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Vacuum decay in quantum field theory

Esteban Calzetta
Departamento de Fı´sica, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina

Albert Roura and Enric Verdaguer*
Departament de Fı´sica Fonamental, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain

~Received 11 June 2001; published 16 October 2001!

We study the contribution to vacuum decay in field theory due to the interaction between the long- and
short-wavelength modes of the field. The field model considered consists of a scalar field of massM with a
cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction.
The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-
wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of
freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a
kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial meta-
stable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero
temperature, for the formation of true vacuum bubbles of sizeM 21. This effect makes a substantial contribu-
tion to the total decay rate.
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I. INTRODUCTION

In this paper we report our preliminary findings within
larger program which aims at the development of a theory
nonequilibrium first order phase transitions, such as have
curred in the Early Universe~grand unified and electrowea
symmetry breaking@1#! and, possibly, in the first stages o
heavy ion collisions~chiral symmetry breaking and confine
ment @2,3#!. For this reason, we must seek a description
the decay process which emphasizes the dynamical as
over the static aspects encoded in the effective potential

Vacuum decay in field theory is described with a poten
which displays a local minimum, separated from the abso
minimum by a potential barrier. A system prepared in t
false vacuum state~metastable phase! within the potential
well may decay in essentially two different ways: namely~a!
by tunneling effect, that is, by going through the barrier in
classically forbidden trajectory@4–6#, or else,~b! by activa-
tion, that is, by jumping above the barrier@7,8#. In either
case, the decay probability follows the lawP;A exp(2B)
which gives the probability per unit time and unit volume
nucleate a region of the stable phase within the metast
phase. In the tunneling effect,B5S/\, where\ is Planck’s
constant andS is the action for the trajectory which goe
under the barrier in imaginary time@9#. In thermal activation,
B5Vs /(kBT), wherekB is Boltzmann’s constant,T the tem-
perature, andVs is the height of the free energy measur
from the false vacuum@10–12#. Thus, activation disappear
asT→0.

In systems with few degrees of freedom, there must be
external agent, typically a thermal source, for activation to
possible. Our thesis is that in field theories there is a p
nomenon similar to activation even at zero temperature. T
comes from the observation that in a field theory, when

*Also at Institut de Fı´sica d’Altes Energies~IFAE!, Barcelona,
Spain.
0556-2821/2001/64~10!/105008~21!/$20.00 64 1050
f
c-

f
cts

l
te
e

le

n
e
e-
is
a

mode decomposition of the field is made, there are onl
few long wavelengths modes which are unstable and de
These nearly homogeneous modes may be regarded a
open system, which interacts with the environment provid
by the shorter wavelength modes. It is then possible to
scribe the quantum evolution of the system in terms of
effective dynamics, whereby the interaction with the en
ronment results in the onset of dissipation and noise.

The ultimate reason for the presence of a finite activat
rate even at zero temperature is that, for a generic fi
theory the dynamics of these homogeneous modes is an
monic enough to contain Fourier components with frequ
cies above the threshold for excitation of the short wa
length modes. This results in an energy transfer from
long wavelength or homogeneous modes to the short wa
length or inhomogeneous modes through particle creat
As demanded by the energy balance, and encoded in
fluctuation-dissipation theorem, this energy flow is compe
sated by a stochastic force on the homogeneous mo
originated in fluctuations of the inhomogeneous modes. T
the dynamics of the homogeneous modes becomes diffus
even if, properly speaking, there is no external ‘‘enviro
ment’’ to the field@13#.

We wish to stress that this is not only a theoretical pos
bility. In this paper, we will show through a detailed analys
of a concrete model that the activation rate makes a subs
tial contribution to the full decay rate even at zero tempe
ture. In the process, we shall develop the necessary form
ism to compute the activation rate to leading order in\.

The key ingredient will be the description of the quantu
state of the long wavelength modes of the field by means
the reduced Wigner function. This function has the sa
information as the reduced density matrix of an open qu
tum system but is similar in many aspects to a distribut
function in phase-space. The dynamical equation for the
duced Wigner function~master equation! includes noise
terms produced by the short wavelength modes to quad
©2001 The American Physical Society08-1
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order in the parameter coupling the short and long wa
length modes. We shall derive the tunneling rate from
analysis of the decay of nontrivial solutions of the mas
equation, after suitable boundary conditions have been
forced.

The master equation contains all required information
vacuum decay, including both the ‘‘tunneling’’ aspect of t
homogeneous mode as well as ‘‘activation,’’ i.e. the effe
due to the backreaction of the inhomogeneous modes, b
this paper we concentrate on the activation aspect. T
whereas the instanton method@9#, for instance, seems to b
best suited to describe the pure tunneling of the homo
neous mode, the effect due to the backreaction of the in
mogeneous modes seems to be best described by the pr
method. Another advantage of this approach, which was
of our first motivations, is that whereas the instanton meth
works well for processes not far from equilibrium, th
method should work also for out of equilibrium situatio
since it is based on a real time evolution equation such as
master equation.

Our conclusion shall be that, for a physically well mo
vated system-environment separation, the contribution to
exponent coming from quantum fluctuations in the sh
wavelength modes is comparable to, but distinguisha
from, the contribution from tunneling under the barrier
the long wavelength modes themselves. Which contribu
is actually dominant will depend on the specifics of ea
model. Therefore, the approaches that underplay backr
tion from the short wavelength modes, underestimate
tunneling rate, and may even miss the largest contributio

Comparing with the literature on tunneling in open a
driven systems, the main difference is that we do not ass
a priori any features of the noise and dissipation, but rat
derive them from the underlying unitary field theory. In pra
tice, this means that we shall have to deal with non-lo
dissipation and colored noise. Also for simplicity, we sh
focus on computing the exponent in the tunneling rate
leading order in\, and at zero temperature. As a matter
fact, this is the difficult case, since at high temperature
interaction of the short and long wavelength modes is
another aspect of the interaction with the heat bath.

The paper is organized as follows. In Sec. II we brie
review current theories of vacuum decay and place our w
in that context. In Sec. III we present the basic derivation
the master equation for the reduced Wigner function fo
quantum Brownian motion~QBM! model which is of rel-
evance for our problem. The model is an open quantum
tem consisting of a massive particle in an arbitrary poten
coupled to an infinite set of harmonic oscillators, the co
pling is linear in the system variables but quadratic in
oscillator coordinates. For our problem the master equa
reduces to a Fokker-Planck-like equation. In Sec. IV we c
sider a field theory model consisting of a massive scalar fi
with a negative cubic potential term. The long and sh
wavelength modes of the field are separated and we re
the problem to a system-environment interaction similar
the QBM model discussed in the previous section. The
evant kernels for the corresponding Fokker-Planck equa
are calculated. Section V contains the derivation of the t
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neling rate from the analysis of the solutions to the Fokk
Planck equation. We discuss our results in the final sectio
number of Appendixes contain some of the unavoida
technical details.

II. VACUUM DECAY: A SURVEY

A. Vacuum decay in systems with one degree of freedom

The twin issues of thermal activation and spontane
nucleation have a long and distinguished history; see R
@14,10# for a review. In its simplest formulation, we dea
with a quantum mechanical system with one degree of fr
dom x and HamiltonianH5p2/21V(x), where V has the
generic form shown in the figure. It is an experimental fa
that even if we prepare the system to be confined to
neighborhood of the ‘‘false vacuum’’x;0, and the barrier is
much higher than the typical energies accessible to the
tem @E;\V9(0) in the quantum mechanical problem,E
;kT at finite temperature#, the system will find a way to
escape from the potential well after some typical timet has
elapsed. The problem is to estimate the ‘‘mean life’’t or
equivalently the ‘‘tunneling rate’’t21.

Vacuum decay can be formulated as a steady state p
lem if we inject particles into the system in order to keep
constant population in the false vacuum state. We then h
a constant flux of particles impinging on the barrier from t
left, and the problem reduces to the computation of the tra
mission coefficient@4#. In quantum mechanics, this is readi
obtained within the WKB approximation, and the result
the Arrhenius-like expression

t21;D exp~2S/\!, S5E
0

xexit
dxA2V~x!, ~1!

whereD is a prefactor of order 1, and we have set the cl
sical energy of the false vacuum to 0.

This formula describes vacuum decay through tunneli
that is, an essentially quantum phenomenon. If we allow
system to interact with an external noise source~typically a
heat bath at a given temperatureT), then the energy of the
system alone is no longer conserved, and the system
jump over the barrier, resulting in vacuum decay throu
activation. The activation rate has been computed, within
‘‘constant flux’’ approach, by Kramers@7# and Langer@8#.
They show that Eq.~1! still holds, but the exponentS/\
becomesFs /kT, whereFs is the activation free energy, i.e
the height of the free energy barrier to be overcome.

A less artificial approach attempts to compute the act
time evolution of the false vacuum stateCF . This is not a
stationary state of the system, but it may be expanded
energy eigenstatescE . The amplitude ofcE in the expansion
of CF peaks aroundE;0, and for small energy may b
approximated by the Breit-Wigner form@5,6#

CF~x,t !;E dE e2 iEt/\
cE~x!

E21l2
. ~2!
8-2
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VACUUM DECAY IN QUANTUM FIELD THEORY PHYSICAL REVIEW D 64 105008
At long, but not too long, times we obtainCF;Ce2lt/\.
The false vacuum behaves as an energy eigenstate with
plex energyEF;2 il ~complex energies and eigenstat
may be defined within an extended formalism of quant
mechanics@15#!, and the mean life ist;\l21.

The calculation of activation rates in the ‘‘complex e
ergy’’ approach has been worked out by Langer@16#. The
idea is to define a ‘‘free energy’’ for an ensemble of unsta
configurations including the critical droplet. This ‘‘free en
ergy’’ is complex, and its imaginary part is related to t
mean life as in the quantum mechanical problem. The ph
cal free energy, of course, is real, and it is given by Ma
well’s construction@17#.

Coleman and collaborators have proposed a simple
elegant way to compute the complex false vacuum ene
@9#. The idea is that the vacuum energy can be expresse
terms of a path integral over Euclidean histories with app
priate boundary conditions. For unstable systems, the
integral must be computed by analytic continuation, and
imaginary part appears. In certain cases it is possible to s
that the path integral is dominated by the contributions fr
a discrete set of saddle points, corresponding to sequenc
‘‘bounces’’ against the inner sides of the barrier with little
no overlap between bounces. Then the formula in Eq.~1! is
recovered, whereS is now interpreted as the Euclidean acti
for the one bounce solution, also called the ‘‘instanton.’’

The instanton method is easily generalized to the ther
case@11#. The idea is to write the partition function for th
unstable system as a path integral over Euclidean config
tions with periodicityb\ (b51/kT) in Euclidean time, and
then to evaluate the path integral in the saddle point appr
mation. Due to new boundary conditions, the thermal inst
ton may not be the same as the instanton atT50. The
change in the nature of the instanton gives a simple
compelling interpretation of the crossover from spontane
transition to thermal activation@12#.

