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Quantum back reaction of massive fields and self-consistent semiclassical extreme black holes
and acceleration horizons
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We consider the effect of back reaction of quantized massive fields on the metric of extreme black holes
(EBH's). We find the analytical approximate expression for the stress-energy tensor for a(agdlaan
arbitrary coupling, spinor and vector fields near an event horizon. We show that, independent of a concrete
type of EBH, the energy measured by a freely falling observer is finite on the horizon, so that quantum back
reaction is consistent with the existence of EBH'’s. For the Reissner-Naml&BH with a total mas#l,,; and
chargeQ we show that for all cases of physical interbhf,,<Q . We also discuss different types of quantum-
corrected Bertotti-Robinson spacetimes, find for them exact self-consistent solutions, and consider situations in
which tiny quantum corrections lead to the qualitative change of the classical geometry and topology. In all
cases one should start not from a classical background with further added quantum corrections but from the
gquantum-corrected self-consistent geometries from the very beginning.
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[. INTRODUCTION Say that for the classical Reissner-Nordstrolack hole with

chargeQ and massM minor changes around the extreme

Nowadays, the physical relevance and importance of theelationshipM =Q can convert the EBH to a nonextreme
issue of extreme black hol¢EBH's) does not need detailed hole or naked singularity. Correspondingly, one should be
clarification. Let us only mention briefly such issues as thevery careful in examining changes caused by quantum ef-
end point of black hole evaporation, information loss, thefects at the border of such different kinds of spacetime.
black hole entropy, etc. In fact, the background of EBH’s canl herefore, the emphasis in the back reaction program for

serve as a promising testing area for potential predictions JEBH'S (at least, at the first stgjs shifted as compared to the
(not yet constructédquantum gravity in the semiclassical Schwarzschild case: first of all, it is necessary to elucidate

domain. Meanwhile, recently, the very fact of the existenceWhether or not EBH’s are compatible with back reaction. It

of semiclassical black holes has become the subject of dig(-mkS natural to take a generic EBH metric, "dressed” by

cussion[1]. In that paper Lowe presented strong argument urroundm_g q.uantum f|.e|ds, _and elucidate whether or not
o . . . ) ack reaction is compatible with the property that the Hawk-

confirming the existence of semiclassical EBH’s. These ar: _ C : .

ing temperatureTy=0. In turn, this invokes information

guments, however, are of a phenomenological nature in thaatbout the SET of quantized field spacetime of a generic

they tacitly assume that the components of the Stress'ener@f)herically symmetrical EBH. For massless fields, this task

tensor(SET) of a quantized field and their relevant combi- ; extremely difficult. Meanwhile, for massive fields recent

nations with the rne:tric functipns r_emain finite on the hori- progress in deriving general expressions for the $EB]

zon. However, this is not obvious in advance. For examplemakes the task tractable. As the calculation of the SET is the
in the background of the Reissner-Nordstr¢RN) EBH, ey to the problem of existence of quantum-corrected
this fact for massless radiation was established only by virtugBH's, let us dwell upon this issue in more detail.

of thorough numerical calculatiofg].
In this ;ltuat|on it looks reasanbIg to elaborate genera’l_ GENERAL FEATURES OF A SET OF MASSIVE FIELDS
back reaction approach to EBH’s similar to th&i applied
. IN CURVED MANIFOLDS

to Schwarzschild black holes. However, an attempt at mov-

ing in this direction immediately encounters the following  According to the standard viewpoint, the renormalized

difficulty, which reveals the crucial difference between non-stress-energy tensor of quantized fields evaluated in an ap-

extreme and extreme black holes in the given context. In th@ropriate state encodes all available information about quan-

first case, it was sufficient to choose a fixed background antum field theory in a curved background, afid addition to

carry out calculations perturbatively, whereas in the seconthe classical partit serves as a source term of the semiclas-

one the very nature of the background becomes not trivialsical Einstein field equations. Unfortunately, mathematical
complexities prevent an exact analytical treatment and in
most physically interesting situations it cannot be expressed

*Email address: matyjase@tytan.umcs.lublin.pl; in terms of known special functions. Moreover, what is of
jurek@iris.umcs.lublin.pl principal interest in further applications is not the SET itself
"Email address: aptm@kharkov.ua evaluated in the particular geometry, but rather its functional
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dependence on a wide class of metrics. Therefore, we are TABLE I. The coefficientsc(® for the massive scalar, spinor,
confronted with two serious problems: construction of theand vector fields. Note that to obtain the result for the massive
SET on the one hand, and studying the effect of the quanreutral spinor field one has to multipiys) by the factor 1/2.

tized field upon the spacetime geometry on the other. It is

natural, therefore, that to address these problems, at least s=0 s=1/2 s=1
partially, one should employ approximate methods. cl® 1g2 lgd _ .3 _ 27
It seems that, for massive fields in the large mass limit 253088 1% 5%
considered in this paper, an approximation based on the, e 1 28
DeWitt-Schwinger expansion is of the required generality,"* (5-8° a2 — 72
allowing one, in principle, to attack the problem of back %’ —35(2— &) % &
reaction perturbatively. Moreover, in some situatidatso ¢ Li_y — 755 -
considered hepeit is even possible to construekactsolu- c® 8 25 52
tions of the semiclassical field equations, or, what is more_, 3 ik %
common, guided by physical considerations, guess the apf 3 5% o
propriate form of the line element. Although such a proce- " 1280 o0 19
dure is limited to especially simple geometries with a highc9S 7560 3780 2520
degree of symmetry, the results obtained are of particulafio 27 54 18

interest and importance.

