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We study dimensional reductions of noncommutative electrodynamics on flat space, which lead to gauge
theories of gravitation. For a general class of such reductions, we show that the noncommutative gauge fields
naturally yield a Weitzentek geometry on spacetime and that the induced diffeomorphism invariant field
theory can be made equivalent to a teleparallel formulation of gravity which macroscopically describes general
relativity. The Planck length is determined in this setting by the Yang-Mills coupling constant and the non-
commutativity scale. The effective field theory can also contain higher curvature and non-local terms which are
characteristic of string theory. Some applications to D-brane dynamics and generalizations to include the
coupling of ordinary Yang-Mills theory to gravity are also described.
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I. INTRODUCTION noncommutative gauge theory. The Planck length is deter-
mined in this setting by the scale of noncommutativity. Fur-
Yang-Mills theory on a flat noncommutative space ariseshermore, noncommutative Yang-Mills theory at one-loop
as special decoupling limits of string theof%,2] and M level gives rise to long-range forces which can be interpreted
theory [2,3]. In string theory it represents the low-energy as gravitational interactions in superstring thef8y9].
effective field theory induced on D-branes in the presence of At a more fundamental level, general covariance emerges
a constant background supergraviyfield. The inherent in certain ways from the extended symmetry group that non-
non-locality of the interactions in this field theory lead to commutative gauge theories possess. It can be seen to
many exotic effects that do not arise in ordinary quantumemerge from the low-energy limit of a closed string vertex
field theory, and which can be attributed to “stringy” prop- operator algebra as a consequence of the holomorphic and
erties of the model. It is thereby believed that, as field theoanti-holomorphic mixing between closed string stat&g].
ries, these models can provide an effective description oThe diffeomorphism group of the target space acts on the
many of the non-local effects in string theory, but within a vertex operator algebra by inner automorphisms and thereby
much simpler setting. As string theory is a candidate for edetermines a gauge symmetry of the induced noncommuta-
unified quantum theory of the fundamental interactions, andive gauge theory. Furthermore, noncommutative Yang-Mills
in particular of gravitation, it is natural to seek ways to real-theory can be nonperturbatively regularized and studied by
ize this unification in the context of noncommutative gaugemeans of twisted largé reduced model$8,11-13. This
theories. Gravity has been previously discussed using theorrespondence identifies the noncommutative gauge group
framework of noncommutative geometry jA], while the as a certain larg8l limit [14] of the unitary Lie group U{)
unification of Einstein gravity and Yang-Mills theory is ob- which is equivalent to the symplectomorphism group of flat
tained in[5] from a spectral action defined on an almost-spacd 15]. The noncommutative gauge group can thereby be
commutative geometry. In this paper we will describe a pardescribed as a certain deformation of the symplectomor-
ticular way that gravitation can be seen to arise inphism group[or equivalently U¢)] [16] and the noncom-
noncommutative Yang-Mills theory oftat space. mutative gauge theory can be regarded as ordinary Yang-
There are several hints that gravitation is naturally con-Mills theory with this extended, infinite dimensional gauge
tained in the gauge invariant dynamics of noncommutativesymmetry groud17]. Other attempts at interpreting diffeo-
Yang-Mills theory. In[6] the strong coupling supergravity morphism invariance in noncommutative Yang-Mills theory
dual of maximally supersymmetric noncommutative Yang-using reduced models of gauge theory can be found in
Mills theory in four dimensiong7] was studied and it was [18,19.
shown that the effective supergravity Hamiltonian has a These features are all consequences of the fact that non-
unique zero energy bound state which can be identified wittommutative gauge transformations mix internal and space-
a massless scalar field in four dimensions. The ten dimenime symmetries, and are thereby very different from ordi-
sional supergravity interaction is then of the form of a fournary gauge symmetries. In the case of noncommutative
dimensional graviton exchange interaction and one mayang-Mills theory on flat infinite space, a global translation
therefore identify the Newtonian gravitational potential in of the spacetime coordinates can be realized as a local gauge
transformation[13,20,21, up to a global symmetry of the
field theory. The main consequence of this property is that all
*Email address: langmann@theophys.kth.se gauge invariant operators are non-local in the sense that their
"Email address: R.J.Szabo@ma.hw.ac.uk translational invariance requires them to be averaged over
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spacetime. Such constructions are reminescent of generlinstein’s principle of absolute parallelism. They are defined
relativity. In addition, the noncommutative gauge symmetryby a non-trivial vierbein field which can be used to construct
allows for extended gauge invariant opera{@%] which are  a linear connection that carries non-vanishing torsion, but is
constructed from open Wilson line observabld®,13,23.  flat. Such a connection defines what is known as a Weitzen-
These observables exhibit many of the “stringy” features ofbock geometry on spacetime. The vanishing of the curvature
noncommutative gauge theof21,23. They can also be O©f the connection implies that parallel transport in such a
used to construct the appropriate gauge invariant operatof€0metry is path independent, and so the geometry yields an
that couple noncommutative gauge fields on a D-brane tgbsolute parallelism. Teleparallelism thereby attributes gravi-
massless closed string modes in flat spi8, and thereby tation to torsion, rather than to curvature as in general rela-
yield explicit expressions for gauge theory operators dual t§/Vity- This class of gravitational theories is thereby a very
bulk supergravity fields in this case. natural Cand|qlat_e for t_he _ef_fectlve noncommutative field
The fact that the group of global translations is containec}h.ﬁory of grﬁwtfatlllon,. Wh'ﬁh IS ;}nduced O? f:gt saaclf]eu(rjr_ne. We
in the group of noncommutative gauge transformations is"! S?Ie n fj € %owmg ow t etgal\J(ge I(IE\/I'IT Oht € dimen-
thereby naturally linked with the suggestion that noncommu-s'cl)lna y reduce n\c;\?qommhtlj;atlve ang- fl St eory na';u—
tative Yang-Mills theory may contain gravity. The idea of rally map onto a eltze_n structure ol spacetime.
representing general relativity as a gauge theory of Somgeleparallel theor_y of gravity can also be viewed as the zero
kind is of course an old idef25-28. (See[29] for more curvaure reduction of a Poincagauge t.heor){25,27,2.8
recent reviews of the gauge theory approaches to gravita\’yh'Ch |n.duces an Emsteln—Cartgn spacetime characterized by
tion.) Such models are based on constructing gauge theori nnections V‘.”th t.’Ot.h non-vamshmg torsion and curvature.
with structure groups given by spacetime symmetry groups. e zero torsion limit of an Einstein-Cartan structure is of

such as the Poincagroup, in such a way that the mixing of course a Riemannian structure and is associated with ordi-
gauge and spacetime symmetries enables the unambiguoﬂ@.ry E|_nste|n general relativity. The Weltzemikqgeomefcry
in this sense complementary to the usual Riemannian ge-

identification of gauge transformations as general coordinat®

transformations. If noncommutative gauge theory is to conPmetry. More general gauge theories of gravitation can be

tain gravitation in a gauge invariant dynamical way, then itsfound in[29,32. From the present point of view then, non-

gauge group should admit a local translational symmetry corcommutative Yang-Mills theory naturally induces gravitation

responding to general coordinate transformations in flaf*ough a torsioned spacetime, and its full unreduced dynam-

space. While there are general arguments which imply thdfS may induce gravity on the.entire spacet_ime through thg
this is not the casél6,19, it could be that a particular re- 92uging of some more complicated spacetime group, as in

duction of noncommutative gauge theory captures the qualiszgl | llel h f itv d ibes the d
tative manner in which noncommutative gauge transforma- teleparallel gauge theory of gravity describes the dy-

tions realize general covariance. In this paper we shalff@mical content of spacetime via a Lagrangian which is qua-

discuss one such possibility. We will show how noncommu—dr""tiC in the torsion tenso‘fwx Of a C_:artan connection. The
most general such Lagrangian is giverf by

tative U(1) Yang-Mills theory onflat spaceR"x R" can gen-
erate a theory of gravitation oR". The basic observation
underlying the construction is that the algebra of functions £ T TEM+ 7T, \ TN+ TST/LVVT)\M)\)r
on k2", with a Lie bracket defined in terms of the deformed

product of the noncommutative theory, contains the Lie al- (1.