The tunneling rate can also be derived from the la
order behavior of perturbation theory@18#.

B. Tunneling in systems with few degrees of freedom

All approaches discussed so far have natural genera
tions to systems with few degrees of freedom. In the cas
the instanton approach, the generalization is almost imm
ate, only one has to take care of symmetries of the sys
which may appear as zero modes in the spectrum of pe
bations around the instanton solution, thus causing an ap
ent divergence of the path integral. These symmetries ma
handled by isolating them as collective modes prior to
saddle point evaluation of the path integral@19#.

The ‘‘constant flux’’ approach is implemented by seeki
a solution to the Schro¨dinger equation within the WKB or
Born-Oppenheimer approximation@20#. The idea is to iden-
tify a single variablex which parametrizes the ‘‘most prob
able scape path,’’ namely the path across the saddle sep
ing the false and true vacua. Then one uses a mixed an
for the wave function, whereby it is assumed to be Gauss
on all other variables, and of WKB form with respect tox.
‘‘Under the barrier,’’ the WKB approximation leads to
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Hamilton-Jacobi equation for a particle moving in an i
verted potential, the same dynamical problem one confro
in the instanton method, although now the potential may
modified by terms arising from the zero point energies of
transversal modes; but not ofx itself @21#. This solution is
then matched to oscillatory solutions on either side of
barrier.

Conceptually, the WKB method has some advanta
over the instanton method@22#. In the first place, the connec
tion to the Schro¨dinger equation is much more straightfo
ward. Also, one has more control of the quantum state of
transversal degrees of freedom, which then allows one to
questions like whether tunneling is associated to particle
ation @23–25#. Finally, it has proved easier to define th
range of validity of the approximations involved in the WK
framework than in the Euclidean path integral one. Howev
they are likely to be equivalent in last analysis, and the c
clusion that these methods work best when the tunne
variablex is slow compared with the transversal modes pro
ably holds equally well for both approaches@26#. We refer
the reader to Ref.@27# for recent developments along the
lines, and to Ref.@28# for an example of similar technique
in a different context.

Some nonequilibrium aspects of vacuum decay have b
the focus of work by Boyanovskyet al. @29#. They show that
realistic initial conditions usually imply a nonzero probab
ity for the system to be at the unstable configuration in
saddle of the free energy surface. Starting from this confi
ration, the roll down of the system towards the true vacu
may be analyzed by usual nonequilibrium field theory me
ods. However, the initial amplitude is still computed by co
ventional methods, such as discussed so far.

C. Tunneling in quantum field theory

Gervais, Sakita and De Vega have applied the WK
method to tunneling in quantum field theory@30#; see Refs.
@31,32# for instanton and complex-time methods. In spite
the obvious similarities, there are some important differen
between the problem of tunneling in field theory and in s
tems with few degrees of freedom. Some of these differen
are technical in nature, such as the need to carefully acc
for loop corrections to the effective potential@33#, and to
adopt a regularization procedure to compute the prefacto
the Arrhenius formula@34–36#, which would be divergent if
naively computed. There is also a fundamental concep
difference which we now discuss.

A field theory only makes sense, from the physical po
of view, if it is understood as an effective theory describi
the low frequency sector of a more fundamental theo
whose high frequency degrees of freedom may be tot
unlike continuous fields; such as strings in elementary p
ticle physics, discrete lattices in condensed matter appl
tions, and molecules in hydrodynamics@37#.

One clear way to bring this point home is by explicit
integrating out all modes with wave numberk.L, whereL
is some cutoff. The remaining modes are described b
coarse grained effective potential@38–43#. As L decreases
from ` to 0, the coarse grained effective potential interp
8-3
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ESTEBAN CALZETTA, ALBERT ROURA, AND ENRIC VERDAGUER PHYSICAL REVIEW D64 105008
lates between the ‘‘bare’’ potential shown in the figure to t
Maxwell construction free energy@44#, showing the drastic
effect of the short wavelength modes or high frequency s
tor on the physics of the long wavelength modes or l
frequency sector. At some point the barrier separating
different metastable points disappears, reflecting the effec
averaging the field over distances much larger than a dom

D. Tunneling in open systems

As we have seen from earlier studies of the coarse gra
effective potential, tunneling in field theory should be pro
erly posed as an open quantum system problem. Howe
the nature of tunneling in an open system cannot be
scribed adequately by just computing changes in an effec
potential. Besides the static changes reflected by the s
dependent effective potential, the dynamics of the lo
wavelength modes will become both dissipative and stoch
tic. The onset of dissipation and noise is also generic
semiclassical@13# and effective theories@45#.

For the present discussion it is essential to realize
noise and dissipation are actually two aspects of a sin
phenomenon, the dynamical action and back-reaction
tween ‘‘system’’ and ‘‘environment.’’ In equilibrium situa
tions, this inner relationship can be made explicit through
‘‘fluctuation-dissipation’’ relation@46#.

A simple way to deal with tunneling in open systems is
model the environment explicitly within a larger system
environment complex, in effect reducing the problem to tu
neling in many degrees of freedom@47–49#. However, it is
essential to avoid approximations~such as assuming that th
environment degrees of freedom perform linear oscillatio
around a prescribed trajectory of the system! which in prac-
tice underplay the backreaction of the environment on
system, and thus break the balance between fluctuation
dissipation. The relevance of the fluctuation-dissipation re
tion to tunneling has been emphasized in Ref.@50#.

The broadening of the reduced Wigner function of t
open system by external noise has been discussed in
@51#. Unlike the present work, these authors consider an
ternal noise source, whose spectral features may be chos
will. In order to give an adequate account of backreacti
Bruinsma and Bak@52# have proposed treating the system
propagating in a random medium, the randomness being
sociated to the environmental variables. In a second ste
path integration over histories of the bath allows the com
tation of the tunneling rate. As in the present work, a seri
consideration of backreaction leads to describing the sys
as a driven system, subject to stochastic forces origina
from the environment.

The theory of vacuum decay in open systems has po
of contact with the problem of decay in driven system
@53,54#, although in these later studies usually the proper
of the driving force are assumeda priori, rather than derived
from a more comprehensive model. It is also possible
obtain a path integral representation of the solution o
Langevin equation, whereby an open system may be s
sumed into a larger field theory@55,56#. See Ref.@57# for
further developments.
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E. Tunneling and the semiclassical approximation

Semiclassical field theories, where some fields are trea
as c-number, while the rest are described quantum mech
cally, may be seen as open systems, with the classical fi
as the system and the quantum fields as the environm
Quantum fluctuations in the system are registered as nois
the environment, and may induce transitions.

An early application of these ideas appeared within S
obinsky’s ‘‘stochastic inflation’’ program@58#. Here the su-
perhorizon modes of the inflaton field during inflation are t
system whereas all other shorter wavelength modes are
environment; for a discussion of the validity of the semicla
sical approximation, see@59,60#. Cosmological redshift
causes a continuous streaming of modes from the envi
ment to the system, which may be regarded as a white n
source. This noise may allow the system to hop over pot
tial barriers, seeking the absolute minima. Eventually
steady state distribution of cosmological domains is reach
not unlike that predicted by the Hartle and Hawking ‘‘wav
function of the Universe’’@22,61#.

Much more generally, within the semiclassical appro
mation the backreaction to cosmological particle creat
processes always has a stochastic component@13#, for which
reason the correct semiclassical description of the Early U
verse ought to be formulated in terms of a stochas
‘‘Einstein-Langevin’’ equation@62#. If we consider an en-
semble of Universes, then we may introduce a distribut
function obeying a Fokker-Planck-like equation@63#. This
equation describes activation phenomena, which are
semiclassical version of Vilenkin’s ‘‘creation from nothing
scenario@64#.

III. OPEN SYSTEMS AND THE REDUCED WIGNER
FUNCTION

Before dealing with field theory we will consider in thi
section a quantum Brownian motion~QBM! model which is
typically used as a paradigm of an open quantum syst
The system has an arbitrary potential and the coupling
tween the system and the environment is linear in the sys
variables but quadratic in the environment variables. T
feature will be of relevance when dealing in Sec. IV with o
field-theory model. The main result of this section is t
derivation of the master equation for the reduced Wig
function of the QBM model to leading order in\. This equa-
tion turns out to be a Fokker-Planck equation which is sim
lar to that used by Kramers@7# to study the activation prob
lem in statistical physics.

A. A QBM model

As our QBM model we consider a system consisting o
particle of unit mass (M51) described with a variablex and
subject to an arbitrary potential with a quadratic part cor
sponding to an oscillator of frequencyV0 and an anharmonic
part V(nl)(x), i.e. V(x)5(1/2)V0

2 x21V(nl)(x), which is
coupled to an environment consisting of an infinite set
harmonic oscillators with coordinatesqj . The action for the
whole set of degrees of freedom is defined by
8-4
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S@x,$qj%#5S@x#1S@$qj%#1Sint@x,$qj%#, ~3!

where the system, environment and interaction actions
given, respectively, by

S@x#5E dtS 1

2
ẋ22V~x! D , ~4!

S@$qj%#5(
j
E dtS 1

2
mq̇j

22
1

2
mv j

2qj
2D , ~5!

Sint@x,$qj%#5(
j

gE dt xqj
2 , ~6!

whereg is a coupling constant, and we have assumed tha
coupling is linear in the system variable but quadratic in
environment variables. The environment oscillators have
the same massm and their frequencies arev j . At this point
the potentialV(nl)(x) is arbitrary, but later we will take a
cubic potential,V(nl)(x)52(l/6)x3, in this way the total
potential will present a local minimum and a barrier as
quired to represent the system in a metastable phase. Als
parametersl andg are unrelated, however when we consid
the application to a field theory these parameters will co
cide.

The reduced density matrix for our open quantum sys
at a certain final timet f is defined from the density matrixr
of the whole system by tracing out the environment degr
of freedom at that time

r r~xf ,xf8 ,t f !5E )
j

dqjr~xf ,$qj%,xf8 ,$qj%,t f !. ~7!

The reduced density matrix at timet f can be written in
terms of the reduced density matrix at the initial timet i by
the evolution equation,

r r~xf ,xf8 ,t f !5E dxidxi8J~xf ,xf8 ,t f ;xi ,xi8 ,t i !r r~xi ,xi8 ,t i !,

~8!

in terms of the propagatorJ, whose path integral represent
tion is

J~xf ,xf8 ,t f ;xi ,xi8 ,t i !5E
xi

xfDxE
xi8

xf8Dx8 exp
i

\
~S@x#2S@x8#

1SIF@x,x8# !, ~9!

where xi5x(t i), xf5x(t f) and similarly for the primed
quantities, andSIF@x,x8# is the Feynman and Vernon influ
ence action@65#. When the system and the environment a
initially uncorrelated the initial density matrix factorizes, i.
r(t i)5r r(t i)re(t i) ~herere stands for the environment den
sity matrix!; the influence functional, which is defined b
F@x,x8#5exp(iSIF@x,x8#/\), can be expressed by
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F@x,x8#5)
j
E dqj

( f )dqj
( i )dqj8

( i )E
qj

( i )

qj
( f )

DqjE
qj8

( i )

qj
( f )

Dqj8

3exp
i

\
~S@$qj%#2S@$qj8%#1Sint@x,$qj%#

2Sint@x8,$qj8%#!re~$qj
( i )%,$qj8

( i )%,t i !, ~10!

where qj
( i )5qj (t i), qj8

( i )5qj8(t i), and at the final times
qj (t f)5qj

( f )5qj8(t f).
Assuming a Gaussian initial state for the environment,re

is Gaussian and the influence functional can be compu
perturbatively ing from the path integral. Up to second ord
in g @65# we have for the influence action,

SIF@x,x8#522E
t i

t f
dtE

t i

t

dt8D~ t !D~ t,t8!X~ t8!

