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5D actions for 6D self-dual tensor field theory
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We present two equivalent five-dimensional actions for six-dimensional (N,0) N51,2 supersymmetric theo-
ries of a self-dual tensor whose one spatial dimension is compactified on a circle. The Kaluza-Klein tower
consists of a massless vector and an infinite number of massive self-dual tensor multiplets living in five
dimensions. The self-duality follows from the equation of motion. Both actions are quadratic in field variables
without any auxiliary field. When lifted back to six dimensions, one of them gives a supersymmetric extension
of the bosonic formulation for the chiral two-form tensor by Perry and Schwarz.
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I. INTRODUCTION AND CONCLUSION

One of the challenging problems in quantum-fie
theories at present is to construct the action for chirap
forms, i.e., antisymmetric boson fields whose field strengt
self-dual, especially with a non-Abelian group structu
implemented. The self-duality condition requires the spa
time to be Euclidean for oddp and Minkowskian for evenp.
In particular, thep52 case has received much attention b
cause it is related to the formulation of the world-volum
action for the M-theory five brane@1–7#.

Concerning Abelian theories of chiralp forms, there have
been various types of proposals. Floreanini and Jackiw
proposed a nonmanifestly covariant action for chiral sca
in two dimensions by adopting somewhat unusual comm
tion relations among the field variables@8#. McClain et al.
proposed a formulation for chiral scalars by introducing
infinite number of auxiliary fields, which do not carry an
physical degree of freedom@9# ~see also Refs.@10,11#!. Each
treatment was extended to higher orderp forms in Refs.@12#
and @13,14#, respectively.

Two other formulations are also available. Pasti, Sorok
and Tonin~PST! introduced a Lorentz covariant formulatio
with only one auxiliary scalar field entering a chiralp-form
action in a nonpolynomial way@15#. Schwarzet al.studied a
noncovariant formulation for self-dual two-form tensor in s
dimensions, where only five-dimensional Lorentz symme
is manifest as one spacetime dimension is treated differe
from the others@16–18#. However, it turned out that the PS
formulation for thep52 case contains local symmetries a
a noncovariant gauge fixing of the local symmetries redu
to the nonmanifestly Lorentz invariant formulation b
Schwarzet al. @19,20# ~see also Refs.@21–23#!. Each formu-
lation further developed to construct a kappa symme
world-volume action for M-theory five-brane in an eleve
dimensional superspace background@24,20#.

The bosonic PST formulation was supersymmetrized
six dimensions, incorporating the self-dual tensor multiple
Dall’Agata et al. and Clauset al. presented the (1,0) an
(2,0) supersymmetric extensions separately@25,26#. On the
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other hand, the nonmanifestly Lorentz invariant action
Schwarzet al. has not been supersymmetrized in the lite
ture yet.

In the context of M theory, five-dimensional maximal
supersymmetric gauge theory at strong-coupling limit is s
posed to have description by a six-dimensional (2,0) fix
point, as the four brane of type IIA theory is the M-theo
five brane wrapped around the eleventh direction, and
strong coupling the eleventh dimension decompactifies
veloping an extra dimension@27,28#. In fact, there is no in-
teracting fixed point of the renormalization group in five d
mensions @29#. Nevertheless, direct field theoret
understanding of the relationship between the five- and
dimensional theories for non-Abelian interactions is s
lacking.

In this paper, we present two different but equivalent fiv
dimensional supersymmetric actions for the Kaluza-Kle
modes of the six-dimensional (N,0), N51,2 self-dual tensor
multiplets compactified on a circle. The Kaluza-Klein tow
consists of a massless vector and infinite number of mas
self-dual tensor multiplets living in five dimensions. Th
self-duality follows from the equation of motion rather than
constraint imposed by hand. When lifted back to six dime
sions, one of our formulations gives a supersymmetric ext
sion of the bosonic action for the chiral two-form tensor
Perry and Schwarz@17#. As there appears a five-dimension
vector multiplet after compactifying the six-dimension
~6D! tensor multiplet on a circle, one may try to impleme
the non-Abelian group structure by taking the vector field
the usual Yang-Mills gauge field.1 This would give a five-
dimensional super Yang-Mills theory coupled with mass
tensor multiplets in an adjoint representation, realizing the
theory picture on 5D and 6D theories. This scenario is
main motivation of the work in the present paper. The p
posed formulations deal with the Abelian case. Supersym
try is provided, and non-Abelian generalization is to be do

In Sec. II we first compactify the 6D tensor multiplets o
a circle. The self-duality is expressed in terms of the Kalu
Klein modes in five-dimensional language. The resulti

1In this approach, one needs to ensure the six-dimensional c
riance of the non-Abelian gauge symmetry in the five-dimensio
action.
©2001 The American Physical Society06-1
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Kaluza-Klein modes are massless vector and massive te
multiplets which are identified by the analysis on fiv
dimensional supersymmetry algebra. In Secs. III and IV
write our two proposed actions for the Kaluza-Klein mod
of the (1,0) and (2,0) tensor multiplets, respectively. In S
V we lift the actions to six dimensions and discuss the sy
metries.

