2, ... n, andt; is the initial tim@. Then the cor-
responding valuesX; ,X,, ... ,X,), whereX,=X(t,), map

into (X ,p; &, . .

PHYSICAL REVIEW D 64 105008

but applied here to distribution functionals. Note that this is
in contrast to the linear case studied in Réf7], where the
source of the Langevin equation really corresponded to a

. &) in such a way that the Jacobian ma- Stochastic procesgvith a positive probability density func-

trix has zero elements above the diagonal. For instance, tHional.

second derivative terms becomp(X,—X,_1)— (X1
_kaz)]/éz‘}'vl(xk,l) _Ek’<kak’Xk’:Ek' The JaCObian

is thus the product of the diagonal elements, which are con’' ¥

stant (independent of anyX,). Then one may write

[DX...=KfdXdp/DE... and introduce convenient
delta functions such a8(X(t;) — Xs) to ensure that the cor-
rect final points appearing i18), i.e., [*fDX are recovered

from the functional integraf DZ with free ends. One should

We emphasize again that if we have a cubic potential for
the systemy/(x) = — (\/6)x3, and keep up to quadratic order
i we have explicitly
F[A,X]= ef(1/2ﬁ)A-N-Aef(i/ﬁ)fdt()\/24)A3, (30)
where the noise kern®l and the kerneH, which appeared
in L above, are both quadratic gy note that there is no
dependence oiX in this case, and thuBg[ &;t) defined in

also be careful about the dependence on the initial conditiongg. (27) does not depend on the initial conditionX; (p;).

(X;,p;) in the general case.
Now we first perform the integrdPA which simply leads

to a term proportional té(¢— &) and the integraDé is then
trivial. On the other hand the integrdlA; brings back the
reduced Wigner function at the initial time according to Eq.
(16). Finally, we get the following suggestive form for the
reduced Wigner function at the final time

10X.p1 0 =K [ axXdp, | DEPGE) 8~ X(t)

(25

whereX(t) is a solution of the integro-differential equation
LIX;t)=&(1),

with initial conditions ;,p;), i.e. X=X[&;X;,p;), and

PQ[%!X| ' Pi vt)z PQ[§,X[§,X| !pl)vt) (27)

X (X=Xt )X, pi i),

(26)

The constanK from the Jacobian can be determined from
the condition that Tp,(t5) =1, i.e. that
7. dXep (X5, X¢,t5)=1, which is equivalent to
7. dXidpsf(X;,ps,ts)=1. Inserting expressiorf25) for
f(Xs,ps.ts) we get

Kf dXidpif DPqL&t) f(Xi,pi t) =1. (28)
WhenPg[ §,X;t) does not depend oX, one can use the fact
that [Z_dX[Z..dp,f(X;,p;,tj) =1, which is a consequence
of Tr p,(t;)=1 to obtain,

Ef D¢ PQ[f;t>=Ej DEP[£]=1, (29)

which determine.
Several
Pol &, X[ &, X ,p;);t) is always real, but in general it will not

Hu, Paz and Zhanf$8] obtained the master equation for the
particular case in which the nonlinear potential of the system
is also treated perturbatively i, which was considered to
be of the same order @s Here, however, our result is exact
in A\, and to leading order ifi. This fact will turn out to be
important since in Sec. IV it will be crucial to consider so-
lutions of the classical equations of motion which are non-
perturbative in\ thus reflecting their strong nonharmonicity.

C. The master equation

The expressiori25) of the reduced Wigner function and
the Langevin-like equatiori26) can be used to derive the
master equation fof as a formal Fokker-Planck equation.
The derivation is usually handled using Novikov’s formula
when the stochastic process is Gausdiap,73,67. Here,
however, this is not the case fét; and we have to work
from the beginning.

To obtain the equation of motion for the Wigner function,
we derive both terms of Eq25) with respect to time. Ob-
serve thatP5 depends explicitly on time, therefore

J
(?_tff(xf’pf,tf):A+B’ (31)
where
_ [0 .
A=K [ dxap, [ Depyler >(&—tf[5<pf—x<tf>>
X5(Xf_x(tf))])f(xi P L), (32

(we writet; in Pg to emphasize that the dependence @n
taken care of explicitly by th® term) and

B=Ef dxidpifpg(

X (X=X (t))F (X, pi ).

d

TPQ[§;tf)

o, )5(pf_x(tf))

remarks are in order here. The functional

(33

be positive definite and, thus, will not really correspond to

the probability density functional for a classical stochastic
process. This is the meaning that must be associated to the

stochastic process in the Langevin-like equati@f). This

situation is, in fact, analogous to that for the Wigner function

Let us analyze th® term first. Since

. 6
—ih—

i
— )= —\(nh
e Pol&:tr) ﬁV [
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integrating by parts we find,
Bzij dX-dp-J DEP[ &) i—v<“'> iﬁL X
o = h 3E(ty)

X[ 8(ps— X (1) 8K =Xt )T |F(Xi,pi t).  (35)

We are only interested in derivatives takert gt when

OX(t)

X(ty) _
SE(ty) O

St -

(36)

without further dependence djft;). This can be seen from

the fact thatoX(t)/S&(t") satisfies[(er H)- 6X/6&](t,t")
= §(t—1t") with the X(t) which appears i fixed, L is the
integro-differential ~ operator L (t,t’)=(d¥dt?+ 92V/
aX?|x)8(t—t'); see EQ. (26). The solution is

SX(1)/ 8&(t') = G,er(t,t"), which is the retarded propagator

corresponding to the linear operatar+£ H) with X(t) fixed.
So the final result is

5= Lyon| _in % x f(X¢,pr.tp) (37
_ﬁ 5pf, f 1P, ).
ConcerningA, we find
- L |[dX(ty) e
A:—KdeidpijpgpQ[g’tf)[( dt; X
dX(ty) 4 ) : }
. [8(ps—X(t4))6(X¢—X(t )] |fi,
(39

and reading the derivatives from E(6) we can writeA
=A;+A,+ Az. The first term is simply
A;={H,f}, (39

where {Hg,f}=—p(df/dX)+V'(df/op) is the Poisson

bracket withH = p?/2+V(X) the system Hamiltonian. The

second term is

d

X

t .
[Marne, ,t'>><(t'>}[5<pf—xaf>>

X S(Xe = X(tp)]fi, (40)

to lowest order ik, we are entitled to replac¥(t’) inside
the non-local term by a solution of tldassicalequations of
motion with the given Cauchy dad andp;. We shall call

PHYSICAL REVIEW D64 105008

a
A2=%[F(X,p,t)f], (41)

where F(X,p,t)=—ﬂidt’H(t,t’)X(t’). Finally, the third
term is

- B
Az=— a_FJfo dxidpif DEPql &ty )E(t)
X 8(pr—X(t) 8K = X(t)F; - (42)

To compute this term, we note from Ed&3) and(27) that

[ e
exp{%f dt’ V¢ I)[—Iﬁé—g,XH]
X &(t)PL£],

and sinceP[ ] is Gaussian, we may use the identiyovik-
ov’s formulg:

E(t)Pol &ty )=

(43

Pol&:ts).
(44)

t

Integrating Eq(42) by parts and after further simplification,
where we explicitly assume that, as in the case of the cubic
potential,Pq is independent oK (in this way we can com-
mute the exponential ") in P with the functional de-
rivative with respect t&), we obtain

d
AS:&_pf{N'f}’ (45

where N=#[dt'N(t,t")X(t"), and we have applied once
again a reduction of order prescription. The details of this
calculation are given in Appendix A.

