PHYSICAL REVIEW D, VOLUME 64, 105002

Mesons in(2+1)-dimensional light front QCD: Investigation of a Bloch effective Hamiltonian
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We study the meson sector @+ 1)-dimensional light front QCD using a Bloch effective Hamiltonian in the
first nontrivial order. The resulting two-dimensional integral equation is converted into a matrix equation and
solved numerically. We investigate the efficiency of Gaussian quadrature in achieving the cancellation of linear
and logarithmic light front infrared divergences. The vanishing energy denominator problem, which leads to
severe infrared divergences ir-2 dimensions, is investigated in detail. Our study indicates that in the context
of Fock space based effective Hamiltonian methods to tackle gauge theoriedlididensions, approaches
such as the similarity renormalization method may be mandatory due to uncanceled infrared divergences
caused by the vanishing energy denominator problem. We define and numerically study a reduced model which
is relativistic, free from infrared divergences, and exhibits logarithmic confinement. The manifestation and
violation of rotational symmetry as a function of the coupling are studied quantitatively.
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[. INTRODUCTION AND MOTIVATION der by order perturbative calculation.
It is well known that various standard formulas for the
There are various well-known motivatiod] to study effective Hamiltonian all have drawbacks. Some of the defi-
QCD in the light front Hamiltonian formalism. In fact, there ciencies of the Bloch-Horowitz formalism are absent in the
have been many attempts recently to study the relativisti®loch effective Hamiltoniah5], which was reinvented in the
bound state problem in the Hamiltonian formalism in a lightcontext of renormalization group by Wilsd6]. The Bloch
front Fock space basifor a review, see Ref2]). It has been  Hamiltonian has two desired properties, namely, the effective
realized that a major impediment to a straightforward diagoHamiltonian is(1) Hermitian and(2) involves only unper-
nalization of the Hamiltonian is the rapid growth of the di- turbed energies in the energy denominator. Use of the Bloch
mension of the Hamiltonian matrix with the particle number. effective Hamiltonian eliminates two major problems of the
An alternative approach will be to use affectiveHamil-  Tamm-Dancoff approach to gauge theories mentioned above.
tonian that operates on a few particle basis. A challengingdowever, the Bloch effective Hamiltonian has an undesirable
problem here is that, for a successful description of low enfeature, namely, the vanishing energy denominator. To the
ergy observables, the effective Hamiltonian must incorporaté&est of our knowledge, the Bloch effective Hamiltonian was
the main features of strong interaction dynamics. never assessed in terms of its strengths and weaknesses in the
One of the first attempts invoked the Tamm-Dand8f  study of bound state problems in field theory.
or Bloch-Horowitz effective Hamiltonian. Though it was  In the study of bound states, QCD poses challenging
successful in tacklingl+1)-dimensional gauge theories, its problems. To overcome many pitfalls of standard effective
deficiencies became apparent when attempts were made familtonians, a similarity renormalization was propo§ep
3+1 dimensions. First and foremost of these is the lack ofThis avoids vanishing energy denominators, and thus pro-
confinement in the case of QCD. Second is the appearance vides an improvement over the Bloch effective Hamiltonian.
the bound state eigenvalue in the energy denominators. Thisitial attempts in the similarity renormalization approach
has two undesirable consequences. First, a light front singworked in either the nonrelativistic limit8] or the heavy
larity of the type 1k™, wherek™ is the light front longitudi- quark effective theory conteXx®]. Only recently has work
nal momentum of the exchanged gluon, remains in the boundegun[10] to address many practical problems, especially
state equation, which would have been canceled if free enethe numerical ones one faces in this approach.
gies appeared in the energy denominators. Second, from the A major feature of gauge theories on the light front is
fermion self-energy contribution, in addition to the mass di-severe light front infrared divergences of the typekI)?,
vergence another ultraviolet divergence appétosan ex- wherek® is the exchanged gluon longitudinal momentum
ample in the context of3+1)-dimensional Yukawa model which appears in instantaneous four-fermion, two-fermion
see Ref[4]) which contributes to the renormalization of the two-gluon, and four-gluon interactions. In old-fashioned per-
coupling. This contribution is also infrared divergent, andturbation theory these divergences are canceled by transverse
can be identified as arising from fermion wave functiongluon interactions. In similarity perturbation theory the can-
renormalization. It is the Fock space truncation that has proeellation is only partial, and singular interactions survive.
duced this unphysical divergence which would otherwiseBefore embarking on a detailed study of effective Hamil-
have been canceled by vertex renormalization in a strict ortonian in the similarity renormalization approach, which is a
modification of the Bloch effective Hamiltonian, it is quite
instructive to study the Bloch effective Hamiltonian itself.
*Email address: dipankar@theory.saha.ernet.in The result of such a study can serve as a benchmark against
"Email address: hari@theory.saha.ernet.in which one can evaluate the merits of the similarity renormal-
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ization scheme. This will also provide us with quantitative state calculations. This is to be contrasted with1ldimen-
measures of the strengths and weaknesses of numerical pigions, where the sole Lorentz generator, namely, boost, is
cedures in handling singular interactiotis the context of kinematical in light front field theory. Since in+2L dimen-
light front field theory on the computer. It is crucial to have sions we have a superrenormalizable field theory, violations
such quantitative measures in order to study the effects dftroduced by transverse momentum cutoffs are minimal.
similarity cutoff factors on the nature of the spectrum. This isThus, in contrast to 81 dimensions, one can study viola-
one of the motivations of the present work. tions caused by a truncation of the particle number alone and
Just as in the Tamm-Dancoff or Bloch-Horowitz formal- by longitudinal momentum cutoffs. It is also conceivable that
ism, the Bloch effective Hamiltonian of QCD in the first one can enlarge the Fock space sector and investigate its
nontrivial order also does not exhibit confinement in13  effect on restoring Lorentz invariance. It is expected that
dimensions. Since one of our major concerns is the study gfuch investigations are more viable in-2 dimensions com-
spectra for confining interactions, we go te- 2 dimensions.  pared to 3-1 dimensions due to less severe demand on com-
In this case, in the limit of heavy fermion mass, a logarithmicputational resources.
confining potential emerges. There are several other reasons A fourth reason concerns the similarity renormalization
to study light front QCD in 21 dimensions. They arise approach. In 31 dimensions it has been shown that the
from both theoretical and computational issues which wesimilarity renormalization group approadf] to effective
discuss next. Hamiltonian in QCD leads to logarithmic confining interac-
First of all, issues related to ultraviolet divergence becomdion [12]. It is of interest to investigate corresponding effec-
more complicated in the light front approach, since powettive Hamiltonians in 21 dimensions, especially since the
counting is differen{1] on the light front. We obtain prod- canonical Hamiltonian already leads to logarithmic confine-
ucts of ultraviolet and infrared divergent factors which com-ment in the nonrelativistic limit in this case. It is also known
plicate the renormalization problem. Going to two-spacethat in 3+1 dimensions the confining part of the effective
one-time dimensions greatly simplifies this issue due to thélamiltonian violates rotational symmetry. Does the violation
absence of ultraviolet divergences except in mass corre®f rotational symmetry occur also int2l dimensions? If so,
tions. An extra complication is that Fock space truncationhow does it manifest itself?
introduces extra ultraviolet divergences which complicate the In this work we initiate a systematic study of light front
situation in nonperturbative bound state computatipfls QCD in 2+1 dimensions to investigate the various issues
Such special divergences do not occur inl2dimensions. A  discussed above. The plan of the rest of this paper is as
third complication one faces in43L dimensions is that, on follows: In Sec. Il we present the canonical Hamiltonian of
enlarging the Fock space in a bound state calculation, on&+1)-dimensional QCD. The Bloch effective Hamiltonian
soon faces the running of the coupling constant. At low enin the qq sector in the lowest nontrivial order is derived in
ergy scales, the effective coupling grows, resulting in aSec. Ill, and the bound state equation is derived. The diver-
strongly coupled theory11] making the weak coupling ap- gence structure is discussed in detail in Sec. IV. In Sec. V we
proach with a perturbatively determined Hamiltonian unsuit-numerically investigate the cancellation of light front linear
able or making it mandatory to invent mechanisms such agfrared divergences and the consequences of the vanishing
the nonzero gluon mass to stop the drastic grofith In  energy denominator problem, which leadsuticanceledn-
(2+1)-dimensional QCD we do not face this problem, sincefrared divergences in the bound state equation. A model
the coupling constant is dimensionful in this superrenormalwhich is relativistic, free from infrared divergences, and ex-
izable field theory and does not run due to ultraviolet diver-hibits logarithmic confinement is presented in Sec. VI. In
gence. Wecan keepthe coupling arbitrarily small and study Sec. VIl we present a numerical investigation of this model
the structure of the bound states in a weakly coupled theoryn the weak coupling limit. In this section, we also discuss
Second, in *1 dimensions, in the gaugd®=0, dy- the violation of rotational symmetry in this model at strong
namical gluons are absent and their effect is felt only througltoupling. Finally Sec. VIII contains a discussion and conclu-
instantaneous interactions between fermions. Further, recalions. Since the Bloch effective Hamiltonian is unfamiliar to
that in light front theory, vacuum is trivial. As a result, the most of the readers, we present a detailed derivation in Ap-
Fock space structure of the bound states is remarkablgendix A. Details of the numerical procedures used in this
simple. For example, the ground state meson is jugi pair ~ Work are given in Appendix B.
at both weak and strong couplings. In contrast, ihl2di-
mensions, one component of the gauge field remains dy-
namical and one can systematically study the effects of dy- Il. CANONICAL HAMILTONIAN