1
i

2Et i

t f
dtE

t i

t f
dt8D~ t !N~ t,t8!D~ t8!, ~11!

where we have introduced the average and difference c
dinates defined, respectively, by

X~ t ![
1

2
@x8~ t !1x~ t !#, D~ t ![x8~ t !2x~ t !. ~12!

The kernelsD(t,t8) and N(t,t8) are called dissipation and
noise kernels, respectively, and are defined byD5( jD j and
N5( jNj where

D j~ t,t8!52
i

2
^@J j~ t !,J j~ t8!#&, ~13!

Nj~ t,t8!5
1

2
^$J j~ t !,J j~ t8!%&2^J j~ t !&

3^J j~ t8!&, ~14!

with J j5gqj
2 . It is now convenient to introduce the kerne

H j (t,t8)522D j (t,t8)u(t2t8) and we can write the influ-
ence action in the form

SIF@x,x8#5D•H•X1
i

2
D•N•D, ~15!

where we have introduced the notationA•B[*dtA(t)B(t)
and definedH5( jH j which we may write formally as
H(t,t8)522D(t,t8)u(t2t8). This last equality is howeve
a formal expression since being the product of two distrib
tions, H is not well defined and suitable regularization a
renormalization are required. This term, in fact, has lo
divergent parts that may be reabsorbed into the paramete
the bare action, see@66# for details. Thus, from now on we
will assume thatH is a well defined distribution in the pre
vious sense.
8-5
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B. The reduced Wigner function

Our main purpose in this subsection is to write the
duced Wigner function for the system in a suitable way. T
is a phase space function which is defined from the redu
density matrix by the following integral transform

f ~X,p,t !5
1

2p\E2`

`

dDeipD/\r r~X2D/2,X1D/2,t !.

~16!

The reduced density matrix~8! at timet f can be computed
from the path integrals of Eq.~9!. To carry out this compu-
tation we will follow closely Ref.@67# where a similar com-
putation for a linear system coupled linearly to an enviro
ment was described. For this reason we will describe h
only the main steps and will concentrate on those which
peculiar to the nonlinear system. This is performed in sev
steps in which a key role is played by the use of the coo
natesX andD instead ofx andx8. The first step is to inte-
grate the system action in Eq.~9! by parts using the new
coordinatesX andD,

S@x#2S@x8#52ẊDu t i

t f1E
t i

t f
dt D~ t !S d2

dt2
X~ t !1

]V

]X U
D50

D
1 . . . , ~17!

where the ellipsis stands for the terms nonlinear inD that
come from the potentialV(x) which involve higher deriva-
tives in X ~see below!. Note that due to the fact that th
potential gradient is evaluated atD50 this term can also be
written asV8(X) where V(X) is functionally the same a
V(x).

The change of integration variables*xi

xfDx*
x

i8

xf8Dx8

→*Xi

XfDX*D i

D fDD involves a Jacobian which is unity and thu

the path integration of the propagator~9! can be written as

E
Xi

XfDXE
D i

D fDDe( i /\)D•L@X#F@D,X#, ~18!

whereL@X# is a functional ofX and a function oft defined
by

L@X;t ![S d2

dt2
X~ t !1

]V

]X U
D50

D 1E
t i

t

dt8H~ t,t8!X~ t8!,

~19!

and the functionalF@D,X# incorporates in the exponent a
the terms that are not linear inD which come from the in-
fluence action and from the nonlinear potential of the sys
action, when expressed in the variablesX(t) andD(t). More
precisely,

F@D,X#5exp
i

\ S i

2
D•N•D1E

t i

t

dt8 V(nl)@D,X# D , ~20!

where
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V(nl)@D,X#52(
n>1

1

~2n11!!

] (2n11)V

]X(2n11)U
X,D50

~2D/2!2n11.

~21!

In particular, for the cubic potentialV(nl)(x)52(l/6)x3 we
haveV(nl)@D,X#52(l/24)D3.

Let us now introduce the functional Fourier transform

P@j#5KE DD eiD•j/\e2D•N•D/2\, ~22!

whereK51/det(2p\I ), the interpretation of this functiona
will be discussed below. With expression~22! we may write
the reduced Wigner function as

f ~Xf ,pf ,t f !5
1

2p\E dXidD iE Dj P@j#

3E
2`

`

dD f eip fD f /\E
Xi

XfDX e2 iD f Ẋ(t f )/\

3E
D i

D fDD eiD•(L[X] 2j)/\ei *V(nl)/\eiD i Ẋ(t i )/\

3r r~Xi2D i /2,Xi1D i /2,t i !;

and using thatD5exp(iD•j/\)(i\d/dj)exp(2iD•j/\), it may
be rewritten as

f ~Xf ,pf ,t f !5
1

2p\E dXidD iE
Xi

XfDXE Dj PQ@j,X;t f !

3E
2`

`

dD f ei [ pf2Ẋ(t f )]D f /\

3E
D i

D fDD eiD•(L[X] 2j)/\eiD i Ẋ(t i )/\

3r r~Xi2D i /2,Xi1D i /2,t i !,

where

PQ@j,X;t !5H expF i

\Et i

t

dt8V(nl)F2 i\
d

dj
,XG G J P@j#.

~23!

A convenient way to perform the path integration forX(t)
is to introduce the following functional change:

X~ t !→$Xi5X~ t i !,pi5Ẋ~ t i !,j̃~ t !5L@X;t !%. ~24!

With this transformation the functionX(t) becomes substi-
tuted by the initial conditions (Xi ,pi) and the functionj̃(t)
in the path integration. This functional change is invertib
in the sense that$Xi ,pi ,j̃(t)%→X(t), since the solutionX(t)
of the integro-differential equation involved in~24! is unique
given initial conditions (Xi ,pi). A subtler point concerns the
Jacobian of the transformation~24!. Even though this trans
formation is nonlinear, one can show that the Jacobian
8-6
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constant. This can be seen by discretizing the timetk5ek
1t i (k51,2, . . . ,n, andt i is the initial time!. Then the cor-
responding values (Xi ,X1 , . . . ,Xn), whereXk5X(tk), map
into (Xi ,pi ,j̃2 , . . . ,j̃n) in such a way that the Jacobian m
trix has zero elements above the diagonal. For instance
second derivative terms become@(Xk2Xk21)2(Xk21

2Xk22)#/e21V8(Xk21)2(k8,kHkk8Xk85 j̃k . The Jacobian
is thus the product of the diagonal elements, which are c
stant ~independent of anyXk!. Then one may write
*DX . . . 5K̄*dXidpi*Dj̃ . . . and introduce convenien
delta functions such asd„X(t f)2Xf… to ensure that the cor
rect final points appearing in~18!, i.e., *XfDX are recovered
from the functional integral*Dj̃ with free ends. One should
also be careful about the dependence on the initial condit
(Xi ,pi) in the general case.

Now we first perform the integralDD which simply leads
to a term proportional tod( j̃2j) and the integralDj̃ is then
trivial. On the other hand the integraldD i brings back the
reduced Wigner function at the initial time according to E
~16!. Finally, we get the following suggestive form for th
reduced Wigner function at the final time

f ~Xf ,pf ,t f !5K̄E dXidpiE Dj PQ@j;t f !d„pf2Ẋ~ t f !…

3d„Xf2X~ t f !…f ~Xi ,pi ,t i !, ~25!

whereX(t) is a solution of the integro-differential equatio

L@X;t !5j~ t !, ~26!

with initial conditions (Xi ,pi), i.e. X5X@j;Xi ,pi), and

PQ@j;Xi ,pi ,t !5PQ@j,X@j;Xi ,pi !;t !. ~27!

The constantK̄ from the Jacobian can be determined fro
the condition that Trr r(t f)51, i.e. that
*2`

` dXfr r(Xf ,Xf ,t f)51, which is equivalent to
*2`

` dXfdpf f (Xf ,pf ,t f)51. Inserting expression~25! for
f (Xf ,pf ,t f) we get

K̄E dXidpiE DPQ@j;t f ! f ~Xi ,pi ,t i !51. ~28!

WhenPQ@j,X;t) does not depend onX, one can use the fac
that *2`

` dXi*2`
` dpi f (Xi ,pi ,t i)51, which is a consequenc

of Tr r r(t i)51 to obtain,

K̄E Dj PQ@j;t !5K̄E Dj P@j#51, ~29!

which determinesK̄.
Several remarks are in order here. The functio

PQ@j,X@j;Xi ,pi);t) is always real, but in general it will no
be positive definite and, thus, will not really correspond
the probability density functional for a classical stochas
process. This is the meaning that must be associated to
stochastic process in the Langevin-like equation~26!. This
situation is, in fact, analogous to that for the Wigner functi
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but applied here to distribution functionals. Note that this
in contrast to the linear case studied in Ref.@67#, where the
source of the Langevin equation really corresponded t
stochastic process~with a positive probability density func
tional!.

We emphasize again that if we have a cubic potential
the system,V(x)52(l/6)x3, and keep up to quadratic orde
in g, we have explicitly

F@D,X#5e2(1/2\)D•N•De2( i /\)*dt(l/24)D3
, ~30!

where the noise kernelN and the kernelH, which appeared
in L above, are both quadratic ing; note that there is no
dependence onX in this case, and thusPQ@j;t) defined in
Eq. ~27! does not depend on the initial conditions (Xi ,pi).
Hu, Paz and Zhang@68# obtained the master equation for th
particular case in which the nonlinear potential of the syst
is also treated perturbatively inl, which was considered to
be of the same order asg. Here, however, our result is exac
in l, and to leading order in\. This fact will turn out to be
important since in Sec. IV it will be crucial to consider s
lutions of the classical equations of motion which are no
perturbative inl thus reflecting their strong nonharmonicit

C. The master equation

The expression~25! of the reduced Wigner function an
the Langevin-like equation~26! can be used to derive th
master equation forf as a formal Fokker-Planck equation
The derivation is usually handled using Novikov’s formu
when the stochastic process is Gaussian@82,73,67#. Here,
however, this is not the case forPQ and we have to work
from the beginning.