gebra vectf") of vector fields onR".* We show that it is \hereGy is the Newtonian gravitational constant and i
possible to consistently restrict the noncommutative Yang— 1,2,3, are arbitrary parameters. For generic values tife
Mills fields so as to obtain a local field theory whose sym-fie|d theory defined by Eq1.1) is diffeomorphism invariant,
metry group contains diffeomorphism invariance. This cont it is not equivalent to Einstein gravif26]. However, one
struction shows how noncommutative gauge symmetriegan demand that the theofg.1) yields the same results as
give very natural and explicit realizations of the mixing of general relativity in the linearized weak field approximation.
spacetime and internal symmetries required in the old gaugg may be shown that there is a one-parameter family of

models of gravity. It is also reminescent of a noncommutaq agrangians of the forn{1.1), defined by the parametric
tive version of brane world constructions which localize tengqyation

dimensional supergravity down to four dimensions along
some noncommutative directiop30]. 2m+ =1, 713=-1, 1.2
Gauge theories whose structure group is the group of
translations of spacetime lead to teleparallel theories of grawhich defines a consistent theory that agrees with all known
ity [31]. These models are built via an explicit realization of gravitational experiment$33]. For such parameter values
the Lagrangian(1.l) represents a physically viable gravita-
tional theory which is empirically indistinguishable from

UIn the following, by diffeomorphism invariance we will mean general relativity. For the particular solutien= 7, 7,=3 of
invariance under the connected diffeomorphism group, i.e. under
the Lie algebra vecK") of infinitesimal diffeomorphisms. In this
paper we will not consider any global aspects of the gauge symme-2In this paper an implicit summation over repeated upper and
tries. lower indices is always understood, except when noted otherwise.

= 162Gy
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Eq. (1.2), the Lagrangiari1.1) coincides, modulo a total di- specialize the construction to “naive” dimensional reduc-

vergence, with the Einstein-Hilbert Lagrangif?8,29,34, tions and describe the natural relationships to D-branes and

and the resulting gauge theory is completely equivalent toyolume-preserving diffeomorphisms. In Sec. VIl we describe

Einstein gravity at least for macroscopic, spinless matter. Ithe dynamics induced by certain auxiliary fields which are

addition, the Weitzenhik geometry possesses many salientrequired to complete the space of noncommutative gauge

features which makes it particularly well-suited for certainfields under the reductions. We show that they effectively

analyses. For instance, it enables a pure tensorial proof of t{gad to non-local effects, which are thereby attributed to

positivity of the energy in general relativifs], it yields a  Stringy properties of the induced gravitational model. In Sec.

natural introduction of Ashtekar variablg36], and it is the VIl we degcrlbe how to generallze the constryctlon to incor-

natural setting in which to study torsigB7], notably at the ~Porate ordinary gauge fields coupled to the induced gravity

quantum level, in systems where torsion is naturally inducedN€0ry, and in Sec. IX we conclude with some possible ex-

such as in the gravitational coupling to spinor fields. tensions and fgrther analyses of the model prese_nted in this
In this paper we will show that the dimensional reductionPaPer- Appendix A at the end of the paper contains various

of noncommutative gauge theory contains the Lagrangia,lpentltles which are used to derive quantities in the main text.

(1.2) for the particular family of teleparallel theories of grav-

ity defined byr,= r5. Thus for the solutionr;= — 7,=1 of Il. GENERALIZED NONCOMMUTATIVE

Eqg. (1.2), it contains a macroscopic description of general ELECTRODYNAMICS

relativity. Whether or not these latter constants really arise is

a dynamical issue that must be treated by regarding the di- . .

mensionally reduced-noncommutative field theory as an efs ucluie?nn spacé&?", whose local coordmatesxarezndenoted

fective theory, for example, induced from string theory. Weé=(§)a=1- The star-pzrodu‘ct_ on the algeb@"(R™) of

shall not address this problem in the present analysis, excepfiooth functiond,g: R*"—C'is defined by

to present a group theoretical argument for the naturality of

this choice of parameters. From this result we will determine fxg(&)=1(&)(expA)g(é), (2.1

the gravitational constant in terms of the gauge coupling con- ) L )

stant and the noncommutativity scale. We will also find ahereA is the skew-adjoint bi-differential operator

host of other possible terms in the total Lagrangian which we 1

will attribute to higher curvature and non-local couplings _- AB(S5 3 _ 5 3

that are characteristic of string theory. Indeed, the particular = 2 AZB 07 9ad8 = daln), 22

theory induced by the standard, flat space noncommutative

Yang-Mills theory on a D-brane is a special case of the more),=d/9¢”, and ®*B=—@BA are real-valued deformation

general construction. In that case we will find quite naturallyparameters of mass dimensien2. The star-product is de-

that the gravitational theory can be invariant only under thefined such that Eq2.1) is real valued if the functionsand

volume-preserving coordinate transformations of spacetimey are. It is associative, noncommutative, and it satisfies the

a fact anticipated from string theoretical considerations. Weusual Leibniz rule with respect to ordinary differentiation.

will also describe how the present construction can be gerifhis implies, in the usual way, that the star commutator

eralized to include the coupling of gravity to ordinary gauge

fields. These results all show that, at the level of the full [f,g]l,=fxg—gxf (2.3

unreduced Yang-Mills theory, noncommutative gauge sym-

metry naturally contains gravitation and also all other pos-defines a Lie algebra structure @¥(R2"). In particular, it

sible commutative gauge theories, at least at the somewhattisfies the Leibniz rule and the Jacobi identity. The star

simplified level of dimensional reduction and the principle of product of a function with itself can be represented as

absolute parallelism. The constructions shed some light on

how the full gauge invariant dynamics of noncommutative fxf(&)=1(&)(coshA)f(§), (2.9

Yang-Mills theory incorporates gravitation. At a more prag-

matic level, noncommutative Yang-Mills theories give a verywhile the star commutator of two functions is given by

natural and systematic way of inducing gauge models of

Consider noncommutative () Yang-Mills theory on flat

gravity in which the mixing between spacetime and internal [f,9].(&)=F(&)(2 sinhA)g(é). (2.5

degrees of freedom is contained in the gauge invariant dy-

namics from the onset. Let us consider the spageM of U(1) gauge fields orR?",
The structure of the remainder of this paper is as follows.

In Sec. Il we describe the general model of noncommutative A=A dEA, (2.6

U(1) Yang-Mills theory and its gauge invariant dimensional

reductions. In Sec. Ill we describe a particular family of

dimensional reductions and compute the induced actions. In3 ater, when we come to the construction of action functionals,
Sec. IV we construct a Weitzendlo structure on spacetime e will need to restrict the spad@”(R2") to its subalgebra con-
from the dimensionally reduced gauge fields, and in Sec. \isting of functions which decay sufficiently fast at infinity. Such
we relate the leading low-energy dynamics of the inducedestrictions can be imposed straightforwardly and so we will not
Lagrangian to a teleparallel theory of gravity. In Sec. VI we always spell this out explicitly.
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where A,eC*(R? is a real-valued function. Let ) AN BB AABE
gC C*(R") be a linear subalgebra of functions, closed un- J A e O W (O +W (§ad,()(£)]=0
der star commutation, which parametrize the infinitesimal, : (2.16
local star-gauge transformations defined by

for all functionsa e g, f e C*(R?") and for each set of indi-

daAp=0natead,(An), aeg @7 cesA,A’B.B’. The functionshAA'Be’ generically break the
where global Lorentz symmetry which is possessed by the conven-
tional action(2.13. They are introduced in order to properly
ad,(f)=[a,f],, feC*(R?"), (2.8  maintain gauge invariance and Lorentz invariance in the en-

o ) ) suing dimensional reductions. The basic point is that the field
denotes the adjoint action of the Lie algelyan C*(R*").  syrength tensofF,s which appears in Eq2.13 corresponds
We will require that the spac®M is invariant under these o an irreducible representation, i.e. the rank two antisym-
transformations. The gauge coupling constim Eq. (2.7 metric representation?(2n), of the Lorentz group oR?".
will be related later on to the gravitational coupling constant.This will not be so after dimensional reduction, and the ten-
The gauge transformatid@.7) is defined such that the skew- sor densities will essentially enforce the decomposition of
adjoint covariant derivative the reduced field strengths into irreducible representations of
the reduced Lorentz group which may then be combined into
the required singlets. Note that the key to this is that, because

