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Quantum back reaction of massive fields and self-consistent semiclassical extreme black holes
and acceleration horizons
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We consider the effect of back reaction of quantized massive fields on the metric of extreme black holes
~EBH’s!. We find the analytical approximate expression for the stress-energy tensor for a scalar~with an
arbitrary coupling!, spinor and vector fields near an event horizon. We show that, independent of a concrete
type of EBH, the energy measured by a freely falling observer is finite on the horizon, so that quantum back
reaction is consistent with the existence of EBH’s. For the Reissner-Nordstro¨m EBH with a total massMtot and
chargeQ we show that for all cases of physical interestMtot,Q . We also discuss different types of quantum-
corrected Bertotti-Robinson spacetimes, find for them exact self-consistent solutions, and consider situations in
which tiny quantum corrections lead to the qualitative change of the classical geometry and topology. In all
cases one should start not from a classical background with further added quantum corrections but from the
quantum-corrected self-consistent geometries from the very beginning.
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I. INTRODUCTION

Nowadays, the physical relevance and importance of
issue of extreme black holes~EBH’s! does not need detaile
clarification. Let us only mention briefly such issues as
end point of black hole evaporation, information loss, t
black hole entropy, etc. In fact, the background of EBH’s c
serve as a promising testing area for potential prediction
~not yet constructed! quantum gravity in the semiclassic
domain. Meanwhile, recently, the very fact of the existen
of semiclassical black holes has become the subject of
cussion@1#. In that paper Lowe presented strong argume
confirming the existence of semiclassical EBH’s. These
guments, however, are of a phenomenological nature in
they tacitly assume that the components of the stress-en
tensor~SET! of a quantized field and their relevant comb
nations with the metric functions remain finite on the ho
zon. However, this is not obvious in advance. For exam
in the background of the Reissner-Nordstro¨m ~RN! EBH,
this fact for massless radiation was established only by vi
of thorough numerical calculations@2#.

In this situation it looks reasonable to elaborate gene
back reaction approach to EBH’s similar to that@3# applied
to Schwarzschild black holes. However, an attempt at m
ing in this direction immediately encounters the followin
difficulty, which reveals the crucial difference between no
extreme and extreme black holes in the given context. In
first case, it was sufficient to choose a fixed background
carry out calculations perturbatively, whereas in the sec
one the very nature of the background becomes not triv
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Say that for the classical Reissner-Nordstro¨m black hole with
chargeQ and massM minor changes around the extrem
relationshipM5Q can convert the EBH to a nonextrem
hole or naked singularity. Correspondingly, one should
very careful in examining changes caused by quantum
fects at the border of such different kinds of spacetim
Therefore, the emphasis in the back reaction program
EBH’s ~at least, at the first step! is shifted as compared to th
Schwarzschild case: first of all, it is necessary to elucid
whether or not EBH’s are compatible with back reaction.
looks natural to take a generic EBH metric, ‘‘dressed’’ b
surrounding quantum fields, and elucidate whether or
back reaction is compatible with the property that the Haw
ing temperatureTH50. In turn, this invokes information
about the SET of quantized field spacetime of a gene
spherically symmetrical EBH. For massless fields, this t
is extremely difficult. Meanwhile, for massive fields rece
progress in deriving general expressions for the SET@4,5#
makes the task tractable. As the calculation of the SET is
key to the problem of existence of quantum-correc
EBH’s, let us dwell upon this issue in more detail.

II. GENERAL FEATURES OF A SET OF MASSIVE FIELDS
IN CURVED MANIFOLDS

According to the standard viewpoint, the renormaliz
stress-energy tensor of quantized fields evaluated in an
propriate state encodes all available information about qu
tum field theory in a curved background, and~in addition to
the classical part! it serves as a source term of the semicla
sical Einstein field equations. Unfortunately, mathemati
complexities prevent an exact analytical treatment and
most physically interesting situations it cannot be expres
in terms of known special functions. Moreover, what is
principal interest in further applications is not the SET its
evaluated in the particular geometry, but rather its functio

;
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a
he
a
t
le

m
th

ity
ck

or
a
e

gh
ul

a
e

st
ee
ic

th
i

th

rs
pa
fo
es

w
o

of
ss-
q.

ap-
ely
ing
t of
out
ns

ons,
iant
s of
the

e
re,

on,
xi-
nu-
sive

ds
uffi-
d
ck
he

the
ich
m

m-
s of
re

r,
ive

J. MATYJASEK AND O. B. ZASLAVSKII PHYSICAL REVIEW D 64 104018
dependence on a wide class of metrics. Therefore, we
confronted with two serious problems: construction of t
SET on the one hand, and studying the effect of the qu
tized field upon the spacetime geometry on the other. I
natural, therefore, that to address these problems, at
partially, one should employ approximate methods.

It seems that, for massive fields in the large mass li
considered in this paper, an approximation based on
DeWitt-Schwinger expansion is of the required general
allowing one, in principle, to attack the problem of ba
reaction perturbatively. Moreover, in some situations~also
considered here!, it is even possible to constructexactsolu-
tions of the semiclassical field equations, or, what is m
common, guided by physical considerations, guess the
propriate form of the line element. Although such a proc
dure is limited to especially simple geometries with a hi
degree of symmetry, the results obtained are of partic
interest and importance.

For massive fields in a curved spacetime, the renorm
ized effective actionWR constructed by means of th
DeWitt-Schwinger method is given by

WR5
1

32p2m2E d4xg1/2(
n53

`
~n23!!

