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5D actions for 6D self-dual tensor field theory
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We present two equivalent five-dimensional actions for six-dimensidh@8l)(N= 1,2 supersymmetric theo-
ries of a self-dual tensor whose one spatial dimension is compactified on a circle. The Kaluza-Klein tower
consists of a massless vector and an infinite number of massive self-dual tensor multiplets living in five
dimensions. The self-duality follows from the equation of motion. Both actions are quadratic in field variables
without any auxiliary field. When lifted back to six dimensions, one of them gives a supersymmetric extension
of the bosonic formulation for the chiral two-form tensor by Perry and Schwarz.
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I. INTRODUCTION AND CONCLUSION other hand, the nonmanifestly Lorentz invariant action by
Schwarzet al. has not been supersymmetrized in the litera-
One of the challenging problems in quantum-field-ture yet.
theories at present is to construct the action for chyral In the context of M theory, five-dimensional maximally
forms, i.e., antisymmetric boson fields whose field strength iSupersymmetric gauge theory at strong-coupling limit is sup-
self-dual, especially with a non-Abelian group structureposed to have description by a six-dimensional (2,0) fixed
implemented. The self-duality condition requires the spacepoint, as the four brane of type IIA theory is the M-theory
time to be Euclidean for odp and Minkowskian for evep.  five brane wrapped around the eleventh direction, and at
In particular, thep=2 case has received much attention be-strong coupling the eleventh dimension decompactifies de-
cause it is related to the formulation of the world-volumeveloping an extra dimensiof27,28. In fact, there is no in-
action for the M-theory five brangl—7]. teracting fixed point of the renormalization group in five di-
Concerning Abelian theories of chirplforms, there have mensions [29]. Nevertheless, direct field theoretic
been various types of proposals. Floreanini and Jackiw firsinderstanding of the relationship between the five- and six-
proposed a nonmanifestly covariant action for chiral scalargimensional theories for non-Abelian interactions is still
in two dimensions by adopting somewhat unusual commutagacking.
tion relations among the field variabl¢8]. McClain et al. In this paper, we present two different but equivalent five-
proposed a formulation for chiral scalars by introducing andimensional supersymmetric actions for the Kaluza-Klein
infinite number of auxiliary fields, which do not carry any modes of the six-dimensionaN(0), N=1,2 self-dual tensor
physical degree of freedof8] (see also Ref§10,11]). Each  muiltiplets compactified on a circle. The Kaluza-Klein tower
treatment was extended to higher orgdorms in Refs[12]  consists of a massless vector and infinite number of massive
and[13,14, respectively. self-dual tensor multiplets living in five dimensions. The
Two other formulations are also available. Pasti, Sorokinself-duality follows from the equation of motion rather than a
and Tonin(PST) introduced a Lorentz covariant formulation constraint imposed by hand. When lifted back to six dimen-
with only one auxiliary scalar field entering a chiform  sjons, one of our formulations gives a supersymmetric exten-
action in a nonpolynomial wajl5]. Schwarzet al. studied a  sjon of the bosonic action for the chiral two-form tensor by
noncovariant formulation for self-dual two-form tensor in six Perry and Schwarfl 7). As there appears a five-dimensional
dimensions, where only five-dimensional Lorentz symmetryyector multiplet after compactifying the six-dimensional
is manifest as one spacetime dimension is treated differentl{gD) tensor multiplet on a circle, one may try to implement
from the other$16—-1§. However, it turned out that the PST the non-Abelian group structure by taking the vector field as
formulation for thep=2 case contains local symmetries andthe usual Yang-Mills gauge fiefdThis would give a five-
a noncovariant gauge fixing of the local symmetries reducegimensional super Yang-Mills theory coupled with massive
to the nonmanifestly Lorentz invariant formulation by tensor multiplets in an adjoint representation, realizing the M
Schwarzet al.[19,20 (see also Ref§21-23). Each formu-  theory picture on 5D and 6D theories. This scenario is the
lation further developed to construct a kappa symmetrignain motivation of the work in the present paper. The pro-
world-volume action for M-theory five-brane in an eleven- posed formulations deal with the Abelian case. Supersymme-
dimensional superspace backgrou@d,2q. try is provided, and non-Abelian generalization is to be done.
The bosonic PST formulation was supersymmetrized in  |n Sec. Il we first compactify the 6D tensor multiplets on
six dimensions, incorporating the self-dual tensor multipletsa circle. The self-duality is expressed in terms of the Kaluza-
Dall’Agata et al. and Clauset al. presented the (1,0) and Klein modes in five-dimensional language. The resulting
(2,0) supersymmetric extensions separafely,26. On the