. . . . of Egs.(2.12 and(2.16), each term in E¢(2.14) is individu-
has the simple transformation propedyD,=e&Daa. This ally gauge invariant. The conditiof2.16 will be used later

and the properties of the star productllmply that the Imearon to determine an explicit form for the tensor density
map a— 4, is a representation of the Lie algelya

WAA'BB in terms of the noncommutative gauge fields.
[64.,05]=0lap, Va,Beg. (2.10 We will also consider the minimal coupling of the non-
commutative gauge theof2.14) to scalar matter fields. The
It also implies, as usual, that the noncommutative fieldstandard method can be generalized in a straightforward
strength tensor, defined by manner. We assume that the scalar bosons are described by
. real-valued functionsb e C*(R?") which transform under
]:AB:E(D/\D)AB: IaAg— da At e[ Ax A, ;f:iljlgl’clnlteSImal adjoint action of the star gauge symmetry

(2.1

transforms homogeneously under star-gauge transformations,
Then, by the usual arguments, the action
8, Fap=ad,(Fap)- (2.12

. . 1
Let Gag be a flat metric orR?". Then, since the star com- |B:_J d2"EW(E)[GABDAD *Ded (£) + m2D* D (£)]
mutator (2.5) is a total derivative, the standard action for 2 Jg2n

5, b=ad,(P), aeg. (2.17

noncommutative Yang-Mills theory, defined by (2.18
1 / , is gauge invariant if the scalar density(¢) has the star-
INCYM=§J , d?"&\detGGAN GBB Fapx Farp/ (€), gauge transformation property
R n
(2.13
L o : : : d?"EL S W(E)F (&) +W(&)ad,(f)(£)]=0
is trivially gauge invariant. In the following we will consider R2"
reductions of noncommutative gauge theory RAf by im- s
posing certain constraints on the spag®s! andg and using Vaeg, feC*(R™). (2.19

a generalized action of the form . ) ) )
Only a single functiorW is required for the matter part of the

W e AA B action because its Lorentz invariance properties will not be-
|NCYM:§ﬁR2nd EW (&) Fap* Farp (). come an issue in the reduction. Note that the scalar fields
‘ (2.14 decouple from the Yang-Mills fields in the commutative limit
where all®”® vanish.

Here WAA'BB'(£) are tensor weight functions of rank four
with the symmetries I1l. DIMENSIONAL REDUCTION

WAA BB’ _\\/A'ABB' _\\JAA'B'B_\\/BB'AA" (2.15 We will now describe a particular reduction of the generic
noncommutative Yang-Mills theory of the previous section.
We will require that they transform under star gauge transWe will denote the local coordinates 8" by ¢=(x*,y?),
formations(2.7) such that the actio2.14) is gauge invari- Wwhereu,a=1,...,n, and we break the Lorentz symmetry
ant. A sufficient condition for this is of R?" to the direct product of the Lorentz groupskif and
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]R{‘,. We will take the noncommutativity parameters to be of [X, ,XB]=X[Q,E]* Va,Beq. (3.7
the block form
This shows that, via the linear isomorphig®6), g can be
) identified with the Lie algebra of connected diffeomorphisms
) with ¢#7=¢*°=0, (3.1 o pn,
We now define a corresponding truncation of the space

and assume tha®¢?) is an invertiblenx n matrix. The flat ~ YM of Yang-Mills fields onR*" by
metric of R?" is taken to be

o’ o

AB__
- 93 eab

A= ,,(X)y2dx#+ Cy(x)dy?. (3.9
wv ub
GAB:(’?aV ab) with 7#v=22=0, (3.2 Thg rgduction(3.8) is the minimal consistent reduction,
7 7 which is closed under the action of the reduced star-gauge

group. It is straightforward to compute the star-gauge trans-
where (7*")=(7?")=diag(1-1,...,~1). The vanishing formations(2.7) of the component fields in Eq3.8) using
of the diagonal blockg*” will be tantamount to the con- the identities(A3) and (A4). One thereby checks that the
struction of a quantum field theory oncemmutativespace ansatz(3.8) is consistent, i.e. that the gauge transforfiys
R}. The y?® can be interpreted as local coordinates on thewith gauge function$3.4) preserve the subspace 3\ of
cotangent bundle oR} (see the next sectipnso that the Yang-Mills fields of the form(3.8), and that the “compo-
condition #2°=0 is tantamount to the commutativity of the nents” of the gauge fields transform as
corresponding “momentum” space. The noncommutativity b
62", 0" between the coordinate and “momentum” variables 8a®pa= 0,02+ 80" (apd,0 0~ 04pd,@a),
will enable the construction of diffeomorphism generators
via star commutators below. Having non-vanishiag”
would lead to some noncommutative field theory, but Weryq oyryature component.11) of the gauge field3.8) are
shall not conS|de_r this possibility here. In fact_, in t_hat Casqiewnise easily computed with the result
the noncommutative model only makes sense in string theory

8,Ca=az—€0"°a,3,C,, aeq. (3.9

[38], so that keeping*”=0 allows us to define a quantum FulE)=Q ,a(X)Y?,

field theory in Minkowski signature without having to worry

about the problems of non-unitarity and non-covariance that Q,a=09,0,5—0,0,,

plague noncommutative field theories on non-Euclidean b

spacetimes. The bi-differential operat@.2) which defines 0" (0yp0\®pa— @A\ ®ra),

the star product is then given by
F,a=0,Ca—w,a—€0"w 1d,C
pa ma pa ub%vas

A=Z0"3(3,0,— 3ad,). (3.9 Fap=0. (3.10

N| =

] ) For the scalar fields, the consistent minimal truncation is
~ Letus consider now the linear subspgoef smooth func- o functions which are independent of theoordinates,
tions @ on R2" which are linear in the coordinatgs
D (&)= d(X). (3.1)

a(§)=ay(X)y™ (3.4
Using Eqg.(A3) the gauge transformation rul®.17) then
Using Eq.(A4) we then find that the star commutator of any implies
two elementsx, 8 e g is given by

[, 81.(8)= ([, B1.)a(0Y, _ _ )
Under the isomorphisrg=vect(Ry) generated by Eq3.6),

([, Bly)a(X) = ﬁ“b[ﬂb(x)%aa(x)—ab(X)%Ba(X)]- we see that the gauge transfo(®12 coincides with the
standard transformation of a scalar field under infinitesimal
diffeomorphisms ofR}, i.e. with the natural adjoint action

Thusg is a Lie algebra with respect to the star commutator.5,¢=X () of vect(Ry) on C*(R}). The gauge covariant
If we now define the invertible map derivatives of the truncated field8.11) are similarly easily

computed to be

Sap=—0"2asd, . (3.12

g—vec(RY)
D,P=3d,6—e0"w,qd,,

J
a—>X,=—0"q, — (3.6 D,d=0. (3.13
IXH
It remains to compute the possible action functionals
onto the linear space of vector fields &4, then Eq.(3.5 (2.14) and(2.18 corresponding to the above truncation. To

implies that it defines a representation of the Lie algafhra arrive at a gauge invariant action &, we make the ansatz
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WHe Y (g) = pri L [w, (X) + 0M2WE(X) d, under the action of the Lorentz group SQ(%,1) of R}.
, These terms come from the rank two tengQg of the origi-
+ 6NN Pwyy  (X) 340 ] nal noncommutative Yang-Mills theory which corresponds to

