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We study the optimization of exact renormalization gréERG) flows. We explain why the convergence of
approximate solutions towards the physical theory is optimized by appropriate choices of the regularization.
We consider specific optimized regulators for bosonic and fermionic fields and compare the optimized ERG
flows with generic ones. This is done up to second order in the derivative expansion at both vanishing and
nonvanishing temperature. We find that optimized flows at finite temperature factorize. This corresponds to the
disentangling of thermal and quantum fluctuations. A similar factorization is found at second order in the
derivative expansion. The corresponding optimized flow for a “proper-time renormalization group” is also
provided to leading order in the derivative expansion.
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I. INTRODUCTION Non-perturbative expansions of the effective action, not
bound to the weakly coupled regime, are the derivative ex-
Wilsonian renormalization group techniqués2] such as  pansion, expansions in powers of the fields, or combinations
the exact renormalization grolgRG) [3—6] are important thereof. For example, the leading order of the derivative ex-
tools for addressing nonperturbative problems within quanpansion retains only an effective potential and a standard
tum field theory(for recent reviews, see Refl/,8]). They  kinetic term, and contains non-perturbative information as it
are similar in spirit to the block-spin action invented in con- corresponds to the resummation of infinitely many perturba-
densed matter physics, and their particular strength is thetive loop diagrams. The study of approximate quantum ef-
flexibility, allowing for systematic approximations without fective actions along these lines is a sensible procedure since
being tied to the small coupling region. The ERG is based onhe underlying expansions admit a systematic improvement
an infrared(IR) regularization with the momentum scale pa- to higher order.
rameterk of the full propagator, which turns the correspond-  Solutions to truncated flow equations display a spurious
ing effective action into a scale dependent functiohigl  dependence on the IR regulai®16|. This is similar to the
The ERG flow describes the change of the effective actioscheme dependence of physical observables observed within
under an infinitesimal variation of the IR scadelt thereby  perturbative QCO17], or the truncation dependence of so-
interpolates between the initial UV actidiy- , and the full  lutions to Schwinger-Dyson equations. Its origin is the fol-
quantum effective actiod’=I",_,. Although the flow de- lowing. The IR regulator couples, through the flow equation,
pends explicitly on the specific infrared regulator chosen, theo all vertex functions of the theory. The flow trajectory of
end point of the integrated full flow does not. the functionall’, in the space of all effective action function-
An explicit computation of the IR effective theory based als depends on the regulator. Hence, the regulator—while
on the ERG flow requires the specification of the field con-regulating the flow—also modifies the effective interactions
tent, the initial conditiorl”, and the choice of a particular IR at intermediate scalek#0. In other words, the effective
regulator. The UV initial condition is typically given by the action at intermediate scales still has some memory of the
classical action. Hence, the main physical information isdetails of how the integrating-out of degrees of freedom has
contained in the ERG flow itself. Most problems of physicalbeen performed. This regulator dependence is of no rel-
interest are too complex to be solved exactly and an applievance for the full flow. Eventually, the convergence towards
cation of this formalism—as of any other method—is boundthe full quantum effective action foany regulator ensures
to certain approximations. Furthermore, the flow equation ishat all regulator-induced interactions cancel out in the physi-
equivalent to infinitely many coupled partial differential cal limit. Approximations imply that certain vertex functions
equations, which would seem very difficult to solve exactly.are neglected. Then, not all regulator-induced interactions
Therefore, one has to resort to some approximations or trureancel out fork—0: the missing back coupling of the ne-
cations which allow, at least in principle, for a systematicglected vertex functions is responsible for regulator-
computation of the full quantum effective action. In order to dependent terms in the physical limit. In consequence, ap-
provide reliable physical predictions, such as a high preciproximations to the full quantum effective action depend
sion computation of universal critical exponents, it is man-spuriously on the scheme.
datory to provide a good control for approximated ERG Recently, a new line of reasoning has been put forward
flows. which essentially turns this observation aroJdd]: given
A number of systematic expansion schemes for flow equathat the solution of a truncated flow depends on the regulator,
tions are known, including standard perturbation theoryit should be possible to identify specific ones which “opti-
mize” the physical content of a given approximation. Opti-
mized regulators stabilize the flow and lead to a faster con-
*Electronic address: Daniel.Litim@cern.ch vergence of expansions, such that the main physical
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information is almost exclusively contained within a few We also study this question within an RG formalism
leading terms, and higher order contributions remain smalbased on a proper-time regularization of the operator trace
[18]. for the one-loop effective actiof20], which we call the

In Ref.[15], we have derived a simple and generic opti-“proper-time renormalization group{PTRG for short. In
mization criterion for ERG flows, based only on the full contrast to the ERG, the PTRG has no path integral deriva-
inverse propagator at vanishing field. Given the set of postion, which makes the conceptual reasoning more difficult
sible IR regulators, the criterion allows to distinguish the[21]. Still, owing to the close similarity to the ERG at lead-
quality of regulators in the sense outlined above. In theing order in the derivative expansion, it is possible to identify
present paper we study a specific “optimized” regulator forthe analog of Eq(1.2) for the PTRG.
both bosonic and fermionic degrees of freedom. To be more The format of the paper is as follows. We introduce the
explicit, we introduce the ERG flow for the effective action physical ideas behind the generic optimization condition. Ex-
[4-6]. For bosonic fieldsp, it is given by plicit realizations for bosonic and fermionic degrees of free-
dom are introduced as welBec. I). The main characteris-
. Iy 4R IR (1.1) tics of optimized flows are discussed to leading order in the

Sp(q)Sd(—q) k ke ' derivative expansion, and contrasted with those of generic

flows (Sec. Il). We then turn to the discussion of quantum

Here, the trace denotes a sum over all loop momenta aniield theories at finite temperature. We show that optimized
indices, andt=Ink is the logarithmic scale parameter. The thermal flows factorize on the level of the flow equation,
flow has a simple one-loop structure. The Wilsonianunlike generic flows. A simple physical explanation for the
“integrating-out” is achieved by the infrared regulat®g. It ~ factorization is providedSec. IV). Next, we consider the
regulates the propagator for small momenta, while the inserextension to higher orders in the derivative expansion. The
tion ;R cuts off the large-momentum contributions. In to- cases of field dependent or independent wave-function renor-
tal, only a small momentum window abogt~k? contrib-  malizations are both discussed, and a similar factorization for
utes to the flow. Apart from a few constraints displayed lateroptimized flows is establisheec. \). Finally, we provide
the functionR, can be chosen at will. A “good” choice for the corresponding optimized proper-time cutoff for the
the regulator function is at the root of reliable physical pre-PTRG (Sec. V). Because of the qualitative difference be-
dictions, and we consider, for the bosonic fields, the optitween the topics studied, we discuss our findings separately

1 2 -1
AWEIS 57

mized regulator at the end of the corresponding sections. We close with a
summary and an outloofSec. VII). Three Appendixes con-
RP(g?%)=2Z,(k?*—q?) 0 (k*—q?), (1.2)  tain technical details and explicit expressions for optimized
flows.

where Z, is an appropriately defined wave function renor-
malization. This regulator is particularly simple: for loop
momentaq?>k? it vanishes identically and the effective Il. OPTIMIZATION

propagator appearing in the flow equation is not modified; , i i ) o o
for loop-momenta q2< k2 it acts like a momentum- In this section, we discuss a generic optimization criterion

dependent mass term in such a way that the inverse effectiy@" ERG flows for Euclidean quantum field theories. In par-
propagator~q2+ R,(q?) becomes a momentum indepen- ticular, we prowde a S|mpl_e and explicit pptlmlze_d regulator
dent constant. In consequence, the effective infra-red propd®" both bosonic and fermionic flows. Prior to this, we have
gator no longer distinguishes between the different model® review a few basic properties of IR regulator functions,
with g2<k2. which are at the root of the subsequent considerations.
Optimized flows based on EL.2) derive from a generic
optimization criterior{ 15], and have a number of remarkable
properties. The optimized flow leads to the fastest decou-
pling of heavy modes, in accordance with the decoupling The flow equation(1.1) is defined through the infrared
theorem[19]. In the limit k—0, optimized flows smoothly regulator function®R,(q?) andRF,k(qz), respectivel\f4—6].
approach a convex effective action, owing to a simple anaThese operators depend on an infrared skalehich induces
lytic pole of the flow[15,18. At non-vanishing temperature, a scale dependence. When written in terms of the scale-
the optimized flow factorizes: the contributions from thermaldependent effective actidn, , the scale dependence is given
and quantum fluctuations are disentangled, unlike for generiprecisely by the flow equatiofil.1). The right-hand side of
flows. A similar factorization of the flow holds to second Eq. (1.1) contains the full inverse propagators and the trace
order in the derivative expansion for field-independent wavelenotes a sum over all indices and integration over all mo-
function renormalizations, and a partial factorization is foundmenta.
for the general case. Finally, the optimized flow has a very The regulator scheméRS) functions can be chosen at
simple analytic structure. This facilitates their study and iswill, however, within some basic restrictions. These restric-
helpful for both analytical or numerical considerations. All tions ensure that the flow equation is well-defined, thereby
these properties lead to a stabilization of the flow and arinterpolating between an initial action in the UV and the full
improved convergence towards the physical theory. Analoguantum effective action in the IR. More specifically, it is
gous results for fermionic flows are discussed as well. required that

