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Gravitational collapse of a radiating shell
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We study the collapse of a self-gravitating and radiating shell of bosonic matter. The matter constituting the
shell is quantized and the construction is viewed as a semiclassical model of possible black hole formation. It
is shown that the shell internal degrees of freedom are excited by the quantum nonadiabaticity of the collapse
and, consequently, on coupling them to a massless scalar field, the collapsing matter emits a burst of coherent
~thermal! radiation. The back reaction on the trajectory is also estimated.
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I. INTRODUCTION

Much effort has been dedicated to the study of the cla
cal dynamics of gravitationally collapsing bodies and a fai
comprehensive understanding of the main features of
phenomenon is now available~see, e.g.,@1# and references
therein!. However, it is also clear that classical physics is n
sufficient for a complete description, and for diverse reaso
first of all, the predicted pointlike singularity that emerges
the final fate of the collapse is quantum mechanically un
ceptable, just on the basis of the naive consideration of
uncertainty principle; secondly, as soon as the collaps
body approaches its own gravitational radius, Hawking
diation @2# switches on and its back reaction should be
cluded properly@3#. Moreover, the above two issues are co
nected, since Hawking’s effect violates the positive ene
condition which is a basic hypothesis of the singularity the
rems @4#. One therefore expects corrections to the class
picture already at the semiclassical level, i.e., in the reg
where matter is properly evolved by quantum equations o
space-time whose dynamics is still reliably approximated
classical equations.

The semiclassical limit for various models has been p
viously investigated @5–9# by employing a Born-
Oppenheimer decomposition of the corresponding min
perspace wave function@10–12#. In particular, in Ref.@9# the
case of a~thin! shell of quantized scalar matter collapsing
vacuum was investigated and it was shown that the colla
induces the production of matter quanta. Further, exp
conditions were found beyond which the semiclassical
proximation breaks down. Such a model is, however, b
unrealistically simple and of little physical use, since t
absence of any signal from the shell precludes an obse
from witnessing the process. In order to overcome the la
shortcoming, an effective minisuperspace action for radia
shells was derived in Ref.@13# as the first step in the mod
eling of a more realistic case. This was expected to be us
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both for the conceptual problem of unambiguously quan
ing the system and for obtaining more predictive conc
sions: in fact, the possibility of adding an observer~e.g., in
the form of a detector coupled to the outgoing radiatio!
allows one to define physical~and not just formal! observ-
ables@14#.

As mentioned above, one of the most intriguing aspect
collapsed bodies is the outgoing flux of thermal radiati
predicted by Hawking@2#. This effect is usually studied in
the background of a preexisting black hole, thus separa
the problem of the collapse from the understanding of
onset of the thermal radiation. Such an approach is insp
by Hawking’s original computation, where any back reacti
on the chosen Schwarzschild background is neglected
the matter collapsed to form the black hole plays no role, a
is further supported by the smallness of the~renormalized!
energy-momentum tensor of the radiation in the vicinity
the horizon @15#. In this framework, one can think of a
particle-antiparticle pair being generated outside the~event
@16# or apparent@3#! horizon, with the positive energy par
ticle escaping in the form of thermal radiation and the ne
tive energy antiparticle falling inside the horizon decreas
the Arnowitt-Deser-Misner~ADM ! mass~i.e., proper mass
plus gravitational energy! of the singularity. It is therefore
the horizon, a purely geometrical concept, which appear
the key ingredient for this process, and much attention
devoted to studying event horizons as if possessing phys
degrees of freedom of their own@17,18# ~see also Refs.
@19,20# for more recent developments!. However, on recall-
ing that the central singularity is a transmutation of the c
lapsed body, one is alternatively tempted to define the Ha
ing effect as a transfer of energy from the ADM mass of t
collapsing matter to the radiation field.

The latter statement can be put on firmer ground if o
considers the collapse and the onset of the Hawking radia
in the same and only picture, which is also the scheme
are naturally led to use if we take the point of view of
~distant! static observer. For such an observer the colla
would never end~classically! and the final fate of the col-
lapsing body necessarily overlaps with the onset of ther
emission. Hence, the static observer does not see an inte
diate stage at which there is a true black hole, because
infalling flux of negative energy annihilates against the~still!
©2001 The American Physical Society12-1
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collapsing matter, and it is clear that he would consider
Hawking radiation as energy lost by the collapsing bo
when it approaches its own gravitational radius. In this s
nario, the applicability of the no-hair theorems becom
questionable, with geometry playing~at most! a subsidiary
role, and one should be able to describe the whole proce
terms of dynamical quantities, in much the same fashion a
the case for non-gravitational interactions@21#, and possibly
recover unitarity@22,23#. This approach was explored lon
ago in Refs.@24#, whose authors were led to deny the ve
formation of black holes~horizons!, and has been revive
recently from purely kinematical arguments in the fram
work of optical geometry@25#. To summarize the presen
situation, it still sounds fair to say, as in Ref.@3#, that the
issue of whether the horizon forms or not requires a be
understanding of the~quantum mechanics of the! gravita-
tional collapse.

Instead of constructing a general formalism, in the pres
paper we shall continue our study of a specific~quantum
mechanical! model of collapsing bosonic matter, to wit, th
self-gravitating shell ~for a purely classical treatment se
e.g., Ref.@26#!. Given its wide flexibility as a building block
for more complex configurations, we believe that the conc
sions we are able to draw are sufficiently general to be ta
as hints for other situations. One may query our use o
scalar field, rather than fermionic matter, for the collap
Clearly, in our case one will have, besides some simplifi
tions, effects associated with the matter’s Bose-Einstein
ture, for example the formation of a condensate. None
less, even if apparently unrealistic, considerable effort
been dedicated to the effects of such matter~e.g., in the
context of boson stars@27#!.

Returning to our previous study of a collapsing self gra
tating shell, we consider a ‘‘macroshell’’ constructed from
large number of ‘‘microshells,’’ each of which corresponds
the s-wave collapse of a scalar particle of typical hadron
mass (mh;1 GeV). In Ref. @9#, we discussed how suc
microshells were bound together to form the macroshell
found the confining potential to be linear and dependent
the shell radius. This implied that as the macroshell c
lapses, the confined microshells undergo nonadiabatic tra
tions from the ground to higher excited states. The attitu
we adopted is that, because of their bosonic nature, the
croshells formed a ‘‘condensate’’ and that, once enough
croshells were excited~thus widening the macroshell!, they
would collectively decay to the ground state by creating
ditional particles~in analogy with hadronic string theor
wherein a long string—excited hadron—decays into sh
strings—lighter hadrons!. Thus during the collapse the cre
ation of additional microshells~particles! leads to a back
reaction slowing the macroshell.

It is clear that in the above the Schwarzschild~ADM !
mass of the shell does not change. We previously indica
that a more realistic approach would be to consider nona
batic effects leading to transitions from the ground to
higher ~excited! states for some of the bound microshe
and, subsequently, these states would decay and the
croshells would return to the ground state by emitting rad
tion @13,14#. At the end of such a process, the proper ene
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of the macroshell would be essentially unchanged~except for
the small change in ground state energy due to the chang
macroshell radius! and the net balance is then a transfer
the gravitational energy of the macroshell to the radiat
field which decreases the ADM mass of the system a
modifies the trajectory for the radius of the macroshell.

In our present approach we do not consider particle~mi-
croshell! creation, which would require much greater ener
than the excitations of the microshells due to nonadiab
effects~in Ref. @9# we also showed that microshell creatio
occurs for rather extreme cases, in which the size of
horizon is comparable to the Compton wavelength of
microshells!, but study the latter excitations. In order to d
termine the latter excited levels we must describe the mo
of one microshell in the mean gravitational field of the othe
and obtain an effective Schro¨dinger equation for the mi-
croshell. Such a study is attempted in the next section. S
sequently one must determine the amplitude for the exc
tion of a microshell, as a consequence of the time variat
of the binding potential due to the collapse of the shell~this
is attempted in Sec. III A!. The model is constructed bearin
in mind a number of constraints: first, since our scalar p
ticles have a Compton wavelength of;10214 cm, one must
have both the radius of the shell and the thickness of
macroshell much greater, otherwise fluctuations due to
quantum nature of matter will destroy our semiclassical
scription of the macroshell motion~see the consistency con
ditions for the semiclassical approximation in our previo
paper, Ref.@9#!. This essentially implies that the number
microshells of hadronic mass be at least 1040 so that, for
example, the gravitational radius is sufficiently large. A
other constraint that will allow us to simplify our results is
suppose that the collapse be non-relativistic~i.e., ‘‘slow’’ all
the way down to the horizon!, which implies that only the
first microshell excited states will be relevant.