) , the irreducible antisymmetric representatidi(2n) of the

+ 0NN P, (X) dadpt S (y), Lorentz group SO(1/2—1). After dimensional reduction, it

induces the rank (1,2) tensePaQWa which corresponds to

WHBB( &) = i 2w (x) M (y), the decomposable representation
vv' _ v v’ a ghby,,M -
WE3(£)= pr 6 20w (%) 9, 67(y), AX(ny@n=n@neALAn), (3.19
W(E)=w4(x)5"(y) (3.14

with n the defining and&é‘z(n) the traceless, antisymmetric
(1,2) representation of the reduced Lorentz group S©O(1,
—1). In other words, the restriction of the antisymmetric
rank two representation of the group SO(1;21l) to its

for the weight functions. The functions in Eq. (3.14) are
smooth functions inC*(RY}), and the ansat3.14 yields
well-defined action functionals oveR} provided that all
component fields live in an appropriate Schwartz subspace O(1n—1) subgroup is reducible and decomposes into irre-

C”(R). The choice(3.14 of tensor densities represents a yciple representations according to E15. The reduced

“minimal” .dimensiona.l reduction which is consistent_ with' Yang-Mills Lagrangian should be constructed from Lorentz
the reductions of the fields above and naturally contains E'néinglets built out of irreducible representations of S@(L,

stein gravity in a particular limit. There are of course many _ 1). This requires the incorporation of the three S@(1,

other choices for the function/** ®® (£) which are pos- —1) singlets corresponding to the Clebsch-Gordan decom-
sible, and these will lead to different types of diffeomor- position (3.15. It is achieved by summing over the cyclic
phism invariant field theories. It is essentially here that thergyermutations of the three indices of the reduced field strength
is the most freedom involved. We have made the choicgensor[34], and will be enforced by the given choi¢g.14).
which will facilitate comparison to previously known results  The gauge transformation rules for the fields in By14)
in general relativity and in string theory. Due to the struc-can be determined from the conditiof2.16 and (2.19.
tures of the spacetime metri@.2), of the field strengths Using these constraints it is straightforward to see that, for
(3.10, and the symmetrie.15), the remaining components  the types of terms appearing in E8.14), the index contrac-
of the tensorial weight functions in E¢3.14) need not be tions specified there are essentially unique, in that other
specified. choices are either forbidden by star-gauge invariance or else
The derivative term®"?d, in Eq. (3.14 will have the  they will produce the same local Lagrangian terms in the
overall effect of transforming aaindex oﬂR; into ak index  end. In this sense, the “minimal” choid®.14) is unique and
of R} . The two choices of second ordgderivatives in the star-gauge invariance forces very rigid constraints on the al-
first line of Eq. (3.14 then correspond to the irreducible lowed tensor weight functions. The restrictiof&16 and
decomposition of the reduced field strength tenﬂﬁmwa (2.19 are satisfied if the fieldw in Eq. (3.14) transform as

JRnd”X[ S, w=(x)f(x,0)+wz(x)ad,(f)(x,0]=0, (3.16

f AT 64 5 WE(X) af (x,0)+ W ()22, () (x,0]=0, (3.17)

20X O 20T 8,1, (X) Fadf (X,0)+ W1, (X) dadack (1) (X,0] =0, (3.18

f a0 6420"°[ 5, WA (X) dadT (X,0) + WA (X) dadhad,(f)(x,01=0, (3.19

for all smooth functionsf(x,y) which are compactly sup- manding that these equations lead to local transforms of the

ported onR} and quadratic in thg®'s. The indexZE in Eq.  fieldsw. While the non-local integral transforms are required

(3.16 denotes the label€ =w,C,¢ while E=w,M in  for the distribution-valued densitié¥ on R?", we will seek a

Eq. (3.17). dimensionally reduced field theory in the following which
We will solve Eqgs.(3.16—(3.19 for the gauge transfor- possesses a local gauge symmetry. For instance, setting

mations of the functionsv appearing in Eq(3.14 by de- (&) =f(x) independent of in Eq. (3.16), using Eq.(A3),
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and integrating by parts ovét; yields the local transforms 1 2.2
Ly=5wel7*" "0, by, (0,4)(9,4)+m*¢7] (3.29
S Wz=—3d,(Wz6"%a,), E=0,C¢. (320
and
Setting f(£) =f,(x)y? linear iny in Eq. (3.1, using Eq.
(A4), and integrating by parts ovét, yields h;:6;_eavaw’ua. (3.30
E_ E pra _ prag = = _
OaWy, == (W, 07 ag) = "W, 0,05, E=w In the following sections we will give geometrical interpre-
tations of the field theory3.24—(3.30 and describe its re-
lations to gravitation.

M.
(3.2)

Finally, setting f(&)="f,,(x)y2y" quadratic iny in Egs.

(3.18 and(3.19, using Eqs(A6) and(3.20, and integrating

by parts oveﬂRQ gives IV. INDUCED SPACETIME GEOMETRY OF
NONCOMMUTATIVE GAUGE FIELDS

— Aa A&,
OaWun == (W 0% t0) = 67Wy 10,0 The remarkable property of the field theory of the previ-
— 0w, d,a,, (3.22  ous section is that it is diffeomorphism invariant. This fol-
lows from its construction and the isomorphigg6), and is
5aW}\)\’:_& (W)\)\,gpaaa)_apaw)\)\’a . so_le]y a consequence of the stgr-gauge invariance of the
ey PRy Py oK original noncommutative Yang-Mills theory oR?". Pre-
_ gpawzz ' .. (3.23 cisely, it comes about from the representati8ry) of the Lie

algebra(2.10 of star-gauge transformations in terms of vec-

It should be stressed that the transfort®20—(3.23 repre-  tor fields on flat infinite spacetim@y . This means that the
sent but a single solution of the non-local constraint equavarious fields induced in the previous section should be re-
tions (2.16 and (2.19. We have taken the solutions which lated in some natural way to the geometry of spacetime. In
will directly relate local star-gauge invariance to general cothis section we will show how this relationship arises. We
variance in the dimensional reduction. have already seen a hint of this diffeomorphism invariance in
Using Eqs(A2), (A4), (3.10, and(3.14), the noncommu- the transformation law3.12 for the scalar fields, which we

tative Yang-Mills action(2.14 can now be expressed in have mainly introduced in the present context as source
terms of a local Lagrangian over the spatas fields that probe the induced spacetime geometry. The scalar
field action(3.29 is in fact the easiest place to start making

W . these geometrical associations. This analysis will clarify the
INCYM:j JA™X(L,tLetLlm), (324 way that the star-gauge symmetry of Yang-Mills theory on
: noncommutative spacetime is related to the presence of
where gravitation.

The coordinateg® generate the algebfax(RQ) and obey
the star-commutation relations
Q,u.' v'b

1 ’ ’ !
Lw: 577## exaax b[znvv W)\)\/\Qf,uya
| [y®y"].=0. (4.3)
+w (0 22 et Qb urnra)
AN S prattu promipyia Under a global coordinate translatigf+— x*-+ €*, the scalar

T fields transform infinitesimally ag(x)— ¢(x) + €9, H(X).
57 W)\(‘Q‘,U.vao")\’Q,u’v’b_‘Q’,u’v’bo-')\Qﬂva) K

