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Constructing the fermion-boson vertex in three-dimensional QED

A. Bashir and A. Raya
Instituto de Fı´sica y Matema´ticas, Universidad Michoacana de San Nicola´s de Hidalgo, Apartado Postal 2-82, Morelia,

Michoacán 58040, Me´xico
~Received 29 March 2001; published 28 September 2001!

We derive perturbative constraints on the transverse part of the fermion-boson vertex in massive three-
dimensional QED through its one-loop evaluation in an arbitrary covariant gauge. Written in a particular form,
these constraints naturally lead us to the first nonperturbative construction of the vertex, which is in complete
agreement with its one-loop expansion in all momentum regimes. Without affecting its one-loop perturbative
properties, we also construct an effective vertex in such a way that the unknown functions defining it have no
dependence on the angle between the incoming and outgoing fermion momenta. Such a vertex should be useful
for the numerical study of dynamical chiral symmetry breaking, leading to more reliable results.
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I. INTRODUCTION

Quantum electrodynamics in three dimensions (QED3) is
an attractive model to study the intricacies of Schwing
Dyson equations~SDE’s!. Because of its simplicity as com
pared to quantum electrodynamics in four dimensio
(QED4) and quantum chromodynamics~QCD!, the corre-
sponding study of dynamical symmetry breaking is relativ
neater in QED3. There exist numerous works in this conne
tion, e.g.,@1–14#. An excellent review can be found in Re
@15#. As is well known, the knowledge of the three-poi
vertex is crucial in such studies. In this respect, perturba
theory is a powerful point of reference as it is natural
believe that physically meaningful solutions of th
Schwinger-Dyson equations must agree with perturbative
sults in the weak-coupling regime. This realization has b
exploited in Refs.@16–19# to derive constraints on the fer
mion propagator and the three-point vertex in mass
QED3. In this paper, we extend this work to the more gene
massive case, based on Ref.@20#.

The Ward-Takahashi identity~WTI! relates the three-poin
vertex to the fermion propagator. Using this relation, a p
of the vertex, called longitudinal, can be expressed in te
of the fermion propagator@21#. We evaluate this propagato
to one-loop and hence determine the longitudinal vertex
the same order. We also calculate the complete verte
one-loop and a mere subtraction of the longitudinal p
yields the transverse part, the one which is not fixed by
WTI. According to the choice of Ball and Chiu, which wa
later modified by Kızılersu¨, Reenders, and Pennington@22#,
the transverse vertex can be expressed in terms of eigh
dependent spin structures. The vertex should be free of
kinematic singularities. Ball and Chiu chose the basis in s
a way that the coefficient of each of the basis is indep
dently free of kinematic singularities in the Feynman gau
It was later shown by Kızılersu¨, Reenders, and Penningto
@22# that a calculation similar to that of Ball and Chiu in a
arbitrary covariant gauge does not have the same nice
ture. Therefore, they proposed a modified basis whose c
ficients are free of kinematic singularities in an arbitrary c
variant gauge. The calculation in the present paper confi
that all the vectors of the modified basis also retain this f
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ture for massive QED3. The final result for the transvers
vertex is written in terms of basic functions of the momen
in a form suitable for its extension to the nonperturbat
domain, following the ideas of Curtis and Pennington@23#.

Using perturbative constraints as a guide, we carry ou
construction of the nonperturbative vertex, which has no
plicit dependence on the couplinga. This vertex has an ex
plicit dependence on the gauge parameterj. We demonstrate
in the massless case that a vertex cannot be constructed
out an explicit dependence onj. For practical purposes o
the numerical study of dynamical chiral symmetry breakin
we also construct an effective vertex that shifts the angu
dependence from the unknown fermion propagator functi
to the known basic functions, without changing its perturb
tive properties at the one-loop level. We believe that t
vertex should lead to a more realistic study of the dyna
cally generated masses through the corresponding SDE’

II. LONGITUDINAL AND TRANSVERSE VERTEX
TO ONE LOOP

A. The fermion propagator

One-loop fermion propagator can be obtained by evalu
ing the graph in Fig. 1. This graph corresponds to the f
lowing equation:

iSF
21~p!5 iSF

0 21~p!1e2E d3k

~2p!3
gmSF

0~k!gnDmn
0 ~q!,

~2.1!

where q5k2p and e is the QED coupling constant. Th
bare fermion and photon propagators are, respectively,

SF
0~p!5

1

p”2m
,

FIG. 1. One-loop correction to the fermion propagator.
©2001 The American Physical Society01-1
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Dmn
0 ~q!52@q2gmn1~j21!qmqn#/q4, ~2.2!

wherem is the bare mass of the fermion andj is the cova-
riant gauge parameter. We define the full fermion propaga
SF(p) in the most general form as

SF~p!5
F~p2!

p”2M~p2!
. ~2.3!