~m2!n22
@an#, ~1!

where @an# is the coincidence limit of thenth Hadamard-
DeWitt coefficient andm is the mass of the field, and the fir
three terms of the DeWitt-Schwinger expansion have b
absorbed by quadratic terms of the generalized class
gravitational action in the process of renormalization of
bare constants. As the complexity of the Hadamard-DeW
coefficients rapidly grows with increasingn, the practical use
of Eq. ~1! is confined to the first order ofWR , which in-
volves the integrated coincidence limit of the four
Hadamard–DeWitt coefficienta3 computed by Gilkey@6#.
Being constructed from local, geometrical quantities, the fi
order effective action does not describe the process of
ticle creation, which is a nonlocal phenomenon; however,
sufficiently massive fields, the contribution of real particl
may be neglected and the DeWitt-SchwingerWR satisfacto-
rily approximates the total effective action. It can be sho
that for massive scalar, spinor, and vector fields the first
der effective action can be compactly written in the form@7#

Wren
(1) 5

1

192p2m2E d4xg1/2~c1
(s)RhR1c2

(s)RmnhRmn

1c3
(s)R31c4

(s)RRmnRmn1c5
(s)RRmnrsRmnrs

1c6
(s)Rn

mRr
nRm

r 1c7
(s)RmnRrsRm n

r s

1c8
(s)RmnRlrs

m Rnlrs

1c9
(s)Rrs

mnRmn
lgRlg

rs1c10
(s)Rm n

r sRl g
m nRr s

l g!

5
1

192p2m2 (
i 51

10

ci
(s)Wi , ~2!
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where the numerical coefficients depending on the spin
the field are listed in Table I. As the approximate stre
energy tensor is obtained by functional differentiation of E
~2! with respect to the metric tensor

Tmn(q)5
1

96p2m2g1/2 (
i 51

10

ci
(s) d

dgmn
Wi , ~3!

one concludes that within the framework of the adopted
proximation it is expressed as a linear combination of pur
geometrical terms with the numerical coefficients depend
on the spin of the field, and consequently is independen
boundary conditions. Since the calculations are carried
for Euclideanized geometry, the resulting Green functio
bear close relationships to the temperature Green functi
and in black hole spacetimes in the absence of superrad
modes the SET thus obtained may be interpreted in term
the thermal state. An alternative approach, consisting in
construction of appropriate Green functions by summing~in-
tegrating! WKB approximants of the mode functions of th
scalar field equation with arbitrary coupling to a curvatu
has been proposed in Ref.@8#. It was shown that, to obtain
the lowest order terms in the DeWitt-Schwinger expansi
one has to employ the results of a sixth order WKB appro
mation. Moreover, detailed analyses, both analytical and
merical, of the stress-energy tensor of the quantized mas
scalar field carried out in the Reissner-Nordstro¨m spacetime
confirmed that the DeWitt-Schwinger approximation yiel
reasonable results as long as the mass of the field is s
ciently large@8#. Specifically, it was shown that for quantize
scalars in the vicinity of the event horizon of a RN bla
hole, the approximation remains within a few percent of t
exact~numerical! value if the conditionmM>2 holds.

General expressions for the first nonvanishing order of
SET of the massive scalar, spinor, and vector fields, wh
generalize earlier results of Frolov and Zel’nikov for vacuu
type-D geometries@9#, were constructed in@4# and@5#. They
may be used in principle in any spacetime provided the te
poral changes of the background are slow and the ratio
the Compton length to the characteristic radii of curvatu

TABLE I. The coefficientsci
(s) for the massive scalar, spino

and vector fields. Note that to obtain the result for the mass
neutral spinor field one has to multiplyWren

(1) by the factor 1/2.

s50 s51/2 s51

c1
(s) 1

2 j22
1
5 j1

1
56 2

3
140 2

27
280

c2
(s) 1

140
1

14
9

28

c3
(s)

( 1
6 2j)3 1

432 2
5

72

c4
(s)

2
1

30( 1
6 2j) 2

1
90

31
60

c5
(s) 1

30( 1
6 2j) 2

7
720 2

1
10

c6
(s) 2

8
945 2

25
378 2

52
63

c7
(s) 2

315
47

630 2
19

105

c8
(s) 1

1260
19

630
61

140

c9
(s) 17

7560
29

3780 2
67

2520

c10
(s) 2

1
270 2

1
54

1
18
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QUANTUM BACK REACTION OF MASSIVE FIELDS AND . . . PHYSICAL REVIEW D64 104018
are small. However, because of computational complex
their practical use is limited to simple spacetimes. Happ
there are considerable simplifications for the class of met
considered in this paper: spherically symmetric geomet
with vanishing curvature scalar and spacetimes with ma
mally symmetric subspaces. On the other hand, howeve
some physically important and computationally tracta
cases, such as for example Kerr or Kerr-Newman spa
times, there are superradiant modes, and the SET constru
along the lines of the DeWitt-Schwinger approximation m
be interpreted with care. However, in spite of its inhere
limitations, the DeWitt-Schwinger method is still the mo
general one not restricted to any particular type of symme

In this paper we shall use the general results of@4# and@5#
to evaluate the renormalized SET’s of the massive sca
spinor, and vector fields in the spacetime of extremal bl
holes. The calculations for a general metric turn out to
extremely complicated and are of little practical use. For
nately, for the issue of the existence of quantum-correc
EBH’s and the properties of corresponding self-consist
solutions of the Einstein equations, it is sufficient to expa
the metric potentials in the vicinity of the event horizon in
a Taylor series and examine the SET constructed for
simplified line element. Additionally, we shall construct a
examine the SET in the Bertotti-Robinson-like spacetim
obtained by expanding the near-horizon geometry into
whole manifold.

