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Teleparallel gravity and dimensional reductions of noncommutative gauge theory
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We study dimensional reductions of noncommutative electrodynamics on flat space, which lead to gauge
theories of gravitation. For a general class of such reductions, we show that the noncommutative gauge fields
naturally yield a Weitzenbo¨ck geometry on spacetime and that the induced diffeomorphism invariant field
theory can be made equivalent to a teleparallel formulation of gravity which macroscopically describes general
relativity. The Planck length is determined in this setting by the Yang-Mills coupling constant and the non-
commutativity scale. The effective field theory can also contain higher curvature and non-local terms which are
characteristic of string theory. Some applications to D-brane dynamics and generalizations to include the
coupling of ordinary Yang-Mills theory to gravity are also described.
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I. INTRODUCTION

Yang-Mills theory on a flat noncommutative space aris
as special decoupling limits of string theory@1,2# and M
theory @2,3#. In string theory it represents the low-energ
effective field theory induced on D-branes in the presenc
a constant background supergravityB field. The inherent
non-locality of the interactions in this field theory lead
many exotic effects that do not arise in ordinary quant
field theory, and which can be attributed to ‘‘stringy’’ prop
erties of the model. It is thereby believed that, as field th
ries, these models can provide an effective description
many of the non-local effects in string theory, but within
much simpler setting. As string theory is a candidate fo
unified quantum theory of the fundamental interactions, a
in particular of gravitation, it is natural to seek ways to re
ize this unification in the context of noncommutative gau
theories. Gravity has been previously discussed using
framework of noncommutative geometry in@4#, while the
unification of Einstein gravity and Yang-Mills theory is ob
tained in @5# from a spectral action defined on an almo
commutative geometry. In this paper we will describe a p
ticular way that gravitation can be seen to arise
noncommutative Yang-Mills theory onflat space.

There are several hints that gravitation is naturally c
tained in the gauge invariant dynamics of noncommuta
Yang-Mills theory. In @6# the strong coupling supergravit
dual of maximally supersymmetric noncommutative Yan
Mills theory in four dimensions@7# was studied and it was
shown that the effective supergravity Hamiltonian has
unique zero energy bound state which can be identified w
a massless scalar field in four dimensions. The ten dim
sional supergravity interaction is then of the form of a fo
dimensional graviton exchange interaction and one m
therefore identify the Newtonian gravitational potential
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noncommutative gauge theory. The Planck length is de
mined in this setting by the scale of noncommutativity. F
thermore, noncommutative Yang-Mills theory at one-lo
level gives rise to long-range forces which can be interpre
as gravitational interactions in superstring theory@8,9#.

At a more fundamental level, general covariance emer
in certain ways from the extended symmetry group that n
commutative gauge theories possess. It can be see
emerge from the low-energy limit of a closed string vert
operator algebra as a consequence of the holomorphic
anti-holomorphic mixing between closed string states@10#.
The diffeomorphism group of the target space acts on
vertex operator algebra by inner automorphisms and ther
determines a gauge symmetry of the induced noncomm
tive gauge theory. Furthermore, noncommutative Yang-M
theory can be nonperturbatively regularized and studied
means of twisted largeN reduced models@8,11–13#. This
correspondence identifies the noncommutative gauge g
as a certain largeN limit @14# of the unitary Lie group U(N)
which is equivalent to the symplectomorphism group of fl
space@15#. The noncommutative gauge group can thereby
described as a certain deformation of the symplectom
phism group@or equivalently U(̀ )# @16# and the noncom-
mutative gauge theory can be regarded as ordinary Ya
Mills theory with this extended, infinite dimensional gaug
symmetry group@17#. Other attempts at interpreting diffeo
morphism invariance in noncommutative Yang-Mills theo
using reduced models of gauge theory can be found
@18,19#.

These features are all consequences of the fact that
commutative gauge transformations mix internal and spa
time symmetries, and are thereby very different from or
nary gauge symmetries. In the case of noncommuta
Yang-Mills theory on flat infinite space, a global translatio
of the spacetime coordinates can be realized as a local g
transformation@13,20,21#, up to a global symmetry of the
field theory. The main consequence of this property is tha
gauge invariant operators are non-local in the sense that
translational invariance requires them to be averaged o
©2001 The American Physical Society19-1
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spacetime. Such constructions are reminescent of gen
relativity. In addition, the noncommutative gauge symme
allows for extended gauge invariant operators@21# which are
constructed from open Wilson line observables@12,13,22#.
These observables exhibit many of the ‘‘stringy’’ features
noncommutative gauge theory@21,23#. They can also be
used to construct the appropriate gauge invariant opera
that couple noncommutative gauge fields on a D-brane
massless closed string modes in flat space@24#, and thereby
yield explicit expressions for gauge theory operators dua
bulk supergravity fields in this case.

The fact that the group of global translations is contain
in the group of noncommutative gauge transformations
thereby naturally linked with the suggestion that noncomm
tative Yang-Mills theory may contain gravity. The idea
representing general relativity as a gauge theory of so
kind is of course an old idea@25–28#. ~See@29# for more
recent reviews of the gauge theory approaches to gra
tion.! Such models are based on constructing gauge theo
with structure groups given by spacetime symmetry grou
such as the Poincare´ group, in such a way that the mixing o
gauge and spacetime symmetries enables the unambig
identification of gauge transformations as general coordin
transformations. If noncommutative gauge theory is to c
tain gravitation in a gauge invariant dynamical way, then
gauge group should admit a local translational symmetry c
responding to general coordinate transformations in
space. While there are general arguments which imply
this is not the case@16,19#, it could be that a particular re
duction of noncommutative gauge theory captures the qu
tative manner in which noncommutative gauge transform
tions realize general covariance. In this paper we s
discuss one such possibility. We will show how noncomm
tative U~1! Yang-Mills theory onflat spaceRn3Rn can gen-
erate a theory of gravitation onRn. The basic observation
underlying the construction is that the algebra of functio
on R2n, with a Lie bracket defined in terms of the deform
product of the noncommutative theory, contains the Lie
gebra vect(Rn) of vector fields onRn.1 We show that it is
possible to consistently restrict the noncommutative Ya
Mills fields so as to obtain a local field theory whose sy
metry group contains diffeomorphism invariance. This co
struction shows how noncommutative gauge symmet
give very natural and explicit realizations of the mixing
spacetime and internal symmetries required in the old ga
models of gravity. It is also reminescent of a noncommu
tive version of brane world constructions which localize t
dimensional supergravity down to four dimensions alo
some noncommutative directions@30#.

Gauge theories whose structure group is the group
translations of spacetime lead to teleparallel theories of g
ity @31#. These models are built via an explicit realization

1In the following, by diffeomorphism invariance we will mea
invariance under the connected diffeomorphism group, i.e. un
the Lie algebra vect(Rn) of infinitesimal diffeomorphisms. In this
paper we will not consider any global aspects of the gauge sym
tries.
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Einstein’s principle of absolute parallelism. They are defin
by a non-trivial vierbein field which can be used to constru
a linear connection that carries non-vanishing torsion, bu
flat. Such a connection defines what is known as a Weitz
böck geometry on spacetime. The vanishing of the curvat
of the connection implies that parallel transport in such
geometry is path independent, and so the geometry yield
absolute parallelism. Teleparallelism thereby attributes gra
tation to torsion, rather than to curvature as in general re
tivity. This class of gravitational theories is thereby a ve
natural candidate for the effective noncommutative fie
theory of gravitation, which is induced on flat spacetime. W
will see in the following how the gauge fields of the dime
sionally reduced noncommutative Yang-Mills theory na
rally map onto a Weitzenbo¨ck structure of spacetime. A
teleparallel theory of gravity can also be viewed as the z
curvature reduction of a Poincare´ gauge theory@25,27,28#
which induces an Einstein-Cartan spacetime characterize
connections with both non-vanishing torsion and curvatu
The zero torsion limit of an Einstein-Cartan structure is
course a Riemannian structure and is associated with o
nary Einstein general relativity. The Weitzenbo¨ck geometry
is in this sense complementary to the usual Riemannian
ometry. More general gauge theories of gravitation can
found in @29,32#. From the present point of view then, non
commutative Yang-Mills theory naturally induces gravitatio
through a torsioned spacetime, and its full unreduced dyn
ics may induce gravity on the entire spacetime through
gauging of some more complicated spacetime group, a
@32#.

