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Gravitational collapse of a radiating shell
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We study the collapse of a self-gravitating and radiating shell of bosonic matter. The matter constituting the
shell is quantized and the construction is viewed as a semiclassical model of possible black hole formation. It
is shown that the shell internal degrees of freedom are excited by the quantum nonadiabaticity of the collapse
and, consequently, on coupling them to a massless scalar field, the collapsing matter emits a burst of coherent
(therma) radiation. The back reaction on the trajectory is also estimated.
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I. INTRODUCTION both for the conceptual problem of unambiguously quantiz-
ing the system and for obtaining more predictive conclu-
Much effort has been dedicated to the study of the classisions: in fact, the possibility of adding an obseryerg., in
cal dynamics of gravitationally collapsing bodies and a fairlythe form of a detector coupled to the outgoing radigtion
comprehensive understanding of the main features of thiallows one to define physicdhnd not just formal observ-
phenomenon is now availablsee, e.g.[1] and references ables[14].
therein. However, it is also clear that classical physics is not As mentioned above, one of the most intriguing aspects of
sufficient for a complete description, and for diverse reasonscollapsed bodies is the outgoing flux of thermal radiation
first of all, the predicted pointlike singularity that emerges aspredicted by Hawkindg?2]. This effect is usually studied in
the final fate of the collapse is quantum mechanically unacthe background of a preexisting black hole, thus separating
ceptable, just on the basis of the naive consideration of théhe problem of the collapse from the understanding of the
uncertainty principle; secondly, as soon as the collapsingnset of the thermal radiation. Such an approach is inspired
body approaches its own gravitational radius, Hawking raty Hawking'’s original computation, where any back reaction
diation [2] switches on and its back reaction should be in-on the chosen Schwarzschild background is neglected and
cluded properly3]. Moreover, the above two issues are con-the matter collapsed to form the black hole plays no role, and
nected, since Hawking's effect violates the positive energys further supported by the smallness of nenormalized
condition which is a basic hypothesis of the singularity theo-energy-momentum tensor of the radiation in the vicinity of
rems[4]. One therefore expects corrections to the classicathe horizon[15]. In this framework, one can think of a
picture already at the semiclassical level, i.e., in the regiomparticle-antiparticle pair being generated outside (neent
where matter is properly evolved by quantum equations on §16] or apparen{3]) horizon, with the positive energy par-
space-time whose dynamics is still reliably approximated byticle escaping in the form of thermal radiation and the nega-
classical equations. tive energy antiparticle falling inside the horizon decreasing
The semiclassical limit for various models has been prethe Arnowitt-Deser-MisnefADM) mass(i.e., proper mass
viously investigated [5-9] by employing a Born- plus gravitational energyof the singularity. It is therefore
Oppenheimer decomposition of the corresponding minisuthe horizon, a purely geometrical concept, which appears as
perspace wave functiqd0—12. In particular, in Ref[9] the  the key ingredient for this process, and much attention is
case of gthin) shell of quantized scalar matter collapsing in devoted to studying event horizons as if possessing physical
vacuum was investigated and it was shown that the collapsgegrees of freedom of their owjil7,18 (see also Refs.
induces the production of matter quanta. Further, explici{19,2Q for more recent developmentdHowever, on recall-
conditions were found beyond which the semiclassical aping that the central singularity is a transmutation of the col-
proximation breaks down. Such a model is, however, bothapsed body, one is alternatively tempted to define the Hawk-
unrealistically simple and of little physical use, since theing effect as a transfer of energy from the ADM mass of the
absence of any signal from the shell precludes an observeollapsing matter to the radiation field.
from witnessing the process. In order to overcome the latter The latter statement can be put on firmer ground if one
shortcoming, an effective minisuperspace action for radiatingonsiders the collapse and the onset of the Hawking radiation
shells was derived in Ref13] as the first step in the mod- in the same and only picture, which is also the scheme we
eling of a more realistic case. This was expected to be usefdre naturally led to use if we take the point of view of a
(distan} static observer. For such an observer the collapse
would never endclassically and the final fate of the col-
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collapsing matter, and it is clear that he would consider theof the macroshell would be essentially unchan@g®aept for
Hawking radiation as energy lost by the collapsing bodythe small change in ground state energy due to the change in
when it approaches its own gravitational radius. In this scemacroshell radiusand the net balance is then a transfer of
nario, the applicability of the no-hair theorems becomeghe gravitational energy of the macroshell to the radiation
guestionable, with geometry playingt mos} a subsidiary field which decreases the ADM mass of the system and
role, and one should be able to describe the whole process modifies the trajectory for the radius of the macroshell.
terms of dynamical quantities, in much the same fashion as is In our present approach we do not consider partiaie

the case for non-gravitational interactidi&l], and possibly  croshel) creation, which would require much greater energy
recover unitarity{22,23. This approach was explored long than the excitations of the microshells due to nonadiabatic
ago in Refs[24], whose authors were led to deny the very effects(in Ref. [9] we also showed that microshell creation
formation of black holeghorizong, and has been revived occurs for rather extreme cases, in which the size of the
recently from purely kinematical arguments in the frame-horizon is comparable to the Compton wavelength of the
work of optical geometn[25]. To summarize the present microshell$, but study the latter excitations. In order to de-
situation, it still sounds fair to say, as in R¢8], that the termine the latter excited levels we must describe the motion
issue of whether the horizon forms or not requires a betteof one microshell in the mean gravitational field of the others
understanding of théguantum mechanics of theyravita- and obtain an effective Schiimger equation for the mi-
tional collapse. croshell. Such a study is attempted in the next section. Sub-

Instead of constructing a general formalism, in the presensequently one must determine the amplitude for the excita-
paper we shall continue our study of a specifipiantum  tion of a microshell, as a consequence of the time variation
mechanicgl model of collapsing bosonic matter, to wit, the of the binding potential due to the collapse of the skubiis
self-gravitating shell (for a purely classical treatment see, is attempted in Sec. Ill A The model is constructed bearing
e.g., Ref[26]). Given its wide flexibility as a building block in mind a number of constraints: first, since our scalar par-
for more complex configurations, we believe that the concluticles have a Compton wavelengthefL0”1* c¢cm, one must
sions we are able to draw are sufficiently general to be takehave both the radius of the shell and the thickness of the
as hints for other situations. One may query our use of amacroshell much greater, otherwise fluctuations due to the
scalar field, rather than fermionic matter, for the collapsequantum nature of matter will destroy our semiclassical de-
Clearly, in our case one will have, besides some simplificascription of the macroshell motiofsee the consistency con-
tions, effects associated with the matter’s Bose-Einstein naditions for the semiclassical approximation in our previous
ture, for example the formation of a condensate. Nonethepaper, Ref[9]). This essentially implies that the number of
less, even if apparently unrealistic, considerable effort hasnicroshells of hadronic mass be at least®6o that, for
been dedicated to the effects of such mafteg., in the example, the gravitational radius is sufficiently large. An-
context of boson staf®7]). other constraint that will allow us to simplify our results is to

Returning to our previous study of a collapsing self gravi-suppose that the collapse be non-relativigtie., “slow” all
tating shell, we consider a “macroshell” constructed from athe way down to the horizonwhich implies that only the
large number of “microshells,” each of which corresponds tofirst microshell excited states will be relevant.
the swave collapse of a scalar particle of typical hadronic In the remainder of Sec. Il we address the emission of the
mass (,~1 GeV). In Ref.[9], we discussed how such radiation (scalar massless particles—we shall subsequently
microshells were bound together to form the macroshell anfust call them photonsand the macroshell trajectory with
found the confining potential to be linear and dependent oack reaction. Again we shall enforce some constraints, in
the shell radius. This implied that as the macroshell colparticular that the coupling of the radiation to the microshells
lapses, the confined microshells undergo nonadiabatic trandve sufficiently large so that the decay time is smaller than the
tions from the ground to higher excited states. The attitudeinperturbed collapse time. Actually, we shall see that such is
we adopted is that, because of their bosonic nature, the malready the case for a very small coupling constant. Further,
croshells formed a “condensate” and that, once enough miinteresting features of the model are that the collapse is slow
croshells were excitethus widening the macroshglithey  and the shell thickness remains much smaller than the typical
would collectively decay to the ground state by creating adwavelength of the emitted quanta, so that many emissions
ditional particles(in analogy with hadronic string theory occur practically in phase, thus rendering the radiation pro-
wherein a long string—excited hadron—decays into shortess highly coherent and the back reaction great. As a con-
strings—lighter hadrons Thus during the collapse the cre- sequence, it will be sufficient for us to just consider first
ation of additional microshellgparticles leads to a back order perturbation theory in the radiation coupling constant
reaction slowing the macroshell. and keep terms to lowest order in the macroshell velocity.