1In this approach, one needs to ensure the six-dimensional cova-
*Electronic mail: klee@kias.re.kr riance of the non-Abelian gauge symmetry in the five-dimensional
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Kaluza-Klein modes are massless vector and massive tensor N o N
multiplets which are identified by the analysis on five- IHW=15pm e, Hu™ (6)
dimensional supersymmetry algebra. In Secs. Il and IV we
write our two proposed actions for the Kaluza-Klein mOdeSReversel taking off the curl. Eaq.(6) implies
of the (1,0) and (2,0) tensor multiplets, respectively. In Sec )\pa'y, _-g e a. (6) pe:

. . L . . (1/6)e,> " Hin oo —1(27m/RYMBy, ,,=F, for a certain
V we lift the actions to six dimensions and discuss the sym-_, 7/ #» * TP ) “ v )
metries. Fmur=9uAm,— Ay, - In m#0 cases/, one can fIX_ the
gauge for the tvv_o-form tensor such thgt,,, = Fr,,,, while
the m=0 case in Egs(5) and (6) shows the hodge dual

Il. TENSOR-MULTIPLETS COMPACTIFIED relation between the five-dimensional free Maxwell theory

ON A CIRCLE and a massless free two-form field theory. Thus, &.is
Using the 4x4 gamma matricesy”, ©=0,1,...,4, in equivalent to Eq(5) up to gauge transformations.
five-dimensional Minkowskian spacetime with the metric ~Six-dimensional N,0) supersymmetry algebra naturally
n,,=diag(+1,—1,--,—1), the six-dimensional gamma descends to five dimensions
matricesl™#, ,&=,u,5, are taken here as J— .- .
) {Q',Qj} =8 ¥*P.=8(y*P,+M), )
R 0 'y"‘) - - )
re=|_. . YE=H, YP=—P=1. (1)  where the supercharge®,, 1<i<2N, satisfy the pseudo-
y 0 Majorana condition(2) resulting in 8\ real components, and

M=Ps is a real central charge. In particular, since the 6D

tensor multiplet is masslesg/“p, =0, each Kaluza-Klein
mode must satisfy

This choice of gamma matrices gives a diagonaliFédna-
trix so that the nonvanishing components of the six-
dimensional chiral spinors are upper four, only and the
pseudo-Majoranar symplectic spi)-Majorana condition om |2
for 6D (N,0) chiral spinors is readily translated into the five- pll«p’u:(_m) , (8)
dimensional pseudo-Majorana conditi80] R

0 -1
1 O

so thatM acts as a “mass” operator on timeth Kaluza-Klein
, (2 mode with eigenvalue (2/R)m. Massless modas=0, and
massive modem# 0, fit into the representations of the little
where 1<i, j<2N, andC is the five-dimensional charge- 9roups, SO(3xSp(N) and Spin(4) Sp(N)~SU(2)
conjugate matrix satisfying'=Cy*C~1, C'=—C. X SU(2)X Sp(N), separately. From Ref32] (see also Ref.
The 6D (N,0), N=1,2 tensor multiplet consists of a two- [33]) the relevant representations of the massless and mas-
form tensor,B;,;, pseudo-Majorana chiral spinorg;, and ~ SIV€ modes are foN=1
one forN=1/five for N=2 real scalds), ¢ [31].
Compactifying the fifth spatial dimension on a circle of

