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We construct a manifestly gauge invariant Lagrangian4nl3dimensions folN Kaluza-Klein modes of an
SU(m) gauge theory in the bulk. For example, if the bulk i$ 4, the effective theory iﬂilelSU(m)i with
N chiral (m,m) fields connecting the groups sequentially. This can be viewed as a Wilson action for a
transverse lattice ix®, and is shown explicitly to match the continuurs-4 compactified Lagrangian trun-
cated in momentum space. Scale dependence of the gauge couplings is described by the standard renormal-
ization group technique with threshold matching, leading to effective power law running. We also discuss the
unitarity constraints, and chiral fermions.
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I. INTRODUCTION a hierarchy, and return to this issue in Sec. VI.
Having engineered a hierarchy wil>1 KK modes, by
It is widely believed that the main low energy signature ofanalogy with critical behavior in a second order phase tran-
extra dimensions is the appearance of the tower of Kaluzasition in condensed matter physics, there should exist a wide
Klein (KK) modes[1]. For example, if QCD lived in the range, or universality class, of theories that have identical
bulk, experimentalists would see massive spin-1 degenerafgehavior in the infra-red, but are radically different in detail
color octet vector bosongolorons appearing at large mass gt the scaleM. In the present paper we exploit universality.
scales corresponding tiverseg compactification scales. AS \\e treat the physics a¥l not as a “string theory,” but
these new massive KK particles begin to emerge in accelerasiner as a “transverse lattice gauge thedig]. For us, the
tor experiments, we might ask how would we describe them, .51 311 dimensions of space-time are continuous, but

in an effective fogr—dimensionall renormali;eqble Lagrangian[he extra dimensions are latticizéubthing prevents us from
that is an extension of QCD, without @npriori knowledge adopting a full lattice theory, but it is convenient for our

of the existence of extra dimensions? The main goal of the resnt purposes to use the transverse lattidis theory will
present paper is to give a manifestly gauge invariant effec? purp ) . . =ory .
tive Lagrangian description of KK modes in+3l dimen- have a well-defined finite short-distance behavior for arbi-

sions trarily large coupling and will be manifestly gauge invariant,

It is important to realize at the outset that there is anreflecting the full gauge invariance of the higher dimensional
implicit dynamical assumption underlying a theory with theory. It will haye_ the same ir_1fra-r.ed behavior as the u§ual
extra-dimensions and KK modes. This is the assumption thatK-mode description, but will illuminate how the gauge in-
there is a meaningful separation of scales between the conyariance is maintained.
pactification scaleM .~ 1/R and the “string” or “fundamen- As a result, we understand something implicitly puzzling
tal scale”M; at which the extra-dimensional theory breaksabout KK modes. Longitudinal KK mode scattering is essen-
down as a perturbative local field theory. To have 1 KK tially the scattering of Nambu-Goldstone bosons in a nonlin-
modes in a 4 1 theory we requird /M .~N>1. Itis not  ear chiral Lagrangian. As such it violates perturbative unitar-
obvious how such a separation of scales occurs in the theoity, i.e., there is a Lee-Quigg-Thacker bound on the
(it involves soft mass scales in the radion potential tha@pplicability of the theory3]. We will see that this happens
somehow remain isolated from ). Can it occur naturally at, none other than, the scaig in our effective Lagrangian.
or does it require fine-tuning? Such a hierarchy requireShis is not surprising, since the parebt=5 theory has a
strong coupling at the high energy scale,. We will as-  dimensional coupling constarf, (with dimensionM ~*?)
sume, as do all extra-dimensional models, that we have sudnd is expected to violate perturbative unitarity when

=M/ aq. This indeed translates into the unitarity bousnd
<4v? for longitudinal gauge boson scattering in our effec-
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expansions with momentum space cut-offs. Normally, thethis scheme s
momentum space cut-off is not compatible with gauge in- n N

variance, and this causes the loop expansion to become non- v

gauge invariant. However, the usual treatment of extra- KZ_ZEO F;”‘WF'/‘ aJle DMCDiTD#q)‘ 2
dimensional gauge theories involves a truncation on KK

modes, which is a de facto momentum space cut-off. Witin which the covariant derivative is defined &,=0,
gauge fields in the bulk, d+ 1 theory withd>3 has infi- +igLA‘;Ta, g, is the dimensionless gauge coupling constant
nitely more gauge invariance than the+3 theory since that is equal for all of th&8U(3) symmetries and? are the
there is more space in which to perform local gauge transgenerators of the gauge symmetry whaie the color index.
formations. Clearly the gauge invariance of 8 QCD must  Note that the fact thag,_ is common for all the gauge groups
be maintained, but how does the expanding local gauge irS @ key constraint and would be evidence to the experimen-
variance of the theory manifest itself as the extra dimensiof@list in 3+ 1 of the extra-dimensions. Upon substituting
begins to open up with the emergence of KK modes? How .