2 Since
1, 3,(X)=—=(0"1) 2, y2 ¢1.(x), (4.2
_Z 77VV Ww([?)\/Q,uva)((?)\Q,urwb) ) (325) /.qu( ) ( )a,u.[y ¢] ( )
the derivative operata#,, is an inner derivation of the alge-
braC”(Ry;xRY) and we may identify? with the holonomic
— nv . ab . X Yy . .
Le= EWC” 1 FuaF b (3.26 derivative generators- 6#%9,, of the n-dimensional transla-
tion group T, of R}. The standard, flat space scalar field
LMZQV/aghbnquyf#aQVV,b_ (3.2 action fan%ﬂ'u'V&M(ﬁ(?V(ﬁ is invariant under these global

translations. Let us now promote the globgl Symmetry to
In a similar fashion the reduced scalar field actiarl8 can a local gauge symmetry. This replaces global translations
be written as with local translations<“—x*+ e#(x) of the fiber coordi-
nates of the tangent bundle. It requires, in the usual way, the

replacement of the derivatives, with the covariant deriva-
lB: fRnanL¢, (32& tives eﬁl’

where V,=d,tew,y% 4.3
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wherew ,, are gauge fields corresponding to the gauging olup to a constant, the functiongz in terms of the noncom-
the translation group, i.e. to the replacemenRbby the Lie  mutative gauge fields, and we have
algebrag of local gauge transformations with gauge func-

tions of the type(3.4). Using the identificatior(4.2) it then wz=pzdeth)), E=0,C,¢, 4.7
follows that the kinetic terms in the scalar field action will be ] o N
constructed from where pz are arbitrary constants. Similarly, the condition

(3.21) specifies that the functiorwf are vector densities
with respect to the connected diffeomorphism grouRpf

Vud=h,d,¢, (44 and from(4.6) we may write
with h7; given by Eq.(3.30. The covariance requirement  w==;_H"V deth)’)=¢zdeth) )H",a,h"", E=w,M,
(4.8
0V ) =X,3,(V ) (4.9  where ¢z are arbitrary constants. Het¢" are the inverse

vierbein fields which are defined by the conditions
is equivalent to the gauge transformation law for the gauge
fields w,,, in Eq. (3.9). HLhy=h\H}=5,. (4.9
The quantitieg3.30 can thereby be identified with vier-
bein fields on spacetime, and we see that the noncommutdhey are thereby determined explicitly in terms of the non-
tive gauge theory has the effect of perturbing the trivial ho-commutative gauge fields as the perturbation series
lonomic tetrad fieldss” of flat space. The noncommutative

, - . . HM = S ua
gauge fields become the non-trivial parts of the V|erbe|nHV 9, Tetw,q

fields and create curvature of spacetime. Note that in the o

present formalism there is no real distinction between local + ) ekorrigme. L g1ty w, @,
spacetime and frame bundle indices, because these are inter- k=2 e He e
twined into the structure of the star-gauge group of the un- (4.10

derlying noncommutative gauge theory through the mixing
of internal and spacetime symmetries. In other words, thend they possess the infinitesimal gauge transformation prop-
matrix (6*%) determines a linear isomorphism between theerty
frame and tangent bundles Bf . It is precisely this isomor-
phism that enables the present construction to go through. S HE= =Xy HE—H{a,X),. (4.11
We note also how naturally the identificatiqd.2) of the . N
spacetime translational symmetry as an internal gauge synfinally, we come to the rank two tensor densities. From Eq.
metry arises from the point of view of the original noncom- (3.22 we may identify
mutative Yang-Mills theory onR?". Using Egs.(3.6) and , .,
(3.9) we see that the identification of E(.30 as a vierbein w,,, = xodeth) )5, HA HY, (4.12
field is consistent with its gauge transform
while from Eq.(3.23 we have

8.h2=XAa\h%—hd, X" (4.6 Wi = xodeth” )HAHY', (4.13

which coincides with the anticipated behavior under infini-with xo and y, arbitrary constants. As we shall see shortly,
tesimal diffeomorphisms oRl. The condition(4.6) is iden-  the tensor density4.12) is associated with the antisymmetric
tical to the transformation law that one obtains from Eq.part of the Clebsch-Gordan decompositi@15 while Eq.
(3.12 and the homogeneous transformation (@) for the  (4.13 is associated with the conjugate vector parts.
covariant derivative$4.4). Note thath” behaves as a vector We see therefore that all fields of the previous section can
under general coordinate transformations with respect to it8€ fixed in terms of gauge fields of the dimensionally re-
upper index. As we will discuss in the next section, it is aduced noncommutative Yang-Mills theory. All of the natural

vector under local Lorentz transformations with respect to itgg€ometrical objects of spacetime are encoded into the non-
lower index. commutative gauge fields. Let us now consider the structure

We can now recognize the gauge transformat®20 as of the reduced field strength tensor. From the form of the
the infinitesimal diffeomorphism of a scalar denditysing ~ Lagrangian(3.25, and of the weight function¢4.7), (4.8),

Eq. (4.6 this condition can thereby be used to uniquely fix, (4-12 and(4.13, it follows that the natural objects to con-
sider are the contractions

“For the functionw,, the condition(3.20 may also be naturally 5 ) .
deduced from Eq(3.12 and by demanding that the mass term of ~Note that detf,)= J[det(g,,)| is the Jacobian of the frame

the Lagrangian3.29 be invariant up to a total derivative under bundle transformatiorw,—V ,, whereg,,= nﬂ/v,hﬁ’hf is the
infinitesimal diffeomorphisms. Riemannian metric induced by the vierbein fields.
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T;\w: —egwaH){,Qwa= Hir(VMh,)i _Vyh;\L ), 414 F;\w: Mty WUU,HZHzr(hzlﬁMh;\L, +hﬁ,¢9yh;f,

, —h#'9,/hY —hY 9, he )+ HY, 9,0 +H), 0,0
with V,=h% d,,. From Eqs(4.6) and(4.1)) it follows that (4.22
the curvature$4.14) obey the homogeneous gauge transfor- '
mation laws is the torsion-free Levi-Civita connection of the tangent
bundle, and
8uT =Xy n T, (4.19 o
’ i Kyt =3 (0 HOHY, T,
From Eq.(4.15 one can check directly that each term in the ) )
Lagrangian(3.25 is invariant up to a total derivative under + 7, HAHL T, =T, (423
star-gauge transformations, as they should be by construc-
tion. From Eqs(3.10 and(3.30) it follows that the curvature iS the contorsion tensor. The torsidn)," measures the non-
(4.14) naturally arises as the commutation coefficients in thecommutativity of displacements of points in the flat space-
closure of the commutator of covariant derivatives to a Lietime R}. It is dual to the Riemann curvature tensor which
algebra with respect to the given orthonormal basis of théneasures the noncommutativity of vector displacements in a
frame bundle, curved spacetime. This follows from the identiti@s20 and
(4.21) which yield the relationship

[V..V,]=T\V,. (4.1 , , , , ,
R, (D)=a,I% —a,Ih +T¢,T, ~TLI,
The operatorsy ,, thereby define a non-holonomic basis of
the tangent bundle with non-holonomicity given by the non- =D,(N)K,, M/_D,U«(F)KVV’MI
commutative field strength tensor. The change of b¥sjs a
= h;a,, between the coordinate and non-coordinate frames is + KV,M”KW\M' — KV,V“KMM' (4.24

defined by the noncommutative gauge field.

The commutation relation(4.16 identifies T,wk, or  between the usual Riemann curvature terR‘b'rV,M(F) and
equivalently the noncommutative gauge field strengthghe torsion tensor. Her®,(I') is the Riemannian covariant
Q,,a, as the torsion tensor fields of vacuum spacetime ingerivative constructed from the Levi-Civita connection
duced by the presence of a gravitational field. The non—triviat4.22,, whose action on the contorsion tensor is given by
tetrad field(3.30 induces a teleparallel structure on space-

time through the Weitzenlol connection DV(F)KV,M”, - aVKV/uﬂ' +F5;Kyr,f+rt'quy“/ .
(4.29
We see therefore that the dimensionally reduced noncom-
The connectior(4.17 satisfies the absolute parallelism con- Mutative gauge theory of the previous section gives a very
dition natural model of a flat spacetime with a given class of met-
rics carrying torsion, and with gauge field strengths corre-
D, (3)h\=V h —SM h, =0, 41 sponding to the generic anholonomity of a given Iecal ertho-
W(2)h=V hy =200y (4.18 normal frame of the tangent bundle B . It is precisely in
whereD,,(3) is the Weitzenbok covariant derivative. This {hiS way that the noncommutative gauge theory on flat space-
means that the vierbein fields define a mutually parallel sysiime can induce a model of curved spacetime with torsion-
tem of local vector fields in the tangent spacesi@fwith  11€€ metric; 1.e., It induces a teleparallel Weitzeabgeom-
respect to the tangent bundle geometry inducealpy. The E€try on R, which is characterized by a metric-compatible

