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Mesons in „2¿1…-dimensional light front QCD: Investigation of a Bloch effective Hamiltonian

Dipankar Chakrabarti* and A. Harindranath†

Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Calcutta 700064 India
~Received 4 May 2001; published 28 September 2001!

We study the meson sector of~211!-dimensional light front QCD using a Bloch effective Hamiltonian in the
first nontrivial order. The resulting two-dimensional integral equation is converted into a matrix equation and
solved numerically. We investigate the efficiency of Gaussian quadrature in achieving the cancellation of linear
and logarithmic light front infrared divergences. The vanishing energy denominator problem, which leads to
severe infrared divergences in 211 dimensions, is investigated in detail. Our study indicates that in the context
of Fock space based effective Hamiltonian methods to tackle gauge theories in 211 dimensions, approaches
such as the similarity renormalization method may be mandatory due to uncanceled infrared divergences
caused by the vanishing energy denominator problem. We define and numerically study a reduced model which
is relativistic, free from infrared divergences, and exhibits logarithmic confinement. The manifestation and
violation of rotational symmetry as a function of the coupling are studied quantitatively.
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I. INTRODUCTION AND MOTIVATION

There are various well-known motivations@1# to study
QCD in the light front Hamiltonian formalism. In fact, ther
have been many attempts recently to study the relativi
bound state problem in the Hamiltonian formalism in a lig
front Fock space basis~for a review, see Ref.@2#!. It has been
realized that a major impediment to a straightforward dia
nalization of the Hamiltonian is the rapid growth of the d
mension of the Hamiltonian matrix with the particle numb
An alternative approach will be to use aneffectiveHamil-
tonian that operates on a few particle basis. A challeng
problem here is that, for a successful description of low
ergy observables, the effective Hamiltonian must incorpor
the main features of strong interaction dynamics.

One of the first attempts invoked the Tamm-Dancoff@3#
or Bloch-Horowitz effective Hamiltonian. Though it wa
successful in tackling~111!-dimensional gauge theories, i
deficiencies became apparent when attempts were mad
311 dimensions. First and foremost of these is the lack
confinement in the case of QCD. Second is the appearan
the bound state eigenvalue in the energy denominators.
has two undesirable consequences. First, a light front sin
larity of the type 1/k1, wherek1 is the light front longitudi-
nal momentum of the exchanged gluon, remains in the bo
state equation, which would have been canceled if free e
gies appeared in the energy denominators. Second, from
fermion self-energy contribution, in addition to the mass
vergence another ultraviolet divergence appears~for an ex-
ample in the context of~311!-dimensional Yukawa mode
see Ref.@4#! which contributes to the renormalization of th
coupling. This contribution is also infrared divergent, a
can be identified as arising from fermion wave functi
renormalization. It is the Fock space truncation that has p
duced this unphysical divergence which would otherw
have been canceled by vertex renormalization in a strict
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der by order perturbative calculation.
It is well known that various standard formulas for th

effective Hamiltonian all have drawbacks. Some of the de
ciencies of the Bloch-Horowitz formalism are absent in t
Bloch effective Hamiltonian@5#, which was reinvented in the
context of renormalization group by Wilson@6#. The Bloch
Hamiltonian has two desired properties, namely, the effec
Hamiltonian is~1! Hermitian and~2! involves only unper-
turbed energies in the energy denominator. Use of the Bl
effective Hamiltonian eliminates two major problems of t
Tamm-Dancoff approach to gauge theories mentioned ab
However, the Bloch effective Hamiltonian has an undesira
feature, namely, the vanishing energy denominator. To
best of our knowledge, the Bloch effective Hamiltonian w
never assessed in terms of its strengths and weaknesses
study of bound state problems in field theory.

In the study of bound states, QCD poses challeng
problems. To overcome many pitfalls of standard effect
Hamiltonians, a similarity renormalization was proposed@7#.
This avoids vanishing energy denominators, and thus p
vides an improvement over the Bloch effective Hamiltonia
Initial attempts in the similarity renormalization approa
worked in either the nonrelativistic limit@8# or the heavy
quark effective theory context@9#. Only recently has work
begun @10# to address many practical problems, especia
the numerical ones one faces in this approach.

A major feature of gauge theories on the light front
severe light front infrared divergences of the type 1/(k1)2,
where k1 is the exchanged gluon longitudinal momentu
which appears in instantaneous four-fermion, two-ferm
two-gluon, and four-gluon interactions. In old-fashioned p
turbation theory these divergences are canceled by transv
gluon interactions. In similarity perturbation theory the ca
cellation is only partial, and singular interactions surviv
Before embarking on a detailed study of effective Ham
tonian in the similarity renormalization approach, which is
modification of the Bloch effective Hamiltonian, it is quit
instructive to study the Bloch effective Hamiltonian itse
The result of such a study can serve as a benchmark ag
which one can evaluate the merits of the similarity renorm
©2001 The American Physical Society02-1



ve
l p

e
s

i

l-
t

y

ic
so

w

m
e

-
m
ce
th
re
io
th

o
en

-
it
a

ce
a
er
y
or

g
c
e

ab

d
d

a
c

try
io-
ffs

t, is

ons
al.
-
and
at

e its
at

om-

on
he

c-
c-
e
e-
n
e

on

t
es
as

of
n
in
er-
we
ar
hing

del
x-
In
el

ss
g

lu-
to
Ap-
his

il-
ty

DIPANKAR CHAKRABARTI AND A. HARINDRANATH PHYSICAL REVIEW D 64 105002
ization scheme. This will also provide us with quantitati
measures of the strengths and weaknesses of numerica
cedures in handling singular interactions~in the context of
light front field theory! on the computer. It is crucial to hav
such quantitative measures in order to study the effect
similarity cutoff factors on the nature of the spectrum. This
one of the motivations of the present work.

Just as in the Tamm-Dancoff or Bloch-Horowitz forma
ism, the Bloch effective Hamiltonian of QCD in the firs
nontrivial order also does not exhibit confinement in 311
dimensions. Since one of our major concerns is the stud
spectra for confining interactions, we go to 211 dimensions.
In this case, in the limit of heavy fermion mass, a logarithm
confining potential emerges. There are several other rea
to study light front QCD in 211 dimensions. They arise
from both theoretical and computational issues which
discuss next.