For massive fields in a curved spacetime, the renormal- . - _ .
ized effective actionWg constructed by means of the Wherg the numencaﬂ coefficients depending on the spin of
DeWitt-Schwinger method is given by the field are listed in Table I. As the approximate stress-

energy tensor is obtained by functional differentiation of Eq.
(2) with respect to the metric tensor

f d*xg"? M[an]v () 1 10 )

=3 (m?)"~? T = ¢
96’77'2ng1/2 <1 69#]/

W =
R 3072m?

Wi, ()

where[a,] is the coincidence limit of theith Hadamard- one concludes that within the framework of the adonted ap-
DeWitt coefficient andnis the mass of the field, and the first concludes Wit mew the adop p
three terms of the DeWitt-Schwinger expansion have beeRroxmanon it is expressed as a linear combination of purely

absorbed by quadratic terms of the generalized Classicgeometrical terms with the numerical coefficients depending
on the spin of the field, and consequently is independent of

gravitational action in the process of renormalization of the " . ) )
bare constants. As the complexity of the Hadamard-DewitPeundary conditions. Since the calculations are carried out
: plexity or Euclideanized geometry, the resulting Green functions

coefficients rapidly grows with increasimythe practical use . . )
pia’y 9 9 P bear close relationships to the temperature Green functions,

of Eq. (1) is confined to the first order dfVg, which in- and in black hole spacetimes in the absence of superradiant

volves the integrated coincidence limit of the fourth : . X
Hadamard—DeWitt coefficiera, computed by Gilkey[6]. modes the SET thus obtalned_ may be mterpreteq in terms of
{he thermal state. An alternative approach, consisting in the

Being constructed from local, geometrical quantities, the firsConstruction of appropriate Green functions by sumngin
order effective action does not describe the process of paf pprop y 9

ticle creation, which is a nonlocal phenomenon; however, foregratlng WKB approximants of the mode functions of the

sufficiently massive fields, the contribution of real particlesscalar field equatlonlwnh arbitrary coupling to a curvature,
may be neglected and the DeWitt-Schwiniég satisfacto- has been proposed in RQEB]' I Was'shown 'that, to Obta'ﬂ
the lowest order terms in the DeWitt-Schwinger expansion,

rily apprommgtes the total _effectlve action. I.t can be S.hownone has to employ the results of a sixth order WKB approxi-
that for massive scalar, spinor, and vector fields the first or-

. i : : mation. Moreover, detailed analyses, both analytical and nu-
der effective action can be compactly written in the fdifh . : .
merical, of the stress-energy tensor of the quantized massive

scalar field carried out in the Reissner-Nordstrepacetime

1 confirmed that the DeWitt-Schwinger approximation yields
W) = ﬁf d*xg¥4cPROR+ IR, IR reasonable results as long as the mass of the field is suffi-
1927°m ciently large[8]. Specifically, it was shown that for quantized
(P34 () v A(9) vpor scalars in the vicinity of the event horizon of a RN black
TeTR CRRL R CTRRp RE hole, the approximation remains within a few percent of the
_|_Cgs)RﬁR;RZ+C(75)RMVRPURZ‘Z exact(numerica) value if the conditiormM=2 holds.
General expressions for the first nonvanishing order of the
+C§S)RWR5,,(TR"“” SET of the massive scalar, spinor, and vector fields, which

T IRERMRET 1 SRR TR PR} 7) generalize earlier results of Frolov and Zel'nikov for vacuum
Y mv

pouv Ay po typeD geometrie$9], were constructed if4] and[5]. They
10 may be used in principle in any spacetime provided the tem-
S E— Ci(S)Wi , ) poral changes of the background are slow and the ratios of
1927%m? =1 the Compton length to the characteristic radii of curvature
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are small. However, because of computational complexitytion only). The functionU =Ve?¥, where the concrete form
their practical use is limited to simple spacetimes. Happily,of the functioni(r) can be found from ther¢) Einstein
there are considerable simplifications for the class of metricequation. Then the Hawking temperature

considered in this paper: spherically symmetric geometries

with vanishing curvature scalar and spacetimes with maxi- V'(ry)

mally symmetric subspaces. On the other hand, however, in Ty= a4 ed(r+), (6)
some physically important and computationally tractable

cases, such as for example Kerr or Kerr-Newman spacefhe explicit form ofV is

times, there are superradiant modes, and the SET constructed
along the lines of the DeWitt-Schwinger approximation must

2
be interpreted with care. However, in spite of its inherent V=1— 2m(r) + Q_
limitations, the DeWitt-Schwinger method is still the most r r2
general one not restricted to any particular type of symmetry. (7)
In this paper we shall use the general resultgidpfind[5] _ Q2 r,
to evaluate the renormalized SET's of the massive scalar, m(r)=m(r)+E+7=M+mq(r).