A. Regulators

105007-2



OPTIMIZED RENORMALIZATION GROUP FLOWS PHYSICAL REVIEW D64 105007

lim Ry(q?>0. (2.1 criterion for optimized choices of RS functions. Then, more
G220 specifically, we apply this idea to bosonic and fermionic
theories with standard kinetic terms.
This ensures that the effective propagator at vanishing field The physical information of the flow equatiai.1) is
remains finite in the infrared limi;°—0, and no infrared  contained in the full effective inverse propagator, which is
divergences are encountered in the presence of masslegisen by
modes. This property makd®, an infrared regulator. If the

limit (2.1) is finite, we call the corresponding regulatoass- ST\ 4] ’
like. The second requirement is the vanishingRyfin the () dp(—Qq) +R(a%). (2.6
infrared,
Notice that Eq.(2.6) depends both on the fields and on the
lim Re(g*)—0. (2.2 RS function. The ERG flow is well-defined as long as the full
k?/g?—0 inverse propagator displays a gap,
This guarantees that the regulator function is removed in the 82T\ [ b]
physical limit, where the scale-dependent effective ackign min(ﬁ + Rk(qz)) =C k>>0.
reduces to the quantum effective actibrlimy_,oI". The 9?=0 $(q)oh(—a) d=dy
third condition to be met is 2.7
lim Rk(qz)_>oc_ (2.3 The functional derivative is evaluated at a properly chosen
k—A expansion pointy. The existence of the gap>0 implies

an IR regularization. Furthermore, the gap is a prerequisite
This way it is ensured thdf, approaches the microscopic for the ERG formalism. Otherwise, E€l.1) becomes singu-
actionS=lim_,I', in the UV limitk— A. In the rest of the  |ar at points where the full inverse effective propagator de-
paper, we sel = for the UV scale, although our main line velops zero modesThe size of the gai€ in Eq. (2.7) de-
of reasoning can be applied for finite as well. With this  pends both on the RS function and on dimensionless
choice, the regulator function depends only @handk®,  parameters likep?/k? or mass ratios, specific to the particu-
and it is convenient to introduce a dimensionless functionar theory studied.
r(q*/k?) as A natural optimization criterion based on E@.7) con-
) 5 o2 sists of maximizing the ga@ over the space of all possible
Re(a%) =2, a1 (q7/k") (24 Rs functions. Optimized RS functions are those for which
the maximum ofC is attained. The optimization ensures that
the momentum-dependent kernel of the ERG flow is the
most regular. Therefore we expect that optimized flows are
much more stable against approximations and show better
convergence properties.
The optimization condition as formulated above is, essen-
lly, only sensitive to the momentum dependence of the full
verse propagator. Dropping momentum-independent terms
2 L2y 2 on the left-hand side of Eq2.7) changes the numbet
Ri(Q"=Cak™) = ZiCak @9 accordingly, but leaves the explicit dependenceRyiq?)
for bosons(a similar condition holds for fermions, see be- Unchanged. Therefore, the optimization leads to the same set
low) andcg>0.! The normalization translates into the con- of op(t2|)m|zed RZS functions as long as the implicit depeqdence
dition r(cg) = 1. Two different choices focg can always be  ©f Tk [#]1=5"T\[#1/6¢4(q)5¢(—q) on the RS function
mapped onto each other through a rescaling of the IR &cale "émains negligible. qu this reason, the optimization condi-
Hence, a proper normalization is only of relevance for alion of Refs.[1518 is based only on the momentum-
comparison of different regulatotas done in Ref{15]), or ~ dependent terms of E¢2.6). o
for theories containing different bosonic and/or fermionic de-_ From now on, we concentrate on a standard kinetic term.

grees of freedom, where the relative normalization of thel n€ effect of a field-dependent wave function renormaliza-
regulators can become important. tion can be taken into account as w@ke Sec. V beloywWe

expand the full inverse propagator Zsz[q2+2,21Rk(q2)
+ ...] about the regularized kinetic term. Finally, dropping

_ o o the momentum-independent terms transforms () into
Here, we discuss an optimization criterion for ERG flows,

which ensures that flows like E€L.1) and approximations to
it have good convergence and stability properties. Following 2the casec=0 indicates that a saddle point expansion alpyit
Ref. [15] (see also Ref[18]), we first provide the general s not applicable. Those point, in field space withC=0 corre-
spond to an instability. The problem can be solved by choosing a
more appropriate expansion point such t@at0. For related lit-
YIn Ref.[15] the conventiorcg=1 has been used. erature, see Ref22].

with Z, an appropriate wave function renormalizaticsf.
Sec. V); Z,=1 to leading order in the derivative expansion.
Owing to the general conditions imposed on the regulator
the functionr (y) ranges between=9r (y)=<oo.

Another condition concerns the proper normalization of
the regulator. The normalization fixes the scale at which thefia
IR regulator becomes effective. Let us employ the conditior’|n

B. Optimization criterion
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min[g?+Z, 'R(g?)]=C k*>0. (2.8
q2>0

Po(a*/K?)

A far reaching consequence of the infrared regulator in Eq.
(2.9) is the presence of a gap for &l>0, which follows
trivially from Eg. (2.1). The decisive difference between Eq.
(2.7) and Eq.(2.9) is that the size of the ga@>0 in Eq.
(2.8) depends only on the particular choice for the RS, but
not on the specific theory. Rewriting E@.8) in dimensions

of k leads to

P2(y)=a?/k®+R(a?)/(Zk?) =y[1+r(y)], (2.9

wherey=q?/k?. Expressed in terms of E¢2.9), the size of 05~ 05 j 1Z 9
the gap is given by q2/k2

—mi 2
c= |;/n>|(r)1P y). (210 FIG. 1. Optimized inverse propagatd?§pt for different regula-
tors, normalized as(%)=1. The regulator Eq(2.18 is given by
Any RS function is now characterized by the associated gathe full line. The thin dashed line correspondsrte0. All other
C. The size of the gap can be made arbitrarily small. Effec-dashed lines, given for comparison, correspond to the different op-
tively, this corresponds to removing the IR regulator in thetimized regulators of Fig. 3 in Ref15].
first place. However, for fixed normalizati@g , it cannot be
made arbitrarily largeC<. Hence, the natural optimiza- mild condition: all regulator functions are described by at

tion condition, which is the requirement to maximize the most countably infinitely many parameters, becaigés at

gap, becomes least square integrable. Of these, only one parameter is fixed
- by the optimization criterion.
Copr=max(minP<(y)). (211 We now turn to the discussion of fermionic degrees of
(RS) y=0

freedomys andE[23,24]. The flow equation is given by

A few comments are in order. The maximum in E2.11) is 1

taken over théinfinite-dimensionglspace of all possible RS oT Fl=—T Ty R IR

functions. The numbet,, is uniquely determined and reads Ll i]=—Tr Su(q) S(—q) F.k TR k-
Copt=2Cg, Wherecg is the normalization of bosonic regula- (2.12

tors. From now on, we refer to E¢2.11) as an “optimiza-

tion condition,” and all RS functions for whicR=C, are  As usual, the trace sums over all loop momenta and indices.
called solutions to the optimization condition. The space ofTfhe constraints on the functidRe  are similar to those on

solutions to the optimization condition is infinite- R, [24]. Following Ref.[24], we choose the regulator pro-
dimensional. Notice also that the condition to minimize theportional tod and introduce

gap is not an extremization linked to the regulator, because it

corresponds to removing the IR regularization. In R&8], Re «(Q)=Z (b1 e(g?/K?). (2.13
a variety of different solutions have been found, and some
examples are given in Fig. 1 below. We choose the normalization as
In order to obtain Eq(2.8), we have assumed a standard
kinetic term for the fields. Therefore, the resulting optimiza- Rg'k(qzchkZ)chkz_ (2.149

tion condition Eg.(2.11) is independent of the specific

theory. Once the momentum-dependent paif gt depends  This translates into the condition:(ce)=1. It has been
on the fields, the corresponding optimization condition base@hown that the fermionic analog of the function E2.9) is
on the momentum-dependent part of E2,.7) is sensitive to  given by[24]
the specific theory. Within a derivative expansion, this hap-
pens starting from the second ordef. the discussion in P2(y)=y[1+rg(y)]% (2.19
Sec. V.

The optimization condition has a number of interpreta-Therefore, we can define the fermionic gap as
tions in more physical term&f. Refs.[15,18). It has been
shown that the radius of convergence for amplitude expan- Cr=minP2(y), (2.1
sions is given byC. Therefore the optimization condition y=0
improves their convergence. Furthermore, it leads to a
smooth approach towards a convex effective potential in thend the corresponding optimization condition reads
IR limit k— 0. It has also been shown that it improves the
convergence of the derivative expansidr8]. Finally, it is Cr.op= max(minPZ(y)). (2.17
worth emphasizing that the optimization criterion is a rather ' (RS) y=0
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The optimized fermionic gap is uniquely determined through The dimensionless regulator functiofy) is defined in

the normalizationce as Crqp=4cCe . Conceptually, the fer-  Eq. (2.4). With the choice made in Eq2.18) it follows that

mionic case is treated in the same way as the bosonic case.