namical gluons. Also note that+2 dimensions are the In this section we present the canonical light front Hamil-

lowest dimensions where glueball states are possible, and,iq of (2+1)-dimensional QCD. The Lagrangian density
offers one an opportunity to study their structure in the FoclﬁS given by

space language without additional complications f13di-
mensions.
A third reason deals with aspects of rotational symmetry. L=[—L(F, )2+ (yND,—m) 4], 2.1)
2+1 dimensions offer the first opportunity to investigate vio-
lations of Lorentz invariance introduced by various cutoffs
(momenta and/or particle numbean the context of bound with
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1o
iD’u:Ei&M-FgA’U', H=H0+Him=f dx~ dx(Ho+ Hiny)- (2.12
FrMa= guANa_ gAAHa 4 g faDCARDANC, (2.2) The free Hamiltonian density is given by
. . (a2 2
We have the equations of motion, Ho=¢" (‘9i;++ m i+ %alAlaalAla_ (2.13
[iy*d,+gy*A,—m]y=0, (2.3

The interaction Hamiltonian density is given by
pva abc wv A VT ) —
9, FHR+gfaA W FE7+gyy Ta=0. (2.4 o= Hot My, (2.14
Because we are in21 dimensions, we immediately face an i,
ambiguity since there are ng matrices in 2-1 dimensions.
In the literature both two componeft3] and four compo- E1
nent[14] representations have been used. For simplicity, we Hi=g §TA1 §+ g{r —(AE)— ngTA1 €
pick the two component representation. Explicitly,

: H T 1 1 1 1play ¢ta
0 —i i 0 +gmé' (A =29 -+ (A E' T
Y=07= yi=ios= J I
i 0} 0o —i)’ 1
0 i +gfabcﬁlAlaa—+(Alb&+Alc) (213
y2=iol=(i 0), (2.5
and
T R bl IR G M=~ 20%1Toe| — 2§TTa§+92§TA1 (AYE)
A 2i 0)° 0o o) 2 N
(2.6
+2 Zfabc TTa Alb(9+AlC
A+1:+A+1°)A—°° g (55)( )
IR “lo o) “lo 1)
(27) ZngabCfade (Alb& AlC) +(Ald(9 Ale)
The fermion field operatog™= A~ . We have (2.16
. £ [0 The one component fermion field is given by
yr=\ ] = (2.8
0 n + gl
E(x"=0x" x1)=J—dk I [b(k)e **+d'(k)e* ]
whereé and  are one component fields. We choose the light o 2(2m)2Jk* '
front gaugeA™ 2=0. From the equation of motion, we obtain (2.17
the equation of constraint
The Fock operators obey the anticommutation relations
ioty =[at(io*+gAl) +y°m]y™. (2.9
{b(k),b(q)}=2(2m)%k" 6*(k—q),
Thus the fermion constrained field is
{d(k),d"(q)}=2(2m)%k" 6*(k—q), (2.18
1 . :
7= —rl=( gt+gAh)+im]éE. (210 other anticommutators being zero. Note that in the two com-

ponent representation, light front fermions do not carry he-
From the equation of motion, in the gaugé?®=0, we have licity in 2+1 dimensions. _ _ _
the equation of constraint In free field theory, the equation of motion of the dynami-

cal field A' is the same as that of a free massless scalar field

1 [15], and hence we can write
o —((9+)2A_a: _ (91(7+Ala_ gfabCAlb(9+Alc— ZggTTag
5 .