spinor, and vector fields in the spacetime of extremal black
holes. The calculations for a general metric turn out to be | t4/0ws from the definitions that(r .)=0 (no room
extremely complicated and are of little practical use. Fortus,, radiation andm(r ,)=M. The condition that , is the
nately, for the issue of the existence of quantum-correcte ot of V(r)=0 mean+s that -
EBH’s and the properties of corresponding self-consistent

solutions of the Einstein equations, it is sufficient to expand
the metric potentials in the vicinity of the event horizon into
a Taylor series and examine the SET constructed for this
simplified line element. Additionally, we shall construct and
examine the SET in the Bertotti-Robinson-like spacetime
obtained by expanding the near-horizon geometry into
whole manifold.

g(r)=r2v=r2-2m(r)r+Q?=0. (8)

If (r,) is bounded on a horizon, the answer to the ques-
tion of whether or not a black hole can reach the extreme
State is determined by whether or nét(r,) can become
%ero. In fact, the finiteness @f(r ) on the horizon, typical
of a nonextreme black hole, becomes a nontrivial issue in the
extreme case. It is equivalent to the problem of whether or
lll. SEMICLASSICAL EXTREME BLACK HOLES not the energy measured by a freely falling observer remains
finite on the horizor(see, e.g.[2]). Thorough numerical cal-

A. Quantum back reaction and degenerate horizon . b e
culations showed thak(r .) is indeed finite for the RN EBH

The metric under consideration reads in the case when quantized fields are mass[@é§§ The
B ST, behavior ofys near the horizon is one of the key issues ex-
ds’=—Udt*+V tdr’+r2dQ?, (4 amined below in the present paper for the case of massive

fields. Let us, however, put this matter aside for a moment
and assume thag(r . ) is indeed finite.

Equation(8) should be satisfied at=r , independently of
whether the horizon is extremal. Hemg(r) is an unknown

where the form o#/(r) can be found from the 00 component
of the Einstein equations. It is equal to

r, 2m(r) function but near, we can expand it am(r)=M +A(r
VZl_T_ r —-r.)+---, where A=4wripq(r+) has the ordere
(5) =#/M?2. It is more convenient to write
~ r r
m(r):47-rJ ar'r p(r'); m(r)y=Mgy+Ar+---, 9
s

whereM,=M —Ar, . Now we get the equation
where p=—Tg and the SETT/, =T/ )+ 749 Here the

first term comes from a classical source, and the second one g(r)=r4(1—2A)—2rMy+Q?=0, (10
is due to the contribution of quantum fields and is to be

understood as a quantum average with respect to the thehence the roots are

Hartle-Hawking state, renormalized in a proper way. Let us

assume that the role of the classical source is played by an M, My |2 Q?
electromagnetic field *"=T/™), so we deal with the re=7ox% (1—2A) 1 oA
quantum-corrected RN black hole. Correspondinghyr)

=Mgy+Mmy,  where Mem=(Q%2)(1h . —1k), m? |f one adjust parameters in such a way thag=Q?(1
=47-rf[+dr’r 29(r"). Here it is implied that the event hori- —2A), then

zon is located at=r , . In this sense . is the “exact” value M
of the horizon radiugto some extent the word “exact” is o -yl
conditional sincel 7 is known in the one-loop approxima- re=r-=QIN1=2A=7—73

(11)

(12
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is the double root of the functiomg(r) and M=Mg(1 Here the lower limit of integration is set to infinity since it is
—A)/(1-2A)=Q(1—-A)/J1-2A. supposed that spacetime infinity is flat apie- 0. Below we

On physical grounds, it is essential for the existence ofill consider the case of massive fields only for whi€fj
EBH's that thetotal energydensity on the horizoiinclud-  —0 asr—o (for massless fields it is usually assumed that a
ing, in the RN case, the electromagnetic contributibe  system is enclosed in a finite cavity, otherwibg— const
positive (and large enough so the sign of quantum contri- +0).
bution itself(if it is not too large is not so crucial. The key question is whether or not the quankitis finite

Let us also describe another seemingly “obvious” ap-on the horizon. Further details depend on the possibility of
proach that, however, contains a hidden trap. In offess  power expansion of the metric near the horizon. As far as
successfylnotations one can write the identity that follows massless fields are concerned, the counterpart from two-

from the substitution of =r , into g(r,)=0: dimensional black hole physics shoyl] that (i) for a ge-
neric fixed metric the functiof (r) diverges on the horizon
r> —2Mr, +Q?=0, (13)  which indicates a qualitative change of the metric of the
extreme black hole under the influence of a quantum field,
whence (ii) if, instead of fixing a metric in advance, one chooses it as
a self-consistensolution of the field equations with back
r.=M+a \/MTQZ (14) reaction taken into account, the existence of an extreme

black hole is compatible with quantum back reaction, but
with @=1 or a=—1. At first glance, the choicer=1 (iii) the power expansion of the metric near the horizon fails

should correspond to the event horizon as is the case idp be anal'ytic. Qn the other hand, numerical calculations for
classical RN black holes. However, when one inse#ts . the_four_-qllmensmnal R.N backgrourid] showed thaf* re-

into the identityg(r ,)=0, it turns out that, as a matter of Ma&ins finite on the horizon. .

