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Constructing the fermion-boson vertex in three-dimensional QED
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We derive perturbative constraints on the transverse part of the fermion-boson vertex in massive three-
dimensional QED through its one-loop evaluation in an arbitrary covariant gauge. Written in a particular form,
these constraints naturally lead us to the first nonperturbative construction of the vertex, which is in complete
agreement with its one-loop expansion in all momentum regimes. Without affecting its one-loop perturbative
properties, we also construct an effective vertex in such a way that the unknown functions defining it have no
dependence on the angle between the incoming and outgoing fermion momenta. Such a vertex should be useful
for the numerical study of dynamical chiral symmetry breaking, leading to more reliable results.
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. INTRODUCTION ture for massive QER The final result for the transverse
vertex is written in terms of basic functions of the momenta
Quantum electrodynamics in three dimensions (@EB  in a form suitable for its extension to the nonperturbative
an attractive model to study the intricacies of Schwinger-domain, following the ideas of Curtis and Penningf@s].
Dyson equation$SDE'’s). Because of its simplicity as com- Using perturbative constraints as a guide, we carry out a
pared to quantum electrodynamics in four dimensionsonstruction of the nonperturbative vertex, which has no ex-
(QED,) and quantum chromodynami¢®CD), the corre- plicit dependence on the coupling This vertex has an ex-
sponding study of dynamical symmetry breaking is relativelyplicit dependence on the gauge paramétaie demonstrate
neater in QEDR. There exist numerous works in this connec- in the massless case that a vertex cannot be constructed with-
tion, e.g.,[1-14]. An excellent review can be found in Ref. out an explicit dependence ah For practical purposes of
[15]. As is well known, the knowledge of the three-point the numerical study of dynamical chiral symmetry breaking,
vertex is crucial in such studies. In this respect, perturbationve also construct an effective vertex that shifts the angular
theory is a powerful point of reference as it is natural todependence from the unknown fermion propagator functions
believe that physically meaningful solutions of the to the known basic functions, without changing its perturba-
Schwinger-Dyson equations must agree with perturbative retive properties at the one-loop level. We believe that this
sults in the weak-coupling regime. This realization has beewertex should lead to a more realistic study of the dynami-
exploited in Refs[16—-19 to derive constraints on the fer- cally generated masses through the corresponding SDE's.
mion propagator and the three-point vertex in massless
QED:;. In this paper, we extend this work to the more general II. LONGITUDINAL AND TRANSVERSE VERTEX
massive case, based on Ref0]. TO ONE LOOP
The Ward-Takahashi identifVTl) relates the three-point
vertex to the fermion propagator. Using this relation, a part
of the vertex, called longitudinal, can be expressed in terms One-loop fermion propagator can be obtained by evaluat-
of the fermion propagatd21]. We evaluate this propagator ing the graph in Fig. 1. This graph corresponds to the fol-
to one-loop and hence determine the longitudinal vertex tdowing equation:
the same order. We also calculate the complete vertex to
one-loop and a mere subtraction of the longitudinal part 01 ) 0 b0
yields the transverse part, the one which is not fixed by the 1S (P)=iSg"*(p)+e f ora Y*Se(K) Y AL, (a),
WTI. According to the choice of Ball and Chiu, which was (2m) 2.1)
later modified by KizilersuReenders, and Penningtfi2?], '
the transverse vertex can be expressed in terms of eight ifvhere q=k—p and e is the QED coupling constant. The
dependent spin structures. The vertex should be free of anyare fermion and photon propagators are, respectively,
kinematic singularities. Ball and Chiu chose the basis in such
a way that the coefficient of each of the basis is indepen- 0
dently free of kinematic singularities in the Feynman gauge. Se(p)=——,
It was later shown by KizilerstReenders, and Pennington p—m

A. The fermion propagator

3

[22] that a calculation similar to that of Ball and Chiu in an

arbitrary covariant gauge does not have the same nice fea- » B d

ture. Therefore, they proposed a modified basis whose coef- o _ ] ﬁ
ficients are free of kinematic singularities in an arbitrary co- o 0 v

variant gauge. The calculation in the present paper confirms

that all the vectors of the modified basis also retain this fea- FIG. 1. One-loop correction to the fermion propagator.
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A% (@)=-[0%g,,+(£-1)q,q,]/q%, (2.2

z .k .k L
q _ q + q .
wherem is the bare mass of the fermion agds the cova- W
riant gauge parameter. We define the full fermion propagator P P ow

Se(p) in the most general form as .
FIG. 2. One-loop correction to the vertex.