A teleparallel gauge theory of gravity describes the d
namical content of spacetime via a Lagrangian which is q
dratic in the torsion tensorTmnl of a Cartan connection. The
most general such Lagrangian is given by2

LT5
1

16pGN
~t1TmnlTmnl1t2TmnlTmln1t3Tmn

nTl
ml!,

~1.1!

whereGN is the Newtonian gravitational constant andt i , i
51,2,3, are arbitrary parameters. For generic values oft i the
field theory defined by Eq.~1.1! is diffeomorphism invariant,
but it is not equivalent to Einstein gravity@26#. However, one
can demand that the theory~1.1! yields the same results a
general relativity in the linearized weak field approximatio
It may be shown that there is a one-parameter family
Lagrangians of the form~1.1!, defined by the parametric
equation

2t11t251, t3521, ~1.2!

which defines a consistent theory that agrees with all kno
gravitational experiments@33#. For such parameter value
the Lagrangian~1.1! represents a physically viable gravita
tional theory which is empirically indistinguishable from
general relativity. For the particular solutiont15 1

4 , t25 1
2 of

er

e-2In this paper an implicit summation over repeated upper a
lower indices is always understood, except when noted otherw
9-2
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TELEPARALLEL GRAVITY AND DIMENSIONA L . . . PHYSICAL REVIEW D 64 104019
Eq. ~1.2!, the Lagrangian~1.1! coincides, modulo a total di
vergence, with the Einstein-Hilbert Lagrangian@28,29,34#,
and the resulting gauge theory is completely equivalen
Einstein gravity at least for macroscopic, spinless matter
addition, the Weitzenbo¨ck geometry possesses many salie
features which makes it particularly well-suited for certa
analyses. For instance, it enables a pure tensorial proof o
positivity of the energy in general relativity@35#, it yields a
natural introduction of Ashtekar variables@36#, and it is the
natural setting in which to study torsion@37#, notably at the
quantum level, in systems where torsion is naturally induc
such as in the gravitational coupling to spinor fields.

In this paper we will show that the dimensional reducti
of noncommutative gauge theory contains the Lagrang
~1.1! for the particular family of teleparallel theories of gra
ity defined byt25t3. Thus for the solutiont152t251 of
Eq. ~1.2!, it contains a macroscopic description of gene
relativity. Whether or not these latter constants really aris
a dynamical issue that must be treated by regarding the
mensionally reduced-noncommutative field theory as an
fective theory, for example, induced from string theory. W
shall not address this problem in the present analysis, ex
to present a group theoretical argument for the naturality
this choice of parameters. From this result we will determ
the gravitational constant in terms of the gauge coupling c
stant and the noncommutativity scale. We will also find
host of other possible terms in the total Lagrangian which
will attribute to higher curvature and non-local couplin
that are characteristic of string theory. Indeed, the partic
theory induced by the standard, flat space noncommuta
Yang-Mills theory on a D-brane is a special case of the m
general construction. In that case we will find quite natura
that the gravitational theory can be invariant only under
volume-preserving coordinate transformations of spaceti
a fact anticipated from string theoretical considerations.
will also describe how the present construction can be g
eralized to include the coupling of gravity to ordinary gau
fields. These results all show that, at the level of the
unreduced Yang-Mills theory, noncommutative gauge sy
metry naturally contains gravitation and also all other p
sible commutative gauge theories, at least at the somew
simplified level of dimensional reduction and the principle
absolute parallelism. The constructions shed some ligh
how the full gauge invariant dynamics of noncommutat
Yang-Mills theory incorporates gravitation. At a more pra
matic level, noncommutative Yang-Mills theories give a ve
natural and systematic way of inducing gauge models
gravity in which the mixing between spacetime and inter
degrees of freedom is contained in the gauge invariant
namics from the onset.

The structure of the remainder of this paper is as follow
In Sec. II we describe the general model of noncommuta
U~1! Yang-Mills theory and its gauge invariant dimension
reductions. In Sec. III we describe a particular family
dimensional reductions and compute the induced actions
Sec. IV we construct a Weitzenbo¨ck structure on spacetim
from the dimensionally reduced gauge fields, and in Sec
we relate the leading low-energy dynamics of the induc
Lagrangian to a teleparallel theory of gravity. In Sec. VI w
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specialize the construction to ‘‘naive’’ dimensional redu
tions and describe the natural relationships to D-branes
volume-preserving diffeomorphisms. In Sec. VII we descr
the dynamics induced by certain auxiliary fields which a
required to complete the space of noncommutative ga
fields under the reductions. We show that they effectiv
lead to non-local effects, which are thereby attributed
stringy properties of the induced gravitational model. In S
VIII we describe how to generalize the construction to inc
porate ordinary gauge fields coupled to the induced gra
theory, and in Sec. IX we conclude with some possible
tensions and further analyses of the model presented in
paper. Appendix A at the end of the paper contains vari
identities which are used to derive quantities in the main te

II. GENERALIZED NONCOMMUTATIVE
ELECTRODYNAMICS

Consider noncommutative U~1! Yang-Mills theory on flat
Euclidean spaceR2n, whose local coordinates are denot
j5(jA)A51

2n . The star-product on the algebraC`(R2n) of
smooth functionsf ,g: R2n→C is defined by3

f !g~j!5 f ~j!~expD!g~j!, ~2.1!

wheren is the skew-adjoint bi-differential operator

n5
1

2 (
A,B

QAB~]QA]WB2]QB]WA!, ~2.2!

]A5]/]jA, and QAB52QBA are real-valued deformation
parameters of mass dimension22. The star-product is de
fined such that Eq.~2.1! is real valued if the functionsf and
g are. It is associative, noncommutative, and it satisfies
usual Leibniz rule with respect to ordinary differentiatio
This implies, in the usual way, that the star commutator

@ f ,g#!5 f !g2g! f ~2.3!

defines a Lie algebra structure onC`(R2n). In particular, it
satisfies the Leibniz rule and the Jacobi identity. The s
product of a function with itself can be represented as

f ! f ~j!5 f ~j!~coshD! f ~j!, ~2.4!

while the star commutator of two functions is given by

@ f ,g#!~j!5 f ~j!~2 sinhD!g~j!. ~2.5!

Let us consider the spaceYM of U~1! gauge fields onR2n,

A5A AdjA, ~2.6!

3Later, when we come to the construction of action functiona
we will need to restrict the spaceC`(R2n) to its subalgebra con-
sisting of functions which decay sufficiently fast at infinity. Suc
restrictions can be imposed straightforwardly and so we will
always spell this out explicitly.
9-3
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EDWIN LANGMANN AND RICHARD J. SZABO PHYSICAL REVIEW D64 104019
where A APC`(R2n) is a real-valued function. Le
g,C`(R2n) be a linear subalgebra of functions, closed u
der star commutation, which parametrize the infinitesim
local star-gauge transformations defined by

daAA5]Aa1e ada~AA!, aPg, ~2.7!

where

ada~ f !5@a, f #! , f PC`~R2n!, ~2.8!

denotes the adjoint action of the Lie algebrag on C`(R2n).
We will require that the spaceYM is invariant under these
transformations. The gauge coupling constante in Eq. ~2.7!
will be related later on to the gravitational coupling consta
The gauge transformation~2.7! is defined such that the skew
adjoint covariant derivative

DA5]A1e adAA
~2.9!

has the simple transformation propertydaDA5eDAa. This
and the properties of the star product imply that the lin
mapa°da is a representation of the Lie algebrag,

@da ,db#5d [a,b] !
;a,bPg. ~2.10!

It also implies, as usual, that the noncommutative fi
strength tensor, defined by

FAB5
1

e
~D`D!AB5]AAB2]BAA1e@AA ,AB#! ,

~2.11!

transforms homogeneously under star-gauge transformat

daFAB5ada~FAB!. ~2.12!

Let GAB be a flat metric onR2n. Then, since the star com
mutator ~2.5! is a total derivative, the standard action f
noncommutative Yang-Mills theory, defined by

I NCYM5
1

2ER2n
d2njAdetGGAA8GBB8FAB!FA8B8~j!,

~2.13!

is trivially gauge invariant. In the following we will conside
reductions of noncommutative gauge theory onR2n by im-
posing certain constraints on the spacesYM andg and using
a generalized action of the form

I NCYM
W 5

1

2ER2n
d2nj WAA8BB8~j!FAB!FA8B8~j!.