dogs the poF\)/ver-IapW running of thgcoupling constant emerge @i —vexpipiA*2v) ®)

and what is the correct renormalization group for such 3he ® Kkinetic terms lead to a mass matrix for the gauge
description? fields:

M =z

1
2. 2/pa a2
~givA(A% ), —AR)2. 4
IIl. MANIFESTLY GAUGE INVARIANT EFFECTIVE & 2900 A= A @

LAGRANGIAN

This mass matrix has the structure of a nearest neighbor
thecoupled oscillator Hamiltonian. We can diagonalize the mass
atrix to find the eigenvalugsvhich corresponds to the dis-
ersion relation for the coupled oscillator-sysjem

The KK modes of the vector bosons of QCD, i.e.,
colorons, are heavy matter fields and must transform linearl
under the adjoint representation $tJ(3) (in contrast to the
zero-mode gluon which transforms nonlinearly by the Yang-
Mills gauge transformation Referencd 4] argued that vec- Mn=29Lusir{
tor fields in linear adjoint representations of a local gauge
groupSU(m) will always contain a “hidden” local symme-  Thys we see that for smailthis system has a KK tower of
try, which is a copy ofSU(m). The gluon plus one massive masses given by
octet vector multiplet corresponds to the local symmetry
SU(m) X SU(m), each factor having the same coupling con- gvmn
stant(our present discussion is classical; we will worry about n~ (N+1)’
running couplings beloy This is broken diagonally by an

effective Higgs field®, which transforms as am(,m), toa  @ndn=0 corresponds to the zero-mode gluon. _
local SU(m) and anSU(m) global symmetry. Only the chi- To match on to the spectrum of the KK modes, we require
ral components ofb are relevant here so we can replake
—vexp@\Y2v) (see footnote 1 The ¢? are absorbed to
give the coloron mass. Hence, in describing one massive

octet this way it is the low energy hidden local symmetry dueHence, the aliphatic system wiU(3)* andN ®; pro-

to the spontaneous breaking that reflects the expanded gaugfies a gauge invariant description of the finskK modes

invariance of the extra-dimensional theory as the space of thgy generating the same mass spectrum. It is thus crucial to
extra dimension is opening up. _ examine the interactions from the aliphatic model.

As experiments go to higher energies, one starts t0 see | 5 geometric picture, the aliphatic model corresponds to
more KK massive gauge bosons. It is obvious that one rey “transverse lattice” description of a full 41 gauge theory

quires more “hidden” localSU(3) symmetries and more [2]. we construct a transverse lattice in tke dimension
Higgs fields as in the previous case to construct an effective

Lagrangian to describe these massive gauge bosons. Henee;——

we propose that the effective Lagrangian for the firdtK A renormalizable potential can be constructed for the Higgs
modes would contailN+1 (N>n) SU(3)’s with N ®’s. fields,

The interconnections between the gauge symmetries and the N

Higgs boson could become completely arbitrary, and resolve\/(fbj):z [=MZTr(D?) + N, Tr(D)) + N, Tr(DF) 2+ M det(d))].

into different hydrocarbon-like chain molecules. = e

We might guess thatihe simplest linear INterconnectionye an always arrange the parameters in the potential such that the
for N modes havingb;C(3;-1,3) is somehow relevant. We diagonal components of eash; develop a vacuum expectation
will follow the organic chemistry nomenclature and call this valuev, and the Higgs boson arid(1) pseudo Nambu-Goldstone
an “aliphatic” (SU(3)N**,®N) model. The Lagrangian for- boson(PNGB) are heavy.

2 ’yn=m, n=0,1,...N. (5)

'yn} na

n<N (6)

gLv 1

N+D R "
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FIG. 1. The geometric interpretation for the aliphatic model as
transverse lattice in the® dimension with continuum theory in 4
+1. The number of branes in the foliations+1=(R/a)+1.

where the lattice size iR and the short-distance lattice cut-
off is a, so N=R/a. This is a foliation ofN+1 parallel
branes, each spaced by a lattice cuteoffig. 1). On theith
brane we have a8U(m) gauge theory denoted ISU(m); .
The SU(m); automatically have a common coupling con-
stantg,. Each brane&sU(m); theory can be viewed as pre-
defined in the continuum limit of a fine-grained Wilson
plaquette action, and a hypotheticat 3 lattice spacingy,.
The lattice spacing in the&® dimension can be viewed as
relatively coarse witta>a, [2].