fact, one inserts into an equation its own root as a parameter | Nere are the following subtleties in our problem. As, by
of this very equatioriby contrastM,, Q, andA are inde- assumption, the quantum field is neutral, it dp_es not screen a
pendent parameters and the rootsare expressed in their charge, so its valu€ is the same for the original c]assmal
terms directly according to Eq11)]. This procedure is not and the quantum-corrected backgrounds. Then it follows

quite safe and can lead to the appearance of “spurious” solfom Eq. (1) thatr. <Q, if pi(r)<0. Had we chosen the

lutions [1]. Therefore, one should verify its self-consistency ¢/assical background with such a relationship between pa-
to make sure that the root under consideration is a “true’f@meters and tried to take into account quantum back reac-

one. tion by building up the perturbation series, we would have
It is instructive to demonstrate this explicitly. Let us com- ©Ptained a physically meaningless result. Indeed, if the root

pare two different presentations of the same quantity—EqL! the equationg(r)=0 is less thamQ, it corresponds in
(11) and(14). Then after some manipulations we have classical language to the Cauckiyot the event horizon,
where the stress-energy tensor of quantum fields is known to

M A blow up. This obstacle shows clearly that, instead of using a
0 , (15) standard scheméure classical background plus perturba-
1-2A tive quantum correctionswe should start from theself-

consistent quantum-corrected background from the very be-
where Z=[Mg/(1-2A)]>~Q%(1-2A). If A>0, one ginning

o NP= Q= \Z+

should takea=1 (it is supposed thak is not too large; in Our strategy consists in the following. As the issue of the
fact, A<1). However, near the extreme state-0 andA  existence of extreme black holes demands knowledge of the
<0, one should choose= —1. behavior of the metric near the horizon only, let us consider

Thus, quantum back reaction shifts the double root to ahe vicinity of the horizon of a generic EBH, expand the
new position but does not change its character qualitativelynetric near the horizon into a power series, and examine
[1]. In doing this, however, in sharp contrast with the classiwhether or not the quantitf remains finite on the horizon.

cal case, the horizon fok<0 lies atr . =M —M?-Q? . If F is finite (which means the finiteness of the SET in the
orthonormal reference frame of a free falling obsef&,
B. General approach to extreme black holes dressed one obtains a power expansion for the SET too, so the full
by quantized massive fields self-consistent solution can be obtained by direct expansion

. . into a Taylor series with respect to-r .
Meanwhile, as mentioned above, the fact that back reac- For EBH's the conjectured power expansion in terms of

tion leaves the possibility for the existence of a double roof 0\ likeV=a(r —r,)2+b(r—r )3+ -. For con-
+ + + :

Z[)oEuqt. %2) fxigse%fég'eor}t (Iar:(tlrtgr?fe forugrfﬁlljlnq?cg?rggtgﬂoglsac rete calculations it is more convenient, however, to use,
q stead ofr, the proper distancé from some fixed point.

holes. According to ther andtt components of the Einstein Then we haved|/dr= — 1/\V. Substituting into this equa-
equations, . . , .
tion the power expansion fof near the horizon, we find

1 0

T1—To
VAL

z//=47-rfrdrF(r), F(ry=r (16)

r—ro=Ae "P+Ae 2Pt ... (17
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wherep=a 2 and the integration constaty is absorbed

by the coefficients according tdA;=r, explo/p), A,
=r2blaexp(@y/p).
We can write down
ds?=—dt?U(l)+dI?+r2(1)dQ?2. (18)
In what follows we assume that power expansionlofn
terms ofr —r . starts from the terms ofrr.)?, as is typi-
cal for EBH’s. In terms of this function reads
U=e2Pf(I),

f=fo+fe P+ 2P (19

PHYSICAL REVIEW D64 104018

In the main approximatiop=r,=M=Q. We see that for

all physically relevant casea;<0 and M,;<Q. Thus, a
distant observer measuring by precise devices the total mass
and charge of an extreme RN black hole, had he relied on
classical notions only and neglected quantum back reaction
completely, would have been led to the wrong conclusion
that in fact the object under investigation is rather a naked
singularity than a black hole. In other words, the quantum-
corrected solution of the Einstein-Maxwell equations under
discussion not only acquires some small corrections from
back reaction of quantum fields but resides in a pure quan-
tum domain where the existence of classical black holes
(both extremal and nonextremas strictly forbidden.

The expressions for the SET of massive fields in the metric  One can also find the quantum-corrected position of the

(19) are very cumbersome. However, what is the most im+orizon in terms of physical parameters. Taking into account
portant for us is their general structure. It turns out that neagq, (12) and noting that Tg(“)(h): M 2r % 7

the horizon

F=Fot+Fe "P+Fe”2/r4... (20)
with finite coefficientsF; (i=0,1,2...). Theexpressions
for the components of the SET read
v _¢(0) 4 4w(1)n—lp 4 49(2)n—21/
T,=t, 7+t e P+t em 4 (21

where explicit expressions for the coefficietfsare listed in
Appendix A for different kinds of field. It is essential that in
all cases it turns out thaf@=t1® andt3®M=t1® which
just leads to the finiteness &f on the horizon.

