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Energy and angular momentum flow into a black hole in a binary
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As a black hole in a binary spirals in gradually from large separation, energy and angular momentum flow
not only to infinity but also into or out of the hole. In addition, the hole’s horizon area increases slowly during
this process. In this paper, the changes in the black hole’s mass, spin, and horizon area during inspiral are
calculated for a hole in a circular binary with a companion body of possibly comparable mass. When the binary
is composed of equal mass black holes that have spins aligned with the orbital angular momentum and are
rapidly rotating(with spins 99.8% of their maximal valugst is found that the fractional increase in the
surface area of each hole’s horizon is 1% by the time the binary spirals down to a sepamitiokl (where
M is the binary’s total magsand 7% down td=2M. The flow of energy and angular momentum into the
black holes’ horizons changes the number of gravitational-wave cycles in the LIGO band by no more than a
tenth of a cycle by the time the binary reaclies2M. The results obtained in this paper are relevant for the
detection and analysis of gravitational waves from binary systems containing a black hole.
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[. INTRODUCTION post-Newtonian expansions used to describe it. One ap-
proach to obtaining such initial data is given [#]. Since

Binary black holes are expected to be among the primarynitial data of this sort are not yet being used, one needs to
sources of gravitational waves for interferometric detectorgelate the masses, spins, and horizon areas of the black holes
[1]. Since we do not have exact solutions of Einstein’s equaPresent in currently used initial data to the corresponding
tions that represent binary black holes in sufficient generalduantities when the holes were infinitely separated. For this
ity, we must study these systems perturbatively and/or nuPUrpose, it is necessary to know how these quantities change
merically. One regime in which the evolution of binary black during inspiral. In this paper, | calculate the leading-order
holes is well understood is the early inspiral phase. In thighanges in the holes’ masses, spins, and horizon areas during
phase, the holes’ separation is still much larger than the bilnspiral for a circular binary.
nary’s total mass, and post-Newtonian expansions can be Recently, Price and Wheld] have emphasized the role
used to analyze the system. Eventually radiation reactioff angular momentum absorption/emission by rapidly rotat-
drives the holes together and the post-Newtonian approximd?d black holes at the end of inspiral, when the holes are

tion fails. The binary’s subsequent evolution must be studied€ginning to merge. Here | focus on the earlier stages of
numerically. inspiral, when the holes are widelgr moderately separated

While the flow of energy and angular momentum to in-and their gravitational effects on each other can be described
finity during inspiral has been calculated to high post-using black hole perturbation theory.
Newtonian order, to date the flow into or out of the black The results obtained in this paper are actually valid for a
holes’ horizons has not been computed except in th&lack hole in a binary with any companion bo@.g. a neu-
extreme-mass-ratio limit; and in that limit, it has been donelron stay that is well separated from the hole. The formulas
to very high post-Newtonian ord¢®] (for numerical work, for the changes in black hole quantities presented here de-
see e.g[3]). Absorption(or emissioi of energy and angular Pend only on the companion body’s mass and not on its
momentum by the holes’ horizons, while much smaller tharinternal structure. These formulas therefore remain valid
emission to infinity, might still be important because extrac-when the companion is not a black hole.
tion of weak gravitational signals from noisy detector output
using _matched filt_ering requires knowledge of the orb_ital Il. ERAMEWORK
evolution to very high accuracy, and black hole absorption/
emission might affect the evolution at that level. Two pur- | follow the field-theory-in-flat-spacetime notation used in
poses of this paper are first, to calculate black holghe literature on post-Newtonian expansigesy.[6,7]) and
absorption/emission of energy and angular momentum tdenote 3-vectors by boldface letters. A centered dot between
leading order in a circular binary with holes of possibly com-3-vectors denotes the usual inner product in flat 3-space; a
parable mass, and second, to investigate whether it is rehatted 3-vector represents the unit vector in that direction.
evant for detection and analysis of gravitational waves. Consider a black hole binary undergoing circular motion
A third purpose of this paper is to provide some informa-with the separatiorb between the holes much larger than
tion on the interface between the inspiral and merger phasdbeir total massM =M+ M,, whereMg denotes the mass
of binary evolution. Numerical simulations of binary black of the Bth hole. Defineu=M;M,/M and n=u/M. Label
holes typically begin computing at this interface and needhe holes BH1 and BH2, and denote their spinsSgyand
initial data representing holes that have spiraled in from in-horizon areas byAg for B=1,2. LetSz=(Sg- Sg)*2 be the
finity, i.e. initial data tied to the inspiral phase and to thespin magnitudes, and define the parametggs by Sg
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=xgM3 (B=1,2). Throughout this paper | assumgs or anti-aligned withL . The more general case of spins not
=<0.998 (B=1,2); this restriction is based on the analysis infully aligned or anti-aligned with_, is treated in Sec. V.
[8].
Define each black hole’s horizon radiugg=Mg[ 1+ (1 IIl. STATIONARY COMPANION
—x8)Y?], angular velocityQ) ;5= xs(2rys) "%, and surface