In the remainder of Sec. III we address the emission of
radiation ~scalar massless particles—we shall subseque
just call them photons! and the macroshell trajectory wit
back reaction. Again we shall enforce some constraints
particular that the coupling of the radiation to the microshe
be sufficiently large so that the decay time is smaller than
unperturbed collapse time. Actually, we shall see that suc
already the case for a very small coupling constant. Furt
interesting features of the model are that the collapse is s
and the shell thickness remains much smaller than the typ
wavelength of the emitted quanta, so that many emissi
occur practically in phase, thus rendering the radiation p
cess highly coherent and the back reaction great. As a c
sequence, it will be sufficient for us to just consider fir
order perturbation theory in the radiation coupling const
and keep terms to lowest order in the macroshell velocit

One may wonder if our model is useful in describin
Hawking’s radiation, which has two main features: the fi
one is the thermal spectrum and the second one is its ‘
server dependence.’’ The former follows from the adiaba
hypothesis that the ADM mass of the source~black hole!
changes slowly in time and, therefore, one does not ne
sarily expect to recover a thermal spectrum in a fully d
namical context in which the back reaction is included.
2-2
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GRAVITATIONAL COLLAPSE OF A RADIATING SHELL PHYSICAL REVIEW D 64 104012
the latter we mean that a freely falling observer remains in
initial state all the time and should thus not experience
flux of outgoing energy measured by a static observer,
gardless of the adiabatic approximation. We just point
that our model shows such a sort of ‘‘observer dependen
since the proper mass, which remains constant, is the en
as measured by the observer comoving with the shell wh
in turn, does not experience any change. At the same
there is a flux of outgoing radiation associated with the
crease of the ADM~Bondi! mass. However, whether such
radiation can be consistently identified with Hawking’s
should be considered as a totally different effect will ne
further inspection. Let us note in any case that, in cont
with Hawking radiation, the coupling constant of the rad
tion to the microshells will appear in the final expression

Naturally our results will also be constrained by our ava
ability of computing power: bearing all the above points~and
approximations! in mind, our results are illustrated and sum
marized in the Conclusions.

We use units for whichc51 but explicitly show both
Newton’s constantG and Planck’s constant\. The Planck
length and mass are then given byl p

25\G andmp5\/ l p .

II. THE MACROSHELL INNER STRUCTURE

In order to study realistically the evolution of a collapsin
body it is important not to neglect its spatial structure. F
instance, the equivalence principle implies that a pointl
freely falling observer does not experience any gravitatio
effect. However, any object has a spatial extension and t
forces become effective when this size gets close to the t
cal scale of variation of the space-time curvature. At
same time, it is also important to keep the model simple s
to allow one to study it. A good compromise between reali
and simplicity is given by themacroshellwhich was intro-
duced in Ref.@9# and which we now review and furthe
develop.

We view the collapsing shell not just as a singular sph
cal surface in space@28# but as a set of a large numberN of
microshellswhich correspond to collapsings-wave bosons
and are described by a wave function~thus the microshell
radius is actually the ‘‘average’’ radius!. Each microshell has
negligible thickness and proper massm such that their total
proper mass equals the proper mass of the macroshell,Nm
5M . If we denote byr P(0,1`) the usual ‘‘areal’’ radial
coordinate, we can order the microshells according to th
area, so thatr 1,r 2,•••,r N , and assume that the thickne
d of the macroshell is small:

0,d[r N2r 1!r 1 . ~2.1!

The space between each two microshells has Schwarzs
geometry,

dsi
252S 12

2GMi

r Ddti
21S 12

2GMi

r D 21

dr21r 2dV2,

~2.2!

with a suitable ADM massMi,Mi 11 , M050 for r ,r 1
andMN[Ms ~total ADM mass! for r .r N . For this descrip-
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tion to be consistent, one must check that the microshells
not spread during the collapse andd remains small in the
sense specified above. This was already shown in Ref.@9# to
be ensured by the mutual gravitational interaction of the
croshells ifN is sufficiently large and the average radius
the shellR is much larger than the gravitational radiusRH

[2GMs . We shall provide further evidence for this in th
following.

Before studying the dynamics of the microshells, o
must also ‘‘fix the gauge’’ corresponding to the freedom
making coordinate transformations on the relevant solut
~2.2! of the Einstein field equations. This can be done
choosing an ADM foliation@29# for the corresponding space
time manifold. Two options that cover the domain of out
communication~the region outside the horizon! are given by
the hypersurfaces$St% of constant proper timet, associated
with observers comoving with the microshells, and the h
persurfaces$S t% of constant Schwarzschild time~denoted by
t`[tN) which are associated with~distant! static observers.1

Since we shall consider only bound orbits for the shell w
initially large radius and negligible velocity, it is useful, i
this respect, to separate the collapse into theNewtonian re-
gime ~NR! and thenear horizon regime~NHR!:

NR. When the radius of the shell is large~and its velocity
small!, the difference between the proper time of the m
croshells and the Schwarzschild time is negligible, mean
that observers comoving with microshells at different ra
can synchronize their clocks with the clock of the dista
observer. Therefore, one expects that the Hilbert space w
contains states of the microshells as viewed by the comov
observers, Ht5$F (t)(r ,t)%, is the same as Ht
5$F (t)(r ,t`)% viewed by the~distant! static observer. We
examine this case in Appendix A.

NHR. Near the gravitational radius, the relative gravit
tional redshift between different parts of the macroshell is
longer negligible and the two foliations$St% and$S t% differ
significantly, sincet`5t`(r ,t) is a large transformation
there@see Eq.~B4!#. One can still introduce a Hilbert spac
Ht as relevant for the comoving observers, and a spaceHt
for the distant observer, but the relation between the t
spaces~or their physical equivalence! is far from trivial, as
will be apparent from the corresponding Schro¨dinger equa-
tions we display below and in Appendix B~see, e.g., Refs
@30,23# for analogous considerations!.

In the NR there is no conceptual ambiguity, since t
Newtonian~Schwarzschild! time ~equal to the proper time! is
a Killing vector with respect to which canonical quantizatio
is straightforward and most calculations can then be co
pleted analytically~see, e.g., Appendix A and Ref.@9#!. In-
stead, in the NHR there is noa priori reason to prefer eithe

1Strictly speaking, the domain of outer communication is w
defined only provided one knows the development of the wh
space-time manifold@4#. However, in our case we cannot kno
from the beginning whether an event horizon will form or not an
thus, if $S t% can cover just a portion or the whole of space-time.
the same time,$St% is defined naturally just on the world stri
where the macroshell has support.
2-3
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ALBERGHI, CASADIO, VACCA, AND VENTURI PHYSICAL REVIEW D 64 104012
of the two Hilbert spaces to describe properly the matte
the shell. Further, if one were to neglect the back reaction
the metric and study a shell evolving on a fixed~Schwarzs-
child! background, the Schwarzschild time would still be
Killing vector and provide a unique way for canonical qua
tization. However, if one considers a collapsing macrosh
with a microshell structure in order to successively inclu
back reaction, the canonical analysis is much more invol
and ambiguous.

In the spirit of locality, it seems natural~and also appear
much easier! to analyze bound states of microshells with t
aid of Ht and then move on to the point of view of the sta
observer by simply making a change of time coordinate~af-
ter having taken the thin shell limit!. However, in so doing
one does not expect to recover the spaceHt obtained prior to
the thin shell limit, nor is it obvious whether the principle
equivalence, in any of its forms@31#, can be trusted for
length scales associated with such bound states which a
the order of the Compton wavelength of~elementary! par-
ticles. In the present paper, we shall motivate taking the
shell limit at some point by studying the trajectory of th
shell only down to a radius greater than the gravitatio
radius~horizon! by several shell thicknesses.

In order to define an effective Hamiltonian for each m
croshell, let us single out one of theN microshells, denote its
radius byx and study its motion in the background defin
by the remainingN21 microshells~see Fig. 1!. When x
Þri , one can apply the junction conditions@28# which yield

S dx

dtx
D 2

5211
~M .2M ,!2

m2
1G

M .1M ,

x
1

G2m2

4x2

[F~x!, ~2.3!

whereM , (M .[Mx) is the ADM mass computed on th
inner ~outer! surface of the microshell andtx is the proper
time of the microshell. Then, on multiplying Eq.~2.3! by
m/2 one will obtain the equation of motion for a microshe
in the form of an effective Hamiltonian constraint:

Hm[
1

2
mS dx

dtx
D 2

1V50. ~2.4!

Sincem!M , we shall takeM .2M ,.m, which amounts to
dx/dtx.0 for large x (@RH) and is consistent with the

FIG. 1. The macroshell structure.
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choice of having the microshells confined within the thic
nessd at large radius. With this assumption bothM . and
M , become functions of the microshell distribution$r i ,Mi%
only, but the evaluation ofV remains extremely involved
because one should first determine the most likely se
2(N21) values$r i ,Mi%.