It is worth stressing that the finitenesskofor the case of

= ug/2880m2, wo=16/21—4(£—1/6), w1 ,=237/14, andu,

=114/7 [4], we obtain A=4mpm 2r;*, r,=Q(1

—2A) Y2~Q(1+A). Equivalently, in terms of the total
mass, ;=M (1+Bm 2Mt), Bs=4mns—as. Here

Bo= a[353/441 4(£—1/6)], Bip=a815/294, B,

=a7289/441.

IV. QUANTUM-CORRECTED
BERTOTTI-ROBINSON-LIKE SPACETIMES

A. Self-consistent solutions without cosmological term

It is obvious that it is impossible to find an exact solution
of the back reaction equation for a realistic four-dimensional

massive fields is shown for any EBH irrespective of whetheizgy in all space and this is the reason why we were forced
or not its metric obeys the system of field equations and they restrict ourselves to the treatment of the vicinity of the
type of theory to which these field equation correspond. Now,qiz0n only. Meanwhile, there exists another class of ob-
this general result is applied for the most physically interest]ectS for which exact solutionén the one-loop approxima-

ing case of a RN EBH, dressed by its quantum radiation.

C. Quantum-corrected RN extreme black hole

From the physical viewpoint, it is natural to fix the total
mass measured by a distant observer at infitthg micro-
canonical boundary conditipnThen we have from Edy7)

Moi=M+md, mq=—47rf drr?T@,
M+

2 2
r<+Q
= o, (22
The condition of extremality/’(r,)=0 entails
2 — N2
re(1—-2A)=Q-. (23

In all casesmi=am 2r; 3, where ag=—al7/441, ay,

—@19/147, a;= — @107/441, andx=1/720r. From Eqs.
(22) and(23) it is seen that the corrections of first ordeih
cancel and we obtain

Miot=Q+ agm 2r 3. (24)

tion) can indeed be found—metrics with acceleration hori-
zons [Bertotti-Robinson (BR) spacetime and its
modificationg. Such spacetimes have topology,t) X S,,
whereS; is a two-dimensional sphere, so that the coefficient
standing at the angular part of a line element is constant. The
physical relevance of such spacetimes stems, in particular,
from the fact that they can serve as approximations to the
true metric of the EBH in the vicinity of the horizon. Apart
from this, such a metric appears in the limiting transition
from nonextreme black holes to extreme oh&2—14. The
SET for the BR spacetime was studied 15,4]. Now, how-
ever, we start not from the BR spacetime itself, but from its
quantum-corrected version.

The general form of metric under consideration is

ds?=—U()dt?+dI?+r3dQ?, (25)

where it is assumed that there exists a horizon on which

—0. In the coordinatesx¢, 6, ¢,t) the SET of the electro-
magnetic field is

Q2
8T/ (*M=—r(-1,11-1).
o

(26)
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However, the expression for the SET of quantized fields It turns out that for all cases the functiohsandf, share
in such a background is rather complicated and will not bea common general structure. In BR1 and BRZ2
written here. Fortunately, if we restrict ourselves to the BR-=p~6r;%(a;ri+b;rip?+c.p®), f,=p Oy %(ayp®
like spacetime and guess its quantum-corrected version, we b2p4r§+ cgrg), where the coefficients;, b;, andc; (i
obtain a very simple answer in a compact form. We found=1 2) are the same for both metrics.

that this procedure is tractable for the following cases. For all values of the spina,=—a;, b,=—b;, ¢,
Metric BR1 =—C3.
In the scalar casesE0)
I
dszz—dt2p25h2;+dlz+r§d92, (27 L
=___ (8- 2_ 3
a; 105(8 84&£+4206°—840¢°),
. 111 1
G,= —r—z,l?,l?,—r—z : (28) 1
0 0 by = — 7o5(7— 112+ 630£2—1260:%),

Metric BR2

The Einstein tensor has the same form as (28).
Metric dSzX SZ 20 7 10

| s=1/2: al:EO’ b1=4—20, Cl:ﬁ);
dszz—dtzozsin2;+dlz+r§d02, (30)
_ 7 4
. . . . s=1: a1=3g, b1=§3, C1= 3¢
G.= __2'__2’__2’__2)' (31 - . —6.-6/, .6 4 2
ro o o ro For the metricdS, XS, [now fi=0" °ry (airg+birgo

+c¢,0%) andf,=0 61, %(ao®+byo*ra+c,rd)]
Metric RindlepX S,

a2:a1, b2:b1, CZ=C1;

ds?=—dt?12+dI?+r3dQ?, (32
1 1 s=0: alzi(—8+84§—42052+84og3)
G;=( - —,0,0—- —2) . (33) 105 ;
o o
In all cases indicated above the SET of the quantum fields bﬁi( —7+112—630%+ 126Q3),
can be written as 105
SWT;(Q):C(fl,fzvfzifl), (39 1

cy (4— 428+ 21082 —4206°%);

where f,,f, are simple constants depending on the curva- 105

tures of the two-dimensional maximally symmetric sub-

spacesC=1/127’m?, andm is the mass of the field. The 20 7 10

form of Eq. (34) follows from the fact that for Eqs(27), s=12: a1=— 755 b1=155 C1= 150