The theory thus hasl links in the x® direction that are
continuous functions ok, . These correspond to the con-
tinuum limit Wilson lines:

(n+1)a

<bn<xﬂ>=ex+go |

*}GX% igoaAs

dx3A5(x*,x®)

X*, a

8

L
3

TheN @, therefore transform as am(m) representation of
SU(m),XSU(m), ., as in the aliphatic moddlstraddling
the nearest neighb&U(m),, andSU(m),, ; gauge groupis
@, is a unitary matrix and may be parametrized as in(8jg.
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remain intact at lower scales. A continuwdr1 Yang-Mills
Lagrangian gives a valid description at scales beldw.

A Wilson transverse lattice Lagrangian is a reasonable
candidate for a well-defined short distance definition of the
nonperturbative higher dimensional theory. This manifestly
preserves local gauge invariance and permits, in principle, a
nonperturbative treatment. How, then, does the aliphatic
(SU(3)N*1,®N) model match in detail to the perturbative
4+1 continuum theory at lower energies?

We define the continuum theory in+4l and expand in
modes in the compact®. We truncate this theory afte
terms. Now, momentum space truncations in Yang-Mills
theories are notoriously awkward at best. The expansion is
usually done in a particular gauge. Then, with truncation of
the theory in momentum space we lose track of the full
gauge invariance of the theory. However, we will see, re-
markably, that this truncation can be matched identically
onto the aliphatic theory which is manifestly gauge invariant.
Since the aliphatic model is manifestly gauge invariant and
renormalizable, various field theoretical questions can be

iven precise formulation. One of them is the running of the

coupling constants, which at the one loop level qualitatively
agrees with the results of Dienes al. [6] and Dobrescu et
al.[7]. But in our formulation it can be systematically calcu-
lated to any required degree of accuracy.

First, we consider a simple well-defined compactification
scheme. We define QCD in#41 dimensions between two
parallel braned.The branes are respectively located at3:
=R =0 and Il:x>=R,, =R, with a constant inter-brane sepa-
ration R. The covariant derivative is defined &, =dy
+igoAZ T2, with field strengthsgoF yyn=[Dw ,Dn], where
the canonical mass dimension of the vector poterjglin
4+1 dimensions is 3/2, and the coupling constggptmust
therefore have dimension 1/2.

The five-dimensional theory is locally gauge invariant but
non-renormalizable. In addition to the compactification ra-
diusR, it is defined by the fundamental short-distance cut-off
scaleMg. It is then natural to define a dimensionlesdy
go=1/\/M=g/\|M. The 4+1 Lagrangian takes the form

1 .. - . - .
Ls=— ZTH(FGNFM™M), Fun=duAR— oA,

C)

where(a,b,0 are the gauge indices ari@®® is the structure
constant.

+90fabCAE/|ArC\u

B. Momentum space expansion and truncation

The theory is a spline approximation to the configurations in

the continuumx® dimension[5].

IIl. COMPARE THE CONTINUUM THEORY

A. Definition of the continuum theory

A necessary gauge-covariant boundary condition is:
FN=FN"°=0, at x°=R. (10)

This removes unwanted gauge invariant vector field
strengths that transform as a 4-vector in thiel3theory. The

A d+1 (d>3) field theory becomes ill-defined at energy ———
scaleM¢>1/R. Presumably it matches onto a string theory at 2the ordinary spacetime coordinates are labeled x#y u

Mg, and we usually refer tM¢ as the “string scale.” While
the exact structure of the theory on scajes-Mg is un-

=0,1,2,3, and the fifth dimension by’ to avoid confusion with
x*=ict; capital letters denote the bulk coordinated],N

105005-3



CHRISTOPHER T. HILL, STEFAN POKORSKI, AND JING WANG

simplest gauge choice realizing these boundary conditions is

to impose Neumann conditions fér with ©=0,1,2,3, i.e.
A, 19x°=0, atxs=
3+1 “scalars” A5, ie. A5—0 atxs=R, . The lowest en-
ergy physmaAM modes are massless, independentsofand

form the usual 3-1 gauge field. We can further choose an
axial gaugey”A,=0 wherey” is a 5-vector normal to the
branes. This set&>=0. We will adopt this gauge choice

after the momentum space expansion.