III. SEMICLASSICAL EXTREME BLACK HOLES

A. Quantum back reaction and degenerate horizon

The metric under consideration reads

ds252Udt21V21dr21r 2dV2, ~4!

where the form ofV(r ) can be found from the 00 compone
of the Einstein equations. It is equal to

V512
r 1

r
2

2m̃~r !

r
,

~5!

m̃~r !54pE
r 1

r

dr8r 82r~r 8!;

where r52T0
0 and the SETTm

n 5Tm
n(cl)1Tm

n(q) . Here the
first term comes from a classical source, and the second
is due to the contribution of quantum fields and is to
understood as a quantum average with respect to the
Hartle-Hawking state, renormalized in a proper way. Let
assume that the role of the classical source is played b
electromagnetic field (Tm

n(cl)[Tm
n(em)), so we deal with the

quantum-corrected RN black hole. Correspondingly,m̃(r )
5mem1mq , where mem5(Q2/2)(1/r 121/r ), mq

54p* r 1

r dr8r 82rq(r 8). Here it is implied that the event hori

zon is located atr 5r 1 . In this senser 1 is the ‘‘exact’’ value
of the horizon radius~to some extent the word ‘‘exact’’ is
conditional sinceTm

n(q) is known in the one-loop approxima
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tion only!. The functionU5Ve2c, where the concrete form
of the functionc(r ) can be found from the (rr ) Einstein
equation. Then the Hawking temperature

TH5
V8~r 1!

4p
ec(r 1). ~6!

The explicit form ofV is

V512
2m~r !

r
1

Q2

r 2
,

~7!

m~r !5m̃~r !1
Q2

2r
1

r 1

2
5M1mq~r !.

It follows from the definitions thatmq(r 1)50 ~no room
for radiation! and m(r 1)5M . The condition thatr 1 is the
root of V(r )50 means that

g~r ![r 2V5r 222m~r !r 1Q250. ~8!

If c(r 1) is bounded on a horizon, the answer to the qu
tion of whether or not a black hole can reach the extre
state is determined by whether or notV8(r 1) can become
zero. In fact, the finiteness ofc(r 1) on the horizon, typical
of a nonextreme black hole, becomes a nontrivial issue in
extreme case. It is equivalent to the problem of whether
not the energy measured by a freely falling observer rema
finite on the horizon~see, e.g.,@2#!. Thorough numerical cal-
culations showed thatc(r 1) is indeed finite for the RN EBH
in the case when quantized fields are massless@10#. The
behavior ofc near the horizon is one of the key issues e
amined below in the present paper for the case of mas
fields. Let us, however, put this matter aside for a mom
and assume thatc(r 1) is indeed finite.

Equation~8! should be satisfied atr 5r 1 independently of
whether the horizon is extremal. Herem(r ) is an unknown
function but nearr 1 we can expand it asm(r )5M1A(r
2r 1)1•••, where A54pr 1

2 rq(r 1) has the order «
5\/M2. It is more convenient to write

m~r !5M01Ar1•••, ~9!

whereM05M2Ar1 . Now we get the equation

g~r !5r 2~122A!22rM 01Q250, ~10!

whence the roots are

r 65
M0

122A
6AS M0

122AD 2

2
Q2

122A
. ~11!

If one adjust parameters in such a way thatM0
25Q2(1

22A), then

r 15r 25Q/A122A5
M

12A
~12!
8-3
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J. MATYJASEK AND O. B. ZASLAVSKII PHYSICAL REVIEW D 64 104018
is the double root of the functiong(r ) and M5M0(1
2A)/(122A)5Q(12A)/A122A.

On physical grounds, it is essential for the existence
EBH’s that thetotal energydensity on the horizon~includ-
ing, in the RN case, the electromagnetic contribution! be
positive ~and large enough!, so the sign of quantum contri
bution itself ~if it is not too large! is not so crucial.

Let us also describe another seemingly ‘‘obvious’’ a
proach that, however, contains a hidden trap. In other~less
successful! notations one can write the identity that follow
from the substitution ofr 5r 1 into g(r 1)50:

r 1
2 22Mr 11Q250, ~13!

whence

r 15M1aAM22Q2, ~14!

with a51 or a521. At first glance, the choicea51
should correspond to the event horizon as is the case
classical RN black holes. However, when one insertsr 5r 1

into the identityg(r 1)50, it turns out that, as a matter o
fact, one inserts into an equation its own root as a param
of this very equation@by contrast,M0 , Q, andA are inde-
pendent parameters and the rootsr 6 are expressed in thei
terms directly according to Eq.~11!#. This procedure is no
quite safe and can lead to the appearance of ‘‘spurious’’
lutions @1#. Therefore, one should verify its self-consisten
to make sure that the root under consideration is a ‘‘tru
one.

It is instructive to demonstrate this explicitly. Let us com
pare two different presentations of the same quantity—E
~11! and ~14!. Then after some manipulations we have

aAM22Q25AZ1
M0A

122A
, ~15!

where Z5@M0 /(122A)#22Q2/(122A). If A.0, one
should takea51 ~it is supposed thatA is not too large; in
fact, A!1). However, near the extreme stateZ→0 andA
,0, one should choosea521.

Thus, quantum back reaction shifts the double root t
new position but does not change its character qualitativ
@1#. In doing this, however, in sharp contrast with the clas
cal case, the horizon forA,0 lies atr 15M2AM22Q2 .

B. General approach to extreme black holes dressed
by quantized massive fields

Meanwhile, as mentioned above, the fact that back re
tion leaves the possibility for the existence of a double r
of Eq. ~10! is insufficient in itself for making conclusion
about the existence of extreme quantum-corrected b
holes. According to therr andtt components of the Einstei
equations,

c54p È r

drF~r !, F~r !5r
T1

12T0
0

V
. ~16!
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Here the lower limit of integration is set to infinity since it
supposed that spacetime infinity is flat andc50. Below we
will consider the case of massive fields only for whichTm

n

→0 asr→` ~for massless fields it is usually assumed tha
system is enclosed in a finite cavity, otherwiseTm

n →const
Þ0).