F(p?)
&(P)Im- 2.3 Fﬂ:y_" 1 N 1 +1(k+¢))(k+p)" 1
© 2R R 2 (k*-p?)  [F(KD)
Taking the trace of Eq2.1), having multiplied it withp and u 2 2
with 1, respectively, one can obtain two independent equa- 1 (k+p)™ ) Mk )_M(p )1_ (2.10
tions. On simplifying, these equations can be written as F(p»)] (K=p») | F(K*)  F(p®
f d3k 1 2 02k On substituting Eq(2.6) into the above expression, we ob-
=1+i4 + . i
F(?) Taf— (2m)° gk 2)[( pHK-p  tain
—2k2p?], 2.4
P 24 =1+ aTgal v+ %gaz[k”k-i- p*p+kHp+ prK]
2
Mip )—m—|477a(§ 2)f m , +a(é+2)og [k +p#], (2.1
F(p?) (2m)° g*(k*—m?)
(2.9 where
where o= e?/47r. On Wick rotating to the Euclidean space 2. 12 5. o 5 o
and carrying out angular and radial integrations, we arrive at _mi+k 2y, MR 2y _ k™+p
o= (k) + I(p)—m ,
k2 2 k2 2
p p
1 ag
=1— —[m—(m?+p?I(p?
F(pZ) 2p2[ ( P ] 1 m2+k2 ) 2 p2 )
2 | e T 1(p?)
M 2
(i)=m[1+a<§+2>l<p2>], (2.6 k?—p?
F(p) +m—,
k2p2

where we have used the simplifying notatiok(p?)

= (1/y/— p?)arctan/— p?/m?. Equationg2.3) and(2.6) form az=m[1(k?)—1(p?)]. (2.12

the complete fermion propagator at one loop.

Equations(2.11) and(2.12 give the longitudinal part of the

B. Longitudinal vertex to one loop fermion-photon vertex to one loop for the massive QED
The full vertex satisfies WTI:
_ _ C. Transverse vertex to one loop
q,I*(k,p) =S (k) = S *(p). 2.7

The vertex of Fig. 2 can be expressed as

This relation allows us to decompose the full vertex into TH(k,p) = y*+ AX. 2.13
longitudinal [I"{*(k,p) ] and transversgl'f(k,p)] parts: '

Th(k,p)=TE(k,p) + TE(k,p), 2.9 Using the Feynman ruleg\# to O(«) is simply given by
. d3VV
where the transverse part satisfies —ieA“=f (—iey?)iSe(p—w)(—iey™)
M(2 )3
I'é(k,p)=0 and TI'4(p,p)=0 2.9
q.I%(kp) 7(P.P) 29 XiS2(k—w)(—iey®)iAd (w), (2.14

and hence remains undetermined by WTI. Following the
work of Ball and Chiu, we can define the longitudinal com- where the loop integral is to be performed in Minkowski
ponent of the vertex in terms of the fermion propagator as space.A* can be expressed as
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i o

At=— [y By Kyt m(4KH+4pH—pyH—y*K)

2 77_2
—m?y*1 0O = [y By y yot ¥ ¥ ¥*Kya
+6mg ]I+ y Yy P y IR+ (6= D yK O
—[y"py"+ v ky"+2mg 3+ [y by ky
+m(y by Y+ Y YRy mPy M IR,
(2.15

' (0 30 3@ 3 O @) ()
where the integral&*™, 37, J;7, 3,5, 11, 1,7, andl ;)

are

1
(0)_ 30
“ JMd M p—w)?— P (k—w)2—m?]’

1
O= [ d*w :
’ fM w2 (p—w)?=m?][(k—w)?—m?]

- Wi

3\
2 fm MWl (p—w)2—m2 ][ (k—w)2—m?]’

