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Structure of radiatively induced Lorentz and CPT violation in QED at finite temperature
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We obtain the induced Lorentz- a@P T-violating term in QED at finite temperature using the imaginary-
time formalism and dimensional regularization. Its form resembles a Chern-Simons-like structure, but, unex-
pectedly, it does not depend on the temporal component of the liixembnstant vector that is coupled to the
axial-vector current. Nevertheless, Ward identities are respected and its coefficient vanish€s abnsistent
with previous computations with the same regularization procedure, and it is a nontrivial function of tempera-
ture. We argue that at finife a Chern-Simons-like Lorentz- ar@lP T-violating term is generically present, the
value of its coefficient being unambiguously determined up Teimadependent constant, related to the zero-
temperature renormalization conditions.
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I. INTRODUCTION ers argue that the requirement of vector gauge invariance
forces a vanishing induced terf8,9]. Recently this issue

The phenomenological consequences of breaking Lorentwas also discussed if10] in the heat kernel approach. A
and CPT invariance have been actively explored in recentrather lucid discussion of the problem appeared in Ritf],
years as they could be measurable low-energy effects afihere it was pointed out that the relevant form of the vecto-
quantum gravity1] or superstringg2]. In QED this issue rial Ward identities may depend on how the veclyy is
was examined some time ago in RE3], while latelyCPT  embedded intgor derived from a more fundamental theory.
and Lorentz noninvariant extensions of the standard modeAs an example of that ifl1] an axion-like model was pro-
were scrutinized in Ref[4]. As many breaking terms are posed to generate, as a vacuum expectation val(¢EV)
allowed, most efforts have been focused on the possible comf a dynamical field: there, a weaker form of the vectorial
straints coming from experimental ddta] as well as from  Ward identity governs the appearance of the interaction
renormalizability requirements and anomaly cancellation. Irin the effective action, and, in particular, it is not strong
this context, there arose a “theoretical” controversy on theenough to ensure the vanishing of its coefficient. In any case,
possibility of generating, through radiative corrections, awhenb,, is considered a strictly constant nondynamical vec-
Chern-Simons-like term in the effective action of QED. tor field, only vectorial Ward identities with vanishing axial
There Lorentz an€ TP symmetries can be in fact destroyed momentum are relevant and they do not fix the actual value
by considering a term of the form of the coefficient of the Chern-Simor€9) term: it depends
on the renormalization condition.

Our interest is instead devoted to a different feature of the
problem: the purpose of this paper is in fact to study the
effect of a thermal bath on the structure of the Chern-Simons
wherek , is a constant vector. This breaking term, suggestedike term(1), obtained by integrating out fermions coupled to
in Ref. [3], predicts birefringence of the light in the vacuum the axial-vectotb,, . In particular our starting observation is
and observations on distant galaxies put a very stringerthat regularization ambiguities cannot modify temperature
bound onk,, [5]. On the other hand the superstring inspireddependence, since they are related to the ultraviolet behavior
extensions of the standard model proposed in RHfcon-  of the theory, that is temperature independent. Renormaliza-
tain, in the fermionic sector, a Lorentz- a@P T-violating  tion conditions are usually implemented &0, where the

k
Ecstf’”“ﬁAyFaB, oY)

axial-vector coupling parameters of the theory are defined, and consequently their
o temperature evolution is determined. Our one-loop computa-
Lo=b, vy ysi, (2)  tion may suffer, therefore, of the mentiond@a@=0 ambigu-

ities while the functional form of the induced term and the
with b, a constant, a prescribed four-vector that couples tdemperature dependence of its coefficient are safe. We will
the usual axial-vector current of QED. The interaction termuse imaginary-time formalism and, for simplicity, dimen-
Ly, could generate, through radiative corrections, a nonvansional regularization: in this scheme, where the vectorial
ishing value fork, [6]. If this were the case, the strong Ward identities hold even at nonzero axial-vector momen-
bounds onk, would translate into strong bounds for the tum, a consistency check of our algebra is given by the van-
noninvariant term (2). The aforementioned controversy ishing of the induced ternl) in the limit T—0. The fact
arises from the fact that the calculation is plagued by a dethat dimensional regularization in its standard form does not
pendence on the regularization adopted. While some papesdlow the appearance of the CS termTat 0 has been al-
[7] claim that particular methods offer the correct result, oth-ready pointed out inf9]. On the contrary aCPT- and
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Lorentz-violating Chern-Simons action is generically present  In this zero-temperature case, the linpgrdependence is
at T#0: while this fact may have some relevance for phe-easily extracted and the result can be presented as
nomenological application, potentially being active in the