gravity xs=(1— x2) %2rys) ! (B=1,2). Introduce the In this section, | calculate the tidal distortion BH1 suffers

followina Newtonian quantities for the binarv: th bital when BH2 is held stationary. This involves solving for the
9 q . ry- the orbita Weyl tensor component,, which contains complete infor-
angular3 rlr)zomenturrLN, the orbital angular Vl?zloc'tﬁ'\‘ mation about the gravitational perturbation on BH1, using
=(M/b%)™, and the relative velocity =(M/b)™". By as- ¢ Teukolsky formalisniil5]. With # in hand, the rates of
sumption,v<1. _ change of BH1 parameters can be calculated using the results
Since the black holes are widely separated, each hole hgsg Hawking and Hartlg14] and Teukolsky and Pre$&6].
a surrounding region that satisfies the following properties: The first step in this process is to calculate BH2's tidal
(i) it is far enough from the hole that gravity is weak there;field as seen in LARF1. | will consider only the lowest-order
(ii) it does not extend so far that the companion hole’s tidaNewtonian tidal field, which is approximately constant
field varies appreciably in the regi¢@]. We can place in this  throughout LARF1. To calculate this field and its effect on
region an inertial coordinate system in which the hole isBH1, consider first a fictitious Euclidean 3-space containing
(momentarily at rest. This region and its local coordinatesa single stationary body of madd, at coordinate location
are referred to as the black hole’s local asymptotic rest framéb, 6y, ¢o) in a spherical polar coordinate system. The New-
(LARF) [9]. Label the two regions around the holes LARF1 tonian gravitational potential at the field point,§,¢) is
and LARF2. given in these coordinates by
Usually mass and angular momentum are only defined .
globally in general relativity, using fields at infinity, since _ 2 ) o
precise local definitions are not available. However, for a®(r0.¢)=—4m == ,20 m:E,, (21+1) (B) Yim( 0o, bo)
black hole well separated from its companion, one can define
the hole’s mass and angular momentum using fields mea- XYm(6,9) (1)
sured in the hole’s LARF; these definitions are inherently
ambiguous[9—12. (For further discussion of the ambigu- for r<b. - _ o _ _
ities, see Sec. V)| refer to these definitions when discuss- ~ We are interested in the gravitational field only in a small
ing a black hole’s mass and angular momentum in this papePeighborhood of the origin satisfying<b. In particular, we
| calculate the rates of change of these quantities as measuré@uld like to evaluate the body’s tidal field at the origin, so
in the LARF—that is, with respect to timemeasured by an only thel =2 part®® of ® is relevant. Theelectric-type
inertial observer in the LARF. When integrated over the duidal field is given by&;=®( in Cartesian coordinates.
ration of inspiral, these rates of change should give result§aking these derivatives in spherical coordinates and evalu-
exceeding the ambiguities in the definitions of mass and arating in the usual spherical orthonormal basis yields the tidal
gular momentum, in order to be relevant to the analysis ofield componentst;;, &, .55 near the originr=0. The
initial data at the interface between inspiral and merger. Thigarticular combination of relevance to (see below is in
issue will be discussed further in Sec. VI. this way determined to be
| also consider slices of constant timh¢hat begin in the 5
LARF and extend into the black hole, intersecting the hori- ) 2
zon in 2-surfaces that correspond to constant ingoing-time €~ oo~ 21€53=8m szz 2Yom(6,¢)
slices of a Kerr black hole’s horizogAlternatively, one can
consider slices that intersect a “stretched horizon” as dis- X Y560, 0). 2
cussed in13] and references therejnThe rate of area in-
crease of these 2-surfaces can be calculated using the resuttsre the functions,Y,,(6,¢) are spin-weighted spherical
of Hawking and Hartlg14] combined with black hole per- harmonicg18].
turbation theory15,16. The quantitieslMg/dt andd Sz /dt Return now to the black hole binary. The region near
can then be obtained fromAg/dt using the first law of BH1, including LARF1, can be described as a perturbed Kerr
black hole mechanicd M= (x/87)dA+Q,dJ and the rela- black hole, and so can be covered by Boyer-Lindquist coor-
tion wdJ=mdM for black hole perturbation modes of angu- dinates ¢,r,6,¢). We would like to solve the Teukolsky
lar frequencyw and azimuthal angular number[16,17,13.  equation[15] in this region for the Weyl tensor component
(HereJ refers to the black hole’s angular momentum. Yo(r,0,¢). If we were considering a single perturbed Kerr
Throughout this paper, | focus on BH1 and the changes iblack hole as the entire spacetime, the asymptotic forgof
its parameters. The corresponding formulas for BH2 are simasr/M;—c would be the combinatio8i;,;, — £y — 2i &y, of
ply obtained by exchanging the subscripts:2 in the final  the external tidal field13], since, vanishes for an unper-
results[e.g. Egs.(11)]. In Sec. lll, | consider the special turbed black hole. In our binary systeng, acquires this
situation in which BH2 is held stationary with respect to asymptotic form fotM ;<r<b, i.e. in LARF1, with the tidal
BHL1. The results from this artificial scenario are used in Secfield &; being that of BH2. To lowest order, this tidal field is
IV to analyze a circular binary with black hole spins alignedexactly the Newtonian field of a body of makk, at sepa-
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ration b, which was calculated above; in particular, the an-Here 6, is BH2's 6-coordinate—that is, its polar angle with
gular dependence afy in LARF1 is given by Eq.(2), but  respect toS;—as measured in LARF1.
with 6 and ¢ now representing Boyer-Lindquist coordinates,  Since the effects of only the leading-order tidal field were
and 6, and ¢, now representing BH2's angular coordinatestaken into account above, the expressi¢8sare actually
as seen in LARF1. Therefore, to solve for the perturbationvalid for any companion body of mad4,, not just a black
o on BH1, we impose the LARF1 boundary condition hole. The rate$8) of area increase and spin-down have al-
ready been derived by Teukolsk$9] in the extreme-mass-
8m\6M, . ratio limit, i.e. for M,<M . The derivation | have presented
l’llo_)Tmzig 2Yom(0,6)Yom(00.d0) (3 above establishes the validity of the expressidp for
comparable-mass black holes as well. Hartle and collabora-
for M <r<b. tors[14,20,21,13 have shown that the spin-down of a black
It now remains to solve the Teukolsky equation i~ Nole by an external tidal field is analogous to the Newtonian