Weitzenbak connection has non-trivial torsion given by Eq. CONNECtion possessing vanishing curvature but non-vanishing
(4.14) torsion and which serves as a measure of the intensity of the

gravitational field. The teleparallel structure naturally in-

T A=3M S (4.19  duces a Riemannian geometry on spacetime, with curvature

prooey R determined by the noncommutative field strength tensor. As

but vanishing curvature, we have mentioned before, it is very natural that in a non-
commutative gauge theory, wherein global translations can

Vf,w(z):Vusz’p_szff’ﬂ“sz;ztw—Eﬁztm:0- be represented by jnner automorph.isms of the algebra of

(4.2 functions on epacetlme, the translation groupbe repre- .

sented as an internal gauge symmetry group. In the ensuing

The teleparallel structure is related to a Riemannian strucdimensional reduction it thereby becomes a genuine, local

S =HMNV R (4.17

R*'

ture on spacetime through the identity spacetime symmetry of the field theory. The identification of
the gauge field strengths with torsion tensors is then also

3h,=00, 4K, (4.21)  very natural, given the noncommutativity of the spacetime

coordinates and the fact that in noncommutative geometry

where the star-product only yields a projective representation of the
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translation group T with cocycle determined by the non- section should be thought of, within the noncommutative ge-
commutativity parameter®”® [16]. ometry, as a tensor mapping translation group valued quan-
tities to quantities in the fiber spaces of the frame bundle. By

V. GRAVITATION IN NONCOMMUTATIVE YANG-MILLS comparing mass dimensions we see that we should then
THEORY properly identify

We will now describe precisely how the diffeomorphism- B,= |de( 9“/""/)|1/2“¢A9Vaw#a. (5.3
invariant gauge field theor(B.24)—(3.27) is related to grav- . _ _
ity in n dimensions. For this, we use the arbitrariness in théVote that the Yang-Mills coupling constant itself cannot be
component weight functions to set the higher derivative!Sed to compensate dimensions, for instanae=i# dimen-
terms, i.e. the second and third lines of the Lagran¢®5) sionseis dimensionless. Using E3.1), the Planck scale of
to zero, p,=¢{,=0. These terms represent higher Emergyn-dimensional spacetime is therefore given in terms ahd
contributions to the field theory, which admit a rather naturafn® noncommutativity scale as
string theoretical interpretation that we will describe in the N rr-—~ill 2 AB [1/2n
next section. Furthermore, we will see in Sec. VII that the K= 16mGy=e|Pfafi( 67| 5.4
Lagrangian (3.26, (3.27) for the auxiliary gauge fields Comparing Eqs(5.1), (5.2 and (1.1) then fixes the mass
C_:a(x) mduceg non-local interaction terms for _the gravita- dimension 2 weight constant, to be
tional gauge fields ,,, and so also do not contribute to the
low-energy dynamics of the field theor8.24. We will Xo=|Pfaff(©@A8)] =11, (5.9
therefore also sgic= ¢ =0. . i . .

The Iow-energ; dyr';/lamics of the dimensionally reduced! Ne induced gravitational consta3t4) vanishes in the com-

noncommutative gauge theory is thereby described by thutative I!m't and agrees with tha_t found [6]_usmg the .
Lagrangian supergravity dual of noncommutative Yang-Mills theory in
four dimensions.
1 , Let us now compare the low-energy field theory that we
Loz—zde(hg,)ﬂ““’[ZXoﬂwrmwkaT#rwh have obtained to standard general relativity. By using the
e relation (4.21), the Lagrangian
+Xn(T,U,VVT

’

R e Y (5.1 R
u w'v )] LGR:X—Sde(hZ ) gt
e

A

Z”]W ﬁxx'T#u)\TM/,ﬂ)\
The constanjy, multiplies the torsion terms that arise from

the irreducible representation(n) in Eq.(3.15), while the V S ,
terms involving y, come from the conjugate vector sum- T T T 5T T
mandsn. The Lagrangiar5.1) belongs to the one-parameter

family of teleparallel Lagrangiand.1), (1.2) which describe ~ can be expressed in terms of the Levi-Civita connechigp
physically viable gravitational models, provided that thealone. By using Eqs(5.4),(5.5), along with Eqgs(4.23 and

(5.6

weight couplings obey (4.24) to deduce the geometrical identity
Xn=—2X0- (5.2 R(I) = 7" HYHL R, (D)
The choice of constants E¢(p.2) as they appear in Eg5.1) = n”“’(T,“,VT#/VrV, - %TWV’T#,V,V
is quite natural from the point of view of the symmetries of
the Clebsch-Gordan decompositi@15. In this case, the —%ﬂwlmwwaT ,V}’JH;VK v
Lagrangian(5.1) represents a gravitational theory for macro- . i
scopic matter which is observationally indistinguishable + KML,VHg'(thZ,), (5.7)

from ordinary general relativity.
This identification can be used to determine the Planckhe Lagrangian5.6) can be rewritten, up to a total diver-

scale of the induced gravitational mod&ll). For this, we gence, as the standard Einstein-Hilbert Lagrangian

note that with the choice of weight functio(.14) the fields 1

w,o have mass dimension'2 and the Yang-Mills coupling __ A

cgnstane has mass dimension-2n/2. In the gauge whereby Le 1E‘>7'rGNde“]A IR ©.8

the geometry is expanded around flat spacetime, as in E

(3.30, the non-trivial parts of the vierbein fields should as—d " the tel el f lai ‘ | relativit d
sume the form«B , wherek is the Planck scale and the efines the teleparallel formu'ation of general relativity, an

translational gauge fieldB, have mass dimension/2—1 gflZgi?\r:iﬁzetﬂgt?eﬂufli\ﬁcljint to Einstein gravity in the absence
N A .

EEG'Z?: Tol c;)rppgref_thlhs V\."th ItEhe %e;turbatlm*a_ ;"Mg of The main invariance property of the particular combina-
€ ”_V'a ? rad field in Eq. ( : Q’ we ntro Auc;e tion of torsion tensor fields in E@5.6) is its behavior under
the dimensionless noncommutativity ~parametets’ a local change of framéV . This can be represented as a

= 0#3/|det(6* ®')|*", which as discussed in the previous local Lorentz tranformation of the vierbein fields

ﬂi the first-order Palatini formalism. The Lagrangiéh6)
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5(AL)hZ(X):AZ’(X)h;,(X)' D(2n—1)-brane[39]. The reduced action is then given by

) vol ) ,
SIHA(x) = = A" () HE (x), (5.9 IL?&WTVJR“d“X G GB® Fag Farpr(x,0), (6.1)

whereA/‘j,(x) are locally infinitesimal elements of SO, where voj is the volume of the transverse space. Note that in
—1). Under Eq(5.9 the torsion tensof4.14) transforms as this reduction the mass dimension of the Yang-Mills cou-
pling constane is 2—n.
sOT, ) =a,A—a,A), (5.10 Within the general formalism of Sec. Il it follows that
o _ we should choose altz=vol,, while ws=w,,=w}} =0.

from which it can be shown that the Lagrangi@b.6)  The field theory(3.24 is then given by the local Lagrangian
changes by a total derivative under a local change of frame
[26]. The gauge field theory defined by E&.6) is thereby vol, , , N ,
independent of the choice of basis of the tangent bundle Lo=——— #** 7" o\/(hyT,,)o\(h, T, 7)
used, and in particular of the decompositit@30 which 2e
selects a gauge choice for the vierbein fields corresponding _egnaa’}- Forar] 6.2
to a background perturbation of flat spacetime. The field pas prartds '

equations derived from Ed5.6) will then uniquely deter-  powever, in order for Eq(6.2) to define a diffeomorphism
mine the spacetime geometry and hence the orthonormglyariant field theory, we still need to satisfy the star-gauge
teleparallel frame up to a global Lorentz transformation. Injnyariance condition€2.16. While the transforms are trivi-
fact, the Einstein-Hilbert Lagrangian defines the uniqueyy satisfied of course for the vanishings, the constraint

teleparallel gravitational theory which possesses this Ioca(l3_2@ for constanwsz imposes the restriction
Lorentz invariancg26]. =