The sole difference stems from the fact that the bosonic ki-

netic term contains two derivatives, while the fermionic ki- FopY) =

netic term contains only one. Therefore, the functi¢2.$)

and(2.15 entering the optimization condition are different. The regulator function is normalized witbg=3%. Such a
normalization can always be achieved. Other normalizations

C. Derivation of optimized bosonic and fermionic regulators are considered at the end of Sec. Ill.

A lot of effort has been made in order to provide explicit  In Fig. 1, we have displayed the effective inverse propa-
regulators which lead to sufficiently simple and analyticgator at vanishing field for different optimized regulators.
ERG flows. For example, the sharp cutoff provides a simpléeThe full line represents Eq2.18, and the thin dashed line
explicit flow to leading order in the derivative expansion. Forcorresponds t&R=0 (no regulatoy. The set of dashed lines
this reason, it is one of the most intensively studied flows incorresponds to the optimized regulators discussed in Fig. 3
the field (cf. Refs.[1,2,25,6,26,2). Other attempts have of Ref. [15]. Here, they have been given for comparison.
been made based on power-like regulatBs-q2(k?/g%)®  Notice that all curves cross in the normalization point
for b=1 andb=2 [28], or variants of a mass-term regulator r(cg)=1. All optimized propagators display the same gap
R~k?©(k’—q?). These regulators are still sufficiently Copi=2Cg, but differ essentially in the curvature around
simple from an algebraic point of view, and lead to their minima.
reasonably simple flowSHowever, in the absence of an un-  The fermionic analog of Eq(2.19 is derived in essen-

derlying “guiding principle” it was not obvious how to make tially the same way. Starting with Eq2.15, imposing P2

progress given the plethora of possible regulators, and iB=1 for small momenta, and the general conditid@sl),
particular, how to distinguish the “quality” of the corre- (2.2) and(2.3), we finally end up with

sponding flows.
Here, in turn, we take full advantage of the existence of a K2
REW(@=d| \/ 51
k 2

;—1)(1—y). (2.19

guideline provided by the optimization criterion. We propose 0(k?—q?), (2.20
a regulator which(i) solves the optimization criteriorii) is
based on an additional stability criterion for approximate
flows, and(iii) leads to simple explicit expressions for the
corresponding flows. The heuristic derivation runs as fol-
lows. The space of regulators which solve the optimization 1

criterion is still infinite dimensional. Let us seek a “simple” FeopY)= ( i 1) O(1-vy) (2.21)
solution to Eqg.(2.11). The simplest one corresponds to an ' \/)—/

inverse propagator which isflat, i.e., momentum-

independentPZECOpt. TakeCop= 1. This immediately im-  andrg(3)=1. The non-analyticity of Eq(2.21) is a direct
plies, using Egs(2.4) and (2.9), that R,(q*) =k*-—g?. Our  consequence oRg , having only one mass dimension. We
naive ansatz is consistent with Eq8.1) and(2.3), but not  shall see below that it is of no harm to the computation of
with the main requirement Eq¢2.2) for small k?<qg?. In  fermionic flows because Eq2.21) enters only in specific
order to fulfill Eq.(2.2), the regulator has to be cut off above combinations such that the non-analyticity disappears.
some loop momenta. Therefore, a natural proposal for the

bosonic case consists in taklng IIl. DERIVATIVE EXPANSION

normalized withce=%. In terms of a dimensionless function
re(g?/k?), Eq. (2.20 becomes

RP(9%) =(k*~g*) O (k*~g?). (2.18 The flow equation(1.1) is a functional differential equa-
tion, which, from a technical point of view, is equivalent to
infinitely many coupled partial differential equations for the
couplings parametrizing the effective actibp. A number

of different systematic approximation procedures for flows
are known. In this section, we consider flows to leading or-
. ; -7 der in the derivative expansion, based on expanding the op-
lator. By construction, the inverse propagator at vanishingaiors of the effective action according to the number of
f|e|(3 Eq. (2.6) becomes momentum independent for afl derivatives[29]. This leads to a closed set of coupled partial
=k* (see Fig. 1 Itis this property which is responsible for jitterential equations for the coefficient functions. We dis-

the main characteristics of the regulator: all infrared momen¢,ss the main structure of optimized flows and contrast it
tum modes below the scaleare treated in the same way \yith generic ones.

since the effective inverse propagator no longer distinguishes
between them.

The ultraviolet modes>>k? are not touched by this regu-
lator because E(2.18 vanishes identically fog?>k?. In
turn, for all modes withg?<k? the regulator acts as a
momentum-dependent mass teratk®—q?) with the infra-
red limit ~k? for vanishing momenta. It is a masslike regu-

A. Specific flows

In order to make our subsequent reasoning more transpar-
30f these, only the power-like regulator with=2 solves the €nt, it is useful to have an explicit example at hand. To that
optimization condition Eq(2.11). end, we consider a®(N)-symmetric real scalar field theory
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in d dimensions, the linear sigma model. To leading order inWhile the flow(3.3) is specific for the theory defined by Eq.
the derivative expansion we make the an$at] (3.1), the functions(3.5) are not These functions describe
1 1 the generic structure of the flow to leading order in the de-
_ d .5 a Y o, T rivative expansion. The flows for different indicas-0 are
1—‘k f d X(Uk(P)+ sz(p)&u(b au¢a+ 4Yk(p)a,u,p(9,up related by

doo v d
Lo 34)) 3.1 du(@)==(n+ 8yl 1(w). (36
Therefore, it suffices to study the roW&w).

for the effective action, withh= % ¢2¢,. ForN#1, there are The fermionic analog of the flou8.5) is [24]

two independent wave function facto?g and Y, beyond

leading order in this expansidof. Sec. Vj. To leading order d = (8. +n fmd 12
in the derivative expansion, the flow equatitinl) reduces el @)= (0ot 1) 0 vy’
to a flow for the effective potentiaf;U, . The main physical

applications concern the non-trivial Wilson-Fisher fixed and Eq.(3.6) holds equally for Eq(3.7). Notice the addi-
point ind= 3 and the computation of related universal quan-tional factor 1-r in the integrand, which arises due to the

—2y(1+rg)re

[PZ(y)+w]""? 5.9

tities. Dirac structure of Eq(2.20. We have used the normaliza-
Inserting the ansat®.1) into the basic flow equation, and tjgn conditionr(%)=1.
usingZ=Y=1, yields[30] It is evident that the characteristics of the flow, deter-
mined by the choice oR,, are entirely encoded within the
1 diq (N—1)dRy(g?) functions Eqs(3.5) and(3.7) (or similar functions to higher
&tUk_Ef (27)d q2+Rk(q2)+UL(F) order in the deriyative expa_nsi))rFor a g_eneric regulator,
these are complicated functions of the fields, which can be
A R(9?) computed explicitly only for very specific choices for the
+— 5 —————|. (3.2  regulator.
9"+ R(a%) + Uk(p) +2pUi(p) Two properties of generic flows given in termsI§fw)

and IE'O(w) are worth mentioning. First of all, from their
very definition and the constraints imposed on the regulator

“Goldstone” modes and the “radial” mode. A similar flow function, we conclude that any functid8.5) for n=0 de-

equation has been obtained for the wave function renormafyS &t most as @/for w—c [30]. Therefore, they describe

izationsZ, andY, [30]. The momentum integration is regu- he Qecoupling of *heavy” mc_)des from the flow, which is a
larized in the UV, owing to the regulator termRy(q?) in manifestation of the decoupling theord®]. Secondly, all

. o\ s . flows have a pole irfC+ w, whereC denotes the gap. Both
:gf numerator, and in the IR due®g(q) in the denomina the analytical structure and the strength of the pole depend

on the regulator. From the general requirements for regula-
_ tors, and the explicit form of Eq3.5), it follows that the
B. Generic flows pole for n=0 cannot be stronger than a simple analytical
For convenience we perform the angular part of the mofole ~1/(C+ w). The pole of threshold functions has impor-
mentum integration and rewrite the right-hand side of Eqtant physical implications. It determines the approach to a

(3.2 in terms of so-called threshold functiof80] as convex effective potential for theories within a phase of
spontaneous symmetry breakif®i,8].

