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Gauge invariant effective Lagrangian for Kaluza-Klein modes
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We construct a manifestly gauge invariant Lagrangian in 311 dimensions forN Kaluza-Klein modes of an
SU(m) gauge theory in the bulk. For example, if the bulk is 411, the effective theory isP i 51

N11SU(m) i with

N chiral (m̄,m) fields connecting the groups sequentially. This can be viewed as a Wilson action for a
transverse lattice inx5, and is shown explicitly to match the continuum 411 compactified Lagrangian trun-
cated in momentum space. Scale dependence of the gauge couplings is described by the standard renormal-
ization group technique with threshold matching, leading to effective power law running. We also discuss the
unitarity constraints, and chiral fermions.
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I. INTRODUCTION

It is widely believed that the main low energy signature
extra dimensions is the appearance of the tower of Kalu
Klein ~KK ! modes@1#. For example, if QCD lived in the
bulk, experimentalists would see massive spin-1 degene
color octet vector bosons~colorons! appearing at large mas
scales corresponding to~inverse! compactification scales. A
these new massive KK particles begin to emerge in accel
tor experiments, we might ask how would we describe th
in an effective four-dimensional renormalizeable Lagrang
that is an extension of QCD, without ana priori knowledge
of the existence of extra dimensions? The main goal of
present paper is to give a manifestly gauge invariant ef
tive Lagrangian description of KK modes in 311 dimen-
sions.

It is important to realize at the outset that there is
implicit dynamical assumption underlying a theory wi
extra-dimensions and KK modes. This is the assumption
there is a meaningful separation of scales between the c
pactification scale,Mc;1/R and the ‘‘string’’ or ‘‘fundamen-
tal scale’’ Ms at which the extra-dimensional theory brea
down as a perturbative local field theory. To haveN@1 KK
modes in a 411 theory we requireMs /Mc;N@1. It is not
obvious how such a separation of scales occurs in the th
~it involves soft mass scales in the radion potential t
somehow remain isolated fromMs). Can it occur naturally
or does it require fine-tuning? Such a hierarchy requ
strong coupling at the high energy scaleMs . We will as-
sume, as do all extra-dimensional models, that we have s
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a hierarchy, and return to this issue in Sec. VI.
Having engineered a hierarchy withN@1 KK modes, by

analogy with critical behavior in a second order phase tr
sition in condensed matter physics, there should exist a w
range, or universality class, of theories that have ident
behavior in the infra-red, but are radically different in det
at the scaleMs . In the present paper we exploit universalit
We treat the physics atMs not as a ‘‘string theory,’’ but
rather as a ‘‘transverse lattice gauge theory’’@2#. For us, the
normal 311 dimensions of space-time are continuous, b
the extra dimensions are latticized~nothing prevents us from
adopting a full lattice theory, but it is convenient for ou
presnt purposes to use the transverse lattice!. This theory will
have a well-defined finite short-distance behavior for ar
trarily large coupling and will be manifestly gauge invarian
reflecting the full gauge invariance of the higher dimensio
theory. It will have the same infra-red behavior as the us
KK-mode description, but will illuminate how the gauge in
variance is maintained.

As a result, we understand something implicitly puzzli
about KK modes. Longitudinal KK mode scattering is esse
tially the scattering of Nambu-Goldstone bosons in a non
ear chiral Lagrangian. As such it violates perturbative unit
ity, i.e., there is a Lee-Quigg-Thacker bound on t
applicability of the theory@3#. We will see that this happen
at, none other than, the scaleMs in our effective Lagrangian.
This is not surprising, since the parentD55 theory has a
dimensional coupling constantg0 ~with dimensionM 21/2)
and is expected to violate perturbative unitarity whens
*Ms /a0. This indeed translates into the unitarity bounds
&4pv2 for longitudinal gauge boson scattering in our effe
tive 311 theory.

The main reason for desiring an approach such as th
that it is difficult to treat non-Abelian gauge theories in loo
©2001 The American Physical Society05-1
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expansions with momentum space cut-offs. Normally,
momentum space cut-off is not compatible with gauge
variance, and this causes the loop expansion to become
gauge invariant. However, the usual treatment of ex
dimensional gauge theories involves a truncation on
modes, which is a de facto momentum space cut-off. W
gauge fields in the bulk, ad11 theory withd.3 has infi-
nitely more gauge invariance than the 311 theory since
there is more space in which to perform local gauge tra
formations. Clearly the gauge invariance of 311 QCD must
be maintained, but how does the expanding local gauge
variance of the theory manifest itself as the extra dimens
begins to open up with the emergence of KK modes? H
does the power-law running of the coupling constant eme
and what is the correct renormalization group for such
description?