It is clear that in the above the SchwarzschilsiDM) One may wonder if our model is useful in describing
mass of the shell does not change. We previously indicateHlawking’s radiation, which has two main features: the first
that a more realistic approach would be to consider nonadisene is the thermal spectrum and the second one is its “ob-
batic effects leading to transitions from the ground to theserver dependence.” The former follows from the adiabatic
higher (excited states for some of the bound microshells hypothesis that the ADM mass of the sourdsack hole
and, subsequently, these states would decay and the nghanges slowly in time and, therefore, one does not neces-
croshells would return to the ground state by emitting radiasarily expect to recover a thermal spectrum in a fully dy-
tion [13,14]. At the end of such a process, the proper energynamical context in which the back reaction is included. By
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the latter we mean that a freely falling observer remains in itgion to be consistent, one must check that the microshells do
initial state all the time and should thus not experience thenot spread during the collapse aadremains small in the
flux of outgoing energy measured by a static observer, resense specified above. This was already shown in[8Efo
gardless of the adiabatic approximation. We just point oube ensured by the mutual gravitational interaction of the mi-
that our model shows such a sort of “observer dependence ¢roshells ifN is sufficiently large and the average radius of
since the proper mass, which remains constant, is the energje shellR is much larger than the gravitational radiRg

as measured by the observer comoving with the shell which G \_. \We shall provide further evidence for this in the
in turn, does not experience any change. At the same timf‘nllowing.

there is a flux of outgoing radiation associated with the de-
crease of the ADMBondi) mass. However, whether such a must also “fix the gauge” corresponding to the freedom of

r?]d|a|t(|jor; can b_ed CO%S'Stenﬂ%/ t'dlfmg.'fefd W'tth f'f*thVk”.‘I?S Ordmaking coordinate transformations on the relevant solution
should be considered as a totally direrent efiect will nee 2.2) of the Einstein field equations. This can be done by
further inspection. Let us note in any case that, in contras

with Hawking radiation, the coupling constant of the radia-yn "SR AETL P LRttt B T8 COERRlD e
tion to the microshells W|_II appear in the f|_nal expressions. communicatior(the region outside the horizpare given by
e 1 e o0 Y ot 441 the hypersuriaceS. | of constan proper tme,associaec
approximationsin mind oﬁr results are illustrated and sum- with observers comoving with the mwrpsh_ells, and the hy-
marized in the Conclus:ions persurface_$2t} of constant Schyvarzschﬂd tm(elenoted by
We use units for which:'=1 but explicitly show both tw'EtN) which are as'somated witfdistany ;tatlc observers. .
\ , Since we shall consider only bound orbits for the shell with
Newton’s constanG and Planck’s constarft. The Planck

. - initially large radius and negligible velocity, it is useful, in
length and mass are then given iy-4G andmy=#/1,,. this respect, to separate the collapse intoNesvtonian re-

gime (NR) and thenear horizon regiméNHR):
IIl. THE MACROSHELL INNER STRUCTURE NR When the radius of the shell is largand its velocity

In order to study realistically the evolution of a collapsing SMall, the difference between the proper time of the mi-
body it is important not to neglect its spatial structure. Forcroshells and the Schwarzschild time is negligible, meaning

instance, the equivalence principle implies that a pointlikethat 0bserver§ comoving with n_ncroshells at dlfferent_ radii
an synchronize their clocks with the clock of the distant

freely falling observer does not experience any gravitationa? s .
effect. However, any object has a spatial extension and tidagbserver. Therefore, one expects that the Hilbert space which

forces become effective when this size gets close to the typgontains states of the microshells as viewed by the comoving
observers, H,={®((r,7)}, is the same asH,

cal scale of variation of the space-time curvature. At the™ ® , . ,
same time, it is also important to keep the model simple so a5 {1 %" (I:1=)} viewed by the(distan) static observer. We

to allow one to study it. A good compromise between realisn£X@mine this case in Appendix A.

and simplicity is given by thenacroshellwhich was intro- NHR Near the gravitational radius, the relative gravita-
duced in Ref.[9] and which we now review and further tional redshift between different parts of the macroshell is no

develop. longer negligible and the two foliatiod& ;} and{%,} differ

We view the collapsing shell not just as a singular spheriSignificantly, sincet.=t.(r,7) is a large transformation
cal surface in spade28] but as a set of a large numbirof there[see Eq.(B4)]. One can still introduce a Hilbert space

microshellswhich correspond to collapsingwave bosons ’t- @S relevant for the comoving observers, and a spgce
and are described by a wave functitthus the microshell for the distant observer, but the relation between the two
radius is actually the “average” radiusEach microshell has SPaces(or their physical equivalenges far from trivial, as
negligible thickness and proper masssuch that their total  Will be apparent from the corresponding Satirger equa-
proper mass equals the proper mass of the macroshed, tions we display below and in Appendix Bee, e.g., Refs.
=M. If we denote byr e (0,+) the usual “areal” radial 30,23 for analogous considerations

coordinate, we can order the microshells according to their '" theé NR there is no conceptual ambiguity, since the
area, so that,<r,<- - -<ry, and assume that the thickness Newtonian(Schwarzschilgitime (equal to the proper times
S5 of the macroshell is small: a Killing vector with respect to which canonical quantization

is straightforward and most calculations can then be com-
0< d=ry—r1<r;. (2.2 pleted analytically(see, e.g., Appendix A and RgR]). In-
stead, in the NHR there is repriori reason to prefer either
The space between each two microshells has Schwarzschild
geometry,

Before studying the dynamics of the microshells, one

_q Istrictly speaking, the domain of outer communication is well
ds|2= B ( 1— 2G Mi)dt2+ ( 1— 2GMi> dr2+r2d0>2 defined only provided one knows the development of the whole
r ’ space-time manifold4]. However, in our case we cannot know
(2.2 from the beginning whether an event horizon will form or not and,
thus, if{2;} can cover just a portion or the whole of space-time. At
with a suitable ADM massM;<M;.;, My=0 for r<r;  the same time{3,} is defined naturally just on the world strip
andM =M (total ADM mass$ for r >ry. For this descrip- where the macroshell has support.
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FIG. 1. The macroshell structure.
FIG. 2. The equivalent configuration when the microshell lies

of the two Hilbert spaces to describe properly the matter irputside the macroshel(l) x<<X; (2) X<x.
the shell. Further, if one were to neglect the back reaction on
the metric and study a shell evolving on a fixe€&chwarzs-  choice of having the microshells confined within the thick-
child) background, the Schwarzschild time would still be anesss at large radius. With this assumption bdth. and
Killing vector and provide a unique way for canonical quan-M _ become functions of the microshell distribution ,M;}
tization. However, if one considers a collapsing macroshelbnly, but the evaluation o¥ remains extremely involved
with a microshell structure in order to successively includebecause one should first determine the most likely set of
back reaction, the canonical analysis is much more involve¢(N—1) values{r;,M;}.
and ambiguous. One can get an approximate expression\fdsy making