We thus can expand the 4-vector poten@ig(x u1Xs) ina
Fourier cosine series

’7TX5
R 1
(12)

A°+\/_E Al (x,)cognd)|, o=

f

where we have suppressed the gauge iralexd A° is the

n=0 zero-mode. The fifth compone@\g(xﬂ ,Xg) IS given by
a Fourier sine series,

As= \/72 AL(x,,)sin(n o)

(12

R s and Dmchlet conditions for the

PHYSICAL REVIEW B4 105005

R
A”=—J’ dxsAy (X, ,Xs)cogNnh); n=1, -, +
w \/ﬁ 0 5 M( % 5) 1 )

1 (R .
A”=—J’ dxsAs(X, ,Xs)sin(ng); n=1, .. .
5~ 5RJo s5As(X,, ,X5)sSin(n o)
(13
The non-hat vector fieldy, has mass dimensio 1.
The field strengths read,

+ oo

0
I AY+ ngl cogn o)y, Al

. 1
F,lLV(th !XS): ﬁ{
g

+ fabc

MR
x| AD+ 2> A;Tcos(mﬁ)” ,
m=1

+ 00
Ad+22 Al’lcos(na)}
n=1

(14)

the color indices on the vector fields are suppressed in this

and this has no zero-mode. The coefficients of the exparﬁquatlon as well as in the following equations. Integrating

sions are:

1 (R
Azszo dX5AM(X/.L ,X5),

2

9 bcp O A0
——fabeal A

JMR

N
29

+—=f2> [4;,A
MR 2, L

— 0 0
—4L,=| 0,A%—3,A%+

N

9 abc m |
—_— (9AA EAY AL (n,m, 1)+
MR nrgl v i(n.m.b
N
92
2M nmTk=1

where theA; are defined as:

A=é(n+m=I)+6(h—m+1)+6(n—m—1)

A,=d6(n+m—I—-k)+ S(n+m+1—-k)+ S(n+m—1+k)
+é(n—m+I+k)+S(h—m—1—-k)+ s(n—m+1—k)

+do(n—m—I1+k). (16
The zero mode has the canonicat 3 kinetic term with field
strength:
0 a_
F Ma—

0 a 0 a ~fabcp0 bpO C
3,A% 2= 3,A% 2+ gfaread PAD ©, (17)

N
+ 2 (9,A
n=1

nar\?
Sf0efade > AJATAT #AK "Ay(n,ml k)+22 ( ) ALAM,

overx® we obtain the effective 3 1 theory.

If we now impose the axial gaug&s(x, ,xs)=0, the ef-
fective Lagrangian after integrating ovey and truncating at
the Nth KK mode takes the form

2
v 3AL)

GAT HAN Vg AT (AD HAN Y AN HAD )]

2 N
fabefade™' (A AOAMANY 1 gl permutations
M SR n=1 K
N

(15

Hence,g=g/\MR is the dimensionless low-energy+3.
coupling constant. If the truncatidd=M¢R on the number

of the KK modes is introduced thep=g//N. A perturbative

theory of the zero mode requirgs< O(1), i.e.,g< VMR or
M>1/R.

C. Comparison to aliphatic theory

Now, consider again the aliphatic theory with the gauge
structureSU(3)oX SU(3), X - - X SU(3)n, Where the vec-
tor potentials aré\!? . In addition, there are a set df; fields
which straddle thath and {+1)th SU(3) gauge groups.

105005-4
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The Lagrangian takes the form as in E¢), and the mass SU(3)N*1 theory to fix the ratiog, v/(N+1)=1/R, such
spectrum as in Eq3). The gauge fieIdAL can be expressed that the spacing of the linear mass spectrum<aiN is com-

as linear combinations of the mass eigenst&%‘ﬁs: pletely determined and the mass spectrum of the two theories
N matches.
Al = Z a AN (18) To compare the Lagrangian’s couplings we substitute Eq.
=R (18) into the gauge part of the Lagrangian Eg):

Thea,; form a normalized eigenvectoﬁ,() associated with N
thenth n#0 eigenvalue and has the following components:

1
Loauge=— 7
2 (2j+1 | S SR
anj= mCO T'Yn , 1=0,1,...N. (19

N N 2
A +g ey > ajnaij;}A;“) . (@)
The eigenvector for the zero-mode=0, is alwaysa, n=0 m=0
=(1/YyN+1)(1,1,...,1). Theorthogonality between the
eigenvectors is due to:

N 2j+1 2j+1
2 CcO 2 Yn | CO T’ym
j=0

Isolating the zero-modéd,, and, using orthonormality, we
can write down the canonical kinetic terms:

2
1 ~ aL ~n~
N+1 Lyxin=— 7| Ay +—=FPA A
=o(n—m)——, nm#0<N (20) gkin™ g T NFL T
with y,=n#w/(N+1). We can now rewrite the Lagrangian _% nzl (%}21)2- (22)

Eq. (1) in the mass eigenstates of the vector bos&j}) @nd
derive the interactions between them.