To obtain the equation of motion for the Wigner functio
we derive both terms of Eq.~25! with respect to time. Ob-
serve thatPQ depends explicitly on time, therefore

]

]t f
f ~Xf ,pf ,t f !5A1B, ~31!

where

A5K̄E dXidpiE Dj PQ@j;t f
2!S ]

]t f
@d„pf2Ẋ~ t f !…

3d„Xf2X~ t f !…# D f ~Xi ,pi ,t i !, ~32!

~we write t f
2 in PQ to emphasize that the dependence ont is

taken care of explicitly by theB term! and

B5K̄E dXidpiE DjS ]

]t f
PQ[ j;t f) D d„pf2Ẋ~ t f !…

3d„Xf2X~ t f !…f ~Xi ,pi ,t i !. ~33!

Let us analyze theB term first. Since

]

]t f
PQ@j;t f !5

i

\
V(nl)F2 i\

d

dj~ t f !
,Xf GPQ@j;t f

2!, ~34!
8-7
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integrating by parts we find,

B5K̄E dXidpiE Dj PQ@j;t f !F i

\
V(nl)F i\

d

dj~ t f !
,Xf G

3@d„pf2Ẋ~ t f !…d„Xf2X~ t f !…#G f ~Xi ,pi ,t i !. ~35!

We are only interested in derivatives taken att f , when

dX~ t f !

dj~ t f !
50,

dẊ~ t f !

dj~ t f !
51, ~36!

without further dependence onj(t f). This can be seen from
the fact thatdX(t)/dj(t8) satisfies@(L̄1H)•dX/dj#(t,t8)
5d(t2t8) with the X(t) which appears inL̄ fixed, L̄ is the
integro-differential operator L̄(t,t8)[(d2/dt21]2V/
]X2uX(0))d(t2t8); see Eq. ~26!. The solution is
dX(t)/dj(t8)5Gret(t,t8), which is the retarded propagato
corresponding to the linear operator (L̄1H) with X(t) fixed.
So the final result is

B5
i

\
V(nl)F2 i\

d

dpf
,Xf G f ~Xf ,pf ,t f !. ~37!

ConcerningA, we find

A52K̄E dXidpiE Dj PQ@j;t f
2!F S dX~ t f !

dtf

]

]Xf

1
dẊ~ t f !

dtf

]

]pf
D @d„pf2Ẋ~ t f !…d„Xf2X~ t f !…#G f i ,

~38!

and reading the derivatives from Eq.~26! we can writeA
5A11A21A3. The first term is simply

A15$Hs , f %, ~39!

where $Hs , f %52p(] f /]X)1V8(] f /]p) is the Poisson
bracket withHs5p2/21V(X) the system Hamiltonian. The
second term is

A252
]

]pf
K̄E dXidpiE Dj PQ@j;t f

2!

3F E
t i

t f
dt8H~ t f ,t8!X~ t8!G @d„pf2Ẋ~ t f !…

3d„Xf2X~ t f !…# f i , ~40!

to lowest order in\, we are entitled to replaceX(t8) inside
the non-local term by a solution of theclassicalequations of
motion with the given Cauchy dataXf andpf . We shall call
this procedure of substitution of the classical trajectories i
the terms which are already of order\ ‘‘reduction of order.’’
We may then extract the non-local term from the integra
get the simpler form
10500
o

o

A25
]

]p
@G~X,p,t ! f #, ~41!

where G(X,p,t)52* t i
t dt8H(t,t8)X(t8). Finally, the third

term is

A352
]

]pf
K̄E dXidpiE Dj PQ@j:t f

2!j~ t f !

3d„pf2Ẋ~ t f !…d„Xf2X~ t f !…f i . ~42!

To compute this term, we note from Eqs.~23! and ~27! that

j~ t f !PQ@j;t f
2!5H expF i

\E t f
2

dt8V(nl)F2 i\
d

dj
,XG GJ

3j~ t f !P@j#, ~43!

and sinceP@j# is Gaussian, we may use the identity~Novik-
ov’s formula!:

j~ t f !PQ@j:t f
2!52\E

t i

t

dt8N~ t,t8!
d

dj~ t8!
PQ@j;t f

2!.

~44!

Integrating Eq.~42! by parts and after further simplification
where we explicitly assume that, as in the case of the cu
potential,PQ is independent ofX ~in this way we can com-
mute the exponential ofV(nl) in PQ with the functional de-
rivative with respect toj), we obtain

A35
]

]pf
$N, f %, ~45!

where N[\*dt8N(t,t8)X(t8), and we have applied onc
again a reduction of order prescription. The details of t
calculation are given in Appendix A.

To summarize, and using the explicit form ofV(nl) for the
cubic potential, we obtain the following dynamical equati
for the reduced Wigner function~master equation!:

] f

]t
5$Hs , f %1

]

]p
@G~X,p,t ! f #1

]

]pf
$N, f %2\2

l

24

]3f

]p3
.

~46!

If the system were isolated, the master Eq.~46! would reduce
to

]W

]t
5$Hs ,W%2\2

l

24

]3W

]p3
, ~47!

whereW is the Wigner function of the closed system,Hs its
Hamiltonian and the curly brackets are the Poisson brack
This equation is exactly equivalent to von Neumann’s eq
tion for the density matrix of a one-dimensional quantu
mechanical system with a cubic potentialV(x)52(l/6)x3.
Note that the term with the third derivative with respect
the momentum is responsible for tunneling when prope
combined with the otherwise classical dynamics genera
8-8
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by the term corresponding to the Poisson bracket, i.e., if
term were not present, the evolution of the Wigner funct
would be entirely equivalent to that of a classical ensem
in phase space.

There is a theorem by Pawula@69# which states that a
diffusion-like equation such as Eq.~47! should have up to
second order derivatives at most, or else an infinite Kram
Moyal expansion, for non-negative solutionsW(x,p,t) to ex-
ist. The equation for the Wigner function circumvents t
implications of the theorem since it need not be everywhe
positive. Even if we have an everywhere-positive Gauss
Wigner function at the initial time, the evolution generat
by an equation such as Eq.~47! will not keep it everywhere-
positive. This can be connected with the fact that the Wig
function could be interpreted as the distribution function
sociated to an ensemble of solutions satisfying the Lange
like equation~26! with a generalized stochastic sourcej(t)
with a non-positive probability density functionalPQ@j#.
Thus, here we see the essential role played by the n
positivity of the Wigner function in a genuinely quantu
aspect such as tunneling. In other aspects such as in qua
coherence this role is well known@70#.

It is important to stress the following points. First, we a
not assuming that the stochastic trajectories described by
Langevin equation are real trajectories; although they may
if there is decoherence@71#. Second, although we use th
initial Wigner function to weight the initial conditions, we d
not assume it is a probability distribution function. Our i
terest in the Wigner function is that we shall use the fact t
it acquires a substantial nonzero average beyond the bas
attraction of the false vacuum as a signal that tunneling
occurred. This application is valid even if the Wigner fun
tion itself cannot be understood as a probability distribut
function, because the distributions computed from
Wigner functions, such as*2`

` dX f(X,p) or *2`
` dp f(X,p)

are true probability distributions, and*2`
` dX(p/M ) f (X,p)

is a true probability flux@72#.

D. Dynamics of the distribution function f

To compute the tunneling probability from Eq.~47! is
possible using, for instance, a WKB approximation sche
@20,21#. Alternatively one may use the instanton method@9#
which gives a simple answer in this case. Our main inte
in this paper is not this contribution to tunneling but rather
compute the effect due to the backreaction of the envir
ment. To simplify our derivation we shall assume that t
time scales are different, that the dominant term is the ba
reaction effect and, thus, we will neglect the third derivat
term in the master equation~46!. More precisely, we will use
the evolution equation for the distribution functionf

] f

]t
5$Hs , f %1

]

]p
@G~X,p,t ! f #1

]

]pf
$N, f %. ~48!

This equation describes an ensemble of points evolving
cording to the dynamics
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Ẋ5p, ṗ52V8~X!1E
2`

t

dt8H~ t2t8!X~ t8!1j,

~49!

whereH is the dissipation kernel introduced in Eq.~15!, and
j is a Gaussiannoise described by the noise kernelN intro-
duced in Eq.~11!, as

^j~ t !j~ t8!&5\N~ t2t8!. ~50!

Although we set up the initial conditions att i50, we
extend the lower integration limit in Eq.~49! to 2` for
computational purposes. The approximation is, neverthel
justified since the characteristic frequencies of the envir
ment,v j*1 ~recall that the system particle has unit mas!,
are much larger than the typical decay rate of the initial fa
vacuum state. In other words, the characteristic time scale
the environment dynamicst&1 and hence, the typical ‘‘cor-
relation time’’ for the dissipation and noise kernels, is mu
smaller than the typical decay time. The contribution to t
integration interval (2`,0) is, therefore, relatively small.

According to Eqs.~13! and ~14! these kernels admit the
following representation,

N~ t2t8!5
1

2
^$J~ t !,J~ t8!%&2^J~ t !&^J~ t8!&, ~51!

H~ t2t8!5
i

\
^@J~ t !,J~ t8!#&u~ t2t8!, ~52!

whereJ[( jJ j and where we must keep in mind the ne
for regularization of the kernelH as defined above. Let u
take the Fourier transforms,

^@J~ t !,J~ t8!#&5E dv

2p
e2 iv(t2t8)\vg~v!, ~53!

N~ t2t8!5E dv

2p
e2 iv(t2t8)n~v!. ~54!

For an environment initially in thermal equilibrium at tem
peratureT5b21 the functionsg and n will be related
through the fluctuation-dissipation theorem

n~v!5F1

2
1 f 0~v!G\uvug~v!, f 0~v!5~eb\uvu21!21,

~55!

which is a consequence of the Kubo-Martin-Schwing
~KMS! formula. Here we shall consider the zero temperat
case only.

In order to compute the memory terms in Eq.~49!, it is
convenient to parametrize the trajectories by their initial co
ditions at timet i50. These trajectories may be written
terms of the action-angle variablesJ andu associated to the
classical potential, which we assume has a potential w
bounded by a finite potential barrier. In other words, we
usingJ andu as Lagrangian coordinates, identifying a give
trajectory, whileX andp are like Eulerian coordinates, iden
tifying where the trajectory is at a given time. The actio
8-9
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variable is defined byJ5(1/2p)rpdX; sincep can be writ-

ten in terms ofẊ and the system HamiltonianHs , substitu-
tion into the equation definingJ and inversion implies tha
Hs5Hs(J), anddHs /dJ5V(J) is the frequency of the mo
tion. The angle variableu changes from 0 to 2p and satisfies
the equation of motionu̇5V.

Since the kernelH is already of order\, in the memory
term of Eq.~49! we must replace the trajectoryX(t8) by a
solution of the classical equation of motion, in which ca
the transformation to variables (J,u) is canonical. For fixed
J, the classical trajectory is periodic,X(t8)5X(t812p/V);
note that the motion is periodic inside the potential well b
at higher energies, near the top of the potential barrier~the
separatrix! when J→Js , the motion ceases to be period
andV→0. Thus we may write

X~ t8!5(
n

ein[u1V(J)t8]Xn~J!