First of all, issues related to ultraviolet divergence beco
more complicated in the light front approach, since pow
counting is different@1# on the light front. We obtain prod
ucts of ultraviolet and infrared divergent factors which co
plicate the renormalization problem. Going to two-spa
one-time dimensions greatly simplifies this issue due to
absence of ultraviolet divergences except in mass cor
tions. An extra complication is that Fock space truncat
introduces extra ultraviolet divergences which complicate
situation in nonperturbative bound state computations@4#.
Such special divergences do not occur in 211 dimensions. A
third complication one faces in 311 dimensions is that, on
enlarging the Fock space in a bound state calculation,
soon faces the running of the coupling constant. At low
ergy scales, the effective coupling grows, resulting in
strongly coupled theory@11# making the weak coupling ap
proach with a perturbatively determined Hamiltonian unsu
able or making it mandatory to invent mechanisms such
the nonzero gluon mass to stop the drastic growth@1#. In
~211!-dimensional QCD we do not face this problem, sin
the coupling constant is dimensionful in this superrenorm
izable field theory and does not run due to ultraviolet div
gence. Wecan keepthe coupling arbitrarily small and stud
the structure of the bound states in a weakly coupled the

Second, in 111 dimensions, in the gaugeA150, dy-
namical gluons are absent and their effect is felt only throu
instantaneous interactions between fermions. Further, re
that in light front theory, vacuum is trivial. As a result, th
Fock space structure of the bound states is remark
simple. For example, the ground state meson is just aqq̄ pair
at both weak and strong couplings. In contrast, in 211 di-
mensions, one component of the gauge field remains
namical and one can systematically study the effects of
namical gluons. Also note that 211 dimensions are the
lowest dimensions where glueball states are possible,
offers one an opportunity to study their structure in the Fo
space language without additional complications of 311 di-
mensions.

A third reason deals with aspects of rotational symme
211 dimensions offer the first opportunity to investigate v
lations of Lorentz invariance introduced by various cuto
~momenta and/or particle number! in the context of bound
10500
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state calculations. This is to be contrasted with 111 dimen-
sions, where the sole Lorentz generator, namely, boos
kinematical in light front field theory. Since in 211 dimen-
sions we have a superrenormalizable field theory, violati
introduced by transverse momentum cutoffs are minim
Thus, in contrast to 311 dimensions, one can study viola
tions caused by a truncation of the particle number alone
by longitudinal momentum cutoffs. It is also conceivable th
one can enlarge the Fock space sector and investigat
effect on restoring Lorentz invariance. It is expected th
such investigations are more viable in 211 dimensions com-
pared to 311 dimensions due to less severe demand on c
putational resources.

A fourth reason concerns the similarity renormalizati
approach. In 311 dimensions it has been shown that t
similarity renormalization group approach@7# to effective
Hamiltonian in QCD leads to logarithmic confining intera
tion @12#. It is of interest to investigate corresponding effe
tive Hamiltonians in 211 dimensions, especially since th
canonical Hamiltonian already leads to logarithmic confin
ment in the nonrelativistic limit in this case. It is also know
that in 311 dimensions the confining part of the effectiv
Hamiltonian violates rotational symmetry. Does the violati
of rotational symmetry occur also in 211 dimensions? If so,
how does it manifest itself?

In this work we initiate a systematic study of light fron
QCD in 211 dimensions to investigate the various issu
discussed above. The plan of the rest of this paper is
follows: In Sec. II we present the canonical Hamiltonian
~211!-dimensional QCD. The Bloch effective Hamiltonia
in the qq̄ sector in the lowest nontrivial order is derived
Sec. III, and the bound state equation is derived. The div
gence structure is discussed in detail in Sec. IV. In Sec. V
numerically investigate the cancellation of light front line
infrared divergences and the consequences of the vanis
energy denominator problem, which leads touncanceledin-
frared divergences in the bound state equation. A mo
which is relativistic, free from infrared divergences, and e
hibits logarithmic confinement is presented in Sec. VI.
Sec. VII we present a numerical investigation of this mod
in the weak coupling limit. In this section, we also discu
the violation of rotational symmetry in this model at stron
coupling. Finally Sec. VIII contains a discussion and conc
sions. Since the Bloch effective Hamiltonian is unfamiliar
most of the readers, we present a detailed derivation in
pendix A. Details of the numerical procedures used in t
work are given in Appendix B.

II. CANONICAL HAMILTONIAN

In this section we present the canonical light front Ham
tonian of ~211!-dimensional QCD. The Lagrangian densi
is given by

L5@2 1
4 ~Flsa!21c̄~gliD l2m!c#, ~2.1!

with
2-2
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iD m5
1
2

i ]Jm1gAm,

Fmla5]mAla2]lAma1g fabcAmbAlc. ~2.2!

We have the equations of motion,

@ igm]m1ggmAm2m#c50, ~2.3!

]mFmna1g fabcAmbFc
mn1gc̄gnTac50. ~2.4!

Because we are in 211 dimensions, we immediately face a
ambiguity since there are nog matrices in 211 dimensions.
In the literature both two component@13# and four compo-
nent@14# representations have been used. For simplicity,
pick the two component representation. Explicitly,

g05s25S 0 2 i

i 0 D , g15 is35S i 0

0 2 i D ,

g25 is15S 0 i

i 0D , ~2.5!

g65g06g2, g15S 0 0

2i 0D , g25S 0 22i

0 0 D ,

~2.6!

L65
1

4
g7g6, L15S 1 0

0 0D , L25S 0 0

0 1D .

~2.7!

The fermion field operatorc65L6c. We have

c15S j

0D , c25S 0

h D ~2.8!

wherej andh are one component fields. We choose the lig
front gaugeA1a50. From the equation of motion, we obta
the equation of constraint

i ]1c25@a1~ i ]11gA1!1g0m#c1. ~2.9!

Thus the fermion constrained field is

h5
1

]1 @2~ i ]11gA1!1 im#j. ~2.10!

From the equation of motion, in the gaugeA1a50, we have
the equation of constraint

2
1

2
~]1!2A2a52]1]1A1a2g fabcA1b]1A1c22gj†Taj.

~2.11!

Using the equations of constraint, we eliminatec2 andA2

in favor of dynamical fieldsc1 and A1, and arrive at the
canonical Hamiltonian given by
10500
e

t

H5H01Hint5E dx2dx1~H01Hint!. ~2.12!

The free Hamiltonian density is given by

H05j†
2~]1!21m2

i ]1 j1
1

2
]1A1a]1A1a. ~2.13!

The interaction Hamiltonian density is given by

Hint5H11H2 , ~2.14!

with

H15gj†A1
]1

]1 j1gj†
]1

]1 ~A1j!2gmj†A1
1

]1 j

1gmj†
1

]1 ~A1j!22g
1

]1 ~]1A1a!j†Taj

1g fabc]1A1a
1

]1 ~A1b]1A1c! ~2.15!

and

H2522g2j†TajS 1

]1D 2

j†Taj1g2j†A1
1

]1 ~A1j!