early universe, a serious question arises about the consis- = e A B _ _
tency of the effective theory. For time-like, it was shown ! ?b PP Ty, vu Ya v YslL Fa(pIm?) + Fo(p/m) ],
in [12] that the vacuum is unstable under pairs creation of 6)
tachyonic photon modes with finite vacuum decay rates and,

recently, it was argueflL3] that, in this case, unitarity itself where the explicit form ofF;(p?/m?) and F,(p*/m?) is
may be in troublgsee also the original discussion[i]). A given in[9]: evaluating]—"l(pzlmz) and]-‘z(pzlmz) in D di-

more general analysis on the consistency of the theory ahensions, taking the limiD=4 and expanding ip?, it
guantum level has been presentedid], where both time- results that

like and space-like cases appear to be problematic when mi-
crocausality and stability are examined. Rather surprisingly p?

our computations show that the induced term does not de- Fr(PPIm?) + Fo(pPImP) = — ——, @)
pend on the temporal component Iof : we have not ex- 2m

plore_d up to now the dynamical consequences (.)f this fact ir%howing the absence of a Chern-Simons contribution to the
our finite-temperature context. Moreover, invariance under

small (i.e., not wrapping around the compactified imaginar effective action. We agree with this computation but we want
U pping P gnary, recall a couple of remarks in order to better appreciate the

time [15]) v_ectorial gauge transformations of _the inducedfinite T effects. First of all one can check that the cancella-
term is easily shown due to the use of dimensional regularﬁon of the .Ieading order (constark contribution to

Ization. F1(p?2Im?)+ F»(p?/m?) comes from a delicate balance be-
tween a “classical” ternproportional tom? in Eq. (5)] and
an “anomalous” quantum term, deriving from the potential

2

Il. THE STRUCTURE OF ONE-LOOP SELF-ENERGY

AT T#0 divergences.As mentioned in Ref[11], the massless case
To begin with let us consider a modified QED action de-€scapes this mechanism, therefore dimensional regulariza-
scribed by the Lagrangian density tion gives a nonvanishing result. This fact is related to the
loss of analyticity[8] of the “triangle”-like diagram atm
g:ﬁm_m_ ysth—eAly. ©) =0 in the limit of vanishing axial-vector momentum. In the

finite temperature case, where the analyticity properties in
As discussed in Refl6] the b, linear contribution to the the external momenta are usually weaker, this observation
Chern-Simons term arises from the photon self-energy witlsuggests the concrete possibility that a nonzero result could

one insertion of the axial-vector field, appear even in the massive case. Second, we stress that the
v . covariance of the momentum integration immediately selects
5" (p)=ib™[1,n(P) + 1 (—P)], (4 the Chern-Simons tensorial structure and the dependence on

p? of the coefficient function at zero temperature. This is no
longer true at finite temperature, as we shall see in a while,
due to explicit presence of the Matsubara frequencies: in
particular the double limip,—0 andp;—0 has to be per-

wherel ., is given by the “triangle™-like graph with zero
momentum axial vertexwe are working from now on di-
rectly in Euclidean spage

4y formed very carefully.
l,n(p)= —ieZJ Let us assume from now on that the system is in thermal
e (2m)* equilibrium with a temperaturé= 8-, B being interpreted
as the radius of the compactified Euclidean time. In this case
XTr[ Yu(K+im)yy ys(K+im)y,((K+p)+im)] we may use the Matsubara formalism that consists simply in
(K2+m?)2((k+ p)2+m?) ' taking ko= (n+3)2#/B (antiperiodic boundary conditions

for fermions requires semi-integers frequengiasd replac-
) ing 1/27[dky=1/8%,. The remainingf d3k integral is of
The CPT- and Lorentz-violating Chern-Simons action is ex- course continged tD-spatiaI_dimensi_ons. The tracg can s_tiII
tracted from Eq.(5) by isolating, from the odd-parity part, be' perfprmed in full generality a}nd swpple a]gebram manipu-
the tensorial structure linear in the external momentum andftions in the loop moment@ot involving shifts or symme-
by performing the limitp?—0 in the scalar integral multi- 1Y Properties allow us to write Eq/(8) as follows:
plying it. In Ref. [9] the explicit evaluation aff=0 of