One can get an approximate expression forV by making
careful use of the thin shell limit (d!r 1) and considering the
form of the potential whenx,r 1 or x.r 11d. In this case, if
we denote byX the ~average! radius of the macroshell o
proper massM2m, we can also supplement Eq.~2.3! with
the analogous expression for the macroshell. Forx,X @see
case~1! in Fig. 2# one then has

S dx

dt D 2

5
Gm

x
1

G2m2

4x2 [F,~x!,

S dX

dt D 2

5211S Ms2m

M2m D 2

1G
Ms1m

X

1G2
~M2m!2

4X2 [F,~X!, ~2.5!

where we have equated the proper times of the two shell
agreement with our choice of foliating the space-time in
spatial slicesSt parametrized by the local time of the m
croshells. Analogously, forX,x @see case~2! in Fig. 2#

S dx

dt D 2

5G
2Ms2m

x
1

G2m2

4x2 [F.~x!,

S dX

dt D 2

5211S Ms2m

M2m D 2

1G
Ms2m

X

1G2
~M2m!2

4X2 [F.~X!. ~2.6!

One is now ready to define the relative and center-mass
dius according to

FIG. 2. The equivalent configuration when the microshell l
outside the macroshell:~1! x,X; ~2! X,x.
2-4
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GRAVITATIONAL COLLAPSE OF A RADIATING SHELL PHYSICAL REVIEW D 64 104012
r̄[x2X,

R[
m

M
x1

m

M
X, ~2.7!

wherem[m(M2m)/M is the reduced mass of the syste
The above relations can then be inverted and, upon su
tuting into Eqs. ~2.5! and ~2.6!, one obtains an effective
Hamiltonian for the two shells given by

H (t)5
1

2
M S dR

dt D 2

1
1

2
mS dr̄

dt
D 2

1V(t)[HM
(t)1Hm

(t) .

~2.8!

The potential contains the following relevant terms:

Vm
(t)5

GMsm

2R

r̄

R
35 S 12

GM2

2RMs
D , r̄ .1

d

2
,

S 212
GM2

2RMs
D , r̄ ,2

d

2
,

~2.9!

where we have also assumedm!Ms (<M ) and neglected
all nonleading terms inm. The assumptionMs@m, although
it is not guaranteeda priori, has been done here just for th
purpose of simplifying the displayed expressions. Howev
we shall show in Sec. III D that it actually holds true a
along the collapse in all the cases of interest.

At this point, one can use the external potential to sh
the distribution of microshells inside the macroshell and c
struct the potentialV(t) for u r̄ u,d/2 ~see Appendix A for an
explicit calculation in the NR!. By expanding the latter po
tential in powers ofd/R and neglecting terms of orde
(d/R)2 or higher, one finally obtains an effective Ham
tonian for each microshell,

Hm
(t)5

1

2
mS dr̄

dt
D 2

1Vm
(t) , ~2.10!

FIG. 3. The potential V(t) for M51040mh , R54RH

510213 m, d; l h510216 m, 2d, r̄ ,d, and 1<M /Ms<5.
Vertical units are arbitrary.
10401
.
ti-

r,

e
-

with a potential function which interpolates smoothly2 be-
tween the two linear inr̄ ~outer! parts of the potential given
by Vm

(t) in Eq. ~2.9!,

Vm
(t)5

GMsm

2R2 S r̄ 2

d
1

d

4
D 2

G2M2m

4R3 r̄ , u r̄ u<
d

2
.

~2.11!

We then observe that forR@RH;2GM the term linear inr̄
is negligible and the potential is thus symmetric around
average radius of the macroshell, but forMs,M it becomes
steeper forr̄ ,0 and flattens out forr̄ .0 ~see Fig. 3 for the
case ofN51040 protons andd of the order of the Compton
wavelengthl h of the proton!. The same effect happens fo
decreasing values of the average radius at fixed ratioM /Ms
~see Figs. 4 and 5; note that, for this choice ofM, the poten-
tial confines all the way down toRH).

For a comparison with the case when the space-tim
foliated into slicesS t parametrized by the Schwarzschi
time t` measured by a~distant! static observer we refer to
Appendix B. There we show how to obtain the relevant p
tential Vm

(t) as an expansion in powers ofG. Then, sinceVm
(t)

contains terms of all orders inG, while Vm
(t) goes only up to

O(G2), this comparison clearly confirms that perturbati
methods cannot always be trusted when dealing with str
gravitational fields or, if we wish, the disadvantage of usi
the Schwarzschild rather than proper time. In the same
pendix we show that, if one takes this shell limit ofVm

(t) and
then changes to the Schwarzschild time multiplying
(dt/dt`)2, one recovers the thin shell limit ofVm

(t) in the NR.
This means that the two steps of introducing a potential
taking the thin shell limit commute~as expected! in the NR.

For R@RH and M;Ms , the potentialVm is symmetric
around r̄ 50. This confines the microshells within the fo

2We assume there is no discontinuity experienced by the test
croshell when it crosses the borders of the macroshell and eq
the first derivative of the quadratic potential with the first derivati

of the linear potential atu r̄ u5d/2.

FIG. 4. The potential V(t) for M5Ms51040mh , d; l h

510216 m, 2d, r̄ ,d, andRH,R,2RH . Vertical units are ar-
bitrary.
2-5
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lowing thickness@9# ~see also Appendix C for more detai
on the spectrum of bound states!:

d;
l m

~2N!1/3S R

l p
D 2/3

; l m
2/3R1/3S R

RH
D 1/3

, ~2.12!

wherel m5\/m is the Compton wavelength of a microshe
For R close toRH or smaller ratios ofMs /M the potential
twists ~see Figs. 5 and 3! and, eventually, ceases to confin
the microshells on the outside if the macroshell shrinks
low the gravitational radius@see Eq.~C14!#. We further note
that the spreads of the lowest wave functions are also
order d; thus the bosonic microshells are essentially sup
imposed and form a condensate, and hence some clas
singular behavior, such as microshell crossings, does no
cur.

Let us now summarize what we have done in sim
quantum mechanical terms. Since we are considering w
functions, we have viewed each microshell as immersed
continuous matter distribution, corresponding to the me
field of the others, which are then treated as a~wide! single
shell ~Hartree approximation or independent partic
model—see also the Thomas-Fermi model of the at
@32,9#!. Then we noted that, inside the macroshell, a m
croshell can undergo small displacements (d/R is small!
about equilibrium, which will be harmonic, and on requirin
continuity with the potential outside the shell one obtains E
~2.11!. Further, since in the context of our Hartree appro
mation the total wave function is just the product of t
individual ones,3 it will be sufficient in what follows to just
exhibit the Lagrangian and Hamiltonian for a given m
croshell.

III. THE RADIATION AND BACK REACTION

In this section we use the description of the macroshel
given in Sec. II and add the coupling to an external radiat

3Let us also remember that the many-boson wave function is s
metric.

FIG. 5. The potential V(t) for M5Ms51040mh , d; l h

510216 m, 2d, r̄ ,d, andRH/4,R,RH/2. Vertical units are ar-
bitrary.
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field. This will allow the shell to radiate away any excess
the proper energy induced by the nonadiabaticity of the c
lapse, as outlined in the Introduction.

Our aim is to evaluate the flux of emitted radiation, whi
will determineMs5Ms(t), and the corresponding back re
action on the trajectoryR5R(t). We shall first estimate the
nonadiabatic amplitude of excitation and, subsequently, g
a purely quantum mechanical~coherent! treatment of the en-
tire process of excitation and emission by coupling explici
the microshell modesFn to the radiation field. The outcom
will be a set of two coupled ordinary differential equatio
~for R andMs) which we shall solve numerically.

A. The excitation amplitude

From the previous section we know that the microshe
are governed by the Schro¨dinger equation~see also Appen-
dix C!

i\
]Fs

]t
5Ĥm

(t)Fs ~3.1!

with

Ĥm
(t)5

p̂ r
2

2m
1Vm

(t) , ~3.2!

whereVm
(t) is given in Eq.~2.11! and has an explicit time

dependence due toR5R(t). This type of equation can be
solved by making use of invariant operatorsÎ 5 Î (t) that
satisfy @33#

i\
] Î

]t
1@ Î ,Ĥm

(t)#50. ~3.3!

The general solutionFs5Fs(t) can then be written in the
form

uF,t,& Is5(
n

cneiwnun,t& I , ~3.4!

where un,t& I is an eigenvector ofÎ with time-independent
eigenvalueln and thecn are complex coefficients. We als
recall that the phasewn5wn(t) is given by the sum of the
geometrical and dynamical phases,

wn5
i

\Et0

t

I^n,t8u\]t81 iĤ m
(t)un,t8& Idt8. ~3.5!

The Hamiltonian in Eq.~3.1! describes a harmonic oscillato
of fixed massm and variable frequency

V5
1

R
ARH

2d
. ~3.6!