(29), (30), and(32) the covariant derivatives of the Riemann

tensor and its contractions vanish, which considerable sim-

plifies the SET given by Eq3). s=1: a.=— E b :1 c :i
The fact thafT3@=T3@ is a simple consequence of the I T M o <

symmetry of the metric with respect to rotations. The equal-

ity TO@ =T} can be understood as follows: metrics of the For the metric Rindlerx S,

type (25) can be obtained as a result of certain limiting tran-

sitions from black hole ones, in the process of which the fi=ary®, f,=-2ar;®,

near-horizon geometry expands into a whole manifdi;

then the SET pick up their values from the horizon where the

3
regularity condition demands just the validity of this equal- _8-63p—3780y" 14
ity. 8o 945 (7=E€-16), a1p=75, a1=5¢.
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In the limits p—~ and oc—« the metrics BR1 and will see that this is also the case even if the quantum-
dS, XS, turn into Rindlep X S,. One can check that in these corrected metrics changes its form—for example, due to the
limits the functionf, andf, go smoothly to their values for cosmological term
the metric RindlesX'S,. The values ofy for different values of field spir(the

Let the classical background be of the BR1 or BR2 typesubscript indicates the value of spig) are y,=(5
metric [the metric(30) cannot appear on the pure classical —14£)/105, y,=19/35, andy,,,=37/420. Thus, for a spinor
level without a cosmological constgnfhen we obtain two and vector fieldy>0 as well as for the scalar case with

independent equations from the Einstein ones: minimal and conformal coupling.
1 2 B. Nonzero cosmological constant
——2=—Q—4+Cf1, (35) greal _ _
ro ro Now for the BR1 and BR2 metrics the field equations
read
1 2
—2=Q—4+Cf2. (36) 1 Q?
P Mo —2=—4_A—Cf1 (39)
o To

Taking the sum of Eqs(35) and (36) and noticing that

fi+f,=[(r5—p?)/rip®x, where y has the structurey and
=g+ asp*+ agzp?ry (a; are pure numbeyswe obtain 1 Q?
—22—4+A+Cf2. (40)
) ) CX P )
(ro—=p)| 1= ——/=0. (37) _
rop For the BR3 case we have, instead of E4),
Now take into account tha@~ A3, A2, wherex=m"1 is the 1 Q?
Compton length and\p, is the Planckian length. Then a ;:_ rT_A_CfZ' (41)
simple estimate shows that the second factor in(B@. can 0
become zerdprovided the proper signs appear infior r Then it follows from Eq.(39) that
<\ only, so far beyond the region of validity of the WKB
approximation. Therefore, we will not discuss this possibility 1 1 1 1
further and will assume that there is only one root of Eq. i Z_QZtG 4_Qz+A+Cf1' (42
0

(37): ro=p. This means that BR spacetime remains an exact
solution of the semiclassical equatioies. [15'1_6614)' Mak-  The term withCf, represents a small correction to the clas-
ing use of Eq.(35) and Wr|t2|ng f%(r0=p)j Yo, Wherey  gical quantities, so that in the expression frone can re-
=a;+by+cy, we find thatrg=Q“—Cyr, °, whence, inthe  placer, andp by the classical values obtained 16r=0. If

same approximation, A >0, only the solution with ther sign should be taken. We
2 4 will discuss the casd = —|A| <0, which is more interesting
ro=Q%(1-CyQ™"). (38 for us. LetA be very close to the valud,=—1Q 2 for

i which the radical in Eq42) becomes zero. If; we can put
In Eq. (38) the second term in the parentheses represents; ihe main approximation,=212Q, p=c, neglecting cor-

only a small correction but accounting for this correction canoctions of the order ot. Classically, we would have the

be crucial in the following sense. Let>0. Then we have oqyct of two-dimensional Rindler and a sphég®), for
Q>r. Let us proceed, for definiteness, in the canonical en- -

. . =5
semble approach in which the chargather than the poten- which, a(_:co@n? to the apove resultsﬁ,l—gQ e

tial on the boundanyshould be fixed. First, iIQ#ro, the = —2f1 with a=ga>0 for spinor and vector fields as well
classical metric with an acceleration horizon of the typ® @S for the scalar case for both the conformal and minimal
or (29) is not possible at all. Instead, we would have theCoUPling. If A=A,<0, classical constant curvature solu-
geometry of a RN black hole. Second, fr>r, with r tions of type(35) do not exist at all. However, if the_d|ffer-
being the horizon radius, we would have, moreover, a nake@nce A — A, is very small and such that—Aq+CaQ™°
singularity. It is clear that the procedure in which the ground>0, the solutiong42) do exist. Let us substitute the expres-
state is chosen as a classical geometry with a naked singsion forr3 into Eq. (40) for p. Then

larity with quantum corrections, calculated on such a back-

ground perturbatively, is physically unacceptable. Instead of 1 1

this, we should from the very beginning use the quantum- ;: r_2+2A+C(f1+f2)22(A—A0)+C(f1+f2)
corrected geometry and check the condition of self- 0

consistency for the corresponding parameters. In our case it 1

is the relative simplicity of the BR geometry that enables us i6\//\_1\0Jr Cfy. (43)