II. MANIFESTLY GAUGE INVARIANT EFFECTIVE
LAGRANGIAN

The KK modes of the vector bosons of QCD, i.e., t
colorons, are heavy matter fields and must transform line
under the adjoint representation ofSU(3) ~in contrast to the
zero-mode gluon which transforms nonlinearly by the Yan
Mills gauge transformation!. Reference@4# argued that vec-
tor fields in linear adjoint representations of a local gau
groupSU(m) will always contain a ‘‘hidden’’ local symme-
try, which is a copy ofSU(m). The gluon plus one massiv
octet vector multiplet corresponds to the local symme
SU(m)3SU(m), each factor having the same coupling co
stant~our present discussion is classical; we will worry abo
running couplings below!. This is broken diagonally by an

effective Higgs field,F, which transforms as an (m̄,m), to a
local SU(m) and anSU(m) global symmetry. Only the chi-
ral components ofF are relevant here so we can replaceF
→vexp(fala/2v) ~see footnote 1!. The fa are absorbed to
give the coloron mass. Hence, in describing one mas
octet this way it is the low energy hidden local symmetry d
to the spontaneous breaking that reflects the expanded g
invariance of the extra-dimensional theory as the space o
extra dimension is opening up.

As experiments go to higher energies, one starts to
more KK massive gauge bosons. It is obvious that one
quires more ‘‘hidden’’ localSU(3) symmetries and more
Higgs fields as in the previous case to construct an effec
Lagrangian to describe these massive gauge bosons. H
we propose that the effective Lagrangian for the firstn KK
modes would containN11 (N@n) SU(3)’s with N F ’s.
The interconnections between the gauge symmetries and
Higgs boson could become completely arbitrary, and reso
into different hydrocarbon-like chain molecules.

We might guess that the simplest linear interconnect
for N modes havingF i,(3̄i 21,3i) is somehow relevant. We
will follow the organic chemistry nomenclature and call th
an ‘‘aliphatic’’ „SU(3)N11,FN

… model. The Lagrangian for
10500
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L52
1

4 (
i 50

N

Fimn
a Fimna1(

i 51

N

DmF i
†DmF i ~2!

in which the covariant derivative is defined asDm5]m

1 igLAm
a Ta, gL is the dimensionless gauge coupling const

that is equal for all of theSU(3) symmetries andTa are the
generators of the gauge symmetry wherea is the color index.
Note that the fact thatgL is common for all the gauge group
is a key constraint and would be evidence to the experim
talist in 311 of the extra-dimensions. Upon substituting

F i→vexp~ if i
ala/2v ! ~3!

the F kinetic terms lead to a mass matrix for the gau
fields:

(
i 51

N
1

2
gL

2v2~A( i 21)m
a 2Aim

a !2. ~4!

This mass matrix has the structure of a nearest neigh
coupled oscillator Hamiltonian. We can diagonalize the m
matrix to find the eigenvalues~which corresponds to the dis
persion relation for the coupled oscillator-system!:

Mn52gLvsinFgn

2 G , gn5
np

N11
, n50,1, . . . ,N. ~5!

Thus we see that for smalln this system has a KK tower o
masses given by

Mn'
gLvpn

~N11!
, n!N ~6!

andn50 corresponds to the zero-mode gluon.
To match on to the spectrum of the KK modes, we requ

gLv
~N11!

5
1

R
. ~7!

Hence, the aliphatic system withSU(3)N11 and N F i pro-
vides a gauge invariant description of the firstn KK modes
by generating the same mass spectrum. It is thus crucia
examine the interactions from the aliphatic model.

In a geometric picture, the aliphatic model corresponds
a ‘‘transverse lattice’’ description of a full 411 gauge theory
@2#. We construct a transverse lattice in thex5 dimension

1A renormalizable potential can be constructed for the Hig
fields,

V~Fj!5(
j51

N

@2M2Tr~F j
2!1l1Tr~F j

4!1l2Tr~F j
2!21M 8det~F j !#.

~1!
We can always arrange the parameters in the potential such tha
diagonal components of eachF j develop a vacuum expectatio
valuev, and the Higgs boson andU(1) pseudo Nambu-Goldston
boson~PNGB! are heavy.
5-2
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GAUGE INVARIANT EFFECTIVE LAGRANGIAN FOR . . . PHYSICAL REVIEW D 64 105005
where the lattice size isR and the short-distance lattice cu
off is a, so N5R/a. This is a foliation ofN11 parallel
branes, each spaced by a lattice cut-offa ~Fig. 1!. On thei th
brane we have anSU(m) gauge theory denoted bySU(m) i .
The SU(m) i automatically have a common coupling co
stantgL. Each braneSU(m) i theory can be viewed as pre
defined in the continuum limit of a fine-grained Wilso
plaquette action, and a hypothetical 311 lattice spacinga4.
The lattice spacing in thex5 dimension can be viewed a
relatively coarse witha@a4 @2#.

The theory thus hasN links in the x5 direction that are
continuous functions ofxm . These correspond to the con
tinuum limit Wilson lines:

Fn~xm!5expF ig0E
na

(n11)a

dx5Â5~xm,x5!G
→expF ig0aÂ5S xm,S n1

1

2DaD G . ~8!

TheN Fn therefore transform as an (m̄,m) representation of
SU(m)n3SU(m)n11 as in the aliphatic model@straddling
the nearest neighborSU(m)n andSU(m)n11 gauge groups#.
Fn is a unitary matrix and may be parametrized as in Eq.~3!.
The theory is a spline approximation to the configurations
the continuumx5 dimension@5#.