Hence, one can introduce standard annihilation and crea
operatorsâ and â†,
-

2-6
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â5AmV

2\
S r̄ 1

i p̂ r

mV
D , ~3.7!

with @ â,â†#51 and define the vacuum state as

âu0,t&a50. ~3.8!

A complete set of eigenstatesA5$un,t&a% is then given by

un,t&a5
~ â†!n

An!
u0,t&a , ~3.9!

where

âun,t&a5Anun21,t&a

â†un,t&a5An11un11,t&a .
~3.10!

The solutions of the corresponding time-independent pr
lem obtained by assumingR constant and displayed in Ap
pendix C are here recovered asFn

(2)( r̄ )5^ r̄ un,0&a .
One can also introduce the linear~non-Hermitian! annihi-

lation and creation invariantsb̂ and b̂† @33,34#,

b̂5
1

A2\
F r̄

x
1 i ~xp̂ r2mẋr̄ !G , ~3.11!

where@ b̂,b̂†#51 and the functionx5x(t) is a solution of4

ẍ1V2x5
1

m2x3 ~3.12!

with suitable initial conditions. The system then admits
invariant ground state defined by

b̂u0,t&b50, ~3.13!

from which one can build a basis of invariant eigenstateB
5$un,t&b%,

un,t&bs[eiwn
~ b̂†!n

An!
u0,t&b5eiwnun,t&b , ~3.14!

where

b̂un,t&b5Anun21,t&b

b̂†un,t&b5An11un11,t&b .
~3.15!

We can then introduce the invariant number operator~in
analogy with the standard number operatorâ†â)

4An overdot denotes derivative with respect tot throughout the
paper.
10401
-

n

Î c5b̂†b̂. ~3.16!

The two basesA and B are related by Bogoliubov coeffi
cients according to

â5B* b̂1A* b̂†

â†5Bb̂†1Ab̂
⇔

b̂5Bâ2A* â†

b̂†5B* â†2Aâ,
~3.17!

where

A5
1

2
AmVF S x2

1

mVxD2 i
ẋ

V
G ,

B5
1

2
AmVF S x1

1

mVxD2 i
ẋ

V
G .

~3.18!

Further,A andB will coincide att50 if

b̂~0!5â~0!⇒\VS Î c~0!1
1

2D5Ĥm~0!, ~3.19!

that isA(0)50 andB(0)51, which means that for the func
tion x we must require

x~0!5
1

AmV~0!
,

ẋ~0!50. ~3.20!

SinceV̇;Ṙ andṘ(0).0, an approximate solution to Eq
~3.12! compatible with the initial conditions in Eq.~3.20! is
given by

x.
1

AmV
⇒ ẋ.2

V̇

2AmV3
, ~3.21!

providedt is sufficiently short so thatẍ is negligible. The
corresponding Bogoliubov coefficients are then given by

A.2
i V̇

4V2
, B.11A, ~3.22!

and satisfy the unitarity condition

uBu22uAu251. ~3.23!

The amplitude of the transition from stateF0 to Fn after
time t>0 can easily be computed. In particular, one fin
@33#
2-7
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A0→2n~t!5 a^2n,tu0,t&b

5
1

AB
S A*

B D n A~2n!!

2nn!
, ~3.24!

A0→2n11~t!5 a^2n11,tu0,t&b50.
~3.25!

To leading order inuAu ~i.e., V̇;Ṙ), one then hasA0→0(t)
.1 and the amplitude of the transition to the excited st
with energyE2n5E012n\V is

A0→2n~t!. i n
A~2n!!

23nn!

V̇n~t!

V2n~t!

5~2 i !n
A~2n!!

3n2n/2n!
S d

RH
D n/2

Ṙn~t!, ~3.26!

where we have assumedRH52GMs remains constant in the
interval (0,t). The relevant expression for us is thus given
Eq. ~3.26!, in which we recall thatṘ,0. We also remark tha
the above transition amplitude follows as both a nonadiab
effect ~since A0→2n}Ṙn) and a consequence of the fini
thickness of the macroshell~since A0→2n}dn/2), the latter
being further related to the quantum mechanical nature of
bound states~sinced}\2/3).

An order of magnitude estimate for the most proba
transition (2n52) can be obtained by settingṘ2;GMs /R
and using Eq.~2.12!, in which case

uA0→2~R,N!u2<uA0→2~RH!u2;S l m

l p
D 4/3 1

N2/3
, ~3.27!

where we also approximatedMs asNm in order to obtain a
function of just the numberN of microshells. Further, one
can also check that the above probability is less than
and, for realistic cases, quite small~we shall exhibit this
later!. This implies that the probability for a microshell to g
excited a second time~after it has radiated away the energ
E2 once; see Sec. III B! is negligible and, considering als
that the emission probability is small, we shall not consid
double emission. We further note that, as expected, the la
is RH the smaller the ‘‘tidal’’ effects and the excitation am
plitude.

B. The „thermal… radiation

The problem of coupling a radiation field in the form of
conformal scalar field to collapsing matter was previou
treated in Ref.@5# ~see also Ref.@6#! for the case of a col-
lapsing sphere of dust, for which we recovered the Hawk
temperature in a suitable approximation. For the present s
ation, we shall find it more convenient to use the analo
with an accelerated observer in flat space-time as put forw
in Ref. @35#.

The basic observation is that, if the proper mass or
ADM mass ~or both! varies with time, the collapse of th
10401
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shell is not a free fall. This can be seen very easily by not
that the solutions to the equation of motion~2.3! whenM .

and/orm depend on time differ from the case when the sa
parameters are constant. Alternatively, one can use the
ond junction condition@28# to compute the surface tensionP
of the shell. As we have shown in Sec. III A, the proper ma
M of the shell increases in time; therefore, although o
choice of initial conditions forR, M and Ms is such that
P(0)50, the tension subsequently increases whenM in-
creases. The tension then slows down the collapse@9#, and
this effect should be further sustained by the emission@13#,
which very quickly brings the proper mass back to the init
value. As we outlined in the Introduction, we shall then co
siderM as effectively constant along the collapse and co
pute the net variation ofMs in time.

Let us denote by

a5R̈2R̈free ~3.28!

the difference between the actual accelerationR̈ of the shell
and that of a freely falling body,R̈free, having the same ra
dial positionR and proper velocityṘ. Of course,a would
equal the surface gravity,

aH5
1

4GMs
, ~3.29!

of a black hole of massMs for R5RH constant. In this
limiting case, one could exploit the analogy between Rind
coordinates for an accelerated observer in flat space-time
Schwarzschild coordinates for static observers in a bl
hole background@15# and find that the shell emits the exce
energy with the Hawking temperature

TH5
\aH

2pkB
, ~3.30!

wherekB is the Boltzmann constant~an explicit construction
that leads to this result was proposed in Ref.@5#!. In general,
however, the effective accelerationa will have no a priori
fixed relation withMs and one should keep it as an indepe
dent function oft to be determined later consistently wit
the equation of motion of the shell. It is also clear th
should Ṙ turn out to be constant,a will correspond to the
acceleration associated with the instantaneous ADM m
and distance from the horizon.

We then consider an isotropic massless scalar fieldw con-
formally coupled to gravity@15# and to the microshells. The
Lagrangian density for a given microshell and the radiat
field is given by

L51
1

r 2(
n>0

F i\

2
~Fn* Ḟn2Ḟn* Fn!2

\2

2m

]Fn*

]r

]Fn

]r

2Vm
(t)Fn* Fn2e(

lÞn
Fn* F lwG2F]mw]mw1

1

6
Rw2G ,

~3.31!
2-8
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GRAVITATIONAL COLLAPSE OF A RADIATING SHELL PHYSICAL REVIEW D 64 104012
where R is the curvature scalar andVm
(t) is the potential

given by Eqs.~2.9! and ~2.11!. The last term in the first
square brackets represents minus the interacting Hamilto
H int with e the coupling constant of the radiation to a m
croshell, while the wave functions of the latter are expres
in terms of the states found in Appendix C asFn /r , where
we exhibit the energy levels (n>0) so that the form of the
interaction can be chosen in such a way that—to low
order—it just contributes to the transition between differe
levels and does not modify the macroshell ground state
ergy. Further, the factor of (1/r ) comes from the normaliza
tion measure now beingr 2dr. In fact, in the thin shell limit it
is consistent to approximate the metric on the shell with
outer Vaidya line element@36,37#. Let us again note that we
have just exhibited the Lagrangian for a given microsh
since in the Hartree approximation the total wave function
just the product of the individual ones.5

Another important observation comes into play at t
point. In Sec. III A we computed the~nonvanishing! transi-
tion amplitudesA0→2n to lowest order inṘ, that is,O(Ṙ)
@see Eq.~3.26!#, with M andMs held constant. Therefore, i
order to determine the flux of radiation to lowest order inṘ,
it is sufficient to compute the probability of emission
O(Ṙ0) with M andMs constant. In this approximation (Ms
constant!, the Vaidya metric reduces to the Schwarzsch
metric, so that the relevant four-dimensional measure of
tegration is

A2gd4x.r 2 sin2 ududfdrdt, ~3.32!

where t is the Schwarzschild time measured by a static
server~denoted byt` in previous sections!,

t;
t

A12RH /R
. ~3.33!
on

10401
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Finally, since the functionsFn are spherically symmetric an
peaked nearr 5R(t), it is convenient to integrate over th
angular coordinates and write

A2gd4x54p~R1 r̄ !2dr̄dt, ~3.34!

where r̄ is the relative radial coordinate andR5R(t) is the
trajectory of the macroshell as before.

