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Energy and angular momentum flow into a black hole in a binary

Kashif Alvi
Physics Division 130-33, California Institute of Technology, Pasadena, California 91125

~Received 25 July 2001; published 26 October 2001!

As a black hole in a binary spirals in gradually from large separation, energy and angular momentum flow
not only to infinity but also into or out of the hole. In addition, the hole’s horizon area increases slowly during
this process. In this paper, the changes in the black hole’s mass, spin, and horizon area during inspiral are
calculated for a hole in a circular binary with a companion body of possibly comparable mass. When the binary
is composed of equal mass black holes that have spins aligned with the orbital angular momentum and are
rapidly rotating~with spins 99.8% of their maximal values!, it is found that the fractional increase in the
surface area of each hole’s horizon is 1% by the time the binary spirals down to a separationb of 6M ~where
M is the binary’s total mass!, and 7% down tob52M . The flow of energy and angular momentum into the
black holes’ horizons changes the number of gravitational-wave cycles in the LIGO band by no more than a
tenth of a cycle by the time the binary reachesb52M . The results obtained in this paper are relevant for the
detection and analysis of gravitational waves from binary systems containing a black hole.

DOI: 10.1103/PhysRevD.64.104020 PACS number~s!: 04.70.2s, 04.25.Nx
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I. INTRODUCTION

Binary black holes are expected to be among the prim
sources of gravitational waves for interferometric detect
@1#. Since we do not have exact solutions of Einstein’s eq
tions that represent binary black holes in sufficient gene
ity, we must study these systems perturbatively and/or
merically. One regime in which the evolution of binary bla
holes is well understood is the early inspiral phase. In t
phase, the holes’ separation is still much larger than the
nary’s total mass, and post-Newtonian expansions can
used to analyze the system. Eventually radiation reac
drives the holes together and the post-Newtonian approxi
tion fails. The binary’s subsequent evolution must be stud
numerically.

While the flow of energy and angular momentum to
finity during inspiral has been calculated to high po
Newtonian order, to date the flow into or out of the bla
holes’ horizons has not been computed except in
extreme-mass-ratio limit; and in that limit, it has been do
to very high post-Newtonian order@2# ~for numerical work,
see e.g.@3#!. Absorption~or emission! of energy and angula
momentum by the holes’ horizons, while much smaller th
emission to infinity, might still be important because extra
tion of weak gravitational signals from noisy detector outp
using matched filtering requires knowledge of the orb
evolution to very high accuracy, and black hole absorpti
emission might affect the evolution at that level. Two pu
poses of this paper are first, to calculate black h
absorption/emission of energy and angular momentum
leading order in a circular binary with holes of possibly co
parable mass, and second, to investigate whether it is
evant for detection and analysis of gravitational waves.

A third purpose of this paper is to provide some inform
tion on the interface between the inspiral and merger pha
of binary evolution. Numerical simulations of binary blac
holes typically begin computing at this interface and ne
initial data representing holes that have spiraled in from
finity, i.e. initial data tied to the inspiral phase and to t
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post-Newtonian expansions used to describe it. One
proach to obtaining such initial data is given in@4#. Since
initial data of this sort are not yet being used, one need
relate the masses, spins, and horizon areas of the black h
present in currently used initial data to the correspond
quantities when the holes were infinitely separated. For
purpose, it is necessary to know how these quantities cha
during inspiral. In this paper, I calculate the leading-ord
changes in the holes’ masses, spins, and horizon areas d
inspiral for a circular binary.

Recently, Price and Whelan@5# have emphasized the rol
of angular momentum absorption/emission by rapidly rot
ing black holes at the end of inspiral, when the holes
beginning to merge. Here I focus on the earlier stages
inspiral, when the holes are widely~or moderately! separated
and their gravitational effects on each other can be descr
using black hole perturbation theory.

The results obtained in this paper are actually valid fo
black hole in a binary with any companion body~e.g. a neu-
tron star! that is well separated from the hole. The formul
for the changes in black hole quantities presented here
pend only on the companion body’s mass and not on
internal structure. These formulas therefore remain va
when the companion is not a black hole.

II. FRAMEWORK

I follow the field-theory-in-flat-spacetime notation used
the literature on post-Newtonian expansions~e.g. @6,7#! and
denote 3-vectors by boldface letters. A centered dot betw
3-vectors denotes the usual inner product in flat 3-spac
hatted 3-vector represents the unit vector in that directio

Consider a black hole binary undergoing circular moti
with the separationb between the holes much larger tha
their total massM5M11M2, whereMB denotes the mas
of the Bth hole. Definem5M1M2 /M and h5m/M . Label
the holes BH1 and BH2, and denote their spins bySB and
horizon areas byAB for B51,2. Let SB5(SB•SB)1/2 be the
spin magnitudes, and define the parametersxB by SB
©2001 The American Physical Society20-1



in

al

h
es
re
da

i
es
m
1

ne
e
r
fin
e
tl
-
s-
pe
u

u
ul
a
o

h

ri
im

is

s
-

u-

s
im

l
to
e
ed

ot

rs
e

-
ng

sults

al
er
nt
n

ing

w-

all

o

.
alu-
idal

l

ar
err
or-

nt
rr

-

is

KASHIF ALVI PHYSICAL REVIEW D 64 104020
5xBMB
2 (B51,2). Throughout this paper I assumexB

<0.998 (B51,2); this restriction is based on the analysis
@8#.