III. COMPARE THE CONTINUUM THEORY

A. Definition of the continuum theory

A d11 (d.3) field theory becomes ill-defined at energ
scaleMs@1/R. Presumably it matches onto a string theory
Ms , and we usually refer toMs as the ‘‘string scale.’’ While
the exact structure of the theory on scalesm;Ms is un-
known, its symmetries, e.g., local gauge invariance, m

FIG. 1. The geometric interpretation for the aliphatic model a
transverse lattice in thex5 dimension with continuum theory in 4
11. The number of branes in the foliation isN115(R/a)11.
10500
n

t

st

remain intact at lower scales. A continuumd11 Yang-Mills
Lagrangian gives a valid description at scales belowMs .

A Wilson transverse lattice Lagrangian is a reasona
candidate for a well-defined short distance definition of
nonperturbative higher dimensional theory. This manifes
preserves local gauge invariance and permits, in principl
nonperturbative treatment. How, then, does the aliph
„SU(3)N11,FN

… model match in detail to the perturbativ
411 continuum theory at lower energies?

We define the continuum theory in 411 and expand in
modes in the compactx5. We truncate this theory afterN
terms. Now, momentum space truncations in Yang-M
theories are notoriously awkward at best. The expansio
usually done in a particular gauge. Then, with truncation
the theory in momentum space we lose track of the
gauge invariance of the theory. However, we will see,
markably, that this truncation can be matched identica
onto the aliphatic theory which is manifestly gauge invaria
Since the aliphatic model is manifestly gauge invariant a
renormalizable, various field theoretical questions can
given precise formulation. One of them is the running of t
coupling constants, which at the one loop level qualitativ
agrees with the results of Dieneset al. @6# and Dobrescu et
al. @7#. But in our formulation it can be systematically calc
lated to any required degree of accuracy.

First, we consider a simple well-defined compactificati
scheme. We define QCD in 411 dimensions between two
parallel branes.2 The branes are respectively located at I:x5

5RI50 and II:x55RII 5R, with a constant inter-brane sepa
ration R. The covariant derivative is defined asDM5]M

1 ig0ÂM
a Ta, with field strengthsig0F̂MN5@DM ,DN#, where

the canonical mass dimension of the vector potentialÂM in
411 dimensions is 3/2, and the coupling constantg0 must
therefore have dimension21/2.

The five-dimensional theory is locally gauge invariant b
non-renormalizable. In addition to the compactification
diusR, it is defined by the fundamental short-distance cut-
scaleMs . It is then natural to define a dimensionlessg by
g0[1/AM5g/AMs. The 411 Lagrangian takes the form

L552
1

4
Tr~ F̂MN

a F̂MNa!, F̂MN
a 5]MÂN

a 2]NÂM
a

1g0f abcÂM
b ÂN

c , ~9!

where~a,b,c! are the gauge indices andf abc is the structure
constant.

B. Momentum space expansion and truncation

A necessary gauge-covariant boundary condition is:

F5N5FN550, at x55RI ,II . ~10!

This removes unwanted gauge invariant vector fi
strengths that transform as a 4-vector in the 311 theory. The

2The ordinary spacetime coordinates are labeled byxm, m
50,1,2,3, and the fifth dimension byx5 to avoid confusion with
x45 ict; capital letters denote the bulk coordinates,M ,N
50,1,2,3,5.

a
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CHRISTOPHER T. HILL, STEFAN POKORSKI, AND JING WANG PHYSICAL REVIEW D64 105005
simplest gauge choice realizing these boundary condition
to impose Neumann conditions forÂm with m50,1,2,3, i.e.
]Âm /]x550, at x55RI ,II , and Dirichlet conditions for the
311 ‘‘scalars’’ Â5, i.e. Â550 at x55RI ,II . The lowest en-
ergy physicalÂm modes are massless, independent ofx5, and
form the usual 311 gauge field. We can further choose
axial gaugexAÂA50 wherexA is a 5-vector normal to the
branes. This setsÂ550. We will adopt this gauge choic
after the momentum space expansion.

We thus can expand the 4-vector potentialÂm(xm ,x5) in a
Fourier cosine series,

Âm5
1

AR
FAm

0 1A2(
n51

1`

Am
n ~xm!cos~nu!G , u5

px5

R
,

~11!

where we have suppressed the gauge indexa andA0 is the
n50 zero-mode. The fifth componentÂ5(xm ,x5) is given by
a Fourier sine series,

Â55A2

R(
n51

1`

A5
n~xm!sin~nu! ~12!

and this has no zero-mode. The coefficients of the exp
sions are:

Am
0 5

1

2AR
E

0

R

dx5ÂM~xm ,x5!,
10500
is

n-

Am
n 5

1

A2R
E

0

R

dx5ÂM~xm ,x5!cos~nu!; n51,•••,1`

A5
n5

1

A2R
E

0

R

dx5Â5~xm ,x5!sin~nu!; n51,•••,`.