After the lapse of proper timet, each microshell will
jump into the excited state of energyE2n5E012n\V with
a transition amplitudeA0→2n(t). Subsequently, it can deca
back to the ground state by emitting a quantum of energy\v
~having a wavelength much larger than the shell thickne
see Table I! of the scalar field. We shall see later that t
macroshell velocity is small and the emissions are numero
As a consequence, the distance covered between each
sion is small with respect to the wavelength and therefore
emitted radiation will be coherent.

Let us now estimate, using first order perturbation the
in e, the transition amplitude for the emission of quanta
the scalar field, which will occur when the microshells in t
stateF2n decay back to the ground stateF0, for the interval
between the timest1[t(t1) and t2[t(t2) (0,t1,t2). It
will be given by

TABLE I. Typical values of the relevant quantities resultin
from the numerical analysis forN5231040 microshells@RH(0)
.4310212 cm#. Nd is the average number of emissions while t
shell radius shrinks a spaced.

Radiation wavelengthl 10210–1027 cm

d/l 1023–1021

Ṙ 1023–1022

Total number of emissions 1039

Nd 1035–1036

Total emitted energy 5% ofMs(0)
2
i

\Et1

t2
dt^final u Ĥ intu initial& 52

ie

\ (
i 51

N E
t1

t2
dt^1v ;tuŵu0;t1&)

j 51

N

^ j ,0;tu (
n>0

(
lÞn

F̂ i ,n* F̂ i ,l (
s>0

)
r 51

N

ur ,s;t,&^r ,s;tur ,0;0&

.2
4p ie

\ (
i 51

N E
t1

t2
dtE dr̄ iF0~ r̄ i !F2~ r̄ i !Ai ,0→2~ t,0!e22iVt^1vuŵ~R1 r̄ i ,t !u0&, ~3.35!
an

d,
ion
where ^ i ,n;tu i ,0;0&5Ai ,0→n(t) is the excitation amplitude
~for the i th microshell! which, as computed in Sec. III A, is

5Of course, both the total and the single particle wave functi
are normalized to unity.
dominated by the contribution withn52, and for the photon
stateu0& we consider the Unruh vacuum, corresponding to
outgoing flux of radiation@15#. This of course implies thata
is nonzero; indeed we shall actually find thata;2R̈free

~sinceR̈.0), consistently with our choice of vacuum, an
near the horizon, the flux corresponds to Hawking radiat

s
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~see Ref.@38# for a detailed discussion of the analogy b
tween Schwarzschild and Rindler spaces!. Let us further note
that, although a black hole is only close to being formed, i
generally accepted that it is the Unruh vacuum that best
ed

10401
s
p-

proximates the state that would be formed following the c
lapse of a massive body@15#.

On taking the modulus squared of Eq.~3.35!, one obtains
the transition probability
P~2V;t2 ,t1!.
16p2e2

\2 (
i 51

N

(
j 51

N E
t1

t2
dt9E

t1

t2
dt8E dr̄ i9E dr̄ j8Ai ,0→29 Aj ,0→28 e2 i2(V9t92V8t8)F0~ r̄ i9!F2~ r̄ i9!F2~ r̄ j8!F0~ r̄ j8!

3^0uŵ~R91 r̄ i9 ,t9!ŵ~R81 r̄ j8 ,t8!u0&, ~3.36!
e

hat

is
of

ch

in
whereX8[X(t8), X9[X(t9) for any function of time, and
the last term is the Wightman function for the scalar fieldw.

The four-dimensional Wightman function can be relat
to its two-dimensional counterpartDu

1 @15# through

^0uŵ~R91 r̄ i9 ,t9!ŵ~R81 r̄ j8 ,t8!u0&

5
Du

1~R91 r̄ i9 ,t9;R81 r̄ j8 ,t8!

4p~R91 r̄ i9!~R81 r̄ j8!

52
\

16p2

ln@~Dv i j 2 i e!~Dūi j 2 i e!#

~R91 r̄ i9!~R81 r̄ j8!
,

~3.37!

where, of course, we only considers waves and

Dv i j 5t92t81~R91 r̄ i9!* 2~R81 r̄ j8!*

.Dt1
R̄~DR1D r̄ i j !

R̄2RH

. ~3.38!

In the abover * 5r 1RH ln@(r/RH)21# is the turtle coordinate
@29#. We also setDt5t92t8 ~similarly for DR and D r̄ ), R̄

5(R91R8)/2, and assumedR̄2RH@uDRu, uD r̄ i j u5u r̄ i

2 r̄ j u. Further,

Dūi j 522RHH expF2
t92~R91 r̄ i9!*

2RH
G

2expF2
t82~R81 r̄ j8!*

2RH
G J

.2RH expS R̄* 2T2t1

2RH
D

3H expF 1

2RH
S Dt

2
2

R̄~ r̄ i81DR/2!

R̄2RH
D G

2expF 1

2RH
S R̄~ r̄ j91DR/2!

R̄2RH

2
Dt

2 D G J , ~3.39!

whereT5(t81t9)/22t1 and we have performed the sam
approximation as we used in obtaining Eq.~3.38!.

The above expressions can be simplified on noting t
one expectsDt@d,DR(5ṘDtA12RH /R) corresponding to
the fact that the wavelength of the emitted scalar quantum
much greater than the width of the shell and the velocity
the shell sufficiently small so that it is not displaced mu
between one emission and the next~see Table I!. One then
obtains for Eqs.~3.38! and ~3.39! respectively

Dv.Dt, ~3.40!

Dū.2RH expS R̄* 2T2t1

2RH
D FexpS Dt

4RH
D2expS 2

Dt

4RH
D G

54RH expS R̄* 2T2t1

2RH
D sinhS Dt

4RH
D . ~3.41!

On introducingL5t22t1, expressing Eq.~3.36! in terms of
T and Dt, and approximating the integration measure as
Eqs.~3.40! and ~3.41! with

R85R~T!2Ṙ~T!A12RH /R~Dt/2!,

R95R~T!1Ṙ~T!A12RH /R~Dt/2!,
~3.42!

andR(T)5R̄, one obtains, to leading order inṘ,
2-10
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P~2V;t1 ,L !.N2
e2\

2m2E
0

L

dT
uA0→2u2

R6V2 E
2L

1L

d~Dt !e2 i2VA12RH /RDtlnF4RHe(R
*

2T2t1)/2RH~Dt2 i e!sinhS Dt

4RH
2 i e D G

.N2
e2\

2m2E
0

L

dT
uA0→2u2

R6V2 E
2L

1L

d~Dt !e2 i2VA12RH /RDt
~2 i !

2VA12RH /R
F 1

Dt2 i e
1

1

4RH
cothS Dt

4RH
2 i e D G

~3.43!
-
-
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with L5L22uT2L/2u. In the above, we approximatedt9
2t8.DtA12RH /R according to Eqs.~3.33! and the last
equality follows from integration by parts inDt ~neglecting
boundary terms!.

The integral~3.43! can be computed by analytic continu
ation in the complexDt plane in which, upon using the for
mula

coth~px!5
1

px
2 i

x

p (
0Þn52`

1`
1

n~x2 in !
, ~3.44!

one finds the poles

Dtn54pniRH ~3.45!

for any integer value ofn. ForV.0 ~corresponding to emis
sion! the contour of integration can be closed along an ar
the lower half plane and we get

P~2V;t1 ,L !.N2
pe2\

2m2 E
0

L dTuA0→2u2

R6V3A12RH /R

3 (
n51

NL

e28npVRHA12RH /R1PL , ~3.46!

whereNL is the maximum value ofn for which the poleDtn
lies within the contour of integration andPL is the contribu-
tion from the arc.

If NL is sufficiently large, thenPL can be neglected,

(
n51

NL

e28npVRHA12RH /R;
1

e2\V/kBT21
, ~3.47!

and one recovers the Planck distribution with~instantaneous!
temperature

T5
TH

A12RH /R
. ~3.48!