Define each black hole’s horizon radiusr HB5MB@11(1
2xB

2)1/2#, angular velocityVHB5xB(2r HB)21, and surface
gravity kB5(12xB

2)1/2(2r HB)21 (B51,2). Introduce the
following Newtonian quantities for the binary: the orbit
angular momentumLN , the orbital angular velocityVN

5(M /b3)1/2, and the relative velocityv5(M /b)1/2. By as-
sumption,v!1.

Since the black holes are widely separated, each hole
a surrounding region that satisfies the following properti
~i! it is far enough from the hole that gravity is weak the
~ii ! it does not extend so far that the companion hole’s ti
field varies appreciably in the region@9#. We can place in this
region an inertial coordinate system in which the hole
~momentarily! at rest. This region and its local coordinat
are referred to as the black hole’s local asymptotic rest fra
~LARF! @9#. Label the two regions around the holes LARF
and LARF2.

Usually mass and angular momentum are only defi
globally in general relativity, using fields at infinity, sinc
precise local definitions are not available. However, fo
black hole well separated from its companion, one can de
the hole’s mass and angular momentum using fields m
sured in the hole’s LARF; these definitions are inheren
ambiguous@9–12#. ~For further discussion of the ambigu
ities, see Sec. VI.! I refer to these definitions when discus
ing a black hole’s mass and angular momentum in this pa
I calculate the rates of change of these quantities as meas
in the LARF—that is, with respect to timet measured by an
inertial observer in the LARF. When integrated over the d
ration of inspiral, these rates of change should give res
exceeding the ambiguities in the definitions of mass and
gular momentum, in order to be relevant to the analysis
initial data at the interface between inspiral and merger. T
issue will be discussed further in Sec. VI.

I also consider slices of constant timet that begin in the
LARF and extend into the black hole, intersecting the ho
zon in 2-surfaces that correspond to constant ingoing-t
slices of a Kerr black hole’s horizon.~Alternatively, one can
consider slices that intersect a ‘‘stretched horizon’’ as d
cussed in@13# and references therein.! The rate of area in-
crease of these 2-surfaces can be calculated using the re
of Hawking and Hartle@14# combined with black hole per
turbation theory@15,16#. The quantitiesdMB /dt anddSB /dt
can then be obtained fromdAB /dt using the first law of
black hole mechanicsdM5(k/8p)dA1VHdJ and the rela-
tion vdJ5mdM for black hole perturbation modes of ang
lar frequencyv and azimuthal angular numberm @16,17,13#.
~HereJ refers to the black hole’s angular momentum.!

Throughout this paper, I focus on BH1 and the change
its parameters. The corresponding formulas for BH2 are s
ply obtained by exchanging the subscripts 1↔2 in the final
results @e.g. Eqs.~11!#. In Sec. III, I consider the specia
situation in which BH2 is held stationary with respect
BH1. The results from this artificial scenario are used in S
IV to analyze a circular binary with black hole spins align
10402
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or anti-aligned withLN . The more general case of spins n
fully aligned or anti-aligned withLN is treated in Sec. V.

III. STATIONARY COMPANION

In this section, I calculate the tidal distortion BH1 suffe
when BH2 is held stationary. This involves solving for th
Weyl tensor componentc0, which contains complete infor
mation about the gravitational perturbation on BH1, usi
the Teukolsky formalism@15#. With c0 in hand, the rates of
change of BH1 parameters can be calculated using the re
of Hawking and Hartle@14# and Teukolsky and Press@16#.

The first step in this process is to calculate BH2’s tid
field as seen in LARF1. I will consider only the lowest-ord
Newtonian tidal field, which is approximately consta
throughout LARF1. To calculate this field and its effect o
BH1, consider first a fictitious Euclidean 3-space contain
a single stationary body of massM2 at coordinate location
(b,u0 ,f0) in a spherical polar coordinate system. The Ne
tonian gravitational potential at the field point (r ,u,f) is
given in these coordinates by

F~r ,u,f!524p
M2

b (
l 50

`

(
m52 l

l

~2l 11!21S r

bD l

Ylm* ~u0 ,f0!

3Ylm~u,f! ~1!

for r ,b.
We are interested in the gravitational field only in a sm

neighborhood of the origin satisfyingr !b. In particular, we
would like to evaluate the body’s tidal field at the origin, s
only the l 52 partF (2) of F is relevant. The~electric-type!
tidal field is given byEi j 5F ,i j

(2) in Cartesian coordinates
Taking these derivatives in spherical coordinates and ev
ating in the usual spherical orthonormal basis yields the t
field componentsEû û ,Eûf̂ ,Ef̂f̂ near the originr 50. The
particular combination of relevance to us~see below! is in
this way determined to be

Ef̂f̂2Eû û22iEûf̂58pA6M2

5b3 (
m522

2

2Y2m~u,f!