The key question is whether or not the quantityF is finite
on the horizon. Further details depend on the possibility
power expansion of the metric near the horizon. As far
massless fields are concerned, the counterpart from t
dimensional black hole physics shows@11# that ~i! for a ge-
neric fixed metric the functionF(r ) diverges on the horizon
which indicates a qualitative change of the metric of t
extreme black hole under the influence of a quantum fie
~ii ! if, instead of fixing a metric in advance, one chooses it
a self-consistentsolution of the field equations with bac
reaction taken into account, the existence of an extre
black hole is compatible with quantum back reaction, b
~iii ! the power expansion of the metric near the horizon fa
to be analytic. On the other hand, numerical calculations
the four-dimensional RN background@2# showed thatF re-
mains finite on the horizon.

There are the following subtleties in our problem. As,
assumption, the quantum field is neutral, it does not scree
charge, so its valueQ is the same for the original classica
and the quantum-corrected backgrounds. Then it follo
from Eq. ~11! that r 6,Q, if rq(r 1),0. Had we chosen the
classical background with such a relationship between
rameters and tried to take into account quantum back re
tion by building up the perturbation series, we would ha
obtained a physically meaningless result. Indeed, if the r
of the equationg(r )50 is less thanQ, it corresponds in
classical language to the Cauchy~not the event! horizon,
where the stress-energy tensor of quantum fields is know
blow up. This obstacle shows clearly that, instead of usin
standard scheme~pure classical background plus perturb
tive quantum corrections! we should start from theself-
consistent quantum-corrected background from the very
ginning.

Our strategy consists in the following. As the issue of t
existence of extreme black holes demands knowledge of
behavior of the metric near the horizon only, let us consi
the vicinity of the horizon of a generic EBH, expand th
metric near the horizon into a power series, and exam
whether or not the quantityF remains finite on the horizon
If F is finite ~which means the finiteness of the SET in t
orthonormal reference frame of a free falling observer@2#!,
one obtains a power expansion for the SET too, so the
self-consistent solution can be obtained by direct expans
into a Taylor series with respect tor 2r 1 .

For EBH’s the conjectured power expansion in terms
r 2r 1 looks likeV5a(r 2r 1)21b(r 2r 1)31•••. For con-
crete calculations it is more convenient, however, to u
instead ofr, the proper distancel from some fixed point.
Then we havedl/dr521/AV. Substituting into this equa
tion the power expansion forV near the horizon, we find

r 2r 15A1e2 l /r1A2e22l /r1•••, ~17!
8-4
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QUANTUM BACK REACTION OF MASSIVE FIELDS AND . . . PHYSICAL REVIEW D64 104018
wherer5a21/2 and the integration constantl 0 is absorbed
by the coefficients according toA15r 1 exp(l0 /r), A2

5r 1
2 b/a exp(2l0 /r).
We can write down

ds252dt2U~ l !1dl21r 2~ l !dV2. ~18!

In what follows we assume that power expansion ofU in
terms ofr 2r 1 starts from the terms of (r 2r 1)2, as is typi-
cal for EBH’s. In terms ofl this function reads

U5e22l /r f ~ l !, f 5 f 01 f 1e2 l /r1 f 2e22l /r. ~19!

The expressions for the SET of massive fields in the me
~19! are very cumbersome. However, what is the most
portant for us is their general structure. It turns out that n
the horizon

F5F01F1e2 l /r1F2e22l /r1••• ~20!

with finite coefficientsFi ( i 50,1,2, . . . ). The expressions
for the components of the SET read

Tm
n 5tm

n(0)1tm
n(1)e2 l /r1tm

n(2)e22l /r1•••, ~21!

where explicit expressions for the coefficientstm
n are listed in

Appendix A for different kinds of field. It is essential that i
all cases it turns out thatt0

0(0)5t1
1(0) and t0

0(1)5t1
1(1) , which

just leads to the finiteness ofF on the horizon.
It is worth stressing that the finiteness ofF for the case of

massive fields is shown for any EBH irrespective of whet
or not its metric obeys the system of field equations and
type of theory to which these field equation correspond. N
this general result is applied for the most physically intere
ing case of a RN EBH, dressed by its quantum radiation

C. Quantum-corrected RN extreme black hole

From the physical viewpoint, it is natural to fix the tot
mass measured by a distant observer at infinity~the micro-
canonical boundary condition!. Then we have from Eq.~7!

Mtot5M1mq, mq524pE
r 1

`

drr 2T0
0(q) ,

M5
r 1

2 1Q2

2r 1
. ~22!

The condition of extremalityV8(r 1)50 entails

r 1
2 ~122A!5Q2. ~23!

In all casesmq5asm
22r 1

23 , where a052ã17/441, a1/2

52ã19/147,a152ã107/441, andã51/720p. From Eqs.
~22! and~23! it is seen that the corrections of first order inM
cancel and we obtain

Mtot5Q1asm
22r 1

23 . ~24!
10401
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-
r

r
e

w
t-

In the main approximationr5r 15M5Q. We see that for
all physically relevant casesas,0 and Mtot,Q. Thus, a
distant observer measuring by precise devices the total m
and charge of an extreme RN black hole, had he relied
classical notions only and neglected quantum back reac
completely, would have been led to the wrong conclus
that in fact the object under investigation is rather a nak
singularity than a black hole. In other words, the quantu
corrected solution of the Einstein-Maxwell equations und
discussion not only acquires some small corrections fr
back reaction of quantum fields but resides in a pure qu
tum domain where the existence of classical black ho
~both extremal and nonextremal! is strictly forbidden.