with the boundary condition(3) and an appropriate no- fidal friction process in a planet-moon system. .
outgoing-wave boundary condition at the black hole horizon ~ The results(8) will be used in the next sections to obtain

[15]. We express), as a sum of modes the corresponding formulas for a binary undergoing circular
motion.

2

2
o= 2_2 2Y2m( 0, #)R(r) (4) IV. EQUATORIAL ORBITS

mZ
In this section | study special configurations of the binary
and solve the radial Teukolsky equation fy(r) subjectto  in which the black holes are in a circular orbit and have their
the no-outgoing-wave boundary condition at the horizonspins aligned or anti-aligned with the orbital angular momen-
This yields the radial functionEq. (5.7) in Ch. VI of [19])  tum L. In these scenarios there is no precession of the
_ L angular momenta: the spins remain aligned or anti-aligned
Rin(1)= Copx ™ 2(14%) 70 2F (= 4,1,= 142y, —X) with L. As a result, the companion to each of the holes
(5) orbits in the hole’s equatorial plane; more precisely, the ex-
ternal tidal field seen by each of the holes rigidly rotates
about an axis parallel or antiparallel to the hole’s spin axis.
imy, =Ty In Boyer-Lindquist coordinatestr,6,¢) centered on
= > X— PN (6) BH1, with S; along #=0, thet- and ¢-dependence of the
2(1=Xx7) 2M (1= x1) companion’s tidal field enter in the combinatign- Qt. The
) ) ) rotation rate() of the tidal field as seen in LARF1 is to
andF is a hypergeometric function. The=0 mode can be Jeading orde) = ([ - 8,)Qy, wherel - &,= +1(—1) for

treated separately; since a full treatment reveals that thi ; . . .
mode does not contribute to the rates of change of black hole prograddretrogradg orbit. The first correction to this ex

. . 2 . -
parameters, | ignore it here. The constaBtsare determined \?Vriﬁsbséop r:(())rrgdl?notﬁ]lijs) Zlgehrer(see Eq.(3.12 in [4]), and
by imposing the LARF1 boundary conditidB); we obtain 9 Paper.

for m#0. Here

Ym

87M, A. Instantaneous rates

— 2

Cm= 5b°6 Yn(Ymt D(4¥m= D Yon(bo, ¢0)- (1) In the rigid ¢-rotation case, simple formulas given in Egs.
(7.2 of [13] (and reproduced belowspecify the rates of