~2.14!

Here WAA8BB8(j) are tensor weight functions of rank fou
with the symmetries

WAA8BB85WA8ABB85WAA8B8B5WBB8AA8. ~2.15!

We will require that they transform under star gauge tra
formations~2.7! such that the action~2.14! is gauge invari-
ant. A sufficient condition for this is
10401
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R2n

d2nj@daWAA8BB8~j! f ~j!1WAA8BB8~j!ada~ f !~j!#50

~2.16!

for all functionsaPg, f PC`(R2n) and for each set of indi-
cesA,A8,B,B8. The functionsWAA8BB8 generically break the
global Lorentz symmetry which is possessed by the conv
tional action~2.13!. They are introduced in order to proper
maintain gauge invariance and Lorentz invariance in the
suing dimensional reductions. The basic point is that the fi
strength tensorFAB which appears in Eq.~2.13! corresponds
to an irreducible representation, i.e. the rank two antisy
metric representationL2(2n), of the Lorentz group ofR2n.
This will not be so after dimensional reduction, and the te
sor densities will essentially enforce the decomposition
the reduced field strengths into irreducible representation
the reduced Lorentz group which may then be combined
the required singlets. Note that the key to this is that, beca
of Eqs.~2.12! and~2.16!, each term in Eq.~2.14! is individu-
ally gauge invariant. The condition~2.16! will be used later
on to determine an explicit form for the tensor dens
WAA8BB8 in terms of the noncommutative gauge fields.

We will also consider the minimal coupling of the non
commutative gauge theory~2.14! to scalar matter fields. The
standard method can be generalized in a straightforw
manner. We assume that the scalar bosons are describe
real-valued functionsFPC`(R2n) which transform under
the infinitesimal adjoint action of the star gauge symme
group,

daF5ada~F!, aPg. ~2.17!

Then, by the usual arguments, the action

I B5
1

2ER2n
d2nj W~j!@GABDAF!DBF~j!1m2F!F~j!#

~2.18!

is gauge invariant if the scalar densityW(j) has the star-
gauge transformation property

E
R2n

d2nj@daW~j! f ~j!1W~j!ada~ f !~j!#50

;aPg, f PC`~R2n!. ~2.19!

Only a single functionW is required for the matter part of th
action because its Lorentz invariance properties will not
come an issue in the reduction. Note that the scalar fie
decouple from the Yang-Mills fields in the commutative lim
where allQAB vanish.

III. DIMENSIONAL REDUCTION

We will now describe a particular reduction of the gene
noncommutative Yang-Mills theory of the previous sectio
We will denote the local coordinates ofR2n by j5(xm,ya),
wherem,a51, . . . ,n, and we break the Lorentz symmetr
of R2n to the direct product of the Lorentz groups ofRx

n and
9-4
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Ry
n . We will take the noncommutativity parameters to be

the block form

QAB5S umn umb

uan uabD with umn5uab50, ~3.1!

and assume that (umb) is an invertiblen3n matrix. The flat
metric of R2n is taken to be

GAB5S hmn hmb

han habD with hmb5han50, ~3.2!

where (hmn)5(hab)5diag(1,21, . . . ,21). The vanishing
of the diagonal blocksumn will be tantamount to the con
struction of a quantum field theory on acommutativespace
Rx

n . The ya can be interpreted as local coordinates on
cotangent bundle ofRx

n ~see the next section!, so that the
conditionuab50 is tantamount to the commutativity of th
corresponding ‘‘momentum’’ space. The noncommutativ
uan,umb between the coordinate and ‘‘momentum’’ variabl
will enable the construction of diffeomorphism generato
via star commutators below. Having non-vanishingumn

would lead to some noncommutative field theory, but
shall not consider this possibility here. In fact, in that ca
the noncommutative model only makes sense in string the
@38#, so that keepingumn50 allows us to define a quantum
field theory in Minkowski signature without having to worr
about the problems of non-unitarity and non-covariance
plague noncommutative field theories on non-Euclide
spacetimes. The bi-differential operator~2.2! which defines
the star product is then given by

D5
1

2
uma~]Qm]Wa2]Qa]Wm!. ~3.3!

Let us consider now the linear subspaceg of smooth func-
tions a on R2n which are linear in the coordinatesy,

a~j!5aa~x!ya. ~3.4!

Using Eq.~A4! we then find that the star commutator of a
two elementsa,bPg is given by

@a,b#!~j!5~@a,b#!!a~x!ya,

~@a,b#!!a~x!5umb@bb~x!]maa~x!2ab~x!]mba~x!#.
~3.5!

Thusg is a Lie algebra with respect to the star commuta
If we now define the invertible map

g→vect~Rx
n!

a°Xa52umaaa

]

]xm
~3.6!

onto the linear space of vector fields onRx
n , then Eq.~3.5!

implies that it defines a representation of the Lie algebrag,
10401
f
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@Xa ,Xb#5X[a,b] !
;a,bPg. ~3.7!

This shows that, via the linear isomorphism~3.6!, g can be
identified with the Lie algebra of connected diffeomorphism
of Rx

n .
We now define a corresponding truncation of the sp

YM of Yang-Mills fields onR2n by

A5vma~x!yadxm1Ca~x!dya. ~3.8!

The reduction~3.8! is the minimal consistent reduction
which is closed under the action of the reduced star-ga
group. It is straightforward to compute the star-gauge tra
formations~2.7! of the component fields in Eq.~3.8! using
the identities~A3! and ~A4!. One thereby checks that th
ansatz~3.8! is consistent, i.e. that the gauge transformsda
with gauge functions~3.4! preserve the subspace ofYM of
Yang-Mills fields of the form~3.8!, and that the ‘‘compo-
nents’’ of the gauge fields transform as

davma5]maa1eunb~ab]nvma2vmb]naa!,

daCa5aa2eumbab]mCa , aPg. ~3.9!

The curvature components~2.11! of the gauge field~3.8! are
likewise easily computed with the result

Fmn~j!5Vmna~x!ya,

Vmna5]mvna2]nvma

1eulb~vnb]lvma2vmb]lvna!,

Fma5]mCa2vma2eunbvmb]nCa ,

Fab50. ~3.10!

For the scalar fields, the consistent minimal truncation
to functions which are independent of they coordinates,

F~j!5f~x!. ~3.11!

Using Eq. ~A3! the gauge transformation rule~2.17! then
implies

daf52umaaa]mf. ~3.12!

Under the isomorphismg>vect(Rx
n) generated by Eq.~3.6!,

we see that the gauge transform~3.12! coincides with the
standard transformation of a scalar field under infinitesim
diffeomorphisms ofRx

n , i.e. with the natural adjoint action
daf5Xa(f) of vect(Rx

n) on C`(Rx
n). The gauge covarian

derivatives of the truncated fields~3.11! are similarly easily
computed to be

DmF5]mf2eunavma]nf,

DaF50. ~3.13!

It remains to compute the possible action function
~2.14! and ~2.18! corresponding to the above truncation. T
arrive at a gauge invariant action onRx

n , we make the ansatz
9-5
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Wmm8nn8~j!5hmm8$hnn8@wv~x!1ulawl
v~x!]a

1ulaul8bwll8~x!]a]b#

1ulaul8bwll8
nn8 ~x!]a]b%d

(n)~y!,

Wmnab~j!5hmnhabwC~x!d (n)~y!,

Wmnn8a~j!5hmnun8aulbwl
M~x!]bd (n)~y!,

W~j!5wf~x!d (n)~y! ~3.14!

for the weight functions. The functionsw in Eq. ~3.14! are
smooth functions inC`(Rx

n), and the ansatz~3.14! yields
well-defined action functionals overRx

n provided that all
component fields live in an appropriate Schwartz subspac
C`(Rx

n). The choice~3.14! of tensor densities represents
‘‘minimal’’ dimensional reduction which is consistent wit
the reductions of the fields above and naturally contains E
stein gravity in a particular limit. There are of course ma
other choices for the functionsWAA8BB8(j) which are pos-
sible, and these will lead to different types of diffeomo
phism invariant field theories. It is essentially here that th
is the most freedom involved. We have made the cho
which will facilitate comparison to previously known resul
in general relativity and in string theory. Due to the stru
tures of the spacetime metric~3.2!, of the field strengths
~3.10!, and the symmetries~2.15!, the remaining component
of the tensorial weight functions in Eq.~3.14! need not be
specified.