It is a second order non-linear partial differential equation.,
One easily recognizes the contributions from tNe-1

— Ui(p)
_ dyd K
dUi(p) =2vg(N—-1)k |o< 2 ) C. Optimized flows
== Now we turn our attention to the optimized regulators
S Ug(p)+2pUy(p) 3.2 introduced in Eqs(2.18 and (2.20. The evaluation of Eq.
t2vgklo K2 ' (33 (3.5 is particularly simple because th&-function cuts off
the momentum integration. Using E®.19, Eq. (3.5 re-
The constants 4 are given by duces to two terms,
1 1
d d = d)-1
vdl:2d+1ﬂ_d/21-(§ , (3.9 lo(w) 1+w Odyy(
: . ” (y=1)é(1-y)
d dr2)-1
and the functions,(w) are defined as + fo dyy T—yO(1=y)tw’ (3.9
00 —_ 21
19(w) = (5, 0+n)f dyy(@d -1 yr'(y) _ In the first term, thezmomentqm integration is cut off above
’ 0 [P2(y)+w]"*?! y=1. The functionP<(y) remains a constant in this momen-

(3.5 tum regime, which allowed to move the-dependent term in
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front of the momentum integration. The integrand of the section is of no relevance for a theory containing only bosonic
ond term contains products of distributions. Since the inteor fermionic degrees of freedom, their relative normalization
grand is proportional to-(1—y)8(1—y) the second term can become important for theories containing bosons and
vanishes identically, independently of the specific implemenfermions. The normalization conditiorig.5 and(2.14) cor-
tation for the®-function. The remaining momentum integra- respond tor(cg)=1 andrg(cg)=1, which can always be

tion of the first term becomes trivial and gives imposed because the functiongy) and re(y) range be-
tween Osr,rg<o. The optimized gaps ar€,,=2cg and
a 21 Crop=4cg . For arbitrarycg the flow Eq.(3.9) is obtained
lo(w)==+—. (3.9 P
dl+oe as
(dr2)+1
We used the normalization(3)=1 and hencé*?=1 fory 19(w)= E —(ZCB) (3.12
sl 0 d 2CB+(U ’
For fermionic flows(3.7) and the regulatof2.20), we find o )
In the fermionic case we find
1 il
Id _ d d/2)—1+2j d d/2)+1 (di2)+1
Fol@)= 355 | Ay Y %% 8 (= 2 (420 (3.13
F.0 d 4CF+(U
1 1
1+ T_l 0(1-y) ?—1 o(1-y) for the rescaled analog of E¢B.11).
% y y _ Finally, we note that flows$(w)~1/(1+ w) have been
[Vy+(1—y)0(1-y)]?+w used earlier in the literature82—34, however without the

(3.10 explicit knowledge of the corresponding regulator function.
These trial functions are sufficiently simple to allow for ana-
The first term has a restricted momentum integration due tdytlcal considerations. The motivation for their use was based
the cutoff provided by theé®-function. The second term is ©n the observation that the generic threshold function Eq.
more involved, and the integrand even contains products df3-5 decays at most as~* for large . This suggested that
distributions. Notice, however, that it contains the factora regulator may exist which leads H(w)=A4(C+w) .
N[(l/\/y)_ 1]8(1—y) which is proportional to ~(y Let us show how the normalizatioly can be derived from
—1)8(1-vy). Therefore, the second term vanishes identi-consistency arguments. We use the universal reldﬁ'ﬁ(rﬁ))
cally and independent of the parametrization of the distribu= 1 [30], which holds ford=2n dimensions, to identify the
tions and their products. The evaluation of the first termprefactor asA,,=(1/n)C"*1. The analytic continuation to
gives finally arbitrary dimensions leads finally to our resul&12 and
(3.13. This reasoning shows that the ansatg(w)
19 ()= 2 1 (3.10 =(2/d)C¥?*Y(C+w) ! is self-consistent. However, we
F.0 ' rush to add that these consistency arguments are necessary
conditions, but not sufficient ones: only the explicit form of
and is identical to the bosonic flow. the regulator—as given by Eq§2.18 and (2.20—finally
justifies the few earlier computations. In addition, E§s18
D. Discussion and(2.20 are explicitly required for the computation of the

The flows described by the functiof®.9) and(3.11) have Efi‘é’é z;teféngt/e temperaturésee Sec. I or to higher order
the simplest asymptotic structure far—co. This implies n
that heavy modes decouple “the fastest” from the flow for
optimized regulators. For comparison, the sharp cutoff leads IV. THERMAL FLUCTUATIONS

only to a logarithmic decoupling- In . Also, the decou- In this section we apply our reasoning in the context of a
pling does not depend on the particular theory studietl  q,antum field theory coupled to a heat bath at temperature
the dlzmezn3|209t1) unlike the case for polynomial regulators 54 t |eading order in the derivative expansion. We show
R~q"(k*/q7)°. Furthermore, the flow described by the {nat optimized flows, as opposed to generic ones, disentangle
functions(3.9) and(3.11) has the simplest and strongest polene gifferent contributions related to thermal and quantum
structure forC+»—0". The pole is a simple analytic one, fyctuations, respectively. These properties are realized, on
which is not the case for generic regulator functions. Anine jevel of the flow equation, in terms of an importdat-
immediate implication of this structure is that the optimizedyqyization This leads to better convergence properties of the

flows (3.9 and (3.11) lead to a logarithmically smooth ap- fjoy jtself. Approximate solutions of the flow correspond to
proach towards a convex effective potential. This is verypetier approximations of the physical theory.

different from the sharp cutoff case, where the approach is
only exponentia[8]. A detailed presentation of these results
is given elsewhere.

For completeness we quote the results for the flg8v8) To be explicit, we consider a bosonic or fermionic field
and(3.1]) for arbitrary normalization. While the normaliza- theory at thermal equilibrium at the temperattiresithin the

A. Imaginary time formalism
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Matsubara formalism. This implies that periodiantiperi- 19w, 7—0)=1%w). (4.8
odic) boundary conditions for the bosonitermionic fields

are employed. As a consequence, theintegration in the The asymptotic limits folT—o, Eq. (4.7), and T—0, Eq.
flow equation(1.1) is replaced by a sum over Matsubara (4.8), display dimensional reduction for bosons as a function

modesm=0,=1,=2,.... Thetrace in Eq.(1.1) contains a of temperature for generic regulator functit8t].
momentum integration, which is then substituted as Fermions at finite temperature within the Masubara for-
malism can be treated in essentially the same way. However,
dYq di 1q they happen to have ma=0 mode as antiperiodic boundary
f (Zw)d_) f W (4D conditions have to be used on thg-integration. Hence, fer-

mions do not display dimension reduction. Rather, they de-

In the integrand of Eq(1.1) the g, variable is replaced by couple comple_tely from the RG flow once the smal_lest Mat-
subara mode is larger than the schl@'hese properties can

Qo—27Cy T 4.2) be read off from the temperature-dependent flow. For a ge-
neric fermionic regulator, the flom,ﬂ_,o(w) at finite tempera-
where ture is defined as
cn=m for bosons 4.3 Ig’o(w, T)
_ 1 : Ud 1 7
cm=m+3 for fermions. (4.4 o 2 f dy yid-1)72)-

It is also useful to introduce the variable
~ 20y + ) rE(Y + ) [ 1+ TE(Y +Cr) ]
X

F(y—i—C T2)+w

for the following considerations The replaceméh2) im- 4.9
plies that functiond® n(w) turn into temperature dependent

functions!%(w, 7). We show that this function factorizes for The functionPZ is given in Eq.(2.15. The asymptotic re-
the regulatorg2.18 and(2.20. gime where the fermions decouple completely is reached for

r—o. From Eq.(4.9), we deduce that

7=27Tlk (4.5

B. Dimensional reduction and fermion decoupling Igyn(w,7—>00)=0. (4.10

Let us review a few basic facts known for generic fows at o . .
finite temperature within the imaginary time formalism Again, the limit7— 0 eventually switches on all higher order

[30,35,24,36 Matsubara modes such that
Bosonic fields within the Matsubara formalism display d d
the phenomenon of dimensional reduction at high tempera- IE n(@,7=0)=I¢ (). (4.11

ture. This means that fof large enough all non-vanishing N .
Matsubara modes are suppressed due to effective mass-%@e asymptotic limits4.10 and(4.11) describe the decou-

~mT for the Matsubara modes witin+0. Only them=0 pling of_ fermions in the high temperature limit for arbitrary

mode survives in this limit, leading to an effective theory in dimension and generic regulator function.