Y=y =yitCy;, Jij:(

(2,)x2%2=(3,)+(1,1)+(2,2

radiusR gives a Kaluza-Klein tower of the tensor multiplets ‘massless tensor, Maxwell,
, , €)
B;L;ZmEEZ By el G7RIME, ¢=n§2 Pl GTRIME (2,1,)x2%2=(3,1,)+(1,1,))
3 +(2,1,2) :massive tensor,
Y= 2 YhelmRme E Ui CTIRME, and forN=2
meZ meZ
4_
Reality and pseudo-Majorana conditions imply (LYx2"=(3,D+(1.9+(24
. . — t o massless tensor, Maxwell,
Bm’;;:B—m;},;v Pn=b-m: Imi=¢¥_nY :dfﬁnc‘]ji . (10)
@ (1L1,)x2%=(3,1,)+(1,1,5
The self-duality of the 6D two-form tensad=*H, is now +(2,1,4 :massivetensor,
expressed in terms of the five-dimensional Kaluza-Klein
modes where for the massless representations the tensor and Max-
) well multiplets are hodge dual to each other.
aa
Frewti—=MBr,==€,, Hm o (5
mero TR TR 6k me Il (1,00 THEORY
whereF,,, is the field strength oB,,s=An,, . Our two proposed five-dimensional Lagrangians for the
Taking a curl of Eq(5) eliminatesA,,, leaving a second Kaluza-Klein tower of the 6D (1,0) tensor multiplet compac-
order differential equation that involveés;,,, only tified on a circle are
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L= S~ Fmtil Fer i 27 e L= S EHp o H i mesnirg H
1_meZ 4| mer I?mBm’w -m I?m -m Z_mezl_z Mkt mm Iﬁme muv! f=m\po
1 vApo m f 2m i m : 2m i
—Ee'“ P7H _mapo | - mi |7Map.+?m Pm T mi |7'u07p.+?m mt 0y Pmd* b —m
2 2 2 2
+(9,u¢m(w¢fm_ ?m ¢m¢7m- (11) - ﬁm d’md’fm’ (12)
and of which the supersymmetry transformation rules are

OBy =11V, Obm=1mie', OAn=1€1Y, ¥,
(13)

1 )
mt 7 g forLy,

2T )
Fm,uv—{_IFmBm;w ’yM

(o2
b% i—m
Syt = "R
m .

8| fOI’Ez

1 v
bt 1_2Hm)\,u.1/7 "

" 2T
Y (9M+|?m

Note that these are compatible with the reality and pseudofhe equations of motion ford,,,, Bm,, are Jn,,

Majorana condition$4) and the invariance of the action can = —(Fruoti2m/RMBy,,), Imun=— %waplompa, re-
be shown using*’=3€&"***7y,, and spectively. Depending on which expression of the auxiliary
— s i fields we choose to substituté,. ., gives eitherl; or L,.
EiYuy Vg -+ - Vg ¥m™= = ¥miVuy - Vi) Yiu This equivalence has an analogue in three dimensions: the
— - free theory of Maxwell and Chern-Simons terms are equiva-
=Yy Yy - - Yugm)™ lent to the theory of Chern-Simons and Higgs terms.
(14

. . IV. (2,00 THEORY
The summation of the modes can be just oyl and

—|m| for any givenme Z, as this pair alone forms an irre- The (2,0) tensor-multiplet contains five real scalaf¥,
ducible representation of the supersymmetry transformai<i,j<4, satisfying
tions. Hence, we may miX; and £,. For example, we may - ) -
replace the zero mode ifi, by the zero mode i, which P'=—9¢", ¢"3;;=0. (16)
will give the kinetic terms for both the vector and the tensor
fields. With ¢;; = ¢*'3,;J;; our proposed Lagrangians are

For £,, the equations of motion fd,,,, m#0, andA,,
alone give the self-duality formulés) for m#0, m=0, re- L= E _ }( E +i2—TrmBm
spectively. On the other han8,,, appears only as a total e, a4l ™ TR v
derivative in£4 not contributing the action, and the equation
of motion for A,,,, m#0 is nothing but the divergence of _ EGMVWH )JFJ -(i Ly + Z_Wm) wi
the self-duality formula, and hence not a new field equation. 6 ~Mhpa -mil PO R m
Note also that the zero modes correspond to a five- o |2
dimensional super Maxwell theory. ij qu ,,_(_ ) ij N

For £,, the equation of motion foB,,, is the curl of the 0pPm” S—mi R P mij (7
self-duality (6) and the gauge freedom recovers the self-
duality as we discussed in Sec. Il. and

Our two Lagrangians£, and £,, are dual to each other

2
F/i’;n_l FmB’ifn

through the following intermediate Lagrangian containing . _ ~H H)\uv_iime,uv}\pa'B H
auxiliary two-form fields,Jm,.,= = I 2 mze:z 127 mwrtimme TR iyt T Mo
1 v 1 2w — ) 2 i ]
ElHZ:n%Z Z‘]m/.LV‘]*m_*—E Fm,uvdl—lﬁmBm,uV T mi I‘}/M&M_Fﬁm ¢m+a,u¢ma#¢fmij

27 \%
x (15) —(3m> Pb-mi (18)

1
3t e P

—M\po | *
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and the supersymmetry transformation rules are