II. TENSOR-MULTIPLETS COMPACTIFIED
ON A CIRCLE

Using the 434 gamma matrices,gm, m50,1, . . . ,4, in
five-dimensional Minkowskian spacetime with the met
hmn5diag(11,21,•••,21), the six-dimensional gamm
matricesGm̂, m̂5m,5, are taken here as

Gm̂5S 0 gm̂

g̃m̂ 0
D , gm5g̃m, g552g̃551. ~1!

This choice of gamma matrices gives a diagonalizedG7 ma-
trix so that the nonvanishing components of the s
dimensional chiral spinors are upper four,c, only and the
pseudo-Majoranaor symplectic sp(N)-Majorana condition
for 6D (N,0) chiral spinors is readily translated into the fiv
dimensional pseudo-Majorana condition@30#

c̄ i5c i†g05c j tCJji , Ji j 5S 0 21

1 0 D , ~2!

where 1< i , j <2N, and C is the five-dimensional charge
conjugate matrix satisfyinggmt5CgmC21, Ct52C.

The 6D (N,0), N51,2 tensor multiplet consists of a two
form tensor,Bm̂n̂ , pseudo-Majorana chiral spinors,c i , and
one forN51/five for N52 real scalar~s!, f @31#.

Compactifying the fifth spatial dimension on a circle
radiusR gives a Kaluza-Klein tower of the tensor multiple

Bm̂n̂5 (
mPZ

Bmm̂n̂ei (2p/R)mx5
, f5 (

mPZ
fmei (2p/R)mx5

,

~3!

c i5 (
mPZ

cm
i ei (2p/R)mx5

, c̄ i5 (
mPZ

c̄mie
i (2p/R)mx5

.

Reality and pseudo-Majorana conditions imply

Bmm̂n̂
* 5B2mm̂n̂ , fm* 5f2m , c̄mi5c2m

i† g05cm
jtCJji .

~4!

The self-duality of the 6D two-form tensor,H5* H, is now
expressed in terms of the five-dimensional Kaluza-Kl
modes

Fmmn1 i
2p

R
mBmmn5

1

6
emn

lrsHmlrs , ~5!

whereFmmn is the field strength ofBmm5[Amm .
Taking a curl of Eq.~5! eliminatesAmm leaving a second

order differential equation that involvesBmmn only
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]lHm
lmn5 i

p

3R
m e lrs

mn Hm
lrs . ~6!

Reversely, taking off the curl, Eq. ~6! implies
(1/6)emn

lrsHmlrs2 i (2p/R)mBmmn5Fmmn8 for a certain
Fmmn8 5]mAmn8 2]nAmm8 . In mÞ0 cases, one can fix th
gauge for the two-form tensor such thatFmmn8 5Fmmn , while
the m50 case in Eqs.~5! and ~6! shows the hodge dua
relation between the five-dimensional free Maxwell theo
and a massless free two-form field theory. Thus, Eq.~6! is
equivalent to Eq.~5! up to gauge transformations.

Six-dimensional (N,0) supersymmetry algebra natural
descends to five dimensions

$Qi ,Q̄j%5d j
i gm̂Pm̂5d j

i ~gmPm1M !, ~7!

where the supercharges,Qi , 1< i<2N, satisfy the pseudo-
Majorana condition~2! resulting in 8N real components, and
M5P5 is a real central charge. In particular, since the
tensor multiplet is massless,pm̂pm̂50, each Kaluza-Klein
mode must satisfy

pmpm5S 2p

R
mD 2

, ~8!

so thatM acts as a ‘‘mass’’ operator on themth Kaluza-Klein
mode with eigenvalue (2p/R)m. Massless modesm50, and
massive modesmÞ0, fit into the representations of the littl
groups, SO(3)3Sp(N) and Spin(4)3Sp(N);SU(2)
3SU(2)3Sp(N), separately. From Ref.@32# ~see also Ref.
@33#! the relevant representations of the massless and m
sive modes are forN51

~2,1!3225~3,1!1~1,1!1~2,2!

:massless tensor, Maxwell,
~9!

~2,1,1!3225~3,1,1!1~1,1,1!

1~2,1,2! :massive tensor,

and forN52

~1,1!3245~3,1!1~1,5!1~2,4!

:massless tensor, Maxwell,
~10!

~1,1,1!3245~3,1,1!1~1,1,5!

1~2,1,4! :massive tensor,

where for the massless representations the tensor and M
well multiplets are hodge dual to each other.

