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Structure of radiatively induced Lorentz and CPT violation in QED at finite temperature
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We obtain the induced Lorentz- andCPT-violating term in QED at finite temperature using the imaginary-
time formalism and dimensional regularization. Its form resembles a Chern-Simons-like structure, but, unex-
pectedly, it does not depend on the temporal component of the fixedbm constant vector that is coupled to the
axial-vector current. Nevertheless, Ward identities are respected and its coefficient vanishes atT50, consistent
with previous computations with the same regularization procedure, and it is a nontrivial function of tempera-
ture. We argue that at finiteT a Chern-Simons-like Lorentz- andCPT-violating term is generically present, the
value of its coefficient being unambiguously determined up to aT-independent constant, related to the zero-
temperature renormalization conditions.
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I. INTRODUCTION

The phenomenological consequences of breaking Lor
and CPT invariance have been actively explored in rece
years as they could be measurable low-energy effects
quantum gravity@1# or superstrings@2#. In QED this issue
was examined some time ago in Ref.@3#, while lately CPT
and Lorentz noninvariant extensions of the standard mo
were scrutinized in Ref.@4#. As many breaking terms ar
allowed, most efforts have been focused on the possible
straints coming from experimental data@5# as well as from
renormalizability requirements and anomaly cancellation
this context, there arose a ‘‘theoretical’’ controversy on t
possibility of generating, through radiative corrections,
Chern-Simons-like term in the effective action of QE
There Lorentz andCTP symmetries can be in fact destroye
by considering a term of the form

LCS5
km

2
emnabAnFab , ~1!

wherekm is a constant vector. This breaking term, sugges
in Ref. @3#, predicts birefringence of the light in the vacuu
and observations on distant galaxies put a very string
bound onkm @5#. On the other hand the superstring inspir
extensions of the standard model proposed in Ref.@4# con-
tain, in the fermionic sector, a Lorentz- andCPT-violating
axial-vector coupling

Lb5bmc̄gmg5c, ~2!

with bm a constant, a prescribed four-vector that couples
the usual axial-vector current of QED. The interaction te
Lb could generate, through radiative corrections, a nonv
ishing value forkm @6#. If this were the case, the stron
bounds onkm would translate into strong bounds for th
noninvariant term ~2!. The aforementioned controvers
arises from the fact that the calculation is plagued by a
pendence on the regularization adopted. While some pa
@7# claim that particular methods offer the correct result, o
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ers argue that the requirement of vector gauge invaria
forces a vanishing induced term@8,9#. Recently this issue
was also discussed in@10# in the heat kernel approach. A
rather lucid discussion of the problem appeared in Ref.@11#,
where it was pointed out that the relevant form of the vec
rial Ward identities may depend on how the vectorbm is
embedded into~or derived from! a more fundamental theory
As an example of that in@11# an axion-like model was pro
posed to generatebm as a vacuum expectation value~VEV!
of a dynamical field: there, a weaker form of the vector
Ward identity governs the appearance of the interaction~1!
in the effective action, and, in particular, it is not stron
enough to ensure the vanishing of its coefficient. In any ca
whenbm is considered a strictly constant nondynamical ve
tor field, only vectorial Ward identities with vanishing axia
momentum are relevant and they do not fix the actual va
of the coefficient of the Chern-Simons~CS! term: it depends
on the renormalization condition.

Our interest is instead devoted to a different feature of
problem: the purpose of this paper is in fact to study
effect of a thermal bath on the structure of the Chern-Sim
like term~1!, obtained by integrating out fermions coupled
the axial-vectorbm . In particular our starting observation i
that regularization ambiguities cannot modify temperat
dependence, since they are related to the ultraviolet beha
of the theory, that is temperature independent. Renorma
tion conditions are usually implemented atT50, where the
parameters of the theory are defined, and consequently
temperature evolution is determined. Our one-loop compu
tion may suffer, therefore, of the mentionedT50 ambigu-
ities while the functional form of the induced term and t
temperature dependence of its coefficient are safe. We
use imaginary-time formalism and, for simplicity, dime
sional regularization: in this scheme, where the vecto
Ward identities hold even at nonzero axial-vector mom
tum, a consistency check of our algebra is given by the v
ishing of the induced term~1! in the limit T→0. The fact
that dimensional regularization in its standard form does
allow the appearance of the CS term atT50 has been al-
ready pointed out in@9#. On the contrary aCPT- and
©2001 The American Physical Society03-1
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Lorentz-violating Chern-Simons action is generically pres
at TÞ0: while this fact may have some relevance for ph
nomenological application, potentially being active in t
early universe, a serious question arises about the co
tency of the effective theory. For time-likebm it was shown
in @12# that the vacuum is unstable under pairs creation
tachyonic photon modes with finite vacuum decay rates a
recently, it was argued@13# that, in this case, unitarity itsel
may be in trouble~see also the original discussion in@3#!. A
more general analysis on the consistency of the theor
quantum level has been presented in@14#, where both time-
like and space-like cases appear to be problematic when
crocausality and stability are examined. Rather surprisin
our computations show that the induced term does not
pend on the temporal component ofbm : we have not ex-
plored up to now the dynamical consequences of this fac
our finite-temperature context. Moreover, invariance un
small ~i.e., not wrapping around the compactified imagina
time @15#! vectorial gauge transformations of the induc
term is easily shown due to the use of dimensional regu
ization.