~56!

p~ t8!5 iV~J!(
n

ein[u1V(J)t8]nXn~J!

whereX2n5Xn* , sinceX is real. We then write the memor
dependent term as:

G52E
2`

t

dt8H~ t2t8!X~ t8!

52(
n

Xn~J!ein[u1V(J)t]E dv

2p

vg~v!

v1nV~J!2 i«
,

~57!

where we have used Eqs.~52!, ~53! and ~56!, and that
*0

`du exp(isu)5i/(s1i«). Therefore we have

G~X,p,t !52(
n

Xn~J!ein[u1V(J)t]gn~J!,

gn~J!5E dv

2p

vg~v!

v1nV~J!2 i«
. ~58!

Observe that although the Langevin equation is now loca
time, it is not necessarily Ohmic. A similar manipulation
the last term in the master equation~48! gives~see Appendix
A!

N~J,u!5(
n

Xn~J!ein[u1V(J)t]Nn~J!,

Nn~J!5E dv

2p

@2 in~v!#

v1nV~J!2 i«
. ~59!

E. Weak dissipation limit: Averaging over angles

So far, we have keptf arbitrary. To study tunneling, how
ever, we may impose the additional condition thatf 5 f (J),
and obtain a simpler equation by averaging the Fokk
10500
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Planck equation over the angle variableu. This approxima-
tion has been discussed by Kramers@7,69# as prevailing in
the weak dissipation limit. Recall that then$Hs , f %50, and
that, for any phase space functionC(u,J),

R du$X,C%5 R dXH ]C

]J U
u

2
]X

]JU
u

Ċ

Ẋ
J

5
d

dJ R dX C5
d

dJ F 1

V R du pCG ,
where we have used that for the classical trajectorydu

5 u̇dt5Vdt, and thatdX5]uXuJdu1]JXuudJ from where
by imposingdX50 we can deduce]JuuX .

Finally the Fokker-Planck equation~48! becomes

] f

]t
5

d

dJ HN d f

VdJ
1Df J ~60!

where we introducedD andN as follows:

D[
1

V R du pG5 i(
n

uXn~J!u2ngn~J!, ~61!

N[ R du p
]N

]u
5V(

n
uXn~J!u2n2Nn~J!. ~62!

Now observe that from Eq.~58! and using that 1/(s1 i«)
5PV(1/s)1 ipd(s) we can write

gn~J!5PVE dv

2p

vg~v!

v1nV~J!
2

i

2
nV~J!g@nV~J!#,

but since 1/@v2nV(J)#21/@v1nV(J)#52nV/@v2

2n2V2(J)# the first term ofgn above integrates to zero, s
that only the imaginary term contributes, and we finally ha

D5
V

2 (
n

uXn~J!u2n2g@nV#. ~63!

A similar computation using expression~59! for Nn leads to
the final expression forN:

N5
V

2 (
n

uXn~J!u2n2n@nV#. ~64!

F. A rough estimate of the decay rate

Equations~48! and ~60! are the basic equations for th
rest of our analysis. The rest of the paper is devoted to
explicit computation of theD and N functions in a field
theoretical problem, and to solving the dynamical equatio
therefrom. However, we may already at this point make
educated guess about the relationship between the decay
predicted by these equations, and the usual quantum
mates.

The point is that, since these are after all equations sim
to those discussed by Kramers@7#, we may obtain a rough
estimate of the transition amplitude by just plugging
8-10
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Kramers’ result for the flux. This is made from Eq.~60!
which we may write as a continuity equation] t f 1]JK50
where the probability fluxK may be directly identified from
the equation. Then one looks for stationary solutions w
positive fluxK0, which must satisfy (N/V)]Jf 1Df 52K0.
From this equation one may estimate@imposing that the par-
ticle is in the potential well*Jsf (J)dJ<1, whereJs is J at
the separatrix, i.e. the top of the potential barrier# using that
dE5VdJ the following upper bound forK0:

K0;e2B(Es), B5E dE~D/N!.

At high temperature, we haven5gkT, N5kTD, B
5E/kT, and

K0;exp~2Es /kT!,

whereEs is the energy at the separatrix, as expected@69#. At
low temperature, see Eq.~55!, n5\uvug/2. Now, because
the sums which define bothN andD are dominated by fre-
quencies of the order of the curvature of the potential aro
the unstable fixed pointv;AuVs9u ~this being the time scale
for the exponential approach to the unstable fixed poi!,
thenN;\AuVs9uD/2, and thus

K0;exp~22Es /\AuVs9u!. ~65!

We may compare this estimate with the usual WKB tu
neling amplitude given by

K0~ tunnel!;expS 2\21E dxA2V~x! D . ~66!

If the integral is dominated by the peak at the unstable fi
point Xs , thenV;Es2Vs9(X2Xs)

2/2 and the Euclidean tra
jectory may be parametrized asX;Xs2A2Es /Vs9cosu, 0
<u<p, which gives*dxA2V(x);pEs /AVs9.

We arrive at the remarkable conclusion that tunneling
comparable to the noise effect from the environment.
course, our coarse estimates are not reliable for an accu
comparison and we must proceed to a more quantitative
count.

IV. QUANTUM FIELDS AS OPEN SYSTEMS

A. The model and system-environment split

We wish to study vacuum decay at zero and finite te
peratures for a 311 quantum massive scalar fieldF with
action

S@F#5E d4xS 2
1

2
hmn]mF]nF2

1

2
M2F21

1

6
gF3D ,

~67!

where the metric convention ishmn5diag(21,1,1,1)(m,n
50,1,2,3). Although we keep\ explicit, we setc51. The
massM has units of (length)21, F has units ofMA\ and
g of M /A\.
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As discussed in the Introduction, we wish to focus on t
behavior of the long wavelength modes of the field. Let
split the fieldF5f1w, wheref represents the long wave
length modes andw the short wavelength modes. To do th
we introduce a length scaleL21 which will be suitably fixed
for our problem. To definef(x) we take a window function
W(x82x) centered at the pointx with a width L21 and
convolute the fieldF with it

f~x!5E d3x8W~x82x!F~x8!, ~68!

then, of course,w(x)5F(x)2f(x). In this way the field at
each point has two contributions, one corresponding roug
to scales larger than or of orderL21 and the other to smalle
scales. This has its correspondence in momentum space
may define the Fourier transform ofF by

F~x!5E d3k

~2p!3
eikW•xWFkW~ t !, ~69!

the long wavelength modes now becomefkW(t)
5W̃(2kW )FkW(t), whereW̃(kW ) is the Fourier transform ofW,
and for the short wavelength modes we havewkW5FkW2fkW .
It may be convenient to use a Gaussian window. In this w
W̃ is also Gaussian with widthL, or sometimes it may be
more convenient to take a step function for the Fourier tra
form of the window such asW̃(kW )5u(L2k) wherek5ukW u.

At this pointf is still a field, that is, it contains an infinite
number of degrees of freedom. It is convenient to reduce
system to a single degree of freedom, such as we have
cussed in Sec. III. One way to accomplish this is simply
enclose the field in a box of sizeL21; see@74#. The bound-
ary conditions in this case would introduce an undesired
crete spectrum for the modes. From a physical point of vi
it is more satisfactory to proceed as follows. In a region
volumeL23 we define the average field

f̄~ t !5L3E
L23

d3xf~x!. ~70!

Note that if we introduce the functionr(k/L)
5L3*L23 exp(2ikW•xW), which satisfiesr(0)51, then in mo-
mentum space we havef̄(t)5(2p)23*d3kr(k/L)fkW so
that f̄ is made up of the modes of the field withk<L.

Now when the fieldsf andw are substituted into Eq.~67!
the action will be decomposed in three parts. One invol
the fieldf only, another the fieldw only, both with the same
functional dependence as the original action and a third
teracting part involves terms linear inw and the quadratic
term (1/2)gfw2 which comes from the cubic term in Eq
~67!. We will approximate the different terms as follow
*L23d3xfn(x).L3f̄n for any integern and *L23d3xw(x)
.0 since the short wavelength modes should average
zero. Thus, generally we have *L23d3xfnf (w)
.f̄n*L23d3x f(w), wheref is an arbitrary polynomic func-
tion of w. Since we want to focus in the single degree
8-11
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freedom f̄(t), which is the averaged field associated to
certain region of volumeL23, it will be convenient to re-
strict the volume integrals involving the fieldf to that vol-
ume.

Up to this point the scaleL has been arbitrary. Now we
need to fix it. Since the fieldf is homogeneous in the regio
considered, the gradient terms should be negligible in fr
of the mass term, (¹W f)2!M2f2 and this means that th
momentum cutoff for the modes of the fieldf should bek
!M , which implies that there is an upper bound for the sc
L: L<M . We also want to be able to treat the fieldw per-
turbatively and that means that the field should be stable
this case the cubic termw3 will be a two-loop order term and
may be neglected to leading order in\. We will see in a
moment that the condition forw to be stable implies a lowe
bound forL: L>M . Thus for the system-environment sp
to be consistent we needL;M and the volume isM 23.

Finally the action~67! can be approximated as a syste
environment interaction action S@F#.Ss@f̄#1Se@w#

1Sint@f̄,w# where

Ss@f̄#5M 23E dtS 1

2
fG 22

1

2
M2f̄21

1

6
gf̄3D , ~71!

Se@w#5E dtE
k>M

d3k

~2p!3 F1

2
ẇkWẇ2kW2

1

2
~k2

1M2!wkWw2kWG , ~72!

Sint@f̄,w#52
1

2
gE dtE

M23
d3xf̄w2, ~73!

where we made a mode decomposition and integrated
the whole space volume in the environment action. Now
potential of the system

V~f̄ !5
1

2
M2f̄22

1

6
gf̄3, ~74!

has a stable fixed point atf̄50 and an unstable fixed poin
at f̄5fs[2g21M2. The former corresponds to zero energ
and the latter toE5Es[M 21fs

2/6, in the volumeM 23. For
intermediate energies, we may have bound and unbo
states. They are separated by a potential barrier, whic
zero energy extends fromf̄50 to f̄5fexit[3fs/2. At any
given energy there will be three classical turning pointsfL
,0,fR,fs,fX ; as E→0, fL , fR→0 and fX
→fexit , while when E→Es , fR ,fX→fs and fL→
2fs/2. We are thus in the situation described in Sec.
consequently according to the estimate at the end of the
subsection, Eq.~65!, we expect here that the tunneling ra
will be K0;exp(2aM2/\g2) wherea is a dimensionless
parameter to be determined. Since the system is the aver
field f̄, the tunneling rate is now per unit volume. Whe
comparing with Sec. III note that the system coordinatex and
frequencyV0 in the QBM model correspond here to th
10500
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averaged fieldf̄ and the field massM, respectively; also here
there is only one coupling parameterl5g.