In the spirit of locality, it seems naturénd also appears careful use of the thin shell limitd<r,) and considering the
much easigrto analyze bound states of microshells with theform of the potential whe®m<r, or x>r,+ 8. In this case, if
aid of H, and then move on to the point of view of the static we denote be the (averag¢ radius of the macroshell of
observer by simply making a change of time coordinafe  proper masgv —m, we can also supplement E®.3) with

ter having taken the thin shell limitHowever, in so doing  the analogous expression for the macroshell. ¥oiX [see
one does not expect to recover the sphg®btained prior to  case(1) in Fig. 2] one then has

the thin shell limit, nor is it obvious whether the principle of
equivalence, in any of its formg31], can be trusted for 5 >
length scales associated with such bound states which are of (d_x) :G_m+ G'm =F_(x)
the order of the Compton wavelength @lementary par- dr X 4x° =
ticles. In the present paper, we shall motivate taking the thin

shell limit at some point by studying the trajectory of the

2 _ 2
shell only down to a radius greater than the gravitational (d_)() __ (MS m) Ms+m
radius(horizon by several shell thicknesses. dr M—m X
In order to define an effective Hamiltonian for each mi- (M—=m)?2

croshell, let us single out one of tiNemicroshells, denote its +G?——>—=F_(X), (2.5
radius byx and study its motion in the background defined 4x
by the remainingN—1 microshells(see Fig. L When x
#1;, one can apply the junction conditiof8] which yield  \yhere we have equated the proper times of the two shells in
) ) > 5 agreement with our choice of foliating the space-time into
(%) -1+ (M=—Mo) e M- +M_ " G'm spatial slicesS, . parametrized by the local time of the mi-
d7y m2 X 4x° croshells. Analogously, foX<x [see casé€?) in Fig. 2]

=F(x), (2.3

dx\?2 _2M—m G?m?
H q- :G + 2 :F>(X)1
whereM_. (M.=M,) is the ADM mass computed on the dr X 4x
inner (outen surface of the microshell and, is the proper
time of the microshell. Then, on multiplying E@2.3) by

m/2 one will obtain the equation of motion for a microshell (

dx)z_ 1+(Ms—m)2+ Mc—m

in the form of an effective Hamiltonian constraint: dr M-
M —m)?
1 2 5 _
Ho==m|—| +Vv=0. (2.4 +C i =F=(X). (2.6
2 \dry

Sincem<M, we shall takeM . —M -=m, which amounts to  One is now ready to define the relative and center-mass ra-
dx/dr,=0 for large x (>Ry) and is consistent with the dius according to
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FIG. 3. The potential V7 for M=10m,, R=dR, FIG. 4. The potential V) for M=M.=10"m,, 5~I,
219713 m, 5~|h:1_0716 m, —d<r<é, and I=M/M=5.  _19°16 & _5<r<s, andRy<R<2R,. Vertical units are ar-
Vertical units are arbitrary. bitrary.
r=x—X, with a potential function which interpolates smoothlye-
twee(n)the two linear im (outep parts of the potential given
m o by V7 in Eq. (2.9),
=M X+ M X, (2.7 B
(n_CGMsm(r? 5| GM’m_  _ 5
whereu=m(M —m)/M is the reduced mass of the system. m R et Tare M=z
The above relations can then be inverted and, upon substi- (2.11
tuting into Egs.(2.5 and (2.6), one obtains an effective
Hamiltonian for the two shells given by We then observe that f®> Ry~ 2GM the term linear irr
is negligible and the potential is thus symmetric around the
1 [drR\2 1 [dr|? ()1 a() average radius of the macroshell, but fdg<M it becomes
H(T):EM(E) tor gy +VII=HP+HD. steeper for <0 and flattens out for>0 (see Fig. 3 for the
(2.9 case ofN=10% protons ands of the order of the Compton
wavelengthl,, of the proton. The same effect happens for
The potential contains the following relevant terms: decreasing values of the average radius at fixed Nt ¢
(see Figs. 4 and 5; note that, for this choiceMyfthe poten-
GM?2 5 tial confines all the way down tBy).
_ (1— SRM ) r>+ 5 For a comparison with the case when the space-time is
V(T)_GMsm L s foliated into slices3, parametrized by the Schwarzschild
m~ 29R R GM2 s time t., measured by #distan} static observer we refer to
( —1- ) r<——. Appendix B. There we show how to obtain the relevant po-
2RM; 2 tential V(Y as an expansion in powers 6f Then, sincev{)

contains terms of all orders i@, while Vﬁ,? goes only up to
O(G?), this comparison clearly confirms that perturbative
. . . methods cannot always be trusted when dealing with strong
all nonleading terms im. The assumptioM¢>m, although 4 itational fields or, if we wish, the disadvantage of using
LIS not guar{inte_ed_ priort, h_as been done he_re just for the w6 gchwarzschild rather than proper time. In the same Ap-
purpohse" oth|mpI|fyéng the d'sﬁlay?d exprtlalss;]orllg. HowevI‘Trpendix we show that, if one takes this shell limit\8f’ and

Wle S 31 s cl)lvv n _ec.”ItILD that it ?(.:tltja yt olds true a then changes to the Schwarzschild time multiplying by
along e co1apse In at Ihe cases of Interes:. dr/dt.,)?, one recovers the thin shell limit 8" in the NR.

At this point, one can use the external potential to shap hi that the t i f introduci tential and
the distribution of microshells inside the macroshell and con- 'S Méans hat thé two steps of Introducing a potential an

— taking the thin shell limit commutéas expectedin the NR.
struct the potentiaV/(” for |r|< 6/2 (see Appendix A for an g s expected

- e ) For R>Ry and M~Myg, the potentialV,, is symmetric
explicit calculation in the NRR By expanding the latter po- — . ) . o
tential in powers of /R and neglecting terms of order aroundr=0. This confines the microshells within the fol-

(8/R)? or higher, one finally obtains an effective Hamil-
tonian for each microshell,

where we have also assumed<Mg (<M) and neglected

2We assume there is no discontinuity experienced by the test mi-

dqrl? croshell when it crosses the borders of the macroshell and equate
1 r the first derivative of the quadratic potential with the first derivative
HEnT)ZEm(_:) "‘Vg), (2.10 i ivativ > qu icp ial wi i ivativ

of the linear potential afr|= 6/2.
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field. This will allow the shell to radiate away any excess of
the proper energy induced by the nonadiabaticity of the col-
lapse, as outlined in the Introduction.

Our aim is to evaluate the flux of emitted radiation, which
will determineMg¢=M¢(7), and the corresponding back re-
action on the trajectorir=R(7). We shall first estimate the
nonadiabatic amplitude of excitation and, subsequently, give
a purely quantum mechanic@oherenk treatment of the en-
tire process of excitation and emission by coupling explicitly
the microshell mode®,, to the radiation field. The outcome
will be a set of two coupled ordinary differential equations
(for Rand M) which we shall solve numerically.

FIG. 5. The potential V(? for M=M.=10"m,, &~I, A. The excitation amplitude
=10"1 m, —5&<r<s4, andRy/4<R<R/2. Vertical units are ar- From the previous section we know that the microshells
bitrary. are governed by the Schdimger equatior(see also Appen-
dix C)
lowing thicknesq9] (see also Appendix C for more details
on the spectrum of bound states L, 0Ps . )
ih—— =H Py (3.9
Im R 2/3 o3 R 1/3
~ | — —~ 13 .
5 (2N)1/3<|p) IR Ry (212 with
~2
. . ~ o
wherel ,=#/m is the Compton wavelength of a microshell. H¥’=ﬁ +V|('nT)’ (3.2

For R close toRy or smaller ratios oM¢/M the potential

twists (see Figs. 5 and)3and, eventually, ceases to confine

the microshells on the outside if the macroshell shrinks bewhere V{7 is given in Eq.(2.1) and has an explicit time

low the gravitational radiufsee Eq(C14)]. We further note dependence due 8=R(7). This type of equation can be

that the spreads of the lowest wave functions are also ofolved by making use of invariant operatdrsi(7) that

order &, thus the bosonic microshells are essentially supersatisfy[33]

imposed and form a condensate, and hence some classical

singular behavior, such as microshell crossings, does not oc- a ..

cur. iha—+[I,H§T?]=O. (3.3
Let us now summarize what we have done in simple T

guantum mechanical terms. Since we are considering wav: . _ . .

functions, we have viewed each microshell as immersed inghe general solutios=®(7) can then be written in the

continuous matter distribution, corresponding to the mea

field of the others, which are then treated asvale) single

shell (Hartree approximation or independent particle |<pm>|szz cnei‘PnIn,T>. , (3.4

model—see also the Thomas-Fermi model of the atom n

[32,9). Then we noted that, inside the macroshell, a mi-

croshell can undergo small displacemen®&R is smal)  where|n,7), is an eigenvector of with time-independent

about equilibrium, which will be harmonic, and on requiring eigenvalue\ , and thec,, are complex coefficients. We also

continuity with the potential outside the shell one obtains Eqrecall that the phase,= ¢,(7) is given by the sum of the