The leading-order tidal distortion of BH1 due to the pres-Change of black hole quantities in terms of a horizon integral
ence of a stationary companion of mads has now been | that depends on the particular perturbing gravitational fields

determined. This information allows us to calculate the rate®resent:

of change of BH1 quantities using the results of Hawking ds, dM ds,

and Hartle[14]. In fact, given the modal decompositiof), —=(Q-Qu)l, _l:Q_:Q(Q_QHl)Ir

we can easily obtain the relevant rates using explicit formu- dt dt dt

las provided by Teukolsky and Prefk6]. The results are

dMlldt=O and E%Z(Q_Q )d_S-l:(Q_Q )ZI (9)
8w dt A7 dt HL

dA, 647M3M3x?sir? 6,
W_ 5b6(1_ X%) 1/2

3 15 _
(1—Zﬁ+ j)(i sin? 00), In terms of ingoing Kerr coordinatesv(r,#,$) (see e.g.
[22] for a definition, | is an integral of a function o and
(®) (ZS—QV) over a constant slice of the horizon. Since

d 1-xH Y2 dA ~ ) ) ) . L
S ﬂ 1 ¢-rotations are isometries of the horizon metiids inde-

dt 8wy, dt pendent ofV.
8M5M2 3 15 Consider an expansion ofin powers ofM (), which is
=——L 2y sir 90( 1- 202+ 22\ 2sir? 90) _ O(v?) and hence much smaller than 1. The zeroth-order part
5b 471 4 lo=1|q—o is independent of) and, in our situation of binary
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black holes, can be easily obtained from the results for a  dA;
—=8mky (2= Q) ?lo(7/2)

stationary companion. From EQg$9), we have Sl|Q:0 dt

=—Qy1lo, Where an overdot indicates a time derivative.

But 2 =0 corresponds to a stationary companion, and in this 647 M i’M §( 1+ 3)@)
case we have an explicit expression rin Eqgs.(8). Equat- - 5b6(1—Xi)1/2

ing S, in Egs.(8) to —Qy41, yields
X

. M 2
160 3 15 X1_2(|—N'31)[1+(1_X%)1/2]V103] .
HL1 15012 o 2 2 o
|0( 00): 5b6 M1M25|nz 00 1- ZX1+ ZX]_ S|n2 00) y
(10 In these formulas, the Newtonian quadrupole expressions for
energy and angular momentum flow to infinity 428,24

where 6= /2 for the equatorial orbits considered in this
section. The general expressi@0) with a wider range of
values for 8, will be used for non-equatorial orbits in the
next section. Since the first correctionlipin the expansion
of | in powers ofM Q) is O(M,Q)=0(v3), I will approxi-  where v =(M/b)¥2 and n=M;M,/M2. Note that energy
matel by |, throughout this paper. and angular momentum absorption/emission by a rotating

Note that Eqs(9) are, strictly speaking, valid only for (non-rotating black hole is 2.5(4) post-Newtonian orders
constant rotation rateQ. In our situation, radiation reaction below the quadrupole emissidi?2) to infinity, as first de-
drives the binary together and §b changes during inspiral. rived in the extreme-mass-ratio limit by Poisson and Sasaki
However, the time scale for these changes is the inspiral timg25] and Tagoshi, Mano, and Takasud]. The rates of
scale rj,c~bv ¢, where “~” means “is of the order of”; change for BH2 are obtained by exchanging the subscripts
this is to be compared to the time sca‘lgl on which the 1+ 2 in the formulag11).

divergence and shear of the null generators of the horizon The energy absorption/emission ralliel given above
probe the futur¢14,17,13. By assumptiony; is less than or  agrees in the limitV,/M—0 with the lowest-order expres-
equal to 0.998; this implies; *<34My, so x; ' is much  sion obtained by Tagoshi, Mano, and Takas[®ji Those
smaller thanr,s. Therefore Eqs(9) are valid in our binary authors have calculated this rate in the extreme-mass-ratio
system to a very good approximation. The various timelimit, for a circular equatorial orbit, to much higher order in
scales of interest to us will be discussed in more detail belowy than | have done here. However, their results are not ap-
Note also that Eq99) [and, in addition, Eqs(11), (21), plicable to comparable-mass binaries, while the formulas
and (22) below] are valid only when integrated over time (11) are.
intervals much longer thanl’l (see the discussion in Sec.  The expression§ll) are valid even if BH1's companion
VIC 11 of [13]). In this paper, | am interested in integrating is not a black hole, provided the companion’s mass is sub-
these equations over the entire inspiral—that is, over timestituted forM,.
intervals of orderr;,<—so this condition is certainly satisfied.
After putting | o(7/2) andQ = (Ly-S,)Qy into Egs.(9), B. Total changes during inspiral
we obtain the following rates of change of BH1 quantities
for a circular orbit with spins aligned or anti-aligned with

dE
dt

32 dJ 32
_ 210 _ 28007
N A (dt)N 57]Mv, (12

In this subsection, | integrate Eg€ll) to calculate the
total changes iM, S;, andA; during inspiral. | take into

L account only the leading-order Newtonian effects of radia-
ds, tion reaction when computing orbital decay; given this ap-
W:( Q—Qu)lo(7/2) proximation, the orbital separatidnevolves ag24,22

430 o5/ M.13 b(t)=bo(1—t/7)*", (13
1 2 ~
=|—| —|—] (1+3 —x1+2(Ly-
(dt>N 4( ) Xl)( X+ 2y where 7= (5/256)05(«M?)~ . | also ignore all post-

Newtonian corrections to the orbital angular velodiy .