The derivative termsula]a in Eq. ~3.14! will have the
overall effect of transforming ana index ofRy

n into al index
of Rx

n . The two choices of second ordery derivatives in the
first line of Eq. ~3.14! then correspond to the irreducib
decomposition of the reduced field strength tensorsulaVmna
-

-

10401
of

-

e
e

-

under the action of the Lorentz group SO(1,n21) of Rx
n .

These terms come from the rank two tensorFAB of the origi-
nal noncommutative Yang-Mills theory which corresponds
the irreducible antisymmetric representationL2(2n) of the
Lorentz group SO(1,2n21). After dimensional reduction, i
induces the rank (1,2) tensorulaVmna which corresponds to
the decomposable representation

L2~n! ^ n5n̄% n̄% L0
1,2~n!, ~3.15!

with n the defining andL0
1,2(n) the traceless, antisymmetri

(1,2) representation of the reduced Lorentz group SO(n
21). In other words, the restriction of the antisymmet
rank two representation of the group SO(1,2n21) to its
SO(1,n21) subgroup is reducible and decomposes into ir
ducible representations according to Eq.~3.15!. The reduced
Yang-Mills Lagrangian should be constructed from Loren
singlets built out of irreducible representations of SO(1n
21). This requires the incorporation of the three SO(1n
21) singlets corresponding to the Clebsch-Gordan dec
position ~3.15!. It is achieved by summing over the cycli
permutations of the three indices of the reduced field stren
tensor@34#, and will be enforced by the given choice~3.14!.

The gauge transformation rules for the fields in Eq.~3.14!
can be determined from the conditions~2.16! and ~2.19!.
Using these constraints it is straightforward to see that,
the types of terms appearing in Eq.~3.14!, the index contrac-
tions specified there are essentially unique, in that ot
choices are either forbidden by star-gauge invariance or
they will produce the same local Lagrangian terms in
end. In this sense, the ‘‘minimal’’ choice~3.14! is unique and
star-gauge invariance forces very rigid constraints on the
lowed tensor weight functions. The restrictions~2.16! and
~2.19! are satisfied if the fieldsw in Eq. ~3.14! transform as
E
Rn

dnx@dawJ~x! f ~x,0!1wJ~x!ada~ f !~x,0!#50, ~3.16!

E
Rn

dnx uma@dawm
J~x!]af ~x,0!1wm

J~x!]aada~ f !~x,0!#50, ~3.17!

E
Rn

dnx umaunb@dawmn~x!]a]bf ~x,0!1wmn~x!]a]bada~ f !~x,0!#50, ~3.18!

E
Rn

dnx umaunb@dawmn
ll8~x!]a]bf ~x,0!1wmn

ll8~x!]a]bada~ f !~x,0!#50, ~3.19!
the
ed

h
tting
for all smooth functionsf (x,y) which are compactly sup
ported onRx

n and quadratic in theya’s. The indexJ in Eq.
~3.16! denotes the labelsJ5v,C,f while J5v,M in
Eq. ~3.17!.

We will solve Eqs.~3.16!–~3.19! for the gauge transfor
mations of the functionsw appearing in Eq.~3.14! by de-
manding that these equations lead to local transforms of
fieldsw. While the non-local integral transforms are requir
for the distribution-valued densitiesW onR2n, we will seek a
dimensionally reduced field theory in the following whic
possesses a local gauge symmetry. For instance, se
f (j)5 f (x) independent ofy in Eq. ~3.16!, using Eq.~A3!,
9-6
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and integrating by parts overRx
n yields the local transforms

dawJ52]m~wJumaaa!, J5v,C,f. ~3.20!

Setting f (j)5 f a(x)ya linear in y in Eq. ~3.17!, using Eq.
~A4!, and integrating by parts overRx

n yields

dawm
J52]n~wm

Junaaa!2unawn
J]maa , J5v,M .

~3.21!

Finally, setting f (j)5 f ab(x)yayb quadratic in y in Eqs.
~3.18! and~3.19!, using Eqs.~A6! and~3.20!, and integrating
by parts overRx

n gives

dawmn52]l~wmnulaaa!2ulawln]maa

2ulawml]naa , ~3.22!

dawmn
ll852]r~wmn

ll8uraaa!2urawrn
ll8]maa

2urawmr
ll8]naa . ~3.23!

It should be stressed that the transforms~3.20!–~3.23! repre-
sent but a single solution of the non-local constraint eq
tions ~2.16! and ~2.19!. We have taken the solutions whic
will directly relate local star-gauge invariance to general
variance in the dimensional reduction.

Using Eqs.~A2!, ~A4!, ~3.10!, and~3.14!, the noncommu-
tative Yang-Mills action~2.14! can now be expressed i
terms of a local Lagrangian over the spaceRx

n as

I NCYM
W 5E

Rn
dnx~Lv1LC1LM !, ~3.24!

where

Lv5
1

2
hmm8ulaul8bF2hnn8wll8VmnaVm8n8b

1wll8
nn8 ~VmnaVm8n8b1VmnbVm8n8a!

2
1

2
hnn9wl

v~Vmna]l8Vm8n8b2Vm8n8b]lVmna!

2
1

4
hnn8wv~]l8

Vmna!~]lVm8n8b!G , ~3.25!

LC5
1

2
wChmnhabFmaFnb , ~3.26!

LM5un8aulbhmnwl
MFmaVnn8b . ~3.27!

In a similar fashion the reduced scalar field action~2.18! can
be written as

I B5E
Rn

dnxLf , ~3.28!

where
10401
-

-

Lf5
1

2
wf@hm8n8hm8

m hn8
n ~]mf!~]nf!1m2f2# ~3.29!

and

hm
n 5dm

n 2eunavma . ~3.30!

In the following sections we will give geometrical interpre
tations of the field theory~3.24!–~3.30! and describe its re-
lations to gravitation.

IV. INDUCED SPACETIME GEOMETRY OF
NONCOMMUTATIVE GAUGE FIELDS

The remarkable property of the field theory of the pre
ous section is that it is diffeomorphism invariant. This fo
lows from its construction and the isomorphism~3.6!, and is
solely a consequence of the star-gauge invariance of
original noncommutative Yang-Mills theory onR2n. Pre-
cisely, it comes about from the representation~3.7! of the Lie
algebra~2.10! of star-gauge transformations in terms of ve
tor fields on flat infinite spacetimeRx

n . This means that the
various fields induced in the previous section should be
lated in some natural way to the geometry of spacetime
this section we will show how this relationship arises. W
have already seen a hint of this diffeomorphism invariance
the transformation law~3.12! for the scalar fields, which we
have mainly introduced in the present context as sou
fields that probe the induced spacetime geometry. The sc
field action~3.29! is in fact the easiest place to start makin
these geometrical associations. This analysis will clarify
way that the star-gauge symmetry of Yang-Mills theory
noncommutative spacetime is related to the presence
gravitation.

The coordinatesya generate the algebraC`(Ry
n) and obey

the star-commutation relations

@ya,yb#!50. ~4.1!

Under a global coordinate translationxm°xm1em, the scalar
fields transform infinitesimally asf(x)°f(x)1em]mf(x).
Since

]mf~x!52~u21!am@ya,f#!~x!, ~4.2!

the derivative operator]m is an inner derivation of the alge
braC`(Rx

n3Ry
n) and we may identifyya with the holonomic

derivative generators2uma]m of the n-dimensional transla-
tion group Tn of Rx

n . The standard, flat space scalar fie

action *dnx 1
2 hmn]mf]nf is invariant under these globa

translations. Let us now promote the global Tn symmetry to
a local gauge symmetry. This replaces global translati
with local translationsxm°xm1em(x) of the fiber coordi-
nates of the tangent bundle. It requires, in the usual way,
replacement of the derivatives]m with the covariant deriva-
tives

“m5]m1evmaya, ~4.3!
9-7
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wherevma are gauge fields corresponding to the gauging
the translation group, i.e. to the replacement ofRn by the Lie
algebrag of local gauge transformations with gauge fun
tions of the type~3.4!. Using the identification~4.2! it then
follows that the kinetic terms in the scalar field action will b
constructed from

“mf5hm
n ]nf, ~4.4!

with hm
n given by Eq.~3.30!. The covariance requirement

da~“mf!5Xa
n ]n~“mf! ~4.5!

is equivalent to the gauge transformation law for the ga
fields vma in Eq. ~3.9!.