~13!

The non-hat vector fieldAM
n has mass dimension11.

The field strengths read,

F̂mn~xa ,x5!5
1

AR
H F ] [mAn]

0 1 (
n51

1`

cos~nu!] [mAn]
n G

1
g

AMsR
f abcFAm

0 1A2(
n51

1`

Am
n cos~nu!G

3FAm
0 1A2 (

m51

1`

Am
mcos~mu!G J , ~14!

the color indices on the vector fields are suppressed in
equation as well as in the following equations. Integrati
over x5 we obtain the effective 311 theory.

If we now impose the axial gaugeA5(xm ,x5)[0, the ef-
fective Lagrangian after integrating overx5 and truncating at
the Nth KK mode takes the form
24L45S ]mAn
02]nAm

0 1
g

AMsR
f abcAm

0 An
0D 2

1 (
n51

N

~]mAn
n2]nAm

n !2

1
2g

AMsR
f abc(

n51

N

@] [mAn]
0 An mAn n1] [mAn]

n ~A0 mAn n1An mA0 n!#

1
g

A2MsR
f abc (

n,m,l 51

N

] [mAn]
n Am mAl nD1~n,m,l !1

g2

MsR
f abcf ade(

n51

N

~Am
0 An

0AnmAnn1all permutations!

1
g2

2MsR
f abcf ade (

n,m,l ,k51

N

Am
n An

mAl mAk nD2~n,m,l ,k!12(
n51

N S np

R D 2

Am
n Anm, ~15!
ge
where theD i are defined as:

D15d~n1m2 l !1d~n2m1 l !1d~n2m2 l !

D25d~n1m2 l 2k!1d~n1m1 l 2k!1d~n1m2 l 1k!

1d~n2m1 l 1k!1d~n2m2 l 2k!1d~n2m1 l 2k!

1d~n2m2 l 1k!. ~16!

The zero mode has the canonical 311 kinetic term with field
strength:

Fmn
0 a5]mAn

0 a2]nAm
0 a1g̃ f abcAm

0 bAn
0 c . ~17!
Hence,g̃[g/AMsR is the dimensionless low-energy 311
coupling constant. If the truncationN5MsR on the number
of the KK modes is introduced theng̃[g/AN. A perturbative
theory of the zero mode requiresg̃,O(1), i.e.,g,AMsR or
M.1/R.

C. Comparison to aliphatic theory

Now, consider again the aliphatic theory with the gau
structureSU(3)03SU(3)13•••3SU(3)N , where the vec-
tor potentials areAn

ja . In addition, there are a set ofF i fields
which straddle thei th and (i 11)th SU(3) gauge groups.
5-4
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GAUGE INVARIANT EFFECTIVE LAGRANGIAN FOR . . . PHYSICAL REVIEW D 64 105005
The Lagrangian takes the form as in Eq.~1!, and the mass
spectrum as in Eq.~3!. The gauge fieldsAm

j can be expresse

as linear combinations of the mass eigenstatesÃm
n as:

Am
j 5 (

n50

N

ajnÃm
n . ~18!

The an j form a normalized eigenvector (aW n) associated with
the nth nÞ0 eigenvalue and has the following componen

an j5A 2

N11
cosS 2 j 11

2
gnD , j 50,1, . . . ,N. ~19!

The eigenvector for the zero-mode,n50, is always aW 0

5(1/AN11)(1,1, . . . ,1). The orthogonality between the
eigenvectors is due to:

(
j 50

N

cosS 2 j 11

2
gnD cosS 2 j 11

2
gmD

5d~n2m!
N11

2
, n,mÞ0!N ~20!

with gn5np/(N11). We can now rewrite the Lagrangia
Eq. ~1! in the mass eigenstates of the vector bosons (Ãm

n ) and
derive the interactions between them.

Let us now compare the KK reduction of the fiv
dimensional theory, Eq. ~16!, and the aliphatic
„SU(3)N11,FN

… theory at the level of interactions. In th
aliphatic theory, as far as the mass spectrum is concer
there are three free parameters, namely, the gauge cou
constantgL , the total number ofSU(3) groupsN11 and
the vacuum expectation value~VEV! of the Higgs fieldv. As
we discussed earlier, one can arrange the parameters o
10500
:

d,
ing

the

SU(3)N11 theory to fix the ratiogLv/(N11)51/R, such
that the spacing of the linear mass spectrum atn!N is com-
pletely determined and the mass spectrum of the two theo
matches.

To compare the Lagrangian’s couplings we substitute
~18! into the gauge part of the Lagrangian Eq.~2!:

Lgauge52
1

4 (
j 50

N S (
n50

N

ajn] [mAn]
n

1gL f abc(
n50

N

(
m50

N

ajnajmAm
n An

mD 2

. ~21!

Isolating the zero-mode,Ãm
0 , and, using orthonormality, we

can write down the canonical kinetic terms:

Lg,kin52
1

4 S ] [mÃn]
0 1

gL

AN11
f abcÃm

0 Ãn
0D 2

2
1

4 (
n51

N

~] [mÃn]
n !2. ~22!