3Y2m* ~u0 ,f0!. ~2!

Here the functions2Y2m(u,f) are spin-weighted spherica
harmonics@18#.

Return now to the black hole binary. The region ne
BH1, including LARF1, can be described as a perturbed K
black hole, and so can be covered by Boyer-Lindquist co
dinates (t,r ,u,f). We would like to solve the Teukolsky
equation@15# in this region for the Weyl tensor compone
c0(r ,u,f). If we were considering a single perturbed Ke
black hole as the entire spacetime, the asymptotic form ofc0
asr /M1→` would be the combinationEf̂f̂2Eû û22iEûf̂ of
the external tidal field@13#, sincec0 vanishes for an unper
turbed black hole. In our binary system,c0 acquires this
asymptotic form forM1!r !b, i.e. in LARF1, with the tidal
field Ei j being that of BH2. To lowest order, this tidal field
exactly the Newtonian field of a body of massM2 at sepa-
0-2
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ENERGY AND ANGULAR MOMENTUM FLOW INTO A . . . PHYSICAL REVIEW D64 104020
ration b, which was calculated above; in particular, the a
gular dependence ofc0 in LARF1 is given by Eq.~2!, but
with u andf now representing Boyer-Lindquist coordinate
andu0 andf0 now representing BH2’s angular coordinat
as seen in LARF1. Therefore, to solve for the perturbat
c0 on BH1, we impose the LARF1 boundary condition

c0→
8pA6M2

5b3 (
m522

2

2Y2m~u,f!Y2m* ~u0 ,f0! ~3!

for M1!r !b.
It now remains to solve the Teukolsky equation forc0

with the boundary condition~3! and an appropriate no
outgoing-wave boundary condition at the black hole horiz
@15#. We expressc0 as a sum of modes

c05 (
m522

2

2Y2m~u,f!Rm~r ! ~4!

and solve the radial Teukolsky equation forRm(r ) subject to
the no-outgoing-wave boundary condition at the horiz
This yields the radial functions„Eq. ~5.7! in Ch. VI of @19#…

Rm~r !5Cmxgm22~11x!2gm22F~24,1,2112gm ,2x!
~5!

for mÞ0. Here

gm5
imx1

2~12x1
2!1/2

, x5
r 2r H1

2M1~12x1
2!1/2

, ~6!

andF is a hypergeometric function. Them50 mode can be
treated separately; since a full treatment reveals that
mode does not contribute to the rates of change of black
parameters, I ignore it here. The constantsCm are determined
by imposing the LARF1 boundary condition~3!; we obtain

Cm5
8pM2

5b3A6
gm~gm11!~4gm

2 21!Y2m* ~u0 ,f0!. ~7!

The leading-order tidal distortion of BH1 due to the pre
ence of a stationary companion of massM2 has now been
determined. This information allows us to calculate the ra
of change of BH1 quantities using the results of Hawki
and Hartle@14#. In fact, given the modal decomposition~4!,
we can easily obtain the relevant rates using explicit form
las provided by Teukolsky and Press@16#. The results are
dM1 /dt50 and

dA1

dt
5

64pM1
5M2

2x1
2 sin2 u0

5b6~12x1
2!1/2 S 12

3

4
x1

21
15

4
x1

2 sin2 u0D ,

~8!
dS1

dt
52

~12x1
2!1/2

8px1

dA1

dt

52
8M1

5M2
2

5b6
x1 sin2 u0S 12

3

4
x1

21
15

4
x1

2 sin2 u0D .
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Hereu0 is BH2’s u-coordinate—that is, its polar angle wit
respect toS1—as measured in LARF1.

Since the effects of only the leading-order tidal field we
taken into account above, the expressions~8! are actually
valid for any companion body of massM2, not just a black
hole. The rates~8! of area increase and spin-down have
ready been derived by Teukolsky@19# in the extreme-mass
ratio limit, i.e. for M2!M1. The derivation I have presente
above establishes the validity of the expressions~8! for
comparable-mass black holes as well. Hartle and collab
tors @14,20,21,13# have shown that the spin-down of a blac
hole by an external tidal field is analogous to the Newton
tidal friction process in a planet-moon system.

The results~8! will be used in the next sections to obta
the corresponding formulas for a binary undergoing circu
motion.

IV. EQUATORIAL ORBITS

In this section I study special configurations of the bina
in which the black holes are in a circular orbit and have th
spins aligned or anti-aligned with the orbital angular mome
tum LN . In these scenarios there is no precession of
angular momenta: the spins remain aligned or anti-alig
with LN . As a result, the companion to each of the ho
orbits in the hole’s equatorial plane; more precisely, the
ternal tidal field seen by each of the holes rigidly rota
about an axis parallel or antiparallel to the hole’s spin ax

In Boyer-Lindquist coordinates (t,r ,u,f) centered on
BH1, with S1 along u50, the t- and f-dependence of the
companion’s tidal field enter in the combinationf2Vt. The
rotation rateV of the tidal field as seen in LARF1 is to
leading orderV5(L̂N•Ŝ1)VN , whereL̂N•Ŝ1511(21) for
a prograde~retrograde! orbit. The first correction to this ex
pression forV is O(v2) higher „see Eq.~3.12! in @4#…, and
will be ignored in this paper.