II. THE STRUCTURE OF ONE-LOOP SELF-ENERGY
AT TÅ0

To begin with let us consider a modified QED action d
scribed by the Lagrangian density

L5c̄@ i ]”2m2g5b”2eA” #c. ~3!

As discussed in Ref.@6# the bm linear contribution to the
Chern-Simons term arises from the photon self-energy w
one insertion of the axial-vector field,

Pb
mn~p!5 ibl@ I mnl~p!1I nml~2p!#, ~4!

where I mnl is given by the ‘‘triangle’’-like graph with zero
momentum axial vertex~we are working from now on di-
rectly in Euclidean space!:

I mnl~p!52 ie2E d4k

~2p!4

3
Tr@gm~k”1 im!glg5~k”1 im!gn~~k”1p” !1 im!#

~k21m2!2~~k1p!21m2!
.

~5!

TheCPT- and Lorentz-violating Chern-Simons action is e
tracted from Eq.~5! by isolating, from the odd-parity part
the tensorial structure linear in the external momentum
by performing the limitp2→0 in the scalar integral multi-
plying it. In Ref. @9# the explicit evaluation atT50 of
Pb

mn(p) in the dimensional regularization was presented.
particular it was noticed that the only algebraic properties
g5 used in the computation were:~a! the trace ofg5 with an
odd number of Dirac matrices vanishes and~b! the trace of
g5 with an even number of Dirac matrices can be redu
using the Clifford algebra to the quantity Tr@gmgngagbg5#.
Consistency also requires that Tr@gmgng5#5Tr@g5#50.
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In this zero-temperature case, the linearpm dependence is
easily extracted and the result can be presented as

2 i
e2

8p2
blpb Tr@gmgnglgbg5#@F1~p2/m2!1F2~p2/m2!#,

~6!

where the explicit form ofF1(p2/m2) and F2(p2/m2) is
given in @9#: evaluatingF1(p2/m2) andF2(p2/m2) in D di-
mensions, taking the limitD54 and expanding inp2, it
results that

F1~p2/m2!1F2~p2/m2!.2
p2

12m2
, ~7!

showing the absence of a Chern-Simons contribution to
effective action. We agree with this computation but we wa
to recall a couple of remarks in order to better appreciate
finite T effects. First of all one can check that the cancel
tion of the leading order ~constant! contribution to
F1(p2/m2)1F2(p2/m2) comes from a delicate balance b
tween a ‘‘classical’’ term@proportional tom2 in Eq. ~5!# and
an ‘‘anomalous’’ quantum term, deriving from the potenti
divergences.1 As mentioned in Ref.@11#, the massless cas
escapes this mechanism, therefore dimensional regula
tion gives a nonvanishing result. This fact is related to
loss of analyticity@8# of the ‘‘triangle’’-like diagram atm
50 in the limit of vanishing axial-vector momentum. In th
finite temperature case, where the analyticity properties
the external momenta are usually weaker, this observa
suggests the concrete possibility that a nonzero result c
appear even in the massive case. Second, we stress tha
covariance of the momentum integration immediately sele
the Chern-Simons tensorial structure and the dependenc
p2 of the coefficient function at zero temperature. This is
longer true at finite temperature, as we shall see in a wh
due to explicit presence of the Matsubara frequencies
particular the double limitp0→0 andpi→0 has to be per-
formed very carefully.