><[1+(1—X§)1/2]&03]1 It is convenient to parametrize the orbit by separation

M instead of timet. The total change in a parameter, say
from infinite separation to separatidnis denotedAS;(b)
and is calculated by integrating Eq41). As a first approxi-
mation, the quantitieM g andSg (B=1,2) on the right-hand
sides of Eqgs.(11) can be considered constants during in-
143! — (L&) spiral. The reason is that the time scales for evolutiomgf
( X1 (Ln-S1)xa and Sy are much longer than the inspiral time scalgs
~bv ~°. Indeed, the time scale for evolution of the masses is
w~Mg/Mg~bv 13 and for the spins isTs~Sg/Sy
~bv ™, So ry> s> 7, and we can safely treddlz and

dMm,
_t:Q(Q_QH1)|0(7T/2)

d
_[dE| v®(M;
Cldt) 4\ ™M

3

+2[1+(1—Xf)1/2]%v3}, (11)
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TABLE |. Normalized changeASlle in spin evaluated at TABLE lll. Normalized change\A; /A, in horizon area evalu-
b/M =100, 20, and 6 for an equal-mass binary wit- S,=1. For  ated atb/M=100, 20, and 6 for an equal-mass binary witQ
rapidly rotating holes X, = x,=0.998), this change is also evalu- .§ =1. For rapidly rotating holesy;, = x,=0.998), this change is

ated atb/M=2. also evaluated dt/M=2.

X1 b/M=100  b/M=20  b/M=6 b/M=2 X1 b/M=100 b/M=20 b/M=6 b/M=2
0 9.x10° 10 2.X10°7 2.X107° 0 6.x10718 2.X10°° 8.x10°7

0.5 -7Xx1077 -—-2x10% -—-2x10* 05 2x10°7 5.x10°¢ 4.x107°

0998 —-3x10°% -8x10° -8x10* -—-6.x10° 0.998 5% 1075 1.x10°3 1.X10°2 7.X10°2

Sg (B=1,2) as constants on the right-hand sides of Ebff.  time it reached=6M, the endpoint of integration is chosen
when integrating over inspiral. to beb=6M wheny;=0 and 0.5. For rapidly rotating holes
With these approximations, the normalized changes iy, = y,=0.998), the endpoint is chosen to be2M. The

BH1 parameters from infinite separation to separati@e  assumptionM <b is not valid at and near these endpoints.
The results presented here are most accurate in the early

(L8 stages of inspiral, when the black holes are widely separated,

N and are a rough estimate of the true parameter changes in the

late stages of inspiral.

AS,

X1
Mz(b)_ AT REN g[ ]

712
X[1+ (1 ot o
1 ™ \ b ' C. Effect on orbital evolution
5 712 The orbital evolution of binary black holes is affected by
(1+3X§)[ —(Cy- %)E(M) the absorption/emission of energy and angular momentum by
the holes. In particular, the number of orbits—and hence the

AMl

7( My
=)= ( v
number of gravitational-wave cycles emitted to infinity—
1+ (1— DV ( ] (14)  changes when black hole absorption/emission is accounted

SM for. To estimate this effect, let us consider a circular, nearly
Newtonian binary, with spins aligned or anti-aligned with
. . 8x1 Ly, that is losing orbital energy and angular momentum to
A, BMr 1 (1—y2) (Ln-S1) 7 infinity via Newtonian quadrupole radiatiqd?2), and to the
Hi(1=xD) black holes via tidal interaction as specified by E¢fsl).
ryy(M\72 4fr SinceMg=0S5s=(Ly-S5)Q\Ss (B=1,2), circular, nearly

Xv(g) +5(—) Newtonian orbits remain circular. Therefore the evolution of

the separatiorb(t) is determined by setting the rate of
wherer ;=M [1+(1—x?)"2]. To evaluate these changes, change of Newtonian orbital energygiven by Eop=
one can put into the formuld44) the values oM,, S;, and —M 1M,/2b) to the rate of energy loss to infinity and to the
A, at infinite separation or, for that matter, at any separatioftoles:
much larger thaM, because the changes in these quantities
during inspiral are small. Once again, the changes for BH2 @’: Ml'\gz @: _(d_E) dM; dM,
are obtained by exchanging the subscripts 4 in the ex- dt 2b® dt dt/,
pressiong14). .