The trilinear gauge coupling takes the form

Lg,3A52
1

4 (
n,m,lÞ(0,0,0)

S (
j 50

N

ajnajmajl D
3gL f abc] [mÃn]

n Ãm mÃl n. ~23!

Using pairwise summations and orthogonality:
(
j 50

N

ajnajmajl 55A
1

N11
@d~n!d~m2 l !1d~m!d~n2 l !1d~ l !d~n2m!#,

A 1

2~N11!
D1~n,m,l !, n,m,lÞ0,

~24!

whereD1 is defined previously. Similarly, the quadrilinear couplings take the form

Lg,4A52
1

4 (
n,m,l ,kÞ(0,0,0)

S (
j 50

N

ajnajmajl ajkD gL f abcgL f adeÃm
n Ãn

mÃl mÃk n, ~25!

with the coefficients,

(
j 50

N

ajnajmajl ajk5H 1

N11
two of ~n,m,l ,k! are zero, remainders are equal,

1

2~N11!
D2~n,m,l ,k!, n,m,l ,kÞ0.

~26!
5-5
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CHRISTOPHER T. HILL, STEFAN POKORSKI, AND JING WANG PHYSICAL REVIEW D64 105005
We see thatD2(n,m,l ,k) is exactly the same function de
fined in the discussion of truncated momentum space ex
sion. Thus, we see that, defining the gauge coupling cons
ḡ5gL /AN11 of the unbrokenSU(3) in the aliphatic theory
to satisfyḡ5g̃5g/AMsR, the couplings and Feynman rule
in the two theories agree perfectly. This completes the d
onstration of the equivalence.

In both theories, there are three fundamental parame
i.e., Ms , M51/g0

2 , R in the KK reduced theory and
gL , N, v in the aliphatic theory. The mappings betwe
them areN115MsR, gL5AMs /M and v5AMsM , and
they are valid up to the scalev. Measurement of the zer
mode interactions give usḡ5g̃. The mass of the first KK
mode tells usgLv/(N11)51/R. Hence, two of the three
parameters can be determined, leavingMs5gLv undeter-
mined in the two theories. The mass ofM2 will test the linear
spacing between the KK modes, rather than give further c
straints on the parameters.

Suppose we had a bulk 511 theory. Then we would have
a different structure for the low energy effective theory, a
we would have a correspondingly different lattice theory.
longer would the theory be an aliphatic model, and thu
would appear as a more complex closed structure, firs
aromatic hydrocarbon, and eventually a polymerized m
lecular solid state. One can generalize our construction
theories in two extra-dimensions with sizeR13R2. The low
energy effective theory would be different.

The simplest case is the limit of a single plaquette in
two compact dimensions of 511 ~see Fig. 2!, the analog of
an Eguchi-Kawai model@8#. The low energy theory would
contain the gluon zero-mode, which is the rotational ze
mode of such a configuration, a doubly degenerate pai
colorons as the first KK modes, and a third heavy sing
One can expand the single plaquette construction to m
plaquette construction, which requires (N11)3(M11)
SU(4) and 2N3M1N1M F i fields, whereN5R1 /a1

FIG. 2. The geometric interpretation for the plaquette mo
with two extra dimensions. The Eguchi-Kawai model correspo
to a single plaquette. At each circle, there is a 3-brane with
SU(3) symmetry.
10500
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and M5R2 /a2 and a1 , a2 are spacings between th
3-branes.

It is interesting that ultimately the lattice structure mu
also reflect the homotopy of the extra dimensions. If there
a ‘‘hole’’ in the space of the extra dimensions, there must
corresponding nontrivial paths through the Higgs field lin
that match the non-contractable loops in that space.

IV. INCORPORATION OF FERMIONS

The models we presented for the gauge bosons in the
can easily accommodate fermions and bosons in the bul

The Lagrangian for a fermion in the five dimensional bu
which is charged under the bulkSU(3) symmetry is given
by

L5~xm,x5!5C̄~ igmDm2g5D5!C2
1

4
Tr~FMNFMN!,

~27!

where the covariant derivative is defined previously. The fi
dimensional fermion is non-chiral, hence its zero mode up
the compactification of the 5th dimension can be non-chi
unless the Lorentz group in five dimensionsSO(4,1) is ex-
plicitly broken by imposing different boundary condition
for the left-handed component,CL , and the right-handed
component,CR . The boundary conditions also preventC
from having a bare mass term in the bulk. Consider,
example, the following boundary condition:

D5CLux550,R50; CRux550,R50, ~28!

whereD55]51 ig0Â5
aTa. As mentioned previously one ca

choose to work in the gaugeÂ550. The Neumann boundar
condition forCL ensures that there is a massless left-han
four dimensional fermion on the brane, while the Dirichl
conditions make all the right-handed modes massive. U
compactification,CL can be decomposed into a cosine ser
andCR can be decomposed into a sine series. The masse
the fermion KK modes are given byML/R,n5np/R.