In general, however, one expects that the timeL is not long
enough and nonthermal contributions will render the eva
ation of the probability of emission very complicated. O
should then divide the time of collapse into small interv
and compute all the relevant quantities step by step. T
procedure can be simplified by employing an approximat
introduced in order to follow a trajectory@35# and which
amounts to estimating the probability of emission per u
time at a given value oft ~or t) as
10401
n

-

is
n

it

dP~V;t !

dL
;

pe2\

2m2

N2uA0→2u2

R6V3A12RH /R

1

e2\V/kBT21
,

~3.49!

in which all time-dependent quantities must be evaluated
the same timet and the right hand side is to lowest order
Ṙ.

We finally recall that in Ref.@5# we proposed that the
finite thickness of the macroshell could provide a solution
the problem of ultra-Planckian frequencies. In fact, ifv* is
the frequency of the emitted quanta as measured by a dis
observer, a fixed observer located near the point of emis
at r 5R will instead measure a blueshifted frequency

v5S 12
RH

R D 21/2

v* , ~3.50!

and this expression clearly givesv.1/l p for R sufficiently
close toRH . In order to probe these modes, one should us
detector localized in a region smaller thanv21; l p , or, al-
ternatively, one expects that the spreadd of the wave func-
tionsFn should be less thanl p for our collapsing microshells
to couple with conformal quanta of ultra-Planckian energi
However, as we have shown in Refs.@39,5#, taking d/ l p
→0 decouples the emitter from the radiation and ult
Planckian frequencies are not excited~for a similar argument
against ultra-Planckian frequencies, see Ref.@40#!.

C. The flux

It is now straightforward to estimate the total flux of em
ted radiation~the luminosity! as a function of time. In par-
ticular, the rate of proper energy lost by the macroshell
unit ~Schwarzschild! time of a static observer placed at larg
r is given by

dE

dt
52A(

v
m~v!G~v!\v

dP~v;t !

dL
, ~3.51!

whereA54pR2 is the surface area of the shell,m(v)5(1
2RH /R)3/2v2 the phase space measure for photons of
quencyv ~measured at the shell positionr 5R), G;1 the
gray-body factor for zero angular momentum outgoing sca
waves@41# and the last factor is obtained from the appro
mation ~3.49!. The sum in Eq.~3.51! is dominated by the
contribution withv52V and one obtains
2-11
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FIG. 6. Trajectories of the radiating shellR5R(t) in units ofRH(0) with N5231040 and four values of the coupling constanta ~upper
curves! compared to the nonradiating collapse~lower curves!. All trajectories are evolved fromR(0)51000RH(0). The timet, in all plots,
is expressed in units of 2310238N GeV21 with \5c51 anda051.6310233.
re-
re-

s

ve
or-
the

ntly
se
er-
dE

dt
.2

16p2e2

9

N2l m
2

R4 S d

RH
D S 12

RH

R D Ṙ2

e2VA12RH /R/kBTH21
.

~3.52!

We can now substitute the expressions~3.6! for V and~2.12!
for d and ~minus! the flux becomes

dE

dt
.2

16p2e2

9

N2l m
8/3

R10/3RH
4/3S 12

RH

R D Ṙ2

e2VA12RH /R/kBTH21
.

~3.53!

We note that, forR close toRH the Boltzmann exponent is
very small~because of the Tolman factor!. Upon expanding
the exponent and keeping the leading order inR2RH we
obtain

dE

dt
;2e2

N2

R2S l m

RH
D 3S 12

RH

R D 1/2

Ṙ2. ~3.54!

The flux should therefore vanish forR→RH
1 and, on com-

paring with the general relation given in Ref.@13#,

dE

dt
5

ṘH

2G

A12RH /R1Ṙ22Ṙ

A12RH /R1Ṙ2
.

ṘH

2G
, ~3.55!

one obtains, in the limit forR close toRH ,
10401
ṘH;2e2G
N2

R2S l m

RH
D 3S 12

RH

R D 1/2

Ṙ2. ~3.56!

Were one to trust the above expression, one should then
quire that the energy-momentum tensor of the radiation
main locally finite when the shell approaches the surfaceR
5RH

1 . This amounts to the condition@42#

ṘH;S 12
RH

R D g

with g>1. ~3.57!

Since the quantityB;1 nearRH , Eq. ~3.55! would lead to
the conclusion that the velocity of the macroshell satisfie

Ṙ2;S 12
RH

R D b

with b>
1

2
, ~3.58!

which means that the proper velocityṘ should vanish at the
horizon. Of course, the number of approximations we ha
employed does not allow one to consider the above a rig
ous argument, but just a suggestive result. In particular, if
emission near the horizon is not thermal@NL in Eq. ~3.47! is
small and just a few of the poles are included#, the flux
satisfies the condition~3.57! for any finite value ofṘ, the
back reaction is reduced, and our results are significa
modified only very close to the horizon where in any ca
our approximations break down. Indeed, we are able to p
2-12
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FIG. 7. Behavior of the gravitational radius for the radiating shell trajectories in Fig. 6.
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form the analysis only forR greater than a few timesRH and,
in all the cases we consider, the microshells are confi
with d!RH .

D. The trajectory

One can now numerically integrate the equation of mot
for the radius of the shell,

Ṙ25211
RH

2

~2GM!2 1
RH

2R
1

G2M2

4R2 , ~3.59!

together with Eq.~3.55! for RH ,

ṘH.2
128p3

9
a

GN2l m
8/3

R10/3RH
4/3S 12

RH

R D Ṙ2

e2VA12RH /R/kBTH21
,

~3.60!

wherea[e2/4p.
Given our construction, the trajectories depend on the

rametersN, a and the initial conditionR(0). In general,
one finds that the nonadiabatic excitations occur relativ
close to the horizon and there is no strong dependence o
initial value of R. In Fig. 6 we display the comparison be
tween the trajectories computed from the above equati
with N5231040 and various values ofa, and that with con-
stant Ms5M ~see also Table I!. Owing to our approxima-
10401
d

n

a-

ly
the

s,

tions, we are not able to display any reliable results asR gets
close toRH . The behavior ofRH is shown in Fig. 7.

IncreasingN requires an increase ina in order to preserve
the difference between the radiating and the nonradiating
jectories~see Fig. 8 for a tenfold increase inN with respect
to Fig. 6!. In fact, from Eq.~3.60!, on settingR;RH}Nm
one finds~apart from dimensional constants!

ṘH}
a

N8/3m22/3
, ~3.61!

which gives an estimate of how the effect scales with resp
to the number of microshells, their massm and the radiation
coupling constant.

In Fig. 9 we plot the velocityṘ of the collapsing shell
~together with the velocity of the corresponding nonradiat
shell! for two relevant cases. It is clear thatṘ remains~nega-
tive and! small ~within a few percent of the speed of light!,
thus supporting our approximation scheme within which
just retain the lowest order inṘ. In Fig. 10 the wavelength o
emitted radiation quanta is plotted as a function of time
order to show that it remains larger thand ~as given in Table
I!.

Finally, we have also checked that on replacing the Bo
Einstein factor in Eq.~3.60! with the sum of just a few poles
2-13
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FIG. 8. Trajectories of the radiating shell withN5231041 and two values of the coupling constanta ~upper curves! compared to the
nonradiating collapse~lower curves!.
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@see Eq.~3.47!# the evolution of the system is not substa
tially changed~only the back reaction is somewhat reduce!.

IV. CONCLUSIONS

In this paper we have analyzed the gravitational colla
~in the semiclassical approximation! of a macroshell built up
of a ~large! number of bosonic microshells (s-wave par-
ticles!. Starting from the classical equations of motion, w
obtained the potential and an effective Schro¨dinger equation
for each microshell. The potential appearing in this equat
ensures that the thickness of the macroshell does not incr
significantly for a long enough piece of the trajectory, th
allowing one to take the thin shell limit at some point in t
calculations. The time dependence of the potential lead
the nonadiabatic excitations~which we computed to leading
order in the velocity of the macroshell! of the microshell
bound states. On coupling the microshells to a scalar ra
tion field, we showed that the increase of kinetic energy
be radiated away and the emitted radiation is approxima
thermal with a temperature given by the Tolman shifted
stantaneous Hawking temperature~whether this mechanism
can be related to the Hawking effect is a point that requ
further study!.
10401
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to
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-

s

The effect is intrinsically quantum mechanical, since it
a consequence of the quantum mechanical-bound state n
of the macroshell and the coherence of the emitted radiat
This can cause the shell to lose enough energy so tha
back reaction on the trajectory of the radius is large. F
instance, for the case presented, the shell approaches
gravitational radius in a time that is more than an order
magnitude longer than the time a nonradiating shell wo
take to cross the horizon, and loses about 5% of its AD
mass as a burst of radiation~which is suggestive of the ob
served gamma-ray bursts@43#!. One may also wonder at thi
point whether it is possible for the collapsing matter to p
duce enough radiation to reduce the energy of the shell s
to prevent the formation of an event horizon. Thus, if t
ADM mass decreased fast enough, the shell itself wo
never reach the gravitational radius; unfortunately, our
proximations become unreliable as it is approached.