A. Instantaneous rates

In the rigidf-rotation case, simple formulas given in Eq
~7.21! of @13# ~and reproduced below! specify the rates of
change of black hole quantities in terms of a horizon integ
I that depends on the particular perturbing gravitational fie
present:

dS1

dt
5~V2VH1!I ,

dM1

dt
5V

dS1

dt
5V~V2VH1!I ,

k1

8p

dA1

dt
5~V2VH1!

dS1

dt
5~V2VH1!2I . ~9!

In terms of ingoing Kerr coordinates (V,r ,u,f̃) ~see e.g.
@22# for a definition!, I is an integral of a function ofu and
(f̃2VV) over a constant-V slice of the horizon. Since
f̃-rotations are isometries of the horizon metric,I is inde-
pendent ofV.

Consider an expansion ofI in powers ofM1V, which is
O(v3) and hence much smaller than 1. The zeroth-order p
I 05I uV50 is independent ofV and, in our situation of binary
0-3
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KASHIF ALVI PHYSICAL REVIEW D 64 104020
black holes, can be easily obtained from the results fo
stationary companion. From Eqs.~9!, we have Ṡ1uV50
52VH1I 0, where an overdot indicates a time derivativ
But V50 corresponds to a stationary companion, and in
case we have an explicit expression forṠ1 in Eqs.~8!. Equat-
ing Ṡ1 in Eqs.~8! to 2VH1I 0 yields

I 0~u0!5
16r H1

5b6
M1

5M2
2 sin2 u0S 12

3

4
x1

21
15

4
x1

2 sin2 u0D ,

~10!

where u05p/2 for the equatorial orbits considered in th
section. The general expression~10! with a wider range of
values foru0 will be used for non-equatorial orbits in th
next section. Since the first correction toI 0 in the expansion
of I in powers ofM1V is O(M1V)5O(v3), I will approxi-
mateI by I 0 throughout this paper.

Note that Eqs.~9! are, strictly speaking, valid only fo
constant rotation ratesV. In our situation, radiation reactio
drives the binary together and soV changes during inspiral
However, the time scale for these changes is the inspiral t
scalet ins;bv26, where ‘‘; ’’ means ‘‘is of the order of’’;
this is to be compared to the time scalek1

21 on which the
divergence and shear of the null generators of the hori
probe the future@14,17,13#. By assumption,x1 is less than or
equal to 0.998; this impliesk1

21,34M1, so k1
21 is much

smaller thant ins. Therefore Eqs.~9! are valid in our binary
system to a very good approximation. The various ti
scales of interest to us will be discussed in more detail bel

Note also that Eqs.~9! @and, in addition, Eqs.~11!, ~21!,
and ~22! below# are valid only when integrated over tim
intervals much longer thank1

21 ~see the discussion in Se
VI C 11 of @13#!. In this paper, I am interested in integratin
these equations over the entire inspiral—that is, over t
intervals of ordert ins—so this condition is certainly satisfied

After putting I 0(p/2) andV5(L̂N•Ŝ1)VN into Eqs.~9!,
we obtain the following rates of change of BH1 quantiti
for a circular orbit with spins aligned or anti-aligned wi
LN :

dS1

dt
5~V2VH1!I 0~p/2!

5S dJ

dt D
N

v5

4 S M1

M D 3

~113x1
2!H 2x112~ L̂N•Ŝ1!

3@11~12x1
2!1/2#

M1

M
v3J ,

dM1

dt
5V~V2VH1!I 0~p/2!

5S dE

dt D
N

v5

4 S M1

M D 3

~113x1
2!H 2~ L̂N•Ŝ1!x1

12@11~12x1
2!1/2#

M1

M
v3J , ~11!
10402
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dA1

dt
58pk1

21~V2VH1!2I 0~p/2!

5
64pM1

5M2
2~113x1

2!

5b6~12x1
2!1/2

3H x122~ L̂N•Ŝ1!@11~12x1
2!1/2#

M1

M
v3J 2

.

In these formulas, the Newtonian quadrupole expressions
energy and angular momentum flow to infinity are@23,24#

S dE

dt D
N

5
32

5
h2v10, S dJ

dt D
N

5
32

5
h2Mv7, ~12!

where v5(M /b)1/2 and h5M1M2 /M2. Note that energy
and angular momentum absorption/emission by a rota
~non-rotating! black hole is 2.5~4! post-Newtonian orders
below the quadrupole emission~12! to infinity, as first de-
rived in the extreme-mass-ratio limit by Poisson and Sas
@25# and Tagoshi, Mano, and Takasugi@2#. The rates of
change for BH2 are obtained by exchanging the subscr
1↔2 in the formulas~11!.

The energy absorption/emission rateṀ1 given above
agrees in the limitM2 /M→0 with the lowest-order expres
sion obtained by Tagoshi, Mano, and Takasugi@2#. Those
authors have calculated this rate in the extreme-mass-
limit, for a circular equatorial orbit, to much higher order
v than I have done here. However, their results are not
plicable to comparable-mass binaries, while the formu
~11! are.