to find the SET not only for the classical BR spacetime itself

but also for the quantum-corrected version oftielow we  Consider two cases.
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(1) A=A,. Then we obtain two solutions. The first one is of the work was done. The authors are grateful to Sergey
Sushkov for useful correspondence on BR spacetimes.
2. @ 44
p= = (44) APPENDIX A: POWER EXPANSION FOR T(@
OF MASSIVE FIELDS NEAR THE HORIZON
OF A GENERIC EBH

where the term—aQ~° has been dropped. Thus, quantum
corrections force the geometry to switch from EGZ) to In this Appendix we collect a number of formulas for the
Egs.(27) or (29). The second solution is formally complex. components of the SET of the massive scalar, spinor, and
In fact, this means that instead of E@7) we have the ge- Vvector fields in the vicinity of the event horizon of a generic
ometry (30). Now 02=Q4/\/C_E eternal black hole, which are used in this paper. Functionally
— 6 differentiatingW,; with respect to the metric tensor, perform-
(@9 A=Ao=Cfy=A,=CaQ " Then we have the met- j 4 the necessary symmetrizations and simplifications, and
ric (30) with parameters inserting the results obtained into E(R) one obtains the

1 Qb general form of the renormalized SET of the quantized mas-
rgzzQZ, o= =—— (45) sive fields. As the resulting formulas are rather complicated,
C(fi—f2) 3ca we shall not display them here, and the reader is referred to

[4] and[5] for further details. Subsequently, constructing the
where we took into account the expression for the metricomponents of the Riemann tensor, its contractions and nec-
Rindler X S,. essary covariant derivatives for the line eleme@®), insert-

ing the results obtained into the general expressions for the

V. CONCLUDING REMARKS SET [5], combining them with the appropriate spin-

_ . o _ ~dependent numerical coefficien$®, and finally making
We have considered EBH's in equilibrium with quantized ;e of the explicit form oUU(l) andr(l) as given by Egs.

massive fields and demonstrated thatdoy EBH the com- (19) and (17), and collecting the terms with like powers of

ponents of the SET, measured by a free-falling observer, re;_ e " one has

main finite. If a metric obeys the Einstein equations, this

entails that semiclassical EBH's do exist as their self- () i) oi 1 ~ (i)
consistent solutions. The key point of our treatment consisted Ty _;o "’z = 962y 2«0 t,z. (A1)

in restricting our analysis to the near-horizon geometry,

which enabled us to avoid the complexity connected with thea|though the near-horizon power expansions of the line ele-
obvious impossibility of finding explicit self-consistent solu- ment (18) look rather simple, the complexity of the SET

tions in the whole domain. rapidly increases with increasing order of expansion, practi-
We considered also BR-like spacetime, closely connectega"y invalidating calculations of® for i=3. Below the

to the issue of EBH's, and showed that quantum-correctedagits fori =0,1 are listed.
BR spacetime remains as an exact solution of the one-loop ¢|gser analysis of the coefficientéo) given in Table |

field equations. In so doing, the relationship between the,yicates that the general SET is a third-order polynomial in

parameters of the solutions can be such that classically they_ ¢—1/6, with coefficients given by purely local, geometri-
completely are absent and only quantum effects make thegm terms: '

existence(for fixed values of these parametensossible. ~ ~
Apart from this, near some critical points in the space of 13(®=1;(®
solutions tiny quantum corrections can lead to a change of

the type of BR spacetime, the scale of curvature remaining 8 2rS+p% m(pS—pri+2rl)
purely classical. Thus, quantum corrections not only slightly ~ 945 pr6 N 1506r®
shift the values of relevant physical quantities but also lead * *
to quaIitative. changes in the geometry and topplogy. 73(2r® —3p2r% + %)

The questions about the near-horizon behavior of the SET -4 "G , (A2)
and the self-consistent EBH for massless fields as well as the P
properties of self-consistent BR spacetimes deserve separatefo(l):fl(l)
treatment. o — 1

16 Ay(rS+p%
ACKNOWLEDGMENTS =7 315 r1p6
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$2(0)_%3(0
1200-730)

4n3(rS +2p®-3r%p?) . n(p®—p*ri+rs)

rp® 150°r%
2 (8p%+4rb)
L AR (A4)
945 6
°

'f%(l)z"fg(l)

2A; 16p5+ 178 +7r2 p*
"~ 315

7 6
rep

7

— —————(24Afop®+ 20A fop?r2 + 3f p*rS
SOfOpGrZr 1lopP 1toP T+ P T4

TOO-FLO=

1 7r%p?+10p%+20r8

PHYSICAL REVIEW D64 104018

+40A,fop?r? + 1004 for® +15f,r”)

2

+ 5 6 (4A1f0p4+ 3f1rip2+ 16A1I‘if0
forsp
3
+16A1I‘if0p2+6f1ri)— r7p6(20A1rif0p4
o' +

+8p°A fo+8Ar fop2—36ArS fo+3fr3 p?