The quantities~3.30! can thereby be identified with vier
bein fields on spacetime, and we see that the noncomm
tive gauge theory has the effect of perturbing the trivial h
lonomic tetrad fieldsdm

n of flat space. The noncommutativ
gauge fields become the non-trivial parts of the vierb
fields and create curvature of spacetime. Note that in
present formalism there is no real distinction between lo
spacetime and frame bundle indices, because these are
twined into the structure of the star-gauge group of the
derlying noncommutative gauge theory through the mix
of internal and spacetime symmetries. In other words,
matrix (uma) determines a linear isomorphism between
frame and tangent bundles ofRx

n . It is precisely this isomor-
phism that enables the present construction to go throu
We note also how naturally the identification~4.2! of the
spacetime translational symmetry as an internal gauge s
metry arises from the point of view of the original noncom
mutative Yang-Mills theory onR2n. Using Eqs.~3.6! and
~3.9! we see that the identification of Eq.~3.30! as a vierbein
field is consistent with its gauge transform

dahm
n 5Xa

l]lhm
n 2hm

l ]lXa
n ~4.6!

which coincides with the anticipated behavior under infi
tesimal diffeomorphisms ofRx

n . The condition~4.6! is iden-
tical to the transformation law that one obtains from E
~3.12! and the homogeneous transformation law~4.5! for the
covariant derivatives~4.4!. Note thathm

n behaves as a vecto
under general coordinate transformations with respect to
upper index. As we will discuss in the next section, it is
vector under local Lorentz transformations with respect to
lower index.

We can now recognize the gauge transformation~3.20! as
the infinitesimal diffeomorphism of a scalar density.4 Using
Eq. ~4.6! this condition can thereby be used to uniquely fi

4For the functionwf the condition~3.20! may also be naturally
deduced from Eq.~3.12! and by demanding that the mass term
the Lagrangian~3.29! be invariant up to a total derivative unde
infinitesimal diffeomorphisms.
10401
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up to a constant, the functionswJ in terms of the noncom-
mutative gauge fields, and we have5

wJ5rJdet~hm
n !, J5v,C,f, ~4.7!

where rJ are arbitrary constants. Similarly, the conditio
~3.21! specifies that the functionswm

J are vector densities
with respect to the connected diffeomorphism group ofRx

n ,
and from~4.6! we may write

wm
J5zJHm

n
“ndet~hl

l8!5zJdet~hl
l8!Hn8

n ]mhn
n8 , J5v,M ,

~4.8!

where zJ are arbitrary constants. HereHn
m are the inverse

vierbein fields which are defined by the conditions

Hm
l hl

n5hm
l Hl

n5dm
n . ~4.9!

They are thereby determined explicitly in terms of the no
commutative gauge fields as the perturbation series

Hn
m5dn

m1eumavna

1 (
k52

`

ekuma1um1a2
•••umk21akvm1a1

•••vmk21ak21
vnak

,

~4.10!

and they possess the infinitesimal gauge transformation p
erty

daHn
m52Xa

l]lHn
m2Hl

m]nXa
l . ~4.11!

Finally, we come to the rank two tensor densities. From E
~3.22! we may identify

wmn5x0det~hl
l8!hm8n8Hm

m8Hn
n8 , ~4.12!

while from Eq.~3.23! we have

wmn
ll85xndet~hm8

n8 !Hm
l Hn

l8 , ~4.13!

with x0 andxn arbitrary constants. As we shall see short
the tensor density~4.12! is associated with the antisymmetr
part of the Clebsch-Gordan decomposition~3.15! while Eq.
~4.13! is associated with the conjugate vector parts.

We see therefore that all fields of the previous section
be fixed in terms of gauge fields of the dimensionally
duced noncommutative Yang-Mills theory. All of the natur
geometrical objects of spacetime are encoded into the n
commutative gauge fields. Let us now consider the struc
of the reduced field strength tensor. From the form of
Lagrangian~3.25!, and of the weight functions~4.7!, ~4.8!,
~4.12! and ~4.13!, it follows that the natural objects to con
sider are the contractions

5Note that det(hm
n )5Audet(gmn)u is the Jacobian of the frame

bundle transformation]m°“m , where gmn5hm8n8hm
m8hn

n8 is the
Riemannian metric induced by the vierbein fields.
9-8
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Tmn
l 52eul8aHl8

l Vmna5Hl8
l

~“mhn
l82“nhm

l8!,
~4.14!

with “m5hm
m8]m8 . From Eqs.~4.6! and~4.11! it follows that

the curvatures~4.14! obey the homogeneous gauge transf
mation laws

daTmn
l5Xa

l8]l8Tmn
l . ~4.15!

From Eq.~4.15! one can check directly that each term in t
Lagrangian~3.25! is invariant up to a total derivative unde
star-gauge transformations, as they should be by cons
tion. From Eqs.~3.10! and~3.30! it follows that the curvature
~4.14! naturally arises as the commutation coefficients in
closure of the commutator of covariant derivatives to a
algebra with respect to the given orthonormal basis of
frame bundle,

@“m ,“n#5Tmn
l
“l . ~4.16!

The operators“m thereby define a non-holonomic basis
the tangent bundle with non-holonomicity given by the no
commutative field strength tensor. The change of basis“m

5hm
n ]n between the coordinate and non-coordinate frame

defined by the noncommutative gauge field.
The commutation relation~4.16! identifies Tmn

l , or
equivalently the noncommutative gauge field streng
Vmna , as the torsion tensor fields of vacuum spacetime
duced by the presence of a gravitational field. The non-triv
tetrad field~3.30! induces a teleparallel structure on spac
time through the Weitzenbo¨ck connection

Smn
l 5Hl8

l
“mhn

l8 . ~4.17!

The connection~4.17! satisfies the absolute parallelism co
dition

Dm~S!hn
l5“mhn

l2Smn
l8 hl8

l
50, ~4.18!

whereDm(S) is the Weitzenbo¨ck covariant derivative. This
means that the vierbein fields define a mutually parallel s
tem of local vector fields in the tangent spaces ofRx

n with
respect to the tangent bundle geometry induced bySmn

l . The
Weitzenbo¨ck connection has non-trivial torsion given by E
~4.14!,

Tmn
l5Smn

l 2Snm
l , ~4.19!

but vanishing curvature,

R n8mn
m8 ~S!5“mSn8n

m8 2“nSn8m
m8 1Slm

m8 Sn8n
l

2Sln
m8Sn8m

l
50.

~4.20!

The teleparallel structure is related to a Riemannian st
ture on spacetime through the identity

Smn
l 5Gmn

l 1Kmn
l , ~4.21!

where
10401
-

c-

e

e

-

is

s
-
l
-

s-

c-

Gmn
l 5hm8n8h

ss8Hs
lHs8

l8~hn
n8]mhl8

m81hm
m8]nhl8

m8

2hm
m8]l8hn

n82hn
n8]l8hm

m8!1Hl8
l ]mhn

l81Hl8
l ]nhm

l8

~4.22!

is the torsion-free Levi-Civita connection of the tange
bundle, and

Kmn
l5 1

2 ~hmm8h
ss8Hs

lHs8
l8Tl8n

m8

1hnn8h
ss8Hs

lHs8
l8Tl8m

n82Tmn
l! ~4.23!

is the contorsion tensor. The torsionTmn
l measures the non

commutativity of displacements of points in the flat spac
time Rx

n . It is dual to the Riemann curvature tensor whi
measures the noncommutativity of vector displacements
curved spacetime. This follows from the identities~4.20! and
~4.21! which yield the relationship

R n8mn
m8 ~G!5]mGn8n

m8 2]nGn8m
m8 1Glm

m8 Gn8n
l

2Gln
m8Gn8m

l

5Dn~G!Kn8m
m82Dm~G!Knn8

m8

1Kn8m
lKnl

m82Kn8n
lKml

m8 ~4.24!

between the usual Riemann curvature tensorR n8mn
m8 (G) and

the torsion tensor. HereDn(G) is the Riemannian covarian
derivative constructed from the Levi-Civita connectio
~4.22!, whose action on the contorsion tensor is given by

Dn~G!Kn8m
m85]nKn8m

m81Gln
m8Kn8m

l
1Gn8m

l Kln
m8 .