(2.13). Further, since in the context of our Hartree approxi-geometrical and dynamical phases,

mation the total wave function is just the product of the

individual ones’ it will be sufficient in what follows to just i [ ) () . ,

exhibit the Lagrangian and Hamiltonian for a given mi- SDn:ng (n,7'|hd+iHT[n, 7" )dr'. (3.9
croshell. 0

The Hamiltonian in Eq(3.1) describes a harmonic oscillator
I1Il. THE RADIATION AND BACK REACTION of fixed masam and variable frequency
In this section we use the description of the macroshell as 1 R
given in Sec. Il and add the coupling to an external radiation O=_-~/1 (3.6)
R V2§ '

3Let us also remember that the many-boson wave function is sym=€nce, one can introduce standard annihilation and creation
metric. operatorsa anda’,
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. mQ(— im .
a= E r+ m s ( 7)
with [a,a’]=1 and define the vacuum state as
al0,7),=0. (3.8

A complete set of eigenstate$={|n,7),} is then given by

(é‘r n
|”vT>a:W|0,T>a, (3.9
where
é|n,7->a= \/ﬁ|n—1,7>a
af|n, 7),=Vn+1|n+1,7),.
(3.10

PHYSICAL REVIEW D 64 104012

i.=b'b. (3.16

The two basesd and B are related by Bogoliubov coeffi-
cients according to

The solutions of the corresponding time-independent prob-

lem obtained by assuminig constant and displayed in Ap-
pendix C are here recovered &2 (r)=(r|n,0),.

One can also introduce the line@on-Hermitian annihi-
lation and creation invariants andb' [33,34],

r . —
—+i(Xm,—mxr)
X

1
b= —

V2h

where[b,bT]=1 and the functiox=x(7) is a solution of

; (3.11

. 1
X+ Q%x=—
m?x

3 (3.12

with suitable initial conditions. The system then admits an

invariant ground state defined by

b|0,7),=0, (3.13

from which one can build a basis of invariant eigenstdies

={In,7)s},

[, 7)ps=e'¢n \/;—!n|0,7'>b:ei‘p”|na7'>ba (3.149
where
bln, )p=Vnin—1,7),,
bfin, 7= n+1|n+1,7)y.
(3.19

We can then introduce the invariant number operdtor
analogy with the standard number operaada)

4An overdot denotes derivative with respecttdhroughout the
paper.

a=B*b+A*p’ b=Ba—A*a'
A A A e i A (3.17)
a'=Bb'+Ab b'=B*a'—Aa,
where
1 [ 1 X
A= Em_(x_ mQx)_ al
1 1\ x
B= E\/mﬂ_(x+ m) —1 5_ .
(3.18
Further,. 4 and B will coincide at7=0 if
- - . 1) .
b(0)=a(0):>ﬁ9( 1.(0)+ > =H(0), (3.19

that isA(0)=0 andB(0)= 1, which means that for the func-
tion x we must require

1
0)= ——,
x(©) VYmeQ(0)

x(0)=0. (3.20

SinceQ)~R andR(0)=0, an approximate solution to Eq.
(3.12 compatible with the initial conditions in E¢3.20 is
given by

1 . o)
X e X — (3.22)

JmQ 2./mQ3’

provided 7 is sufficiently short so thax is negligible. The
corresponding Bogoliubov coefficients are then given by

iQ
A=— ——

, B=1+A, (3.22
407
and satisfy the unitarity condition
|B|?—|A|2=1. (3.23

The amplitude of the transition from state, to @, after
time 7=0 can easily be computed. In particular, one finds
[33]
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Ag_on(7)= (2n,7]0,7)p shell is not a free fall. This can be seen very easily by noting
that the solutions to the equation of moti¢h3) whenM -
1 [A*\"(2n)! and/orm depend on time differ from the case when the same
= ﬁ(i) ongr (3.24 parameters are constant. Alternatively, one can use the sec-
' ond junction conditiori28] to compute the surface tensi¢h
Ao ons1(T)= 2(2n+1,7/0,7),=0. of the shell. As we have shown in Sec. lll A, the proper mass

(3.29 M of the shell increases in time; therefore, although our
choice of initial conditions folR, M and M is such that
To leading order ifA| (i.e., Q~R), one then hag\, .o(7) P(0)=0, the tension subsequently increases wirin-
~1 and the amplitude of the transition to the excited state&reases. The tension then slows down the coll§f$eand

with energyE,,=Ey+2n#Q is this effect should be further sustained by the emis$idj,
which very quickly brings the proper mass back to the initial
Jznr an value. As we out!ined in the Introduction, we shall then con-
Ag_on(7)=i" (2n)! (7) siderM as effectively constant along the collapse and com-

- 23"l Q2"(7) pute the net variation df1¢ in time.
Let us denote b
_N@ny [ s\M2, d
=(—|)nw(R— R(7), (3.26 L
3727 Ry a=R—Ryree (3.28

where we have assuméy, = 2GMs remains constant in the  the difference between the actual accelerafoaf the shell
interval (07). The relevant expression for us is thus given byand that of a freely falling bodyR;e., having the same ra-

Eq. (3.26), in which we recall thaR< 0. We also remark that di s e
o . . .dial positionR and proper velocityR. Of course,a would
the above transition amplitude follows as both a nonadlabatlgqua? the surface glraaviliy R

effect (since Ay .,,*R") and a consequence of the finite

thickness of the macroshefsince A,_,,> 6"?), the latter 1
being further related to the quantum mechanical nature of the ay ~IGM.’ (3.29
bound stategsince 5c%%3). s

An order of magnitude estimate for the most probabley 5 plack hole of masd, for R=Ry constant. In this

transition (zh=2) can be obtained by settifg’~GM,/R limiting case, one could exploit the analogy between Rindler
and using Eq(2.12), in which case coordinates for an accelerated observer in flat space-time and
Schwarzschild coordinates for static observers in a black
413 hole backgroundl15] and find that the shell emits the excess
m : .
|Ao_,2(R,N)|2$|A0—>2(RH)|2~(E) N_2/3 (3.27) energy with the Hawking temperature

. . . hay
where we also approximatéd ; asNm in order to obtain a H==——, (3.30
function of just the numbeN of microshells. Further, one 27k

can also check that the above probability is less than ongnerek.. is the Boltzmann constaran explicit construction

and, for realistic cases, quite smae shall exhibit this 4 leads to this result was proposed in RBf). In general,
Iatellj. This implies 'ghat the probabmty for a microshell to get however, the effective acceleratianwill have noa priori
excited a second timefter it has radiated away the energy iy relation withM  and one should keep it as an indepen-
E, once; see Sec. llIBis negligible and, considering also yent fynction ofr to be determined later consistently with
that the emission probability is small, we shall not considery, equation of motion of the shell. It is also clear that
double emission. We further note that, as expected, the larg%‘houldh turn out to be constang will correspond to the '
is Ry the smaller the “tidal” eff nd the excitation am- . ) . .

r?litu':jet e smaller the "tidal" effects and the excitation a acceleration associated with the instantaneous ADM mass

and distance from the horizon.
We then consider an isotropic massless scalar {ietdn-
formally coupled to gravity15] and to the microshells. The
The problem of coupling a radiation field in the form of a Lagrangian density for a given microshell and the radiation
conformal scalar field to collapsing matter was previouslyfield is given by
treated in Ref[5] (see also Ref[6]) for the case of a col-
lapsing sphere of dust, for which we recovered the Hawking 1 i% . ) h2 9Dk 9d,
temperature in a suitable approximation. For the present situ- £= + 722 (PR — D ) — 5 — = —
ation, we shall find it more convenient to use the analogy n=0

B. The (thermal) radiation

with an accelerated observer in flat space-time as put forward 1

in Ref.[35]. ~VODr D —e> Ordip|—|d, 000+ ER&},
The basic observation is that, if the proper mass or the I#n

ADM mass (or both varies with time, the collapse of the (3.3)
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where R is the curvature scalar an‘q[EnT) is the potential TABLE |. Typical values of the relevant quantities resulting
given by Egs.(2.9) and (2.11). The last term in the first from the numerical analysis foN=2x 10 microshells[Ry(0)
square brackets represents minus the interacting Hamiltoniaii4> 10" ** cm]. N; is the average number of emissions while the
H., with e the coupling constant of the radiation to a mi- Shell radius shrinks a space

croshell, while the wave functions of the latter are expressed—__ o .
in terms of the states found in Appendix C &g /r, where  Radiation wavelength 10°7-107" cm
we exhi_bit the energy Ievelsr%O) so that the form of the 5/, 10-3-10"1
interaction can be chosen in such a way that—to lowest