To summarize, and using the explicit form\sf") for the
cubic potential, we obtain the following dynamical equation
for the reduced Wigner functiofmaster equation

o Ho i+ TGP0 T+ (N1 ﬁz)\ﬁsf
7t~ tHs i+ 25 TP O]+ 2N £} = 24 5

(46)

If the system were isolated, the master Etf) would reduce
to

W _ g2 FW
ot ={Hs, W} 24 gp3’

(47)
whereW is the Wigner function of the closed systehh, its
Hamiltonian and the curly brackets are the Poisson brackets.
This equation is exactly equivalent to von Neumann’s equa-
tion for the density matrix of a one-dimensional quantum

this procedure of substitution of the classical trajectories intanechanical system with a cubic potenti&(x) = — (\/6)x°.

the terms which are already of order‘reduction of order.”

Note that the term with the third derivative with respect to

We may then extract the non-local term from the integral tothe momentum is responsible for tunneling when properly

get the simpler form

combined with the otherwise classical dynamics generated
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by the term corresponding to the Poisson bracket, i.e., if this } t

term were not present, the evolution of the Wigner function ~ X=p, pP=—V'(X)+ f_mdt’H(t—t’)X(t'H&
would be entirely equivalent to that of a classical ensemble (49)
in phase space.

There is a theorem by Pawul&9] which states that a whereH is the dissipation kernel introduced in E45), and
diffusion-like equation such as E¢7) should have up to ¢ is aGaussiannoise described by the noise kermelntro-
second order derivatives at most, or else an infinite Kramersgduced in Eq.(11), as
Moyal expansion, for non-negative solutiongx,p,t) to ex- , ,
ist. The equation for the Wigner function circumvents the (6OE)=AN(—t"). (50
implications of the theorem since it need not be everywhere- Although we set up the initial conditions &t=0, we
positive. Even if we have an everywhere-positive Gaussialxtend the lower integration limit in E¢49) to —e for
Wigner function at the initial time, the evolution generatedcomputational purposes. The approximation is, nevertheless,
by an equation such as E@7) will not keep it everywhere- justified since the characteristic frequencies of the environ-
positive. This can be connected with the fact that the Wignement, wj=1 (recall that the system particle has unit mass
function could be interpreted as the distribution function as-are much larger than the typical decay rate of the initial false
sociated to an ensemble of solutions satisfying the Langevinsacuum state. In other words, the characteristic time scale for
like equation(26) with a generalized stochastic sourég) the environment dynamidss1 and hence, the typical “cor-
with a non-positive probability density function®g[£].  relation time” for the dissipation and noise kernels, is much
Thus, here we see the essential role played by the norsmaller than the typical decay time. The contribution to the
positivity of the Wigner function in a genuinely quantum integration interval ¢ ,0) is, therefore, relatively small.
aspect such as tunneling. In other aspects such as in quantumAccording to Egs(13) and (14) these kernels admit the
coherence this role is well know70]. following representation,

It is important to stress the following points. First, we are
not assuming that the stochastic trajectories described by the
Langevin equation are real trajectories; although they may be
if there is decoherencEr1]. Second, although we use the
initial Wigner function to weight the initial conditions, we do P
not assume it is a probability distribution function. Our in- Ht=t)= (50, E1) ) ot-t"), (52
terest in the Wigner function is that we shall use the fact that
it acquires a substantial nonzero average beyond the basin whereZ=Z3;E; and where we must keep in mind the need
attraction of the false vacuum as a signal that tunneling hafor regularization of the kernel as defined above. Let us
occurred. This application is valid even if the Wigner func- take the Fourier transforms,
tion itself cannot be understood as a probability distribution
function, because the distributions computed from the
Wigner functions, such af”_.dX f(X,p) or [Z_.dp f(X,p)
are true probability distributions, anff”..dX(p/M)f(X,p)
is a true probability flu{72].

1
N(t=t)=5{E1,E)H—(EMNEM)), (51

d - ’
(202 [ 5oe ™ Dhoyw), 69

d B !
N(t—t’)=f£e"“’(t’t Jv(w). (54)

D. Dynamics of the distribution function f For an environment initially in thermal equilibrium at tem-
perature T=8"1 the functionsy and v will be related

To compute the tunneling probability from EE7) is éhrough the fluctuation-dissipation theorem

possible using, for instance, a WKB approximation schem
[20,21]. Alternatively one may use the instanton mettégl
which gives a simple answer in this case. Our main interest v(w)= hlo|y(w), folw)=(eftlol—1)"1,
in this paper is not this contribution to tunneling but rather to (55)
compute the effect due to the backreaction of the environ-
ment. To simplify our derivation we shall assume that thewhich is a consequence of the Kubo-Martin-Schwinger
time scales are different, that the dominant term is the backkMS) formula. Here we shall consider the zero temperature
reaction effect and, thus, we will neglect the third derivativecase only.
term in the master equatidd6). More precisely, we will use In order to compute the memory terms in E49), it is
the evolution equation for the distribution functién convenient to parametrize the trajectories by their initial con-
ditions at timet;=0. These trajectories may be written in
ﬂ:{Hs:f}ﬁL i[F(X,p,t)f]Jr i{N,f}. (48) term; of the acti_on—angle variablésand ¢ associated tq the
ot p JPs classical potential, which we assume has a potential well
bounded by a finite potential barrier. In other words, we are
usingJ and # as Lagrangian coordinates, identifying a given
This equation describes an ensemble of points evolving aarajectory, whileX andp are like Eulerian coordinates, iden-
cording to the dynamics tifying where the trajectory is at a given time. The action

1
E‘Ho(w)
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variable is defined by= (1/27)$pdX; sincep can be writ-

ten in terms ofX and the system Hamiltoniad, substitu-
tion into the equation defining and inversion implies that
Hs=H(J), anddHs/dJ=Q(J) is the frequency of the mo-
tion. The angle variablé changes from 0 to 2 and satisfies
the equation of motio®= ().