The normalized parameter chandéd), evaluated at dif- where dE/dt)y is given in Egs.(12) and M, in Egs.(11)
ferent stages during inspiral, are dlsplayed in Tables I-Ill fowith M, obtained by exchanging the subscripts-2 in
an equal-mass binaryM;=M,) with Ly-$;=1. Since a Egs.(11)].
binary composed of slowly rotating black holes is expected The number of gravitational-wave cyclé, emitted to
to be undergoing a transition from inspiral to merger by theinfinity from initial time t; to final timet; (corresponding to
separation®; andby) is given by

AA, 7IM1(1+3X1) [Xl( )
b —
I
M
F

TABLE Il. Normalized changeAM, /M, in mass evaluated at

b/M =100, 20, and 6 for an equal-mass binary witf- S;=1. For d _ b p dt dt 172 16
rapidly rotating holes ;= x,=0.998), this change is also evalu- t db b3 ! (16)
ated ath/M =2.

wheredt/db is determined from Eq.15). This number is to

X1 b/M=100 ~ b/M=20 b/M=6 b/M=2 be compared with the number of cyclis obtained by ig-
0 31013 1.x10°? 41077 noring black hole absorption/emission of energy and angular
0.5 —2X10°® _—5x108 —3x10°°6 momentum, i.e. by setting,,, equal to—(dE/dt)y. The

0.998 —-9X%X10°1° _—2%x107 —2X10° —6X10% difference AN=N;—N, measures the effect of black hole
absorption/emission on the binary’s orbital evolution.
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TABLE IV. ChangeAN in the number of gravitational-wave the hole’s equatorial plane, and so the formulas in the previ-
cycles due to black hole absorption/emission, for various values ofus section are not applicable. However, for orbits suitably
total massM and mass ratid1, /M,. The initial separation is such close to the equatorial plarisee below for detai)s one can
that the wave frequency is 10 Hz and the spins salisfy x> imagine using an approximation scheme in which at each
=0.998 andLy- S, =Ly-S,=1. The numbers without parentheses instant the companion’g-velocity is ignored; that is, the
are for a final separatiob; of 6M; those with parentheses are for companion is taken to be rigidly rotating in tlfedirection
by equal to the larger of i@ or the separation at which the wave gt each point on the orbit. The changes in black hole param-
frequency is 1000 Hz. eters can then be calculated by putting the instantaneous
¢-velocity into the rigid ¢-rotation formulas(9) at each

M(Mo) Mi/M,=1 M1 /M,=2 M1/M;=4 point on the orbit. In this section, | construct such an ap-
5 0.07(0.07) 0.11(0.11) 0.23(0.24) proximation scheme.

20 0.05(0.07 0.07(0.10 0.16(0.22

50 0.03(0.06 0.05(0.08 0.11(0.18 A. Description of orbit

The evolutions of the spins and orbit are described by the

The values ofAN obtained by settindp; to be the sepa- equationg 26,7

ration at which the gravitational-wave frequency is 10 Hz ' _ 32 .
(the low-frequency end of the Laser Interferometer Gravita- ~ S5=0{)}xSs, Ly=QopXLy— = 7”Muv’Ly,
tional Wave ObservatoryLIGO) band, y; and x, to be

0.998, and the spins to be aligned with, (i.e. Ly-S;

=ﬁN-Sz=1) are displayed in Table IV for various choices
of total masdM (in units of a solar mashkl ;) and mass ratio
M4 /M. In the table, the numbers without parentheses ar
obtained by settindp;=6M, and those with parentheses by
settingb; to be the larger of BRI or the separation at which
the wave frequency is 1000 Hthe high-frequency end of

(17)

for B=1,2. The orders of magnitude of the precession fre-
uencies areQg~v3b ™' and Qq~v*b~!. Since the
ewtonian angular velocity i€2y~vb™?, both Qgpin and

O, are much smaller tha@ly,. This means that, over a few

orbital periodsL y(t) and Sg(t) do not change much due to

the LIGO bang. For non-rotating black holesyg= y,=0), precession. Thus., the. companion’s orbit. as seenin LARFl is
the corresponding values afN (with b;=6M) are all less to a good app[OX|mat|on confined to a single plane with nor-
than 10 2. mal vectorn= L (t) along the instantaneous direction of the

The values ofAN in Table IV indicate that black hole ©rbital angular momentum, on time scales of a few orbital
absorption/emission of energy and angular momentum dufe€riods. _ . o
ing inspiral may not be an important effect for the detection In this subsection, | analyze the trajectory of a particle in
(by LIGO and Virgd and analysis of gravitational waves & pla}nar, circular ort_nt of arbitrary orientation in gflctltlous_
from comparable-mass black holes. Indeed, post-NewtoniaRuclidean 3-space in terms of spherical coordinates. This
corrections to the equations of motion and energy loss havi@formation will be used to specify the rotation rate and ori-
far greater influence on the number of wave cycles emitte@ntation of the companion’s tidal field as seen in LARF1.
by the binary[6,7]. It should be noted, however, that black Denote the particle’s radial coordinate ly its constant
hole absorption or emission could have a much larger impadfion-negative angular velocity byw, and the normal to its
on the orbital evolution of rapidly rotating holes when they Orbital plane byn. The angle of inclination of the normal
are beginning to merge, as suggested by Price and Wheldth respect to thez-axis is denoteds,,; so cos,=n-e
[5]. They have presented models in which the tidal torque=N.. Assume the orbit is centered on the origin, so the par-
that results from black hole absorption/emission of angulaficle’s positionX(t) at timet is given by a rotatiorR(n, wt)
momentum plays a crucial role in the late stages of binan@boutn, by an anglewt, of the initial positionX.
evolution (see Fig. 1 in5]). The perturbative methods used  In Cartesian coordinates, the particle’s trajectory is given
in this paper(based on wide separation of the bineaye not by X(t) =X, coswt+(nx Xg)sinwt. In terms of the particle’s
valid in the close limit analyzed if5]. angular coordinatesd(t) and (t), X(t) is equal to