In the aliphatic model, considerN11 fermionsCn (n
50•••N), each of which is charged under the correspond
SU(3)n symmetry. The Higgs fieldFn which is (3̄,3) under
the two neighboringSU(3) symmetries provides the neare
neighbor couplings between the fermion fields. The effect
Lagrangian takes the form

Lf ermion~xm!5 (
n50

N H C̄n,LD” Cn,L1C̄n,RD” Cn,R

1M fFCn,LS Fn11
†

v
Cn11,R2Cn,RD

2Cn,RS Cn,L2
Fn

v
Cn21,LD G J , ~29!

whereD” is defined as the four dimensional covariant deriv
tive.
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In the aliphatic model, the boundary conditions in E
~28! can be translated intoC0,R5CN,R50 and CN,L
2(FN /v)CN21,L50. This condition suggests that at the e
of the day there is one massless left-handed fermion m
because the number ofCL is one more than the number o
CR . Additional chiral fermions must be added to cancel t
gauge anomalies induced by this condition. In the vacu
whereFn has non-zero VEVv, the mixed mass terms for th
left-handed and right-handed fermions are

Lmass5M f H C0,LC1,R1 (
n51

N21

@Cn,L~Cn11,R2Cn,R!

2Cn,R~Cn,L2Cn21,L!#J
5~C0,L,•••,CN21,L!M ~C1,R ,•••,CN21,R!T,

~30!

where theN3(N21) mass matrixM takes the form

M5M fS 1 0 ••• 0

21 1 ••• 0

•••

0 ••• 21 1

0 ••• 0 21

D . ~31!

To calculate the mass eigenvalues and eigenstates fo
right-handed components, one can diagonalize the (N21)
3(N21) matrix M†M ,

M†M5uM f u2S 2 21 0 ••• 0

21 2 21 ••• 0

0 21 2 ••• 0

•••

0 0 ••• 21 2

D . ~32!

Therefore, the eigenvalues of the right-handed fermions

MR,n52M fsinS np

2ND , n51,2, . . . ,N21. ~33!

In terms of the mass eigenstatesC̃n,R ,

Cn,R5A2

N (
k51

N21

sinS n
kp

N D C̃k,R . ~34!

The mass eigenvalues of the left-handed fermions can
calculated from theN3N matrix MM†, which takes the fol-
lowing form:
10500
.

e,

e
m

the

re

be

MM†5uM f u2S 1 21 0 ••• 0

21 2 21 ••• 0

0 21 2 ••• 0

•••

0 0 ••• 21 1

D . ~35!

Hence, the eigenvalues of the left-handed fermions are s
lar to those of the gauge bosons,

Mn,L52M fsinS np

2ND , n50, . . . ,N21. ~36!

Hence, the left-handed fermions have a massless zero m
The massive modes have the same mass as those of the
handed fermions, thus form massive vector pairs.

The eigenvectors of the left-handed fermions also h
the same structure as that of the gauge bosons, name
terms of the mass eigenstatesC̃k,L ,

Cn,L5A2

N (
k50

N21

cosS 2n11

2

kp

N D C̃k,L . ~37!

Note that the left-handed fermions have a cos expans
while the right-handed fermions assume a sin expansion

In the limit thatn!N, a linear massive spectrum is reco
ered for both right-handed and left-handed fermions,
which Mn5M f(np/N). Since the masses of the KK mode
for a D55 fermion areML/R,n5np/R, one reproduces the
linear spectrum for the KK theory by choosingM f5N/R.

The coupling between the fermions and the gauge fi
takes the following form in their mass eigenstate basis:

Lf f A5 (
n,m,lÞ(0,0,0)

gLC! n,LgmÃmmC̃ l ,LD1~n,m,l !

1gLC! 0,LgmÃm0C̃0,L

1 (
n,m,lÞ0,N

gLC! n,RgmÃmmC̃ l ,RD1~n,m,l !, ~38!

in which D1 is defined as the sum in Eq.~24!.
One can also write down the effective Lagrangian fo

massless complex boson in the bulk in our framework. C
sider anN11 4D complex scalar with the following La
grangian:

Lboson5(
i 50

N

uDmf i u22Mb
2(

i 51

N Uf i 212
1

v
F if iU2

. ~39!

In the vacuum in whicĥF i&5v, the scalars have the mas
terms2Mb

2( i 51
N uf i 212f i u2. They can be diagonalized by

f j5
1

N11 (
n51

N

ei2pn j /(N11)f̃n , ~40!

with the mass spectrum
5-7
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Mn,b52Mbsingn , n50,1, . . . ,N. ~41!

Each level withnÞ1 is degenerate with the levelN2n,
while the zero mode is a singlet. This doubling of ener
levels corresponds to the mode expansion inx5 in terms of
1, sin(npx5/R) and cos(npx5/R), where the sine and cosin
terms are degenerate modes.