12g2f abc
1

]1 ~j†Taj!
1

]1 ~A1b]1A1c!

1
1

2
g2f abcf ade

1

]1 ~A1b]1A1c!
1

]1 ~A1d]1A1e!.

~2.16!

The one component fermion field is given by

j~x150,x2,x1!5E dk1dk1

2~2p!2Ak1
@b~k!e2 ik•x1d†~k!eik•x#.

~2.17!

The Fock operators obey the anticommutation relations

$b~k!,b†~q!%52~2p!2k1d2~k2q!,

$d~k!,d†~q!%52~2p!2k1d2~k2q!, ~2.18!

other anticommutators being zero. Note that in the two co
ponent representation, light front fermions do not carry h
licity in 211 dimensions.

In free field theory, the equation of motion of the dynam
cal fieldA1 is the same as that of a free massless scalar fi
@15#, and hence we can write

A1~x150,x2,x1!

5E dk1dk1

2~2p!2k1 @a~k!e2 ik•x1a†~k!eik•x#.

~2.19!
2-3
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DIPANKAR CHAKRABARTI AND A. HARINDRANATH PHYSICAL REVIEW D 64 105002
The Fock operators obey the commutation relation

@a~k!,a†~q!#52~2p!2k1d2~k2q!, ~2.20!

other commutators being zero.
We substitute the Fock expansions@Eqs. ~2.17! and

~2.19!# into the Hamiltonian, and treat all terms as norm
ordered. Thus we arrive at the canonical Hamiltonian in
Fock basis.

III. BLOCH EFFECTIVE HAMILTONIAN IN THE MESON
SECTOR AND THE BOUND STATE EQUATION

In this section we evaluate the Block effective Ham
tonian to the lowest nontrivial order for a meson state, a
derive the effective bound state equation. We define thP

space to be theqq̄ sector of the Fock space, and theQ space
to be the rest of the space. In the lowest nontrivial order,
Bloch effective Hamiltonian is given by~see Appendix A for
details!

^ i uHe f fu j &5^ i u~H01Hint!u j &1
1

2(k
^ i uvuk&^kuvu j &

3F 1

e i2ek
1

1

e j2ek
G . ~3.1!

Statesu i & and u j & are, explicitly,
10500
l
e

d

e

ua&5b†~p1 ,a!d†~p2 ,a!u0&,

ub&5b†~p3 ,b!d†~p4 ,b!u0&, ~3.2!

wherep1 andp2 denote momenta anda andb denote colors
which are summed over. Explicitly,p15(p1

1 ,p1
1) etc., where

p1
1 is the plus component andp1

1 is the transverse compo
nent. For simplicity of notation, we will denote the tran
verse component of momenta without the superscript 1.

The free part of the Hamiltonian leads to the matrix e
ment

^auHub&5Fm21p1
2

p1
1 1

m21p2
2

p2
1 G2~2p!2p1

1d2~p12p3!

32~2p!2p2
1d2~p22p4!dab . ~3.3!

From the four fermion interaction, we obtain the contributi

24g2~TaTa!aa

1

~p1
12p3

1!22~2p!2Ap1
1p2

1p3
1p4

1d2

3~p11p22p32p4!dab . ~3.4!

Next we evaluate the contribution from the second or
term. The intermediate stateuk& is a quark, antiquark, gluon
state. This intermediate state gives rise to both self-ene
and gluon exchange contributions. The self-energy contri
tions are
.6!
g2Cfdabp1
12~2p!2d2~p12p3!p2

12~2p!2d2~p22p4!E dk1
1dk1

2~2p!2~p1
12k1

1!H 22
~p12k1!

~p1
12k1

1!
1

k1

k1
1 1

p1

p1
1 2 i

m

k1
1 1 i

m

p1
1J

3
1

ED1
H 22

~p12k1!

~p1
12k1

1!
1

k1

k1
1 1

p1

p1
1 1 i

m

k1
1 2 i

m

p1
1J 1g2Cfdabp1

12~2p!2d2~p12p3!p2
12~2p!2d2~p22p4!

3E dk2
1dk2

2~2p!2~p2
12k2

1!H 22
~p22k2!

~p2
12k2

1!
1

k2

k2
1 1

p2

p2
1 2 i

m

k2
1 1 i

m

p2
1J 1

ED2
H 22

~p22k2!

~p2
12k2

1!
1

k2

k2
1 1

p2

p2
1 1 i

m

k2
1 2 i

m

p2
1J ,

~3.5!

with

ED15
p1

21m2

p1
1 2

m21k1
2

k1
1 2

~p12k1!2

~p1
12k1

1!
, ED25

p2
21m2

p2
1 2

m21k2
2

k2
1 2

~p22k2!2

~p2
12k2

1!
. ~3

The gluon exchange contributions are

2g2~TaTa!aa2~2p!2d2~p11p22p32p4!Ap1
1p2

1p3
1p4

1H 22
~p12p3!

~p1
12p3

1!
1

p3

p3
11

p1

p1
1 2 i

m

p3
1 1 i

m

p1
1J

3H 22
~p12p3!

~p1
12p3

1!
1

p2

p2
1 1

p4

p4
1 1 i

m

p2
1 2 i

m

p4
1J 1

2

u~p1
12p3

1!

~p1
12p3

1! H 1

m21p4
2

p4
1 2

~p12p3!2

~p1
12p3

1!
2

m21p2
2

p2
1

1
1

m21p1
2

p1
1 2

~p12p3!2

~p1
12p3

1!
2

m21p3
2

p3
1

J 2g2~TaTa!aa2~2p!2d2~p11p22p32p4!Ap1
1p2

1p3
1p4

1

2-4
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3H 22
~p32p1!

~p3
12p1

1!
1

p3

p3
11

p1

p1
1 2 i

m

p3
1 1 i

m

p1
1J H 22

~p32p1!

~p3
12p1

1!
1

p2

p2
1 1

p4

p4
1 1 i

m

p2
1 2 i

m

p4
1J 1

2

u~p3
12p1

1!

~p3
12p1

1!