Taking the trace of Eq.~2.1!, having multiplied it withp” and
with 1, respectively, one can obtain two independent eq
tions. On simplifying, these equations can be written as

1

F~p2!
511 i4paj

1

p2E d3k

~2p!3

1

q4~k22m2!
@~k21p2!k•p

22k2p2#, ~2.4!

M~p2!

F~p2!
5m2 i4pa~j12!E d3k

~2p!3

m

q2~k22m2!
,

~2.5!

wherea5e2/4p. On Wick rotating to the Euclidean spac
and carrying out angular and radial integrations, we arrive

1

F~p2!
512

aj

2p2
@m2~m21p2!I ~p2!#,

M~p2!

F~p2!
5m@11a~j12!I ~p2!#, ~2.6!

where we have used the simplifying notationI (p2)
5(1/A2p2)arctanA2p2/m2. Equations~2.3! and~2.6! form
the complete fermion propagator at one loop.

B. Longitudinal vertex to one loop

The full vertex satisfies WTI:

qmGm~k,p!5SF
21~k!2SF

21~p!. ~2.7!

This relation allows us to decompose the full vertex in
longitudinal @GL

m(k,p)# and transverse@GT
m(k,p)# parts:

Gm~k,p!5GL
m~k,p!1GT

m~k,p!, ~2.8!

where the transverse part satisfies

qmGT
m~k,p!50 and GT

m~p,p!50 ~2.9!

and hence remains undetermined by WTI. Following
work of Ball and Chiu, we can define the longitudinal com
ponent of the vertex in terms of the fermion propagator a
10500
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GL
m5

gm

2 F 1

F~k2!
1

1

F~p2!
G1

1

2

~k”1p” !~k1p!m

~k22p2!
F 1

F~k2!

2
1

F~p2!
G1

~k1p!m

~k22p2!
FM~k2!

F~k2!
2

M~p2!

F~p2!
G . ~2.10!

On substituting Eq.~2.6! into the above expression, we ob
tain

GL
m5F11

aj

4
s1Ggm1

aj

4
s2@kmk”1pmp”1kmp”1pmk” #

1a~j12!s3@km1pm#, ~2.11!

where

s15
m21k2

k2
I ~k2!1

m21p2

p2
I ~p2!2m

k21p2

k2p2
,

s25
1

k22p2 Fm21k2

k2
I ~k2!2

m21p2

p2
I ~p2!

1m
k22p2

k2p2 G ,

s35m@ I ~k2!2I ~p2!#. ~2.12!

Equations~2.11! and ~2.12! give the longitudinal part of the
fermion-photon vertex to one loop for the massive QED3.

C. Transverse vertex to one loop

The vertex of Fig. 2 can be expressed as

Gm~k,p!5gm1Lm. ~2.13!

Using the Feynman rules,Lm to O(a) is simply given by

2 ieLm5E
M

d3w

~2 p!3
~2 iega!iSF

0~p2w!~2 iegm!

3 iSF
0~k2w!~2 iegb!iDab

0 ~w!, ~2.14!

where the loop integral is to be performed in Minkows
space.Lm can be expressed as

FIG. 2. One-loop correction to the vertex.
1-2
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Lm52
i a

2 p2
$@gap”gmk”ga1m~4km14pm2p”gm2gmk” !