V. RENORMALIZATION OF GAUGE COUPLING
CONSTANTS

Unlike the compactified continuum theory, the sponta
ously broken gauge theory„SU(3)N11, FN

… is a renormal-
izable field theory. Thus, we can discuss the scale dep
dence of the coupling strengthḡ(m) of the unbrokenSU(3)
via the radiative corrections. The standard method of c
structing effective field theories at each stage of the dec
pling of the massive modes is at best confusing. One pr
lem is that when decoupling thenth KK mode with mass
Mn , the decoupling methods tells us to construct an effec
theory with one zero mode andn21 KK modes which
should be taken to be massless at the decoupling scaleMn ,
this is, the effective field theory will have a gauge symme
SU(3)n. But the original theory tells us that allSU(3)N11 is
broken to SU(3) at the scalev, and it is different from
breaking theSU(3) symmetries one by one at eachMn .
Another problem is that, at the two or higher loop level, o
necessarily encounters loops with both light and heavy
modes, such that it is confusing to even define a proper
coupling scale.

However, one can define the effective coupling const
ḡ(m2) in the momentum subtraction scheme@9#, e.g., as the
triple gluon ~zero mode! vertex. All the external legs hav
the momentumq252m2. The effective couplingḡ(m2) is
governed by the equation

]ḡ~m2!

] ln m2
5b„ḡ~m2!…, ~42!

and its evolution can be calculated in any order of pertur
tion in the full spontaneously broken„SU(3)N11, FN

…

theory, including all KK modes. Strictly speaking, one get
set of coupled differential equations, since theb function in
Eq. ~42! depends on the triple vector boson couplin
ḡ0nn(m

2), each running according to its own evolution equ
tion. The problem radically simplifies at the 1-loop level a
in the approximation@9# where one assumes that the K
modes that appear in the loops satisfy2m2<(Mi

21M j
2).

Moreover, in the 1-loop calculation one can use the relati
ship between tree level couplings, namely,ḡ5ḡ0nn for any
n.

Thus, at the 1-loop level, the running of the gauge c
pling constantḡ between the scales (Mn , Mn21) involves
the n modes which are lighter thanMn ; as a result the run
ning can be described by
10500
y
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-

-

-

dḡ

dlogm
52S n

b

4p2D ḡ3, Mn21<m<Mn , ~43!

in which b is the 1-loop renormalization group equatio
~RGE! coefficient of a pureSU(3) theory. Hence, given the
measured coupling constanta(MZ) at low energy, the gauge
coupling constant at energy scalem is given by

a21~m!5a21~MZ!2
b

4p F lnS M1

MZ
D1 (

n52

nmax

n lnS Mn

Mn21
D

1~nmax11!lnS m

Mnmax
D G , ~44!

where Mnmax
<m,Mnmax11. One can sum up the series

arrive at,

a21~m!5a21~MZ!2
b

4p
lnS m

MZ
D2

b

4p
nmaxlnS m

M1
D

1
b

4p
F~Mn!, ~45!

in which the factorF[ ln(Pn51
nmaxMn /M1

nmmax) depends on
what kind of KK spectrum we work with. The linearly
spaced KK spectrum from the dimensionally reduced c
tinuum theory gives

Flin5 ln~nmax! !, ~46!

while the spectrum from the aliphatic model as in Eq.~5!
gives

Fali5 lnS Pn51
nmaxsinS np

2~N11! D
sinS p

2~N11! D
nmax D . ~47!

Equation~45! with Flin is derived in@6# and @7#. It shows a
power law behavior of the gauge coupling constant. The
ferences betweenFlin and Fali provide an interesting mea
sure of how much the aliphatic mode deviates from the c
tinuum theory at a quantum level. In Fig. 3, we plotFlin and
Fali as a function ofnmax, keepingN fixed. Figure 4 shows
Flin andFali as a function ofN, while nmax is fixed.

It can be seen from the figures that whennmax is small
compared toN, the two theories agree very well in theirb
functions, since in this region, the aliphatic model gives
excellent approximation of the linear spectrum from t
compactified continuum theory, as we expected. Howe
even atnmax close toN, the deviation ofFali from Flin is less
than 10%.

We do not expect things will be drastically different
two or higher loop levels. This observation suggests to
that the aliphatic model provides a good approximation
the continuum theory even at an energy scale close tov; the
‘‘error’’ in approximating the continuum theory lies in th
finite size of the lattice, i.e., the separation between the
5-8
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nearest branes. One can always reduce the ‘‘error’’ by add
more branes, thus increasingN and reducing the inter-bran
separation. It also suggests to us that, if one wants to mo
the aliphatic theory such that it will produce exactly the li
ear spectrum up toMN , one only needs to add higher ord
operators, perhaps the type of operators which mimic
couplings between the next-to-nearest branes.