Since the kerneH is already of ordefr:, in the memory
term of Eq.(49) we must replace the trajectoX(t’) by a

solution of the classical equation of motion, in which case

the transformation to variabled @) is canonical. For fixed
J, the classical trajectory is periodi¥(t')=X(t' +27/Q);

note that the motion is periodic inside the potential well but

at higher energies, near the top of the potential bafthes

separatrix when J—Jg, the motion ceases to be periodic

and(—0. Thus we may write

X(tr) — 2 ein[(9+Q(J)t’]Xn(J)
n

(56)
p(t)=1Q(J) >, enoreAIny (J)

whereX_ =X , sinceX is real. We then write the memory
dependent term as:

— fi dt/H(t—t")X(t")
dw wy(w)
27 0+nQJ)—ie’

einl0+0()t f
(57

where we have used Eqg$52), (53) and (56), and that
Joduexp(su)=i/(s+ie). Therefore we have

:_2 X

F(X P, t)=— 2 X |n 0+Q(J)t],y (J)

yn(J>=f do __ore)

27 0+nQJ)—ie" (58

Observe that although the Langevin equation is now local in
time, it is not necessarily Ohmic. A similar manipulation of

the last term in the master equati@8) gives(see Appendix
A)

N(J,0) =2 X, (2)enereIuN (J),
n

Nn(J)= f

E. Weak dissipation limit: Averaging over angles

[—iv(w)]

2 a)-l-nQ(J)—ls (59

So far, we have keptarbitrary. To study tunneling, how-
ever, we may impose the additional condition tiatf(J),

PHYSICAL REVIEW D64 105008

Planck equation over the angle varialsleThis approxima-
tion has been discussed by Kramgrs69 as prevailing in
the weak dissipation limit. Recall that th¢hrig,f} =0, and
that, for any phase space functign(e,J),

—dédx\lf—d 1§>d A\
=43 RERIED AL

where we have used that for the classical trajectdty
= gdt=Qdt, and thatdX=9,X|;d6+ 3,;X|,dJ from where
by imposingdX=0 we can deducé,6|y .

Finally the Fokker-Planck equatiqd8) becomes

axX

o= o 57| -2

7N

of B d s df y 60

ot di|Mads” (60
where we introduce® and\ as follows:
1 H 2

D= § dopr =S XDy, 61

N= iﬁdep —QZ [Xn(I)]?n2NL(J). (62

Now observe that from Eq58) and using that 14+ie¢)
=PV(1k)+imd(s) we can write

do oy(w) i
Yn(J)=PV 7 W—EHQ(J)VWQ(J)],
but since  Wo—nQ(J)]— U w+nQI)]=2n0/ >

—n2Q02(J)] the first term ofy, above integrates to zero, so
that only the imaginary term contributes, and we finally have

Q
=5 2 [Xa()[*n*yn0]. (63)

A similar computation using expressi@d9) for N, leads to
the final expression fa:

= % > [Xa(D)2n?[nQ]. (64)

F. A rough estimate of the decay rate

Equations(48) and (60) are the basic equations for the
rest of our analysis. The rest of the paper is devoted to the
explicit computation of theD and A functions in a field
theoretical problem, and to solving the dynamical equations
therefrom. However, we may already at this point make an
educated guess about the relationship between the decay rate
predicted by these equations, and the usual quantum esti-
mates.

The point is that, since these are after all equations similar
to those discussed by Kramdrg|, we may obtain a rough

and obtain a simpler equation by averaging the Fokkerestimate of the transition amplitude by just plugging in
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Kramers' result for the flux. This is made from E(60) As discussed in the Introduction, we wish to focus on the
which we may write as a continuity equatiepf +9;K=0  behavior of the long wavelength modes of the field. Let us
where the probability flu may be directly identified from  split the field® = ¢+ ¢, where¢ represents the long wave-
the equation. Then one looks for stationary solutions withength modes ang the short wavelength modes. To do that
positive fluxK,, which must satisfy §7Q)d,f+Df=—K,.  we introduce a length scate™ ! which will be suitably fixed
From this equation one may estimabmposing that the par- for our problem. To defines(x) we take a window function
ticle is in the potential well[sf(J)dJ<1, whereJgis Jat ~ W(x'—x) centered at the point with a width A~ and
the separatrix, i.e. the top of the potential bafrigsing that  convolute the fieldP with it

dE=QdJ the following upper bound foK:

= | d*'W(x' =x)®(x), 68
Koo BED B=JdE(D//\/). b(X) f X"W(x" =x)®(x") (68)

_ then, of coursep(x)=®(x) — ¢(x). In this way the field at
At high temperature, we havev=ykT, N=KTD, B each point has two contributions, one corresponding roughly
=E/KT, and to scales larger than or of ordar ! and the other to smaller

K scales. This has its correspondence in momentum space; we
Ko~exp(—Es/kT), may define the Fourier transform df by

whereE; is the energy at the separatrix, as expe¢6d]. At Bk -

low temperature, see E@55), v=7|w|y/2. Now, because qp(x):f_eik@lz(t)' (69)
the sums which define both"and D are dominated by fre- (2m)3

guencies of the order of the curvature of the potential around

the unstable fixed poinb~ |VZ| (this being the time scale the long wavelength modes now become(t)
for the exponential approach to the unstable fixed ppint =W(—Kk)®g(t), whereW(Kk) is the Fourier transform odv,

then V'~ #+/|VZ|D/2, and thus and for the short wavelength modes we haye= & — ¢y
It may be convenient to use a Gaussian window. In this way
Ko~exp —2Es/#i+/|Ve]). (65 W is also Gaussian with width, or sometimes it may be

more convenient to take a step function for the Fourier trans-
We may compare this estimate with the usual WKB tun-form of the window such a§V(E)= O(A—K) wherek=|l2|.
neling amplitude given by At this point ¢ is still a field, that is, it contains an infinite
number of degrees of freedom. It is convenient to reduce the
Ko(tunnel)~exy{ _ﬁ—lf dxy2V(x) |. (66)  System to a single degree of freedom, such as we have dis-
cussed in Sec. lll. One way to accomplish this is simply to
. . . , nclose the field in a box of size ~*; see[74]. The bound-
If the integral is dominated by the peak at the unstable f'Xe‘iry conditions in this case would introduce an undesired dis-
pointXs, thenV~E,—V¢(X—X,)%/2 and the Euclidean tra-  ¢rgte spectrum for the modes. From a physical point of view
jectory may be parametrized a6~Xs— y2Es/V¢cos6, O it is more satisfactory to proceed as follows. In a region of
<6<, which givesfdx\/ZV(x)fvwES/\/V_’s’. volume A 3 we define the average field
We arrive at the remarkable conclusion that tunneling is
comparable to the noise effect from the environment. Of —
course, our coarse estimates are not reliable for an accurate ¢(t)=A3fA73d3x¢(x). (70)
comparison and we must proceed to a more quantitative ac-
count. Note that if we introduce the functionp(k/A)

=A%f,-3 exp(—ilz-i), which satisfiep(0)=1, then in mo-
IV. QUANTUM FIELDS AS OPEN SYSTEMS mentum space we have(t)=(27) 3[d%kp(k/IA) be SO
A. The model and system-environment split that ¢ is made up of the modes of the field wikix A.