2m2gm#J(0)2@gap”gmgnga1gagngmk”ga

16mgmn#Jn
(1)1gagngmglgaJnl

(2)1~j21!@gmK (0)

2@gnp”gm1gmk”gn12mgmn#Jn
(1)1@gnp”gmk”gl

1m~gnp”gmgl1gngmk”gl!1m2gngmgl#I nl
(2)#%,

~2.15!

where the integralsK (0), J(0), Jm
(1) , Jmn

(2) , I (0), I m
(1) , andI mn

(2)

are

K (0)5E
M

d3w
1

@~p2w!22m2#@~k2w!22m2#
,

J(0)5E
M

d3w
1

w2@~p2w!22m2#@~k2w!22m2#
,

Jm
(1)5E

M
d3w

wm

w2@~p2w!22m2#@~k2w!22m2#
,

Jmn
(2)5E

M
d3w

wmwn

w2@~p2w!22m2#@~k2w!22m2#
,

I (0)5E
M

d3w
1

w4@~p2w!22m2#@~k2w!22m2#
,

I m
(1)5E

M
d3w

wm

w4@~p2w!22m2#@~k2w!22m2#
,

I mn
(2)5E

M
d3w

wmwn

w4@~p2w!22m2#@~k2w!22m2#
.

~2.16!

We evaluate these integrals following the techniques de
oped in Refs.@16,17,21#, and@22#. The results are tabulate
in the Appendix, employing the notationD25(k•p)2

2k2p2 and X05(2/ip2)X(0) for X5I ,J,K. Having calcu-
lated the vertex toO(a), Eq. ~2.15!, we can subtract from it
the longitudinal vertex, Eqs.~2.11! and~2.12!, and obtain the
transverse vertex toO(a). Following the scheme provide
by Ball and Chiu@21#, and modified later by Kızılersu¨, Re-
enders, and Pennington@22#, the transverse vertexGT

m(k,p)
can be written in terms of eight basis vectors as follows:

GT
m~k,p!5(

i 51

8

t i~k2,p2,q2!Ti
m~k,p!, ~2.17!

where
10500
l-

T1
m5@pm~k•q!2km~p•q!#,

T2
m5@pm~k•q!2km~p•q!#~k”1p” !,

T3
m5q2gm2qmq” ,

T4
m5q2@gm~k”1p” !2km2pm#22~k2p!mklpnsln ,

T5
m5qnsnm,

T6
m52gm~k22p2!1~k1p!mq” ,

T7
m52 1

2 ~k22p2!@gm~k”1p” !2km2pm#

1~k1p!mklpnsln ,

T8
m52gmknplsnl1kmp”2pmk” ,

with

smn5 1
2 @gm ,gn#. ~2.18!

After a lengthy but straightforward algebra, the coefficien
t i can be identified. We prefer to write these out in the f
lowing form:

t i~k,p!5agiF (
j 51

5

ai j ~k,p!I ~ l j
2!1

ai6~k,p!

k2p2 G ,

i 51,2, . . . 8, ~2.19!

where l 1
25h1

2x/4, l 2
25h2

2x/4, l 3
25k2, l 4

25p2, and l 5
25q2/4.

The functionsh1 , h2, and x have been defined in th
Appendix, Eqs. ~A2!. Similarly, the factors gi are
2 g1 5 mD2g2 5 2mD2g3 5 2D2g4 5 g5 5 2mD2g6 5 D2g7
5mg85m/4D2. The coefficientsai j (k,p) have also been
tabulated in the Appendix, Eqs.~A14!. An important point to
note is that these coefficients do not contain any trigonom
ric function, as it has been extracted out for raising thet i to
a nonperturbative status. Thet i have the required symmetr
under the exchange of vectorsk and p. All the t i are sym-
metric exceptt4 andt6, which are antisymmetric. Note tha
the form in which we write the transverse vertex makes
clear that each term in all thet i is either proportional to
aI ( l 2) or a/(k2p2). We shall see that this form provides u
with a natural scheme to arrive at its simple nonperturba
extension.

A few comments in comparison with the work by Dav
dychevet al. @24#, are as follows:~i! None of thet i we have
calculated has kinematic singularity whenk2→p2. This
clearly suggests that the choice of thet i suggested by Kız-
ılersü, Reenders, and Pennington is preferred over the on
Ball and Chiu~in QED3 as well! used by Davydychevet al.
@24#. In particular, ourt4 and t7 are independent of kine
matic singularities.~ii ! In three dimensions, their factoriza
tion of the common constant factor in Eq.~E 1! is singular.
However, as the divergences completely cancel out, we
our expressions more suitable for writing the transverse v
1-3
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tex in three dimensions.~iii ! With the way we expressJ0, all
the t i are written in terms of basic functions ofk andp and
a single trigonometric function of the formI ( l 2). This form
plays a key role to enable us to make an easy transition to
possible nonperturbative structure of the vertex, as expla
in Sec. III. Moreover, with the given form ofJ0, a direct
comparison can be made with the massless case.