—3 2
order—it just contributes to the transition between different® 10710
levels and does not modify the macroshell ground state enfotal number of emissions il
ergy. Further, the factor of (dy comes from the normaliza- Ns 10°-10°°
tion measure now beingfdr. In fact, in the thin shell limitit  Total emitted energy 5% dfl4(0)

is consistent to approximate the metric on the shell with the
outer Vaidya line elemerj6,37). Let us again note that we
have just exhibited the Lagrangian for a given microshellFinally, since the function®,, are spherically symmetric and
since in the Hartree approximation the total wave function ispeaked near =R(7), it is convenient to integrate over the
just the product of the individual onés. angular coordinates and write

Another important observation comes into play at this
point. In Sec. Il A we computed théonvanishing transi-

tion amplitudesA, ., to lowest order inR, that is, O(R)
[see Eq(3.26)], with M and Mg held constant. Therefore, in _ ' . ' '
order to determine the flux of radiation to lowest ordeRin ~ Wherer is the relative radial coordinate aft=R(t) is the
it is sufficient to compute the probability of emission to (Fjectory of the macroshell as before.

. . . L After the lapse of proper time, each microshell will
O(R% with M and M, constant. In this approximationM P brop

. . ._jump into the excited state of ener@p,=Ey+ 2nA ) with
constany, the Vaidya metric reduces to the Schwarzschil a transition amplitudé\,_,,(7). Subsequently, it can decay

metric_, so that the relevant four-dimensional measure of ing5.k to the ground state by emitting a quantum of enérgy
tegration is (having a wavelength much larger than the shell thickness;
see Table )l of the scalar field. We shall see later that the
macroshell velocity is small and the emissions are numerous.
J—gd*x=r2sir? gdgdpdrdt, (8.32  As a consequence, the distance covered between each emis-
sion is small with respect to the wavelength and therefore the
wheret is the Schwarzschild time measured by a static ob€Mitted radiation will be coherent. .
server(denoted byt., in previous sections _ Let us now estimate, using first order.pe_rturbatlon theory
in e, the transition amplitude for the emission of quanta of
the scalar field, which will occur when the microshells in the
state®d,,, decay back to the ground statg), for the interval

J—gd*=4m(R+r)2drdt, (3.34

T .
o —— 3.3 between the timeg,=t(7,) andt,=t(r) (0<7m,<7,). It
V1-Ry/R (333 will be given by

. . N N N
I [t ~ e t ~ P

% f “di(final | Aipfinitial) =~ = 3 | “dt(Litlelotn [T (.04 2 3 drdi, 3, IT Irsit)rsi
iy, fi iz1 )y =1 n=0 e

I#n s=0r=1

r,0;0)

. N
4ie

) “at f dr@o(r)@x(r)A o o(t0)e (1, |e(R+r;,D|0), (3.3
1= t

where (i,n;t|i,0;0)=A; o .,(t) is the excitation amplitude dominated by the contribution with= 2, and for the photon
(for theith microshel] which, as computed in Sec. Il A, is state|0) we consider the Unruh vacuum, corresponding to an
outgoing flux of radiatiorf15]. This of course implies that

is nonzero; indeed we shall actually find that — Ryee

%0f course, both the total and the single particle wave functiongsince R=0), consistently with our choice of vacuum, and,
are normalized to unity. near the horizon, the flux corresponds to Hawking radiation
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(see Ref[38] for a detailed discussion of the analogy be- proximates the state that would be formed following the col-
tween Schwarzschild and Rindler spgcé®t us further note  lapse of a massive bodit5].

that, although a black hole is only close to being formed, itis On taking the modulus squared of E§.35, one obtains
generally accepted that it is the Unruh vacuum that best aphe transition probability

2e2 N t t — — H n_mn r_r — h— — —
P(2Q;t2,t1)=72 > fzdt"fzdt’f dri”f dr/ Ao oA 526 2@ T D17 Do) D,(r] ) Do(r])
i=1j=1Jy ty ' '

X(0|@(R"+T7 ,t") (R’ +1] ,t')|0), (3.36
|
whereX'=X(t"), X"=X(t") for any function of time, and 1 [At R(r/+AR/P2)
the last term is the Wightman function for the scalar field X | ex Rl 2~ S —
The four-dimensional Wightman function can be related Ri R—Ry
to its two-dimensional counterpalt, [15] through _
1 [R(r{+AR2) At (3.39
—ex = -—1l;, B
. o A . 2Ry R—Ry 2
(Of@(R"+r{ ,t")(R"+r{,t")|0)
ORI iR 1T 4 where T=(t' +t")/2—t; and we have performed the same
= Dy (R +r,,_t R +r_1’t ) approximation as we used in obtaining E8.38).
477(R”+ri”)(R’+r]-’) The above expressions can be simplified on noting that
) . one expectat> §,AR(= RAtV1— Ry /R) corresponding to
~_h In[(Avj;—ie)(Aujj—ie)] the fact that the wavelength of the emitted scalar quantum is
- 16 (R +r)(R! +r_j’) ’ much greater than the width of the shell and the velocity of

the shell sufficiently small so that it is not displaced much
(3.37 between one emission and the nés¢e Table)l One then
obtains for Eqs(3.38 and(3.39 respectively

where, of course, we only considewaves and

Av=At, (3.40
Avij=t"—t"+(R"+1]), —(R'+T]),
RIAR+AT;) — R, -T—t; At) [ At
=At+——. (3.39 Au=2Ryex IR, ex AR, ex iR,
H
R, —T—t;| . [ At
In the above , =r + Ry, In[(r/Ry)—1] is the turtle coordinate =4Ry ex R, SR, ) (3.4

[29]. We also set\t=t"—t’ (similarly for AR andAr), R

=(R"+R)/2, and assumedR—Ry>|AR|, [Arj|=[ri o, introducingL =t,—t,, expressing Eq(3.36) in terms of

_r_j|- Further, T and At, and approximating the integration measure as in
Egs.(3.40 and(3.41) with
o t//_(R//+r_i//)*
A= =2Ry| exp — ——p—— R’ =R(T)—R(T)V1— Ry /R(At/2),
t=(R'+1)),
R T TR, R’=R(T)+R(T)VI- Ry /R(At/2),
_ (3.42
R, —T—t
=2Ry, exp( *—1) _ , , .
2Ry andR(T)=R, one obtains, to leading order R,
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R80)?

2ezh L
P(2Q:t,,L)=N ZmZLdT

d(At)efiZQ\/mﬁAtln
A
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At )
—— —l€

(Re ~T—t)I2Ry( At i i
4Rye (At—ie)sin R,

2 2 H
=NzehdeTIA°ﬂ2| FAd(At)e*i?“vmﬁm il L2 cot?-( = —ie)
2m®Jo ~ R8Q2 J-a 201-Ry/R|At—ie 4Ry 4Ry
(3.43
|
with A=L—2|T—L/2|. In the above, we approximatec dP(Q:t)  we?h N Ag_,|2 1
. ’ 0—2
—7'=AtJ1-Ry/R according to Egs(3.33 and the last ~ 5 K ,
equality follows from integration by parts it (neglecting dL 2m° R6()3\1-Ry /R e¥¥ke7—1
boundary terms (3.49

The integral(3.43 can be computed by analytic continu-

ation in the complexAt plane in which, upon using the for- in which all time-dependent quantities must be evaluated at

mula
1 x <
coth( mx) = R—l P m (3.44)
one finds the poles
At,=4mniRy (3.45

for any integer value af. For >0 (corresponding to emis-

sion) the contour of integration can be closed along an arc in

the lower half plane and we get

P(20:t L)~NzﬁezﬁjL dT|Ao—_o|*
AN} -

2m? Jo R8O3V1-R, /R
N

X E e78nﬂ'QRH\/17RH7R+ PL’ (34@
n=1

whereN, is the maximum value af for which the poleAt,
lies within the contour of integration arf®, is the contribu-
tion from the arc.