. - Now when the fieldsp and¢ are substituted into Eq67)
We wish to study vacuum decay at zero and finite tem- . . : !
. . . the action will be decomposed in three parts. One involves
peratures for a 31 quantum massive scalar fieftl with . : :
action the field ¢ only, another the fielg only, both with the same

functional dependence as the original action and a third in-
1 1 1 teracting part involves terms linear ip and the quadratic
S[‘D]:J d4X< - 577“”8#@3,@— §M2<D2+ ggfb3>, term (1/2y¢4¢? which comes from the cubic term in Eq.
67) (67). We will approximate the different terms as follows:
[ a-3d3xg"(x)=A3¢" for any integem and [, -3d3x¢(X)

where the metric convention ig*’=diag(—1,1,1,1)w,» =0 since the short wavelength modes should average to
=0,1,2,3). Although we keep explicit, we setc=1. The zero. Thus, generally we have [,-3d3x¢"f(¢)
massM has units of [ength) ~, ® has units ofM y% and zZ“fA—sdg’xf(go), wheref is an arbitrary polynomic func-

g of M/ . tion of ¢. Since we want to focus in the single degree of
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freedom ¢(t), which is the averaged field associated to aaveraged fields and the field mashl, respectively; also here
certain region of volume\ 3, it will be convenient to re- there is only one coupling parametetg.

strict the volume integrals involving the field to that vol- For the environment modes to be stable as required we
ume. S _ should have from the previous actioSs and S, that k?

Up to this point the scald has been arbitrary. Now we +M2—g$>0 and since the maximum value thgt may
need to fix it. Since the field is homogeneous in the region ake at the ba,rrier is.= 29~ IM?2, it is clear that=M and
considered, the grafiient terms should be negligible in fron%hiS gives the lower Sound fok r,nentioned above.
of the mass term, {$)*<M?¢? and this means that the | gt us now follow Sec. Ill and define the functic(t)
momentum cutoff for the modes of the fiedtl should bek  \yhich appears in the interaction action which is a key func-
<M, which implies that there is an upper bound for the scaljon to construct the dissipation and noise kernels,Zg¢)

turbatively and that means that the field should be stable, ifkewise define

this case the cubic term® will be a two-loop order term and

may be neglected to leading order in We will see in a _ 3 21,

moment that the condition fap to be stable implies a lower E(H=M fM_Sd X59¢ (x), (75
bound forA: A=M. Thus for the system-environment split

to be consistent we neeti~M and the volume iM >, and the interaction action becom@s,=M ~3/dt¢(t) E(1);

Finally the action(67) can be approximated_as a system- | that= (t) has units oM3\%. By analogy with Eq(10)
environment interaction  action S(®]=SJ ¢]+S[¢]  the influence functional becomes

+Sinil 6, 9] where

_ i
e'S'F’ﬁ=f DeD ¢ peiexpy| Sl o] —Sd ¢']

— 1. 1 — 1
Ss[¢]:M_3f dt(§¢2—§M2¢2+ €g¢3), (77)
—M*3fdt_t5 —¢'(HE'(t } 76
ek 11 " [¢(DEM) - (DE" (V]| (76)
Se[(P]:f dtf 3| pPke-k— 5 (K , , . . o

=M(27) where p,; is the environment density matrix at the initial
time. As in the previous section, see Efj5), we keep only

+ MZ)@EQDR}, (72)  quadratic terms and we can write
1 -3/ T
_ 1 s SE=3M (b= ¢')H-(4+ ')
Snd¢.e]==30 [ dt] _dXde7, (73
I -3/ 7 T
where we made a mode decomposition and integrated over +5M (p—¢') N-(¢p—¢'). (77
the whole space volume in the environment action. Now the
potential of the system Thus we are now in the situation described in general
terms in Sec. lll, and must complete the following steas:
V($)= EMzgz_ Eggs, (74 identify the kernelsy and v, (b) evaluate the Fourier trans-
2 6 forms ofx andp along a classical trajector{g) compute the

_ functionsD and.V, (d) solve the Fokker-Planck equation for
has a stable fixed point =0 and an unstable fixed point f, or at least justify the approximations already discussed,
at ¢= =29 'M?2. The former corresponds to zero energy,and (e) evaluate the decay rate. We shall carry taghs(b)
and the latter tE€ = ESEMfl(ﬁg/e, in the volumeM ~3. For and(c) in this section, and leav@l) and(e) for the next.
intermediate energies, we may have bound and unbound We should emphasize that as remarked in the previous

states. They are separated by a potential barrier, which &ection, the kerneH needs to be regularized and that this
zero energy extends froM=0 t0 ¢= e, =3¢</2. At any involves a mass renormalization. We assume from now on
exit— s'e-

given energy there will be three classical turning poits that the mas$ which appears in the .action as well as the

. coupling parameteg are the renormalized values. Also we
<0< pr<ds<ox; as E—0, ¢, ¢g—0 and ¢y )
—oxit, While when E—E,, ér,dy—d, and ¢ — emphasize 'Fhat we ha_ve chosen to reduce the low frequ_ency
o Y ' > | part of the field to a single degree of freedom only for sim-

— ¢s/2. We are thus in the situation described in Sec. III,"" itV An inh field Id be handled. f
consequently according to the estimate at the end of the IaE{'C' y. AN INhomogeneous hield could be handied, for ex-
ample, with the techniques presented in R&8].

subsection, Eq(65), we expect here that the tunneling rate
will be Ko~exp(—aM?/f.g?) wherea is a dimensionless - .
parameter to be determined. Since the system is the averaged ~ B. The dissipation and noise kernels:y and »

field E the tunneling rate is now per unit volume. When In order to find the noise and dissipation kernels, we use
comparing with Sec. Il note that the system coordineamd  the representations in Eq&1) and (52). To compute the
frequency (), in the QBM model correspond here to the averages, observe that the environmental variables can be
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treated as a free field. The details for the evaluation of the v
correlation(Z(t)E(t’)) are reproduced in Appendix B, see
Eqg. (B1), where we find
(EME))=(EM)XE())
ﬁZgZMSJ d3p e*Ziwp(tft')
p

8 =M (27)3 wrz)

(78

One may compute the anticommutator and commutator
operator required for the kerneS1) and(52) from this ex-