III. NONPERTURBATIVE FORM OF THE VERTEX

A. On the gauge parameter dependence of the vertex

Let us first look at thet i in the simplified massless cas
with the notation k5A2k2, p5A2p2, and q5A2q2

@16,17#,

t25
ap

4

1

kp~k1p!~k1p1q!2 F11~j21!
2k12p1q

q G ,
~3.1!

t35
ap

8

1

kpq~k1p1q!2
@4kp13kq13pq12q2

1~j21!~2k212p21kq1pq!#, ~3.2!

t65
ap~22j!

8

k2p

kp~k1p1q!2
, ~3.3!

t85
ap~21j!

2

1

kp~k1p1q!
. ~3.4!

It is interesting to note that the existence of the factor

k2p

kp
52S 1

k
2

1

pD
in Eq. ~3.3! putst6 on a different footing as compared to th
rest of thet i . The reason is that in the massless limit, t
fermion propagator is simply

1

F~p2!
511

paj

4

1

p
,

implying

1

F~k2!
2

1

F~p2!
}F1

k
2

1

pG .
Therefore, the relation oft6 with the fermion propagator o
the type@1/F(k2)21/F(p2)# seems to arise rather naturall

t652
1

2j

22j

~k1p1q!2 F 1

F~k2!
2

1

F~p2!
G , ~3.5!

as noticed first by Curtis and Pennington@23#. In the rest of
the t i , the factor 1/k21/p does not arise. However, on
could introduce it by hand to arrive at the following expre
sions:
10500
he
ed

-

t252
1

j

1

~k22p2!~k1p1q!2 S 11~j21!
2k12p1q

q D
3F 1

F~k2!
2

1

F~p2!
G , ~3.6!

t352
1

2j

1

q~k2p!~k1p1q!2
@4kp13kq13pq12q2

1~j21!~2k212p21kq1pq!#F 1

F~k2!
2

1

F~p2!
G ,

~3.7!

t852
2~21j!

j

1

~k2p!~k1p1q! F 1

F~k2!
2

1

F~p2!
G .

~3.8!

Equations ~3.5!–~3.8! represent a nonperturbative verte
which is in agreement with its complete one-loop expansi
This vertex has been constructed in accordance with the f
advocated, e.g., in Refs.@2,23,25#. There are a couple o
important points which need to be discussed here.

There is an explicit dependence on the gauge parametj.
A widespread practice has been to construct the vertex s
that its gauge dependence solely arises through funct
F(k2) andF(p2), and there isno explicit appearance of the
gauge parameterj @2,3,10,23#. Here we show that at least i
massless QED3, such a construction is not possible. In th
connection, it may be interesting to observe that~i! the work
of Bashir and Pennington@25# for QED4 gives one example
of an explicitly gauge dependent vertex ensuring the ga
invariance of the critical coupling, above which chiral sym
metry is dynamically broken;~ii ! the work of Burden and
Tjiang @10# contains a vertexansatzin QED3 consisting of a
free parameterb, believed by the authors to be independe
of the gauge parameter. The perturbative work of Bas
et al. @17# later proved that thisb must be explicitly depen-
dent upon the gauge parameter.

The one-loop calculation of the vertexGm(k,p) in QED4

for k2@p2 reveals that its transverse part vanishes in
Landau gauge@23#. Motivated from this observation, Curti
and Pennington@23#, followed by several others@3,10,25#,
proposed anansatzfor nonperturbativeGT

m(k,p) such that it
vanishes forj50. Later, a complete one-loop calculatio
revealed thatGT

m(k,p)Þ0 in the Landau gauge@22#. Accord-
ingly, in a subsequent work, Bashiret al. removed the previ-
ously made assumption and presented the most general
perturbative construction of the transverse vertex required
the multiplicative renormalizability of the fermion propag
tor in QED4 @26#. A parallel one-loop calculation in QED3
@16,17# yields identical results, i.e.,GT

m(k,p)Þ0 for
1-4
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CONSTRUCTING THE FERMION-BOSON VERTEX IN . . . PHYSICAL REVIEW D64 105001
j50. Therefore, the corresponding nonperturbative struc
of the form @1/F(k2)21/F(p2)# is not what we should aim
for.1

We now show that the explicit dependence of the ver
on the gauge parameterj is unavoidable in massless QED3.
We notice that at the one-loop level, each of thet i can be
written as

t i~k,p,q!5aj ai~k,p,q!1a bi~k,p,q!.