+12f,r3 p?—15f,r7), (A5)

Repeating the calculations with the coefficieat¥? one
obtains

YT e ) (AB)
420 ré p®
6 2 4 4 2 6
To(l):Tl(l):_iAl(SOp +7rip "+ 7ripc+30r3) A7)
o 210 (7 8 '
+
6 2 4 6
F200)_F3(0)_ _ i 20p°+7r<p"+10r7 A8)
2 8 420 r6 pb ’
T
T2(1)_33(1) 1 Zlfll’ip“—136All’ifo—24Q)6Alf0—1405\1I’2+f0p4
forip
|
Finally, for the massive vector fields
TW=130= — ————(—280Ar fop?+63f,r3 p*
2 3 21Of0r1p6 1t +TopP ir+p
iy 1 8r8 +7p%r% +4p° — 420012 fop?—124A,r8 f,—288°A,f,
oo 2P P (A10)

35 pore

+105f,r5 p?). (A13)

The third-order coefficients of the expansiet), T/\?), are

too lengthty to be presented here. On the other hand, how-
ever, of principal importance in the analyses of the regularity
of F is the difference between th{60) and(11) components

of the stress-energy tensor rather than the components them-
selves. The calculations give

2 AL(12r8 +7p%r% + 1208+ 712 p%)

FO(1)__F1(1)_
tO( )_tl( ) — _ %

rlp®
(ALL)

1
TY@ _Ti@ = oo B2+ O(Z%), (A14)

1 7r%p*+8p8+4rs

T2(0)_73(0
BO-BO- -~

5.6 , (A12)
pry where
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BO= - 252025010 (112A2f2p%+ 464A2F2r% — T04Af 25 + 2008, of 115 +200F2r5 + 64f of or 8 )
0 +
+ﬁ(4%if%p4—8A2fép4r+ +2Afof 1p%r , +80AZf2p%r2 + 168A2F2r% + 17f2p2r% —32f of ,p%r4
0 +
2
—B52A,f3r3 + 42A fof ;15 +69F2r5 —96ff,r)— zfznw(lGAff%p‘W 176A2f2p%r2 —96A,f5p%r3
0 +
3 2624 2.5 5 2.6 6 67° 262
+24A,fof1p%r3 + 144055517 —576A,T5rS — 24A, fof 11> + 93518 — 192 o ,r% ) + f2T(40A1f0p4
oP Ty
- 8A2f%p4l’ + + 2A1f0flp4r + + 64A§fgp2ri - 96A2fgp2r§ + 24A1f0f1p2ri + 40A§f0r1 + l7flp2ri - 32f0f2p2ri
+104A,f2r3 +46A,fofr> —8F2r8 +32ff,r®), (A15)
o' + + 1+ +
pYA= — W(smzfgp“— 14A, fof 1 p*+ 288A%F3r3 — 119F2p%r3 + 224 of ,p%r3 + 96A,F2rt — 96A, fof 1t
0 +
+318f2r3 — 192 of,r3), (A16)
1
[
and 2
M
Tl(q): - W;]zu(4914\ﬂ4— 21168’M 3
m-r
B = = (336A, 5" — B4A Fof 1
420f5p°r% +3343M2r2—231843M + 6048 %)
+280A%f2p?r | + 16800, f3p%r2 —420A, fof 1p%r2 M2
e S 4 __ 4 3
+12960212r% — 714F2p2r% + 1344 of pp?r3 30240212t AAM - AT+ 1932 M
2.4 4 2.5
+14400,f3r — 14400, fof rd + 1935213 29602+ 19503M). (B2)
— 2880 of,r>), (A17)
and
for the quantized massive scalar, neutral spinor, and vector M?
fields, respectively. T200) = U (442261 — 143136 M 3
30240r°m?r1?
APPENDIX B: T} OF MASSIVE FIELDS - 3 4
IN THE SPACETIME OF EXTREMAL + 172538477~ 91728"M +181447)
REISSNER-NORDSTROM BLACK HOLE M2
- 4_ 3
Although the stress-energy tensor of the massive fields in 30240”2m2r12(3066w 10356 M
the spacetime of the extremal Reissner-Norasthdack hole
may be easily constructed by taking extremality limits in the +12953M?r?— 7086 3M + 1431 %), (B3)

results of Refs[4] and[8], below we collect the formulas ) ) ) )
that have been used in the back reaction calculations. For thghereas for the massive spinor field one obtains

guantized massive scalar field with an arbitrary curvature

: M2
coupling one has Tg(Q) - m(491m 4_ 291496 M 3+323762M?2
M2 40320m2m?r
0(q) — 7 4_ 3
ToW= 30240”2er12(34398\/| 113904 M — 20080Mr3+4320r%), B4)
+139944M%r2— 75600 °M + 15120 %) e M2 o5 8650 M 2 120002\
2 Y 40320m°mPr12

(—1248V1*4— 45443084 M3

+ _—
3024002m2r 12 —712aMr3+1584%), (BS)

—2509M%r2+726r°M), (B1) and
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To@=— —4032%zm2r —(9933V1#~2355Mr° Ti@= —10080;er —(53658M 4~ 16996 M ®
+42888°M?—33984M3+4752%).  (B6) +1934M?r?2—9398 M + 1737%%), (B8)
Finally, for the massive vector field in the extremality limit and
one has
2 M 2
To@= m(smswﬁ— 107516M 3 To@=— muag?‘%ﬁ 5211*— 26854 M
+13539M?r°— 72690 M +13815%), (B7) +5178M°2?r2— 44068 M °). (B9)
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