2.1 Al(xT=0,x",x1)

dkdk! . .
Using the equations of constraint, we eliminate and A~ = f 2(Zw[a(k)e*”““r a'(k)e' .
in favor of dynamical fieldsy™ and Al, and arrive at the &
canonical Hamiltonian given by (2.19
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The Fock operators obey the commutation relation |a)=b"(py,a)d"(p,,)|0),
[a(k),a(q)]=2(2m)%k" 6*(k—q), (2.20 IbY=b'(ps,8)d"(ps.B)[0), (3.2
other commutators being zero. wherep; andp, denote momenta angl and 8 denote colors

We substitute the Fock expansiofigs. (2.17 and  which are summed over. Explicitip, = (p; ,p}) etc., where

(2.19] into the Hamiltonian, and treat all terms as normalp1+ is the plus component angf is the transverse compo-
ordered. Thus we arrive at the canonical Hamiltonian in th,ent. For simplicity of notation, we will denote the trans-

Fock basis. verse component of momenta without the superscript 1.
The free part of the Hamiltonian leads to the matrix ele-
I1l. BLOCH EFFECTIVE HAMILTONIAN IN THE MESON ment

SECTOR AND THE BOUND STATE EQUATION 5 5
2 2

_ +p1 +p2 2+ &2
In this section we evaluate the Block effective Hamil-  (@lHIb)= 5 * Ds 2(2m)°py 6°(P1~Pa)

tonian to the lowest nontrivial order for a meson state, and
derive the effective bound state equation. We defineRhe X2(2m)%p3 6%(P2—Pa) Sap- (3.3

space to be theg sector of the Fock space, an(_JI mpace From the four fermion interaction, we obtain the contribution
to be the rest of the space. In the lowest nontrivial order, the

Bloch effective Hamiltonian is given bisee Appendix A for 1
detail9 —492(1'&1"""1)%WZ(ZW)Z\/IOIr Ps P Ps &
1
1
(iHerd 1) =il (Ho* Hino i)+ 525 (ilvlk(klo] ) X(P1F P2 Ps™Pa) g (39

Next we evaluate the contribution from the second order

1 1 term. The intermediate statk) is a quark, antiquark, gluon
X fi_6k+ €—e (3.1 state. This intermediate state gives rise to both self-energy
. and gluon exchange contributions. The self-energy contribu-
States|i) and|j) are, explicitly, tions are

dky dk, [ (P1—ky) kg pr.m m

2Ci8,5P7 2(27)28%(p1— P3P, 2(27)26%(p,— f -2 I S T B
9°Ct6apP1 2(27)°6°(P1— P3)P2 2(27)°6°(P2— Pa) 2(277)2(|01+—k1+)l (py—ki) ki p; ki pf

1 f_z(pl_kl) kg P m_.m
ED:| “(p;—ki) ki pi ki pi

XJ dk; dk, [ (pa—ka) ky p; . m .m} 1 _(p2=ky) kp p; . m _m]

X +0°C8,4P; 2(27)%5%(Pp1—P3)P3 2(27)25%(p2—Pa)

- — —l—+i—
22m)%(p; —k3)| “(p3—k3) k3 p; k; p;

- + =+t F+i—=—i—
ED,| “(ps—ks) ks ps ks ps

(35
with
o, PLEM Mk (py—k)? _pitm? mPHKS  (pp—ky)? 38
Yopg ki (k) TP ps ks (pr—k) '

The gluon exchange contributions are

(P1—P3) p p .mom
— g2(T3T?) 1, 2(2m)26%(Ppy+ P2~ Ps— Pa) VP3P p;pz{ o iy
(P —P3) P3 Pg P3 P1

st ti—e—

J— I_
(p1—P3) P2 Pi Ps P4 5

2 (p{—p3) | M+p;  (p1—py)® mM’+p
pa (Pr—ps) Pz

(P1—Ps) P2 Ps M _m]lﬁ(pf—pi) 1

1
- —g2(T3T?),,2(27)28%(p1+ P2— P3— P4) VP1 P5 P3 P
m2+p2  (p,—ps)? mM2+p2 g P11 P2= P37 P4) VP P2 P3 P4

P (pi—p3)  Ps
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F

R t— At ti—o—
(p3—P:) P3 P; P;  P1 2

(Ps=P1)  Ps P1 . m .mH_ (Ps=Py) P2 Pa .M . m|16(ps—p)
(Ps=P1) P2 Py P2 Pg)2 (p3—p1)

1 1
+ (3.7
m’+p;  (ps—py)® MPHp; MP4pi (ps—py)® mHpi
P (Ps—Pi) P4 ps  (Ps—pPy)  Pi
|
After the construction oHq¢; In the two particle space, m?+ k2
we proceed as follows. Consider the bound state equation - x(l——x) (X, K)
2
M2+ P? _ .9 J _
Heff|\P>:T|\P>, (3.9 Siha(%,K) 42(277)2Cf dydqlﬂz(MQ)(X_y)z
9° 1V
where P*, P, andM are the longitudinal momentum, the T 20277 ij dydag(y,0) 5 5 (3.12
transverse momentum, and the invariant mass of the state,
respectively. The statel’) is given by The self-energy contribution is
2
dp; dps dp, dp, 9 x
P = (P:ps,pa) S=—-—~—>3C;| dy| dgxy
=% ) Famm;) amy PP 2zm” o
_ 2 20y __\\2
Xb'(ps.B)d" (P4, B)|0)V2(2m) 2P 82(P—ps—pa). g,k 29 mixy)
y X (x-y) x*y*
(3.9 PR >
(ky=gx)“+m(x—y)
which we represent symbolically as 9° 1
- mcfﬁ( dYJ dq(1-x)(1-y)
[W)=2 dli). (3.10 ( a_, k  2a-k) miy-x?
J -y "1-x (y—x |  (1-x0%1-y)?
—v) — _ 2 2(v_\\2 :
Taking projection with the statéi|=(0|d(p,,a)b(p;,a), [k(1-y)=a(@=x)]"+mi(x—y)
we obtain the effective bound state equation (3.13
M2+ P2 The boson exchange contribution is