III. „1,0… THEORY

Our two proposed five-dimensional Lagrangians for t
Kaluza-Klein tower of the 6D (1,0) tensor multiplet compa
tified on a circle are
6-2
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L15 (
mPZ

2
1

4 S Fmmn1 i
2p

R
mBmmnD S F2m

mn 2 i
2p

R
mB2m

mn

2
1

6
emnlrsH2mlrsD1c̄2miS igm]m1

2p

R
mDcm

i

1]mfm]mf2m2S 2p

R
mD 2

fmf2m , ~11!
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L25 (
mPZ

1

12
HmlmnH2m

lmn2 i
p

12R
memnlrsBmmnH2mlrs

1c̄2miS igm]m1
2p

R
mDcm

i 1]mfm]mf2m

2S 2p

R
mD 2

fmf2m , ~12!

of which the supersymmetry transformation rules are
dBmmn5 i «̄ igmncm
i , dfm5 i c̄mi«

i , dAmm5 i «̄ igmcm
i ,

~13!

dcm
i 5H F S gm]m1 i

2p

R
mDfm1

1

4 S Fmmn1 i
2p

R
mBmmnDgmnG« i for L1 ,

F S gm]m1 i
2p

R
mDfm1

1

12
HmlmnglmnG« i for L2 .
ry

the
va-
Note that these are compatible with the reality and pseu
Majorana conditions~4! and the invariance of the action ca
be shown usingglmn5 1

2 elmnrsgrs and

«̄ igm1
gm2

. . . gmn
cm

i 52c̄migmn
. . . gm2

gm1
« i

52~ «̄ igm1
gm2

. . . gmn
c2m

i !* .

~14!

The summation of the modes can be just overumu and
2umu for any givenmPZ, as this pair alone forms an irre
ducible representation of the supersymmetry transfor
tions. Hence, we may mixL1 andL2. For example, we may
replace the zero mode inL2 by the zero mode inL1, which
will give the kinetic terms for both the vector and the tens
fields.

ForL1, the equations of motion forBmmn , mÞ0, andA0m
alone give the self-duality formula~5! for mÞ0, m50, re-
spectively. On the other hand,B0mn appears only as a tota
derivative inL1 not contributing the action, and the equatio
of motion for Amm , mÞ0 is nothing but the divergence o
the self-duality formula, and hence not a new field equati
Note also that the zero modes correspond to a fi
dimensional super Maxwell theory.

For L2, the equation of motion forBmmn is the curl of the
self-duality ~6! and the gauge freedom recovers the se
duality as we discussed in Sec. II.

Our two Lagrangians,L1 andL2, are dual to each othe
through the following intermediate Lagrangian containi
auxiliary two-form fields,Jmmn52Jmnm ,

L1↔25 (
mPZ

1

4
JmmnJ2m

mn 1
1

2 S Fmmn1 i
2p

R
mBmmnD

3S J2m
mn 1

1

12
emnlrsH2mlrsD . ~15!
o-

a-

r

.
-

-

The equations of motion forJmmn , Bmmn are Jmmn

52(Fmmn1 i 2p/R mBmmn), Jmmn52 1
6 emnlrsHm

lrs , re-
spectively. Depending on which expression of the auxilia
fields we choose to substitute,L1↔2 gives eitherL1 or L2.
This equivalence has an analogue in three dimensions:
free theory of Maxwell and Chern-Simons terms are equi
lent to the theory of Chern-Simons and Higgs terms.

IV. „2,0… THEORY

The (2,0) tensor-multiplet contains five real scalars,f i j ,
1< i , j <4, satisfying

f i j 52f j i , f i j Ji j 50. ~16!

With f i j 5fklJkiJl j our proposed Lagrangians are

L15 (
mPZ

2
1

4 S Fmmn1 i
2p

R
mBmmnD S F2m

mn 2 i
2p

R
mB2m

mn

2
1

6
emnlrsH2mlrsD1c̄2miS igm]m1

2p

R
mDcm

i

1]mfm
i j ]mf2mi j2S 2p

R
mD 2

fm
i j f2mi j , ~17!

and

L25 (
mPZ

1

12
HmlmnH2m

lmn2 i
p

12R
memnlrsBmmnH2mlrs

1c̄2miS igm]m1
2p

R
mDcm

i 1]mfm
i j ]mf2mi j

2S 2p

R
mD 2

fm
i j f2mi j , ~18!
6-3



KIMYEONG LEE AND JEONG-HYUCK PARK PHYSICAL REVIEW D64 105006
and the supersymmetry transformation rules are

dBmmn5 i «̄ igmncm
i , dAmm5 i «̄ igmcm

i ,

dfm
i j 52 i

1

2 S c̄m
i « j2c̄m

j « i1
1

2
J21i j c̄mk«

kD ,

~19!

dcm
i 5H S gm]m1 i

2p

R
mDfmj

i « j1
1

4 S Fmmn1 i
2p

R
mBmmnDgmn« i for L1 ,

S gm]m1 i
2p

R
mDfmj

i « j1
1

12
Hmlmnglmn« i for L2 .
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V. LIFT TO 6D

It is straightforward to lift our proposed actions to s
dimensions. The scalar and spinor parts are the standard

1

2pRE d6x ic̄ i g̃
m̂]m̂c i1]m̂f]m̂f. ~20!