The model we have proposed clearly hinges on the
mation of a condensate. Let us give some arguments in fa
of this: of relevance for the latter is the fraction of m
croshells ~particles! not in the condensate~ground state!.
This fraction is related to (T/Tc)

n, whereTc is the critical
temperature for Bose-Einstein condensation and the~posi-
tive! exponentn depends on the confining potential and t
g
FIG. 9. Velocity of the radiating shell for the fourth case of Fig. 6 and second case of Fig. 8~upper curves! compared to the nonradiatin
collapse~lower curves!.
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FIG. 10. Wavelengthl of the emitted quanta and ratiol/d for the fourth case of Fig. 6.
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dimensionality of the system.6 For our case of about 1040

particles and on settingT5TH ~Hawking temperature! one
has thatTH /Tc,10210 which renders our description i
terms of a condensate plausible.

Naturally, the relevance of our bosonic model for gravi
tional collapse which is expected to involve ordinary inc
herent matter may be questioned. Moreover, it is clear
fermionic microshells would lead, because of the Pauli
clusion principle, to a much wider macroshell with a loss
coherence. However, for a mixed fermion-boson system,
may just consider the bosonic part and apply our consid
ations to it since it will condensate in the lowest state. C
tainly, the presence of fermionic and/or incoherent ma
will reduce the effects we have illustrated. Nonetheless,
might even argue that an analogous phenomenon can ha
for all collapsing bosonic matter, including the bosonic fra
tion of accretion disks around black holes. Our result wo
thus suggest a new mechanism by which the accreting m
can emit radiation.
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APPENDIX A: MICROSHELL DISTRIBUTION AND
EFFECTIVE POTENTIAL IN THE NR

The NR for each microshell of rest massm starting at
large radius (r i@2GMs) with negligible initial velocity can
be obtained by settingM .2M ,5m and keeping terms up
to first order inG and to leading order inm in the effective
Hamiltonian constraint~2.4!. The total energy of the system
is thus given by the sum of the kinetic energies of all m
croshells and mutual interaction potential energies. The la
can be written, on introducing relative (r̄ i) and center-mass
~R! coordinates, as@9#

V~r 1 , . . . ,r N!52G
M2

2R
1G

m2

2R2 (
i , j

N

u r̄ i2 r̄ j u. ~A1!

6For example,n53/2 for a three-dimensional box andn53 for a
three-dimensional harmonic trap~for a review, see Ref.@44#!.
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Unfortunately, this potential does not allow for an analy
treatment of the complete problem; therefore we shall ap
an analogous procedure to that followed in Sec. II in orde
obtain a Schro¨dinger equation for each microshell in th
mean field of the others.

Let us first try with a configuration$r i ,Mi%hom in which
N21 microshells have equally spaced radiir i5r 11( i
21)d/(N21), so that Mi5m@(r i2r 1)(N21)/d11#.
Hence, the equation of motion~2.3! in the NR for theNth
microshell with radiusr 1,x,r N21 becomes

1

2
mS dx

dt D
2

.G
m2

x S N
x2r 1

d
11D , ~A2!

wheret[tx is the Newtonian time. Changing to the relativ
coordinatex̄5x2R, one obtains

Hm.
1

2
mS dx̄

dt
D 2

1G
mM

R

x̄

d
S x̄

R
21D , ~A3!

where we have usedux̄u!R and omitted all potential terms
that do not containx̄ ~they would just contribute to the
ground state energy in the Schro¨dinger equation!. It is clear
that the potential above forx̄56d/2 does not match
smoothly with the NR limit of the external potential given
Eq. ~2.9! because of the term linear inx̄. This means that the
configuration$r i ,Mi%hom is not stable. In fact, the minimum
of the potential is not at the originx̄50, and one then ex-
pects the microshells to move away from the above confi
ration.

In order to obtain an internal configuration compatib
with the external potential, let us assume a potential wit
minimum at x̄50 ~as is required by the symmetry of th
external potential! and consider small oscillations about th
equilibrium point. Such oscillations will be harmonic and th
potential to lowest order is given by

VNR5G
Mm

2R2d
~x2R!21C1 , ~A4!
2-15
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whereC1 is a constant. If we assumeMi 115Mi1m, for the
most likely configuration$r i ,Mi%, r i can be determined by
comparing the potentialVNR with the one obtained from the
NR limit of Eq. ~2.3!, to wit

VNR8 5G
m~m22Mi !

2x
1C2 , r i,x,r i 11 , ~A5!

whereC2 is another constant. On equating the potentialsVNR

and VNR8 in the limit x→r i
1 ~from above! and settingC

5C22C1, one obtains

2Mi2m5r i
1F 2C

Gm
2

M

R2d
~r i

12R!2G . ~A6!

Then, on definingr i 115r i1yi and subtracting the same e
pression forx→r i 11

1 , one has

2m52Mi 1122Mi

5
2C

Gm
yi1

Mr i
1

R2d
@~r i

12R!22~r i
11yi2R!2#

2
yiM

R2d
~r i

11yi2R!2

5
2C

Gm
yi2

yiM

R2d
@R224r i

1R13~r i
1!2

1yi~3r i
122R1yi !#. ~A7!

The first term on the right hand side corresponds to the
mogeneous distribution if the constantC5Gm2(N21)/d. In
general, however, the other terms cannot be neglected
that the microshells are not equally spaced. Further, thyi
can be computed recursively fori 51,2, . . . ,N22 on mak-
ing use of Eq.~A7! and the conditionr 1[R2d/2 ~which
determines the constantC). In any case, as we discuss
Appendix C, the actual quadratic or linear structure of
potential inside the macroshell has little influence on the
ergy levels of the lowest states.

APPENDIX B: SHELL DYNAMICS
IN SCHWARZSCHILD TIME

It is known that, even if two theories are classica
equivalent, their quantization may lead to different Hilbe
spaces and, therefore, different quantum pictures and
this problem is potentially present in Einstein’s gravity~see,
e.g., Ref.@30#!. It is thus interesting to compare the potent
Vm

(t) obtained in Sec. II with the one corresponding to a
liation of space-time into slices parametrized by t
Schwarzschild timet`[tN measured by a~distant! static ob-
server. Given this potential, one can~in principle! construct
the Hilbert spaceHt and compute any observable in order
check the equivalence ofHt andHt . Unfortunately, the form
of the potential we obtain in the following makes the expli
construction practically impossible.

First we observe that the proper time of the test shell
be expressed in terms of the inner and outer Schwarzsc
10401
o-

so

e
-

t
at

l
-

n
ild

times t, and t.[tx ~see Fig. 1! by making use of

dtx
25S 12

2GM,

x Ddt,
2 2S 12

2GM,

x D 21

dx2

5S 12
2GM.

x Ddt.
2 2S 12

2GM.

x D 21

dx2, ~B1!

which yields the ratio

S dt,

dt.
D 2

5
x22GM.

x22GM,
2

2x2G~M .2M ,!

~x22GM.!~x22GM,!2 S dx

dt.
D 2

,

~B2!

where, from Eq.~2.3!,

S dx

dt.
D 2

5
1

x

~x22GM.!2F~x!

x22GM.1xF~x!
. ~B3!

These expressions can be iterated for each microshell
radiusx,r i<r N and, together with~B1!, yield

S dtx

dt`
D 2

5F S 12
2GMx

x D
1S 12

2GMx

x D 21S dx

dtx
D 2G )

i 5x11

N F r i22GMi

r i22GMi 21

2
2r i

2G~Mi2Mi 21!

~r i22GMi !~r i22GMi 21!2 S dri

dti
D 2G

5F S 12
2GMx

x D
1

~x22GMx!F~x!

x22GMx1xF~x!G )
i 5x11

N F r i22GMi

r i22GMi 21

1
2r i

2G~Mi2Mi 21!~r i22GMi !F~r i !

~r i22GMi 21!2@r i22GMi1r iF~r i !#
G , ~B4!

wherer x11 is the radius of the first microshell having radiu
greater than that of the test shell and

F~r i !5211
~Mi2Mi 21!2

m2
1G

Mi1Mi 21

r i
1G2

m2

4r i
2 .

~B5!

On then multiplying Eq.~2.3! by m/2 and using Eq.~B4!,
one obtains the equation of motion for the microshell in t
form of an effective Hamiltonian constraint in the Schwarz
child time:

Hm
(t)[

1

2
mS dx

dtx
D 2S dtx

dt`
D 2

1V(t)50. ~B6!

The explicit form ofV(t) now depends on both the distribu
tion $r i ,Mi% of the microshells inside the macroshell and t
cumbersome time conversion factor in Eq.~B4!.
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Hence, we again rely on the thin shell limit (d!r 1) and
consider the form of the potential whenx,r 1 or x.r N . For
x,X one finds@see case~1! in Fig. 2#

S dx

dt`
D 2

5F12
2Gm

x
1

~x22Gm!F,~x!

x22Gm1xF,~x!GFX22GMs

X22Gm

1
2XG~Ms2m!~X22GMs!F,~X!