J(z)zj 3y W Wy
“ I WA (p-w)? = mPI[(k—w)?—m?]’

1
O= | d3w
! jmd w4 (p—w)2—m?][ (k—w)?—m?]’

(1>:f W W
“ I Wi (p-w)? - mPI(k—w)?—m?]

J W, W,

d3w ~ .

Mo W (p—w)Z—m?][(k—w)Z—m?]
(2.19

12—
nv
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Ti=[p*(k-q)—k*(p-q)],
TS=[p*(k-q)—k*(p-q)]1(k+p),

T4=q%y*—q"d,
Th=’[y*(k+p)—k*—p*]—2(k—p)“k*p’ay,,
Ts=q,0",

Té=—y*(k*=p?)+(k+p)“d,

T4 =—3(K=p?)[y*(k+p)—k*—p“]

+(k+p)“k'pToy,,
Tg=—y"k'pro,+kip—prk,

with

(2.18

After a lengthy but straightforward algebra, the coefficients
7; can be identified. We prefer to write these out in the fol-
lowing form:

U/.LV: %[’Y/.L”yl)]

° ajs(k.p)
1611
n(kp)=agy 2 a(kp)(IP+ =55,

i=1,2,...8, (2.19
wherel$= 75x/4, 13=n3x/4, 15=k?, 12=p?, and|Z=q?%A4.
The functions n,, 75, and y have been defined in the
Appendix, Egs. (A2). Similarly, the factors g; are
—g1=MA%g, = 2mA’g; = 2A%g, = gs = 2MA°gs = A%g;
=mgg=m/4A?. The coefficientsa;;(k,p) have also been
tabulated in the Appendix, Eq6A14). An important point to
note is that these coefficients do not contain any trigonomet-
ric function, as it has been extracted out for raising theo

a nonperturbative status. Thehave the required symmetry
under the exchange of vectoksand p. All the 7; are sym-
metric exceptr, and 7, which are antisymmetric. Note that

We evaluate these integrals following the techniques devethe form in which we write the transverse vertex makes it
oped in Refs[16,17,21, and[22]. The results are tabulated clear that each term in all the is either proportional to
in the Appendix, employing the notatiom\?=(k-p)2

—k?p? and Xo=(2/i w?)X® for X=1,J,K. Having calcu-
lated the vertex t®(a), Eq.(2.15, we can subtract from it
the longitudinal vertex, Eq$2.11) and(2.12, and obtain the
transverse vertex t®(«). Following the scheme provided
by Ball and Chiu[21], and modified later by KizilersiRe-

enders, and Penningtd@2], the transverse vertelk{(k,p)

can be written in terms of eight basis vectors as follows:

where

8

F*T‘(k,m:;ln(kz,pz,qZ)Tf‘(k,p), (2.17)

al (1) or a/(k?p?). We shall see that this form provides us

extension.

A few comments in comparison with the work by Davy-
dychevet al.[24], are as follows(i) None of ther; we have
calculated has kinematic singularity whed— p?. This

with a natural scheme to arrive at its simple nonperturbative

clearly suggests that the choice of thesuggested by Kiz-
llersuy Reenders, and Pennington is preferred over the one of
Ball and Chiu(in QED; as wel) used by Davydycheet al.

[24]. In particular, ourr, and 7; are independent of kine-
matic singularities(ii) In three dimensions, their factoriza-
tion of the common constant factor in E@ 1) is singular.
However, as the divergences completely cancel out, we find
our expressions more suitable for writing the transverse ver-
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tex in three dimensiongiii ) With the way we expresd, all

the 7; are written in terms of basic functions kfandp and To=

a single trigonometric function of the fori{l?). This form
plays a key role to enable us to make an easy transition to the
possible nonperturbative structure of the vertex, as explained
in Sec. Ill. Moreover, with the given form al,, a direct

PHYSICAL REVIEW D 64 105001

comparison can be made with the massless case.