X

pression. Then comparing with Eq&3) and (54), and re- X1, XR Xs o \
calling that the dissipation kernel must be corrected by a .
factor of M ~3, in agreement with Eq77), we obtain FIG. 1. Plot of the dimensionless potentiglx), as a function of
the dimensionless variabbe= &l ps. Note that it exhibits a meta-
wh2g? d3p stable minimum ax=0 and an unstable maximumet x,, where
fioy(w)= 4 3 2[5(2wp_ w) the value of the potential coincides with the enesgyof the sepa-
p=M(2) @p ratrix trajectories. The three turning points, xg andx, corre-
_ 5(2wp+ w)] sponding to any energy<eg have also been represented.
wh2g? where v(x) =x%/2—x3/3. This action density includes di-

=2

mensionless variables only, the critical point is naw 1,
corresponding to dimensionless eneegy 1/6. Physical en-
TG AM2 ergy densities are of courde=(4M°®/g?)e=6Ee.
= 16, S9Mw) \/ 1~ — 0(w®—8M?), For any energy <&, we shall have three turning points
w X <0<Xxr<1l<Xx, see Fig. 1. The classical orbits are ex-

, pressed in terms of Jacobi elliptic functions with modukus
which leads to given by

e R SV ) , XRTXL
= — — K= , (82
Y(w) 167[0| 1 2 0(w"—8M"“). (79 Xo— X,

which satisfies thak—0 whenes—0 and k—1 whene
—e&g. The actual expression, computed in Appendix C, is

1) [T 520, o)
S —_— —
4 gnw M(27T)3w'23 wp—|w

With a similar computation, for the noise kernel, we get

 h2gPM? AM? X=X_+ (Xg—X_)SIPA T, (83

1- O(w>—8M?). (80
where\ = /(Xx —X.)/6. The function sn has period4 «],

32 w2
These kernels are related as required by the zero temperatu?‘}ltralij )\Sﬁ/[las half of that, so the dimensionless frequency is

fluctuation-dissipation theorem, see E@S5). We observe ) N —

that these are the same as the kernels found in[R8fina _1he Fourier coefficients at(7), for n#0, are computed
different context. The analysis there substantiates our claiff! APPendix D. They are given by

that particle creation, and backreaction thereof, are the main

v(w)

mechanism for dissipation and noise in this model. o 3n0? (84)
sinh(nQK'/\)
C. Classical trajectories
Let us recall the basic definitions. The form of the classi- D. The dimensionless Fokker-Planck equation
cal potential energy density Eq74) suggests writingg Let us first write the noise and dissipation kernels in

= px=29"'M?x so thatV(¢) =49 2M°(x%/2—x3/3). Let ~ terms of dimensionless variables. For the system Hamil-
us introduce also a dimensionless timetM and the clas- tonian density, i.e.H=M3H,, besidesx and 7 (¢
sical action density for the system, which is defined§§s =29*1M27, t=7/M) we write also p=29*1M3E Vv
=M3S;, reads =49 2MSy(X)[V' () =29 M*'(X)], thereby Hy

) =(49 °M®)h,. Note that this transformation is not canoni-

—:4_'\/'5 d{}(d_ﬂ () 81) cal but preserves the equations of motion, since
g2 2\dr pde—Hdt=(4g2M®)(pdx—hd7), see Ref.[76]. The
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action variable also becomed=(4g 2M®)j, while the

angles are, of course, unchanged. Since the transformation D= Ds~%2-441---><10_7,

is not canonical, it does not preserve phase volume:

dpdp=4g 2M°dpdx. Therefore, we ought to define a _ 9

new distribution function f(,p,t)=(g%/4M%)f(x,p,7). N=Ng~ 2-—7.38L...X10°7, (90

Then we find df/dt—(g?/4M*)dflar, and {Hs,f}
—>(92/4M4){hsaf_}25- Therefore, instead of Eq48), we which remain finite. The second limit corre_sponds to the bot-

have tom of the potential, that is, whea—0, Q—1, A\—1/2.
- Then K'~(1/2)In(16¢~2) = (1/2)IN24(xg— %) " 1]
af — g d|. . — — ¢ ~(1/4)In(72€), see Ref.[77], formula 8.113.3, and
&_ﬂr_{hs’f}x'p+mﬁ_a F(¢,p,t)f+m{N,f}x‘p ' sinh 2(NQK’/\)~4 exp(4nK')~4(e/72)" and the expres-

(85)  sions forD andN take the values

and (590 and let us introduce the new functions 5~—2 n3

Now let us recall the definitions aof, andN,, in Egs.(58) 9 ( e
T n=3

0=Mo, y(0)=("g*M)y(w), 7(I)=rg’y.(j) and
dn(3)=29 M2 x,(j) to getI'=2AgM?T'(x,p,7). On the 9
other hand, let us call »(0)=%%g’M31(w), N, N~— > n“(i
=#2g>M3N,, and N=2%2gM°N and we finally obtain the 8 1= 2
following dimensionless form of the Fokker-Planck equation

n 4
1- —2~as3, (91)
n

wherea and b are numerical coefficients that can be read
from these expressions. Note that the rapid decay of these
(86) functions ase—0 is due to the presence of a threshold,
encoded in the theta functions of Eq39) and (80), which

enforce than2Q2>8. At finite temperature, where the self-
where B=4M?/(£g?). In dimensionless variables, the en- energy of the fluctuations remains complex even on-shell
ergy scale for the false vacuum is 1P when higher loops are included, of coursB and N fall
We may now proceed to write down the angle averagegike ¢, as in Kramers’ original analysi&].
Fokker-Planck equatio(®0) in dimensionless variables. This
takes the form

of —
E_:{hSif}x,p"'

R Gt =Ny
ﬁ aa (¢1p’ ﬂ{ ’ }X,p ’

V. ENVIRONMENT INDUCED DECAY RATES

g 4d[ N df We may now conclude our task of finding the decay rates
5= ,ET __T+Df , 87 as described by the Fokker-Planck equation. In agreement
Ipad with our weak dissipation assumptions we shall assume that

_ _ o __we may average over angles, and restrict our analysis to the
where I_D=(Q/2)_En|in(j)|2n2y[n0] and N  Fokker-Planck equatiori87); a related analysis of angle-
=(Q/2)2 %)) [?n?»[nQ], and we have also introduced dependent solutions is given in Appendix 6 of RE3].
the dimensionles§ =Q/M. Using the explicit form of the Since the equation is linear in the Wigner function, it is con-

Fourier coefficients Eq(84) and the expression&9) and venient to first seek the normal modes, namely, solutions
(80) for the dissipation and noise kernelgand », we have with a simple(exponentigl dependence on time. The desired

explicitly solution will then be reconstructed as a superposition of nor-
mal modeq69,7§. N
90 (n0)3 2 Assuming then that=e ""F(j), we get from Eq.(87)
D=—_ _ A[1— —— 6(n202-8), the time independent equation
167 7=0 sinfA(nQK'/\) n2Q? B
(89 LF+rF=0, L 4d/ N d +5) (92)
r==0, == 0| == .
— — B dj\ ga dj
— 90 (nQ)* 4 _
N=or— > — — 1- ——=6(n’Q2-8). , , , : :
327 6 sintf(nQK'/)) n202 This equation may be written as a conservation equation
(89 LF=d®/dj, whered is the flux defined by
There are two relevant limiting cases. The first Iimit_cor— o 4/ N dF oF 93
responds to the separatrix energy, that is, whens,, Q B Ig_(_)d_1+ : (93)