H{)’“”'(p) 'n,the d'mens'onal regularization Was_ prese”t‘?d- In This mechanism of cancellation of a quantum contribution
particular it was noticed that the only algebraic properties of,ainst a classical one is reminiscent of the analogous phenomena
vs used in the computation werga) the trace ofys with an  j three-dimensior3D) in the case of parity anomaly. This perfect
odd number of Dirac matrices vanishes dhgithe trace of  pajance between the two contributions is peculiar of the standard
vs with an even number of Dirac matrices can be reducedimensional regularization. In other scheme this exact cancellation
using the Clifford algebra to the quantity[®r,y,v,vs¥s]-. does not occur, leaving us with a nonvanishing CS term whose
Consistency also requires thaf 31, v, ys]=Tr vs]=0. coefficient is, however, temperature independent.
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dDR (Zk/.LEV)\pO'ppkU_ 2kV6,U,}\p0'ppkU) - 2(k p) e‘pdv}\pppdl— pze/.l.v)\p( kP — pp)

.e2
(P = =415 3 f(sz

dDR Ep,v}\p(kp_pp)
2 f(zw)D (k>+m?)?

The following step in the computation is to extract the ten- 1
sorial structure, leaving us with the evaluation of scalar in- IZ:J dx2(1-x)>, j
tegrals. The second term in E@) is easily tamed, both the 0 n
integral over the spatial components and the series kyer

are antisymmetric in exchangirlg— —k (we can find a re-
gion aroundD=3 where everything is convergentt re-
mains therefore

e2

—4i Ee,uv)\pppIOl (9)

where we have

. diR 1
CF ) emP deriim?)?’

(10

that exhibits the Chern-Simons-like structure. Let us discuss 1
now the first contribution. We introduce Feynman parameters|4=f dx2(1-x) > j
in order to perform the integral. To implement translations 0 "
only on the space components of the loop momentum we

decompose,, as follows:
K, =k,+Kodo, - (11)

Shifting k—k—xp (wherep, is defined as abovén Eq. (8)

(k2+m2)2((k+p)2+m2)
(8)
|
dPk
(2m)P
2. 1
[_po(koJrXPo)—Skz—zpz(l—x)
[k2+ (Ko +XPg)2+X(1—Xx)p2+m?]?’
1 > dPk
I3——f0 dx2(1—x) 2 j(27r)D
2x(kg+Xpo)
[k24 (Ko+Xpo)2+X(1—Xx)p2+m?]3’
dPk
(2m)P
2.
(2(k0+xp0)2— Bkz)
(13

[k2+ (Ko+Xpo)2+X(1—Xx)p2+m?]®

Working at finite temperature, more structures have been

and using the covariance under spacial rotations, allows us t@enerated, a fact that is not unexpected due to the explicit

conclude that
r2

uv

5,41.1/ - 5,u0 51/0) ’

we arrive to the form

e
l,u,V)\(p) =—4i E[E,ul/)\ol 1t e,uv)\ppp(ZI 2t I O)
+ (P €1 0P~ P €40 p0P” ~ PZ€pu00) |3

+ ( 60/L€v)\p0pp_ 50v6;1,)\p0pp_ pOE,uV)\O) I 4]!
(12)

where
dPk
(2m)P

= foldXZ(l—x)zn‘, f

2.
[pz(l—Zx)(ko-Fxpo)— 6k2p0+ 2po(ko+XPo)?

[k2+ (Ko +XPo)2+X(1—X)p2+m?]3

breaking of four-dimensional covariance. The important
point is that, nevertheless, the tensors must be transverse
with respect top,, andp,,, since the vectorial Ward identity

is unaffected by the presence of the temperature. By inspec-
tion we see that the only potential trouble comes frbm
(€m0 NOt being transvergel uckily we can show that; is
exactly zero. To this purpose it is useful to rewrltg as
follows:

1 dPk
I1=j0dx2(1—x); f(zw)D{

1
X | —
[K%+ (Kot X po) 2+ Xx(1—x)p?+ m?]?

kot+xpy d
2 dx

2pok?/D
[k2+ (kg+Xpo)2+X(1—x)p?+m?]®

] , (14)

and integrating by part with respectxdthe boundary terms
are zerg we get, after having performed thi&-dimensional
integral,
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D tions are regular, and of ord@? (and of course the coeffi-
I'i2- 2/ r1 cient depends o). We see that the zero-temperature ten-
1=~ —DIZJ sorial structure still has a vanishing coefficient in the small
(4) 0 momentum limit whenl # 0. The only possible contribution
K-+ x to Lorentz andCPT violation could therefore arise fromy,
(ko+XPpo) . .
. i.e., from the noncovariant structure. The relevant term to be
m [(Ko+XPo)®+X(1—x)p?+m?]>~ (P72 calculated is
(15