IIl. NONPERTURBATIVE FORM OF THE VERTEX

A. On the gauge parameter dependence of the vertex

Let us first look at ther; in the simplified massless case,

with the notation k=—k?, p=.—-p?% and q=—q

(16,17,
am 1 2k+2p+q
= L+ (E= 1),
4 kp(k+p)(k+p+0)? q
(3.
47 ! [4kp+3kg+3pg+ 29>
P78 kpakrpra oA
+(£—1)(2k?*+2p?+kg+pa)], (3.2
2— k—
T6: aﬂ-( g) p , (3.3)
8  kp(k+p+0q)?
2+ 1
rgm 2T2HE) 3.4

2 kp(k+p+q) "
It is interesting to note that the existence of the factor

It

kp \k p

_1 1+ _1)2k+2—p+q
& (K2=p?)(k+p+0q)? (€ q
gt } a6
F(k3) F(p?)] '
_ [4kp+3kqg+3pg+29?
BT 2 g pkrprgE P
+(£-1)(2k*+2p?+ka+pa)] - ]
F(k® F(p?)
(3.7)
2249 1 11
BT E (kp)(kFpr ) |[F(K?) F(pd)]
(3.9

Equations (3.5—(3.8) represent a nonperturbative vertex,
which is in agreement with its complete one-loop expansion.
This vertex has been constructed in accordance with the form
advocated, e.g., in Ref$2,23,25. There are a couple of
important points which need to be discussed here.

There is an explicit dependence on the gauge pararéeter
A widespread practice has been to construct the vertex such
that its gauge dependence solely arises through functions
F(k?) andF(p?), and there is10 explicit appearance of the
gauge parametef [2,3,10,23. Here we show that at least in
massless QER such a construction is not possible. In this
connection, it may be interesting to observe tiathe work

in Eq. (3.3 puts g on a different footing as compared to the of Bashir and Penningtof25] for QED, gives one example
rest of ther;. The reason is that in the massless limit, theof an explicitly gauge dependent vertex ensuring the gauge

fermion propagator is simply

1 Taé l
=1+—=,
F(p?) 4 p
implying
1 1 [1 1}
F(k*) F(p* Lk pJ

Therefore, the relation ofg with the fermion propagator of
the type[ 1/F (k?) — 1/F (p?)] seems to arise rather naturally:

1 2-¢
T6= — 7=

28 (k+p+0)?

11
F(k*)  F(p?

as noticed first by Curtis and Penningt@8]. In the rest of

‘|7 (3'5)

invariance of the critical coupling, above which chiral sym-
metry is dynamically broken(ii) the work of Burden and
Tjiang [10] contains a vertemnsatzin QED; consisting of a
free parametep, believed by the authors to be independent
of the gauge parameter. The perturbative work of Bashir
et al. [17] later proved that thig must be explicitly depen-
dent upon the gauge parameter.

The one-loop calculation of the vertdé¥‘(k,p) in QED,
for k> p? reveals that its transverse part vanishes in the
Landau gaugé23]. Motivated from this observation, Curtis
and Pennington23], followed by several otherf3,10,25,
proposed aransatzfor nonperturbativd 4§ (k,p) such that it
vanishes foré=0. Later, a complete one-loop calculation
revealed that'#(k,p) # 0 in the Landau gaude?2]. Accord-
ingly, in a subsequent work, Basl@t al. removed the previ-
ously made assumption and presented the most general non-
perturbative construction of the transverse vertex required by

the 7;, the factor 1k—1/p does not arise. However, one the multiplicative renormalizability of the fermion propaga-
could introduce it by hand to arrive at the following expres-tor in QED, [26]. A parallel one-loop calculation in QED

sions:

[16,17 vyields identical results, i.e.I'f(k,p)#0 for
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£=0. Therefore, the corresponding nonperturbative structurén the massless limit, Eq3.9) simply reduces to

of the form[1/F (k?) — 1/F(p?)] is not what we should aim

for. 1 1 amé
We now show that the explicit dependence of the vertex F(K?) N F(p?) T4

on the gauge parametéris unavoidable in massless QED

We notice that at the one-loop level, each of thecan be i the Euclidean space, as expected. It was in fact an analo-

11
k p

written as gous massless expression in the limit wHenp that in-
spired Curtis and Penningtd23], to propose their famous
7(k,p,q)=aéa;(k,p,q)+ a bi(k,p,q). vertex in QED. Here, we are extending the reasoning to all

the momentum regimes in the massive QEBortunate si-
multaneous occurrence of the factet(k?p?) in all eight
equations(2.19 and (3.9), and the presence of the same
trigonometric factoit (12) in the expressions for the vertex as
well as the propagator, one naturally arrives at the following
nonperturbative form of :

On the other hand, Eq@2.6) yields the following form forF:

F (o) =1+ aéci(p).