The Lagrangiar{5.1), on the other hand, is only invariant 9,Xk=0 (6.3
underglobal Lorentz transformations. This relates to the fact
that the original noncommutative gauge theory 6ff' is  on the types of diffeomorphisms which can be used for star-
only invariant under a flat space Lorentz group, and in thegauge transformations. This means that the 113 is not
dimensional reduction only the translational subgroup of thesurjective and its image consists of only volume preserving
full Poincaregroup is gauged to a local symmetry. The re-diffeomorphisms. This is expected from the fact that the
duced gauge theory is thereby a dynamical theory of theomponent functions of the weight densities are constant, so
prefered orthonormal teleparallel frames in which the con+that the only diffeomorphism invariance that one can obtain
nection coefficients vanish and the torsion tensor has thin this case are the coordinate transformations that leave the
simple form (4.14. The frameV , is then specified only flat volume element ofR} invariant, i.e. those which are
modulo some local Lorentz transformation and the parallelisometries of the flat Minkowski metrigy,,, and thereby
ism is not uniquely determined. The gravitational model isinfinitesimally satisfy Eq(6.3). Thus, in the D-brane inter-
therefore ambiguous because there is a whole gauge equivigretation of the dimensional reduction presented in this pa-
lence class of geometries representing the same physigser, star-gauge invariance acts to partially gauge fix the dif-
Nevertheless, with the choice of parameté&), (5.5), the  feomorphism group of spacetime. One arrives at not a full
Lagrangian(5.1) lies in the one-parameter family of telepar- theory of gravity, but rather one which is only invariant un-
allel theories(1.1), (1.2) which pass all observational and der the subgroup consisting of volume preserving diffeomor-
theoretical tests of Einstein gravity. We use this criterion tophisms. This subgroup arises as the residual symmetry of the
fix the arbitrary constants of the gravitational mod®ll), field theory that remains after the gauge fixing.
whose presence effectively encodes the long distance effects Generally, volume preserving diffeomorphisms constitute

of the internal spacB;. the symmetry group which reflects the spacetime noncom-
mutativity that arises in D-brane moddK0]. For instance,
VI. D-BRANES AND VOLUME PRESERVING they arise as the dynamical degree of freedom in matrix
DIFFEOMORPHISMS models[41] which comes from the discretization of the re-

sidual gauge symmetry of the 11-dimensional supermem-
To understand what the higher derivative terms in the Labrane[42]. They also appear as the residual symmetry after
grangian(3.25 represent, we return to the standard actionlight-cone gauge fixing irp-brane theorieg43], and they
(2.13 for noncommutative Yang-Mills theory dR®". Thisis  naturally constitute the Lie algebra of star-gauge transforma-
the action that is induced on a flat D{2 1)-brane in flat tions in noncommutative Yang-Mills theory on flat spacetime
space and in the presence of a constant backgr@ufield.  [16]. Here we have tied them in with the dynamics of
We can now examine the “naive” dimensional reduction of D-branes through the effective, higher-derivative gravita-
this action to am-dimensional submanifolﬁQCHZ”. Such a tional theories(6.2) that are induced in the dimensional re-
submanifold could correspond, for example, to the embedduction. Another way to see that general covariance in the
ding of a flat D—1)-brane inside the D({2—1)-brane usual noncommutative gauge theories is only consistent with
with a transversé field, which realizes the D(—1)-brane  volume preserving symmetries is by noting that the infini-
as a noncommutative soliton in the worldvolume of thetesimal coordinate transformatiaf,x*=X%(x) implies the
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noncommutativity parametes@=[x*,y], must transform prescription. They thereby represent natural candidates to in-

under gauge transformations as duce the necessary terms that instate the frame basis inde-
pendence of the diffeomorphism invariant field theory of
8, 0M=[X* y?], = 6"39 X" . (6.4  Sec. V. Note that these fields cannot be set to zero because of

their gauge transformation law in E(B.9). They therefore

serve the supergravity background on the D-branes sets Egravity mode!- _ .

(6.4 to zero, which also leads to the isometry constraint The variation of the Lagrangiabc+Ly given by Egs.
above. This constraint further ensures that the tesér  (3.10, (3.26), (3.27, (4.7), and (4.8 with respect to the
defines a global isomorphism between the frame and tangeat!Xilliary gauge field<C,(x) yields the field equation
bundles, as is required in the construction of this paper.

The higher derivative terms in the actio3.25 can 7P 0Cp(x) = J%(x), (7.
thereby b'e thought of as strm'gy corrections to the teIeDar'Where we have introduced the second order linear differential
allel gravity theory. It is tempting to speculate that they are

- . R operator
related to the higher-curvature couplings that arise in effec-
tive supergravity actions. It is a curious fact that in this in- v N N ' A
terpretation one does not arrive at an Einstein-like theory of 3~ Pc7 LNV, + (VW) HCV, A HE(V, 0, )V,
gravity on the D-brane. This induced brane gravity deserves | j\y ] 7.2
to be better understood, and most notably how the analysis of v RO '
this section and the previous one relates to the INgRI-  gnd the fields
pergravity results which demonstrate the existence of con-
ventional gravitation in noncommutative gauge thef®y. N \ N
The dimensional reductions of Sec. V could indeed be re-J*= 7"} pcn™[H{ (V,h, )0, b+ @,pd N3+ V ,0,]
lated to the way that the Newtonian gravitational potential
arises from a Randall-Sundrum type localization on anti-de Im
Sitter space. Indeed, it would be interesting to understand T e
whether or not the generalized class of noncommutative
gauge theorieg2.14) arises as an effective field theory of +Hf,'H”,','T ,”(V)\hw,)(Vﬂh;’/,:)JrH’;,’VM(hi,,T M
strings in some limit, or if the dimensional reductions follow v # "
from some sort of dynamical symmetry breaking mechanism

ev/a[H;\’“,TVV,)\(V)\h:L,)((?VHh;N)

)\I )\ )\N ’ )\I
in the noncommutative quantum field theory. This would X(axhﬂ')’th"Tw' V.(HY ‘9Ah;u)] ' (7.3
presumably fix all free parameters of the induced gravita-
tional theory(3.24). Substituting the solution of E¢7.1) for the fieldsC,(x) into
the Lagrangiar_c+Ly, thereby yields the non-local effec-
VII. ROLE OF THE AUXILIARY FIELDS tive Lagrangian
The most important ingredient missing from the induced _ o 1 2l p. PC v ab
gravity model of Sec. V is local Lorentz invariance. This Lesr=deth; ) _Eﬂab‘] ﬁ‘] RN AR
somewhat undesirable feature owes to the indistinguishabil-
ity within the present formalism between spacetime and M e i o N
frame indices. It is in fact quite natural from the point of +F0 " Hu’(V%hA')“’MaTw' ' (7.4

view of the original noncommutative gauge theory, whereby
the star-gauge symmetry allows the gauging of the translaNote that in the casge-=0, the auxiliary fields are Lagrange
tion group but is independent of the invariance of the fieldmultipliers which enforce a geometric constraint given by
theory under global SO(1n2- 1) transformations. We may setting the fieldg7.3) identically equal to zero.
expect, however, that local Lorentz symmetry is restored in By performing a gradient expansion of the operafor?,
some complicated dynamical way in the reduced noncommuwe can now study the derivative expansion of the effective
tative gauge theory, such that the effective gauge theory con-agrangian(7.4). Higher derivative terms can be attributed
tains general relativity. This problem is addresselli] in  to stringy corrections, as they were in the previous section.
the context of reduced models. In this section we will brieflyThe leading order terms may then lead to the appropriate
describe some potential steps in this direction. additions of terms to the Lagrangidb.1l) which makes it
The natural place to look for the extra terms required toinvariant under local Lorentz transformations. However, ge-
make the Lagrangiafb.1) invariant under local frame rota- nerically the Lagrangiar(7.4) will also contain infinitely
tions is in the terms involving the auxiliary “internal” gauge many higher derivative terms and so a minimal, low-energy
fields C,(x), whose role in the induced gravitational theory model is not strictly speaking attainable with this reasoning.
has thus far been ignored. They represent the components bf fact, one can simply set the constapis={y=0 and
the noncommutative gauge field in the internal directionscompletely ignore the non-local contributions from the aux-
along which lies the coordinate basi® defining the genera- iliary fields. Their inclusion represents the possibility of ob-
tors of the translation group,Tthat is used in the gauging taining a gravitational field theory which is completely
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equivalent to general relativity, at least on a macroscopidn this way one obtains a unified gauge theory which couples

scale. This possibility deserves further investigation. the gravitational theory that was studied in earlier sections to
electrodynamics. Notice also that the photon fiélg(x)
VIIl. COUPLING GAUGE THEORY AND GRAVITY does not couple to the scalar fiefi{x), consistent with the