2.
2 “ro

(2m)P [K2+K+m?]*

We can use now the explicit form of the Matsubara frequen- 1

cies and the fact thai, is discrete po=_27/pl): relabeling |4:f dx2(1-x) > f
the sum in Eq(15) asn— —n—1—1 and making the change 0 "
of variablesy=1-—x, one easily obtains that

17

The D-dimensional integration leads to

| 1= | 1- ( D)
ra2-—
We stress that we did our computations bndimensions, _ 2 Jldx(l—x)Z (3-D)
where everything is convergent and no limit prhas been 4 (4m)P2 Jo n [k§+ m?]2~ (P12
performed. The same arguments apply4oand we remain,
therefore, with two independent tensorial structures: we need m?
to evaluatd o+ 2!, andl ;. Before entering the computations + (D—4)m]- (18)
0

we remark that the emergence of a new, transverse tensorial
structure was overlooked in R€fl6], where the coefficient  a; i noint we need an explicit representation for the sum

of the Qhern-Simons t_erm at finilewas obtained .by simply over the Matsubara frequencies: we use the following result
evaluating the scalar integral, relevantTat O, by introduc- [20], valid when 1/2<\ <1

ing Matsubara frequencies fpg. As we will see in the next
section, our result disagrees with that.

> [(n+b)?+a?]
Ill. THE CPT- AND LORENTZ-VIOLATING TERM "

AT T#0 JalD(N—1/2) +asitm) = dz
=—————+4sin7 —
Let us evaluate the coefficients of the two independent T(\)(a?)h Y2 la| (z2—a?)*
structures in the small momentum limit: we remark that at
finite temperature this procedure is rather delicate, due to the % Re( 1 ) (19)
fact that, in general, the limitp,—0 and p>—0 do not exp 2m(z+ib)—1

i "2
commut.e[1.7].. Here we ghall take firgpo—0 axnd 5.6,,”‘*’ .. We cannot apply directly this formula to our case: at the end
—0. This limit is sometimes referred to as “static” and it |, o\~ to take th® = 3 limit. and it is clear that. evaluat-
allows for a comparison with the computations performed, g the second contribution ﬂQ; in Eq. (18), the iniegral in
through the heat-kernel technique. More generally one coul q. (19) does not converge there in the Iir,ﬂi)t=3 It is not

try the opposite one, after having continued the polarization;. .. . . Lo
tensor to the real tim¢l18]. In principle a different result Q(jllgl)cﬂlstlggm?; ;&E;r]form the analytical continuation in Eq.

could be obtained, an explicit example of this being the com-
putations of the induced Chern-Simons term at finite tem- ._ dz 1
perature presented [A9]. The sumly+ 21, becomes, when J e( )
the D-dimensional integrals have been computed: |

D 1 3—2>\fw dz R 1
r 2—5 fldxz(l_x) T 022 1-\ lal(z2—a2)) 1 T\ exp2m(z+ib)—1
(4’7T)D/2 0

1 4
b

4 2—-DJ/2 1
DTE [armep o

a (Z2—a?)* R exp2m(z+ib)—1

|0+2|2:_
1 1 ° dz d?

1 422 (2=N)(1=N) Jja (22—a2)} 2 d22
[k(2)+m2]27(D/2)

X2

n

. (20

1
% R% exp 2mw(z+ib)— 1)

Equation(18) can now be explicitly evaluated &= 3: we

) ) ) ) ) ) ) see that the potential singularity Bt=3, coming from the
The result is zero Identlca”y n arbltrary dimension: one Canfjrst Contribution' Cance|$notice the factoD —3 in front),
check that when the dependencepdris retained the correc- the finite residue(that would be temperature independent
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0.05 . -
S cs =4ie2F(§)f d*x bi[Age™*Fj — 2€"*AF ],
0.04 23)
0.03 gauge invariance is achieved via Bianchi identity up to a
0.02 total derivative.
The asymmetrical behavior played in the above action by
0.01 the “spacial” and “temporal” component ob,, (the latter
being completely absenmight seem strange. A source of
this asymmetry can be surely traced back to the presence of

a thermal bath which, selecting a specified frame, provides
FIG. 1. Plot of F(¢). an additional Lorentz violation. However, below, with the

help of the analogous problem in two dimensions, we would
cancels with an analogous term coming from the second corlike to suggest that the origin of this term at finite tempera-
tribution, leaving us with the final result ture may be related to a deeper geometrical reasom In
=2, in fact, its structure and its coefficient can be easily
understood through the interplay of the global part of the
tanh(wz) —23F(&), (21 Quillen anomaly, which controls the obstruction to the chiral
cosi(mz) splitting, and the presence of a nontrivial cy¢famite tem-