OBy =181V, A, =i, 0,

TR e B s S S TS
5¢m:_|§ ¢m8_¢m8+§~] Ymie" |,

(19
2w o1 2w .
. 7”(7#+|Em ¢mj81+z Fmﬂv‘l‘lFmBmMV y*Ve forEl,
Om= 2m 1
; i j Auv i
(y”&lﬁl?m) ¢'ij’+1—2me,”7 mrel for L,.
|
V. LIFT TO 6D parts of the Lorentz transformations as in E2@3). Further-

. . . . . more, the anticommutator of the transformations reads
It is straightforward to lift our proposed actions to six

dimensions. The scalar and spinor parts are the standard ones
[52 ' 51]8;/,11: (Al XA)Z\_ AZ' XA?I\_)(H)\,LLV—’— (9)\BMV)'

1 P .
mj X iy 05 + 3, p . (20) (29

The two-form tensor part leads fdl; For the transformation in Eq24) to be identified with the
remaining Lorentz transformations, this must be interpreted
s 1 500 1 g as the five-dimensional Lorentz transformatid@8) up to
R | xgHsuH> +5 € d5B,,Hyper (2D any possible gauge transformation. However, direct calcula-
tion shows that this is not the case, since with,,
and for £, =A1,A5,—(12)

1 1 1
6 H Auv YN 108 H ) ,5 H V_—5 H V+ATKXT(9KH V_31XK J“B v
—2 RJ d X_12 )\,uVH 246 ﬁSB,uv \po - (22) [ 2 1] A 5D T A RN /’«(ée)

The latter is identical to the action by Perry and Schwarzand the right-hand side cannot be rescaledzinﬁng)\W.

[17]. Hence, our work orC, can be regarded as ithN(0),  Therefore, Eq(24) is a symmetry of the action, which is not
N=1,2 supersymmetric extensions. The supersymmetryorentz symmetry even up to gauge transformations. Never-
transformation rules can be easily read from Ed®) and  theless, the formulation by Schwagral.is a certain nonco-
(19). Some analysis on the canonical dimensions of the fieldgariant gauge fixing of the PST formulati¢h9—22, and the
showR=g?%,,, wheregyy, is the five-dimensional coupling latter possesses the full 6D Lorentz symmetry. Furthermore,

constan{29,34. it was shown that the PST action for the two-form tensor
Both actions in Eq921) and(22) are manifestly invariant supermultiplet enjoys the six-dimensional superconformal
under the five-dimensional Lorentz transformations symmetry[26] as well as some nontrivial local symmetries
[19,25. These results suggest that there is a hidden big sym-
55DBW=AM“BM+A,,"BM+A””XM,,B,W- (23)  metry in the action, which combines those two symmetries

and contains the transformation found by Perry and Schwarz
On the other hand, it is not clear whether the actions ar¢Eq. (24)]. Note that the Coleman-Mandula theorem on pos-
invariant under the rotations mixing the sixth direction andsible symmetries of field theories applies only for massive
the other fiveu directions. In Ref[17] the authors found a pointlike particled35] and the 6D two-form tensor theory is
transformation with five-dimensional vector parameters, not the case, since it is massless conformal theory and the
self-duality makes the distinction between the electric and
the magnetic particles meaningless.

The strong-coupling limit of thaN=4 supersymmetric
five-dimensional Yang-Mills theories becomes the (2,0)
which leaves the actiof22) invariant up to surface terms, theory in six dimensiong29]. The crucial question is how to
and it was argued that this is the remaining Lorentz symmetnderstand the degrees of freedom in non-Abelian (2,0)
try so that the action possesses the full six-dimensional Lor-
entz symmetry. However, in this case, the transformation in
Eq. (24) lacks the usual distinction of “spin” and “orbital” 2This is also impossible on shell contrary to the claim in R&T].

1
5BM:€A “X€,unpoHPTHXPA B, , (24
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theory[36—38, which appears to be ord&. The relation

PHYSICAL REVIEW b4 105006

stantons. One way of approaching the non-Abelian nature of

between the (2,0) Higgs field and the five-dimensional Yangthe (2,0) theory is to explore the dynamics of monopole

Mills theory is ¢s= 5 /€3, wheree? is the five-dimensional
Yang-Mills coupling of length dimension. In the strong-
coupling limit eg—m, the five-dimensional Higgs field ex-
pectation value should approach infinity for the finite six-

dimensional Higgs expectation value. In the Higgs phase of

string loops and instantons in five dimensions. We hope to
come back to this subject in the near future.
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