The expressions~11! are valid even if BH1’s companion
is not a black hole, provided the companion’s mass is s
stituted forM2.

B. Total changes during inspiral

In this subsection, I integrate Eqs.~11! to calculate the
total changes inM1 , S1, andA1 during inspiral. I take into
account only the leading-order Newtonian effects of rad
tion reaction when computing orbital decay; given this a
proximation, the orbital separationb evolves as@24,22#

b~ t !5b0~12t/t0!1/4, ~13!

where t05(5/256)b0
4(mM2)21. I also ignore all post-

Newtonian corrections to the orbital angular velocityVN .
It is convenient to parametrize the orbit by separationb

instead of timet. The total change in a parameter, sayS1,
from infinite separation to separationb is denotedDS1(b)
and is calculated by integrating Eqs.~11!. As a first approxi-
mation, the quantitiesMB andSB (B51,2) on the right-hand
sides of Eqs.~11! can be considered constants during
spiral. The reason is that the time scales for evolution ofMB
and SB are much longer than the inspiral time scalet ins
;bv26. Indeed, the time scale for evolution of the masse
tM;MB /ṀB;bv213, and for the spins istS;SB /ṠB
;bv210. So tM@tS@t ins and we can safely treatMB and
0-4
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ENERGY AND ANGULAR MOMENTUM FLOW INTO A . . . PHYSICAL REVIEW D64 104020
SB (B51,2) as constants on the right-hand sides of Eqs.~11!
when integrating over inspiral.

With these approximations, the normalized changes
BH1 parameters from infinite separation to separationb are

DS1

M1
2 ~b!5

hM1

4M
~113x1

2!H 2
x1

4 S M

b D 2

1~ L̂N•Ŝ1!

3@11~12x1
2!1/2#

2M1

7M S M

b D 7/2J ,

DM1

M1
~b!5

h

4 S M1

M D 2

~113x1
2!H 2~ L̂N•Ŝ1!

x1

7 S M

b D 7/2

1@11~12x1
2!1/2#

M1

5M S M

b D 5J , ~14!

DA1

A1
~b!5

hM1
2~113x1

2!

8Mr H1~12x1
2!1/2Fx1

2

2 S M

b D 2

2~ L̂N•Ŝ1!
8x1

7

3
r H1

M S M

b D 7/2

1
4

5S r H1

M D 2S M

b D 5G ,
wherer H15M1@11(12x1

2)1/2#. To evaluate these change
one can put into the formulas~14! the values ofM1 , S1, and
A1 at infinite separation or, for that matter, at any separa
much larger thanM, because the changes in these quanti
during inspiral are small. Once again, the changes for B
are obtained by exchanging the subscripts 1↔2 in the ex-
pressions~14!.

The normalized parameter changes~14!, evaluated at dif-
ferent stages during inspiral, are displayed in Tables I–III
an equal-mass binary (M15M2) with L̂N•Ŝ151. Since a
binary composed of slowly rotating black holes is expec
to be undergoing a transition from inspiral to merger by

TABLE I. Normalized changeDS1 /M1
2 in spin evaluated at

b/M5100, 20, and 6 for an equal-mass binary withL̂N•Ŝ151. For
rapidly rotating holes (x15x250.998), this change is also evalu
ated atb/M52.

x1 b/M5100 b/M520 b/M56 b/M52

0 9.310210 2.31027 2.31025

0.5 27.31027 22.31025 22.31024

0.998 23.31026 28.31025 28.31024 26.31023

TABLE II. Normalized changeDM1 /M1 in mass evaluated a

b/M5100, 20, and 6 for an equal-mass binary withL̂N•Ŝ151. For
rapidly rotating holes (x15x250.998), this change is also evalu
ated atb/M52.

x1 b/M5100 b/M520 b/M56 b/M52

0 3.310213 1.31029 4.31027

0.5 22.310210 25.31028 23.31026

0.998 29.310210 22.31027 22.31025 26.31024
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time it reachesb56M , the endpoint of integration is chose
to beb56M whenx150 and 0.5. For rapidly rotating hole
(x15x250.998), the endpoint is chosen to beb52M . The
assumptionM!b is not valid at and near these endpoin
The results presented here are most accurate in the e
stages of inspiral, when the black holes are widely separa
and are a rough estimate of the true parameter changes i
late stages of inspiral.

C. Effect on orbital evolution

The orbital evolution of binary black holes is affected b
the absorption/emission of energy and angular momentum
the holes. In particular, the number of orbits—and hence
number of gravitational-wave cycles emitted to infinity—
changes when black hole absorption/emission is accou
for. To estimate this effect, let us consider a circular, nea
Newtonian binary, with spins aligned or anti-aligned wi
LN , that is losing orbital energy and angular momentum
infinity via Newtonian quadrupole radiation~12!, and to the
black holes via tidal interaction as specified by Eqs.~11!.
SinceṀB5VṠB5(L̂N•ŜB)VNṠB (B51,2), circular, nearly
Newtonian orbits remain circular. Therefore the evolution
the separationb(t) is determined by setting the rate o
change of Newtonian orbital energy~given by Eorb5
2M1M2/2b) to the rate of energy loss to infinity and to th
holes:

dEorb

dt
5

M1M2

2b2

db

dt
52S dE

dt D
N

2
dM1

dt
2

dM2

dt
, ~15!

where (dE/dt)N is given in Eqs.~12! and Ṁ1 in Eqs. ~11!