One can also find the quantum-corrected position of
horizon in terms of physical parameters. Taking into acco
Eq. ~12! and noting that T0

0(q)(r 1)5hsm
22r 1

26 , hs

5ms/2880p2, m0516/2124(j21/6), m1/2537/14, andm1

5114/7 @4#, we obtain A54phsm
22r 1

24 , r 15Q(1
22A)21/2'Q(11A). Equivalently, in terms of the tota
mass, r 15Mtot(11bsm

22Mtot
24), bs54phs2as . Here

b05ã@353/44124(j21/6)#, b1/25ã815/294, b1

5ã7289/441.

IV. QUANTUM-CORRECTED
BERTOTTI-ROBINSON-LIKE SPACETIMES

A. Self-consistent solutions without cosmological term

It is obvious that it is impossible to find an exact solutio
of the back reaction equation for a realistic four-dimensio
EBH in all space and this is the reason why we were forc
to restrict ourselves to the treatment of the vicinity of t
horizon only. Meanwhile, there exists another class of
jects for which exact solutions~in the one-loop approxima
tion! can indeed be found—metrics with acceleration ho
zons @Bertotti-Robinson ~BR! spacetime and its
modifications#. Such spacetimes have topology (r ,t)3S2,
whereS2 is a two-dimensional sphere, so that the coefficie
standing at the angular part of a line element is constant.
physical relevance of such spacetimes stems, in partic
from the fact that they can serve as approximations to
true metric of the EBH in the vicinity of the horizon. Apa
from this, such a metric appears in the limiting transiti
from nonextreme black holes to extreme ones@12–14#. The
SET for the BR spacetime was studied in@15,4#. Now, how-
ever, we start not from the BR spacetime itself, but from
quantum-corrected version.

The general form of metric under consideration is

ds252U~ l !dt21dl21r 0
2dV2, ~25!

where it is assumed that there exists a horizon on whichU
→0. In the coordinates (x1,u,f,t) the SET of the electro-
magnetic field is

8pTm
n(em)5

Q2

r 0
4 ~21,1,1,21!. ~26!
8-5
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However, the expression for the SET of quantized fie
in such a background is rather complicated and will not
written here. Fortunately, if we restrict ourselves to the B
like spacetime and guess its quantum-corrected version
obtain a very simple answer in a compact form. We fou
that this procedure is tractable for the following cases.

Metric BR1

ds252dt2r2sh2
l

r
1dl21r 0

2dV2, ~27!

Gm
n 5S 2

1

r 0
2

,
1

r2
,
1

r2
,2

1

r 0
2D . ~28!

Metric BR2

ds252dt2 exp~22l /r!1dl21r 0
2dV2. ~29!

The Einstein tensor has the same form as Eq.~28!.
Metric dS23S2

ds252dt2s2 sin2
l

s
1dl21r 0

2dV2, ~30!

Gm
n 5S 2

1

r 0
2

,2
1

s2
,2

1

s2
,2

1

r 0
2D . ~31!

Metric Rindler23S2

ds252dt2l 21dl21r 0
2dV2, ~32!

Gm
n 5S 2

1

r 0
2
,0,02

1

r 0
2D . ~33!

In all cases indicated above the SET of the quantum fie
can be written as

8pTm
n(q)5C~ f 1 , f 2 , f 2 , f 1!, ~34!

where f 1 , f 2 are simple constants depending on the cur
tures of the two-dimensional maximally symmetric su
spaces,C51/12p2m2, and m is the mass of the field. The
form of Eq. ~34! follows from the fact that for Eqs.~27!,
~29!, ~30!, and~32! the covariant derivatives of the Rieman
tensor and its contractions vanish, which considerable s
plifies the SET given by Eq.~3!.

The fact thatT2
2(q)5T3

3(q) is a simple consequence of th
symmetry of the metric with respect to rotations. The equ
ity T0

0(q)5T1
1(q) can be understood as follows: metrics of t

type ~25! can be obtained as a result of certain limiting tra
sitions from black hole ones, in the process of which
near-horizon geometry expands into a whole manifold@14#;
then the SET pick up their values from the horizon where
regularity condition demands just the validity of this equ
ity.
10401
s
e
-
e

d

s
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-
e

e
-

It turns out that for all cases the functionsf 1 and f 2 share
a common general structure. In BR1 and BR2f 1

5r26r 0
26(a1r 0

61b1r 0
4r21c1r6), f 25r26r 0

26(a2r6

1b2r4r 0
21c2r 0

6), where the coefficientsai , bi , and ci ( i
51,2) are the same for both metrics.

For all values of the spina252a1 , b252b1 , c2
52c1.

In the scalar case (s50)

a15
1

105
~8284j1420j22840j3!,

b152
1

105
~72112j1630j221260j3!,

c15
1

105
~4242j1210j22420j3!;

s51/2: a15
20

420
, b15

7

420
, c15

10

420
;

s51: a15
8

35
, b15

7

35
, c15

4

35
.

For the metricdS23S2 @now f 15s26r 0
26(a1r 0

61b1r 0
4s2

1c1s6) and f 25s26r 0
26(a2s61b2s4r 0

21c2r 0
6)#

a25a1 , b25b1 , c25c1 ;

s50: a15
1

105
~28184j2420j21840j3!,

b15
1

105
~271112j2630j211260j3!,

c15
1

105
~4242j1210j22420j3!;

s51/2: a152
20

420
, b15

7

420
, c15

10

420
;

s51: a152
8

35
, b15

7

35
, c15

4

35
.

For the metric Rindler23S2

f 15ar0
26 , f 2522ar0

26 ,

a05
8263h23780h3

945
~h5j21/6!, a1/25

1

42
, a15

4

35
.

8-6
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In the limits r→` and s→` the metrics BR1 and
dS23S2 turn into Rindler23S2. One can check that in thes
limits the functionf 1 and f 2 go smoothly to their values fo
the metric Rindler23S2.