It has been pointed out by Hughkg that in the extreme-  b[sin 6(t)cosé(t),sin 6(t)sin ¢(t),cose(t)]. | choose the initial
mass-ratio limit, black hole absorption/emission can stronglyposition to be in the equatorial plane, i.By=X,-€=0.
influence the binary’s orbital evolution and is an importantThis choice does not affect the orbit-averaged quantities that
effect for the Laser Interferometer Space Antenna. I calculate later in this section.

The angular functiong9(t) and ¢(t) can now be ex-
pressed in terms af and w using the relations above. The
quantities of interest are if(t) and éﬁ(t), which are deter-

In general, binary black holes are not expected to havénined to be
spins aligned with the orbital angular momently. This
misalignment causes the spins and orbit to precess in a com-
plicated way due to spin-orbit and spin-spin coupl[ﬁ@,_‘/]. Sir? 0(t)=1—sir? 0, sif ot,  ¢(t)= — .
Each black hole’s companion is not, in general, confined to Sir? 6(t)

V. NON-EQUATORIAL ORBITS

 Cos6,
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B. Approximation scheme most values ofy,, this condition is automatically satisfied
Return now to our black hole binary, and go to Boyer-throughout inspiraldown tob=6M). Even if it is not sat-
Lindquist coordinatest(r,6,¢) in LARF1. The compan- isfied at some point during inspiral, the restriction 6p

ion’s trajectory as seen in LARF1 will be describ@d low- ~ discussed above ensures that the effect of @hmotion,
est order inv) by angular function®(t) and ¢(t) given by when integrated over inspiral, is negligible compared to that

the expression¢18) with w replaced byQ, and 6, now ©f the ¢-motion, for almost all values of;.

referring to the angle of inclination dfy(t) with respect to With the above restriction of,, we can at each inst.ant
S,(1), that is, cog,=L \(t)-S,(t). After these substitutions, take sirf 6(t) and ¢(t) to be constant relative to the horizon
we have time scalex; !, and apply the rigidp-rotation formulas(9)
R R with the instantaneous valueit) and éj)(t) put in. This
Sir? 9(t)=1—(L—[Ly(t)- Si(t)]?)sir? Qut, yields
LSyt ds,
t)y=———. (19 ) —
& S (0) 50— L= QualigLa)],

Sinced, is now time dependent, these expressions are mean-

ingful only when used to calculate orbit-averaged quantities. dM; . -
. —=g(t ) —Quillo[ 8(D)], 21
Consider the regime in which $f(t) and ¢(t) are dt SO Hllol 6(1)] o
slowly varying; more precisely, require them to be approxi-
mately constant on the time scakg * associated with the o dA
1 1

horizon. As noted before, this is the time scale on which the —— ——=[(t)— Q1P O(D)],
null generators of the horizon probe the futdifiet,17,13. 8w dt e
The teleological behavior of the horizon is, however, expo-

nentially limited; that is, the influence of future events on the : .
horizon decays exponentially in time, with decay raig where 6(t) and ¢(t) are given by Eqs(19) andl, by Eg.

(see, e.g., the discussion of teleological Green'’s functions ir(nlo)'
[13]). We thus requirel¢p/¢| and |(1/sir? 6)d(sir? 6)/dt . N
[which are the same to leading order by Ed$)] to be only C. Orbit-averaged quantities
several times larger thai, *, rather than orders of magni-  Next | would like to average these rates of change over an
tude larger. _ L orbit assuming the binary’s masses, spins, separation, and
By assumptiony;=<0.998, sk, ~ is less than 3¥,. Our  orbital angular momentum are approximately constant over
requirement can then be expressed as an orbital period. This assumption is justified by the follow-
ing ordering of the relevant time scale@y ‘<O, Qg5
R Sir? o(t) 20 <Tins<75< Ty . We can therefore take all the quantities on
PN i 0,]sin 20\t the right-hand sides of Eq&21) exceptd(t) and ¢(t) to be