If we want to write the nonperturbative form of the in
terms of 1F (p?) and 1F(k?) alone and we do not expect an g [
Ti=4i

J'El

> (2:;1”(|<,p)|j2

E(m2+17)
It is not possible ad#* form a linearly independent set of 2a,65(K.p)
basis vectors. Therefore, any construction of the three-point i6tX,P
vertex will surely have an explicit dependence on the gauge gkHm—(m?+p?)1(p?)}— p?{m—(m?+k?)I(k?)}]
parameter. Owing to these reasons, we emphasize that to
demand the transverse vertex to be proportional to 1 _ 1 (3.11
F(k*) F(p]) '

¢ (M(If) )
—m

explicit presence oty, the only way to get rid of depen- 2(§+2)|j2|(|j2) F(|jz)

dence is to have

1

F(I?)

[1/F (k%) —1/F(p?)] is artificial (apart from ) and is not

required, as remarked earlier. Therefore, we do not pursue
this line of action anymore. In the next section, we move omBy construction, in the weak-coupling regime, this nonper-
to construct the vertex for the massive case inspired from ouurbative form of the transverse vertex reduces to its corre-

perturbative results. sponding Feynman expansion at the one-loop level in an
arbitrary covariant gauge and in all momentum regimes. We
B. Nonperturbative vertex would like to emphasize that this is not a unique nonpertur-

As pointed out in the previous section. each term in all thebative construction. However, it is probably the most natural
ASP . P . - . 2 and the simplest. A two-loop calculation similar to the one
7; is either proportional to the trigonometric functien (1)

or a/(k2p2). On the other hand, the perturbative expression resented in our paper, and the Landau-Khalatnikov transfor-

> 5 ; . ation law for the vertex should serve as tests of BdL1)
for M(p?) andF(p®), Eqgs.(2.6), permit us to write or guides for improvement towards the hunt for the exact

1 1 . nonpgrturbative vertgx. On practicql side,.the use of our per-
— = 2 [k m—(m2+p?)1(p?)} turbation theory motivated vertex in studies addressing im-

F(k?) F(p? k%p?2 portant issues such as dynamical mass generation for funda-
2 2 Loy /L2 mental fermions, should lead to more reliable results,
—pH{m—(m*+k9)I(k9)}] (39 attempting to preserve key features of gauge-field theories,

e.g., gauge independence of physical observables. A compu-
tational difficulty to use the above vertex in such calcula-

tions, could arise as the unknown functidhand M depend

and

3 M(1%) 1 on the angle betweenandp. This would make it impossible
—m|— — . . . .
202+ 612112 | F(12) F(12) to carry out angular integration analytically in the SDE for
the fermion propagator. This problem can be circumvented
&mP+12) 5 by defining an effective vertex that shifts the angular depen-
=———al(l’). (3.10  dence from the unknown functiors and M to the known

2l basic functions ok andp. This can be done by rewriting the

perturbative results, Eq2.19, as follows:

YIn fact the explicit presence of the gauge parameter in the non-
perturbative form of the vertex tells us that the presence of the r.(k p)=ag;| bj;(k,p)I (k?) +b;,(k,p)I (p?)+
factor [ 1/F (k%) — 1/F(p?)] is no longer a guarantee that the trans-
verse vertex vanishes in the Landau gauge. (3.12

ais(k,p)
k2p2 !
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where Conacyt grants under Projects Nos. 4.12 and 32395-E, re-

spectively.