—0, A>1/2, K'—a/2. We may write é=nQ and I,

~(1/Q) fd£ in the previous equations. Then after numericalObserve that for ang>z'>0 we have the following rela-
integration we obtain tionship betweer, ® andr:
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D(e)—D(e')
r=——m—.

f/Fdj

(94)

PHYSICAL REVIEW D 64 105008

h=C,\eZ, (97)

2
al

wherek?=rg?/a, Z is a Bessel function an@, is a con-

Let us now introduce the unnormalized equilibrium solu-gant (observe that all solutions are bouniledls £—0, F

tion Fg=exp(- BfdjQD/N), then Eq.(92) can be written as

+rF=0, (95

d ) d/ F
- p | =
dj|” dj\Fg

wherep?(j) =4NFg/(Q52). Multiplying by F/Fg and inte-

~g %4 coske 9 but ®~&¥*sinke 1?3 —0.

Note that we obtain solutions for arbitrarily small values
of r. This behavior, which is unlike that found by Kramers
[7], reflects the existence of a threshold for dissipation: at
arbitrarily low energies, the motion is essentially harmonic,
there is no dissipation, the fluctuations switch @ff agree-

grating we see that must be non-negative, as expected.Ment with the flugtu_a'.[ion—.dissipatiqn theorgmnd the sys-
From the mathematical point of view, this is an eigenvalugl€™ requires an infinite time to climb out of the potential
problem of the Sturm-Liouville type, and we may handle it Well

in the usual way[79]. Let us begin by analyzing the solu-
tions withr #0, which are the decaying solutions.

A. Decaying solutions

Let us seek a solutiofrx of Eq. (95 with nonzeror.

Since later on we shall be interested in the long time behav-
ior of solutions, we may focus on the range of small values

of r. For concreteness, let us assung#/3a<1. Let us in-

troduceh by F = (h/p)Fg=(Bh/2)\/QF /N and write Eq.
(95) and the flux as

d[ .d/[h\] rQpg?
—| p? == =] | +——= h=0,
dj[p dilp/|" an
(I_)_ 2d (h)_ ( h'—h r)
p djlp p p ).

Expanding the second derivativeﬁ[pzdj(h/p)]zdj(ph’
—hp')=ph”"—hp", whered; stands for the derivative with
respect tg, we obtain

r
|

We have two regimes in this equation: for larggbut not
exponentially close te@;=1/6), p is dominated by, and
p"lp~ B?Q?D?/(4N?) dominates the term, which is negli-
gible. For ¢—0, on the other hand,p~&%% p"lp
~(3/4)e "2, and ther term is the leading term. The transition
occurs fore = &* ~r 82/(3a), which by assumption is much
smaller than the energy scale B/2ypical of the false
vacuum.

For large ¢, the equationh”—(p"/p)h=0 admits of
course the solutiolm=p, which gives back the equilibrium
solution, i.e.Fx=Fg. To find the second solution we may
write h=K,po (here K, is a constantto get ¢"/c'=
—2p'lp which implies ¢’ =—p~2. This second solution
corresponds to a constant fldx=K, , and also is the nega-
tive exponential WKB solution. For smadl, the equation
h"+ (r B%/4ae®)h=0 has solutions

(_l 2 "
L —p—>h=0. (96)

AN P

B. Hilbert space structure and normalization

The structure of Eq(95) suggests introducing an inner
product

»
o= [ Bt 98

where the star means complex conjugation. Thek, ind
F are the solutions corresponding to eigenvaluasds, we
can write ¢ —s)(Fs,Fr)=—[dj Fg'[Fs(LF,)
—(LF9F,]=—Fg'[Fs®,— ®4F,]|}s. Imposing the bound-
ary conditiong=,(js) =0, we get rid of the contribution from
the upper limit. In the lower limit, we may use the
asymptotic form of the Bessel functions to ggf P,
—dgF, () ~2m 1C,Cek; Y%k Y3sin (k. —k9e Y] which
convergesweakly) to zero. It is therefore natural to adopt
the continuum normalization prescription

(Fs,Fr)=0d(r—s). (99)
As in Landau and Lifschitz’ analysis of the WKB wave

functions[5], this singular behavior is caused by the oscilla-
tions ase —0. More precisely

fdj FglF,Fs~w*lc,csk;”zkgl’zf de e~ 32
0 0
x cog (k —ks)e V2]~ 4CTk; T8k, —ks)
~8aC?B~28(r—s),

where the integral upper limit is anything. We thus find the
constant<C,

C,~ Bl+/8a.

To find the constant&, we should match our solutions
across the transition point at . Without getting into details,
see Ref[80], it is clear that in order of magnitude

(100
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1 \Fﬁg*sm 33/4 To find the persistence probability?(t), we integrate
~ — ~ . F(j,t) over the potential well. Thus after using the previous
' 1/4 3/4 _
p(e*)o(e*) V7K \Ba  4\mr 0(8*)8*(10]) result for [sdj F,(j) and the value oK, from (102 we
obtain
To find o(e*), we recall that according to our boundary . 4t
conditions o(j) =0. Thereforea(e*)=["Sdjp 2(j). Let P(t)~23K2f dr———.
e 0 [r2+a?)?

us split the range of integration in the two segments
[¢*,1/2B] and[1/2B,&]. The contributionl,, from the sec-
ond segment is dominated by the exponential growth ot
near the separatrix, thus I, ~Fg(1/28)Fz(es)

The analytic expression for this integral is given in R&f],
formula 3.355.1. Whent~1 it can be approximated with
an integral, the best fit is obtained whefP(t)

~A""%exp(BD¢/6Ns) whereA’~O(1). In thefirst segment,  ~exp(—0.4\t). For larger times, we have a crossover from
we find exponential to power law Ldecay, as expected from quan-
tum mechanicgcf. [15]). To summarize, we have proven

p~?=p%(4as®), that the Fokker-Planck equation leads to an exponential de-

cay of the false vacuum, with a decay raje~\:
so it contributes as

_ _Ds
|~ (U8 A% Y (e*) 2~ (U482 %1~A“41m@ ' (103
~(UB)pta9a%p A (UAB 7] with A~O(1). This equation may be compared to Edj),
~(9/8aB 2[r 2—(1/36)8%a"2]. hereﬁziMz_/(hgz), as defined in Eq(86), and the ratio
Dy IN;=Ds/Ng whereDg andNg are given in(91); see Egs.
Adding both contributions, and keeping only the leading(63), (64) and (87) for the definitions of the functions in-
terms, we find volved.