?%i:Hoﬂﬁzi*z (iHierli) 2. (3.1D
. Vo a(x—y) 1
- 2 2 2 2 2
We introduce the internal momentum variablesk) and ED  (x=y) m+g’ (k-q) _m K
(v.0) via py =xP*, p;=xP+k, pj =(1-X)P*, p,=(1 yooey X
—?)P—)k, p§=yP;, p3h=yP+q, IpId=(1—>(/)P*, p; 1
=(1-y)P—qg an the amplitude ¢&(P;p1,p> +—— > =
= (LNP) #(%,K). mrk  kr ma
The fermion momentum fractionsandy range from 0 to 1-x X—y 1-y
1. To handle end point singularities, we introduce the cutoff
n<x,y=<1- 7. This does not prevent the gluon longitudinal n 0(y—x) 1
momentum fractiox—y from becoming zero, and we intro- (y=x) | m*+k* (q=k)* g*+m?
duce the regulatob such thatx—y|= 5. To regulate ultra- X (y—x) B y
violet divergences, we introduce the cutdffon the relative
transverse momentaandg. We remind the reader that in the 1 )
superrenormalizable field theory under study, only ultraviolet Ty P (q-K?Z m+K K@,y kx)+iVi],
divergence is in the fermion self-energy contribution, which + -
4 o 1-y y—X 1-x
we remove by a counterterm before discretization.
The bound state equation is (3.19

2 [K(kaxyq’Y)+iV|]
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where 1. Cancellation of light front infrared divergences in the

effective bound state equation
K(k,x,q,y):(9+ E— (k q))( g K 2(k=a) First consider light front infrared divergences. The effec-
y x (x=y)/ll-y 1-x (X=y) tive bound state equatidiEq. (3.12)] explicitly has a linear
m2(x—y)? light front infrared divergent term ¥ y)? coming from
— (3.15 theinstantaneous gluon exchange. The most divergent part of
xy(1=x)(1=y) the numerator of the transverse gluon exchange term in this
equation is —4[(k—q)?%/(x—y)?]. After combining the
[q(2—y—3x)+k(3y+x—2)]. terms, the linear infrared divergent term is completely can-
xy(1=x)(1-y) celed and the resultant effective bound state equation takes
(3.16 the form

V|:_

IV. DIVERGENCE STRUCTURE

m?+ k?
. . : : M?— ———— | ¢hp(X,k)
In this subsection we carry out a detailed analysis of the X(1=x)
divergence structure of the effective bound state equation. 2
We encounter both infrared and ultraviolet divergences. =81¢n(x, k) — WCJ dyday,(y,q)
A. Ultraviolet divergences y 1 V1 V2 Vo ( 1 1 )} ws
. . . . ) - i _ _
First we consider ultraviolet divergences. In the super 2 E1 E2 [ E1 E,

renormalizable field theory under consideration, with terms
appearing in the canonical Hamiltonian as normal ordered,
ultraviolet divergence is encountered only in the self-energylhe self-energy contribution, made ultraviolet finite by the
contributions. To isolate the ultraviolet divergence, we re-addition of the counterterm is

write the self-energy integrals as

2 2

(x+Yy)? s1—+ -9 ¢ fxd ﬁ J 4m
=" %02m )ch f 9 xy(x—y)? 22m2 "o WY )y Hky— g7 mA(x—y)?
g2 1 g? fld fﬂxd
+5—=—>C
" (ky— 02 +m2<x—y)} 2], O 22m2 ) VY,
A (2—x—y)?
X . 4.4
<) sl gy (K(L—y) -l 0P F P y)? 49
4m” (4.) Th d inator fact
- . e ener enominator factors are
[k(1—y)—a(L—x) T+ m(x—y)? o
The first term inside the square brackets in the above equa- 1 Xy
tion is ultraviolet divergent, which we cancel by adding an = Ty ax P =2’
ultraviolet counterterm given by 1 [ky=ax]®+mi(x-y)
2 +A X X+V)?
¢+ 5% ] 40 | yx(y<x—y)y>2 1 (2=0{1 )
Ex [k(1-y)—q(1—x)]*+m*(x—y)*’
Jld (2—x—y)? @2 (4.9
+ . .
Y y=0A1=x)(1-y)

. . The vertex terms are
After the addition of this counterterm, the bound state equa-

tion is ultraviolet finite. 5 5 5
Vi=0(x—y)U(k,x,q,y) + 6(y—x)U(q,y,k,x), (4.6
B. Infrared divergences

The infrared divergences that appear in the bound state & _ '~ B _
equation are of two types$1) light front infrared divergences V2= 0(x=y)U(k1=x,q,1=y) + 6y =X)
that arise from the gluon longitudinal momentum fraction < U(a.1-v k.1—x 4
Xg=0, and (2) true infrared divergences that arise from @1~y ) @.7
gluon transverse momentuky=0 and gluon longitudinal
momentum fractiorxy=0. with
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m? m2(x—y)? . q° . k2 multiplied by (x—y)?, so that they do not lead to an infrared

Sl — — — — divergence problem. The numerator of the imaginary part
1 1 1 1

Xy xy(1=x)(1=y) y(d-y)  x(1=x) vanishes ak=q andx=Yy, and hence is also infrared finite.