1(1%) 1 1(12)

bia(k,p)=aia(k,p) —5=+aiz(k,p) + S ais(k,p) 5= APPENDIX
1(1%) (1%
(3.13 The results of the integrals listed in EqR.16 are as
follows:
0).
1(13) 1 1(12) 30

bio(K,p)=ai(k,p) —-+ajs(k,p)+ 5 a.s( P)—-

1(1%) 103 2)( 75X
(3.14 Jo=| — mkp)| 5= + k)| 5= | |, (AD)
This form can now be raised to a nonperturbative level exyjith
actly as before, with the only difference that the functiéns
andM are independent of the angle between the momlenta m2(k?—p?)(2m?—k2—p?) + x
andp: 71(K,p)=— T :
x(me—k?)
2 2 2
2bj; (K, p) &’ 3 M(k7) =—
:gi{z ( ! . 2J — 21 ~m 72(K,p) 71(P,K),
x=m?(k?=p?)+g*(k?—m?)(p?—m?).
1 (A2)
F(sz) K (0)-
N 2a;6(k,p) KO =iz2l(q%4). (A3)
gkHm—(m?+p?)1(pH)}—p*m—(M*+kA)I(K)H .
o
X ! - ! (3.19 i w2
Fkd) F(pd)l|’ ' I =—-{kuJa(k.p) +p,Js(k.p)}, (A%)
where k¥=k? and k3= p?. where
2 Jo
IV. CONCLUSIONS Ja(k,p)=— 7 [p2(k2—k-p)—m2(p2—k- Pl

In this paper, we calculate the one-loop fermion-boson

vertex in QER in an arbitrary covariant gauge and write out 5 N P )

the result in a form that naturally allows us to construct its +tk-p (k%) —pl(p9)+ E(p —k-p)I(a*/4)
nonperturbative counterpart. This is the first construction of

the nonperturbative vertex, which agrees with its Feynman j_(k p)=J,(p,k). (A5)

expansion in the weak-coupling regime at the one-loop level

in all momentum regimes and in an arbitrary covariant){?:

gauge. For practical numerical purposes, we also suggest a

simple effective vertex that shifts its angular dependence 2)_ [g,w
(angle between the incoming and outgoing fermion mo- “wv— 2 | 3
menta from the fermion functions to the known basic func-

tions of the momenta involved, without affecting its pertur- 2Kk-p
bative properties at the one-loop level. Currently, work is “9w T3
underway to use this vertex in numerical calculations of dy-

namical mass generation for the fundamental fermions. Wavhere

also plan to compare its gauge dependence with the one de-

manded by its Landau-Khalatnikov transformatj@,2§ in _ 1 ’ ) ) ) Ja
a nonperturbative fashion. Jc(k!p)—P [p“(k-p—2k%)—m(k-p—2p) 7>

2

Ko+ | kuk,— gMV Jet | puk,+Kk,p,

p2
JD+( p,upv_g,uvg

‘] E] ’ (AG)
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k)= 51 [K?(3k-p—p?) —m?(3k-p— kz)]—

J
+[p2<3k.p—k2>—m2(3k-p—p2>]§
—(m?=k?)I(k?) — (m?*=p?)1 (p?)

1
—§(k+p)2|(q2/4)+2m ,
Je(k,p)=Jc(p.K). (A7)
1€0);
1 .
I(°)=;{q2(m2+k-p)J(°)+|7-r2mL}, (A8)
where
| 90— m?) — (- (k4 m?)
(k2_m2)2
2 2_m2 + k2_ 2 2+m2
9 (p )+ (k“=p9)(p )_ (A9)
(p?—m?)?
1.
1
o i 772
where
2 | J
Ia(k,p) =5 | [k p(p?=m?) = p2(K*=m) I+ p- 0
mp? mk- p
(m2_p2)2 (m2_k2)2 !
Ig(k,p)=1a(p,K). (A11)
2).
12
Uur k?
I(2) 5 { ’3‘ J0+(kﬂky—g,”§ lct+| p.K,+K.P,
2k-p p?
_g;.wT ID+ p/.LpI/_g,u.V? IE ’ (A].Z)
where