The two-form tensor part leads forL1

1

2pRE d6x
1

4
H5mnH5mn1

1

24
emnlrs]5BmnHlrs , ~21!

and forL2

1

2pRE d6x
1

12
HlmnHlmn2

1

24
emnlrs]5BmnHlrs .

~22!

The latter is identical to the action by Perry and Schw
@17#. Hence, our work onL2 can be regarded as its (N,0),
N51,2 supersymmetric extensions. The supersymm
transformation rules can be easily read from Eqs.~13! and
~19!. Some analysis on the canonical dimensions of the fie
showR5gYM

2 , wheregYM is the five-dimensional coupling
constant@29,34#.

Both actions in Eqs.~21! and~22! are manifestly invariant
under the five-dimensional Lorentz transformations

d5DBmn5Lm
lBln1Ln

lBml1Llrxl]rBmn . ~23!

On the other hand, it is not clear whether the actions
invariant under the rotations mixing the sixth direction a
the other fivem directions. In Ref.@17# the authors found a
transformation with five-dimensional vector parametersLm ,

dBmn5
1

6
L•xemnlrsHlrs1x5L•]Bmn , ~24!

which leaves the action~22! invariant up to surface terms
and it was argued that this is the remaining Lorentz symm
try so that the action possesses the full six-dimensional L
entz symmetry. However, in this case, the transformation
Eq. ~24! lacks the usual distinction of ‘‘spin’’ and ‘‘orbital’’
10500
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parts of the Lorentz transformations as in Eq.~23!. Further-
more, the anticommutator of the transformations reads

@d2 ,d1#Bmn5~L1•xL2
l2L2•xL1

l!~Hlmn1]lBmn!.
~25!

For the transformation in Eq.~24! to be identified with the
remaining Lorentz transformations, this must be interpre
as the five-dimensional Lorentz transformations~23! up to
any possible gauge transformation. However, direct calc
tion shows that this is not the case, since withLmn

5L1mL2n2(1↔2)

@d2 ,d1#Hlmn5d5DHlmn1Ltkxt]kHlmn23Lk[l]kBmn]
~26!

and the right-hand side cannot be rescaled into2 d5DHlmn .
Therefore, Eq.~24! is a symmetry of the action, which is no
Lorentz symmetry even up to gauge transformations. Ne
theless, the formulation by Schwarzet al. is a certain nonco-
variant gauge fixing of the PST formulation@19–22#, and the
latter possesses the full 6D Lorentz symmetry. Furtherm
it was shown that the PST action for the two-form tens
supermultiplet enjoys the six-dimensional superconform
symmetry@26# as well as some nontrivial local symmetrie
@19,25#. These results suggest that there is a hidden big s
metry in the action, which combines those two symmetr
and contains the transformation found by Perry and Schw
@Eq. ~24!#. Note that the Coleman-Mandula theorem on po
sible symmetries of field theories applies only for mass
pointlike particles@35# and the 6D two-form tensor theory i
not the case, since it is massless conformal theory and
self-duality makes the distinction between the electric a
the magnetic particles meaningless.

The strong-coupling limit of theN54 supersymmetric
five-dimensional Yang-Mills theories becomes the (2
theory in six dimensions@29#. The crucial question is how to
understand the degrees of freedom in non-Abelian (2

2This is also impossible on shell contrary to the claim in Ref.@17#.
6-4
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theory @36–38#, which appears to be orderN3. The relation
between the (2,0) Higgs field and the five-dimensional Ya
Mills theory isf65f5 /e5

2, wheree5
2 is the five-dimensiona

Yang-Mills coupling of length dimension. In the strong
coupling limit e5

2→`, the five-dimensional Higgs field ex
pectation value should approach infinity for the finite s
dimensional Higgs expectation value. In the Higgs phase
the Yang-Mills, charged elementary particles decouple in
strong-coupling limit, but only instantons and magne
monopole strings remain. Now instantons appear as the
mentum modes along the missing sixth dimension. Thus
‘‘non-Abelian’’ nature of the (2,0) theory should manife
only through the ‘‘excitations’’ of monopole strings and in
s

uc

10500
-

of
e

o-
e

stantons. One way of approaching the non-Abelian natur
the (2,0) theory is to explore the dynamics of monopo
string loops and instantons in five dimensions. We hope
come back to this subject in the near future.
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