VI. DISCUSSION AND CONCLUSION

In Eq. ~3! we assume that one can lift the Higgs bos
mass to a high energy scale above the cut-off scaleMs . The
Higgs degrees of freedom then decouple from the theory,
only the Nambu-Goldstone modes remain, which are
sorbed by the KK modes to give mass. This is a large c
pling limit of the Higgs theory in which the VEV is held
fixed, i.e., v;M /Al where M→` and l→` together.
However, such a theory violates perturbative unitarity.
the other hand, the effective low energy theory is a gau
chiral Lagrangian withf p;v. This theory is a pertubatively
sensible one~and is renormalizable as an expansion in 1/vp)
in the low energy limit, however, the perturbative unitar
breakdown occurs whenAs*v. Essentially, longitudinal KK
mode scattering must violate perturbative unitarity whens
*4pv2. This is the Lee-Quigg-Thacker bound which appli
to, e.g., electroweak symmetry breaking forWW scattering
@3#.

We see, from Eq.~7!, that this failure of unitarity corre-
sponds to energy scales approachings*4pN2/gL

2R2

FIG. 3. Flin ~solid line! and Fali ~dashed line! as functions of
nmax. N520 is chosen for the plot.
10500
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;4pN2M/R2Ms. As we have seen, our theory corresponds
a 411 theory with a dimensional coupling given byg0. We
would generally expect this theory to violate perturbati
unitarity for s*4pMs /g0

2, and hence, by comparison, th
indeeds*4pN2M /R2Ms;4pMs /g0

2. Hence the perturba
tive unitarity violation inherent in the large coupling consta
of the parentD55 theory is matched by the unitarity brea
down in the effective 311 theory.

The separation of scales,N;Ms /Mc@1 is a requirement
of very low mass, or infrared states, in an essentially stro
dynamical theory at the scaleMs . In all cases in nature
where this phenomenon occurs and is understood, there
attendant custodial symmetry. The theory we have prese
in 311 dimensions imitates arbitrarily well a 411 theory,
and this dynamical issue does not seem to arise. The infr
physics scale, the ‘‘effective compactification scale,’’ isMc
;Ms /N and apparently occurs accidentally becauseN, the
number of independent gauge groups in the contruction
very large.

One might have thought that the separation of the co
pactification scale and the fundamental scale in ex
dimensional models would involve, at least accidentally,
proximate classical scale invariance~this is the custodial
symmetry in QCD of, e.g., the ratioLQCD /M Planck in the
sense that ‘‘classical scale invariance’’ corresponds to set
the b-function of QCD to zero!. The QCD coupling in our
theory turns out to be suppressed asaQCD;Msa0 /N, where
a05g0

2/4p is the dimensional 411 gauge coupling. To take
N arbitrarily large thus implies that the theory must have

FIG. 4. Flin ~solid line! andFali ~dashed line! as functions ofN.
nmax518 is chosen for the plot.
5-9
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slowly running dimensionless coupling constant~reminiscent
of ‘‘walking technicolor’’! in D54 on scales well below
Ms , so it does appear that quantum scale breaking effects
under control, and it seems that classical scale invarianc
acting as the custodial symmetry after all. However, the tr
of the stress-tensor inD55 is nonzero classically, and th
theory has explicit scale breaking, owing to theD55 dimen-
sional coupling constant. The nonzero trace,Tm

m}Gmn
a Ga mn

in D55 must match onto the KK masses as inD54, since
the KK masses are seen as explicit sources of scale brea
on all scales fromMc to Ms . It is therefore quite puzzling a
to what, if anything, we may we invoke as the custod
symmetry of the scale hierarchy in extra dimensions wheN
is large. Is this a counterexample to the requirement of h
ing an explicit custodial symmetry, an artifact of largeN?

In conclusion, we have constructed a manifestly gau
invariant description ofn KK modes for anSU(m) gauge
theory in the bulk. We showed in this paper that the fo
dimensional KK theory deducted from a compactified fiv
dimensional SU(3) theory can be considered as
„SU(3)N11, FN

… theory, in which theSU(3)N11 gauge
symmetry is spontaneously broken toSU(3). This theory
owes its structure to a transverse lattice theory with one e
dimension. The three dimensional parameters of the orig
KK theory, the string~cut-off! scaleMs , the compactifica-
tion radiusR and the five-dimensional gauge couplingg0

[AM 21, determine the structure of the„SU(3)N11, FN
…

theory: N5MsR, the coupling constant of the unbroke
SU(3) ḡ51/AMR, and the scalev5AMsM of the sponta-
B
y

.

ys

10500
re
is
e

ing

l

v-

e

-
-

ra
al

neous symmetry breakingSU(3)N11→SU(3).
The approach maintains manifest gauge invariance. I

possible to construct analogous effective Lagrangians wh
maintain SUSY and general covariance for yielding K
modes of gravity? And how are the topological aspects
extra dimensional gauge theories@10,11# expressed in an ef
fective Lagrangian such as this?

Note added.Upon completion of this paper the work o
Arkani-Hamed, Cohen, and Georgi@12# appeared which use
a technicolor-like condensate in place of our explicit Hig
fields, Fn , but obtains essentially the identical constructi
as a chiral Lagrangian. Georgi’s moose notation, used
@12#, may be a useful way to extend to higher dimensio
such as 511 with 2 compact dimensions, whence the theo
may be graphically represented as a ‘‘moose lattice,’’ and
anomaly free incorporation of fermions is automatic.
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