Let the classical background be of the BR1 or BR2 ty
metric @the metric~30! cannot appear on the pure classic
level without a cosmological constant#. Then we obtain two
independent equations from the Einstein ones:

2
1

r 0
2
52

Q2

r 0
4

1C f1 , ~35!

1

r2
5

Q2

r 0
4

1C f2 . ~36!

Taking the sum of Eqs.~35! and ~36! and noticing that
f 11 f 25@(r 0

22r2)/r 0
6r6#x, where x has the structurex

5a1r 0
41a2r41a3r2r 0

2 (a i are pure numbers!, we obtain

~r 0
22r2!S 12

Cx

r 0
4r4D 50. ~37!

Now take into account thatC;lPL
2 l2, wherel5m21 is the

Compton length andlPL is the Planckian length. Then
simple estimate shows that the second factor in Eq.~37! can
become zero~provided the proper signs appear in it! for r 0
!l only, so far beyond the region of validity of the WKB
approximation. Therefore, we will not discuss this possibil
further and will assume that there is only one root of E
~37!: r 05r. This means that BR spacetime remains an ex
solution of the semiclassical equations~cf. @15,16,14#!. Mak-
ing use of Eq.~35! and writing f 1(r 05r)5gr 0

26, whereg
5a11b11c1, we find thatr 0

25Q22Cgr 0
22, whence, in the

same approximation,

r 0
25Q2~12CgQ24!. ~38!

In Eq. ~38! the second term in the parentheses repres
only a small correction but accounting for this correction c
be crucial in the following sense. Letg.0. Then we have
Q.r 0. Let us proceed, for definiteness, in the canonical
semble approach in which the charge~rather than the poten
tial on the boundary! should be fixed. First, ifQÞr 0, the
classical metric with an acceleration horizon of the type~35!
or ~29! is not possible at all. Instead, we would have t
geometry of a RN black hole. Second, forQ.r 0 with r 0
being the horizon radius, we would have, moreover, a na
singularity. It is clear that the procedure in which the grou
state is chosen as a classical geometry with a naked si
larity with quantum corrections, calculated on such a ba
ground perturbatively, is physically unacceptable. Instead
this, we should from the very beginning use the quantu
corrected geometry and check the condition of se
consistency for the corresponding parameters. In our ca
is the relative simplicity of the BR geometry that enables
to find the SET not only for the classical BR spacetime its
but also for the quantum-corrected version of it~below we
10401
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will see that this is also the case even if the quantu
corrected metrics changes its form—for example, due to
cosmological term!.

The values ofg for different values of field spin~the
subscript indicates the value of spins) are g05(5
214j)/105, g1519/35, andg1/2537/420. Thus, for a spino
and vector fieldg.0 as well as for the scalar case wi
minimal and conformal coupling.

B. Nonzero cosmological constant

Now for the BR1 and BR2 metrics the field equatio
read

1

r 0
2

5
Q2

r 0
4

2L2C f1 ~39!

and

1

r2
5

Q2

r 0
4

1L1C f2 . ~40!

For the BR3 case we have, instead of Eq.~40!,

1

s2
52

Q2

r 0
4

2L2C f2 . ~41!

Then it follows from Eq.~39! that

1

r 0
2

5
1

2Q2
6

1

Q
A 1

4Q2
1L1C f1. ~42!

The term withC f1 represents a small correction to the cla
sical quantities, so that in the expression forf 1 one can re-
placer 0 andr by the classical values obtained forC50. If
L.0, only the solution with the1 sign should be taken. We
will discuss the caseL52uLu,0, which is more interesting
for us. Let L be very close to the valueL052 1

4 Q22 for
which the radical in Eq.~42! becomes zero. Inf 1 we can put
in the main approximationr 0521/2Q, r5`, neglecting cor-
rections of the order ofC. Classically, we would have the
product of two-dimensional Rindler and a sphere~32!, for
which, according to the above results,f 15āQ26, f 2

522 f 1 with ā5 1
8 a.0 for spinor and vector fields as we

as for the scalar case for both the conformal and minim
coupling. If L2L0,0, classical constant curvature solu
tions of type~35! do not exist at all. However, if the differ
enceL2L0 is very small and such thatL2L01CāQ26

.0, the solutions~42! do exist. Let us substitute the expre
sion for r 0

2 into Eq. ~40! for r. Then

1

r2
5

1

r 0
2

12L1C~ f 11 f 2!52~L2L0!1C~ f 11 f 2!

6
1

Q
AL2L01C f1. ~43!

Consider two cases.
8-7
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~1! L5L0. Then we obtain two solutions. The first one

r25
Q4

ACā
, ~44!

where the term2āQ26 has been dropped. Thus, quantu
corrections force the geometry to switch from Eq.~32! to
Eqs.~27! or ~29!. The second solution is formally comple
In fact, this means that instead of Eq.~27! we have the ge-

ometry ~30!. Now s25Q4/ACā.
~2! L5L02C f15L02CāQ26. Then we have the met

ric ~30! with parameters

r 0
252Q2, s25

1

C~ f 12 f 2!
5

Q6

3Cā
, ~45!

where we took into account the expression for the me
Rindler23S2.

V. CONCLUDING REMARKS

We have considered EBH’s in equilibrium with quantiz
massive fields and demonstrated that forany EBH the com-
ponents of the SET, measured by a free-falling observer
main finite. If a metric obeys the Einstein equations, t
entails that semiclassical EBH’s do exist as their se
consistent solutions. The key point of our treatment consis
in restricting our analysis to the near-horizon geome
which enabled us to avoid the complexity connected with
obvious impossibility of finding explicit self-consistent sol
tions in the whole domain.