PHYSICAL REVIEW B4 105001

1 I
lo(k,p)= p{ p2Jo+ [p?(k-p—2k) ~m?(k-p—2p*)}5

Ig J
—pA(p?=m?)5 + (k- p- 2p2) -p?%
K- mk-
__p|(k2)+—p ,
k2 k2(m2_k2)

1
Io(k,p)= ﬁ{ —2k-p Jo+[K3(3k-p—p?)—m?(3k-p

I I
—k) 5 +[PA(3k- p—k?) ~mE(3k- p—p?) 55

+(3k-p— k2)—+(3k p— p) +I(k2)
2 m m
LR o[
le(k,p)=lc(p,k). (A13)

The coefficients;; in the one-loop perturbative expansion of

the 7, Eq.(2.19, are tabulated below:
ay(k,p)=—(£+2) pi(m*+k-p),
ara(k,p)=au(p,k),

(k*+k-p)
als(kip):4(§+2)m,

ay(k,p)=ass(p,k),
—2(&+2),

a;e(k,p)=0,

ais(k,p)=

2
ax(k,p)=-— 7]1”‘ q?m“"‘{(k' p)2—(k2+p?)(k-p)

(-1

22 2
+kptm 2x

q2
- (ke p)2+K2p2 |+

—q*'m®—qg*{(k-p)*+2(k*+p?)k-p

3
—5k?p?tmb+ qu(k2+ p?)A2m*+{2(k*+ p*
+k?p?)(k- p)3—7k?p?(k?+ p?) (k- p)?

1
+ 1G(4p4k p_ k4p4( k2+ pZ)}m2+ §k2p2q2{(k2

+p?) (k- p)?—4k?pk- p+kZp?(k2+ pz)}H,

105001-7
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az(k,p)=ay(p,k),

aa(k,p)= [£{(k-p)3+K3(k-p)2—3k?p?k-p

(k2= p?)
+2k*k- p+k*p?—2k8 m?/k2+ (k- p) 3+ (2k?
—p?) (k- p)2+k?pk- p—2k*k- p—k?p*+ (£
—1){(k-p)3+ p?(k- p)2—3k2p%k- p+2k*k- p
+k%p*—2k*p3],

ax(K,p)=az(p.k),

aps(k,p)=q*(m?*+k-p)+ (= 1)[g°m*+ (k- p)?
—(k*+p?)k- p+k?p?],

(6— )

ay(k,p)=mA?% k-p+ ———[%k- pm*+2(k?+ p?) A’m?

—k?p{2(k-p)2+ (K*+ p?)k- p—4k?p?}] |,

ag(k,p)=— %[ {{—Z(K p)2+ K4+ pim?+2{(k?+ p?)

X (k- p)2+(k?—p?)%k- p—k?p?(k*+ p?)}m?
+ %{—4(k- p)*+ (k2 +p?)?(k-p)?

+ k2p2(k2 2)2}

1) 2 2
" [ {-2(k-p)

+kA+ pmB+ 2{(k?+ p?)[ —2(k- p)*+ (K

+p?)(k-p)2+ (k*+ p*k- p]— k2p2(3k*+ 3p*
3

_2k2p2)}m6_ EqZAZ(k2_p2)2rn4_2{(k2

+p2)(k4+ p4—4k2p?) (k- p)3—k2p2(k*+ p*

_ 6k2p2)(k~ p)2+ 2k4p4(k2+ pZ)k p— k4p4(k2

1
+p?)?m?— 5 k*p?q*{(k*+p*- 6k*p?) (k- p)?
+k?p?(k?+ pz)z}“,

az(Kk,p) =azi(p,k),

aga(k,p)=&{(k-p)°—k?(k-p)*—3k*p’k- p+2k*k-p
—k*p®+2k®tm?/k>+ (- 2){(k- p)®— (2K
—p?)(k-p)?+k*p?k- p—2k*k- p+k?p},

azq(k,p)=azs(k,p),
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ags(k,p) = — (k*+ p*=2(k-p)?)[Em*+ (- 2)k-p],

-1
k-p(k?+p?) + 2k?p?+ —(gx )

agg(k,p)=—mA? [a*{(K*

+p?)k- p+2k?p?tm*+ 2(k%+ p?)?A2m?
—k?p?(k+p)*{(K*+p?)k-p— 2k2p2}]] :

(k —pz)

ag(k,p)=—n.(£-1) [ q*me+3g*{—(k?