U(k,x,q,y)=4

k? 1 q° 1 It is easy to verify that the rest of tH&ransverse momentum
_2(x—y) x(1—x) +2(x—y) y(1—y) dependentterms in the numerator do not vanish when the
denominator vanishes; hence the resulting bound state equa-
kg kq tion is inflicted with infrared divergences arising from the
+ + fehi ; ; .
X(1—-y) ' y(1-x) vanishing energy denominator. This problem was first noted
in the context of QED in 21 dimensions by Tam, Hamer,
kq ( 1-2y 1-2x and Yung[17], but was not investigated by these authors. We

(4.8 remind the reader that this is a peculiarity of 2 dimen-

+2 - .
(x=y)ly(1-y) x(1-x) : . . . : .
sions, which provides us with a unique opportunity to ex-
In addition to the J)lg singularity, which is canceled, trans- plore the consequences of the vanishing energy denominator
verse gluon exchange contributions also containxg $in-  problem.
gularity which is removed by the principal value prescrip-
tion. The cancellation of_thls sm_gula_rlty is an appealing V. NUMERICAL STUDY OF THE BOUND STATE
feature of the Bloch effective Hamiltonian, in contrast to the EQUATION
Tamm-Dancoff effective Hamiltonian where the singularity
cancellation does not occur because of the presence of in- We convert the integral equation into a matrix equation

variant mass in the energy denominatbé]. with the use of Gaussian quadratu(Eor details of the nu-
merical procedure, see Appendix)EC; is set to 1 for all
2. “True” infrared divergences numerical calculations presented. As mentioned above, an

Next we consider true infrared divergences. Consider thémportant feature of gauge theories on the light front is the
self-energy integrals. The energy denominators in these exRresence of linear infrared divergences. They appear in the
pressions vanish whek=q andx=y, which correspond to canonical Hamiltonian in the instantaneous four fermion in-
vanishing gluon momentum. By carrying out the integralsteraction term. When thgqg states are integrated ocom-

explicitly, in the limit A—c we obtain, pletelyin perturbation theory, they also appear in the effec-

tive four fermion interaction and cancel each other out.

mg® [1 x 1 1-x Noncancellation of this divergence is a major feature of simi-
Sl=5-CoiIng+ g In—F5—|- (4.9 Jarity renormalization approach. We first address the issue of

how linear divergences manifest themselves in the nonuni-

Thus the singular part of the self-energy is form grid of the Gaussian quadrature, and how well they can

handle linear light front infrared divergence. We have studied

B mg? 1 numerically discretized versions of E@.12 where the di-

Slsingular= ~ Zcfx(l_x)ln 8. (4.10 vergences are present separately in the discretized version

together with the counterterm given in E®.2). For g
The infrared divergent contribution from the self-energy =0.2, we have calculated eigenvalues with and without the
gives a positive contribution to the fermion mass. It is im-instantaneous interaction. The results, presented in . 1
portant to note that the vanishing of the energy denominatoior the lowest eigenvalue shows, that the Gaussian quadra-
is also possible in 31 dimensions, but in this case we do ture can handle the cancellation very efficiently.

not encounter any divergence. It is the peculiarity ef12 After the cancellation of the linear light front infrared
dimensions that the vanishing energy denominators causedivergence, a logarithmic infrared divergence which arises
severe infrared divergence problem. from the vanishing energy denominator survives in the

The same vanishing energy denominators also occur ibound state equation. Here we have to distinguish two types
the one gluon exchange contributions. Let us now consideof terms. In the first type, the coefficient of the logarithmic
various terms in the numerator separately. The terms propoimfrared divergence is independent of the fermion transverse
tional to 4m? arose from the denominator of the transversemomentum; in the second type, the coefficient is dependent
gluon exchange. A straightforward calculation shows thabn the momentum. Self-energy and Coulomb interactions are
this term leads to both finite and infrared divergent contribu-of the first type. In the weak coupling limit, since the wave

tions. The infrared divergent contribution is given by function is dominated by a very low transverse momentum,
we anticipate that contributions of the second type will be
mg 1 dynamically suppressed even though both are multiplied by

2 (4.1 the same coupling constant. This is especially true of any

discrete grid, which automatically imposes a lower limit on
which exactly cancels the infrared divergent contributionthe smallest longitudinal momentum fraction allowed. Thus,
from the self-energy. The finite part, in the nonrelativistic at weak coupling, even if there are uncanceled infrared di-
limit, can be shown to give rise to a logarithmically confin- vergencegdivergences of the second typéhey may not be
ing potential. Next we have to consider the remaining termswmerically significant, whereas divergences of the second
in the numerator. The rest of the terms proportionahtoare  type are significant. By switching the self-energy contribu-

77 ="
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— | ' | ' | ' T of the couplingg. The table clearly shows that on a discrete
PR [ . _ grid, the uncanceled infrared divergences due to the vanish-
E L . (@) i ing energy denominator problem are not numerically signifi-
7 10k | cant at weak coupling; however, their effect is readily felt at
o | i a stronger coupling.
L
£ 20— with full H N
2 T e wioinst int ] VI. REDUCED MODEL
1 I 1 I 1 I 1 g . . . . .
-30, 500 1000 500 2000 In this section we consider a model Hamiltonian free from
1/6 infrared divergences, constructed by dropping the transverse

momentum dependent terms from the numerator of the ef-
fective Hamiltonian. For convenience, we further drop the
terms proportional toX—y)? and the imaginary part. This
defines our reduced model, which is also ultraviolet finite.
The equation governing the model is given by

5 T T T T T

(b)

A

m?2+ k2

_x(l—x)

— with full H
25H ® w/oSE

2 1 I 1 I 1 I 1
500 1000 1500

115

lowest eigenvalue
|58
W

M? Po(X,K)=S1r(x,K)+B. (6.1

T
[N
8i||||||||||—

<

0 The self-energy contributio§1 is the same as given in Eq.
(4.4). The boson exchange contributighis given by
FIG. 1. Cancellation of the linear infrared divergence. The full 5
line denotes the full Hamiltoniarfa) shows the cancellation of the _ E g c Jld erAd 4m
light front infrared divergence by switching the instantaneous inter- ~ 2 2(2m)2 '), y A q(ky— ax)2+m?(x—y)?
action on and off. Filled circles indicate there is no instantaneous
interaction.(b) shows the cancellation of logarithmic infrared diver- 1 92 B +A
gence by switching on and off the self energy term. Filled circles Xy, Q) — 2 chfo dyf_A dq
indicate there is no self energy. The parameters gared.2, n
=0.00001,m=1, «=20, n;=40, andn,=50. 4m?