D. Comparing with the instanton method
o(e*)=

9a(1+1
8p2\r2 a2/’

Let us conclude by comparing the rate estimate of Eq.
(103 with the estimate derived from the instanton method.

wherex~A exp(—ﬁﬁsllzﬁs) with & ~0(1). Sofinally we The Euclidean action for our model is

have
1 1 1

SE[<D]=J d*x Eé“”ﬂ#<l>av<b+ EMzdbz—ggdﬁ ,
\2r
Ke~K——s, (102 (104

r<+A . . .
where §*” stands for the Euclidean metric. We are interested
in SO(4) symmetric instantons, which depend on all four
Euclidean coordinates but only through the Euclidean radius
p=(x*+y?+7°+1t2)12 wheret is the Euclidean time. Let

C. Decay of the false vacuum us scaled = ¢f(Mp) to get the Euclidean actiofin d di-
After all this work, the dynamical problem is now trivial. mensiong Sy=(47/3)% 814, where
We are interested in a time-dependent solution with an initial
condition similar to the Wigner function of the false vacuum, | = J dp pt1
4=

F=Fgy~ 2B exp(—2B¢) [81]. The solution is

whereK is anr-independent constant.

1 1.1
()24 512 §f3} (105

Of course, computing the four-dimensiondi= 4) instanton
is not simple, but we may approximate by 1, in which
case we may use the simpler one-dimensional formula

FUM=LdW“GHm

wherec, = f[*dj Fg 'F,Fry. Fortunately, we are interested " 5 6
in the range of small, where F, peaks at values much s:zf dX\/Zv(X)=2J dx \/x2— =x3=—.
smaller than 1/8. The only feature ofy, andFg that we 0 3 S
really need is that they are smooth there. Thus, ) ) o
~FFV(O)F§1(0)fngj F,=28K, /r, [cf. Eq. (94)]. Finally All in all, the instanton p.red|.ct|on is I, ~.—_1.2 .. ><,8
On the other hand, the noise induced prediction,(EQ3), is
. et |qtgl~|n A~(—Dg/12Ng) 3~—0.05...XxB. So in this
F(j,t)zZ,BKAZJ dr———F(j). simple case the noise induced contribution dominates over
0 re+A\ the instanton contribution.
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total decay rate due to activation, even at zero temperature:
A few remarks are in order. What we have shown is that if

we consider the field initially in a metastable phase in a APPENDIX A

region of sizeM ~ ! there is a probability per unitvolume and g problem is to compute an expression like

unit time of decay to a stable phase given by BEf3). Of

course, the size of the bubble formed is of orler?, in our 5

calculation this size is fixed. We cannot consider smaller size f dt’ N(t—t’)< —R[x(t),p(t)]> , (A1)

regions because we could not have neglected the gradient o&(t’)

terms of the system in front of the mass terms, also we could ) ] )

not have considered larger size regions because the enviroyhereR is an arbitrary functional of(t) and(. . .) denotes

ment modes would become unstable, their evolution would@XPectation value with respect By[ &;t). Here, for simplic-

become nonlinear and our perturbative treatment of the inify, we will assume also th&, is independent oK as in the

fluence functional would break down. However, the critical¢ase of the cubic potential. In our case, this leads to

bubble size that one obtains in first order phase transition in

statistical physics or in field theory using instanton methods Ple= _ﬁf dt'N(t—t") i< oX(t) 58 >

. _ .. .. . eer N OX

is also of the order oM ~*. This, in our opinion, makes this axX\ 6&(r) 7P

computation of interest, since one expects that once the criti- 9 | so(t

cal bubble is formed it will evolve in the usual way; see for _<£ >

instance Ref9]. Had our calculation involved a size smaller ap \ S&(r) P[]

than the critical size then the bubbles formed could not grow

and would collapse, as then the energy of the bubble walvhere dx= &6(X(t) —X) and 5,= 5(p(t) — p). ,

would overcome the energy difference between the meta- Within the “reduction of order” procedure, we substitute

stable phase and the bubble interior. aX(7)/oX(t) and X(7)/op(t) for &X(t)/6é(r) and
Another relevant point concerns the energy balance in théP(t)/9¢(7), where the variations are understood in the

activation mechanism of vacuum decay described here whichense of the result of coupling a stochastic source to the

invo'ves noise and dissipation_ In Appendix E we ShOW thaplaSSK;al equatlons Of motion. The argument runs as fO”OWS:

the average power exchanged between system and envirof€ know thatsX(7")/8¢(7)=0 andsp(r")/5&(m)=1. On

ment is zero: if some trajectories gain power through noisethe other hand

some others lose power through dissipation. Of course, the N N N

balance is only statistical, but we must stress that this gain Se(nX(T7) = dxyX(77) S X(1) + IpyX(77) S P(1)

and loss process would go on even if there were no separa-

trix and the system were in equilibrium. The only reasonand

why the system does not equilibrate in our problem is that

we remove those particles that reach the separatrix, as de-

manded by our _bpundary condition there. We should say thaé Liouville’s theorem the determinant of this two by two

the system equilibrates but we assume that the true vacuu - :

. ~.-system is 1, so indeed

is very much deeper than the false vacuum, so the equilib-

Se(nP(77)=dxyP(T") Sg(nX(1) + dpyP(7") Sg(P(L).

riqm_distribution vanishes _inside the potential well. Note that SX(t) aX(7%) sp(t)  axX(r)
this is an expected result in vacuum bubble formation. Once =— , = .
the critical bubble is formed the energy released in the con- 6¢(7) Ip(t) og(m)  IX(1)

version from false to true vacuum is converted into energy of The riaht-hand sid f1h i i
the growing bubble wall, so that the energy balance is still € rght-hand sides of Inése equations are continuous, so

zero. This last aspect however cannot be studied with th&/® may omit the superscript. Furthermore
present analysis. IX(7) IX(7)
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~ d EMEM))=(E))(E
q,[ﬂ:ﬁfdt,N(t_t,){a_x[{x(t)'x(t,)}f] (E(OE))=(EONEM))

+ﬁ292 dk  d3k’ ( k) (k)

d plrlel s

+%[{p<t>,xa'>}f]} 16 J (2m)® (2m)* \M/TIM
3 3A7
i i Xf ’ p3 o 3
:R[{X(t),N(J,H)}fH—%[{p(t),N(J,a)}f], pk—p=M (27)%) p' K —p=m (277)

e—iwpteiwpr,krt'e—iwk,pteiwp/t’

where we have defineN(J,0)=#dt'N(t—t")X(t"). Ap- X N
plying the reduction of order procedure by substitutk(g’) PrPTETRTR
by the Fourier expressiofb6) and using Eq(54) the func- x(apak_paip,a;,_k).

tion N(J,0) is written as,

Now the vacuum expectation value in the last equation
_ can be written as
N(J,60)=2, X,(3)eNoreMIN (J), (A2)
n