3H 1

m21p2
2

p2
1 2

~p32p1!2

~p3
12p1

1!
2

m21p4
2

p4
1

1
1

m21p3
2

p3
1 2

~p32p1!2

~p3
12p1

1!
2

m21p1
2

p1
1

J . ~3.7!
,
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After the construction ofHe f f in the two particle space
we proceed as follows. Consider the bound state equatio

He f fuC&5
M21P2

P1 uC&, ~3.8!

where P1, P, and M are the longitudinal momentum, th
transverse momentum, and the invariant mass of the s
respectively. The stateuC& is given by

uC&5(
b

E dp3
1dp3

A2~2p!2p3
1E dp4

1dp4

A2~2p!2p4
1

f2~P;p3 ,p4!

3b†~p3 ,b!d†~p4 ,b!u0&A2~2p!2P1d2~P2p32p4! ,

~3.9!

which we represent symbolically as

uC&5(
j

f2 j u j &. ~3.10!

Taking projection with the statêi u5^0ud(p2 ,a)b(p1 ,a),
we obtain the effective bound state equation

M21P2

P1 f2i5H0if2i1(
j

^ i uHIe f fu j &f2 j . ~3.11!

We introduce the internal momentum variables (x,k) and
(y,q) via p1

15xP1, p15xP1k, p2
15(12x)P1, p25(1

2x)P2k, p3
15yP1, p35yP1q, p4

15(12y)P1, p4

5(12y)P2q and the amplitude f2(P;p1 ,p2)
5(1/AP1)c2(x,k).

The fermion momentum fractionsx andy range from 0 to
1. To handle end point singularities, we introduce the cu
h<x,y<12h. This does not prevent the gluon longitudin
momentum fractionx2y from becoming zero, and we intro
duce the regulatord such thatux2yu>d. To regulate ultra-
violet divergences, we introduce the cutoffL on the relative
transverse momentak andq. We remind the reader that in th
superrenormalizable field theory under study, only ultravio
divergence is in the fermion self-energy contribution, whi
we remove by a counterterm before discretization.

The bound state equation is
10500
te,

ff

t

FM22
m21k2

x~12x!Gc2~x,k!

5Sc2~x,k!24
g2

2~2p!2 CfE dydqc2~y,q!
1

~x2y!2

2
g2

2~2p!2 CfE dydqc2~y,q!
1

2

V

ED
. ~3.12!

The self-energy contribution is

S52
g2

2~2p!2 CfE
0

x

dyE dqxy

3

F S q

y
1

k

x
2

2~k2q!

~x2y! D 2

1
m2~x2y!2

x2y2 G
~ky2qx!21m2~x2y!2

2
g2

2~2p!2 CfE
x

1

dyE dq~12x!~12y!

3

F S q

12y
1

k

12x
1

2~q2k!

~y2x! D 2

1
m2~y2x!2

~12x!2~12y!2G
@k~12y!2q~12x!#21m2~x2y!2

.

~3.13!

The boson exchange contribution is

V

ED
5

u~x2y!

~x2y! F 1

m21q2

y
1

~k2q!2

~x2y!
2

m21k2

x

1
1

m21k2

12x
1

~k2q!2

x2y
2

m21q2

12y
G @K~k,x,q,y!1 iVI #

1
u~y2x!

~y2x! F 1

m21k2

x
1

~q2k!2

~y2x!
2

q21m2

y

1
1

m21q2

12y
1

~q2k!2

y2x
2

m21k2

12x
G @K~q,y,k,x!1 iVI #,

~3.14!
2-5
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where

K~k,x,q,y!5S q

y
1

k

x
22

~k2q!

~x2y! D S q

12y
1

k

12x
1

2~k2q!

~x2y! D
2

m2~x2y!2

xy~12x!~12y!
, ~3.15!

VI52
m

xy~12x!~12y!
@q~22y23x!1k~3y1x22!#.

~3.16!

IV. DIVERGENCE STRUCTURE

In this subsection we carry out a detailed analysis of
divergence structure of the effective bound state equat
We encounter both infrared and ultraviolet divergences.

A. Ultraviolet divergences

First we consider ultraviolet divergences. In the sup
renormalizable field theory under consideration, with ter
appearing in the canonical Hamiltonian as normal order
ultraviolet divergence is encountered only in the self-ene
contributions. To isolate the ultraviolet divergence, we
write the self-energy integrals as

S52
g2

2~2p!2 CfE
0

x

dyE
2L

1L

dqF ~x1y!2

xy~x2y!2

2
4m2

~ky2qx!21m2~x2y!2G2
g2

2~2p!2 CfE
x

1

dy

3E
2L

1L

dqF ~22x2y!2

~y2x!2~12x!~12y!

2
4m2

@k~12y!2q~12x!#21m2~x2y!2G . ~4.1!

The first term inside the square brackets in the above e
tion is ultraviolet divergent, which we cancel by adding
ultraviolet counterterm given by

C51
g2

2~2p!2 CfE
2L

1L

dqF E
0

x

dy
~x1y!2

xy~x2y!2

1E
x

1

dy
~22x2y!2

~y2x!2~12x!~12y!G . ~4.2!

After the addition of this counterterm, the bound state eq
tion is ultraviolet finite.

B. Infrared divergences

The infrared divergences that appear in the bound s
equation are of two types:~1! light front infrared divergences
that arise from the gluon longitudinal momentum fracti
xg50, and ~2! true infrared divergences that arise fro
gluon transverse momentumkg50 and gluon longitudinal
momentum fractionxg50.
10500
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1. Cancellation of light front infrared divergences in the
effective bound state equation

First consider light front infrared divergences. The effe
tive bound state equation@Eq. ~3.12!# explicitly has a linear
light front infrared divergent term 1/(x2y)2 coming from
the instantaneous gluon exchange. The most divergent pa
the numerator of the transverse gluon exchange term in
equation is 24@(k2q)2/(x2y)2#. After combining the
terms, the linear infrared divergent term is completely ca
celed and the resultant effective bound state equation ta
the form

FM22
m21k2

x~12x!Gc2~x,k!

5S1c2~x,k!2
g2

2~2p!2 CfE dydqc2~y,q!

3
1

2
F Ṽ1

E1
1

Ṽ2

E2
1 iVI S 1

E1
1

1

E2
D G . ~4.3!

The self-energy contribution, made ultraviolet finite by t
addition of the counterterm is

S151
g2

2~2p!2 CfE
0

x

dyE
2L

1L

dq
4m2

~ky2qx!21m2~x2y!2

1
g2

2~2p!2 CfE
x

1

dyE
2L

1L

dq

3
4m2

@k~12y!2q~12x!#21m2~x2y!2 . ~4.4!

The energy denominator factors are

1

E1
5

xy

@ky2qx#21m2~x2y!2 ,

1

E2
5

~12x!~12y!

@k~12y!2q~12x!#21m2~x2y!2 .