Let us now compare the KK reduction of the five-
dimensional theory, Eq. (16), and the aliphatic

The trilinear gauge coupling takes the form

(SUB)N*L ®N) theory at the level of interactions. In the 1 N

aliphatic theory, as far as the mass spectrum is concerned, Lgan=— 2 E ajndjma;|
. n,m,l#(0,0,0) \ j=0

there are three free parameters, namely, the gauge coupling

constantg, , the total number oSU(3) groupsN+1 and x g, fabcy ANAM KA v, (23)
the vacuum expectation val(¢EV) of the Higgs fieldv. As w71
we discussed earlier, one can arrange the parameters of thising pairwise summations and orthogonality:

i[5(n)5(m—|)+ o(m)s(n—1)+8(1)s(n—m)],

N N+1
JZO Ajndjmd;j = F | | (24
mﬁl(n,m, ), n,m,l#0,
whereA is defined previously. Similarly, the quadrilinear couplings take the form
1 N
Lopn=—> X > ajnamay ay | g, 2%y, FRIATATAl HAk ) (25)
9 4 k7000 | (S0 MM wv
with the coefficients,
1 .
N NT1 two of (n,m,l,k) are zero, remainders are equal,
jZo ajnajma“ajk: (26)

2(Nr 1 d2(nmlk), nmlk#0.
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and M=R,/a, and a;, a, are spacings between the
---------------- 3-branes.

It is interesting that ultimately the lattice structure must
1 also reflect the homotopy of the extra dimensions. If there is
2 a “hole” in the space of the extra dimensions, there must be
corresponding nontrivial paths through the Higgs field links
" that match the non-contractable loops in that space.

IV. INCORPORATION OF FERMIONS

The models we presented for the gauge bosons in the bulk
can easily accommodate fermions and bosons in the bulk.

The Lagrangian for a fermion in the five dimensional bulk
which is charged under the bulkU(3) symmetry is given

by

L |
I R, )

X — 1
> L5(x" X)) =W (i 7D, ~ 7sDs)W — 7 Tr(FMNFyyp),

FIG. 2. The geometric interpretation for the plaquette model (27)
with two extra dimensions. The Eguchi-Kawai model corresponds

to a single plaquette. At each circle, there is a 3-brane with ongyhere the covariant derivative is defined previously. The five
SU(3) symmetry. dimensional fermion is non-chiral, hence its zero mode upon

W thath LK) i tv th function d the compactification of the 5th dimension can be non-chiral,
Ve see ha _z(n,m., k) is exactly the same function de- unless the Lorentz group in five dimensioc®€(4,1) is ex-
fined in the discussion of truncated momentum space expa%—

. - X icitly broken by imposing different boundary conditions
sion. Thus, we see that, defining the gauge coupling constal ir the left-handed component®, , and the right-handed

9=9g./yN+1 of the unbroker$ U(3) in the aliphatic theory  component,w. The boundary conditions also prevest
to satisfyg=g=g/VMgR, the couplings and Feynman rules from having a bare mass term in the bulk. Consider, for
in the two theories agree perfectly. This completes the demexample, the following boundary condition:
onstration of the equivalence.
In both theories, there are three fundamental parameters, D5‘PL|X5:0R=O; \IIR|X5:0R:O, (28
ie., Mg, M=1/g3, R in the KK reduced theory and

g, N, v in the aliphatic theory. The mappings between\yhereDg= ds+ig,A2T2. As mentioned previously one can
5 0
them areN+1=MR, g, = VMs/M andv=yMM, and .\ o0 16 work in the gaude;=0. The Neumann boundary

they are valid up to the scaie. Measurement of the zero .o forw, ensures that there is a massless left-handed
mode interactions give ug=g. The mass of the first KK foyr dimensional fermion on the brane, while the Dirichlet
mode tells usg .v/(N+1)=1/R. Hence, two of the three ¢onditions make all the right-handed modes massive. Upon
parameters can be determined, leavidg=g,v undeter- compactification®¥, can be decomposed into a cosine series
mined in the two theories. The massMf, will test the linear  andW; can be decomposed into a sine series. The masses of
spacing between the KK modes, rather than give further conme fermion KK modes are given M g ,=nm/R.
straints on the parameters. In the aliphatic model, consideX+1 fermions¥,, (n
Suppose we had a bulki51 theory. Then we would have —g...N), each of which is charged under the corresponding
a different structure for the low energy effective theory, andS U(3),, symmetry. The Higgs field,, which is @,3) under

we would have a correspondingly different lattice theory. Nothe two neighborings U(3) symmetries provides the nearest

longer woulld the theory be an aliphatic model, and thus IHﬁeighbor couplings between the fermion fields. The effective
would appear as a more complex closed structure, first aEagrangian takes the form

aromatic hydrocarbon, and eventually a polymerized mo-

lecular solid state. One can generalize our construction to N
theories in two extra-dimensions w!th siRgg X R,. The low Liormionf X4)= > [‘I’n,LD‘I’n,ﬁ‘I’n,RD‘I’n,R
energy effective theory would be different. n=0