+p?)k-p+ 2k2p2}m4+{(k' p)’l4(k-p)>—3k*
—3p*—26k%p?] + k?p?[24(K*+ p? k- p— 3K*

m2 q2
—3p* - 14Cp]} - + S {(K¥+p?) (k- p)°

+2k?p?(k- p)?—3k?p?(k?+ p?)k- p+2k*p}|,

a(k,p)=—az(p,k),
(é-1)
k2

+k?(2k?—3p?)k-p

aus(k,p)=

+k4(p2—2k?)],
ag(K,p)=—ay(p,k),

a45(k,p)=(§—1)(k2— pz)qzi
2

aze(k,p)=m(&—1)(k?— pz)AY[qzk- pm?+2(k?+ p?)

X (K- p)2—2k?p?k- p—k?p?(k?+p?)],

(%- )

A%+

asy(k,p)=—mn1 [ —2g*mP+ 603 2k2p2— (k2
+p?k- pym* —6k2p q*m*—g*{(k*
_p2)2(k. p)2+ 2k2p2(k2+p2)k~ p_k2p2(k2
+p2)2}]],

asy(k,p) =asi(p,k),

(§—1)
k2

asy(k,p)= [(k-p)?+2K*k-p—k*(2k*+p?)],

a4k, p)=as3z(p,k),
ass(k,p)=(£—1)0?,
AZ
asg(k,p)=—m(é— 1)7[q2(k2+ p?)m?+2(k*+phk-p

—2Kk?p?(K*+p?)],
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(k*=p?)
agi(K,p)=—1m1 >

[qzm“—Z{(k- p)2—(k*+p?)k-p
2
+k2p2me+ - {(k-p)+Kp?)

206
+Q(§ 1)

a’m®+2{(k-p)?*+ (k*+p*)k-p
2~21 16 3 2A2mM4 2 2 3

—3kpTim°— 5 q"Am" = 2{(k"+ p)(k-p)
242 2 4nA m2 1 212+2 2

—kp?(k-p)*=K'pTim = Skp g (k-p)

+k2p2}”,
aGZ(klp): _a61(p,k),
agak,p)=—[&{(k*+K-p) (k- p)?+k?(2k*—3p?)k-p
—k*(2k?—p?)tm?/k?+ (- 2){(2k?*—p?+ k- p)
X (k-p)2—k?(2k?—p?)k- p—k?p*}],
aga(K,p) = —ag3(p,k),
ags(k,p)=—g*(kK*—p?)[£m*—(£-2)k-p],
(6-1)
X

aee(k,p)=—m(k2—|02)A2[k-|o+ (g%k-pm*

+2(k?*+ p?) A%m? —k?p?qk- p)},

- m(é-1)
4x

—k?p?tm*—3g*{[ (k- p)?+k?*p?](k*+ p*

+6k?p?) — 8k2p?(k?+ p?)k- p}m?

an(k,p)= [—29°m°—6q*{(k?+p?)(k-p)

PHYSICAL REVIEW B4 105001
+g%{(k?=p?)?(k- p)3+4k?p?(k?+p?) (k- p)?
—k?p?(3k*+3p*+ 10k%p?)k- p+ 4k*p*(k?
+p?),
az(k,p)=az(p.k),

(k®—k-p)
2

ark.p) = (6-1) —— 5 L(k-p)+4k%k p— 2k’
—3k?p?],

az4(k,p)=azy(p,k),

ars(k,p)=(£-1)q*,

2
azg(k,p)=m(£—-1) A7[(12{(k2+ p?)k-p—2k?p?tm?+2(k*

+ph) (k- p)2—4k3p?(K2+ p?)k- p—k?p?(k*+p*
—6k?p?)],

(£+2)
2

agi(K,p)=—m g?(m?+k-p),

ag(k,p)=ag(p.k),
agy(k,p)=2(£+2)k-q,
aga(k,p)=agy(p,k),
ags(k,p)=—(£+2)9?,

age( k, p) =0. (A14)
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