@with Ṁ2 obtained by exchanging the subscripts 1↔2 in
Eqs.~11!#.

The number of gravitational-wave cyclesN1 emitted to
infinity from initial time t i to final time t f ~corresponding to
separationsbi andbf) is given by

N5E
t i

t f
dt

VN

p
5

1

pEbi

bf
db

dt

db S M

b3D 1/2

, ~16!

wheredt/db is determined from Eq.~15!. This number is to
be compared with the number of cyclesN2 obtained by ig-
noring black hole absorption/emission of energy and ang
momentum, i.e. by settingĖorb equal to2(dE/dt)N . The
differenceDN5N12N2 measures the effect of black ho
absorption/emission on the binary’s orbital evolution.

TABLE III. Normalized changeDA1 /A1 in horizon area evalu-

ated atb/M5100, 20, and 6 for an equal-mass binary withL̂N

•Ŝ151. For rapidly rotating holes (x15x250.998), this change is
also evaluated atb/M52.

x1 b/M5100 b/M520 b/M56 b/M52

0 6.310213 2.31029 8.31027

0.5 2.31027 5.31026 4.31025

0.998 5.31025 1.31023 1.31022 7.31022
0-5
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The values ofDN obtained by settingbi to be the sepa-
ration at which the gravitational-wave frequency is 10
~the low-frequency end of the Laser Interferometer Grav
tional Wave Observatory~LIGO! band!, x1 and x2 to be
0.998, and the spins to be aligned withLN ~i.e. L̂N•Ŝ1

5L̂N•Ŝ251) are displayed in Table IV for various choice
of total massM ~in units of a solar massM () and mass ratio
M1 /M2. In the table, the numbers without parentheses
obtained by settingbf56M , and those with parentheses b
settingbf to be the larger of 2M or the separation at which
the wave frequency is 1000 Hz~the high-frequency end o
the LIGO band!. For non-rotating black holes (x15x250),
the corresponding values ofDN ~with bf56M ) are all less
than 1022.

The values ofDN in Table IV indicate that black hole
absorption/emission of energy and angular momentum
ing inspiral may not be an important effect for the detect
~by LIGO and Virgo! and analysis of gravitational wave
from comparable-mass black holes. Indeed, post-Newto
corrections to the equations of motion and energy loss h
far greater influence on the number of wave cycles emi
by the binary@6,7#. It should be noted, however, that blac
hole absorption or emission could have a much larger imp
on the orbital evolution of rapidly rotating holes when th
are beginning to merge, as suggested by Price and Wh
@5#. They have presented models in which the tidal torq
that results from black hole absorption/emission of angu
momentum plays a crucial role in the late stages of bin
evolution ~see Fig. 1 in@5#!. The perturbative methods use
in this paper~based on wide separation of the binary! are not
valid in the close limit analyzed in@5#.

It has been pointed out by Hughes@3# that in the extreme-
mass-ratio limit, black hole absorption/emission can stron
influence the binary’s orbital evolution and is an importa
effect for the Laser Interferometer Space Antenna.

V. NON-EQUATORIAL ORBITS

In general, binary black holes are not expected to h
spins aligned with the orbital angular momentumLN . This
misalignment causes the spins and orbit to precess in a c
plicated way due to spin-orbit and spin-spin coupling@26,7#.
Each black hole’s companion is not, in general, confined

TABLE IV. Change DN in the number of gravitational-wave
cycles due to black hole absorption/emission, for various value
total massM and mass ratioM1 /M2. The initial separation is such
that the wave frequency is 10 Hz and the spins satisfyx15x2

50.998 andL̂N•Ŝ15L̂N•Ŝ251. The numbers without parenthes
are for a final separationbf of 6M ; those with parentheses are fo
bf equal to the larger of 2M or the separation at which the wav
frequency is 1000 Hz.

M (M () M1 /M251 M1 /M252 M1 /M254

5 0.07~0.07! 0.11 ~0.11! 0.23 ~0.24!
20 0.05~0.07! 0.07 ~0.10! 0.16 ~0.22!
50 0.03~0.06! 0.05 ~0.08! 0.11 ~0.18!
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the hole’s equatorial plane, and so the formulas in the pre
ous section are not applicable. However, for orbits suita
close to the equatorial plane~see below for details!, one can
imagine using an approximation scheme in which at e
instant the companion’su-velocity is ignored; that is, the
companion is taken to be rigidly rotating in thef-direction
at each point on the orbit. The changes in black hole par
eters can then be calculated by putting the instantane
f-velocity into the rigid f-rotation formulas~9! at each
point on the orbit. In this section, I construct such an a
proximation scheme.