(d—1)-dimensions. For a generic bosonic regulator, the fi- o o

nite temperature flow is given as C. Optimized thermal flows and factorization

We now turn to the optimized regulator®.18 and

|g(w,7_) Vd-1 7 Z J dy yl(d-1r2-1 _(2.2@. For this case, th_e flow4.6) can be compu_ted explic-
Vg itly. Inserting Eq.(2.18 into Eq. (4.6), and following a rea-

soning analogous to the one after E8.8), we find

—(y+cam)%r' (y+ch 72)
P2(y+ c? 7'2) +w

(4.6) 19w, 7)=By() % w) (4.12

T . , ) with the temperature dependent function
The functionP~ is defined in Eq(2.9). The asymptotic re-

gime where only then=0 Matsubara mode contributes is d vgy 7 2 2\ (d-1)02
reached forr—. From Egs.(4.6) and(3.6), we deduce Ba(1) =31 vg E (1—cp) O(1-cyr).
(4.13
19w T_>oo)=MI|d—l(w) (4.7) . . -
me vg k" ' ' Notice that the temperature effects have factorized. This im-

plies that temperature cuts off all amplitudesin the same
On the other hand, the limit— 0 eventually switches on all manner. This is not the case for a generic regulator.
higher order Matsubara modes. It is straightforward to verify Let us discuss the thermal threshold fadga( 7). In Fig.
that 2 the thermal threshold factdBy(7) is displayed ford
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FIG. 2. Dimensional reduction for bosons, described by the FIG. 3. Fermion decoupling at finite temperature described by
bosonic thermal functioBy(7) defined in Eq.(4.13. d=4: full  the fermionic thermal functioF 4(7) given by Eq.(4.18. d=4:

line, d=3: dashed lined=2: dashed-dotted line. full line, d=3: dashed lined=2: dashed-dotted line.
—2, 3 and 4 dimensions. Every single Matsubara mode con- Turning to the optimal fermionic regulaté2.21), the mo-
tributes to Eq(4.13 proportional to mentum integration in Eq4.9) can be performed explicitly
to give
~7(1—c2 )= D2g 1 -2 72). 4.1
(1=cq) (1=Cn7) (4.14 19 (0,7 =Fg(n)I2 (o). (4.17)

The ®-function is a remnant of the regulat®.19 and cuts
the mth Matsubara mode off as soon ksic,,T/27. The
factor 7 stems from theqg-integration and the factor (1

As in the bosonic case, the temperature effects factorize from
the threshold effects. The fermionic thermal threshold factor
Fq4(7) is given by

—¢27)(@=D2 from thed—1 dimensional integration over

spatial loop momentgy|. These functions vanish outside the d vg-q 7 5 i 5
interval 0<7<1/c,,. At the upper end they behave like Fa(7)=g—7 y E%“ (1-cpm) D20 (1-cir).
(1/c,,— 7)@~ V"2 and vanish linearly with- at the lower end. 419

This structure explains the spikes observed in Fig. 2, which

are located precisely at the points-1/c,, and due to the Equation(4.18 is identical to its bosonic counterpa#.13
decoupling of thexc.th Matsubara modes. Indeed, fer except for the Matsubara sum which runs owgr=+ 3,

>1 only them=0 Matsubara mode yields a contribution to =2, ... in Eq.(4.18. In Fig. 3 we have displayed the func-
By(7) in Eqg. (4.13. The asymptotic regime where only the tion F4(7) for d=2, 3 and 4 dimensions. Again, the spikes
m=0 Matsubara mode contributes is reached alreadyrfor have the same origin as in the bosonic case and the same

>1 with By(7=1)=7rdv4_1/2mv4(d—1), or reasoning applies. The high temperature limit at which the
fermions decouple completely, is already reached Kor
1T 7T
Ig(w,721)=$ilﬂ_l((o). 415 "
d 19 (0,7>2)=0. (4.19

Notice the difference from Eq4.7). Decreasingr below 7
=1/c,, eventually switches on the:c,, Matsubara modes.
For 7 close to the points &f,, the term(4.14) increases as
(1/c,,— 1)@~V for decreasingr. This power law explains
why the spikes are more pronounced in lower dimensfons.

Notice the important difference from E¢4.10, where the
decoupling of fermions is only asymptotic. The limit-0 is
equivalent to Eq(4.11).

In the limit 7—0 it is straightforward to verify thaBy(7 D. Discussion
—0)— 1 which implies The optimized regulator&.18 and (2.20 correctly de-
scribe dimensional reduction and fermion decoupling. In ad-
19w, 7—0)=1%w). (4.16  dition, they lead to a thermal factorization of the flow as
observed in Eq94.12 and(4.17). From a physical point of
This asymptotic limit is the same as E4.8). view, this fact is easily understood. The imaginary time for-

malism compactifies the time direction and the temperature
modifies thetemporalmomentum modes of the fields. The
“To higher order in the derivative expansion, the spikes arecorresponding Matsubara mode, when compared to the infra-
smoothed out for non-trivial wave function renormalization, cf. Sec.red scalé, leads to a thermal decoupling. To leading order in
Vv C. the derivative expansion, the optimized regulator makes the
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temperature blind for the quantum fluctuations. It cannot dis- ¢—>Z$)’2k (5.1)
tinguish between amplitudes of constant fields. In turn, the ’
guantum fluctuations are sensitive to the field amplitudes,
which are responsible for the mass decoupling, similar to the
T g e, ey s 0, et nigner cervae s ar nctuded i he ansat: o
> . s the effective action, additional flow equations for the corre-

ral to employ a regulator which reflects this factorization on . o ) i > —
the level of the flow equation. spondlng coefficient functions likeZ, «(q%,p) and

For a generic regulator function, the flow6) and (4.9 Z,.(g%p) have to be studied. The wave function renormal-
are complicated functions of both the temperature and thiations are functions of the scale parameteand can de-
field amplitudes. They reflect dimensional reduction and ferpend as well on momentg? or on the mean fieldg. To
mion decoupling. Typically, however, they do not factorize.second order in the derivative expansion the wave function
This simply means that a generic ERG flow entangles therrenormalization is evaluated at a particular momentum scale
mal and quantum fluctuations even to leading order in thgj?=k32 which fixes the renormalization conditions. Typical
derivative expansion. This is a direct consequence of thgnhopices fork, arek,=0 andky=k.
regulator term, whose coupling to the different operators in - The most important new ingredient at this order is the
the effective action leads to a field-dependent thermal decolscale- and field-dependence of the wave function renormal-
pling of the different modes on the level of the flow equation.ijzations. In the example defined through E8.1), these are
This entanglement is of no relevance if the flow can begiven by the function&, andY,. Here, the functiorz, is

solved exactly. In turn, for an approximate solution of theresponsible for the renormalization of the- 1 “Goldstone”
flow, the factorization on the level of the flow equation is modes, which differs frorrik=Zk+ka for the “radial”

fr;m?t rlglpful: It avoujs a rr;:xmgtﬁf thermag ar;q qutantulm ode. The fact that different wave function renormalizations
t#c ug lons In a regime \tl)vl eret_f e}[/ cgm te t';en ang_fe_ ppear to second order in the derivative expansgitapend-
ereby minimizing possible artitacts due 1o the Speci ICing on the theory considergds of no relevance for the fol-

r.egulator function._As a consequence, the flow itself is Stabilowing discussion of the flows. The parametric dependence
lized, and expansions of the flow show much better conver-

gence behavior towards the physical theory. More generally?! the flow on eitheiZ, or Z, is the same.
it is expected that this line of reasoning applies for generic L€t Us introduce an additional functiap(p) as
optimized regulators. o L

Finally, the factorization is very helpful for numerical so- Z(p)=Z(po)Z(p)- (5.3
lutions of flow equations. In the generic case, one two-

parameter function has to be fitted in order to describe th§ye have factored out a constant te#p(p,) chosen at an
flows (4.6) or (4.9). In turn, only two one-parameter func- arpjtrary reference point. We have chosen the reference point
tions are _negded_ once they factonz_e as in E4sl9 and p=po Which fixes the renormalization of the fields for all
(4.17. This simplification is substantial, and even more so, Tvoical choi ither—0 _ the mini
because the function®.12 and (4.17) have a very simple momenta. Typical choices are eithgy=0, orpo= the mini-

' ' mum of the scale-dependent potential. The gpli8) allows

analytical form. to separate the non-trivial field-dependence, contained in
zk(;), from an overall renormalization containedZm(E)).

The factorz, is normalized aszk(;o)=1.

In this section, we apply the optimized regulator to higher |n order to provide a simple form for the flow it is useful

order in the derivative expansion. We first discuss the genergl) iniroduce the field-independent factﬁrk(;) into the
structure of the equations. Furthermore, we show that ?egulator function 0

simple factorization of the flow takes place for field-
independent wave function renormalization. The physical

Yp—Zy. (5.2

V. DERIVATIVE EXPANSION TO SECOND ORDER

origin of the factorization is discussed, and its realization on Ri—=2Z4.kRx 54
the level of the flow equation leads, as in the thermal case, to

better convergence properties of the flow and the derivative Rek—Zy kRe k- (5.5
expansion. For technical details on the computations, we de-

fer to the Appendixes. The flow equation, when written in terms of renormalized

variables(5.1) and (5.2), receives additional contributions
proportional to the anomalous dimensions
A. Wave-function renormalization

In the preceding sections we have restricted the discussion ny="NZy (5.6
to the leading order in a derivative expansion. This implied
the vanishing of the anomalous dimensiong=7,=0 or ny=—adInZ,,, (5.7

Z,=Z,=1. To higher order in the derivative expansion the
multiplicative renormalization of the fields has to be takenbecause the derivativg,R, in the flow equation now acts
into account, according to also on the explicit scale-dependence contained,in
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B. Generic flows to second order

PHYSICAL REVIEW D64 105007

Second, the optimized flow factorizes into a leading order

To second order in the derivative expansion the flow had®'m (3.9 and a remaining factdB,(¢, 7).,

turned into a function of the field amplitudes the anoma-
lous dimensionyn and the field dependent functian The
corresponding bosonic flow is defined as

—yr'(y)—znyr(y)
y[z+r(y)]+w

Yoz [aygons

Notice that the pole structure of the flow is changed, owingf

to the functionz(p). The effective inverse propagator be-
comes a function of the fields:

P2(p,y)=ylz(p)+T1(y)]. (5.9

The location of the pole of Eq(5.8 at —w=C(p)
= minyzon(p,y) has turned into a function of the fields. For
the optimized regulato2.19 the pole is located aC
=min{1,z}. Compared to the leading order in the derivative
expansion, the pole structure is modified oaeel.