On the other hand, Eq.~2.6! yields the following form forF:

1

F~p2!
511aj ci~p!.

If we want to write the nonperturbative form of thet i in
terms of 1/F(p2) and 1/F(k2) alone and we do not expect a
explicit presence ofa, the only way to get rid ofj depen-
dence is to have

b2T2
m1b3T3

m1b6T6
m1b8T8

m50.

It is not possible asTi
m form a linearly independent set o

basis vectors. Therefore, any construction of the three-p
vertex will surely have an explicit dependence on the ga
parameter. Owing to these reasons, we emphasize th
demand the transverse vertex to be proportional
@1/F(k2)21/F(p2)# is artificial ~apart fromt6) and is not
required, as remarked earlier. Therefore, we do not pur
this line of action anymore. In the next section, we move
to construct the vertex for the massive case inspired from
perturbative results.

B. Nonperturbative vertex

As pointed out in the previous section, each term in all
t i is either proportional to the trigonometric functionaI ( l 2)
or a/(k2p2). On the other hand, the perturbative expressi
for M(p2) andF(p2), Eqs.~2.6!, permit us to write

1

F~k2!
2

1

F~p2!
5

a

k2p2

j

2
@k2$m2~m21p2!I ~p2!%

2p2$m2~m21k2!I ~k2!%# ~3.9!

and

j

2~21j!l 2I ~ l 2!
FM~ l 2!

F~ l 2!
2mG2F12

1

F~ l 2!
G

5
j~m21 l 2!

2l 2
aI ~ l 2!. ~3.10!

1In fact the explicit presence of the gauge parameter in the n
perturbative form of the vertex tells us that the presence of
factor @1/F(k2)21/F(p2)# is no longer a guarantee that the tran
verse vertex vanishes in the Landau gauge.
10500
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In the massless limit, Eq.~3.9! simply reduces to

1

F~k2!
2

1

F~p2!
5

apj

4 F1

k
2

1

pG
in the Euclidean space, as expected. It was in fact an an
gous massless expression in the limit whenk@p that in-
spired Curtis and Pennington@23#, to propose their famous
vertex in QED4. Here, we are extending the reasoning to
the momentum regimes in the massive QED3. Fortunate si-
multaneous occurrence of the factora/(k2p2) in all eight
equations~2.19! and ~3.9!, and the presence of the sam
trigonometric factorI ( l 2) in the expressions for the vertex a
well as the propagator, one naturally arrives at the follow
nonperturbative form oft i :

t i5giH (
j 51

5 S 2ai j ~k,p!l j
2

j~m21 l j
2!

F j

2~j12!l j
2I ~ l j

2!
S M~ l j

2!

F~ l j
2!

2mD
2S 12

1

F~ l j
2!
D G D

1
2ai6~k,p!

j@k2$m2~m21p2!I ~p2!%2p2$m2~m21k2!I ~k2!%#

3F 1

F~k2!
2

1

F~p2!
G J . ~3.11!

By construction, in the weak-coupling regime, this nonp
turbative form of the transverse vertex reduces to its co
sponding Feynman expansion at the one-loop level in
arbitrary covariant gauge and in all momentum regimes.
would like to emphasize that this is not a unique nonpert
bative construction. However, it is probably the most natu
and the simplest. A two-loop calculation similar to the o
presented in our paper, and the Landau-Khalatnikov trans
mation law for the vertex should serve as tests of Eq.~3.11!
or guides for improvement towards the hunt for the ex
nonperturbative vertex. On practical side, the use of our p
turbation theory motivated vertex in studies addressing
portant issues such as dynamical mass generation for fu
mental fermions, should lead to more reliable resu
attempting to preserve key features of gauge-field theor
e.g., gauge independence of physical observables. A com
tational difficulty to use the above vertex in such calcu
tions, could arise as the unknown functionsF andM depend
on the angle betweenk andp. This would make it impossible
to carry out angular integration analytically in the SDE f
the fermion propagator. This problem can be circumven
by defining an effective vertex that shifts the angular dep
dence from the unknown functionsF andM to the known
basic functions ofk andp. This can be done by rewriting th
perturbative results, Eq.~2.19!, as follows:

t i~k,p!5agiFbi1~k,p!I ~k2!1bi2~k,p!I ~p2!1
ai6~k,p!

k2p2 G ,

~3.12!

n-
e

1-5
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A. BASHIR AND A. RAYA PHYSICAL REVIEW D 64 105001
where

bi1~k,p!5ai1~k,p!
I ~ l 1

2!