Let us assume from now on that the system is in therm
equilibrium with a temperatureT5b21, b being interpreted
as the radius of the compactified Euclidean time. In this c
we may use the Matsubara formalism that consists simpl
taking k05(n1 1

2 )2p/b ~antiperiodic boundary condition
for fermions requires semi-integers frequencies! and replac-
ing 1/2p*dk051/b(n . The remaining*d3k̂ integral is of
course continued toD-spatial dimensions. The trace can st
be performed in full generality and simple algebraic manip
lations in the loop momenta~not involving shifts or symme-
try properties! allow us to write Eq.~8! as follows:

1This mechanism of cancellation of a quantum contributi
against a classical one is reminiscent of the analogous phenom
in three-dimension~3D! in the case of parity anomaly. This perfe
balance between the two contributions is peculiar of the stand
dimensional regularization. In other scheme this exact cancella
does not occur, leaving us with a nonvanishing CS term wh
coefficient is, however, temperature independent.
3-2
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I mnl~p!524i
e2

b (
n
E dDk̂

~2p!D

~2kmenlrsprks22knemlrsprks!22~k•p!emnlrpr1p2emnlr~kr2pr!

~k21m2!2~~k1p!21m2!

14i
e2

b (
n
E dDk̂

~2p!D

emnlr~kr2pr!

~k21m2!2
. ~8!
n
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The following step in the computation is to extract the te
sorial structure, leaving us with the evaluation of scalar
tegrals. The second term in Eq.~8! is easily tamed, both the
integral over the spatial components and the series ovek0
are antisymmetric in exchangingk→2k ~we can find a re-
gion aroundD53 where everything is convergent!. It re-
mains therefore

24i
e2

b
emnlrprI 0 , ~9!

where we have

I 05(
n
E dDk̂

~2p!D

1

~ k̂21k0
21m2!2

, ~10!

that exhibits the Chern-Simons-like structure. Let us disc
now the first contribution. We introduce Feynman parame
in order to perform the integral. To implement translatio
only on the space components of the loop momentum
decomposekm as follows:

km5 k̂m1k0d0m . ~11!

Shifting k̂→ k̂2xp̂ ~wherep̂m is defined as above! in Eq. ~8!
and using the covariance under spacial rotations, allows u
conclude that

k̂mk̂n→
k̂2

D
~dmn2dm0dn0!,

we arrive to the form

I mnl~p!524i
e2

b
@emnl0I 11emnlrpr~2I 21I 0!

1~pmenlr0pr2pnemlr0pr2p2emnl0!I 3

1~d0menlr0pr2d0nemlr0pr2p0emnl0!I 4#,

~12!

where

I 15E
0

1

dx 2~12x!(
n
E dDk̂

~2p!D

3

Fp2~122x!~k01xp0!2
2

D
k̂2p012p0~k01xp0!2G

@ k̂21~k01xp0!21x~12x!p21m2#3
,
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I 25E
0

1

dx 2~12x!(
n
E dDk̂

~2p!D

3

F2p0~k01xp0!2
2

D
k̂22

1

2
p2~12x!G

@ k̂21~k01xp0!21x~12x!p21m2#3
,

I 352E
0

1

dx 2~12x!(
n
E dDk̂

~2p!D

3
2x~k01xp0!

@ k̂21~k01xp0!21x~12x!p21m2#3
,

I 45E
0

1

dx 2~12x!(
n
E dDk̂

~2p!D

3

S 2~k01xp0!22
2

D
k̂2D

@ k̂21~k01xp0!21x~12x!p21m2#3
. ~13!

Working at finite temperature, more structures have b
generated, a fact that is not unexpected due to the exp
breaking of four-dimensional covariance. The importa
point is that, nevertheless, the tensors must be transv
with respect topm andpn , since the vectorial Ward identity
is unaffected by the presence of the temperature. By insp
tion we see that the only potential trouble comes fromI 1
(emnl0 not being transverse!. Luckily we can show thatI 1 is
exactly zero. To this purpose it is useful to rewriteI 1 as
follows:

I 15E
0

1

dx 2~12x!(
n
E dDk̂

~2p!D H F2
k01xp0

2

d

dx

3S 1

@ k̂21~k01xp0!21x~12x!p21m2#2D G
2

2p0k̂2/D

@ k̂21~k01xp0!21x~12x!p21m2#3J , ~14!

and integrating by part with respect tox ~the boundary terms
are zero! we get, after having performed theD-dimensional
integral,
3-3
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I 152

GS 22
D

2 D
~4p!D/2 E

0

1

dx

3(
n

~k01xp0!

@~k01xp0!21x~12x!p21m2#22(D/2)
.

~15!

We can use now the explicit form of the Matsubara frequ
cies and the fact thatp0 is discrete (p052p/b l ): relabeling
the sum in Eq.~15! asn→2n212 l and making the chang
of variablesy512x, one easily obtains that

I 152I 1 .