~4.5!

The vertex terms are

Ṽ15u~x2y!Ũ~k,x,q,y!1u~y2x!Ũ~q,y,k,x!, ~4.6!

Ṽ25u~x2y!Ũ~k,12x,q,12y!1u~y2x!

3Ũ~q,12y,k,12x!, ~4.7!

with
2-6
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Ũ~k,x,q,y!54
m2

xy
2

m2~x2y!2

xy~12x!~12y!
1

q2

y~12y!
1

k2

x~12x!

22
k2

~x2y!

1

x~12x!
12

q2

~x2y!

1

y~12y!

1
kq

x~12y!
1

kq

y~12x!

12
kq

~x2y!F 122y

y~12y!
2

122x

x~12x!G . ~4.8!

In addition to the 1/xg
2 singularity, which is canceled, trans

verse gluon exchange contributions also contain a 1/xg sin-
gularity which is removed by the principal value prescr
tion. The cancellation of this singularity is an appeali
feature of the Bloch effective Hamiltonian, in contrast to t
Tamm-Dancoff effective Hamiltonian where the singular
cancellation does not occur because of the presence o
variant mass in the energy denominator@16#.

2. ‘‘True’’ infrared divergences

Next we consider true infrared divergences. Consider
self-energy integrals. The energy denominators in these
pressions vanish whenk5q andx5y, which correspond to
vanishing gluon momentum. By carrying out the integr
explicitly, in the limit L→` we obtain,

S15
mg2

2p
CfF1

x
ln

x

d
1

1

12x
ln

12x

d G . ~4.9!

Thus the singular part of the self-energy is

S1singular52
mg2

2p
Cf

1

x~12x!
ln d. ~4.10!

The infrared divergent contribution from the self-ener
gives a positive contribution to the fermion mass. It is im
portant to note that the vanishing of the energy denomin
is also possible in 311 dimensions, but in this case we d
not encounter any divergence. It is the peculiarity of 211
dimensions that the vanishing energy denominators cau
severe infrared divergence problem.

The same vanishing energy denominators also occu
the one gluon exchange contributions. Let us now cons
various terms in the numerator separately. The terms pro
tional to 4m2 arose from the denominator of the transve
gluon exchange. A straightforward calculation shows t
this term leads to both finite and infrared divergent contrib
tions. The infrared divergent contribution is given by

mg2

2p
Cf

1

x~12x!
ln d, ~4.11!

which exactly cancels the infrared divergent contributi
from the self-energy. The finite part, in the nonrelativis
limit, can be shown to give rise to a logarithmically confi
ing potential. Next we have to consider the remaining ter
in the numerator. The rest of the terms proportional tom2 are
10500
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multiplied by (x2y)2, so that they do not lead to an infrare
divergence problem. The numerator of the imaginary p
vanishes atk5q andx5y, and hence is also infrared finite
It is easy to verify that the rest of the~transverse momentum
dependent! terms in the numerator do not vanish when t
denominator vanishes; hence the resulting bound state e
tion is inflicted with infrared divergences arising from th
vanishing energy denominator. This problem was first no
in the context of QED in 211 dimensions by Tam, Hamer
and Yung@17#, but was not investigated by these authors. W
remind the reader that this is a peculiarity of 211 dimen-
sions, which provides us with a unique opportunity to e
plore the consequences of the vanishing energy denomin
problem.

V. NUMERICAL STUDY OF THE BOUND STATE
EQUATION

We convert the integral equation into a matrix equati
with the use of Gaussian quadrature.~For details of the nu-
merical procedure, see Appendix B.! Cf is set to 1 for all
numerical calculations presented. As mentioned above
important feature of gauge theories on the light front is
presence of linear infrared divergences. They appear in
canonical Hamiltonian in the instantaneous four fermion
teraction term. When theqq̄g states are integrated outcom-
pletely in perturbation theory, they also appear in the effe
tive four fermion interaction and cancel each other o
Noncancellation of this divergence is a major feature of sim
larity renormalization approach. We first address the issu
how linear divergences manifest themselves in the non
form grid of the Gaussian quadrature, and how well they c
handle linear light front infrared divergence. We have stud
numerically discretized versions of Eq.~3.12! where the di-
vergences are present separately in the discretized ve
together with the counterterm given in Eq.~4.2!. For g
50.2, we have calculated eigenvalues with and without
instantaneous interaction. The results, presented in Fig.~a!
for the lowest eigenvalue shows, that the Gaussian qua
ture can handle the cancellation very efficiently.

After the cancellation of the linear light front infrare
divergence, a logarithmic infrared divergence which aris
from the vanishing energy denominator survives in t
bound state equation. Here we have to distinguish two ty
of terms. In the first type, the coefficient of the logarithm
infrared divergence is independent of the fermion transve
momentum; in the second type, the coefficient is depend
on the momentum. Self-energy and Coulomb interactions
of the first type. In the weak coupling limit, since the wa
function is dominated by a very low transverse momentu
we anticipate that contributions of the second type will
dynamically suppressed even though both are multiplied
the same coupling constant. This is especially true of a
discrete grid, which automatically imposes a lower limit o
the smallest longitudinal momentum fraction allowed. Th
at weak coupling, even if there are uncanceled infrared
vergences~divergences of the second type!, they may not be
numerically significant, whereas divergences of the sec
type are significant. By switching the self-energy contrib
2-7
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DIPANKAR CHAKRABARTI AND A. HARINDRANATH PHYSICAL REVIEW D 64 105002
tion off and on, we have studied this interplay. The low
eigenvalue with and without self-energy contribution is pl
ted in Fig. 1~b!. This shows the cancellation of the domina
logarithmic infrared divergence. Since there are still unc
celed infrared divergences in the bound state equation~with
coefficients proportional to the fermion transverse momen!
this figure further illustrates the fact that such divergen
are not numerically significant at weak coupling.

As the strength of the interaction grows, the wave fun
tion develops medium to large transverse momentum c
ponents, and the infrared catastrophe triggered by the
ishing energy denominator becomes manifest numeric
This is illustrated in Table I, where we present the variat
with d of the first five eigenvalues for two different choice

FIG. 1. Cancellation of the linear infrared divergence. The f
line denotes the full Hamiltonian.~a! shows the cancellation of th
light front infrared divergence by switching the instantaneous in
action on and off. Filled circles indicate there is no instantane
interaction.~b! shows the cancellation of logarithmic infrared dive
gence by switching on and off the self energy term. Filled circ
indicate there is no self energy. The parameters areg50.2, h
50.00001,m51, k520, n1540, andn2550.
10500
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of the couplingg. The table clearly shows that on a discre
grid, the uncanceled infrared divergences due to the van
ing energy denominator problem are not numerically sign
cant at weak coupling; however, their effect is readily felt
a stronger coupling.