I ~ l 3
2!

1ai3~k,p!1
1

2
ai5~k,p!

I ~ l 5
2!

I ~ l 3
2!

,

~3.13!

bi2~k,p!5ai2~k,p!
I ~ l 2

2!

I ~ l 4
2!

1ai4~k,p!1
1

2
ai5~k,p!

I ~ l 5
2!

I ~ l 4
2!

.

~3.14!

This form can now be raised to a nonperturbative level
actly as before, with the only difference that the functionsF
andM are independent of the angle between the momenk
andp:

t i5giH (
j 51

2 S 2bi j ~k,p!k j
2

j~m21k j
2!

F j

2~j12!k j
2I ~k j

2!
S M~k j

2!

F~k j
2!

2mD
2S 12

1

F~k j
2!
D G D

1
2ai6~k,p!

j@k2$m2~m21p2!I ~p2!%2p2$m2~m21k2!I ~k2!%#

3F 1

F~k2!
2

1

F~p2!
G J , ~3.15!

wherek1
25k2 andk2

25p2.

IV. CONCLUSIONS

In this paper, we calculate the one-loop fermion-bos
vertex in QED3 in an arbitrary covariant gauge and write o
the result in a form that naturally allows us to construct
nonperturbative counterpart. This is the first construction
the nonperturbative vertex, which agrees with its Feynm
expansion in the weak-coupling regime at the one-loop le
in all momentum regimes and in an arbitrary covaria
gauge. For practical numerical purposes, we also sugge
simple effective vertex that shifts its angular depende
~angle between the incoming and outgoing fermion m
menta! from the fermion functions to the known basic fun
tions of the momenta involved, without affecting its pertu
bative properties at the one-loop level. Currently, work
underway to use this vertex in numerical calculations of
namical mass generation for the fundamental fermions.
also plan to compare its gauge dependence with the one
manded by its Landau-Khalatnikov transformation@27,28# in
a nonperturbative fashion.
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APPENDIX

The results of the integrals listed in Eqs.~2.16! are as
follows:
J(0):

J05F2h1~k,p!I S h1
2x

4 D 1h2~k,p!I S h2
2x

4 D G , ~A1!

with

h1~k,p!52H m2~k22p2!~2m22k22p2!1x

x~m22k2!
J ,

h2~k,p!52h1~p,k!,

x5m2~k22p2!21q2~k22m2!~p22m2!.
~A2!

K (0):

K (0)5 ip2I ~q2/4!. ~A3!

Jm
(1) :

Jm
(1)5

ip2

2
$kmJA~k,p!1pmJB~k,p!%, ~A4!

where

JA~k,p!52
2

D2 H @p2~k22k•p!2m2~p22k•p!#
J0

4

1k•p I~k2!2p2I ~p2!1
1

2
~p22k•p!I ~q2/4!J ,

JB~k,p!5JA~p,k!. ~A5!

Jmn
(2) :

Jmn
(2)5

ip2

2 H gmn

3
K01S kmkn2gmn

k2

3 D JC1S pmkn1kmpn

2gmn

2k•p

3 D JD1S pmpn2gmn

p2

3 D JEJ , ~A6!

where

JC~k,p!5
1

D2 H @p2~k•p22k2!2m2~k•p22p2!#
JA

2

2p2~p22m2!
JB

2
1

k•p

k2
~m22k2!I ~k2!

1
1

2
~k•p1p2!I ~q2/4!2m

k•p

k2 J ,
1-6
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JD~k,p!5
1

2D2 H @k2~3k•p2p2!2m2~3k•p2k2!#
JA

2

1@p2~3k•p2k2!2m2~3k•p2p2!#
JB

2

2~m22k2!I ~k2!2~m22p2!I ~p2!

2
1

2
~k1p!2I ~q2/4!12mJ ,

JE~k,p!5JC~p,k!. ~A7!

I (0):

I (0)5
1

x
$q2~m21k•p!J(0)1 ip2mL%, ~A8!

where

L5
q2~k22m2!2~k22p2!~k21m2!