If N is sufficiently large, ther® can be neglected,

NL
S e wmORWTRGR. =~
= e2i0/kgT_ 1

(3.47

and one recovers the Planck distribution withstantaneoys
temperature

Ty
T= . 3.4
V1-Ry/R (349

In general, however, one expects that the timie not long

the same time and the right hand side is to lowest order in
R.

We finally recall that in Ref[5] we proposed that the
finite thickness of the macroshell could provide a solution to
the problem of ultra-Planckian frequencies. In factpff is
the frequency of the emitted quanta as measured by a distant
observer, a fixed observer located near the point of emission
atr=R will instead measure a blueshifted frequency

R
wZ(l—FH

~12
o*, (3.50

and this expression clearly gives> 1/, for R sufficiently
close toRy, . In order to probe these modes, one should use a
detector localized in a region smaller thaﬁ1~lp, or, al-
ternatively, one expects that the spreadf the wave func-
tions®, should be less thal, for our collapsing microshells

to couple with conformal quanta of ultra-Planckian energies.
However, as we have shown in Ref89,5], taking &/l

—0 decouples the emitter from the radiation and ultra-
Planckian frequencies are not exciféor a similar argument
against ultra-Planckian frequencies, see R&d)).

C. The flux

It is now straightforward to estimate the total flux of emit-
ted radiation(the luminosity as a function of time. In par-
ticular, the rate of proper energy lost by the macroshell per
unit (Schwarzschilgitime of a static observer placed at large
r is given by

dE dP(w;t)

a:—A}a; ,u(w)F(w)ﬁwT, (3.51

enough and nonthermal contributions will render the evalu-

ation of the probability of emission very complicated. Onewhere A=47R? is the surface area of the sheill(w)=(1
should then divide the time of collapse into small intervals— R, /R)*?w? the phase space measure for photons of fre-
and compute all the relevant quantities step by step. Thiguencyw (measured at the shell position=R), I'~1 the
procedure can be simplified by employing an approximatiorgray-body factor for zero angular momentum outgoing scalar

introduced in order to follow a trajector}35] and which

waves[41] and the last factor is obtained from the approxi-

amounts to estimating the probability of emission per unitmation (3.49. The sum in Eq.3.51) is dominated by the

time at a given value of (or 7) as

contribution withw=2€) and one obtains
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FIG. 6. Trajectories of the radiating sh&k R(7) in units ofR(0) with N=2x 10 and four values of the coupling constant{upper
curveg compared to the nonradiating collapgéewer curve$. All trajectories are evolved frorR(0)=1000Ry(0). The timer, in all plots,
is expressed in units of 210" 3N GeV ! with i=c=1 anday=1.6x10"%,

Ry R?

dE 16722 N2Z( &
- Ry R

for 6 and (minug the flux becomes

@20 T Ry /RkgTy_ 1’
(3.52
We can now substitute the expressid@%) for (2 and(2.12

dE  16m2%? N3 Ry R
At 9 RIOGRIB|IT R I RiRkeTyp

obtain

Im

2
dE ,N(lp
Ry

3 1/2
98 N Im ) R Tee
dt R?

R

The flux should therefore vanish f&®—R;; and, on com-

paring with the general relation given in R¢13],

dE Ry V1-R4/R+R*-R Ry

dt 26 [ g jr+r? 26

one obtains, in the limit foR close toRy,

(3.53

We note that, folR close toRy the Boltzmann exponent is
very small(because of the Tolman facjotUpon expanding
the exponent and keeping the leading ordelRin R, we

(3.59

. N2[1,\8 Ry 2.
RH~—eZGE(R—";) (1—%) R (356

Were one to trust the above expression, one should then re-
quire that the energy-momentum tensor of the radiation re-
main locally finite when the shell approaches the surface
=R}, . This amounts to the conditid2]

Y

with y=1. (3.57

. Ry
RH""(]._ F

Since the quantityB~1 nearRy, Eq. (3.55 would lead to
the conclusion that the velocity of the macroshell satisfies

R2~

1 Ry\# th 1
[ — 2_
R with g >

(3.58
which means that the proper veloci®/should vanish at the
horizon. Of course, the number of approximations we have
employed does not allow one to consider the above a rigor-
ous argument, but just a suggestive result. In particular, if the
emission near the horizon is not thermil, in Eq. (3.47) is
small and just a few of the poles are includlethe flux

satisfies the conditioi3.57) for any finite value ofR, the

back reaction is reduced, and our results are significantly
modified only very close to the horizon where in any case
our approximations break down. Indeed, we are able to per-
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FIG. 7. Behavior of the gravitational radius for the radiating shell trajectories in Fig. 6.

form the analysis only foR greater than a few time®, and, tions, we are not able to display any reliable resultRagts
in all the cases we consider, the microshells are confinedlose toRy . The behavior oRR, is shown in Fig. 7.
with <Ry . IncreasingN requires an increase i in order to preserve
the difference between the radiating and the nonradiating tra-
D. The trajectory jectories(see Fig. 8 for a tenfold increase Mwith respect

, , . . to Fig. 6. In fact, from Eq.(3.60, on settingR~Ry<Nm
One can now numerically integrate the equation of motion, o finds(apart from dimensional constants
for the radius of the shell,

. R? Ry G2M?2
RP=—14 —— 4 1 (3.59 R —

26M2 " 2RT 4Rz (3.61)

e e——— 1
N8/3m22/3

together with Eq(3.595 for Ry,

which gives an estimate of how the effect scales with respect
R2 to the number of microshells, their massand the radiation
coupling constant.

020 TRy RIkgTy_ 1’ . . .
(3.60 In Fig. 9 we plot the velocityR of the collapsing shell
' (together with the velocity of the corresponding nonradiating
where a=e?/41r. shel) for two relevant cases. It is clear tHatremains(nega-
Given our construction, the trajectories depend on the pative and small (within a few percent of the speed of light
rametersN, « and the initial conditionR(0). In general, thus supporting our approximation scheme within which we
one finds that the nonadiabatic excitations occur relativeljust retain the lowest order iR. In Fig. 10 the wavelength of
close to the horizon and there is no strong dependence on tlenitted radiation quanta is plotted as a function of time in
initial value of R. In Fig. 6 we display the comparison be- order to show that it remains larger tharnias given in Table
tween the trajectories computed from the above equations).
with N=2x 10 and various values af, and that with con- Finally, we have also checked that on replacing the Bose-
stantM¢s=M (see also Table)l Owing to our approxima- Einstein factor in Eq(3.60 with the sum of just a few poles

H™ g ¢ RI0ARYS

R

12873 GN2|§n’3( Ry
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FIG. 8. Trajectories of the radiating shell with=2x 10" and two values of the coupling constant(upper curvescompared to the
nonradiating collaps@ower curves.

[see Eq.3.47] the evolution of the system is not substan- The effect is intrinsically quantum mechanical, since it is
tially changedonly the back reaction is somewhat reduced a consequence of the quantum mechanical-bound state nature
of the macroshell and the coherence of the emitted radiation.
This can cause the shell to lose enough energy so that the
back reaction on the trajectory of the radius is large. For
In this paper we have analyzed the gravitational collapsénstance, for the case presented, the shell approaches the
(in the semiclassical approximatipaf a macroshell built up  gravitational radius in a time that is more than an order of
of a (large number of bosonic microshellss{vave par- magnitude longer than the time a nonradiating shell would
ticles). Starting from the classical equations of motion, wetake to cross the horizon, and loses about 5% of its ADM
obtained the potential and an effective Sctinger equation mass as a burst of radiatidqwhich is suggestive of the ob-
for each microshell. The potential appearing in this equatiorserved gamma-ray burg#3]). One may also wonder at this
ensures that the thickness of the macroshell does not increapeint whether it is possible for the collapsing matter to pro-
significantly for a long enough piece of the trajectory, thusduce enough radiation to reduce the energy of the shell so as
allowing one to take the thin shell limit at some point in the to prevent the formation of an event horizon. Thus, if the
calculations. The time dependence of the potential leads tADM mass decreased fast enough, the shell itself would
the nonadiabatic excitatiorigvhich we computed to leading never reach the gravitational radius; unfortunately, our ap-
order in the velocity of the macroshelbf the microshell  proximations become unreliable as it is approached.
bound states. On coupling the microshells to a scalar radia- The model we have proposed clearly hinges on the for-
tion field, we showed that the increase of kinetic energy camation of a condensate. Let us give some arguments in favor
be radiated away and the emitted radiation is approximatelpf this: of relevance for the latter is the fraction of mi-
thermal with a temperature given by the Tolman shifted in-croshells (particles not in the condensatéground statp
stantaneous Hawking temperatuehether this mechanism This fraction is related toT/T.)", whereT, is the critical
can be related to the Hawking effect is a point that requiresemperature for Bose-Einstein condensation and (fuesi-
further study. tive) exponentr depends on the confining potential and the