For the environment modes to be stable as required
should have from the previous actionsSe and Sint that k2

1M22gf̄>0, and since the maximum value thatf̄ may
take at the barrier isfs52g21M2, it is clear thatk>M and
this gives the lower bound forL mentioned above.

Let us now follow Sec. III and define the functionJ(t)
which appears in the interaction action which is a key fun
tion to construct the dissipation and noise kernels, seeJ j (t)
in Eqs.~13! and~14!, or J(t) in Eqs.~51! and~52!. Thus we
likewise define

J~ t ![M3E
M23

d3x
1

2
gw2~x!, ~75!

and the interaction action becomesSint5M 23*dtf̄(t)J(t);
note thatJ(t) has units ofM3A\. By analogy with Eq.~10!
the influence functional becomes

eiSIF /\5E DwDw8rei exp
i

\
FSe@w#2Se@w8#

2M 23E dt@f̄~ t !J~ t !2f̄8~ t !J8~ t !#G , ~76!

where rei is the environment density matrix at the initia
time. As in the previous section, see Eq.~15!, we keep only
quadratic terms and we can write

SIF5
1

2
M 23~f̄2f̄8!•H•~f̄1f̄8!

1
i

2
M 23~f̄2f̄8!•N•~f̄2f̄8!. ~77!

Thus we are now in the situation described in gene
terms in Sec. III, and must complete the following steps:~a!
identify the kernelsg andn, ~b! evaluate the Fourier trans
forms ofx andp along a classical trajectory,~c! compute the
functionsD andN, ~d! solve the Fokker-Planck equation fo
f, or at least justify the approximations already discuss
and ~e! evaluate the decay rate. We shall carry tasks~a!, ~b!
and ~c! in this section, and leave~d! and ~e! for the next.

We should emphasize that as remarked in the previ
section, the kernelH needs to be regularized and that th
involves a mass renormalization. We assume from now
that the massM which appears in the action as well as t
coupling parameterg are the renormalized values. Also w
emphasize that we have chosen to reduce the low freque
part of the field to a single degree of freedom only for si
plicity. An inhomogeneous field could be handled, for e
ample, with the techniques presented in Ref.@75#.

B. The dissipation and noise kernels:g and n

In order to find the noise and dissipation kernels, we u
the representations in Eqs.~51! and ~52!. To compute the
averages, observe that the environmental variables ca
8-12
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treated as a free field. The details for the evaluation of
correlation^J(t)J(t8)& are reproduced in Appendix B, se
Eq. ~B1!, where we find

^J~ t !J~ t8!&5^J~ t !&^J~ t8!&

1
\2g2M3

8 E
p>M

d3p

~2p!3

e22ivp(t2t8)

vp
2

.

~78!

One may compute the anticommutator and commuta
operator required for the kernels~51! and~52! from this ex-
pression. Then comparing with Eqs.~53! and ~54!, and re-
calling that the dissipation kernel must be corrected b
factor of M 23, in agreement with Eq.~77!, we obtain

\vg~v!5
p\2g2

4 E
p>M

d3p

~2p!3vp
2 @d~2vp2v!

2d~2vp1v!#

52
p\2g2

4
sgn~v!E

M

` 4pp2dp

~2p!3vp
2

d~2vp2uvu!

5
\2g2

16p
sgn~v!A12

4M2

v2
u~v228M2!,

which leads to

g~v!5
\g2

16puvuA12
4M2

v2
u~v228M2!. ~79!

With a similar computation, for the noise kernel, we g

n~v!5
\2g2M3

32p
A12

4M2

v2
u~v228M2!. ~80!

These kernels are related as required by the zero temper
fluctuation-dissipation theorem, see Eqs.~55!. We observe
that these are the same as the kernels found in Ref.@13# in a
different context. The analysis there substantiates our cl
that particle creation, and backreaction thereof, are the m
mechanism for dissipation and noise in this model.

C. Classical trajectories

Let us recall the basic definitions. The form of the clas
cal potential energy density Eq.~74! suggests writingf̄

5fsx̄52g21M2x̄ so thatV(f̄)54g22M6( x̄2/22 x̄3/3). Let
us introduce also a dimensionless timet5tM and the clas-
sical action density for the system, which is defined asS̄s
5M3Ss , reads

S̄s5
4M5

g2 E dtF1

2
S dx̄

dt
D 2

2v~ x̄!G , ~81!
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where v( x̄)5 x̄2/22 x̄3/3. This action density includes di
mensionless variables only, the critical point is nowx̄51,
corresponding to dimensionless energy«s51/6. Physical en-
ergy densities are of courseE5(4M6/g2)«[6Es«.

For any energy«,«s , we shall have three turning point
xL,0,xR,1,x3 , see Fig. 1. The classical orbits are e
pressed in terms of Jacobi elliptic functions with modulusk
given by

k25
xR2xL

x32xL
, ~82!

which satisfies thatk→0 when «→0 and k→1 when «
→«s . The actual expression, computed in Appendix C, is

x̄5xL1~xR2xL!sn2lt, ~83!

wherel5A(x32xL)/6. The function sn has period 4K@k#,
and sn2 has half of that, so the dimensionless frequency
V5lp/K.

The Fourier coefficients ofx̄(t), for nÞ0, are computed
in Appendix D. They are given by

x̄n52
3nV2

sinh~nVK8/l!
. ~84!

D. The dimensionless Fokker-Planck equation

Let us first write the noise and dissipation kernels
terms of dimensionless variables. For the system Ham
tonian density, i.e. H̄s5M3Hs , besides x̄ and t (f̄
52g21M2x̄, t5t/M ) we write also p52g21M3p̄, V

54g22M6v( x̄)@V8(f̄)52g21M4v8( x̄)#, thereby H̄s
5(4g22M6)hs . Note that this transformation is not canon
cal but preserves the equations of motion, sin
pdf̄2H̄sdt5(4g22M5)( p̄dx̄2hsdt), see Ref.@76#. The

FIG. 1. Plot of the dimensionless potentialv( x̄), as a function of

the dimensionless variablex̄5f/fs . Note that it exhibits a meta-

stable minimum atx̄50 and an unstable maximum atx̄5xs , where
the value of the potential coincides with the energy«s of the sepa-
ratrix trajectories. The three turning pointsxL , xR and x3 corre-
sponding to any energy«,«s have also been represented.
8-13
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action variable also becomesJ5(4g22M5) j , while the
angles are, of course, unchanged. Since the transforma
is not canonical, it does not preserve phase volum
dpdf̄54g22M5 dp̄dx̄. Therefore, we ought to define
new distribution function f (f̄,p,t)5(g2/4M5) f̄ ( x̄,p̄,t).
Then we find ] f /]t→(g2/4M4)] f̄ /]t, and $H̄s , f %
→(g2/4M4)$hs , f̄ % x̄,p̄ . Therefore, instead of Eq.~48!, we
have

] f̄

]t
5$hs , f̄ % x̄,p̄1

g

2M4

]

] p̄
FG~f̄,p,t ! f̄ 1

g2

4M5
$N, f̄ % x̄,p̄G .

~85!

Now let us recall the definitions ofgn andNn in Eqs.~58!
and ~59! and let us introduce the new function
v5M v̄, g(v)5(\g2/M )ḡ(v̄), gn(J)5\g2ḡn( j ) and
f̄n(J)52g21M2 x̄n( j ) to get G52\gM2Ḡ( x̄,p̄,t). On the
other hand, let us call n(v)5\2g2M3n̄(v̄), Nn

5\2g2M3N̄n and N52\2gM5N̄ and we finally obtain the
following dimensionless form of the Fokker-Planck equati

] f̄

]t
5$hs , f̄ % x̄,p̄1

4

b

]

] p̄
F Ḡ~ f̄,p,t ! f̄ 1

1

b
$N̄, f̄ % x̄,p̄G , ~86!

where b54M2/(\g2). In dimensionless variables, the e
ergy scale for the false vacuum is 1/(2b).

We may now proceed to write down the angle averag
Fokker-Planck equation~60! in dimensionless variables. Thi
takes the form

] f̄

]t
5

4

b

d

d j H N̄

bV̄

d f̄

d j
1D̄ f̄ J , ~87!

where D̄5(V̄/2)(nux̄n( j )u2n2ḡ@nV̄# and N̄
5(V̄/2)(nux̄n( j )u2n2n̄@nV̄#, and we have also introduce
the dimensionlessV̄5V/M . Using the explicit form of the
Fourier coefficients Eq.~84! and the expressions~79! and
~80! for the dissipation and noise kernels,g andn, we have
explicitly

D̄5
9V̄

16p (
n.0

~nV̄!3

sinh2~nV̄K8/l!
A12

4

n2V̄2
u~n2V̄228!,

~88!

N̄5
9V̄

32p (
n.0

~nV̄!4

sinh2~nV̄K8/l!
A12

4

n2V̄2
u~n2V̄228!.

~89!

There are two relevant limiting cases. The first limit co
responds to the separatrix energy, that is, when«→«s , V̄

→0, l→1/2, K8→p/2. We may write j5nV̄ and (n

;(1/V̄)*dj in the previous equations. Then after numeric
integration we obtain
10500
ion
e:

d

l

D̄[D̄s;
9

16p
2.441 . . .31027,

N̄[N̄s;
9

32p
7.381 . . .31027, ~90!

which remain finite. The second limit corresponds to the b
tom of the potential, that is, when«→0, V̄→1, l→1/2.
Then K8;(1/2)ln(16k22)5(1/2)ln@24(xR2xL)21#
;(1/4)ln(72/«), see Ref. @77#, formula 8.113.3, and
sinh22(nV̄K8/l);4 exp(24nK8);4(«/72)n and the expres-
sions forD̄ and N̄ take the values

D̄ ;
9

4p (
n53

n3S «

72D
nA12

4

n2
;b«3,

N̄ ;
9

8p (
n53

n4S «

72D
nA12

4

n2
;a«3, ~91!

where a and b are numerical coefficients that can be re
from these expressions. Note that the rapid decay of th
functions as«→0 is due to the presence of a thresho
encoded in the theta functions of Eqs.~79! and ~80!, which
enforce thatn2V̄2.8. At finite temperature, where the sel
energy of the fluctuations remains complex even on-s
~when higher loops are included, of course!, D̄ and N̄ fall
like «, as in Kramers’ original analysis@7#.

V. ENVIRONMENT INDUCED DECAY RATES

We may now conclude our task of finding the decay ra
as described by the Fokker-Planck equation. In agreem
with our weak dissipation assumptions we shall assume
we may average over angles, and restrict our analysis to
Fokker-Planck equation~87!; a related analysis of angle
dependent solutions is given in Appendix 6 of Ref.@63#.
Since the equation is linear in the Wigner function, it is co
venient to first seek the normal modes, namely, soluti
with a simple~exponential! dependence on time. The desire
solution will then be reconstructed as a superposition of n
mal modes@69,78#.

Assuming then thatf̄ 5e2r tF( j ), we get from Eq.~87!
the time independent equation

LF1rF 50, L5
4

b

d

d j S N̄

bV̄

d

d j
1D̄D . ~92!