X Tk(I—y)—q(1—x) PP+ mi(x—y

2

)2 o(y,q). (6.2

tion off and on, we have studied this interplay. The lowest
eigenvalue with and without self-energy contribution is plot- Again we discretize Eq6.1) by the Gaussian quadrature.
ted in Fig. Xb). This shows the cancellation of the dominant The convergence of the eigenvalues as a function of the
logarithmic infrared divergence. Since there are still uncannumber of grid points is presented in Table IlI. In this table
celed infrared divergences in the bound state equdtigihn ~ we also present thé@n)dependence of eigenvalues on the
coefficients proportional to the fermion transverse momentamomentum cutoff.
this figure further illustrates the fact that such divergences 2+1 dimensions provide an opportunity to study the
are not numerically significant at weak coupling. manifestation and violation of rotational symmetry in light
As the strength of the interaction grows, the wave func-front field theory in a simpler setting compared te B di-
tion develops medium to large transverse momentum conmensions. The absence of spin further facilitates this study.
ponents, and the infrared catastrophe triggered by the varRotational symmetry in this case simply implies degeneracy
ishing energy denominator becomes manifest numericallywith respect to the sign of the azimuthal quantum nuntber
This is illustrated in Table |, where we present the variationThus we expect all# 0 states to be twofold degenerate. By
with & of the first five eigenvalues for two different choices a suitable change of variables, one can easily show that our

TABLE |I. Variation with § of the full Hamiltonian. The parameters amé =40, n2=50, »=0.00001,
and «=20.0 ink=(1/«k)tan(u/2).

g ) Eigenvalues f1?)
0.00001 4.0913 41113 4.1122 4.1181 4.1209
0.0001 4.0913 4.1113 4.,1122 4.1181 4.1209
0.2 0.001 4.0913 41113 4,1122 41181 4.1209
0.005 4.0901 4.1066 4.1099 4.1100 4,1112
0.01 4.0870 4.0972 4.0972 4.0973 4.0973
0.0001 —187230.4 —187225.4 —186664.9 —186664.8 —31506.9
0.6 0.001 —187230.4 —187225.4 —186664.9 —186664.8 —31506.9
0.005 1.9094 1.9415 3.1393 3.1399 4.5697
0.01 45735 4.7337 4.7667 4.7832 4.8277
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TABLE Il. Convergence of eigenvalues withl andn2 (re-
duced model The parameters aren=1.0, g=0.2, and 7

responds td=0. The next two states correspond tol and
have one node. It is interesting to note how the node appears

=0.00001. in wave functions which correspond to degenerate levels.
Since the rotational symmetry cannot be manifest in the vari-

nl n2 Eigenvalueglowest fivg («=10.0) ablesx andk, how can the wave functions still indicate this?

20 20 4.08926 4.10605 4.10768 4.11061 4.11085 _From Fig. 2, it is clear. that thg way this problem is resolved

30 30 400045 410909 4.11038 4.11516 4.11699 'S Py one wave function having a node knand the other

40 30 4.09045 410913 411035 411524 411697 Vave function having a_node ix Thus, even if we did not

40 40 409102 411052 411154 411711 4.11951 KnOW about the underlying symmetry from other means, the

40 50 409136 411133 411222 411811 412096 Islglrr:]t;]rgtr;;?/vave functions have a subtle way of indicating the

50 50 4.09136 4.11135 4.11219 4.11816 4.12095

50 60 4.09158 4.11188 4.11263 4.12189 4.12290

46 60 4.09158 4.11187 4.11264 4.11877 4.12189 Vil. SUMMARY, DISCUSSION, AND CONCLUSIONS

46 66 4.09168 4.11212 4.11284 4.11905 4.12231 In light front Hamiltonian approach to the bound state

46 74 4.09179 4.11237 411305 4.11934 4.12276 problem in gauge theories, the Bloch effective Hamiltonian

nl n2 Eigenvalueglowest five (x=20.0) has certain advantages compared to the Tamm-Dancoff or

46 74 4.09179 4.11240 4.11301 4.11940 4.12273 Bloch-Horowitz formalisms. Furthermore, the recently pro-

posed similarity renormalization approach is a modification
of the Bloch approach. In order to estimate the impact of
reduced model in the nonrelativistic limit reduces to Sehro similarity form factors in the similarity renormalization ap-
dinger equation in two space dimensions with a logarithmigoroach quantitatively, it is extremely useful to have a quan-
confining potential. In the weak coupling limit, sin€ is titative study of the bound state problem in Bloch formalism.
set to 1, we can compare our results of the reduced models far as we know, the Bloch effective Hamiltonian has
(where we do not make any nonrelativistic approximation never been investigated in the context of the bound state
with the spectra obtained in nonrelativisti€2+1)-  problem in light front field theory.
dimensional QED (QEB, ;). Tamet al.[17] solved the ra- To avoid complexities due to ultraviolet divergences we
dial Schralinger equation in momentum space for0  turn to 2+1 dimensions. This allows us to investigate light
states, and Kourefl8] solved the coordinate space radial front infrared divergences in the bound state problem in the
Schralinger equation for general Since we are solving the presence of transverse dynamics without the additional com-
light front bound state equation, rotational symmetry is not aplication arising from the mixing of ultraviolet and light
all manifest. However, at weak coupling we expect that theront infrared divergences. Further-2 dimensions allow us
spectra exhibit rotational symmetry to a very good approxi+to study quantitatively the manifestation and possible viola-
mation. Our numerical results are compared with those ofion of rotational symmetry in light front theory in a simpler
Koures in Table Ill for two values of the coupling. At  setting. The emergence of a logarithmic confining interaction
=0.2 we find reasonable agreement with the degeneracy iim the limit of heavy fermion masses is an added impetus to
the spectrum. Even @=0.6 the violation of the rotational study gauge theories i42l dimensions.
symmetry is very small. The splittings of levels which are  Only very recently has a study begun of the various issues
supposed to be degenerate become more visible at vetyat arise in numerical computations in the similarity ap-
strong coupling, as can be seen from Table IV der5. proach. Since the similarity renormalization approach is a
Along with the eigenvalues, the diagonalization processmodification of the Bloch effective Hamiltonian approach, a
also yields wave functions. We have plotted wave-functiongletailed numerical study of the latter can serve as a bench-
corresponding to the first four eigenvalues in Fig. 2 as anark against which one can evaluate the merits of the simi-
function of x and k. All wave functions are normalized to larity approach. It is also important to evaluate the strengths
sdxfdky?(x,k)=1. The lowest state is nodeless and cor-and weaknesses of numerical procedures quantitatively in