IV. CONCLUSIONS

T T
R ( 200000 400000 600000 800000 R

-0.02 -0.02

(N=2-10 o =1-1073) (N=2-10", a=6.4-10"%)

FIG. 9. Velocity of the radiating shell for the fourth case of Fig. 6 and second case of igp8r curvescompared to the nonradiating
collapse(lower curves.
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FIG. 10. Wavelength\ of the emitted quanta and ratld § for the fourth case of Fig. 6.

dimensionality of the systefhFor our case of about #&  Unfortunately, this potential does not allow for an analytic
particles and on setting=Ty (Hawking temperatugeone  treatment of the complete problem; therefore we shall apply
has thatT,/T,<10 '° which renders our description in an analogous procedure to that followed in Sec. Il in order to
terms of a condensate plausible. obtain a Schrdinger equation for each microshell in the
Naturally, the relevance of our bosonic model for gravita-mean field of the others.
tional collapse which is expected to involve ordinary inco- Let us first try with a configuratioir; ,M;}nom in which
herent matter may be questioned. Moreover, it is clear thal—1 microshells have equally spaced radii=r,+(i
fermionic microshells would lead, because of the Pauli ex—1)6/(N—1), so that M;=m[(r;—r;)(N—=21)/5+1].
clusion principle, to a much wider macroshell with a loss ofHence, the equation of motiof2.3) in the NR for theNth
coherence. However, for a mixed fermion-boson system, onmicroshell with radiug ;<x<ry_,; becomes
may just consider the bosonic part and apply our consider-
ations to it since it will condensate in the lowest state. Cer- 1 /dx\2 > B
. o> . X m X—r1q
tainly, the presence of fermionic and/or incoherent matter —m(—) :G—(N +1
will reduce the effects we have illustrated. Nonetheless, one 2\ dt X g
might even argue that an analogous phenomenon can happen

for all collapsing bosonic matter, including the bosonic frac-\yheret=r, is the Newtonian time. Changing to the relative

tion of accretion disks aroun_d black hples. Our reSL_JIt WOU|dcoordinat&=x— R, one obtains
thus suggest a new mechanism by which the accreting matter

can emit radiation.

1 [dx\® mMx[x
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: (A2)

where we have uselk|<R and omitted all potential terms
that do not containx (they would just contribute to the
ground state energy in the Schinger equation It is clear
that the potential above fox=+ /2 does not match
The NR for each microshell of rest massstarting at  smoothly with the NR limit of the external potential given in

large radius (;>2GM;) with negligible initial velocity can  gq_ (2.9) because of the term linear i This means that the

bebetained by setting/|>|— M_=m and kgep:]ng tg”“? UP  configuration{r; ,M;}nom iS Not stable. In fact, the minimum
to first order inG and to leading order imin the effective .. - potential is not at the origik=0, and one then ex-

Hamiltonian constrain2.4). The total energy of the system . .
is thus given by the s(um) of the kinetic e%):ergies ofyall mi-pe.CtS the microshells to move away from the above configu-
ration.

croshells a.md mutu:.;\I |ntera§t|on pot.en_tlal energies. The latter In order to obtain an interal configuration compatible
can be written, on introducing relative;f and center-mass \jth the external potential, let us assume a potential with a
(R) coordinates, afd] minimum atx=0 (as is required by the symmetry of the
M2 m N external potentialand consider small oscillations about this
V(ry, ... IN=—G=o=+Gz=s >, |ri— ri|. (A1)  equilibrium point. Such oscillations will be harmonic and the
2R 2R 15 potential to lowest order is given by

APPENDIX A: MICROSHELL DISTRIBUTION AND
EFFECTIVE POTENTIAL IN THE NR

6 _ ; ; Mm
For examplep = 3/2 for a three-dimensional box and=3 for a Vyr=G 5(X_ R)2+ Cy, (A4)

three-dimensional harmonic trdfor a review, see Ref44)). 2R?
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whereC; is a constant. If we assunM;  ;=M;+m, for the timest_ andt.=t, (see Fig. 1 by making use of
most likely configuration{r; ,M;}, r; can be determined by

comparing the potentialyg with the one obtained from the 421 2GM< a2 —[1- 2GM_ 7ldx2
NR limit of Eq. (2.3), to wit Tx X a
m(m—2M. 2GM 2GM.\ 7t
VII\IR:G%'FCL ri<x<riz1, (A5 :(1_ >)dt2>_(1_ >) dx?, (Bl

whereC, is another constant. On equating the potentiglg ~ Which yields the ratio
and V{ in the limit x—r;" (from above and settingC

=C,—C4, one obtains (E)ZZX_ZGNB _ 2X*G(M- —M.) (ﬁ)z
dt./ Xx—2GM. (x—2GM.)(x—2GM_)2\dt=/ "’
. (A6) (B2)

where, from Eq(2.3),
Then, on defining; ,,=r;+Yy; and subtracting the same ex-

pression forx—r ,, one has dx |2 1 (x=2GM-)*F(x)
dt./ X x—2GM.+xF(x)"

2C M
2Mi—m=ri+ G_m_ ﬁzs(rr—R)z

(B3)
2m:2Mi+1_2Mi
These expressions can be iterated for each microshell with

2C Mr* : . :
_ ﬁ]yi’L RTg[(rﬁ—R)z—(rHyi—R)z] radiusx<r;<ry and, together witi{B1), yield
dr,\? 2GM,
_yiM(r-Jr-l- -—R)2 E = 1— X
R 6 I yl
2C yM +(1 ZGMX>‘1 dx)z N r—26m,
=G—in—§lrg[R2—4ri+R+3(ri+)2 X dt,) |i=xw1|ri—2GM,_;
+yi(3r = 2R+y))]. (A7) _ 2rfG(Mi=M_y) (%ﬂ
o (1 — 2\ dy
The first term on the right hand side corresponds to the ho- (ri—=2GMj)(ri—2GM;_,)“ | At
mogeneous distribution if the consta®t Gm?(N—1)/6. In 2G M,
general, however, the other terms cannot be neglected, so =11- X
that the microshells are not equally spaced. Furtherythe
can be cofmgut&jnrecudrsi\r/]ely sz.l.,z, . .2—5/20? rrr:'alg- (Xx—2GMF(X) N [—2GM,
ing use of Eq. and the conditiorr;=R— whic — . e
determines the constad@). In any case, as we discuss in X=2GM et XF(X)fisxia [ 1= 2GMi

Appendix C, the actual quadratic or linear structure of the 2 Y o A A
potential inside the macroshell has little influence on the en- 2r7G(Mi —M;_1)(ri —2GMi)F(r;) . (B4
ergy levels of the lowest states. (r;—2GM;_)4r;—2GM;+r;F(r))]
APPENDIX B: SHELL DYNAMICS wherer, . ; is the radius of the first microshell having radius
IN SCHWARZSCHILD TIME greater than that of the test shell and

It is known that, even if two theories are classically (Mi=M;_1)*>  Mi+M;_y _,m
equivalent, their quantization may lead to different Hilbert F(ri)=-1+ m2 +G I +G ar2
spaces and, therefore, different quantum pictures and that '(55)
this problem is potentially present in Einstein’s gravisge,

e.g., Ref[30]). It is thus interesting to compare the potential On then multiplying Eq.(2.3) by m/2 and using Eq(B4),
V{? obtained in Sec. Il with the one corresponding to a fo-one obtains the equation of motion for the microshell in the
liation of space-time into slices parametrized by theform of an effective Hamiltonian constraint in the Schwarzs-
Schwarzschild time.,,. =ty measured by é&istanj static ob-  child time:

server. Given this potential, one cén principle) construct

the Hilbert spacét{. and compute any observable in order to HO— Em %) 2(%) 2+V(t)—0 (B6)
check the equivalence &f, and,. Unfortunately, the form m=— 2 dr/ \dt, e

of the potential we obtain in the following makes the explicit

construction practically impossible. The explicit form of V() now depends on both the distribu-