~4.25!

We see therefore that the dimensionally reduced nonc
mutative gauge theory of the previous section gives a v
natural model of a flat spacetime with a given class of m
rics carrying torsion, and with gauge field strengths cor
sponding to the generic anholonomity of a given local orth
normal frame of the tangent bundle ofRx

n . It is precisely in
this way that the noncommutative gauge theory on flat spa
time can induce a model of curved spacetime with torsi
free metric; i.e., it induces a teleparallel Weitzenbo¨ck geom-
etry on Rx

n which is characterized by a metric-compatib
connection possessing vanishing curvature but non-vanis
torsion and which serves as a measure of the intensity of
gravitational field. The teleparallel structure naturally i
duces a Riemannian geometry on spacetime, with curva
determined by the noncommutative field strength tensor.
we have mentioned before, it is very natural that in a no
commutative gauge theory, wherein global translations
be represented by inner automorphisms of the algebra
functions on spacetime, the translation group Tn be repre-
sented as an internal gauge symmetry group. In the ens
dimensional reduction it thereby becomes a genuine, lo
spacetime symmetry of the field theory. The identification
the gauge field strengths with torsion tensors is then a
very natural, given the noncommutativity of the spacetim
coordinates and the fact that in noncommutative geom
the star-product only yields a projective representation of
9-9
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translation group Tn with cocycle determined by the non
commutativity parametersQAB @16#.

V. GRAVITATION IN NONCOMMUTATIVE YANG-MILLS
THEORY

We will now describe precisely how the diffeomorphism
invariant gauge field theory~3.24!–~3.27! is related to grav-
ity in n dimensions. For this, we use the arbitrariness in
component weight functions to set the higher derivat
terms, i.e. the second and third lines of the Lagrangian~3.25!
to zero, rv5zv50. These terms represent higher ene
contributions to the field theory, which admit a rather natu
string theoretical interpretation that we will describe in t
next section. Furthermore, we will see in Sec. VII that t
Lagrangian ~3.26!, ~3.27! for the auxiliary gauge fields
Ca(x) induces non-local interaction terms for the gravi
tional gauge fieldsvma , and so also do not contribute to th
low-energy dynamics of the field theory~3.24!. We will
therefore also setrC5zM50.

The low-energy dynamics of the dimensionally reduc
noncommutative gauge theory is thereby described by
Lagrangian

L05
1

2e2
det~hs

s8!hmm8@2x0hnn8hll8Tmn
lTm8n8

l8

1xn~Tmn
nTm9n8

n81Tmn
n8Tm8n8

n
!#. ~5.1!

The constantx0 multiplies the torsion terms that arise fro
the irreducible representationL1,2(n) in Eq. ~3.15!, while the
terms involving xn come from the conjugate vector sum
mandsn̄. The Lagrangian~5.1! belongs to the one-paramet
family of teleparallel Lagrangians~1.1!, ~1.2! which describe
physically viable gravitational models, provided that t
weight couplings obey

xn522x0 . ~5.2!

The choice of constants Eq.~5.2! as they appear in Eq.~5.1!
is quite natural from the point of view of the symmetries
the Clebsch-Gordan decomposition~3.15!. In this case, the
Lagrangian~5.1! represents a gravitational theory for macr
scopic matter which is observationally indistinguishab
from ordinary general relativity.

This identification can be used to determine the Pla
scale of the induced gravitational model~5.1!. For this, we
note that with the choice of weight functions~3.14! the fields
vma have mass dimensionn/2 and the Yang-Mills coupling
constante has mass dimension 22n/2. In the gauge whereby
the geometry is expanded around flat spacetime, as in
~3.30!, the non-trivial parts of the vierbein fields should a
sume the formkBm

n , wherek is the Planck scale and th
translational gauge fieldsBm

n have mass dimensionn/221
@26,27#. To compare this with the perturbationeunavma of
the trivial tetrad field in Eq. ~3.30!, we introduce
the dimensionless noncommutativity parametersûma

5uma/udet(um8a8)u1/n, which as discussed in the previou
10401
e
e

y
l

-

d
e

k

q.
-

section should be thought of, within the noncommutative
ometry, as a tensor mapping translation group valued qu
tities to quantities in the fiber spaces of the frame bundle.
comparing mass dimensions we see that we should
properly identify

Bm
n 5udet~um8a8!u1/2nûnavma . ~5.3!

Note that the Yang-Mills coupling constant itself cannot
used to compensate dimensions, for instance inn54 dimen-
sionse is dimensionless. Using Eq.~3.1!, the Planck scale of
n-dimensional spacetime is therefore given in terms ofe and
the noncommutativity scale as

k5A16pGN5euPfaff~QAB!u1/2n. ~5.4!

Comparing Eqs.~5.1!, ~5.2! and ~1.1! then fixes the mass
dimension 2 weight constantx0 to be

x05uPfaff~QAB!u21/n. ~5.5!

The induced gravitational constant~5.4! vanishes in the com-
mutative limit and agrees with that found in@6# using the
supergravity dual of noncommutative Yang-Mills theory
four dimensions.

Let us now compare the low-energy field theory that
have obtained to standard general relativity. By using
relation ~4.21!, the Lagrangian

LGR5
x0

e2
det~hs

s8!hmm8F1

4
hnn8hll8Tmn

lTm8n8
l8

2Tmn
nTm8n8

n81
1

2
Tmn

n8Tm8n8
nG ~5.6!

can be expressed in terms of the Levi-Civita connectionGmn
l

alone. By using Eqs.~5.4!,~5.5!, along with Eqs.~4.23! and
~4.24! to deduce the geometrical identity

R~G!5hll8Hl
nHl8

n8R n8mn
m

~G!

5hmm8~Tmn
nTm8n8

n82 1
2 Tmn

n8Tm8n8
n

2 1
4 hnn8hll8Tmn

lTm8n8
l81]nKmm8

n

1Kmm8
nHs

s8]nhs8
s

!, ~5.7!

the Lagrangian~5.6! can be rewritten, up to a total diver
gence, as the standard Einstein-Hilbert Lagrangian

LE52
1

16pGN
det~hl

l8!R~G! ~5.8!

in the first-order Palatini formalism. The Lagrangian~5.6!
defines the teleparallel formulation of general relativity, a
it is completely equivalent to Einstein gravity in the absen
of spinning matter fields.

The main invariance property of the particular combin
tion of torsion tensor fields in Eq.~5.6! is its behavior under
a local change of frame“m . This can be represented as
local Lorentz tranformation of the vierbein fields
9-10
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dL
(L)hm

n ~x!5Lm
m8~x!hm8

n
~x!,

dL
(L)Hn

m~x!52Lm8
m

~x!Hn
m8~x!, ~5.9!

whereLm8
m (x) are locally infinitesimal elements of SO(1,n

21). Under Eq.~5.9! the torsion tensor~4.14! transforms as

dL
(L)Tmn

l5]mLn
l2]nLm

l , ~5.10!

from which it can be shown that the Lagrangian~5.6!
changes by a total derivative under a local change of fra
@26#. The gauge field theory defined by Eq.~5.6! is thereby
independent of the choice of basis of the tangent bun
used, and in particular of the decomposition~3.30! which
selects a gauge choice for the vierbein fields correspon
to a background perturbation of flat spacetime. The fi
equations derived from Eq.~5.6! will then uniquely deter-
mine the spacetime geometry and hence the orthono
teleparallel frame up to a global Lorentz transformation.
fact, the Einstein-Hilbert Lagrangian defines the uniq
teleparallel gravitational theory which possesses this lo
Lorentz invariance@26#.

The Lagrangian~5.1!, on the other hand, is only invarian
underglobal Lorentz transformations. This relates to the fa
that the original noncommutative gauge theory onR2n is
only invariant under a flat space Lorentz group, and in
dimensional reduction only the translational subgroup of
full Poincarégroup is gauged to a local symmetry. The r
duced gauge theory is thereby a dynamical theory of
prefered orthonormal teleparallel frames in which the c
nection coefficients vanish and the torsion tensor has
simple form ~4.14!. The frame“m is then specified only
modulo some local Lorentz transformation and the paral
ism is not uniquely determined. The gravitational model
therefore ambiguous because there is a whole gauge eq
lence class of geometries representing the same phy
Nevertheless, with the choice of parameters~5.2!, ~5.5!, the
Lagrangian~5.1! lies in the one-parameter family of telepa
allel theories~1.1!, ~1.2! which pass all observational an
theoretical tests of Einstein gravity. We use this criterion
fix the arbitrary constants of the gravitational model~5.1!,
whose presence effectively encodes the long distance ef
of the internal spaceRy

n .