This equation may be written as a conservation equa
LF5dF̄/d j , whereF̄ is the flux defined by

F̄5
4

b S N̄

bV̄

dF

d j
1D̄F D . ~93!

Observe that for any«.«8.0 we have the following rela-
tionship betweenF, F̄ and r:
8-14
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r 5
F̄~«!2F̄~«8!

E
«8

«

Fd j

. ~94!

Let us now introduce the unnormalized equilibrium so
tion FB5exp(2b*djV̄D̄/N̄), then Eq.~92! can be written as

d

d j Fr2
d

d j S F

FB
D G1rF 50, ~95!

wherer2( j )54N̄FB /(V̄b2). Multiplying by F/FB and inte-
grating we see thatr must be non-negative, as expecte
From the mathematical point of view, this is an eigenva
problem of the Sturm-Liouville type, and we may handle
in the usual way@79#. Let us begin by analyzing the solu
tions with rÞ0, which are the decaying solutions.

A. Decaying solutions

Let us seek a solutionFK of Eq. ~95! with nonzeror.
Since later on we shall be interested in the long time beh
ior of solutions, we may focus on the range of small valu
of r. For concreteness, let us assumerb3/3a!1. Let us in-

troduceh by FK5(h/r)FB5(bh/2)AV̄FB /N̄ and write Eq.
~95! and the flux as

d

d j Fr2
d

d j S h

r D G1
r V̄b2

4N̄
rh50,

F̄52r2
d

d j S h

r D52~rh82hr8!.

Expanding the second derivativesdj@r2dj (h/r)#5dj (rh8
2hr8)5rh92hr9, wheredj stands for the derivative with
respect toj, we obtain

h91S r V̄b2

4N̄
2

r9

r D h50. ~96!

We have two regimes in this equation: for large« ~but not
exponentially close to«s51/6), r is dominated byFB , and
r9/r;b2V̄2D̄2/(4N̄2) dominates ther term, which is negli-
gible. For «→0, on the other hand,r;«3/2, r9/r
;(3/4)«22, and ther term is the leading term. The transitio
occurs for«5«* ;rb2/(3a), which by assumption is much
smaller than the energy scale 1/2b typical of the false
vacuum.

For large «, the equationh92(r9/r)h50 admits of
course the solutionh5r, which gives back the equilibrium
solution, i.e.FK5FB . To find the second solution we ma
write h5Krrs ~here Kr is a constant! to get s9/s85
22r8/r which implies s852r22. This second solution
corresponds to a constant fluxF̄5Kr , and also is the nega
tive exponential WKB solution. For small«, the equation
h91(rb2/4a«3)h50 has solutions
10500
-

.
e
t

v-
s

h5CrA«Z1F kr

A«
G , ~97!

wherekr
25rb2/a, Z is a Bessel function andCr is a con-

stant ~observe that all solutions are bounded!. As «→0, F

;«23/4cos(k«21/2) but F̄;«3/4sin(k«21/2)→0.
Note that we obtain solutions for arbitrarily small valu

of r. This behavior, which is unlike that found by Krame
@7#, reflects the existence of a threshold for dissipation:
arbitrarily low energies, the motion is essentially harmon
there is no dissipation, the fluctuations switch off~in agree-
ment with the fluctuation-dissipation theorem! and the sys-
tem requires an infinite time to climb out of the potent
well.

B. Hilbert space structure and normalization

The structure of Eq.~95! suggests introducing an inne
product

^ f ,g&5E
0

j sd j

FB
f * g, ~98!

where the star means complex conjugation. Then, ifFr and
Fs are the solutions corresponding to eigenvaluesr ands, we
can write (r 2s)^Fs ,Fr&52*0

j sd j FB
21@Fs(LFr)

2(LFs)Fr #52FB
21@FsF̄ r2F̄sFr #u0

j s. Imposing the bound-
ary conditionsFr( j s)50, we get rid of the contribution from
the upper limit. In the lower limit, we may use th
asymptotic form of the Bessel functions to get@FsF̄ r

2F̄sFr #(«);2p21CrCskr
21/2ks

21/2sin@(kr2ks)«
21/2# which

converges~weakly! to zero. It is therefore natural to adop
the continuum normalization prescription

^Fs ,Fr&[d~r 2s!. ~99!

As in Landau and Lifschitz’ analysis of the WKB wav
functions@5#, this singular behavior is caused by the oscil
tions as«→0. More precisely

E
0
d j FB

21FrFs;p21CrCskr
21/2ks

21/2E
0
d« «23/2

3cos@~kr2ks!«
21/2#;4Cr

2kr
21d~kr2ks!

;8aCr
2b22d~r 2s!,

where the integral upper limit is anything. We thus find t
constantsCr

Cr;b/A8a. ~100!

To find the constantsKr we should match our solution
across the transition point at«* . Without getting into details,
see Ref.@80#, it is clear that in order of magnitude
8-15
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Kr;
1

r~«* !s~«* !
A 2

pkr

b«* 3/4

A8a
;

33/4

4Apr 1/4s~«* !«* 3/4
.

~101!

To find s(«* ), we recall that according to our bounda
conditions s( j s)50. Therefores(«* )5*

«*
«s d jr22( j ). Let

us split the range of integration in the two segme
@«* ,1/2b# and @1/2b,«#. The contributionI II from the sec-
ond segment is dominated by the exponential growth ofFB

21

near the separatrix, thus I II ;FB(1/2b)FB
21(«s)

;D821exp(bD̄s/6N̄s) whereD8;O(1). In thefirst segment,
we find

r225b2/~4a«3!,

so it contributes as

I I;~1/8!b2a21@~«* !222~1/4!b22#

;~1/8!b2a21@9a2b24r 222~1/4!b22#

;~9/8!ab22@r 222~1/36!b2a22#.

Adding both contributions, and keeping only the leadi
terms, we find

s~«* !5
9a

8b2 S 1

r 2
1

1

l2D ,

wherel;D̃ exp(2bD̄s /12N̄s) with D̃;O(1). Sofinally we
have

Kr;K
l2r

r 21l2
, ~102!

whereK is an r-independent constant.

C. Decay of the false vacuum

After all this work, the dynamical problem is now trivia
We are interested in a time-dependent solution with an in
condition similar to the Wigner function of the false vacuu
F[FFV;2b exp(22b«) @81#. The solution is

F~ j ,t !5E
0

`

dr e2rtcrFr~ j !

wherecr5*0
j sd j FB

21FrFFV . Fortunately, we are intereste
in the range of smallr, where Fr peaks at values muc
smaller than 1/2b. The only feature ofFFV andFB that we
really need is that they are smooth there. Thus,cr

;FFV(0)FB
21(0)*0

j sd j Fr52bKr /r , @cf. Eq. ~94!#. Finally

F~ j ,t !52bKl2E
0

`

dr
e2rt

r 21l2
Fr~ j !.
10500
s

l
,

To find the persistence probability,P(t), we integrate
F( j ,t) over the potential well. Thus after using the previo
result for *0

j sd j Fr( j ) and the value ofKr from ~102! we
obtain

P~ t !;2bK2E
0

`

dr
l4e2rt

@r 21l2#2
.

The analytic expression for this integral is given in Ref.@77#,
formula 3.355.1. Whenlt;1 it can be approximated with
an integral, the best fit is obtained whenP(t)
;exp(20.4lt). For larger times, we have a crossover fro
exponential to power law 1/t decay, as expected from quan
tum mechanics~cf. @15#!. To summarize, we have prove
that the Fokker-Planck equation leads to an exponential
cay of the false vacuum, with a decay ratetd

21;l:

td
21;DexpS 2Ds

12Ns
b D , ~103!

with D;O(1). This equation may be compared to Eq.~1!,
here b54M2/(\g2), as defined in Eq.~86!, and the ratio
Ds /Ns5D̄s /N̄s whereD̄s andN̄s are given in~91!; see Eqs.
~63!, ~64! and ~87! for the definitions of the functions in
volved.

D. Comparing with the instanton method

Let us conclude by comparing the rate estimate of E
~103! with the estimate derived from the instanton metho
The Euclidean action for our model is

SE@F#5E d4xS 1

2
dmn]mF]nF1

1

2
M2F22

1

6
gF3D ,

~104!

wheredmn stands for the Euclidean metric. We are interes
in SO(4) symmetric instantons, which depend on all fo
Euclidean coordinates but only through the Euclidean rad
r5(x21y21z21tE

2)1/2, wheretE is the Euclidean time. Let
us scaleF5fsf (Mr) to get the Euclidean action~in d di-
mensions! Sd5(4p/3)\bI d , where

I d5E dr rd21F1

2
~ f 8!21

1

2
f 22

1

3
f 3G . ~105!

Of course, computing the four-dimensional (d54) instanton
is not simple, but we may approximateI 4 by I 1, in which
case we may use the simpler one-dimensional formula

S52E
0

3/2

dxA2v~x!52E dxAx22
2

3
x35

6

5
.

All in all, the instanton prediction is lntd
21;21.2 . . .3b.

On the other hand, the noise induced prediction, Eq.~103!, is
ln td

21;ln l;(2D̄s/12N̄s)b;20.05 . . .3b. So in this
simple case the noise induced contribution dominates o
the instanton contribution.
8-16
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VI. CONCLUSIONS

In this paper we have studied the contribution to vacu
decay in field theory as a consequence of the interac
between the long and short-wavelength modes. We have
that the dynamics of the long-wavelength modes beco
diffusive in its interaction with the short wavelength mode
On the one hand, there is dissipation of the long-wavelen
modes due to the excitation of the short-wavelength sec
and in turn, that latter sector induces fluctuations into the fi
sector. As a result there is a significant contribution to
total decay rate due to activation, even at zero temperat

A few remarks are in order. What we have shown is tha
we consider the field initially in a metastable phase in
region of sizeM 21 there is a probability per unit volume an
unit time of decay to a stable phase given by Eq.~103!. Of
course, the size of the bubble formed is of orderM 21, in our
calculation this size is fixed. We cannot consider smaller s
regions because we could not have neglected the grad
terms of the system in front of the mass terms, also we co
not have considered larger size regions because the env
ment modes would become unstable, their evolution wo
become nonlinear and our perturbative treatment of the
fluence functional would break down. However, the critic
bubble size that one obtains in first order phase transitio
statistical physics or in field theory using instanton metho
is also of the order ofM 21. This, in our opinion, makes this
computation of interest, since one expects that once the c
cal bubble is formed it will evolve in the usual way; see f
instance Ref.@9#. Had our calculation involved a size small
than the critical size then the bubbles formed could not gr
and would collapse, as then the energy of the bubble w
would overcome the energy difference between the m
stable phase and the bubble interior.