A. Description of orbit

The evolutions of the spins and orbit are described by
equations@26,7#

ṠB5Vspin
(B) 3SB , L̇N5Vorb3LN2

32

5
h2Mv7L̂N ,

~17!

for B51,2. The orders of magnitude of the precession f
quencies areVspin;v3b21 and Vorb;v4b21. Since the
Newtonian angular velocity isVN;vb21, both Vspin and
Vorb are much smaller thanVN . This means that, over a few
orbital periods,LN(t) andSB(t) do not change much due t
precession. Thus, the companion’s orbit as seen in LARF
to a good approximation confined to a single plane with n
mal vectorn5L̂N(t) along the instantaneous direction of th
orbital angular momentum, on time scales of a few orb
periods.

In this subsection, I analyze the trajectory of a particle
a planar, circular orbit of arbitrary orientation in a fictitiou
Euclidean 3-space in terms of spherical coordinates. T
information will be used to specify the rotation rate and o
entation of the companion’s tidal field as seen in LARF
Denote the particle’s radial coordinate byb, its constant
~non-negative! angular velocity byv, and the normal to its
orbital plane byn. The angle of inclination of the norma
with respect to thez-axis is denotedun ; so cosun5n•eẑ
5nz . Assume the orbit is centered on the origin, so the p
ticle’s positionX(t) at timet is given by a rotationR(n,vt)
aboutn, by an anglevt, of the initial positionX0.

In Cartesian coordinates, the particle’s trajectory is giv
by X(t)5X0 cosvt1(n3X0)sinvt. In terms of the particle’s
angular coordinatesu(t) and f(t), X(t) is equal to
b@sinu(t)cosf(t),sinu(t)sinf(t),cosu(t)#. I choose the initial
position to be in the equatorial plane, i.e.Z05X0•eẑ50.
This choice does not affect the orbit-averaged quantities
I calculate later in this section.

The angular functionsu(t) and f(t) can now be ex-
pressed in terms ofn and v using the relations above. Th
quantities of interest are sin2 u(t) and ḟ(t), which are deter-
mined to be

sin2 u~ t !512sin2 un sin2 vt, ḟ~ t !5
v cosun

sin2 u~ t !
. ~18!

of
0-6
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B. Approximation scheme

Return now to our black hole binary, and go to Boye
Lindquist coordinates (t,r ,u,f) in LARF1. The compan-
ion’s trajectory as seen in LARF1 will be described~to low-
est order inv) by angular functionsu(t) andf(t) given by
the expressions~18! with v replaced byVN and un now
referring to the angle of inclination ofLN(t) with respect to
S1(t), that is, cosun5L̂N(t)•Ŝ1(t). After these substitutions
we have

sin2 u~ t !512„12@ L̂N~ t !•Ŝ1~ t !#2
…sin2 VNt,

ḟ~ t !5
VNL̂N~ t !•Ŝ1~ t !

sin2 u~ t !
. ~19!

Sinceun is now time dependent, these expressions are m
ingful only when used to calculate orbit-averaged quantit

Consider the regime in which sin2 u(t) and ḟ(t) are
slowly varying; more precisely, require them to be appro
mately constant on the time scalek1

21 associated with the
horizon. As noted before, this is the time scale on which
null generators of the horizon probe the future@14,17,13#.
The teleological behavior of the horizon is, however, exp
nentially limited; that is, the influence of future events on t
horizon decays exponentially in time, with decay ratek1
~see, e.g., the discussion of teleological Green’s function

@13#!. We thus requireuḟ/f̈u and u(1/sin2 u)d(sin2 u)/dtu21

@which are the same to leading order by Eqs.~19!# to be only
several times larger thank1

21, rather than orders of magn
tude larger.

By assumption,x1<0.998, sok1
21 is less than 34M1. Our

requirement can then be expressed as

34aM1VN<
sin2 u~ t !

sin2 unusin 2VNtu
~20!

for all t, wherea is a number roughly in the range 2–4.
sufficient condition for this constraint to be satisfied
cot2 un>34aM1VN . This requiresL̂N(t) to be near one of
the polar axes6Ŝ1(t), which correspond tou50,p; or,
equivalently, the orbital plane must be near the equato
plane.

We are interested in separations as small asb56M , so
VN can be as large as (63/2M )21. For this reason, I impose
the constraint cot2 un>34a623/2 and seta to be approxi-
mately 3, obtaining the approximate constraints 0<un

&p/9 or 8p/9&un<p. In other words,L̂N(t) is within 20°
cones around the polar axes, or, equivalently, the inclina
angle of the orbit with respect to the equatorial plane is l
than or~approx.! equal to 20°.

For the approximation scheme in this section to be va
we require further that in the horizon’s reference frame,
external tidal field should rotate primarily in thef-direction
and not significantly in theu-direction. More precisely, we
require uu̇u!uḟ2VH1u. The rates of change presented
Eqs. ~21! and ~22! below are subject to this condition. Fo
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most values ofx1, this condition is automatically satisfie
throughout inspiral~down tob56M ). Even if it is not sat-
isfied at some point during inspiral, the restriction onun
discussed above ensures that the effect of theu-motion,
when integrated over inspiral, is negligible compared to t
of the f-motion, for almost all values ofx1.