VI. D-BRANES AND VOLUME PRESERVING
DIFFEOMORPHISMS

To understand what the higher derivative terms in the
grangian~3.25! represent, we return to the standard act
~2.13! for noncommutative Yang-Mills theory onR2n. This is
the action that is induced on a flat D(2n21)-brane in flat
space and in the presence of a constant backgroundB field.
We can now examine the ‘‘naive’’ dimensional reduction
this action to ann-dimensional submanifoldRx

n,R2n. Such a
submanifold could correspond, for example, to the emb
ding of a flat D(n21)-brane inside the D(2n21)-brane
with a transverseB field, which realizes the D(n21)-brane
as a noncommutative soliton in the worldvolume of t
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D(2n21)-brane@39#. The reduced action is then given by

I NCYM
red 5

voly
2 E

Rn
dnx GAA8GBB8FAB!FA8B8~x,0!, ~6.1!

where voly is the volume of the transverse space. Note tha
this reduction the mass dimension of the Yang-Mills co
pling constante is 22n.

Within the general formalism of Sec. III, it follows tha

we should choose allwJ5voly , while wm
J5wmn5wmn

ll850.
The field theory~3.24! is then given by the local Lagrangia

LD52
voly

2e2
hmm8@hnn8]l8~hs

lTmn
s!]l~hs8

l8Tm8n8
s8!

2e2haa8FmaFm8a8#. ~6.2!

However, in order for Eq.~6.2! to define a diffeomorphism
invariant field theory, we still need to satisfy the star-gau
invariance conditions~2.16!. While the transforms are trivi-
ally satisfied of course for the vanishingw’s, the constraint
~3.20! for constantwJ imposes the restriction

]mXa
m50 ~6.3!

on the types of diffeomorphisms which can be used for s
gauge transformations. This means that the map~3.6! is not
surjective and its image consists of only volume preserv
diffeomorphisms. This is expected from the fact that t
component functions of the weight densities are constant
that the only diffeomorphism invariance that one can obt
in this case are the coordinate transformations that leave
flat volume element ofRx

n invariant, i.e. those which are
isometries of the flat Minkowski metrichmn and thereby
infinitesimally satisfy Eq.~6.3!. Thus, in the D-brane inter
pretation of the dimensional reduction presented in this
per, star-gauge invariance acts to partially gauge fix the
feomorphism group of spacetime. One arrives at not a
theory of gravity, but rather one which is only invariant u
der the subgroup consisting of volume preserving diffeom
phisms. This subgroup arises as the residual symmetry o
field theory that remains after the gauge fixing.

Generally, volume preserving diffeomorphisms constitu
the symmetry group which reflects the spacetime nonco
mutativity that arises in D-brane models@40#. For instance,
they arise as the dynamical degree of freedom in ma
models@41# which comes from the discretization of the r
sidual gauge symmetry of the 11-dimensional superme
brane@42#. They also appear as the residual symmetry a
light-cone gauge fixing inp-brane theories@43#, and they
naturally constitute the Lie algebra of star-gauge transform
tions in noncommutative Yang-Mills theory on flat spacetim
@16#. Here we have tied them in with the dynamics
D-branes through the effective, higher-derivative gravi
tional theories~6.2! that are induced in the dimensional r
duction. Another way to see that general covariance in
usual noncommutative gauge theories is only consistent w
volume preserving symmetries is by noting that the infi
tesimal coordinate transformationdaxm5Xa

m(x) implies the
9-11
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noncommutativity parametersuma5@xm,ya#! must transform
under gauge transformations as

dauma5@Xa
m ,ya#!5una]nXa

m . ~6.4!

Requiring that the noncommutative gauge symmetries
serve the supergravity background on the D-branes sets
~6.4! to zero, which also leads to the isometry constra
above. This constraint further ensures that the tensoruma

defines a global isomorphism between the frame and tan
bundles, as is required in the construction of this paper.

The higher derivative terms in the action~3.25! can
thereby be thought of as ‘‘stringy’’ corrections to the telep
allel gravity theory. It is tempting to speculate that they a
related to the higher-curvature couplings that arise in eff
tive supergravity actions. It is a curious fact that in this
terpretation one does not arrive at an Einstein-like theory
gravity on the D-brane. This induced brane gravity deser
to be better understood, and most notably how the analys
this section and the previous one relates to the largeN su-
pergravity results which demonstrate the existence of c
ventional gravitation in noncommutative gauge theory@6#.
The dimensional reductions of Sec. V could indeed be
lated to the way that the Newtonian gravitational poten
arises from a Randall-Sundrum type localization on anti
Sitter space. Indeed, it would be interesting to underst
whether or not the generalized class of noncommuta
gauge theories~2.14! arises as an effective field theory o
strings in some limit, or if the dimensional reductions follo
from some sort of dynamical symmetry breaking mechan
in the noncommutative quantum field theory. This wou
presumably fix all free parameters of the induced grav
tional theory~3.24!.

VII. ROLE OF THE AUXILIARY FIELDS

The most important ingredient missing from the induc
gravity model of Sec. V is local Lorentz invariance. Th
somewhat undesirable feature owes to the indistinguisha
ity within the present formalism between spacetime a
frame indices. It is in fact quite natural from the point
view of the original noncommutative gauge theory, where
the star-gauge symmetry allows the gauging of the tran
tion group but is independent of the invariance of the fi
theory under global SO(1,2n21) transformations. We may
expect, however, that local Lorentz symmetry is restored
some complicated dynamical way in the reduced noncom
tative gauge theory, such that the effective gauge theory c
tains general relativity. This problem is addressed in@19# in
the context of reduced models. In this section we will brie
describe some potential steps in this direction.

The natural place to look for the extra terms required
make the Lagrangian~5.1! invariant under local frame rota
tions is in the terms involving the auxiliary ‘‘internal’’ gaug
fields Ca(x), whose role in the induced gravitational theo
has thus far been ignored. They represent the componen
the noncommutative gauge field in the internal directio
along which lies the coordinate basisya defining the genera
tors of the translation group Tn that is used in the gaugin
10401
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prescription. They thereby represent natural candidates to
duce the necessary terms that instate the frame basis
pendence of the diffeomorphism invariant field theory
Sec. V. Note that these fields cannot be set to zero becau
their gauge transformation law in Eq.~3.9!. They therefore
constitute an intrinsic dynamical ingredient of the induc
gravity model.

The variation of the LagrangianLC1LM given by Eqs.
~3.10!, ~3.26!, ~3.27!, ~4.7!, and ~4.8! with respect to the
auxilliary gauge fieldsCa(x) yields the field equation

habhCb~x!5Ja~x!, ~7.1!

where we have introduced the second order linear differen
operator

h5rChmn@~]lhm
l !“n1~“mhn

l!Hl
n8
“n81Hl

m8~“mhm8
l

!“n

1hn
l
“m]l# ~7.2!

and the fields

Ja5hmnH rChab@Hl
m8~“nhm8

l
!vmb1vmb]lhn

l1“mvna#

1
zM

e
un8a@Hl8

m8Tnn8
l
~“lhm8

l8 !~]n9hm
n9!

1Hl8
m8Hn9

l9Tnn8
l
~“lhm8

l8 !~“mhl9
n9 !1Hl8

m8
“m~hl9

l Tnn8
l9!

3~]lhm8
l8 !1hl9

l Tnn8
l9
“m~Hl8

m8]lhm8
l8 !#J . ~7.3!

Substituting the solution of Eq.~7.1! for the fieldsCa(x) into
the LagrangianLC1LM thereby yields the non-local effec
tive Lagrangian

Leff5det~hs
s8!F2

1

2
habJ

a
1

h
Jb1

rC

2
hmnhabvmavnb

1
zM

e
un8ahmnHm8

l8 ~“lhl8
m8!vmaTnn8

lG . ~7.4!

Note that in the caserC50, the auxiliary fields are Lagrang
multipliers which enforce a geometric constraint given
setting the fields~7.3! identically equal to zero.