] fact that the scalar bosons are taken to be neutral under the
[For gauge functions of the forr8.4), we have used a exira Abelian gauge symmetry. This generalization evidently
principle of “minimal consistent reduction” to fix the fields 550 goes through if one starts from a noncommutative Yang-
that arise in the induced gravitational theory. This led to theyjis theory with some non-Abelian U{) gauge group.
choice (3.8) involving the gauge fieldss,, which induced  Then one obtains a sort of non-Abelian model of gravity
the non-trivial part of the tetrad fields of the induced spaceoupled to ordinary Yang-Mills theory. However, the star-
time geometry, and the auxiliary fields, . It is possible to  gauge group of the simpler noncommutative electrodynamics
consider more general Lie algebmsther than the minimal - contains all possible non-Abelian unitary gauge groups in a
one consisting of the gauge fU’?Ct'O('ﬁifg)- Forinstance, itis  yery precise way16,44. It would be interesting to extract
possible to definer(§) with a piecea’™(x) which is inde-  the gravity-coupled Yang-Mills theory directly from a di-
pendent of they coordinates, mensionally reduced gauge theory of the fot2rl4). There
_ (0 a is therefore a wealth of gravitational theories that can be
(§)= a(X) + aa(x)y*. 8D induced from noncommutative gauge theory, which in itself
Again g is a Lie algebra with respect to the star commutator,also seems to serve as the bas_ls for a unified field theory of
with “component” functions(3.5) and the fundamen_tal f_orcgs. In all instances the type of theory
that one obtains is dictated by the choice of reduced star-
([a,B8],)@(x)= gﬂa[lga(x)(gﬂa(o)(x)_ aa(x)&ﬂﬂ(o)(x)] gauge group, i.e. the Lie qlgebga}as well as _the ch(_)ic_e of
weight functionsW for the dimensional reduction. This illus-
=XX(x)d,, B(O)(x)—xg(x) &Ma(o)(X) trates the richness of the constraints of star-gauge invariance
(8.2 in noncommutative Yang-Mills theory.

for a,B e g. The smallest truncation of the spapa is now
defined by Yang-Mills fields of the form IX. CONCLUSIONS

_ In this paper we have described a particular class of di-
— a " a
A=TAL0 + 0,2(0y7]dX+ Ca(x)dy?, 8.3 mensional reductions of noncommutative electrodynamics

and the star-gauge transformation rukss9) are supple- which induce dynamical models of spacetime geometry in-

mented with volving six free parameters. Two of these parameters can be
fixed by requiring that the leading, low-energy dynamics of
8P, =3, 0+ e0M(ayd\A,— 0,0, al?) the model be empirically equivalent to general relativity. The
higher-order derivative corrections can be attributed to

=Vﬂa(°’—ex’;ﬁvAM. (8.4  stringy corrections and non-local effects due to noncommu-

tativity. The low-energy dynamics can be consistently decou-
The noncommutative field strength tensor is then modified apled from the high-energy modes by an appropriate choice of
_ \a parameters. These results show that a certain class of telepar-
Ful &) =F 1,(X) + 0" [@,a(X) hAL(X) — 0,4a(X)hALX) ] allel gravity theories have a very natural origin in a noncom-
+Q ()Y mutative gauge theory whereby diffeomorphism invariance
pra is solely a consequence of the star-gauge invariance of the
=V A0~ VLA, 00+ Q,,a(0Y2, (8.5 Yang-MiIIs theory, in the same spirit as the usual gauge theo-
ries based on the translation group of flat space. Alterna-
where tively, the present construction sheds light on the manner in
which noncommutative gauge theories on flat spacetime con-
Fo=0,A,—d,A, (8.6)  tain gravitation. We have also described how Yang-Mills
theory on a noncommutative space naturally contains a
and the remaining components &fg are as in Eq(3.10.  gravitational coupling of ordinary gauge theories to the geo-
It follows that the choicé8.1) of gauge functions induces metrical model studied in most of this paper. A real advan-
a model of ordinary Maxwell electrodynamics for the photontage of this point of view of inducing gravity from noncom-
field A,(x) on Rg coupled to gravity. Note that the star- mutative gauge theory is that in the latter theory it is
gauge invariance of the original Yang-Mills theory mixes upstraightforward to construct gauge-invariant observables.
the U(1) internal symmetries with the spacetime symmetriesThese are constructed in terms of the open and closed Wilson
as is evident in the expression8.2), (8.4), and (8.9. In  Jine operators, which are non-local in character. It would be
particular, from Eq.(8.4 we see that the photon field, interesting to understand these observables from the point of
transforms covariantly under general coordinate transformaview of the induced gravitational theory.

tions, while it is a vector under the local Lorentz group It should be stressed that we have only presented a very
W ) simple model of dimensional reduction. More general reduc-
N ALX)=AL()AL(X). (8.7 tions are possible and will induce different geometrical mod-
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els. The present technique can be regarded as a systemaitig, this model should then reduce to the theory analyzed in
way to induce theories of gravitation starting only from thethis paper.

single, elementary principle of star-gauge invariance of non-
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APPENDIX: REDUCED STAR PRODUCT IDENTITIES

In this appendix we collect, for convenience, a few formulas which were used to derive the equations given in the text. Let
©”® be as in Eq(3.1). We denote by e C*(R}xR}), k=0, a function which is of degrekin they coordinates,

FOE) =1fa,...a (Y2 -y, (A1)

wheref, ..., (X) is completely symmetric in its indices, arit?)(¢)=f(x) is independent of.
We then have the following reduced star-product identities:

fOxgO(&)=1(x)g(x); (A2)
fDxgO(&)=g(x)fa(X)y?— 3 02 1(x),9(x),
g O fM(&)=g(x) fa(X)y2+ 3 03 4(X)3,,0(X); (A3)

fDagD(E) = f(X)gp(X)Y2YP+ 5 043{[ 9, Fp(X) 19a(X) — Fa(X)[3,9p(X) T}YP— £ 0#26"°[ 3, a(X) 1[ 3, 9(X) ]; "

ub gvc

(g, f B f D], (6) =26 9,95(x) 1F a0 FO)YPY +[ 0120, ga(X) ] Fo(X) fe(x)yPyS+ 2 100l fo(¥)fe(X)]

Aa

3,001, Fc ()1} + T&A{ZQa(X)fb(x)fc(x)ybyC_ 0“°0"°ga(x)[0,fr(X)1[9,.Fc(X)]

= 020" 3,95(X) 19, a0 F(X) T+ 0#°67°gp(x) 3,0, Fa(X) F(X) 1= 04°67°9(X) 3,0, [ Fo(¥) F ()1}
(A5)

[gM, F ], (&)= 03[ 2f 1e(X)d,,Gp(X) — a(X) 0, Fe(X) 1YPYE— 04202 0X[0,,0,9c(X) 1[ 3y Fan(X)]. (A6)
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