For the fermionic case, the flows are given as

—(2y re+ myle)(Ze+1g)

ylze+re(y) P+ o
(5.10

The pole structure changed as well, as follows from
(5.11

The location of the pole of Eq(5.8 at —w=Cg(p)
= minyBOPE(p,y) has turned into a function of the fields. For
the regulator(2.21) the pole is located a€r=min{1,z:}.

||d:,o(w,ZF ' My) = fo dy ydlz

P2(p,y)=Yl[ze(p)+re(y)]2

The pole structure is modified compared to the leading order

in the derivative expansion ona@g# 1.

C. Optimized flows to second order

We now turn to the optimized flows and discuss their

structure at second order in the derivative expansion. wé

refer to the Appendixes for all technical details.
In the case of a generic wave-function renormalizatio

wherez,(p) is a non-trivial function of the fields, the func-
tion Ig(w,z,n) as defined in Eq(5.8) can be evaluated ex-
plicitly for the regulator(2.18. The structure of the flow is
as follows. Consider the denominator of E§.8), given by
y(z+r)+w. It can be rewritten as tw+y(z—1)+[y(1

n

18(w,& 1) =1§(0)By(&,7), (5.13

because the denominator of E§.8) contains a momentum-
independent factor (tw). Here we have introduced
13(w,é(w,2), 7)=15(w,z, 7). It it interesting to see that the
structure of the optimized flow is still quite simple. An inte-
gral representation d4(&,7) is given in Eq.(B3). [For all
£<1, By(€,7) can be expressed in terms of hypergeometric
unctions, cf. Eqs(B4), (B5) and(B6); closed expressions of
Eqg. (5.13 for d=4, 3 and 2 dimensions are given in Egs.
(B7), (B8) and (B9), respectivelyl For |£[<1 the function
B4(&,7) can be Taylor-expanded in arbitrary dimensions, to
wit

oo

&" U
Bd(fa’?):nzo zn(l_d+2+2n
d
1o, (6514
d+2 2 S
1+ 5

The series representati¢b.14) is best suited for the flow as
long as|&| remains small. This corresponds to either the limit
of a field-independent wave function renormalizatiz(p)
=1, or, for anyz, to the limit of large amplitudes. From
Eq. (5.14), we obtain for Eq(5.13 to zeroth order iré

& &
1+ 1+ w

_m
d+2

(5.19

We note that they-dependent correction in E¢5.15 has the
same functional dependence on the amplituwdas Eq.(3.9).
Stated differently, the optimized regulator leads to a simple
factorization in both the decoupling limib>1 and for the
ase of a field-independent anomalous dimengisi0.

For completeness we give also the result for the bosonic
flow at finite temperature. The corresponding flow
19(w,&,7,7) still factorizes as

IS(w,g,n>=|8(w>(1

19(w,&,7,7)=By(&,7, 7)1 3(w). (5.16

This is the generalization of E¢4.12) to second order in the
derivative expansion. We only have to replace the function
its

+r)_1] The last term in brackets vanishes for the Opt|'Bd(§,77) by temperature_dependent Counterpart
mized regulato(_z..18) because the integration is restricted tog (¢, 7, ) [cf. Eq. (A5)]. It is straightforward, if tedious, to
y=<1. The remaining term can be written as the product (lestablish explicitly that the functioBy(£,7,%) represents
+){1-[(1-2)/(1+w)]y}. Notice also that the numerator gimensional reduction in precisely the same wayBaér)

of Eqg. (5.8) depends neither omnor onw. These observa- =g (£=0,7,7=0). Let us consider the most interesting

tions lead to the following conclusions. First, and apart fromcase, which is the leading order i<1. In this limit, Eq.
an overall o-dependence~(1+ ) ~*, the optimized flow (5 1 reads

depends orz and w only through the variable
Bd(gi T, 7]) = Bd( Ty 77) + O(E! §77) .

The functionBy( 7, 7) can be expressed as

L, (5.17)

l+w’

(5.12
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d(ze—1) 2
Udq-1 T _ 7]1// F
—By(r)—p—— 2t T Fo(w.2e 7)) =1— — 4 -
Balrm=Ba(n)=n o = o R Ty d+1  d+1 Tt
2 2 )| 1= ) 4. .. (5.23
><§m‘, (1-c2r) @ V2e(1-c2 7). d+2 : :

(5.18  The two leading terms in Eq5.23 show that also fermionic

] . ) flows factorize for field-independent wave function renor-
The functionBgy(7), Eq. (4.13, has been discussed in Sec. mgjization.

IV. The new ingredient, beyond leading order, is given by the
corrections~ # in Eq. (5.18. Every single Matsubara mode _ _
contributes as D. Discussion
The structure of the flow has increased to second order in
~7(1-c272) T D2Q (1-c2 ). (5.19 the derivative expansion. Let us discuss first the case of a
field-independent wave function renormalizatiza1. The
Compared to the leading order contributio@s14), we no-  corresponding flows5.15 and (5.23 for the optimized
tice that Eq.(5.19 follows from Eg.(4.14 for d—d+2. regulators factorize, similar to the thermal case to leading
The reason is very simple. In the flow equation, the anomaerder in the derivative expansion. Physically speaking, this
lous dimension is proportional to a term containing an addistructure can be made plausible as follows. The flow, when
tional factor ~q?, which effectively increases the momen- written in terms of the renormalized fields—and under the
tum measure by two dimensions. This has an immediatassumption that the renormalization is momentum- and field-
consequence. The thermal decoupling in Ef18 propor-  independent—depends, in addition to the fields, only on the
tional to ~ » is much smoother than the leading order de-anomalous dimension. The anomalous dimension is field in-
coupling, simply because the spikes are less pronounced tlidependent, and, as a consequence, unable to distinguish be-
higher the dimension. Therefore, the spikes observed in Figween fields of different amplitudes containeddn which
2 are smoothed out oncg (and ¢) are non-vanishing. parametrize the quantum fluctuations. Therefore, it is natural
In the opposite regime wheld —z|/(1+w)>1, only a that the flow factorizes the contributions induced through
few leading terms of the seri€5.14) have to be retained. from those induced by the amplitudes The disentangle-
This limit is of relevance close to the pole region of the flowsment is realized by the optimized regulators.

w——1, or in the region of large>1. From the explicitly In turn, a generic flow does not reflect this factorization.
resummed expressioB7), (B8) and(B9), we conclude that Rather, it leads to an entanglement between the renormaliza-
a factorization as tion of the effective potential induced by the infrared regu-

lator, and the renormalization parametrized by a field-

d 7 independent anomalous dimension. This is immediately
lo(w,2,7)=f4(w,2)| 1- d (520 evident from the observation that thedependent and the

n-independent contributions to the flow of the effective po-

holds true, and f,(z)=(z—1)"%, fs(z)=2f,(z2) and tential have different functional formg as functions of the

fo(w,2) =f4(2)IN((2+ @)/ (1+ w)). fields. At this level, the er!tanglement is due to the regulator,

It is not surprising that a similar structure is found for Which modifies the coupling among all operators of the ef-

fermionic flows. The correction term due to the substitutionfective action. As mentioned in the thermal case, the en-

Eq. (5.4) simplifies Eq.(5.10 to tanglement is of no impo_rtan_ce for the full solution to the
flow. In turn, the factorization is very useful for approximate
|d solutions. It leads to more stable flows because irrelevant
Fol®,Zr,7y) ) )
’ couplings, entirely due to the regulator, are removed. The
Jld y“"2*1[1+ \/§(2F—1)][1— ny(1— \/37)] same reasoning as given at the end of the previous section
' [1+Vy(ze— 1)+ w + applies.