constant, to a good approximation, when averaging over an
for all t, wherea is a number roughly in the range 2—4. A orbit. | denote orbit averages by angular bracKe}sso, for
sufficient condition for this constraint to be satisfied iSexampIe,(Sl)z(QNIZW)ISW/QN'Sldt. Plugging the expres-
cof 6,=34aM Q. This requires. \(t) to be near one of sions(19) into Egs.(21) and performing the orbit averages

the polar axes+S;(t), which correspond to9=0,7; or, (as defined aboyeyields
equivalently, the orbital plane must be near the equatorial

plane. dSi\ i 500
We are interested in separations as smalbas6sM, so dt /| qops L2
Qy can be as large as {6M) . For this reason, | impose
the constraint cétd,=34a6"%? and seta to be approxi- X[16(1+3xD) {2 N1 (1) — Qs [NE(1) + 1]}

mately 3, obtaining the approximate constraintss @, o 2
< /9 or 8m/9=< 6,<. In other words[ y(t) is within 20° TI5NVI(D-1]
cones around the polar axes, or, equivalently, the inclination ><{4QNN1(t)_QH1[3N§(t)+ 1714,
angle of the orbit with respect to the equatorial plane is less
than or(approx) equal to 20°.

For the approximation scheme in this section to be valid, <d|V|1> 2ry
we require further that in the horizon’s reference frame, the =%
external tidal field should rotate primarily in thg-direction 5b

dt

MIM QN (D) {2Q (4 3x3)sig Ni(1)]

and not significantly in they-direction. More precisely, we — 801 (1+3xD) + 15¢F{2Q Ny (1)
require || <|$—Q,|. The rates of change presented in )
Egs. (21) and (22) below are subject to this condition. For +Qu[1-NTI(DO 1} (22)

104020-7
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dA 8wrﬁlM§M§ From Egs.(14), the changeaM, andAS; from infinite
— 2 2 2 i i
<W> —m{(m— 12 D{QG[NI(D) +1] separation to separatidnare
— 40, QN (1) + 2Q2 N (D]} AM, n(Ml)Z(M)m AS; an(M)Z 25
~pl—=] =] . —m~p—|—] .
+ 15202, [ 3N (1) + 2N 2(1) + 3] M M/ \b M{ “Mlb
—8041 QN (D[NE(H) + 1]+ 8QANT(D},
MOV +1] WVIOH So, at separatiob, we have
where NVg(t)=L(t)- Ss(t) for B=1,2. The corresponding
expressions_for BH2 can be obtained by exchanging the s_ub- AM; M;(M\¥2 AS, b
scripts -2 in Egs.(22). Note that these equations are valid ~—\—=| , == (26)
SM; M\b 58S, M

only for MVg(t) suitably close tor 1, as discussed above. The
formulas(22) can be applied to a black hole in a binary with

any companion bodye.g. a neutron stathat has mas#,  \we conclude thafAS,| exceeds the ambiguityS, in the

and is well separated from the hole. definition of spin, bufAM,| does not rise abovéM . Note
Numerical integration of Eqsi22) using the 2.5 post-  tnat the concept of tidal work is unambigudi—17.
Newtonian equations of motion for spinning bodigg] and  \when analyzing initial data that contain a black hole and
references therejnyields results comparable to those in represent the interface between inspiral and merger, one can
Tables I-IIl. define and calculate the hole’s mass and spin in different
ways, giving different answers corresponding to the ambigu-
VI. DISCUSSION ities SM and 8S discussed above. Sineg#M is larger than

llAMl’ the hole’s mass can be considered constant during
inspiral to the same level of accuracy as used in defining
dpgss. On the other handy S| exceedssS, so the hole’s spin
cannot be considered constant; however, as Table | indicates,
ntpe changes in spin are small during inspiral.

The results of this work—in particular, Eq$14) and
(22—can be used to relate the spin and horizon area of a

Having obtained the leading-order changes in a blac
hole’s mass and spin during inspifakee Egs(14)], we must
check whether these changes exceed the ambiguities inher
in the definitions of mass and spj@]. Denote byéM and
SS the magnitudes of the mass and spin ambiguities. Fro
Egs.(1.8) in [9],

M L2 M3L black hole in a particular initial data set to the spin and
M~ —7, 85~ 7, (23)  horizon area the hole had when infinitely separated from its
companion.

whereM andL are the mass and size of ttisolated body in
guestion, andR is the external universe’s radius of curva-
ture. For a black hole in a binary, say BHL~M, and

R?~b*/M,. This implies | am grateful to Kip Thorne for helpful discussions and
SM 5S M. (M3 advice, and to Scott Hughes for useful comments on the
_1~_§~7]_1(_) (24) ~ manuscript. This research was supported in part by NSF
My M{ "Mlb grant PHY-0099568 and NASA grant NAG5-10707.
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