~k22m2!2

1
q2~p22m2!1~k22p2!~p21m2!

~p22m2!2
. ~A9!

Im
(1) :

I m
(1)5

ip2

2
@kmI A~k,p!1pmI B~k,p!#, ~A10!

where

I A~k,p!5
2

D2 H @k•p~p22m2!2p2~k22m2!#
I 0

4
1p•q

J0

4

1
mp2

~m22p2!2
2

mk•p

~m22k2!2J ,

I B~k,p!5I A~p,k!. ~A11!

Imn
(2) :

I mn
(2)5

ip2

2 H gmn

3
J01S kmkn2gmn

k2

3 D I C1S pmkn1kmpn

2gmn

2k•p

3 D I D1S pmpn2gmn

p2

3 D I EJ , ~A12!

where
10500
I C~k,p!5
1

D2 H p2J01@p2~k•p22k2!2m2~k•p22p2!#
I A

2

2p2~p22m2!
I B

2
1~k•p22p2!

JA

2
2p2

JB

2

2
k•p

k2
I ~k2!1

mk•p

k2~m22k2!
J ,

I D~k,p!5
1

2D2 H 22k•p J01@k2~3k•p2p2!2m2~3k•p

2k2!#
I A

2
1@p2~3k•p2k2!2m2~3k•p2p2!#

I B

2

1~3k•p2k2!
JA

2
1~3k•p2p2!

JB

2
1I ~k2!

1I ~p2!2
m

m22k2
2

m

m22p2J ,

I E~k,p!5I C~p,k!. ~A13!

The coefficientsai j in the one-loop perturbative expansion
the t i , Eq. ~2.19!, are tabulated below:

a11~k,p!52~j12!h1~m21k•p!,

a12~k,p!5a11~p,k!,

a13~k,p!54~j12!
~k21k•p!

~k22p2!
,

a14~k,p!5a13~p,k!,

a15~k,p!522~j12!,

a16~k,p!50,

a21~k,p!52h1H F2
q2

2
m41$~k•p!22~k21p2!~k•p!

1k2p2%m22
q2

4
$~k•p!21k2p2%G1

~j21!

2x

3F2q4m82q2$~k•p!212~k21p2!k•p

25k2p2%m61
3

2
q2~k21p2!D2m41$2~k41p4

1k2p2!~k•p!327k2p2~k21p2!~k•p!2

110k4p4k•p2k4p4~k21p2!%m21
1

2
k2p2q2$~k2

1p2!~k•p!224k2p2k•p1k2p2~k21p2!%G J ,
1-7
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a22~k,p!5a21~p,k!,

a23~k,p!5
1

~k22p2!
@j$~k•p!31k2~k•p!223k2p2k•p

12k4k•p1k4p222k6%m2/k21~k•p!31~2k2

2p2!~k•p!21k2p2k•p22k4k•p2k2p41~j

21!$~k•p!31p2~k•p!223k2p2k•p12k4k•p

1k2p422k4p2%#,

a24~k,p!5a23~p,k!,

a25~k,p!5q2~m21k•p!1~j21!@q2m21~k•p!2

2~k21p2!k•p1k2p2#,

a26~k,p!5mD2H k•p1
~j21!

x
@q2k•pm412~k21p2!D2m2

2k2p2$2~k•p!21~k21p2!k•p24k2p2%#J ,

a31~k,p!52
h1

2 H F $22~k•p!21k41p4%m412$~k21p2!

3~k•p!21~k22p2!2k•p2k2p2~k21p2!%m2

1
1

2
$24~k•p!41~k21p2!2~k•p!2

1k2p2~k22p2!2%G1
~j21!

x Fq2$22~k•p!2

1k41p4%m812$~k21p2!@22~k•p!31~k2

1p2!~k•p!21~k41p4!k•p#2k2p2~3k413p4

22k2p2!%m62
3

2
q2D2~k22p2!2m422$~k2

1p2!~k41p424k2p2!~k•p!32k2p2~k41p4

26k2p2!~k•p!212k4p4~k21p2!k•p2k4p4~k2

1p2!2%m22
1

2
k2p2q2$~k41p426k2p2!~k•p!2

1k2p2~k21p2!2%G J ,

a32~k,p!5a31~p,k!,

a33~k,p!5j$~k•p!32k2~k•p!223k2p2k•p12k4k•p

2k4p212k6%m2/k21~j22!$~k•p!32~2k2

2p2!~k•p!21k2p2k•p22k4k•p1k2p4%,

a34~k,p!5a33~k,p!,
10500
a35~k,p!52~k41p422~k•p!2!@jm21~j22!k•p#,

a36~k,p!52mD2H k•p~k21p2!12k2p21
~j21!

x
@q2$~k2

1p2!k•p12k2p2%m412~k21p2!2D2m2

2k2p2~k1p!2$~k21p2!k•p22k2p2%#J ,

a41~k,p!52h1~j21!
~k22p2!