First we observe that the proper time of the test shell cartion {r;,M;} of the microshells inside the macroshell and the
be expressed in terms of the inner and outer Schwarzschilcumbersome time conversion factor in E§4).
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Hence, we again rely on the thin shell limié€r;) and
consider the form of the potential wher<r, or x>ry. For
x<X one finds[see casél) in Fig. 2]

( dx)z_
e 1
. 2XG(Mg—m)(X—2GMg)F _(X)
(X—2Gm)’ [ X—2GM+XF_(X)]
(dx)Z_
il = 1

Analogously, forx>X [see casé€2) in Fig. 2]

2Gm
X

(Xx—2Gm)F _(x)
X—2Gm+XF_(X)

X—2GMjq
X—2Gm

Fo(x),

2G M,
X

(X=2GMg)F (X)
X—2GMg+XF_(X)

}F<(X).
(B7)

(dx)z_ 2G(M—m)  [X—2G(Mg—m)]F~(X)
at.] |1 T X TX—26(Me—m) 1 XF-(X)
Xx—2G Mg

X X 2G(Mo—m)

. 2XGm(x—2GMg)F~(x)
[X—2G(Mg—m)]?[x—2G Mg+ XxF~(X)]

F-(X),

PHYSICAL REVIEW D 64 104012

(X—=2GMg)F~(x)
TX2G Mg+ XF~(X) F>(0,

2G M,
B X
(B8)

whereF_ andF- have been_given in Eq$2.5 and(2.6).

On introducing the relativer] and center-mas§R) radii,
after some lengthy algebra one obtains an effective Hamil-
tonian for the two shells given by

2
+VO=HP+HY
(B9)

dr

dt.

L
EM

1 [dR)\?
t_=
H ZM( )

dt..

where the potential can be expanded in powerg ahdr/R
according to

o0 o0 K
r
vo=> gy Vnk(M,m;Ms;R)<:) . (B10)
n=0 k=0 ' R

Only the terms linear im/R are relevant for our calculation
and, to leading order i, they are given by

2 s M2 M3 M4) — 5
Vigi=—n X e N o (B11)
(W_10+6M_§_Mg), r<—§,

where we have again neglected nonleading ternms.in
On interpolating between the two terms given by, in
Eq. (B11), we obtain

2
dr
O ®
HY =35 (dtw +Vv0©, (B12)
with the potential

M mr? M M3

NS | _ S+ 43— — —_
Vi GZRZd( M M?)

Mmr[ M2 2MS 18 3|\/| 6|\/|2 M3
HT R VL VI S VI VA VI
M4
_W)’ (B13)

which holds for|r|< §/2 (see Fig. 11
If we now take the thin shell limit o%#/{!) only the linear

corresponding linear part OVEHT), as computed in Sec. Il,
using the Schwarzschild time, and then obtaining
dr\?
dt.)

V(1) =v§g>( (B14)

e

FIG. 11. The potentiaV) at orderG? for M=10"m, and &

partVy ; survives. We can then compare the result with the=1,=10"® m. 1<M/Mg=<2. Vertical units are arbitrary.
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n

21/3,

where N2\ 2/3
E‘n“:m< p) ‘ ()

dr\2 [ 2GM, (R-2GMoF(R) R?
dt.] |*7 R TR-2GM.tRF(R)

(B15)
and the spread of such statdsr n smal) is well approxi-
mated by Eq(2.12).
Solutions forV;)=V(, are given instead by the usual
harmonic oscillator wave functionggain we omit normal-
(B16) ization factors,

and

M2 M, G2Mm?2
F(R)= 1+W+G?+W.
OP=Hy(pe ¢, (Ce)
This yields, to lowest order i, .
where{=(GNn?/24?R?8) Y4 andH, are Hermite polyno-
|\/|Sm|r_|( |\/|2) mials [45]. The energy eigenvalues are

- (B17)
2R? Ms o [ANmI 1
En = Fﬁ n+§ . (C?)
which coincides with the thin shell limit.e., linear part of

t _ . .
Ve, Eq. (B13), for M=Mjs. This shows that the effective |t we now substitute the expression f@r previously ob-
potential governing the motion of the microshells is the sam&ained, we get the energy spectrum

in the NR for the two foliationd=,} and{X }.

VR(1)=G

NIZVZ% n 1
EP=m|=2| |=z+— (CY
APPENDIX C: MICROSHELL CONFINEMENT n R? 213 543’

We shall now show that the expression for the macrosheI\INhiCh is of the same order of magnitude as Eg5). Also
thicknesss in Eg. (2.12 can be obtained within the adiabatic h d of D@ 1 i N b E
approximation R constank in the NR by considering either € sprea OI suckbp © for n sma |shaga}|n given by q.h
just the linear part of the potentig? in H(? (thus neglect- (2.12) (see also Fig. 12and we can t eryore r(ezeresent the
ing the details of the distribution of the microshgl just state_ of eac_h microshell by using e't@ﬁ or 7.
the quadratic partwhich is related to a given distribution of Itis f'ilso important to observe that the energy gap between
microshells; see Appendix A From the HamiltoniarH{? two adjacent states,

one can obtain &ime-independentSchralinger equation le, 2/3 IRy 23
AE~| oz | m~|{—(%z | m, (C9)
-2 R R
r p—
[%JFV(” Pn=En®n, €D s much smaller tham for R=R,,, which suggests that
outside the gravitational radius the effects considered in the
where . = —i#id; and, on retaining the linear part, one hasPresent paper dominate over the microshell creation studied
(Nm=M=My) in Ref. [9].
We may also see the small difference between the energy
— levels in the two cases by employing a WKB quantization
V _GNmz I c2 [9]. Indeed if we require
W= 3R R’ (C2 '
— L — 1
or, on considering the quadratic term, é mdr=m % rdr=(n+ > h (C10
v _GN n? r2 3 -
@7 2R? 5 ¢\
\'\ \
Solutions to Eq(C1) with V;y=V/(4, are given(apart from a / \ \\
normalization factorby the Airy function Ai[45], / X
Ai(E— &), n=2k, , ér/d 4
oH= _ (C4 AN J
SOTNAI(E— i), N=2k+L, N/
\ /
whereke N and é=(2GNnP/42R?) Y% . The £, are the /)

zeros of the Airy function, Aif &5 1) =0, andé&,, the ze-
ros of its first derivative, Ai(— &,,)=0. The corresponding FIG. 12. Plot of® " (continuous linesand®? (dotted lines
eigenvalues are given by for n=0,1. Vertical units are arbitrary ardishould bes.
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for both potentials and consider cycles within the potential
well, that is the amplitude of the oscillations will correspond

to the width of the shell, we have
L +ol2 __ —
m 3@ r'dr=x/2mJ' dr[Vi)(8/2) = Viy(r) ]2
—6/2

L h
n+§ ,

(C1D)

thus determining(;y and J, for the linear and quadratic
potentials respectively. One obtains

R2 1/212/3
16GM m) } !
1

el
and correspondingly binding energies

1 213
+_
(” 2 (

n+ =|h

2

1) —23
W=2|3
4\/5 R2 1/2]2/13
e Sl sl |
(C12

5(2):2 — N

GM

h |22

9
EM= (

13 213
@) ) "
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E(z)_ 1 1/3 . 1 . 2/3 GM 2/3
n\72) [\ 2 orz) ™

(C13

which are of the same order of magnitude, and we have
added tcE(?) the additional?(G) term in Eq.(2.11) so as to

have continuity of the potentials bt = 6/2. It is clear that in
both cases we have allowed for a maximal oscillation of the
test microshell and thus obtaingy, .

Finally, let us now check how close to the gravitational
radius we can use the bound states obtained above. From Eq.

(2.9 one finds thatv(” is always positive for <0, but

becomes negative far>0 if
G2M?
2Ry,

R< =R;. (C14

As a sufficient condition for applicability of the modéx!’ ,

we shall require that the energy be less than the value of the
potential forr~45 (see Fig. 12 i.e., E{)<V 5, (r=49).

The above condition implies<4 for R>Ry(>R¢) and is
therefore satisfied for the second excited state 2) that we

use in Sec. llI; otherwise the shell breaks up.
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