We stress that we did our computations inD dimensions,
where everything is convergent and no limit onp has been
performed. The same arguments apply toI 3, and we remain,
therefore, with two independent tensorial structures: we n
to evaluateI 012I 2 andI 4. Before entering the computation
we remark that the emergence of a new, transverse tens
structure was overlooked in Ref.@16#, where the coefficient
of the Chern-Simons term at finiteT was obtained by simply
evaluating the scalar integral, relevant atT50, by introduc-
ing Matsubara frequencies forp0. As we will see in the next
section, our result disagrees with that.

III. THE CPT- AND LORENTZ-VIOLATING TERM
AT TÅ0

Let us evaluate the coefficients of the two independ
structures in the small momentum limit: we remark that
finite temperature this procedure is rather delicate, due to
fact that, in general, the limitsp0→0 and p̂2→0 do not
commute@17#. Here we shall take firstp0→0 and sendp̂2

→0. This limit is sometimes referred to as ‘‘static’’ and
allows for a comparison with the computations perform
through the heat-kernel technique. More generally one co
try the opposite one, after having continued the polarizat
tensor to the real time@18#. In principle a different result
could be obtained, an explicit example of this being the co
putations of the induced Chern-Simons term at finite te
perature presented in@19#. The sumI 012I 2 becomes, when
the D-dimensional integrals have been computed:

I 012I 252

GS 22
D

2 D
~4p!D/2 E

0

1

dx2~12x!

3(
n

F S 12
4

D D 1

@k0
21m2#22(D/2)

1
4

D

22D/2

G~3!

1

@k0
21m2#22(D/2)G . ~16!

The result is zero identically in arbitrary dimension: one c
check that when the dependence onp̂2 is retained the correc
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tions are regular, and of orderp̂2 ~and of course the coeffi
cient depends onT). We see that the zero-temperature te
sorial structure still has a vanishing coefficient in the sm
momentum limit whenTÞ0. The only possible contribution
to Lorentz andCPT violation could therefore arise fromI 4,
i.e., from the noncovariant structure. The relevant term to
calculated is

I 45E
0

1

dx2~12x!(
n
E dDk̂

~2p!D

S 2k0
22

2

D
k̂2D

@ k̂21k0
21m2#3

. ~17!

The D-dimensional integration leads to

I 45

GS 22
D

2 D
~4p!D/2 E

0

1

dx~12x!(
n

F ~32D !
1

@k0
21m2#22(D/2)

1~D24!
m2

@k0
21m2#32(D/2)G . ~18!

At this point we need an explicit representation for the s
over the Matsubara frequencies: we use the following re
@20#, valid when 1/2,l,1

(
n

@~n1b!21a2#2l

5
ApG~l21/2!

G~l!~a2!l21/2
14 sin~pl!E

uau

` dz

~z22a2!l

3ReS 1

exp 2p~z1 ib !21D . ~19!

We cannot apply directly this formula to our case: at the e
we want to take theD53 limit, and it is clear that, evaluat
ing the second contribution toI 4 in Eq. ~18!, the integral in
Eq. ~19! does not converge there in the limitD53. It is not
difficult anyway to perform the analytical continuation in E
~19! using the relation

E
uau

` dz

~z22a2!l
ReS 1

exp 2p~z1 ib !21D
5

1

2a2

322l

12l E
uau

` dz

~z22a2!l21
ReS 1

exp 2p~z1 ib !21D
2

1

4a2

1

~22l!~12l!
E

uau

` dz

~z22a2!l22

d2

dz2

3FReS 1

exp 2p~z1 ib !21D G . ~20!

Equation~18! can now be explicitly evaluated atD53: we
see that the potential singularity atD53, coming from the
first contribution, cancels~notice the factorD23 in front!,
the finite residue~that would be temperature independen!
3-4
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cancels with an analogous term coming from the second c
tribution, leaving us with the final result

I 452bE
uju

`

dz~z22j2!1/2
tanh~pz!

cosh2~pz!
52 b F~j!, ~21!

where we have definedj5bm/2p. The behavior ofF(j) is
displayed in Fig. 1. Equation~21! is the main result of our
paper: it shows that forbÞ` (TÞ0) a CPT- and Lorentz-
violating term appears. In momentum space it can be wri
as

Pb
mn~p!54e2F~j!bl~d0menlr0pr2d0nemlr0pr2p0emnl0!

1O~p2!. ~22!