The simplest case is the limit of a single plaquette in the T
two compact dimensions of-51 (see Fig. 2, the analog of M \I,—( ntly W )
an Eguchi-Kawai modé]8]. The low energy theory would ot ntiRo TNR

contain the gluon zero-mode, which is the rotational zero-

mode of such a configuration, a doubly degenerate pair of Wy (\P _q)nq, )
colorons as the first KK modes, and a third heavy singlet. nR| Tl =1l
One can expand the single plaquette construction to multi-

plaquette construction, which requiredN€1)x(M+1)  whereD is defined as the four dimensional covariant deriva-
SU(4) and NXM+N+M @, fields, whereN=R,/a; tive.

] . (29

105005-6
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In the aliphatic model, the boundary conditions in Eq. 1 -1 0 --- 0
(28 can be translated intoVog=Y\g=0 and ¥y

—(®y/v)W¥y_q, =0. This condition suggests that at the end -1z Al 0

of the day there is one massless left-handed fermion mode, MMT=|M¢2[ O -1 2 0 (35)
because the number df, is one more than the number of

V. Additional chiral fermions must be added to cancel the 0 0 11

gauge anomalies induced by this condition. In the vacuum
where®,, has non-zero VEV, the mixed mass terms for the

left-handed and right-handed fermions are Hence, the eigenvalues of the left-handed fermions are simi-

lar to those of the gauge bosons,

N—1
J— R S (nm
Linass Mfrq’o,ﬂl’lfﬁ' 21 [(Vor(Whi1r= ViR Mn,LZZMf5m<m), n=0,... N-1 (36)
n=
- Hence, the left-handed fermions have a massless zero mode.
Vo r(WnL—Wa-10)] The massive modes have the same mass as those of the right-
handed fermions, thus form massive vector pairs.
=(Wor, TN OM(P g, - Un1r) The eigenvectors of the left-handed fermions also have
' ' ’ ’ the same structure as that of the gauge bosons, namely, in
B9 terms of the mass eigenstatég , ,
where theN X (N—1) mass matrixvl takes the form \/5“1 on+1 kar\
N NIZO cos( 5N Wy (37
1 0 0
-1 1 ... 0 Note that the left-handed fermions have a cos expansion,
while the right-handed fermions assume a sin expansion.
M =M o : (31 In the limit thatn<N, a linear massive spectrum is recov-
o --- -1 1 ered for both right-handed and left-handed fermions, in
0 0o -1 which M,,=M;(n#w/N). Since the masses of the KK modes

for aD=5 fermion areM g ,=n=/R, one reproduces the
linear spectrum for the KK theory by choosihg;=N/R.

To calculate the mass eigenvalues and eigenstates for the The coupling between the fermions and the gauge field
right-handed components, one can diagonalize e {)  takes the following form in their mass eigenstate basis:

X (N—1) matrixM™,

Lia= > 9P AT (Ag(n,m,])

2 -1 0 --- 0 n,m,1#(0,0,0)
-1 2 -1 0 sk q
+9 VoL Y*AuoWoL
MiM=|M2| 0 -1 2 - 0|. @32

+ 2 gL _I n,R?"u’V“,umNI |,RAl(n1m=|)! (38)
n,m,l #0N
0 o ... -1 2

in which A, is defined as the sum in ER4).

Therefore, the eigenvalues of the right-handed fermions are One can also write down the effective Lagrangian for a
massless complex boson in the bulk in our framework. Con-

sider anN+1 4D complex scalar with the following La-
. (N S
MR,nZZMfS|n<_), n=12,...N—-1. (33 grangan.

2N
N N 1 2
~ Loosor=2, |D bil2—ME i1——Digi| . (39
In terms of the mass eigenstat®s g, boson i:Eo D, bizl bi-amy Pidi) - (39
N—1 K In the vacuum in whicR®;)=v, the scalars have the mass
W, o= \[%E sin( nwﬂ)‘i’k o (34 terms— M2ZZN .| bi_1— ¢i|%. They can be diagonalized by
: ~ ,
1 N
= i2mnj/(N+1)7
The mass eigenvalues of the left-handed fermions can be ¢ N+1 n; € 0 (40
calculated from thélx N matrix MM, which takes the fol-
lowing form: with the mass spectrum
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Mpp=2Mysiny,, n=0,1,...N. (42) dg
dioge