By performing a gradient expansion of the operatorh21,
we can now study the derivative expansion of the effect
Lagrangian~7.4!. Higher derivative terms can be attribute
to stringy corrections, as they were in the previous sect
The leading order terms may then lead to the appropr
additions of terms to the Lagrangian~5.1! which makes it
invariant under local Lorentz transformations. However, g
nerically the Lagrangian~7.4! will also contain infinitely
many higher derivative terms and so a minimal, low-ene
model is not strictly speaking attainable with this reasoni
In fact, one can simply set the constantsrC5zM50 and
completely ignore the non-local contributions from the au
iliary fields. Their inclusion represents the possibility of o
taining a gravitational field theory which is complete
9-12
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equivalent to general relativity, at least on a macrosco
scale. This possibility deserves further investigation.

VIII. COUPLING GAUGE THEORY AND GRAVITY

For gauge functions of the form~3.4!, we have used a
principle of ‘‘minimal consistent reduction’’ to fix the field
that arise in the induced gravitational theory. This led to
choice ~3.8! involving the gauge fieldsvma which induced
the non-trivial part of the tetrad fields of the induced spa
time geometry, and the auxiliary fieldsCa . It is possible to
consider more general Lie algebrasg other than the minima
one consisting of the gauge functions~3.4!. For instance, it is
possible to definea(j) with a piecea (0)(x) which is inde-
pendent of they coordinates,

a~j!5a (0)~x!1aa~x!ya. ~8.1!

Again g is a Lie algebra with respect to the star commuta
with ‘‘component’’ functions~3.5! and

~@a,b#!!(0)~x!5uma@ba~x!]ma (0)~x!2aa~x!]mb (0)~x!#

5Xa
m~x!]mb (0)~x!2Xb

m~x!]ma (0)~x!
~8.2!

for a,bPg. The smallest truncation of the spaceYM is now
defined by Yang-Mills fields of the form

A5@Am~x!1vma~x!ya#dxm1Ca~x!dya, ~8.3!

and the star-gauge transformation rules~3.9! are supple-
mented with

daAm5]ma (0)1eula~aa]lAm2vma]la (0)!

5“ma (0)2eXa
n ]nAm . ~8.4!

The noncommutative field strength tensor is then modified

Fmn~j!5Fmn~x!1eula@vna~x!]lAm~x!2vma~x!]lAn~x!#

1Vmna~x!ya

5“mAn~x!2“nAm~x!1Vmna~x!ya, ~8.5!

where

Fmn5]mAn2]nAm ~8.6!

and the remaining components ofFAB are as in Eq.~3.10!.
It follows that the choice~8.1! of gauge functions induce

a model of ordinary Maxwell electrodynamics for the phot
field Am(x) on Rx

n coupled to gravity. Note that the sta
gauge invariance of the original Yang-Mills theory mixes
the U~1! internal symmetries with the spacetime symmetri
as is evident in the expressions~8.2!, ~8.4!, and ~8.5!. In
particular, from Eq.~8.4! we see that the photon fieldAm
transforms covariantly under general coordinate transfor
tions, while it is a vector under the local Lorentz group

dL
(L)Am~x!5Lm

n ~x!An~x!. ~8.7!
10401
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In this way one obtains a unified gauge theory which coup
the gravitational theory that was studied in earlier section
electrodynamics. Notice also that the photon fieldAm(x)
does not couple to the scalar fieldf(x), consistent with the
fact that the scalar bosons are taken to be neutral unde
extra Abelian gauge symmetry. This generalization eviden
also goes through if one starts from a noncommutative Ya
Mills theory with some non-Abelian U(N) gauge group.
Then one obtains a sort of non-Abelian model of grav
coupled to ordinary Yang-Mills theory. However, the sta
gauge group of the simpler noncommutative electrodynam
contains all possible non-Abelian unitary gauge groups i
very precise way@16,44#. It would be interesting to extrac
the gravity-coupled Yang-Mills theory directly from a d
mensionally reduced gauge theory of the form~2.14!. There
is therefore a wealth of gravitational theories that can
induced from noncommutative gauge theory, which in its
also seems to serve as the basis for a unified field theor
the fundamental forces. In all instances the type of the
that one obtains is dictated by the choice of reduced s
gauge group, i.e. the Lie algebrag, as well as the choice o
weight functionsW for the dimensional reduction. This illus
trates the richness of the constraints of star-gauge invaria
in noncommutative Yang-Mills theory.

IX. CONCLUSIONS

In this paper we have described a particular class of
mensional reductions of noncommutative electrodynam
which induce dynamical models of spacetime geometry
volving six free parameters. Two of these parameters can
fixed by requiring that the leading, low-energy dynamics
the model be empirically equivalent to general relativity. T
higher-order derivative corrections can be attributed
stringy corrections and non-local effects due to noncomm
tativity. The low-energy dynamics can be consistently dec
pled from the high-energy modes by an appropriate choic
parameters. These results show that a certain class of tel
allel gravity theories have a very natural origin in a nonco
mutative gauge theory whereby diffeomorphism invarian
is solely a consequence of the star-gauge invariance of
Yang-Mills theory, in the same spirit as the usual gauge th
ries based on the translation group of flat space. Alter
tively, the present construction sheds light on the manne
which noncommutative gauge theories on flat spacetime c
tain gravitation. We have also described how Yang-Mi
theory on a noncommutative space naturally contain
gravitational coupling of ordinary gauge theories to the g
metrical model studied in most of this paper. A real adva
tage of this point of view of inducing gravity from noncom
mutative gauge theory is that in the latter theory it
straightforward to construct gauge-invariant observab
These are constructed in terms of the open and closed Wi
line operators, which are non-local in character. It would
interesting to understand these observables from the poin
view of the induced gravitational theory.

It should be stressed that we have only presented a
simple model of dimensional reduction. More general red
tions are possible and will induce different geometrical mo
9-13
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els. The present technique can be regarded as a syste
way to induce theories of gravitation starting only from t
single, elementary principle of star-gauge invariance of n
commutative Yang-Mills theory. One extension would be
include a gauging of the full Poincare´ group of spacetime
This would cure the problem of local Lorentz invariance a
potentially yield a theory of gravitation which is complete
equivalent to general relativity. It should be possible to fi
such an extended noncommutative gauge theory whose
mensional reduction yields the appropriate model with ma
fest local Lorentz symmetry. After an appropriate gauge
rg

10401
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ing, this model should then reduce to the theory analyze
this paper.
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APPENDIX: REDUCED STAR PRODUCT IDENTITIES

In this appendix we collect, for convenience, a few formulas which were used to derive the equations given in the t
QAB be as in Eq.~3.1!. We denote byf (k)PC`(Rx

n3Ry
n), k>0, a function which is of degreek in the y coordinates,

f (k)~j!5 f a1•••ak
~x!ya1

•••yak, ~A1!

where f a1•••ak
(x) is completely symmetric in its indices, andf (0)(j)5 f (x) is independent ofy.

We then have the following reduced star-product identities:

f (0)!g(0)~j!5 f ~x!g~x!; ~A2!

f (1)!g(0)~j!5g~x! f a~x!ya2 1
2 umaf a~x!]mg~x!,

g(0)! f (1)~j!5g~x! f a~x!ya1 1
2 umaf a~x!]mg~x!; ~A3!

f (1)!g(1)~j!5 f a~x!gb~x!yayb1 1
2 uma$@]m f b~x!#ga~x!2 f a~x!@]mgb~x!#%yb2 1

4 umaunb@]n f a~x!#@]mgb~x!#;
~A4!

@g(1), f (1)! f (1)#!~j!52uma@]mgb~x!# f a~x! f c~x!ybyc1@ula]lga~x!#H f b~x! f c~x!ybyc1
umbunc

4
$]m]n@ f b~x! f c~x!#

1@]n f b~x!#@]m f c~x!#%J 1
ula

4
]l$2ga~x! f b~x! f c~x!ybyc2umbuncga~x!@]n f b~x!#@]m f c~x!#

2umbunc@]ngb~x!#]m@ f a~x! f c~x!#1umbuncgb~x!]m]n@ f a~x! f c~x!#2umbuncga~x!]m]n@ f b~x! f c~x!#%;

~A5!

@g(1), f (2)#!~j!5uma@2 f ac~x!]mgb~x!2ga~x!]m f bc~x!#ybyc2umaunbulc@]m]ngc~x!#@]l f ab~x!#. ~A6!
s.
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