~X22Gm!2@X22GMs1XF,~X!#
GF,~x!,

S dX

dt`
D 2

5F12
2GMs

X
1

~X22GMs!F,~X!

X22GMs1XF,~X!GF,~X!.

~B7!

Analogously, forx.X @see case~2! in Fig. 2#

S dX

dt`
D 2

5F12
2G~Ms2m!

X
1

@X22G~Ms2m!#F.~X!

X22G~Ms2m!1XF.~X!G
3F x22GMs

x22G~Ms2m!

1
2xGm~x22GMs!F.~x!

@x22G~Ms2m!#2@x22GMs1xF.~x!#
GF.~X!
th

10401
S dx

dt`
D 2

5F12
2GMs

x
1

~x22GMs!F.~x!

x22GMs1xF.~x!GF.~x!,

~B8!

whereF, and F. have been given in Eqs.~2.5! and ~2.6!.
On introducing the relative (r̄ ) and center-mass~R! radii,
after some lengthy algebra one obtains an effective Ham
tonian for the two shells given by

H (t)5
1

2
M S dR

dt`
D 2

1
1

2
mS dr̄

dt`
D 2

1V(t)[HM
(t)1Hm

(t) ,

~B9!

where the potential can be expanded in powers ofG and r̄ /R
according to

V(t)5 (
n50

`

Gn(
k50

`

Vn,k~M ,m;Ms ;R!S r̄

R
D k

. ~B10!

Only the terms linear inr̄ /R are relevant for our calculation
and, to leading order inG, they are given by
V1,15
Msm

2R
35 S 4

Ms
2

M224
Ms

M
2816

M

Ms
16

M2

Ms
2 22

M3

Ms
3 2

M4

Ms
4D , r̄ .1

d

2
,

S 4
Ms

2

M2 21016
M2

Ms
2 2

M4

Ms
4D , r̄ ,2

d

2
,

~B11!
,
where we have again neglected nonleading terms inm.
On interpolating between the two terms given byV1,1 in

Eq. ~B11!, we obtain

Hm
(t)5

1

2
mS dr̄

dt`
D 2

1Vm
(t) , ~B12!

with the potential

Vm
(t)5G

Msmr̄2

2R2d
S 22

Ms

M
1113

M

Ms
2

M3

Ms
3D

1G
Msmr̄

2R2 S 4
Ms

2

M2 22
Ms

M
21813

M

Ms
16

M2

Ms
2 2

M3

Ms
3

2
M4

Ms
4D , ~B13!

which holds forur u,d/2 ~see Fig. 11!.
If we now take the thin shell limit ofVm

(t) only the linear
part V1,1 survives. We can then compare the result with
 e

corresponding linear part ofVm
(t) , as computed in Sec. II

using the Schwarzschild time, and then obtaining

Vm
(t)~ t !5Vm

(t)S dt

dt`
D 2

, ~B14!

FIG. 11. The potentialVm
(t) at orderG2 for M51040mh and d

5 l h510216 m. 1<M /Ms<2. Vertical units are arbitrary.
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where

S dt

dt`
D 2

5F12
2GMs

R
1

~R22GMs!F~R!

R22GMs1RF~R!G ~B15!

and

F~R!5211
Ms

2

M2 1G
Ms

R
1

G2M2

4R2 . ~B16!

This yields, to lowest order inG,

Vm
(t)~ t !.G

Msmu r̄ u

2R2 S 22
M2

Ms
2D , ~B17!

which coincides with the thin shell limit~i.e., linear part! of
Vm

(t) , Eq. ~B13!, for M5Ms . This shows that the effective
potential governing the motion of the microshells is the sa
in the NR for the two foliations$S t% and$St%.

APPENDIX C: MICROSHELL CONFINEMENT

We shall now show that the expression for the macros
thicknessd in Eq. ~2.12! can be obtained within the adiabat
approximation (R constant! in the NR by considering eithe
just the linear part of the potentialVm

(t) in Hm
(t) ~thus neglect-

ing the details of the distribution of the microshells! or just
the quadratic part~which is related to a given distribution o
microshells; see Appendix A!. From the HamiltonianHm

(t)

one can obtain a~time-independent! Schrödinger equation

F p̂ r
2

2m
1V( i )GFn5EnFn , ~C1!

wherep̂ r52 i\] r̄ and, on retaining the linear part, one h
(Nm[M5Ms)

V(1)5
GNm2

2R

u r̄ u
R

, ~C2!

or, on considering the quadratic term,

V(2)5
GNm2

2R2

r̄ 2

d
. ~C3!

Solutions to Eq.~C1! with V( i )5V(1) are given~apart from a
normalization factor! by the Airy function Ai @45#,

Fn
(1)5H Ai ~j2j2k!, n52k,

sgn~ r̄ !Ai ~j2j2k11!, n52k11,
~C4!

wherekPN and j[(2GNm3/\2R2)1/3r̄ . The j2k11 are the
zeros of the Airy function, Ai(2j2k11)50, andj2k the ze-
ros of its first derivative, Ai8(2j2k)50. The corresponding
eigenvalues are given by
10401
e

ll

En
(1)5mS Nlp

2

R2 D 2/3 jn

21/3
, ~C5!

and the spread of such states~for n small! is well approxi-
mated by Eq.~2.12!.

Solutions forV( i )5V(2) are given instead by the usua
harmonic oscillator wave functions~again we omit normal-
ization factors!,

Fn
(2)5Hn~z!e2z2

, ~C6!

wherez[(GNm3/2\2R2d)1/4r̄ andHn are Hermite polyno-
mials @45#. The energy eigenvalues are

En
(2)5A\Nm

2d

l p

RS n1
1

2D . ~C7!

If we now substitute the expression ford previously ob-
tained, we get the energy spectrum

En
(2)5mS Nlp

2

R2 D 2/3S n

21/3
1

1

24/3D , ~C8!

which is of the same order of magnitude as Eq.~C5!. Also,
the spread of suchFn

(2) for n small is again given by Eq
~2.12! ~see also Fig. 12! and we can therefore represent t
state of each microshell by using eitherFn

(1) or Fn
(2) .

It is also important to observe that the energy gap betw
two adjacent states,

DE;S Nlp
2

R2 D 2/3

m;S l mRH

R2 D 2/3

m, ~C9!

is much smaller thanm for R>RH , which suggests tha
outside the gravitational radius the effects considered in
present paper dominate over the microshell creation stu
in Ref. @9#.

We may also see the small difference between the ene
levels in the two cases by employing a WKB quantizati
@9#. Indeed if we require

R p rdr̄5m R rGdr̄5S n1
1

2Dh ~C10!

FIG. 12. Plot ofFn
(1) ~continuous lines! andFn

(2) ~dotted lines!
for n50,1. Vertical units are arbitrary andd should bed.
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for both potentials and consider cycles within the poten
well, that is the amplitude of the oscillations will correspo
to the width of the shell, we have

m R rGdr̄5A2mE
2d/2

1d/2

dr̄@V( i )~d/2!2V( i )~ r̄ !#1/2

5S n1
1

2Dh, ~C11!

thus determiningd (1) and d (2) for the linear and quadratic
potentials respectively. One obtains

d (1)52F3

2 S n1
1

2DhS R2

16GMmD 1/2G2/3

,

d (2)52F4A2

p S n1
1

2DhS R2

16GMmD 1/2G2/3

,

~C12!

and correspondingly binding energies

En
(1)5S 9

128D
1/3F S n1

1

2DhG2/3S GM

2R2 D 2/3

m,
n-

av

ss

v

d

10401
l
En

(2)5S 1

p2D 1/3F S n1
1

2DhG2/3S GM

2R2 D 2/3

m,

~C13!

which are of the same order of magnitude, and we h
added toEn

(2) the additionalO(G) term in Eq.~2.11! so as to

have continuity of the potentials atu r̄ u5d/2. It is clear that in
both cases we have allowed for a maximal oscillation of
test microshell and thus obtainedd ( i ) .

Finally, let us now check how close to the gravitation
radius we can use the bound states obtained above. From
~2.9! one finds thatV(t) is always positive forr̄ ,0, but
becomes negative forr̄ .0 if

R,
G2M2

2RH
[RC . ~C14!

As a sufficient condition for applicability of the modesFn
( i ) ,

we shall require that the energy be less than the value of
potential for r̄;4d ~see Fig. 12!, i.e., En

( i ),V(1)( r̄ 54d).
The above condition impliesn,4 for R.RH(.RC) and is
therefore satisfied for the second excited state (n52) that we
use in Sec. III; otherwise the shell breaks up.
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