For the thermal bosonic flows.16), we notice that the
(5.2)  dependence on the anomalous dimension enters the thermal
factor B4(7, 7). In particular, the thermal corrections do not

Equation(5.21) factorizes as factorize from those due to a field-independent anomalous
g g dimension. This structure can be understood as follows. The
lEo(@,2e, 1) =g (@)Fg(@,2,77,). (5.22  wave function renormalization enters the momentum trace as

a multiplicative renormalization proportional to the kinetic
The functionF 4(w,z, ) can be expressed in terms of hyper-
geometric functions. At finite temperature, and for1 and
n=0, it reduces to Eq(4.18. Here, we are only interested  Srrom the definition of Egs(5.8) and (5.10) it follows that all
in the structure of the flow for a nearly ﬁe|d-independenthomogeneous regulators witkly) ~yr’(y) [orrF(y)NyrI’:(y), re-
wave function renormalizatiorz~1, or for the decoupling spectively factorize the anomalous dimension from the field-
limit. We find dependent part of the flow.
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termg2. At finite temperature within the imaginary time for- 1 (=ds @ )
malism, the spatial and the temporal loop momenta are (%Fk:—EJO 5 [afic (A s)]Trexp(—sI™). (6.1
treated in an unequal way. Hence, thermal fluctuations

couple in a non-trivial manner to the anomalous dimensiOrYVe refer to this flow as the “oroper-time renormalization
of the fields. This implies that the temperature-dependen prop

factor itself i dified due to th | di . group” (PTRQ@. It describes the partial resummation of per-
a}::_ Or: Ise 'dls mr? ! 'ﬁ ) u? o the ar;]oma (;us '_me_ns'on]:[urbative diagrams. The proper-time regulator function plays
which provides the physical reason why no factorization ol 416 of the momentum regulatBy, within the ERG. The

the temperature effects from the anomalous dimension arg,,, (6.1) is governed by the IR scale Following Ref.[20]
expected in the first place. _ we introduce a dimensionless functidigx) as f{¥(A,s)

For the case of a field-dependent wave-function renormal—:f(Azs)_f(sz) and requiref(x—x)=1 and f(x—0)
ization, a simple factorization similar to E@5.19 is not  _q Thjs ensures that the usual Schwinger proper time rep-
expected, simply because the wave function renormalizatiopagentation is reached in the UV limit.
is a function of the fields. Hence, the wave function renor-  \yi are not aware of a simple and generic optimization

malization can distinguish different field amplitudes, in con- iitarion analogous to E@2.11), which derives from within

trast to the field-independent case. However, two obsevane pTRG formalism. Furthermore. the floi8.1) has no
tions are still worth mentioning. First of all, we observe apai, jntegral derivation, which makes a conceptual reasoning
partial factorization which is evident from Eqs(5.13 and 1 ,ch more difficult. However, it is still possible to show that
(5.18. This structure is based on the fact that the 4 functionf o,(x) exists which is equivalent to the optimized

zdependence entgrs only through the variablé2, as op- ERG regulator(2.18 to the leading order in the derivative
posed to the generic case. Far-2z|/(1+w)<1, only a few expansion.

leading terms have to be retained from the explicit series T4 that end. we apply Eq6.1) to anN-component real
(5.14). It follows that each power dfL —2z|/(1+w) is renor-  gcajar theory ind dimensions and to leading order in the

malized proportional to the anomalous dimension and aRerivative expansion. Using the ansé&z) the flow for the
order-dependent numerical coefficient. Secondly, the limit

. . — . __ l
for [1—z|/(1+w)>1 again allows for a simple factoriza- effective potentiall(p) with p=2 ¢aa becomes
tion, as follows from Eq.5.20. Here, the wave function

renormalization can no longer distinguish field amplitudes, — 1 _ = ds d
allowing for this simple structure. dUi(p)= 5(477) dlzf gltd2 AP (As)

Afinal comment concerns the numerical prefacterg as o B
found in Egs.(5.195 and(5.23. We emphasize that the cou- X[~ SlUk(P)+2pUk ()] 4 (N— 1)@~ SUk(P)].
pling of the anomalous dimensions to the effective potential
is, apart from the field dependencedimensionally (6.2

suppressed—by factors @/ 2) for bosons and 14+ 1) _ . o :
for fermions—as opposed to the leading order contributions! NS flow is identical in form to the ERG flouB.3), if we

This additional suppression is noteworthy because the cof€Place the ERG flow in E3.3) by the proper-time flow
vergence of the derivative expansion is controlled by small 1 d
anomalous dimensions of the fields. Here, we have just ¢ _+.[9} [~ —1-(df2) B

shown that an expansion performed with an optimized regu- lo(w)= 2F< 2) fo dxx Lo 00 Jexp(=x@).

lator leads to aradditional dimensional suppression of the 6.3
back-coupling of the anomalous dimension to the effective

potential. A more detailed discussion of this observation willjere, the integration variable is=k?s and stems from the

be given elsewhere. proper-time integration, in contrast to EB.5), wherey
=(?/k? stems from the momentum trace. Now, consider a
VI. PROPER-TIME REGULARIZATION specific class of proper-time regulator functions:

In this section we leave aside the conceptual framework
of the ERG based on a momentum-scale regularization and (x)
address flows based on an operator cutoff regularization. Our (m) ’
aim is to provide the analog of the optimized reguld®i8
within the proper-time regularization method. For a morewe have introduced a free parameteidescribing different
detailed comparison with the exact renormalization groupregulators, and the incompletel’-function I'(m,x)

I'(m,x) 2xMe X

(6.9

we refer the reader to Ref21]. = [5dyy™ e Y. This yields the simple expression
A simple flow has been derived from a one-loop expres-
sion for the effective action which is UV and IR regularized d d
using a Schwinger proper-time representation of the operator F( m-— —) F(—)
trace[37], amended by a regulator functiéff’(A ,s) within 19(w) = (1+w)@-m (65
the proper-time integrdl38]. The flow with respect to the I'(m)
infrared scale parametér follows from a 1-loop improve-
ment ag 20] which agrees with Eq(3.9) for m=1+(d/2), or
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mized flows, which is the disentanglement of thermal and

r —+1-X) 2y 1+ di2g—x guantum fluctuations to leading order in the derivative ex-

foPY(x) = . o foP(x) = . (6.6 pansion. A similar factorization occurs for field-independent
rl=+1 rl=+1 wave function renormalizations.

2 2 More generally, optimized ERG flows owe their main

properties to the “flatness” of the effective inverse propaga-
The optimized proper-time regulat(s.6) corresponds to the tor, which extends over the entire momentum regiph
optimized regulatof2.18 within the ERG approach. Hence, <k? for the specific regulator studied here. Other regulators
it is possible to identify an optimal regulator function for can lead to similar factorization and convergence properties.
proper-time flows, owing to their close similarity to the ERG Prime candidates are given by solutions to the optimization
to leading order in the derivative expansion. criterion: as is evident from Fig. 1, they automatically lead to
flat effective propagators—at least within a small region
about the minimum of the effective inverse propagator. If
VIl. CONCLUSIONS AND OUTLOOK this region extends over the domain where the flow equation

This study was motivated by two observations. First, arfeceives its main contributions, we expect to find equally
application of the ERG to realistic physical problems is900d flows. o o
bound to certain approximations. Second, approximate solu- AN important conclusion is that the optimization ideas
tions of flow equations depend spuriously on the infrareod_lscussed here should be _useful for h|gh-preC|S|on_c_omputa-
regulator. Combining these observations, it became obviou4ons based on this formalism. Increasing the precision nor-
that an understanding of the spurious scheme dependence&lly implies a full computation at the following order of the
mandatory in order to provide predictive power for approxi- €xPansion. Here, we argued that the physical results can be
mate solutions. Previously, we showed that the gap of the fulfProved already within a fixed order of the expansion. Im-
inverse propagator controls convergence properties of agnediate applications of optimized flows concern the compu-
proximate solution§15]. It has also been shown, based ontation of universal critical exponents fdt-component scalar
the computation of critical exponents for the Ising universal-tN€ories in three dimensions, or the study of convex effective
ity class, that the convergence of the derivative expansion jg0tentials within a phase with spontaneous symmetry break-
controlled by the gagi18]. These observations lead to the IN9: On the conceptual side, it is possible to show that the
conclusion that the freedom in the choice for the IR regulatofPtimization criterion can be interpreted as a natural mini-

can be used to maximize the physical information containedUm sensitivity condition, somewhat similar to the principle
within a given approximation or truncation. of minimum sensitivity as employed within perturbative

An interpretation of the interplay between the RS function@CD. We will leave a detailed discussion of these results to

on one side, and convergence of approximate flows on th@ future publicatiorf18]. _ o
other, is as follows. The IR regulator—by regulating the  Our analysis can be extended in a number of directions.
flow—modifies the interactions at intermediate scaes) For gauge theories, modified Ward or BRST identities ensure
among all operators of the theory. Eventually, these cancé['® gauge invariance of physical Green functi¢gs], and

out for the integrated full flow, but not for approximated the optimization criterion is compatible with _such additional
ones. Hence, changing the RS function for an approximateaonStra'm?- This optimization can al§o_be |mpIem¢nted for
flow modifies some remaining RS dependent terms whicﬁ'eld_ theories at_ finite temperature wr;hm the real-time for-
cannot be cancelled due to the missing contributions fronnalism[36]. While our present analysis is based on the de-
neglected operators. Therefore, a “fine-tuning” of the RSr_lvanve expansion, it seems worthv_vhlle t_o study opt_lmlza_-
function allows to partly incorporate higher-order effectstions for other systematic expansions like expansions in
within the lower orders of a given approximation. This cor- POWers of the fields. Finally, it would be interesting to see
responds to an optimization. hovy these ideas apply to flows at finite density or to Hamil-

The present derivation of optimized ERG flows had twotonian flows[40].
ingredients. First, we made use of a generic optimization
criterion for bosonic and fermionic field45], which states ACKNOWLEDGMENT
that the gap of the full inverse propagator, as a function of
momenta, should be as large as possible. This way, the ERG This work has been supported by EC Contract no. HPMF-
flow is the least singular, and approximations to such flowg=T-1999-00404.
are expected to be much more stable, leading to improved
convergence of expansions. Second, we added the specific
requirement that the effective inverse propagator be
momentum-independent in the IR regi@f. Fig. 1.