ni)@ﬁ My_isusM,, (43
472

Each level withn#1 is degenerate with the levél—n,

while the zero mode is a singlet. This doubling of energyin which g is the 1-loop renormalization group equation
levels corresponds to the mode expansiondrin terms of  (RGE) coefficient of a pureSU(3) theory. Hence, given the
1, sinfmx’/R) and cosfimx°/R), where the sine and cosine measured coupling constam{M ;) at low energy, the gauge
terms are degenerate modes. coupling constant at energy scaleis given by

nmax
V. RENORMALIZATION OF GAUGE COUPLING a Hp)=a"*(Mgz )—ﬁ |n< + 2 n |n< )
CONSTANTS Mo-
o
ously broken gauge theogU(3)N*1, ®N) is a renormal- M,
izable field theory. Thus, we can discuss the scale depen- e
dence of the coupling strengg{u) of the unbroker8U(3) ~ WhereM, <u<M, .;. One can sum up the series to
via the radiative corrections. The standard method of conarrive at,
structing effective field theories at each stage of the decou-
pling of the massive modes is at best confusing. One prob-
lem is that when decoupling the,, KK mode with mass
M, , the decoupling methods tells us to construct an effective
theory with one zero mode and—1 KK modes which +£F(M ) (45)
should be taken to be massless at the decoupling 8tale 4 "
this is, the effective field theory will have a gauge symmetry n ma
SU(3)". But the original theory tells us that &U(3)N*1is in which the factorF=In(I["*M,/M{™™*) depends on
broken to SU(3) at the scalev, and it is different from what kind of KK spectrum we work with. The linearly
breaking theSU(3) symmetries one by one at eabh,. spaced KK spectrum from the dimensionally reduced con-
Another problem is that, at the two or higher loop level, onetinuum theory gives
necessarily encounters loops with both light and heavy KK
modes, such that it is confusing to even define a proper de-

coupling scale. hi . . .
. . . ile the spectrum from the aliphatic model as in ES).
However, one can define the effective coupling constang- P P

_ ives
g(x?) in the momentum subtraction schef®d, e.g., as the

Unlike the compactified continuum theory, the spontane- (Nt 1)IN

: (44)

al<m=al<Mz>—%ln(Miz) - %nmaxln(M%)

Fin=In(Npad), (46)

triple gluon (zero modg vertex. All the external_legs have ["mo nm
the momentung?= — 2. The effective couplingy(u?) is n=15M 2(N+1)
governed by the equation Fai=In  \max (47)
B S'”( 2(N+1)
=B(g(u)), (42 Equation(45) with F;,, is derived in[6] and[7]. It shows a
aln p power law behavior of the gauge coupling constant. The dif-

ferences betweeh,;, andF,,; provide an interesting mea-

and its evolution can be calculated in any order of perturbaSuré of how much the aliphatic mode deviates from the con-

tion in the full spontaneously broke(SU(3)N*L, ®N) tinuum theory at a quantum level. In Fig. 3, we pkt, and

theory, including all KK modes. Strictly speaking, one gets aali @S @ function oy, keepingN fixed. Figure 4 shows

set of coupled differential equations, since fhéunction in  Fiin @NdF4;; as a function o, while Ny, is fixed.

Eq. (42) depends on the triple vector boson couplings 't €an be seen from the figures that wheg,, is small
— 2 . . . . compared td\, the two theories agree very well in thesr
Jonn(47), €ach running according to its own evolution equa-

tion. The problem radically simplifies at the 1-loop level andfunctlons, since in this region, the aliphatic model gives an

. L excellent approximation of the linear spectrum from the
in the apprOX|mat|or[9] where one QSSUTGS thzat thze KK compactified continuum theory, as we expected. However,
modes that appear in the loops satisfyu“<(M{+Mj).

Moreover, in the 1-loop calculation one can use the relat|0ntehae|: f(t)rl;;axclose toN, the deviation oF 4; from Fin is less
ship between tree level couplings, namejy; go,, for any We do not expect things will be drastically different at
n. two or higher loop levels. This observation suggests to us
Thus, at the 1-loop level, the running of the gauge couthat the aliphatic model provides a good approximation to
pling constantg between the scaleM,, M,_,) involves the continuum theory even at an energy scale close the
the n modes which are lighter thal,,; as a result the run- “error” in approximating the continuum theory lies in the
ning can be described by finite size of the lattice, i.e., the separation between the two
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N

FIG. 4. F;, (solid line) andF,; (dashed lingas functions of.

FIG. 3. F};, (solid line) and F,;; (dashed ling as functions of
Nmax= 18 is chosen for the plot.