With the above restriction onun , we can at each instan
take sin2 u(t) and ḟ(t) to be constant relative to the horizo
time scalek1

21, and apply the rigidf-rotation formulas~9!

with the instantaneous valuesu(t) and ḟ(t) put in. This
yields

dS1

dt
5@ḟ~ t !2VH1#I 0@u~ t !#,

dM1

dt
5ḟ~ t !@ḟ~ t !2VH1#I 0@u~ t !#, ~21!

k1

8p

dA1

dt
5@ḟ~ t !2VH1#2I 0@u~ t !#,

whereu(t) and ḟ(t) are given by Eqs.~19! and I 0 by Eq.
~10!.

C. Orbit-averaged quantities

Next I would like to average these rates of change over
orbit assuming the binary’s masses, spins, separation,
orbital angular momentum are approximately constant o
an orbital period. This assumption is justified by the follow
ing ordering of the relevant time scales:VN

21!Vspin
21 , Vorb

21

!t ins!tS!tM . We can therefore take all the quantities o
the right-hand sides of Eqs.~21! exceptu(t) andḟ(t) to be
constant, to a good approximation, when averaging over
orbit. I denote orbit averages by angular brackets^ &; so, for
example,^Ṡ1&5(VN/2p)*0

2p/VNṠ1dt. Plugging the expres-
sions~19! into Eqs.~21! and performing the orbit average
~as defined above! yields

K dS1

dt L 5
r H1

10b6
M1

5M2
2

3†16~113x1
2!$2VNN1~ t !2VH1@N 1

2~ t !11#%

115x1
2@N 1

2~ t !21#

3$4VNN1~ t !2VH1@3N 1
2~ t !11#%‡,

K dM1

dt L 5
2r H1

5b6
M1

5M2
2VNN1~ t !$2VN~423x1

2!sign@N1~ t !#

28VH1~113x1
2!115x1

2$2VNN1~ t !

1VH1@12N 1
2~ t !#%%, ~22!
0-7
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K dA1

dt L 5
8pr H1

2 M1
5M2

2

5b6~12x1
2!1/2

$~16212x1
2!$VH1

2 @N 1
2~ t !11#

24VH1VNN1~ t !12VN
2 uN1~ t !u%

115x1
2$VH1

2 @3N 1
4~ t !12N 1

2~ t !13#

28VH1VNN1~ t !@N 1
2~ t !11#18VN

2 N 1
2~ t !%%,

whereNB(t)5L̂N(t)•ŜB(t) for B51,2. The corresponding
expressions for BH2 can be obtained by exchanging the
scripts 1↔2 in Eqs.~22!. Note that these equations are va
only for NB(t) suitably close to61, as discussed above. Th
formulas~22! can be applied to a black hole in a binary wi
any companion body~e.g. a neutron star! that has massM2
and is well separated from the hole.

Numerical integration of Eqs.~22! using the 2.5 post-
Newtonian equations of motion for spinning bodies~@7# and
references therein! yields results comparable to those
Tables I–III.

VI. DISCUSSION

Having obtained the leading-order changes in a bl
hole’s mass and spin during inspiral@see Eqs.~14!#, we must
check whether these changes exceed the ambiguities inh
in the definitions of mass and spin@9#. Denote bydM and
dS the magnitudes of the mass and spin ambiguities. F
Eqs.~1.8! in @9#,

dM;
ML2

R 2 , dS;
M3L

R 2 , ~23!

whereM andL are the mass and size of the~isolated! body in
question, andR is the external universe’s radius of curv
ture. For a black hole in a binary, say BH1,L;M1 and
R 2;b3/M2. This implies

dM1

M1
;

dS1

M1
2 ;h

M1

M S M

b D 3

. ~24!
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From Eqs.~14!, the changesDM1 andDS1 from infinite
separation to separationb are

DM1

M1
;hS M1

M D 2S M

b D 7/2

,
DS1

M1
2 ;h

M1

M S M

b D 2

. ~25!

So, at separationb, we have

DM1

dM1
;

M1

M S M

b D 1/2

,
DS1

dS1
;

b

M
. ~26!

We conclude thatuDS1u exceeds the ambiguitydS1 in the
definition of spin, butuDM1u does not rise abovedM1. Note
that the concept of tidal work is unambiguous@10–12#.

When analyzing initial data that contain a black hole a
represent the interface between inspiral and merger, one
define and calculate the hole’s mass and spin in differ
ways, giving different answers corresponding to the ambi
ities dM and dS discussed above. SincedM is larger than
uDM u, the hole’s mass can be considered constant du
inspiral to the same level of accuracy as used in defin
mass. On the other hand,uDSu exceedsdS, so the hole’s spin
cannot be considered constant; however, as Table I indica
the changes in spin are small during inspiral.

The results of this work—in particular, Eqs.~14! and
~22!—can be used to relate the spin and horizon area o
black hole in a particular initial data set to the spin a
horizon area the hole had when infinitely separated from
companion.
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