We considered also BR-like spacetime, closely connec
to the issue of EBH’s, and showed that quantum-correc
BR spacetime remains as an exact solution of the one-
field equations. In so doing, the relationship between
parameters of the solutions can be such that classically
completely are absent and only quantum effects make t
existence~for fixed values of these parameters! possible.
Apart from this, near some critical points in the space
solutions tiny quantum corrections can lead to a change
the type of BR spacetime, the scale of curvature remain
purely classical. Thus, quantum corrections not only sligh
shift the values of relevant physical quantities but also le
to qualitative changes in the geometry and topology.

The questions about the near-horizon behavior of the S
and the self-consistent EBH for massless fields as well as
properties of self-consistent BR spacetimes deserve sep
treatment.
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APPENDIX A: POWER EXPANSION FOR Tµ
n„q…

OF MASSIVE FIELDS NEAR THE HORIZON
OF A GENERIC EBH

In this Appendix we collect a number of formulas for th
components of the SET of the massive scalar, spinor,
vector fields in the vicinity of the event horizon of a gene
eternal black hole, which are used in this paper. Function
differentiatingWi with respect to the metric tensor, perform
ing the necessary symmetrizations and simplifications,
inserting the results obtained into Eq.~3! one obtains the
general form of the renormalized SET of the quantized m
sive fields. As the resulting formulas are rather complicat
we shall not display them here, and the reader is referre
@4# and@5# for further details. Subsequently, constructing t
components of the Riemann tensor, its contractions and
essary covariant derivatives for the line element~18!, insert-
ing the results obtained into the general expressions for
SET @5#, combining them with the appropriate spin
dependent numerical coefficientsci

(s) , and finally making
use of the explicit form ofU( l ) and r ( l ) as given by Eqs.
~19! and ~17!, and collecting the terms with like powers o
z5e2 l /r, one has

Tm
n(q)5(

i 50
tn
n( i )zi5

1

96p2m2 (
i 50

t̃ n
n( i )zi . ~A1!

Although the near-horizon power expansions of the line e
ment ~18! look rather simple, the complexity of the SE
rapidly increases with increasing order of expansion, pra
cally invalidating calculations oftn

n( i ) for i>3. Below the
results fori 50,1 are listed.

Closer analysis of the coefficientsci
(0) given in Table I

indicates that the general SET is a third-order polynomia
h5j21/6, with coefficients given by purely local, geometr
cal terms:

t̃ 0
0(0)5 t̃ 1

1(0)

5
8

945

2r 1
6 1r6

r6r 1
6

2
h~r62rr 1

4 12r 1
6 !

15r6r 1
6

24
h3~2r 1

6 23r2r 1
4 1r6!

r6r 1
6

, ~A2!

t̃ 0
0(1)5 t̃ 1

1(1)

52
16

315

A1~r 1
6 1r6!

r 1
7 r6

1
2

15

hA1~3r62r4r 1
2 2r2r 1

4 13r 1
6 !

r6r 1
7

124
h3A1~r61r 1

6 2r2r 1
4 2r 1

2 r4!

r 1
7 r6

, ~A3!
8-8
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t̃ 2
2(0)5 t̃ 3

3(0)

5
4h3~r 1

6 12r623r 1
2 r4!

r 1
6 r6

1
h~r62r4r 1

2 1r 1
6 !

15r6r 1
6

2
2

945

~8r614r 1
6 !

r 1
6 r6

, ~A4!

t̃ 2
2(1)5 t̃ 3

3(1)

5
2A1

315

16r6117r 1
6 17r 1

2 r4

r 1
7 r6

2
h

30f 0r6r 1
7 ~24A1f 0r6120A1f 0r4r 1

2 13 f 1r4r 1
3

10401
140A1f 0r2r 1
4 1100A1f 0r 1

6 115f 1r 1
7 !

1
2h2

f 0r 1
5 r6

~4A1f 0r413 f 1r 1
3 r2116A1r 1

4 f 0

116A1r 1
2 f 0r216 f 1r 1

5 !2
6h3

f 0r 1
7 r6

~20A1r 1
2 f 0r4

18r6A1f 018A1r 1
4 f 0r2236A1r 1

6 f 013 f 1r 1
3 r4

112f 1r 1
5 r2215f 1r 1

7 !, ~A5!

Repeating the calculations with the coefficientsci
(1/2) one

obtains
t̃ 0
0(0)5 t̃ 1

1(0)5
1

420

7r 1
4 r2110r6120r 1

6

r 1
6 r6

, ~A6!

t̃ 0
0(1)5 t̃ 1

1(1)52
1

210

A1~30r617r 1
2 r417r 1

4 r2130r 1
6 !

r 1
7 r6

, ~A7!

t̃ 2
2(0)5 t̃ 3

3(0)52
1

420

20r617r 1
2 r4110r 1

6

r 1
6 r6

, ~A8!

t̃ 2
2(1)5 t̃ 3

3(1)52
1

840

21 f 1r 1
3 r42136A1r 1

6 f 02240r6A1f 02140A1r 1
2 f 0r4

f 0r 1
7 r6

. ~A9!
ow-
rity

em-
Finally, for the massive vector fields

t̃ 0
0(0)5 t̃ 1

1(0)5
1

35

8r 1
6 17r2r 1

4 14r6

r6r 1
6

, ~A10!

t̃ 0
0(1)5 t̃ 1

1(1)52
2

35

A1~12r 1
6 17r2r 1

4 112r617r 1
2 r4!

r 1
7 r6

,

~A11!

t̃ 2
2(0)5 t̃ 3

3(0)52
1

35

7r 1
2 r418 r614r 1

6

r6r 1
6

, ~A12!
t̃ 2
2(1)5 t̃ 3

3(1)52
1

210f 0r 1
7 r6

~2280A1r 1
4 f 0r2163f 1r 1

3 r4

2420A1r 1
2 f 0r42124A1r 1

6 f 02288r6A1f 0

1105f 1r 1
5 r2!. ~A13!