perature in the above language

: ; - There, the relevant Green'’s function is the one-point func-
where we have definegi= Bm/27. The behavior of(¢) is . L i )
eg= pm/2m (€) tion with oneb, insertion(we study the massless case for

displayed in Fig. 1. Equatiof?l) is th i It of S M . -
p:[?e?}/ﬁ srlwr(])wlsgthat f(;q;:;?%;g) aecngil_narnedstor%n?;r simplicity). Using dimensional regularization we see that the

violating term appears. In momentum space it can be Writteﬁero-temperature computation gives a va_nishing result be-
as 9 bp P cause/ d°kk,k,/k’=0 (we remark that havind,, constant

implies that the external momentum has to be)n@ut turn-
) N ing on the temperature the situation changes drastically. The
5" (p) =4€°F (&)™ (8o, €0 poP” — S01€,0poP” —Po€umno)  relevant integral is

+0(p?). (22

l,=28 ;dza _ gy

\ 1 dPk Kkek”
I}=—ieb Tr[nvwwwy]ﬁ > f 2m)P K
Several comments are now in order. First of all wien0 (2m)

F(£&) vanishes, recovering therefore the fact that, using di- (24)

mensional regularization, n€PT- and Lorentz-violating 14t is equivalent, after using Dirac algebra to

Chern-Simons-like term is present in the effective action.

The opposite limit T—«) is otherwise finite [F(0) dOk 1 1

=1/27%]. In Ref.[16] a similar behavior was found for the  2ep* —€ f + 26,100,000

temperature evolution of the coefficient of the Chern- ’Lﬁ 5 ) (2m)P [KE+k? BB

Simons-like term but there the=0 boundary condition was on )

taken so that al =<« the symmetries were restored. More- % f d-k Ko 4 oe 1

over, at variance with our result, the Chern-Simons term (2m)P [K2+K2]2 N g

there was implicitly assumed to be related to the covariant

tensorial structure, a fact that from our computation turns out f dPk RMR“ -
: o ) ) «

to be incorrect. The second point is that our induced action (2P [+ KT (29

does not depend on the temporal componerit, gf in Refs.
[12-14 the consistency of the theory at quantum level,
when the Chern-Simons-like action is present, was dis-
cussed. It would be interesting to address the problem o
stability in the finite-temperature situation considering our
induced term. Another observation is related to the depe
dence oné: we see that the limif3—0 is the same am

. 16
—0 (since the only dependence on the mass and on the Hbz—eb”emﬁo , (26)
temperature appears through This suggests that the pres- ” #
ence at finite temperature of a nonzero CS-like term is re-
lated to the loss of analyticity in external momenta, bypassWhile one can easily show that thiy component has zero
ing therefore the argument of Coleman and GlasH8\v coefficient after performing thie integration. We remark that
against it(analyticity was also assumed in Réf]). It is  here no external momentum limit has been done, therefore
interesting to write down the induced term in configurationthe result is exact. The above term has a natural interpreta-
space tion in configuration space as

‘It is not difficult to see that thé-dimensional integration
ffmd the analytical continuation of the sum gives a finite re-
sult for theb,; component(due to a cancellation between a
PO ole and a zero aB=1) leaving us with
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ascribed to the anomalous modular transformation properties
of chiral partition functions. We can now understand the ap-
pearance of this term at finite temperatusg:is basically an
that is the analog oD =4 (the “complete” CS-like term  harmonic one-form axially coupled and therefore being able
would be heres“"b,A,). The term appearing in EG27) is  to interact with the harmonic component Af. The com-
nothing but a remnant of the holomorphic anomaly on theplete anomalous phase requires a quadratic pabt,itthat
tOfUS[Zl] In fact, when nontrivial cycles are present in the can be eas||y recovered by Computmg the Feynman graph
base-space, the effective action acquires a subtle dependenggh two b, insertions. This discussion may suggest that the
on the harmonic part of the gauge potentials. In particulafour-dimensional term could have an appealing mathematical

i f d?xb;Ag(X), (27

when both vector and axial gauge fields are coupled, requiinterpretation.
ing gauge invariance implies that an anomalous phase has to
be present in order to cure the transformation properties of

the modulus of the Dirac determinant. This phase can be

derived from general algebraic-geometrical argum¢aig,

being related to the Quillen anomaly, or by an explicit
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