We have studied specific optimized ERG flows for In this appendix, we derive explicit expressions for the
bosonic or fermionic theories up to second order in the deeptimized flow for the effective potentials to second order in
rivative expansion and at vanishing and non-vanishing temthe derivative expansion at both vanishing and non-vanishing
perature. Their specific properties have been discussed temperature.
detall at the end of the corresponding sections. Here, let us Our starting point is the flow for the effective potential to
only mention perhaps the most surprising property of opti-second order in the derivative expansion. We consider the

APPENDIX A: FLOWS TO SECOND ORDER
IN THE DERIVATIVE EXPANSION
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bosonic flow at finite temperature. All information about the

d vy, 7 -
flow is parametrized by Bd(g’T):d—_lu_dlﬂ ; An(£,7)(1—c272)(d-3)2
Ud-1 T 1- CT d—3)/2 d—1 d+1
(w zZ,7,m)= v 2 j dyy( X@(l—cﬁfz)zFl(l,T;T;gAn(g,q-) .
[1-2n(1-y—ci™)]O(1—cir) (A7)
X
(z-1)(y+c2P)+1+ o The function
(A1)

Fi(a,b;c;2)= —f dtt>=1(1—-t)c b1
Here,w(p) is the field variablez(p) a field dependent wave I'(b)I'(c—b)

function renormalization, the anomalous dimensiory; X(1—tz)"2 (A8)
=27xT/k the rescaled dimensionless temperature, apd

=n the Matsubara modes in the bosonic case,(E®. The  wijth ,F,(a,b;c;z)= ,F,(b,a;c;z) denotes the hypergeo-

constants 4 are defined in Eq(3.4). metric function[41]. We also introduced the thermal ampli-
The leading order behavior of E¢A1) is given by the  tyde function
function
2 1 A= 2o (A9)
do v_ <+ n(&r)=—"7575.
lo(0)=5 152 (A2) 1-écpr?

The indexn corresponds to the Matsubara mode. The factors

which follows from Eq.(A1) for z=1, 7=0 and»=0. Fac- A, only appear in combination with the fact@r(1—c27?).

torizing the main building block EQA2) from Eg. (A1), we

notice that the remaining factor depends on betland the At the limits,
variablez only through the combination AEO) = Ag(E.7) =1 (AL0)
é= 1oz (A3) An(€,c,1)=0. (A11)

1+w’
In the same way, we find from E@A5) for the term~ 7 in
Therefore, it is most natural to make the variable transfornq. (A4) the explicit expression
Eq. (A3) by writing 13(w,z,7,7)=13(0,&(z,0),7,7), and to L q
i Ug-1 7T
rewrite the flow(Al) as Bd( £,7)= 2 A(é7)
2 d 1 Uy

X (1- cﬁ72)<d*1>’2®(1— car)

18(w,&7,7)=1§(0)By(&7,7), (A4)

where

1d+1
X ZFl( 1,T,Tu§An(§lT))

dvdlr 1-¢2:2
Ba(£imm) =5 Ef " dy YRR

d-1 d+1 d +3
n d+12Fl 2 gAn(g T))
1-S(1-y=ci) (A12)
X s5—0(1-ci7). (A5) N _ .
1-&(y+cqpm) Combining Eq.(A7) with Eq. (A12) gives Eq.(A6) and

hence Eq(A4) explicitly. Equation(A4) is the most general
Below, if not stated otherwise, we adopt a simplified nota-expression for the factorization at second order in the deriva-
tion: functions are evaluated at the pO“’ﬁgO z=1, 7 tive expan5|0n and at finite temperature
=0 or »=0, if the corresponding arguments are not dis- The temperature dependence of the funclBy¢, 7, 7)
played. With these definitions at hand, we can face the exdescribes dimensional reduction. In particular, it obeys the

plicit computation of Eq(A1l). limits
Let us compute the functioB4(&,7,7) more explicitly.
Since the anomalous dimension enters only linearly in Eq. By(&,7=0,7)=By(&,7) (A13)
(A1), it is helpful to rewrite Eq(A5) as
Ug-1 d T
Y B =1,9)= —— =—Bg4_ . (A14
Bu(£.,7,7)=Bq(£,7)— 7Bo(&,7). (A6) al&r=1m) == =G op Banabm). (ALY

For £<1, the remaining integration over the momentumThe low- and high-temperature limit#\13) and (A14) are
variable in Eq.(A5) can be performed. This leads to discussed in the following Appendixes.
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Let us consider the case wheje 0. It corresponds either
to the case of a field-independent wave function renormal-
izationz=1, and/or to the decoupling regime>1. A few
properties of Eq(A4) have been discussed in the main text.

d d
By(£)= [2F1(1,§;1+§§§

For £=0 the factor(A6) reduces to

d v T
Ba(r,7)= 5 2 (1-ch) P
Ug
2 2
n7 2 2
1- ”d—®(1 22).  (AL5)

This corresponds to E¢4.13 discussed in Sec. IV. In addi-

tion, we notice that

Ba(7,7—0)=Bgy(7) (A16)
Y

By(7—0m)=1- 575 (A17)
Vd-1 7 n

Bd(T/l 77) 1 oy 277_( - m . (A18)

Equation(Al16) corresponds to Eq3.9), Eq. (Al7) to the
low-temperature limit(5.195, and Eq.(A18) to the high-

temperature limit{4.15.

Similar results are found for the fermionic case, though -7

not discussed explicitly.

APPENDIX B: LOW TEMPERATURE LIMIT

In the low temperature limit— 0, the flow(Al) simpli-
fies to

|8(w,2,n)=f dy yd-2)12 27 y
0

(z=1ly+l+w (B1)

The remaining integration in E@B1) is solved to give
15(w,&,7)=15(w)By(£, ) (B2
with

df1 B 1 n 1l-y
_- dr2) _ 7
Ba(£,7m) ZJOdyy( 1(1_§y 21z (B3

in arbitrary dimensions. FoE=(1-2)/(1+w)<1, and
hencez> — w, the integration can be peformed analytically.

We find
Ba(&,7)=Bq(£)— 7By(&) (B4)
where
d d
Bd(5)22F1(1,§§1+ 5;5) (B5)
and

d d
1,1+—;2+§;§

BEEYLE! 2

}. (B6)

For|¢|<1, Eq.(B4) can be Taylor-expanded i leading to
the first equation given in Ed5.14).

For applications, it will be useful to obtain explicit ana-
lytical expressions for the function®1) for fixed dimen-
sions. Ford=4, we find

4 _ 1 1+w | Z+w
0((1),2, 77)_ Z_l_ (Z— 1)2 n1+w
1+2w+z 1(1tw)(wtz) zt+w
- - = n .
Naz-17 2 (z-1® 1+o
(B7)

In d=3 dimensions, we find

|3( 2.m)= 2 _2\/1+w arcta z—1
2= 71 (=12 N 1t w

1+3w+2z
3(z— 1)
l+w ztw ¢ z—1
a z—1(z-1)? arcta 1+ w

(B8)

and the region foz<<1 is obtained through analytical con-
tinuation. Finally, ford=2 we find

1 z+w

211+

) 11
|0(w,2,7]) —5—1

Z+ w Z+ w

+———In .
2(z-1)% 1te

(B9)

Notice that the functions(B7), (B8) and (B9) behave
smoothly forz=1, which follows either from Eq(5.14) or
by an explicit check.

Forz=1 these expressions reduce to the result(&d.5).

APPENDIX C: HIGH TEMPERATURE LIMIT

The high-temperature limit is reached fee=1, or T
=2mk. Then, only then=0 Matsubara mode contributes to
the flow. Using Eqs(A7), (A10) and(B5), we find:

d vg1 7

Bd(fﬂ'?l.?]):d_lv—dz Byg-1(£,7=0,7).

(CD

For |£]<1, Eq.(C1) can be Taylor-expanded as
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Vi1 T o (d=1)¢"
d—1 vy 27 a=o0 2n+d—1

Bq(&,7=1,m)=

7
1= Gv1e2n) (€2
Splitting By(¢,7=1,7) as in Eq.(A6), we have
B 1 d vy, 7 d-1d+1
gy 9 a1 T d—1d+1
o(&7=1) =97 vg 2w N2 T2 €
(Cy

PHYSICAL REVIEW D64 105007

In turn, the flow proportional to the anomalous dimension
reduces to

By(&,m=1)=

1d—i—l d+3
1 2 ) 2 1

3 } . (C9
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