The third-order coefficients of the expansion~A1!, t̃ m
n(2) , are

too lengthty to be presented here. On the other hand, h
ever, of principal importance in the analyses of the regula
of F is the difference between the~00! and~11! components
of the stress-energy tensor rather than the components th
selves. The calculations give

T0
0(q)2T1

1(q)5
1

96p2m2
bz21O~z3!, ~A14!

where
8-9
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b (0)52
1

2520f 0
2r6r 1

6 ~112A1
2f 0

2r41464A1
2f 0

2r 1
4 2704A2f 0

2r 1
5 1200A1f 0f 1r 1

5 1209f 1
2r 1

5 164f 0f 2r 1
6 !

1
h

30f 0
2r6r 1

6 ~40A1
2f 0

2r428A2f 0
2r4r 112A1f 0f 1r4r 1180A1

2f 0
2r2r 1

2 1168A1
2f 0

2r 1
4 117f 1

2r2r 1
4 232f 0f 2r2r 1

4

2552A2f 0
2r 1

5 142A1f 0f 1r 1
5 169f 1

2r 1
6 296f 0f 2r 1

6 !2
h2

2 f 0
2r6r 1

6 ~16A1
2f 0

2r41176A1
2f 0

2r2r 1
2 296A2f 0

2r2r 1
3

124A1f 0f 1r2r 1
3 1144A1

2f 0
2r 1

4 2576A2f 0
2r 1

5 224A1f 0f 1r 1
5 193f 1

2r 1
6 2192f 0f 2r 1

6 !1
6h3

f 0
2r6r 1

6 ~40A1
2f 0

2r4

28A2f 0
2r4r 112A1f 0f 1r4r 1164A1

2f 0
2r2r 1

2 296A2f 0
2r2r 1

3 124A1f 0f 1r2r 1
3 140A1

2f 0r 1
4 117f 1r2r 1

4 232f 0f 2r2r 1
4

1104A2f 0
2r 1

5 146A1f 0f 1r 1
5 28 f 1

2r 1
6 132f 0f 2r 1

6 !, ~A15!

b (1/2)52
1

840f 0
2r6r 1

5 ~56A2f 0
2r4214A1f 0f 1r41288A1

2f 0
2r 1

3 2119f 1
2r2r 1

3 1224f 0f 2r2r 1
3 196A2f 0

2r 1
4 296A1f 0f 1r 1

4

1318f 1
2r 1

5 2192f 0f 2r 1
5 !, ~A16!
ct

s

he

r t
ur
and

b (1)52
1

420f 0
2r6r 1

5 ~336A2f 0
2r4284A1f 0f 1r4

1280A1
2f 0

2r2r 111680A2f 0
2r2r 1

2 2420A1f 0f 1r2r 1
2

11296A1
2f 0

2r 1
3 2714f 1

2r2r 1
3 11344f 0f 2r2r 1

3

11440A2f 0
2r 1

4 21440A1f 0f 1r 1
4 11935f 1

2r 1
5

22880f 0f 2r 1
5 !, ~A17!

for the quantized massive scalar, neutral spinor, and ve
fields, respectively.

APPENDIX B: Tµ
n„q… OF MASSIVE FIELDS

IN THE SPACETIME OF EXTREMAL
REISSNER-NORDSTRÖM BLACK HOLE

Although the stress-energy tensor of the massive field
the spacetime of the extremal Reissner-Nordstro¨m black hole
may be easily constructed by taking extremality limits in t
results of Refs.@4# and @8#, below we collect the formulas
that have been used in the back reaction calculations. Fo
quantized massive scalar field with an arbitrary curvat
coupling one has

T0
0(q)5

M2h

30240p2m2r 12
~34398M42113904rM 3

1139944M2r 2275600r 3M115120r 4!

1
M2

30240p2m2r 12
~21248M4245r 413084rM 3

22509M2r 21726r 3M !, ~B1!
10401
or

in

he
e

T1
1(q)52

M2h

30240p2m2r 12
~4914M4221168rM 3

133432M2r 2223184r 3M16048r 4!

2
M2

30240p2m2r 12
~2444M42477r 411932rM 3

22969M2r 211950r 3M !, ~B2!

and

T2
2(q)5

M2h

30240p2m2r 12
~44226M42143136rM 3

1172536M2r 2291728r 3M118144r 4!

2
M2

30240p2m2r 12
~3066M4210356rM 3

112953M2r 227086r 3M11431r 4!, ~B3!

whereas for the massive spinor field one obtains

T0
0(q)5

M2

40320p2m2r 12
~4917M4221496rM 3132376r 2M2

220080Mr 314320r 4!, ~B4!

T1
1(q)5

M2

40320p2m2r 12
~2253M428680rM 3112000r 2M2

27120Mr 311584r 4!, ~B5!

and
8-10
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T2
2(q)52

M2

40320p2m2r 12
~9933M4223552Mr 3

142888r 2M2233984rM 314752r 4!. ~B6!

Finally, for the massive vector field in the extremality lim
one has

T0
0(q)5

M2

10080p2m2r 12
~31057M42107516rM 3

1135391M2r 2272690r 3M113815r 4!, ~B7!
ck

ev

. D

10401
T1
1(q)5

M2

10080p2m2r 12
~5365M4216996rM 3

119349M2r 229398r 3M11737r 4!, ~B8!

and

T2
2(q)52

M2

10080p2m2r 12
~13979M415211r 4226854r 3M

151789M2r 2244068rM 3!. ~B9!
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