2x F2q4m613q2$2~k2

1p2!k•p12k2p2%m41$~k•p!2@4~k•p!223k4

23p4226k2p2#1k2p2@24~k21p2!k•p23k4

23p4214k2p2#%
m2

2
1

q2

2
$~k21p2!~k•p!3

12k2p2~k•p!223k2p2~k21p2!k•p12k4p4%G ,
a42~k,p!52a41~p,k!,

a43~k,p!5
~j21!

k2
@~k21k•p!~k•p!21k2~2k223p2!k•p

1k4~p222k2!#,

a44~k,p!52a43~p,k!,

a45~k,p!5~j21!~k22p2!q2,

a46~k,p!5m~j21!~k22p2!
D2

x
@q2k•pm212~k21p2!

3~k•p!222k2p2k•p2k2p2~k21p2!#,

a51~k,p!52h1H D21
~j21!

4x
@22q4m616q2$2k2p22~k2

1p2!k•p%m426k2p2q4m22q2$~k2

2p2!2~k•p!212k2p2~k21p2!k•p2k2p2~k2

1p2!2%#J ,

a52~k,p!5a51~p,k!,

a53~k,p!5
~j21!

k2
@~k•p!212k2k•p2k2~2k21p2!#,

a54~k,p!5a53~p,k!,

a55~k,p!5~j21!q2,

a56~k,p!52m~j21!
D2

x
@q2~k21p2!m212~k41p4!k•p

22k2p2~k21p2!#,
1-8
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a61~k,p!52h1

~k22p2!

2 H q2m422$~k•p!22~k21p2!k•p

1k2p2%m21
q2

2
$~k•p!21k2p2%

1
q2~j21!

x Fq2m812$~k•p!21~k21p2!k•p

23k2p2%m62
3

2
q2D2m422$~k21p2!~k•p!3

2k2p2~k•p!22k4p4%m22
1

2
k2p2q2$~k•p!2

1k2p2%G J ,

a62~k,p!52a61~p,k!,

a63~k,p!52@j$~k21k•p!~k•p!21k2~2k223p2!k•p

2k4~2k22p2!%m2/k21~j22!$~2k22p21k•p!

3~k•p!22k2~2k22p2!k•p2k2p4%#,

a64~k,p!52a63~p,k!,

a65~k,p!52q2~k22p2!@jm22~j22!k•p#,

a66~k,p!52m~k22p2!D2Fk•p1
~j21!

x
~q2k•pm4

12~k21p2!D2m22k2p2q2k•p!G ,
a71~k,p!52

h1~j21!

4x
@22q6m626q4$~k21p2!~k•p!

2k2p2%m423q2$@~k•p!21k2p2#~k41p4

16k2p2!28k2p2~k21p2!k•p%m2
-

B

s,

10500
1q2$~k22p2!2~k•p!314k2p2~k21p2!~k•p!2

2k2p2~3k413p4110k2p2!k•p14k4p4~k2

1p2!%#,

a72~k,p!5a71~p,k!,

a73~k,p!5~j21!
~k22k•p!

k2
@~k•p!214k2k•p22k4

23k2p2#,

a74~k,p!5a73~p,k!,

a75~k,p!5~j21!q4,

a76~k,p!5m~j21!
D2

x
@q2$~k21p2!k•p22k2p2%m212~k4

1p4!~k•p!224k2p2~k21p2!k•p2k2p2~k41p4

26k2p2!#,

a81~k,p!52h1

~j12!

2
q2~m21k•p!,

a82~k,p!5a81~p,k!,

a83~k,p!52~j12!k•q,

a84~k,p!5a83~p,k!,

a85~k,p!52~j12!q2,

a86~k,p!50. ~A14!
D
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