VI. REDUCED MODEL

In this section we consider a model Hamiltonian free fro
infrared divergences, constructed by dropping the transv
momentum dependent terms from the numerator of the
fective Hamiltonian. For convenience, we further drop t
terms proportional to (x2y)2 and the imaginary part. This
defines our reduced model, which is also ultraviolet fini
The equation governing the model is given by

FM22
m21k2

x~12x!Gc2~x,k!5S1c2~x,k!1B. ~6.1!

The self-energy contributionS1 is the same as given in Eq
~4.4!. The boson exchange contributionB is given by

B52
1

2

g2

2~2p!2 CfE
0

1

dyE
2L

1L

dq
4m2

~ky2qx!21m2~x2y!2

3c2~y,q!2
1

2

g2

2~2p!2 CfE
0

1

dyE
2L

1L

dq

3
4m2

@k~12y!2q~12x!#21m2~x2y!2 c2~y,q!. ~6.2!

Again we discretize Eq.~6.1! by the Gaussian quadrature
The convergence of the eigenvalues as a function of
number of grid points is presented in Table II. In this tab
we also present the~in!dependence of eigenvalues on t
momentum cutoff.

211 dimensions provide an opportunity to study t
manifestation and violation of rotational symmetry in lig
front field theory in a simpler setting compared to 311 di-
mensions. The absence of spin further facilitates this stu
Rotational symmetry in this case simply implies degener
with respect to the sign of the azimuthal quantum numbel.
Thus we expect alll 5” 0 states to be twofold degenerate. B
a suitable change of variables, one can easily show that

l

r-
s

s

TABLE I. Variation with d of the full Hamiltonian. The parameters aren1540, n2550, h50.00001,
andk520.0 ink5(1/k)tan(up/2).

g d Eigenvalues (M2)

0.00001 4.0913 4.1113 4.1122 4.1181 4.1209
0.0001 4.0913 4.1113 4.1122 4.1181 4.1209

0.2 0.001 4.0913 4.1113 4.1122 4.1181 4.1209
0.005 4.0901 4.1066 4.1099 4.1100 4.1112
0.01 4.0870 4.0972 4.0972 4.0973 4.0973

0.0001 2187230.4 2187225.4 2186664.9 2186664.8 231506.9
0.6 0.001 2187230.4 2187225.4 2186664.9 2186664.8 231506.9

0.005 1.9094 1.9415 3.1393 3.1399 4.5697
0.01 4.5735 4.7337 4.7667 4.7832 4.8277
2-8
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reduced model in the nonrelativistic limit reduces to Sch¨-
dinger equation in two space dimensions with a logarithm
confining potential. In the weak coupling limit, sinceCf is
set to 1, we can compare our results of the reduced m
~where we do not make any nonrelativistic approximatio!
with the spectra obtained in nonrelativistic~211!-
dimensional QED (QED211). Tamet al. @17# solved the ra-
dial Schrödinger equation in momentum space forl 50
states, and Koures@18# solved the coordinate space rad
Schrödinger equation for generall. Since we are solving the
light front bound state equation, rotational symmetry is no
all manifest. However, at weak coupling we expect that
spectra exhibit rotational symmetry to a very good appro
mation. Our numerical results are compared with those
Koures in Table III for two values of the coupling. Atg
50.2 we find reasonable agreement with the degenerac
the spectrum. Even atg50.6 the violation of the rotationa
symmetry is very small. The splittings of levels which a
supposed to be degenerate become more visible at
strong coupling, as can be seen from Table IV forg55.

Along with the eigenvalues, the diagonalization proce
also yields wave functions. We have plotted wave-functio
corresponding to the first four eigenvalues in Fig. 2 a
function of x and k. All wave functions are normalized to
*0

1dx*dkc2(x,k)51. The lowest state is nodeless and c

TABLE II. Convergence of eigenvalues withn1 and n2 ~re-
duced model!. The parameters arem51.0, g50.2, and h
50.00001.

n1 n2 Eigenvalues~lowest five! (k510.0)

20 20 4.08926 4.10605 4.10768 4.11061 4.110
30 30 4.09045 4.10909 4.11038 4.11516 4.116
40 30 4.09045 4.10913 4.11035 4.11524 4.116
40 40 4.09102 4.11052 4.11154 4.11711 4.119
40 50 4.09136 4.11133 4.11222 4.11811 4.120
50 50 4.09136 4.11135 4.11219 4.11816 4.120
50 60 4.09158 4.11188 4.11263 4.12189 4.122
46 60 4.09158 4.11187 4.11264 4.11877 4.121
46 66 4.09168 4.11212 4.11284 4.11905 4.122
46 74 4.09179 4.11237 4.11305 4.11934 4.122
n1 n2 Eigenvalues~lowest five! (k520.0)
46 74 4.09179 4.11240 4.11301 4.11940 4.122
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responds tol 50. The next two states correspond tol 51 and
have one node. It is interesting to note how the node app
in wave functions which correspond to degenerate lev
Since the rotational symmetry cannot be manifest in the v
ablesx andk, how can the wave functions still indicate this
From Fig. 2, it is clear that the way this problem is resolv
is by one wave function having a node ink and the other
wave function having a node inx. Thus, even if we did not
know about the underlying symmetry from other means,
light front wave functions have a subtle way of indicating t
symmetry.

VII. SUMMARY, DISCUSSION, AND CONCLUSIONS

In light front Hamiltonian approach to the bound sta
problem in gauge theories, the Bloch effective Hamiltoni
has certain advantages compared to the Tamm-Danco
Bloch-Horowitz formalisms. Furthermore, the recently pr
posed similarity renormalization approach is a modificat
of the Bloch approach. In order to estimate the impact
similarity form factors in the similarity renormalization ap
proach quantitatively, it is extremely useful to have a qua
titative study of the bound state problem in Bloch formalis
As far as we know, the Bloch effective Hamiltonian h
never been investigated in the context of the bound s
problem in light front field theory.

To avoid complexities due to ultraviolet divergences w
turn to 211 dimensions. This allows us to investigate lig
front infrared divergences in the bound state problem in
presence of transverse dynamics without the additional c
plication arising from the mixing of ultraviolet and ligh
front infrared divergences. Further, 211 dimensions allow us
to study quantitatively the manifestation and possible vio
tion of rotational symmetry in light front theory in a simple
setting. The emergence of a logarithmic confining interact
in the limit of heavy fermion masses is an added impetus
study gauge theories in 211 dimensions.