TABLE Ill. Reduced model. The parameters arel=46, n2=74, 7=0.00001, m=1.0. k
=tan(qm/2)/x, and k=20.0. Eigenvalues within parentheses arkdegeneratébroker states.
g Eigenvalues
This 4.0918 (4.1124, 4.113p 4.1194
0.2 work (4.1227, 4.123p (4.1268, 4.1278 (4.1298, 4.1308
Koures 4.0925 I(=0) 4.1144 (=1) 4.1214 (=0)
(Ref.[18]) 4.1260 (=2) 4.1303 (=1) 4.1340 (=3)
This 4.5856 (4.7741, 4.7821L 4.8390
0.6 work (4.8767, 4.8816 (4.9094, 4.918% (4.9458, 4.9481L
Koures 4.5806 I(=0) 47777 (=1) 4.8409 (=0)
(Ref.[18]) 4.8827 (=2) 4.9205 (=1) 4.9545 (=3)
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TABLE IV. The first few eigenvalues in the reduced model. The parameterg-ate0, m=1.0, andyn
=0.00001. (I) Parametrization k=uAm/[(1—u®)A+m], A=40.0. (Il) Parametrization k
=tan(um/2)/«, «=10.0. Eigenvalues within parentheses arkedegeneratébroker states.

nl n2 Eigenvalues

| 40 50 18.217 (30.702, 33.499 35.206 (39.955, 41.15p (41.332, 43.27]L (44.134, 45.27p
46 70 18.276 (30.774, 33.61p5 35.318 (40.106, 41.33]L (41.483, 43.47) (44.375, 45.508
Il 40 50 18.980 (31.507, 34.21Pp 35.826 (40.406, 41.888 (41.921, 43.78B (44.345, 45.168
46 70 19.008 (31.542, 34.31P 35.935 (40.626, 42.031L (42.088, 44.01D (44.647, 45.78D

handling singular interactions in the context of light front spectra at weak coupling of the Bloch effective Hamiltonian,
dynamics on the computer. the next step is to study QGD; in similarity renormaliza-

In this work we have focused on the Gaussian quadraturgon approach which avoids the vanishing energy denomina-
(GQ), which is one straightforward procedure to solve thetor problem. An important issue here is the nature of new
integral equation by converting it into a matrix equation. Weeffective interactions generated by the similarity approach. It
have demonstrated the efficiency of the GQ method in hankhas been shown that int3l dimensions, similarity approach
dling linear and logarithmic light front infrared divergences. generates logarithmic confining interactions, which, how-

A major advantage of the similarity approach is that itever, breaks rotational symmetry. It is interesting to investi-
avoids the vanishing energy denominator problem that igate the corresponding situation ir-2 dimensions.
present in the Bloch formalism. In+2L dimensions the van-
ishing energy denominator leads to severfrared diver- APPENDIX A: BLOCH PERTURBATION THEORY FOR
gencesand hence we are presented with a unique opportu- THE EEFECTIVE HAMILTONIAN
nity to study its consequences. We encounter two types of ] . .
infrared divergences(l) one with a coefficient proportional ~ The Bloch perturbation theory was introduced in R&{.
to fermion mass, an®) another with a coefficient propor- Here we follow the treatment in Ref19], where the reader
tional to fermion transverse momentum. The former type isc@n find many examples of perturbative calculations.
canceled in the bound state equation between fermion dress- Consider a Hamiltoniahl defined at a cutoff\. Let us try
ing by g|u0ns and g|u0n exchange between fermions_ Th@ lower the CutOff_ toN. In general, the cutoff could be in
latter type is uncanceled, but can be dynamically suppresse@nergy and/or particle number. Let us denote(bgn opera-
at very weak coupling on #inite grid. We have demonstrated
that, on a discrete grid provided by the GQ, the uncanceled (a) (b)
divergences are numerically insignificant at weak coupling,
whereas the catastrophe due to their presence is readily felt at
stronger coupling.

We proceed to study a reduced model that is free from
infrared divergences and which reduces to the Stihger 0
equation with a logarithmic potential in the nonrelativistic 5
limit. This model provides us with an opportunity to study o
the simplest manifestation and possible violation of rota-
tional symmetry, in the context of light front field theory.

Even though the Hamiltonian does not exhibit rotational (c) ()
symmetry we have shown that at weak coupling spectra ex-

hibit rotational symmetry to a very good approximation. We .
have also shown that even though the rotational symmetry is 20
not manifest in the variablesandk, light front wave func- 10

tions have a subtler way of indicating the underlying sym- 0 10
metry. T

Our study indicates that in the context of Fock space 0
based effective Hamiltonian methods to tackle gauge theo- $
ries in 2+1 dimensions, approaches such as the similarity
renormalization method are mandatory due to uncanceled in- k

FIG. 2. The wave functions corresponding to the lowest four

15
10

-10

frared divergences caused by the vanishing energy denomi-
nator problem. It is important to recall that a Bloch effective gigenvalues of the reduced model as functionscaind k. The
Hamiltonian is generated by completely integrating out theyarameters arg=0.2, »=0.00001, m=1, x=10, n;=46, and
intermediate gluons irrespective of whether they are low ok, =74. (a) Lowest state(b) First excited state(c) Second excited
high energy. Is this justified in a confining theory? state.(d) Third excited state. The first and second excited states

Now that we have obtained quantitative measures of thehould be degenerate in the absence of a violation of rotational
vanishing energy denominator problem and the nature of theymmetry.
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tor that projects onto all of the states removed when the

cutoff is lowered. LetP=1—Q. We have

Q2=Q, P2?=P, PQ=QP=0. (A1)

Our purpose is to find an effective Hamiltonidhy that

produces the same eigenvalues in the subspasthe origi-

nal HamiltonianH.
We introduce an operatdr that satisfies

Qly)=RPl4) (A2)

for all eigenstates of the Hamiltonian that have support in the
subspaceP. R gives the part of /) outside the space pro-

PHYSICAL REVIEW D 64 105002

jected byP in terms of the part of) inside the space. We and
require thatR does not act on states outside the subspace.