Several comments are now in order. First of all whenT50
F(j) vanishes, recovering therefore the fact that, using
mensional regularization, noCPT- and Lorentz-violating
Chern-Simons-like term is present in the effective acti
The opposite limit (T→`) is otherwise finite @F(0)
51/2p2#. In Ref. @16# a similar behavior was found for th
temperature evolution of the coefficient of the Che
Simons-like term but there theT50 boundary condition was
taken so that atT5` the symmetries were restored. Mor
over, at variance with our result, the Chern-Simons te
there was implicitly assumed to be related to the covar
tensorial structure, a fact that from our computation turns
to be incorrect. The second point is that our induced ac
does not depend on the temporal component ofbm ; in Refs.
@12–14# the consistency of the theory at quantum lev
when the Chern-Simons-like action is present, was d
cussed. It would be interesting to address the problem
stability in the finite-temperature situation considering o
induced term. Another observation is related to the dep
dence onj: we see that the limitb→0 is the same asm
→0 ~since the only dependence on the mass and on
temperature appears throughj). This suggests that the pre
ence at finite temperature of a nonzero CS-like term is
lated to the loss of analyticity in external momenta, bypa
ing therefore the argument of Coleman and Glashow@8#
against it ~analyticity was also assumed in Ref.@9#!. It is
interesting to write down the induced term in configurati
space

FIG. 1. Plot ofF(j).
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S‘ ‘ CS’ ’ 54ie2F~j!E d4x bi@A0e i jkF jk22e i jkAjF0k#,

~23!

gauge invariance is achieved via Bianchi identity up to
total derivative.

The asymmetrical behavior played in the above action
the ‘‘spacial’’ and ‘‘temporal’’ component ofbm ~the latter
being completely absent! might seem strange. A source o
this asymmetry can be surely traced back to the presenc
a thermal bath which, selecting a specified frame, provi
an additional Lorentz violation. However, below, with th
help of the analogous problem in two dimensions, we wo
like to suggest that the origin of this term at finite tempe
ture may be related to a deeper geometrical reason. ID
52, in fact, its structure and its coefficient can be eas
understood through the interplay of the global part of t
Quillen anomaly, which controls the obstruction to the chi
splitting, and the presence of a nontrivial cycle~finite tem-
perature in the above language!.

There, the relevant Green’s function is the one-point fu
tion with onebm insertion ~we study the massless case f
simplicity!. Using dimensional regularization we see that t
zero-temperature computation gives a vanishing result
cause*dDkkmkn /k250 ~we remark that havingbm constant
implies that the external momentum has to be null!. But turn-
ing on the temperature the situation changes drastically.
relevant integral is

Pm
b 52 iebl Tr@gmgaglg5gn#

1

b (
n
E dDk̂

~2p!D

kakn

k4
,

~24!

that is equivalent, after using Dirac algebra to

2eblF2elm

1

b (
n
E dDk̂

~2p!D

1

@k0
21 k̂2#

12elad0md0a

1

b

3(
n
E dDk̂

~2p!D

k0
2

@ k̂21k0
2#2

12ela

1

b

3(
n
E dDk̂

~2p!D

k̂mk̂a

@k0
21 k̂2#2G . ~25!

It is not difficult to see that theD-dimensional integration
and the analytical continuation of the sum gives a finite
sult for theb1 component~due to a cancellation between
pole and a zero asD51) leaving us with

Pm
b 5

16

p
eblelad0m , ~26!

while one can easily show that theb0 component has zero
coefficient after performing thek̂ integration. We remark tha
here no external momentum limit has been done, there
the result is exact. The above term has a natural interpr
tion in configuration space as
3-5
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i E d2xb1A0~x!, ~27!

that is the analog ofD54 ~the ‘‘complete’’ CS-like term
would be hereemnbmAn). The term appearing in Eq.~27! is
nothing but a remnant of the holomorphic anomaly on
torus @21#. In fact, when nontrivial cycles are present in t
base-space, the effective action acquires a subtle depend
on the harmonic part of the gauge potentials. In particu
when both vector and axial gauge fields are coupled, req
ing gauge invariance implies that an anomalous phase h
be present in order to cure the transformation propertie
the modulus of the Dirac determinant. This phase can
derived from general algebraic-geometrical arguments@21#,
being related to the Quillen anomaly, or by an expli
z-function computation@22# of the relevant functional deter
minants. The asymmetric character of the phase has to
10500
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ascribed to the anomalous modular transformation prope
of chiral partition functions. We can now understand the a
pearance of this term at finite temperature:bm is basically an
harmonic one-form axially coupled and therefore being a
to interact with the harmonic component ofA0. The com-
plete anomalous phase requires a quadratic part inbm that
can be easily recovered by computing the Feynman gr
with two bm insertions. This discussion may suggest that
four-dimensional term could have an appealing mathemat
interpretation.
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