Another relevant point concerns the energy balance in
activation mechanism of vacuum decay described here w
involves noise and dissipation. In Appendix E we show t
the average power exchanged between system and env
ment is zero: if some trajectories gain power through no
some others lose power through dissipation. Of course,
balance is only statistical, but we must stress that this g
and loss process would go on even if there were no sep
trix and the system were in equilibrium. The only reas
why the system does not equilibrate in our problem is t
we remove those particles that reach the separatrix, as
manded by our boundary condition there. We should say
the system equilibrates but we assume that the true vac
is very much deeper than the false vacuum, so the equ
rium distribution vanishes inside the potential well. Note th
this is an expected result in vacuum bubble formation. O
the critical bubble is formed the energy released in the c
version from false to true vacuum is converted into energy
the growing bubble wall, so that the energy balance is s
zero. This last aspect however cannot be studied with
present analysis.
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APPENDIX A

Our problem is to compute an expression like

E dt8N~ t2t8!K d

dj~ t8!
R@X~ t !,p~ t !#L , ~A1!

whereR is an arbitrary functional ofj(t) and^ . . . & denotes
expectation value with respect toPQ@j;t). Here, for simplic-
ity, we will assume also thatPQ is independent ofX as in the
case of the cubic potential. In our case, this leads to

F̃@j#52\E dt8N~ t2t8!F ]

]X K dX~ t !

dj~t!
dXdpL

1
]

]p K dp~ t !

dj~t!
dXdpL G ,

wheredX[d„X(t)2X… anddp[d„p(t)2p….
Within the ‘‘reduction of order’’ procedure, we substitut

]X(t)/]X(t) and ]X(t)/]p(t) for dX(t)/dj(t) and
dp(t)/dj(t), where the variations are understood in t
sense of the result of coupling a stochastic source to
classical equations of motion. The argument runs as follo
we know thatdX(t1)/dj(t)50 anddp(t1)/dj(t)51. On
the other hand

dj(t)X~t1!5]X(t)X~t1!dj(t)X~ t !1]p(t)X~t1!dj(t)p~ t !

and

dj(t)p~t1!5]X(t)p~t1!dj(t)X~ t !1]p(t)p~t1!dj(t)p~ t !.

By Liouville’s theorem the determinant of this two by tw
system is 1, so indeed

dX~ t !

dj~t!
52

]X~t1!

]p~ t !
,

dp~ t !

dj~t!
5

]X~t1!

]X~ t !
.

The right-hand sides of these equations are continuous
we may omit the superscript. Furthermore

]X~t!

]p~ t !
5$X~ t !,X~t!%,

]X~t!

]X~ t !
52$p~ t !,X~t!%,

and computing the Poisson brackets in terms of the canon
variablesu andJ we arrive at
8-17
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F̃@j#5\E dt8N~ t2t8!F ]

]X
@$X~ t !,X~ t8!% f #

1
]

]p
@$p~ t !,X~ t8!% f #G

5
]

]X
@$X~ t !,N~J,u!% f #1

]

]p
@$p~ t !,N~J,u!% f #,

where we have definedN(J,u)[\*dt8N(t2t8)X(t8). Ap-
plying the reduction of order procedure by substitutingX(t8)
by the Fourier expression~56! and using Eq.~54! the func-
tion N(J,u) is written as,

N~J,u!5(
n

Xn~J!ein[u1V(J)t]Nn~J!, ~A2!

whereNn(J) is given by Eq.~59!. We may simplify further,
by observing that $X,$p,N%%2$p,$X,N%%52$N,$X,p%%
50 by the Jacobi identity and the fact that$X,p%51, then
by further manipulation of the Poisson bracket terms we
nally get

F̃@j#5$X,$p,N~J,u!% f %2$p,$X,N~J,u!% f %

5$p,N~J,u!%$X, f %2$X,N~J,u!%$p, f %

5F2
]p

]J

]X

]u
1

]X

]J

]p

]u GF]N

]u

] f

]J
2

]N

]J

] f

]uG
52$N, f %. ~A3!

APPENDIX B

We first expand the environmental variables in creat
and annihilation operators

wkW5A \

2vk
@ake

2 ivkt1a2k
† eivkt#,

where vk
25k21M2. Next, recalling the definition ofJ

given in Eq.~75! we may write

J~ t !5
1

2
gM3E

M23
d3xE d3k

~2p!3
eikW•xW

3E
p,k2p>M

d3p

~2p!3
wpWwkW2pW .

To perform the integral overx we introduce as in Sec. IV
the functionr(k/M )5M3*M23d3x exp(ikW•xW), which satisfies
r(0)51. Then by direct substitution we can write the corr
lation ^J(t)J(t8)& as
10500
-

n

-

^J~ t !J~ t8!&5^J~ t !&^J~ t8!&

1
\2g2

16 E d3k

~2p!3

d3k8

~2p!3
rS k

M D rS k8

M D
3E

p,k2p>M

d3p

~2p!3Ep8,k82p8>M

d3p8

~2p!3

3
e2 ivpteivp82k8t8e2 ivk2pteivp8t8

Avpvp2kvp8vp82k8

3^apak2pa2p8
† ap82k8

† &.

Now the vacuum expectation value in the last equat
can be written as

^apak2pa2p8
† ap82k8

† &5~2p!6d (3)~kW1kW8!$d (3)~kW2pW 1pW 8!

1d (3)~pW 1pW 8!%,

and since in any case we deal with values ofk andk8 much
lower than typical values ofp andp8, we get

^J~ t !J~ t8!&5^J~ t !&^J~ t8!&1
\2g2

8 E d3k

~2p!3
r2S k

M D
3E

p>M

d3p

~2p!3

e22ivp(t2t8)

vp
2

. ~B1!

To obtain Eq.~78!, observe that*d3k r2(k/M )5(2p)3M3.

APPENDIX C

Let us write the integrand in the action density~81! as

«2v~ x̄!5
1

3
~ x̄2xL!~ x̄2xR!~ x̄2x3!. ~C1!

It can be rearranged as«2v( x̄)5(1/3)(x32 x̄)$(1/4)(xR

2xL)22@ x̄2(1/2)(xR1xL)#2%, which suggests writingx̄
5(1/2)(xR1xL)2(1/2)(xR2xL)cos(2w)5xL1(xR2xL)sin2 w,
and thus

«2v~ x̄!5
1

12
~x32xL!~xR2xL!2sin2 2w~12k2 sin2 w!,

~C2!

wherek is defined in Eq.~82!.
The equation for a classical trajectory ist5*dx̄p̄21

5*dx̄$2@«2v( x̄)#%21/2 and sincedx̄5(xR2xL)sin(2w)dw
we have

t5A 6

x32xL
E

0

w dw8

A12k2 sin2 w8
. ~C3!
8-18
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Whenw goes from 0 top/2, the point describes a half orbi
So the periodT is twice the result from Eq.~C3! when w
5p/2, and one can check that when«→0, T→2p, as it
should.

Using now the identities 16.1.3, 4 and 5 from Ref.@83#,
we get the desired formula~83!. Observe that as«
→0, snu;sinu, l;1/2, and x̄5xL1(xR2xL)sn2(t/2)
;(1/2)(xR1xL)2(1/2)(xR2xL)cost which corresponds to
the harmonic trajectory, as expected near the bottom of
potential.

APPENDIX D

Here we shall borrow an argument from Whittaker a
Watson@84#. The Fourier coefficients of the classical traje
tory are

x̄n5
1

TE0

T

dt e2 inV̄tx̄~t!

5xLdn01~xR2xL!E
0

1

du e22inpusn2 2Ku,

where we have changed to theu variable, used the explici
trajectories~83! and again redefined the integration variab
in the second line. According to 16.7 and 16.8 in Ref.@83#,
we have the following properties: sn 2K(u11)
52sn 2Ku, sn 2K(u12iQ)5sn 2Ku, where Q
5K8/(2K) with K8[K@A12k2#; and sn 2Ku has a simple
pole atu5 iQ, with residue 1/(2kK).

To compute the Fourier coefficient~for nÞ0) we con-
sider the integral over the anti-clockwise contourG with ver-
tices at 0, 1, 2iQ and 2iQ21. The two oblique sides can
cel each other, and

E
2112iQ

2iQ

dz e22inpz sn2 2Kz5q4nE
21

0

ds e22inpz sn2 2Ks

5q22nE
0

1

du e22inpu sn2 2Ku,

whereq5exp(2pK8/K). Near the pole, we have~see 16.8
and 16.3.1 in Ref.@83#! sn 2K(u1 iQ)5sn(2Ku1 iK 8)
5(ksn 2Ku)215(2kKu)21@11O(u2)#, and from
Cauchy’s theorem the integral over the contourG becomes
2p i (4k2K2)21dz exp(22inpz)uz5iQ5np2k22K22q2n which
yields Eq.~84!.

APPENDIX E

Here we compute the average power exchanged betw
the system and the environment. Let us go back to
Langevin equations~49! with the Gaussian sourcej(t) de-
scribed by Eq.~50!. From these equations it follows that
the phase space point (X,P) there is a dissipated powerwd
10500
e

en
e

52GP, where G52*2`
t dt8H(t2t8)X(t8) and a noise

powerwn5jP. The power dissipated in the whole ensemb
is Wd52*dXdP f(X,P)GP.

Let us use the action-angle variables att50 as Lagrang-
ian coordinates identifying a given trajectory. Then t
power dissipated is

Wd52E
0

Js
dJ f~J!E du GP52E

0

Js
dJ f~J!V~J!D.

The average noise power in the whole ensemble is^Wn&
5*0

JsdJ f(J)*du^j(t)P& where P(u,J,t) has been per-
turbed away from the classical value by the action of
noise. We then get, using the Novikov trick

^j~ t !P&5E t

dt8N~ t2t8!
dP~ t !

d j ~ t8!

5E t

dt8N~ t2t8!
]X~ t8!

]X~ t !
52$P,N%.

We can simplify this by using the same arguments as
Appendix A:

E du$P,N%5E du~]uP!J~]JN!P5]JE du~]uP!JN.

Performing now a last integration by parts*du$P,N%
5]J*du N(]uP)J52]J*du P(]uN)J52]JN.

The total average power is thus

W5Wd1Wn5E
0

Js
dJ f~J!F]N

]J
2V~J!DG .

Integrating by parts, knowing thatN(0)5 f (Js)50, we get
W5*0

JsdJ V(J)F̄(J) where F̄ is the flux. Recalling now
that V5dE/dJ, with our boundary conditions we haveW
5EsF̄(Es)1*0

JsdJ E] t f . We can now show thatW;0 ~this
is obviously true for the equilibrium solutionFB , when both
terms in the expression forW vanish independently!. Let us
write the general solution for the distributionf as the follow-
ing superpositionf 5*0

`dr e2rtcrFr( j ).
Since the flux is linear inf, and the flux forFr is Kr , we

get for W,

W5E
0

`

dr e2rtcr S EsKr2r E
0

Js
dJ EFr D .

The integral in the second term is dominated by the up
limit ~sinces;E22, the integral depends only logarithm
cally on the peak E* ), and *0

JsdJ EFr;Es*0
JsdJ Fr

5EsKr /r , which makes the total averaged powerW;0 as
expected.
8-19
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