Only very recently has a study begun of the various iss
that arise in numerical computations in the similarity a
proach. Since the similarity renormalization approach is
modification of the Bloch effective Hamiltonian approach
detailed numerical study of the latter can serve as a ben
mark against which one can evaluate the merits of the s
larity approach. It is also important to evaluate the streng
and weaknesses of numerical procedures quantitativel
TABLE III. Reduced model. The parameters aren1546, n2574, h50.00001, m51.0. k
5tan(qp/2)/k, andk520.0. Eigenvalues within parentheses are6 l degenerate~broken! states.

g Eigenvalues

This 4.0918 ~4.1124, 4.1130! 4.1194
0.2 work ~4.1227, 4.1235! ~4.1268, 4.1273! ~4.1298, 4.1303!

Koures 4.0925 (l 50) 4.1144 (l 51) 4.1214 (l 50)
~Ref. @18#! 4.1260 (l 52) 4.1303 (l 51) 4.1340 (l 53)

This 4.5856 ~4.7741, 4.7821! 4.8390
0.6 work ~4.8767, 4.8816! ~4.9094, 4.9184! ~4.9458, 4.9481!

Koures 4.5806 (l 50) 4.7777 (l 51) 4.8409 (l 50)
~Ref. @18#! 4.8827 (l 52) 4.9205 (l 51) 4.9545 (l 53)
2-9
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TABLE IV. The first few eigenvalues in the reduced model. The parameters areg55.0, m51.0, andh
50.00001. ~I! Parametrization k5uLm/@(12u2)L1m#, L540.0. ~II ! Parametrization k
5tan(up/2)/k, k510.0. Eigenvalues within parentheses are6 l degenerate~broken! states.

n1 n2 Eigenvalues

I 40 50 18.217 ~30.702, 33.499! 35.206 ~39.955, 41.159! ~41.332, 43.271! ~44.134, 45.272!
46 70 18.276 ~30.774, 33.616! 35.318 ~40.106, 41.331! ~41.483, 43.477! ~44.375, 45.503!

II 40 50 18.980 ~31.507, 34.219! 35.826 ~40.406, 41.888! ~41.921, 43.788! ~44.345, 45.163!
46 70 19.008 ~31.542, 34.319! 35.935 ~40.626, 42.031! ~42.088, 44.010! ~44.647, 45.780!
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handling singular interactions in the context of light fro
dynamics on the computer.

In this work we have focused on the Gaussian quadra
~GQ!, which is one straightforward procedure to solve t
integral equation by converting it into a matrix equation. W
have demonstrated the efficiency of the GQ method in h
dling linear and logarithmic light front infrared divergence

A major advantage of the similarity approach is that
avoids the vanishing energy denominator problem tha
present in the Bloch formalism. In 211 dimensions the van
ishing energy denominator leads to severeinfrared diver-
gences, and hence we are presented with a unique oppo
nity to study its consequences. We encounter two type
infrared divergences:~1! one with a coefficient proportiona
to fermion mass, and~2! another with a coefficient propor
tional to fermion transverse momentum. The former type
canceled in the bound state equation between fermion dr
ing by gluons and gluon exchange between fermions.
latter type is uncanceled, but can be dynamically suppres
at very weak coupling on afinite grid. We have demonstrate
that, on a discrete grid provided by the GQ, the uncance
divergences are numerically insignificant at weak coupli
whereas the catastrophe due to their presence is readily f
stronger coupling.

We proceed to study a reduced model that is free fr
infrared divergences and which reduces to the Schro¨dinger
equation with a logarithmic potential in the nonrelativis
limit. This model provides us with an opportunity to stud
the simplest manifestation and possible violation of ro
tional symmetry, in the context of light front field theor
Even though the Hamiltonian does not exhibit rotation
symmetry we have shown that at weak coupling spectra
hibit rotational symmetry to a very good approximation. W
have also shown that even though the rotational symmet
not manifest in the variablesx andk, light front wave func-
tions have a subtler way of indicating the underlying sy
metry.

Our study indicates that in the context of Fock spa
based effective Hamiltonian methods to tackle gauge th
ries in 211 dimensions, approaches such as the simila
renormalization method are mandatory due to uncanceled
frared divergences caused by the vanishing energy den
nator problem. It is important to recall that a Bloch effecti
Hamiltonian is generated by completely integrating out
intermediate gluons irrespective of whether they are low
high energy. Is this justified in a confining theory?

Now that we have obtained quantitative measures of
vanishing energy denominator problem and the nature of
10500
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spectra at weak coupling of the Bloch effective Hamiltonia
the next step is to study QCD211 in similarity renormaliza-
tion approach which avoids the vanishing energy denom
tor problem. An important issue here is the nature of n
effective interactions generated by the similarity approach
has been shown that in 311 dimensions, similarity approac
generates logarithmic confining interactions, which, ho
ever, breaks rotational symmetry. It is interesting to inve
gate the corresponding situation in 211 dimensions.

APPENDIX A: BLOCH PERTURBATION THEORY FOR
THE EFFECTIVE HAMILTONIAN

The Bloch perturbation theory was introduced in Ref.@5#.
Here we follow the treatment in Ref.@19#, where the reader
can find many examples of perturbative calculations.

Consider a HamiltonianH defined at a cutoffL. Let us try
to lower the cutoff tol. In general, the cutoff could be in
energy and/or particle number. Let us denote byQ an opera-

FIG. 2. The wave functions corresponding to the lowest fo
eigenvalues of the reduced model as functions ofx and k. The
parameters areg50.2, h50.00001, m51, k510, n1546, and
n2574. ~a! Lowest state.~b! First excited state.~c! Second excited
state.~d! Third excited state. The first and second excited sta
should be degenerate in the absence of a violation of rotatio
symmetry.
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MESONS IN ~211!-DIMENSIONAL LIGHT FRONT . . . PHYSICAL REVIEW D 64 105002
tor that projects onto all of the states removed when
cutoff is lowered. LetP5I 2Q. We have

Q25Q, P25P, PQ5QP50. ~A1!

Our purpose is to find an effective HamiltonianHeff that
produces the same eigenvalues in the subspaceP as the origi-
nal HamiltonianH.

We introduce an operatorR that satisfies

Quc&5RPuc& ~A2!

for all eigenstates of the Hamiltonian that have support in
subspaceP. R gives the part ofuc& outside the space pro
jected byP in terms of the part ofuc& inside the space. We
require thatR does not act on states outside the subspa
This means thatR5RP, R5QR, and R250. From R
5QR, we havePR50. Also note thatR†5” R.