Nmax- N=20 is chosen for the plot.
nearest branes. One can always reduce the “error” by adding4”N2M/R2MS' '_A‘S we _have seen, our theory_ corresponds to
more branes, thus increasifgand reducing the inter-brane & 41 theory with a dimensional coupling given lgy. We
separation. It also suggests to us that, if one wants to modifjyould generally expect this theory to violate perturbative
the aliphatic theory such that it will produce exactly the lin- Unitarity for s=4=Ms/g;, and hen<2:e, by comparison, that
ear spectrum up tMy, one only needs to add higher order indeeds=47N?M/R*Ms~4mM/g5. Hence the perturba-
OperatorS, perhaps the type of Operators which mimic théjve Unitarity violation inherent in the Iarge COUpIing constant
Coup”ngs between the next-to-nearest branes. of the parenD =5 theory is matched by the unitarity break-
down in the effective 3-1 theory.

The separation of scaleN~Mg /M >1 is a requirement
of very low mass, or infrared states, in an essentially strong-

In Eg. (3) we assume that one can lift the Higgs bosondynamical theory at the scalél,. In all cases in nature
mass to a high energy scale above the cut-off skle The  where this phenomenon occurs and is understood, there is an
Higgs degrees of freedom then decouple from the theory, angttendant custodial symmetry. The theory we have presented
only the Nambu-Goldstone modes remain, which are abin 3+1 dimensions imitates arbitrarily well a+41 theory,
sorbed by the KK modes to give mass. This is a large couand this dynamical issue does not seem to arise. The infrared
pling limit of the Higgs theory in which the VEV is held physics scale, the “effective compactification scale, Mg,
fixed, i.e., v~M/\N where M—o and A—o together. ~Mg/N and apparently occurs accidentally becabsehe
However, such a theory violates perturbative unitarity. Onnumber of independent gauge groups in the contruction, is
the other hand, the effective low energy theory is a gaugegery large.
chiral Lagrangian withf .~wv. This theory is a pertubatively One might have thought that the separation of the com-
sensible onéand is renormalizable as an expansion in®)/  pactification scale and the fundamental scale in extra-
in the low energy limit, however, the perturbative unitarity dimensional models would involve, at least accidentally, ap-
breakdown occurs whegis=v. Essentially, longitudinal KK proximate classical scale invarian¢this is the custodial
mode scattering must violate perturbative unitarity wisen symmetry in QCD of, e.g., the ratid gcp/Mpjanck in the
=4v?. This is the Lee-Quigg-Thacker bound which appliessense that “classical scale invariance” corresponds to setting
to, e.g., electroweak symmetry breaking W scattering the B-function of QCD to zerp The QCD coupling in our
[3]. theory turns out to be suppressedagsg-p~Msao/N, where

We see, from Eq(7), that this failure of unitarity corre- «y=g3/4= is the dimensional 4 1 gauge coupling. To take
sponds to energy scales approachir@47-rN2/ng2 N arbitrarily large thus implies that the theory must have a

VI. DISCUSSION AND CONCLUSION
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slowly running dimensionless coupling constémiminiscent neous symmetry breakingU(3)N*1—SU(3).

of “walking technicolor”) in D=4 on scales well below The approach maintains manifest gauge invariance. Is it
Mg, so it does appear that quantum scale breaking effects agssible to construct analogous effective Lagrangians which
under control, and it seems that classical scale invariance igaintain SUSY and general covariance for yielding KK
acting as the custodial symmetry after all. However, the tracenodes of gravity? And how are the topological aspects of
of the stress-tensor iD=5 is nonzero classically, and the extra dimensional gauge theorig®,11] expressed in an ef-
theory has explicit scale breaking, owing to fhe=5 dimen-  fective Lagrangian such as this?

sional coupling constant. The nonzero tra€§y<G;,,G**” Note addedUpon completion of this paper the work of
in D=5 must match onto the KK masses adir4, since  Arkani-Hamed, Cohen, and Geofdi2] appeared which uses
the KK masses are seen as explicit sources of scale breakiggtechnicolor-like condensate in place of our explicit Higgs
on all scales fronM . to M. Itis therefore quite puzzling as fie|gs, @,,, but obtains essentially the identical construction
to what, if anything, we may we invoke as the custodialag 5 chiral Lagrangian. Georgi's moose notation, used in
symmetry of the scale hierarchy in extra dimensions wien le], may be a useful way to extend to higher dimensions
is large. Is this a counterexample to the requirement of ha Such as 5 1 with 2 compact dimensions, whence the theory

Ing an exphc@ custodial symmetry, an artifact O.f larye may be graphically represented as a “moose lattice,” and the
In conclusion, we have constructed a manifestly gauge

invariant description oh KK modes for anSU(m) gauge anomaly free incorporation of fermions is automatic.
theory in the bulk. We showed in this paper that the four-

dimensional KK theory deducted from a compactified five-
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