(apag_pa’ jal, . )=(2m°6®(K+k){s®(K-p+p’)

whereN,(J) is given by Eq.(59). We may simplify further, +8®(p+p")},

by observing that{X,{p,N}}—{p,{X,N}}=—{N,{X,p}}

=0 by the Jacobi identity and the fact that,p}=1, then  and since in any case we deal with valuekaidk’ much
by further manipulation of the Poisson bracket terms we fiqower than typical values gb andp’, we get

nally get

~ e ey PPGPdK 2(k)
BLE]={X,{p.N(J,0)}} —{p.{X,N(J, 0)}f} (EMEM))=(EMmNE(t WTJ 2m®’ M
={p,N(J, O HX, fF} ={X,N(J,0) Hp,f} d%p e 2wp(t-t)
_| IR X X op) NIt _IN o XL;M (2m* o o
dJ a0 9J 96| 30 43 9J 90
— (N (A3) To obtain Eq.(78), observe thaf d3k p?(k/M)=(2)3M?3.
APPENDIX C

APPENDIX B . . . .
Let us write the integrand in the action densi8l) as
We first expand the environmental variables in creation

and annihilation operators

1 — _
e v(X) = Z (X=X (X=Xp) (X=Xx). (CY
Qa: i[a e_iwkt"f_aT eia)kt] — P
K7 N 2w, - 7K K ’ It can be rearranged as—uv(x)=(1/3)(xx —x){(1/4) (xg
—x)2—[x—(1/2) (xg+x.)]?}, which suggests writingx
where wZ=k?>+M?2. Next, recalling the definition ofZ = (1/2) (¢ +x1) — (112) (Xg =X ) €0S(2) =X+ (e )si ¢,
given in Eq.(75) we may write and thus
— 1 . :
1 Bk - £=0(X)= 75 (Xx =X ) (Xg—XL) S’ 2¢(1— k” SirF @),
E(t):—ngj 3 f e|k~x 12
2 - (2m)3 (€2
J dp wherex is defined in Eq(82). o
pk—p=M (277)3@”@"7”' The equation for a classical trajectory is=[dxp~*
=[dx{2[e—v(x)]} 2 and sincedx= (xg— X, )sin(2p)de
To perform the integral over we introduce as in Sec. IV we have
the functionp(k/M) = M3/ ,,-3d3x exp(k-x), which satisfies 5 do’
p(0)=1. Then by direct substitution we can write the corre- =/ f‘p i _ (C3
lation (E(t)E(t")) as Xx =X Jo \1—«Zsir ¢’
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When ¢ goes from 0 torr/2, the point describes a half orbit.
So the periodT is twice the result from Eq(C3) when ¢
=m/2, and one can check that when-0, T—2, as it
should.

Using now the identities 16.1.3, 4 and 5 from R3],
we get the desired formulg83). Observe that ase
—0, snu~sinu, A~1/2, and x=x_+ (Xg— X )Sr?(7/2)
~(1/2) (xg+ %) — (1/2) (xg— X ) cosT which corresponds to

the harmonic trajectory, as expected near the bottom of the

potential.

APPENDIX D

Here we shall borrow an argument from Whittaker and
Watson[84]. The Fourier coefficients of the classical trajec-

tory are

;ZEJTdTe_inﬁT;(T)
n T 0

1 )
=x,_5n0+(xR—x,_)JO du e 2N Usr? 2K,

where we have changed to thievariable, used the explicit

trajectories(83) and again redefined the integration variable

in the second line. According to 16.7 and 16.8 in R&8],
we have the following properties: siKZu+1)
=—sn2Xu, snX(u+2iQ)=sn2Xu, where Q
=K'/(2K) with K’ =K[/1— «?]; and sn Ku has a simple
pole atu=iQ, with residue 1/(ZK).

To compute the Fourier coefficierifor n+#0) we con-
sider the integral over the anti-clockwise contduwith ver-
ticesat 0, 1, XQ and 2Q —1. The two oblique sides can-
cel each other, and

2iQ X 0 .
f dz e ?""2gf 2Kz=q*" | dse ?""?s? 2Ks
—1+2iQ -1

1 )
=q‘2”f du e 2N Ugr? 2Ku,
0

where g=exp(— 7K'/K). Near the pole, we havesee 16.8
and 16.3.1 in Ref.[83]) sn2K(u+iQ)=sn(Ku+iK")

=(ksn2Ku) "1=(2«kKu) 1+ 0(u?)], and from
Cauchy’s theorem the integral over the contbubecomes
2mi (4x°K?) " 1d, exp(—2inmz)|,-io=n7"k 2K "%q"" which

yields Eq.(84).

APPENDIX E
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=—TP, where I'=—[' _dt'H(t—t’)X(t’) and a noise
powerw,= £P. The power dissipated in the whole ensemble
is Wy=—[dXdP f(X,P)I"P.

Let us use the action-angle variablegat0 as Lagrang-
ian coordinates identifying a given trajectory. Then the
power dissipated is

Wy=— f:sda i2) [ dorp=- f:sdJ f(9)Q()D.

The average noise power in the whole ensembléVis)
=fgsde(J)fd0<§(t)P> where P(6,J,t) has been per-
turbed away from the classical value by the action of the
noise. We then get, using the Novikov trick

t oP(t
(f(t)P>=f dt’N(t—t’)aj(—i,))

IX(t")

t
:J dt'N(t—t’)ax—(t):—{P,N}.

We can simplify this by using the same arguments as in
Appendix A:

Performing now a last integration by partsdé{P,N}
:0"de0 N(O')()P)J:_O"dea P(&HN)JZ—&JN’
The total average power is thus

s IN
W:Wd+Wn=f dJ f(J) ——Q(J)D}.

0 ad
Integrating by parts, knowing that{0)=1f(J;)=0, we get
szngJQ(J)CD(J) where ® is the flux. Recalling now
that O =dE/dJ, with our boundary conditions we haw
=EP(Ey) +fgsd.] Eo,f. We can now show that/~0 (this
is obviously true for the equilibrium solutiofg, when both
terms in the expression foW vanish independently Let us
write the general solution for the distributidras the follow-
ing superpositiorf= [dr e "c,F.(j).

Since the flux is linear i, and the flux forF, is K, , we

get forw,

o0 J
sz dre“cr<ESKr—rf "dJ EF,).
0 0

Here we compute the average power exchanged betwedr'® integral in the second term is dominated by the upper
the system and the environment. Let us go back to théimit (sincec~E™%, the integral depends only logarithmi-

Langevin equation$49) with the Gaussian sourcg(t) de-

cally on the peak E*), and fésd.] EFr~EngSdJ F,

scribed by Eq(50). From these equations it follows that at =E.K, /r, which makes the total averaged pow&r0 as

the phase space poinX(P) there is a dissipated powery

expected.
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