This means thaR=RP, R=QR, and R?>=0. From R
=QR, we havePR=0. Also note thaR"+R.
We start from the set of equations

PHP[y)+PHQ|y)=EP|4), (A3)
QHP[#)+QHQ|¥)=EQ|#). (A4)

From Eq.(A3),
RPHP )+ RPHQRRY)=ERP ). (A5)

From Eq.(A4),
QHP|)+QHQRHAY)=ERP ). (A6)

Subtracting,

RHpp—HooR+RHpoR—Hop=0. (A7)

We have introduced the notatiosHP=Hp, and so on.

We putH=h+v with [h,Q]=0. Then

thp_ hQQR—UQp+ Rv PP UQQR+ Rov pQR: 0,

(A8)
which shows thaR starts first order i .
We start from the eigenvalue equation
H(P+Q)|#)=E(P+Q)[#). (A9)
ie.,
H(P+R)P|#)=E(P+R)P|#). (A10)

Multiplying from the left by P+ R"), we have

(P+RNHH(P+R)P|y)=E(P+R"(P+R)P|).
(A11)

Using PR=0, R'P=0, (P+R"(P+R)=P+R'R.
Thus we can rewrite the eigenvalue equation as

1/2 1/2
T RiR (P+RHH(P+R) =
X[1+R'R]Y2P| ) =E[1+R'R]V?P| ),
(A12)
Het #)=E| @), (A13)
where
|py=[1+RTRIY2P| ) (A14)
112 172
e T TRIR (P+ROH(P+R) 1+R'R
(A15)

Our next task is to generate a perturbative expansion. We
denote free eigenstates by |a), |b), etc. We denote
free eigenstates i@ by |i), |j), etc. Then

hppla)=e€ala),

Let us computer to lowest orders in the perturbation theory.
Let us writeR=R;+R,+ - - -, where the subscript denotes
orders inv. A straightforward calculation leads to
. (ilvgela)

(i|Rq]a)= e (A17)
Ryy= S PRI o Gleliilola)

2 b (€a—€)(ep—€) T (€a—€)(€a—€j)

(A18)

Our next task is to develop a perturbation theory expansion
for the effective Hamiltonian to a given order.

We start from the expression for the effective Hamil-
tonian. Remember tha&;~O(v) andR,~O(v?).

To orderv, Hqy=PHP, and hence

(a|Hef|b)=(al(h+v)|b). (A19)

To second order im, we have

Heri=[1—3R'R][PHP+PHR+R'HP+R'HR]

x[1-iR'R]. (A20)
From RTHR we obtain,
_ (aloli)ifv|b)
(alRTHR|b)—Z eim. (A21)

FromPHR andRTHP terms we obtain
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3 (alHli)(i|Ralo) + 3 (@lRY[i)([Hb) (A2
(@v]i)Xilv[b) (alv |I><I| |b)
EI s . . (A23)
From thenormalization factorsve obtain
1RTRPHP 1PHPRTR
2 2
1 (alvli)(ilv|b)
— . (A24
(ea b)EI _Ei)(eb_ei) ( )
Adding everything, to second order, we have
b= 12 S ilolb 1
(aHefd] >—§ i (aloli)ilv|b) c e ' pp |
(A25)

PHYSICAL REVIEW D 64 105002

The full k interval is divided intonl quadrature pointk is
defined by two different ways. One definition is

— uAm B1
T (1-u)A+m’ (B1)

where A is the ultraviolet cutoff and the’s are quadrature
points lying between-1 and+1, so thatk goes from— A
to + A. The other definition is

k_l um
=l o)

here k is a parameter that can be tuned to adjust the ultra-
violet cutoff. The second definitiofEq. (B2)] of k is very
suitable for weak coupling calculations, where we require
that maximum points be concentrated nka0, and obtain
better convergence than the first definitidt).

The longitudinal momentum fractiox ranges from O to

(B2)

If a=b, this expression reduces to the familiar second ordell. We divide allx integrations in our calculations into two

energy shift.

parts,x ranging from 0 to 0.5 and ranging from 0.5 to 1,

Why is the Bloch formalism preferred over the Bloch- and discretize eackinterval inton2 quadrature points with
Horowitz formalism? In the former, eigenstates of the effec-the parametrizations

tive Hamiltonian are orthonormalized projections of the

original eigenstates. In the latter, they are not.

1+v+279(1-v)

We consider two orthonormalized eigenstates of the origi- X=———Q7 7=x<0.5, (B3)

nal Hamiltoniang ¢1) and|,) with {(¢,|#,)=0. However,

P|y1) andP|¢,) need not be orthogonal, i.€.y|PP|y,)
=(1|P| i) #0. We consider

(el tha) = (1| Pl o) + (41| Q% )
= (| P|ho) + (1| PTRTRP| ).

We construct |9;)=[1+R'R1Y?P|y;) and [4,)=[1
+R'R]Y2P|y,). Then

(A26)

(Un[dr2) = (1| Pl i) + (41| PRIR Pl o) = (afr1 | 15).
(A27)

APPENDIX B: DETAILS OF THE NUMERICAL
PROCEDURE

Parametrization The light front variables are param-
etrized in the following ways in our numerical calculations.

3+v—275(1+v)
X= ) ,

0.5<x<1—7, (B4)

wherev’s are the Gauss quadrature points lying between
—1 and+1, andn(—0) is introduced to handle end-point
singularities inx as mentioned before.

To handle the infrared diverging terms we put the cutoff
|[x—y|= 6, and at the end we take the limit—0. Numeri-
cally, this means that the result should converge as one de-
creases if there is no net infrared divergence in the theory.

Diagonalization After discretization, solving the integral
equation becomes a matrix diagonalization problem. The di-
agonalization has been performed by using the packed stor-
age LAPACK[20] routinesDSPEVXfor the reduced model
(real symmetric matrix and ZHPEVX for the full Hamil-
tonian (Hermitian matriy.
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