We start from the set of equations

PHPuc&1PHQuc&5EPuc&, ~A3!

QHPuc&1QHQuc&5EQuc&. ~A4!

From Eq.~A3!,

RPHPuc&1RPHQRPuc&5ERPuc&. ~A5!

From Eq.~A4!,

QHPuc&1QHQRPuc&5ERPuc&. ~A6!

Subtracting,

RHPP2HQQR1RHPQR2HQP50. ~A7!

We have introduced the notationsPHP5HPP , and so on.
We putH5h1v with @h,Q#50. Then

RhPP2hQQR2vQP1RvPP2vQQR1RvPQR50,
~A8!

which shows thatR starts first order inv.
We start from the eigenvalue equation

H~P1Q!uc&5E~P1Q!uc&. ~A9!

i.e.,

H~P1R!Puc&5E~P1R!Puc&. ~A10!

Multiplying from the left by (P1R†), we have

~P1R†!H~P1R!Puc&5E~P1R†!~P1R!Puc&.
~A11!

Using PR50, R†P50, (P1R†)(P1R)5P1R†R.
Thus we can rewrite the eigenvalue equation as
10500
e

e

e.

F 1

11R†R
G 1/2

~P1R†!H~P1R!F 1

11R†R
G 1/2

3@11R†R#1/2Puc&5E@11R†R#1/2Puc&,

~A12!

i.e.,

He f fuf&5Euf&, ~A13!

where

uf&5@11R†R#1/2Puc& ~A14!

and

He f f5F 1

11R†R
G 1/2

~P1R†!H~P1R!F 1

11R†R
G 1/2

.

~A15!

Our next task is to generate a perturbative expansion.
denote free eigenstates inP by ua&, ub&, etc. We denote
free eigenstates inQ by u i &, u j &, etc. Then

hPPua&5eaua&,

hQQu i &5e i u i &. ~A16!

Let us computeR to lowest orders in the perturbation theor
Let us writeR5R11R21•••, where the subscript denote
orders inv. A straightforward calculation leads to

^ i uR1ua&5
^ i uvQPua&

ea2e i
, ~A17!

^ i uR2ua&52(
b

^buvua&^ i uvub&
~ea2e i !~eb2e i !

1(
j

^ i uvu j &^ j uvua&
~ea2e i !~ea2e j !

.

~A18!

Our next task is to develop a perturbation theory expans
for the effective Hamiltonian to a given order.

We start from the expression for the effective Ham
tonian. Remember thatR1;O(v) andR2;O(v2).

To orderv, He f f5PHP, and hence

^auHe f fub&5^au~h1v !ub&. ~A19!

To second order inv, we have

He f f5@12 1
2 R†R#@PHP1PHR1R†HP1R†HR#

3@12 1
2 R†R#. ~A20!

From R†HR we obtain,

^auR†HRub&5(
i

e i

^auvu i &^ i uvub&
~ea2e i !~eb2e i !

. ~A21!

From PHR andR†HP terms we obtain
2-11
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(
i

^auHu i &^ i uR1ub&1(
i

^auR1
†u i &^ i uHub& ~A22!

5(
i

F ^auvu i &^ i uvub&
ea2e i

1
^auvu i &^ i uvub&

eb2e i
G . ~A23!

From thenormalization factorswe obtain

2
1

2
R†RPHP2

1

2
PHPR†R

52
1

2
~ea1eb!(

i

^auvu i &^ i uvub&
~ea2e i !~eb2e i !

. ~A24!

Adding everything, to second order, we have

^auHe f fub&5
1

2(i
^auvu i &^ i uvub&F 1

ea2e i
1

1

eb2e i
G .
~A25!

If a5b, this expression reduces to the familiar second or
energy shift.

Why is the Bloch formalism preferred over the Bloc
Horowitz formalism? In the former, eigenstates of the effe
tive Hamiltonian are orthonormalized projections of t
original eigenstates. In the latter, they are not.

We consider two orthonormalized eigenstates of the or
nal Hamiltoniansuc1& and uc2& with ^c1uc2&50. However,
Puc1& and Puc2& need not be orthogonal, i.e.,^c1uPPuc2&
5^c1uPuc2&5” 0. We consider

^c1uc2&5^c1uPuc2&1^c1uQ2uc2&

5^c1uPuc2&1^c1uP†R†RPuc1&. ~A26!

We construct uc̃1&5@11R†R#1/2Puc1& and uc̃2&5@1
1R†R#1/2Puc2&. Then

^c̃1uc̃2&5^c1uPuc2&1^c1uPR†RPuc2&5^c1uc2&.
~A27!

APPENDIX B: DETAILS OF THE NUMERICAL
PROCEDURE

Parametrization: The light front variables are param
etrized in the following ways in our numerical calculation
J.

a
-
’’

ev

K

10500
r

-

i-

.

The full k interval is divided inton1 quadrature points.k is
defined by two different ways. One definition is

k5
uLm

~12u2!L1m
, ~B1!

whereL is the ultraviolet cutoff and theu’s are quadrature
points lying between21 and11, so thatk goes from2L
to 1L. The other definition is

k5
1

k
tanS up

2 D ; ~B2!

herek is a parameter that can be tuned to adjust the ul
violet cutoff. The second definition@Eq. ~B2!# of k is very
suitable for weak coupling calculations, where we requ
that maximum points be concentrated neark50, and obtain
better convergence than the first definition~B1!.

The longitudinal momentum fractionx ranges from 0 to
1. We divide allx integrations in our calculations into tw
parts,x ranging from 0 to 0.5 andx ranging from 0.5 to 1,
and discretize eachx interval inton2 quadrature points with
the parametrizations

x5
11v12h~12v !

4
, h<x<0.5, ~B3!

x5
31v22h~11v !

4
, 0.5<x<12h, ~B4!

where v ’s are the Gauss quadrature points lying betwe
21 and11, andh(→0) is introduced to handle end-poin
singularities inx as mentioned before.

To handle the infrared diverging terms we put the cut
ux2yu>d, and at the end we take the limitd→0. Numeri-
cally, this means that the result should converge as one
creasesd if there is no net infrared divergence in the theo

Diagonalization: After discretization, solving the integra
equation becomes a matrix diagonalization problem. The
agonalization has been performed by using the packed s
ageLAPACK @20# routinesDSPEVXfor the reduced mode
~real symmetric matrix! and ZHPEVX for the full Hamil-
tonian ~Hermitian matrix!.
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