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Gravitational signals emitted by a point mass orbiting a neutron star: A perturbative approach

L. Gualtieri, E. Berti, J. A. Pons, G. Miniutti, and V. Ferrari
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We compute the energy spectra of the gravitational signals emitted when a pointlike mass moves on a closed
orbit around a nonrotating neutron star, inducing a perturbation of its gravitational field and its internal
structure. The Einstein equations and the hydrodynamical equations are perturbed and numerically integrated
in the frequency domain. The results are compared with the energy spectra computed by the quadrupole
formalism which assumes that both masses are pointlike, and accounts only for the radiation emitted because
the orbital motion produces a time dependent quadrupole moment. The results of our perturbative approach
show that, in general, the quadrupole formalism overestimates the amount of emitted radiation, especially when
the two masses are close. However, if the pointlike mass is allowed to move on an orbit so tight that the
Keplerian orbital frequency resonates with the frequency of the fundamental quasinormal mode of the star
(2vK5v f), this mode can be excited and the emitted radiation can be considerably larger than that computed
by the quadrupole approach.

DOI: 10.1103/PhysRevD.64.104007 PACS number~s!: 04.30.2w, 04.40.Dg
pa
o
b

on
o
ro
m
h
n
rg

m
ap
hic
co

o
it
ia

cr
on
pl
ic
io

ar
h
ne
s
n
f

i
ar

le
tl

or

the
x-
one
nce
are
two

ui-
tic
ec-
tur-
cal
ated
ral
of
eir
in a
coa-
vious
the
es
hall
her
and

ole
ion
p-

id
ass
star,
ula,

tel-
are
e
ef.
ura

rce
I. INTRODUCTION

The coalescence of binary systems composed of com
objects such as black holes or neutron stars is considered
of the most promising sources of gravitational waves to
detected by ground-based interferometers. For this reas
is important to collect as much information as possible
the features of the gravitational signal emitted in these p
cesses. This paper focuses on the phenomena which
occur during the premerging phase of the coalescence, w
the two stars are still individual bodies in fast revolutio
around each other. The problem of computing the ene
spectrum and the waveforms of the gravitational waves e
ted in this regime can be attacked by using different
proaches. The easiest is the quadrupole formalism, w
assumes that the two stars are pointlike masses, and
putes the emitted radiation in terms of the quadrupole m
ment of the system, whose time variation is due to the orb
motion. When the two stars are very close, post Newton
corrections can be included to give a more accurate des
tion of the trajectories, and to refine the orbital contributi
of the emitted radiation. These calculations can be com
mented by the inclusion of radiation reaction effects, wh
account for the shrinking of the orbit caused by the emiss
of gravitational waves.

This approach clearly overlooks the fact that the two st
are extended bodies with an internal structure and that, w
they are close, the tidal interaction becomes strong and
effects, unpredictable by the quadrupole plus po
Newtonian approaches, may arise. An accurate descriptio
these phases of the coalescence requires a solution o
Einstein equations coupled with those of hydrodynamics
the nonlinear regime, and many groups in the world
working in this direction@1#. These studies will certainly
yield new and interesting results, but a complete picture
still far from being reached; indeed, because of the comp
ity of this phenomenon the computational tools presen
available allow us to follow the evolution of the system f
0556-2821/2001/64~10!/104007~14!/$20.00 64 1040
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no more than a few orbits near coalescence. Waiting for
results of fully nonlinear simulations, it is interesting to e
plore other techniques that, though approximate, allow
to obtain some insight into those phases of the coalesce
where the quadrupole plus post-Newtonian approaches
inadequate. For instance, we can assume that one of the
stars is a ‘‘true star,’’ i.e., it is an extended body whose eq
librium structure is described by a solution of the relativis
equations of hydrostatic equilibrium, and that only the s
ond star is a pointlike mass. Its effect is to induce a per
bation on the gravitational field and on the thermodynami
structure of the extended companion, which can be evalu
by solving the equations of stellar perturbations in gene
relativity. In this way we can account for the tidal effects
the close interaction on one of the two stars and for th
consequences on the gravitational emission, and obta
clue as to the kinds of phenomena that could arise near
lescence. This approach has already been used in a pre
paper @2# where we computed the energy spectrum of
gravitational radiation emitted when a pointlike mass mov
on an open orbit around a compact star. In this paper we s
extend our investigation to the case of closed orbits, eit
circular or eccentric, and compute the energy spectra
waveforms of the emitted radiation.

The purpose of our study is to compare the quadrup
radiation emitted by the system because of its orbital mot
to the signal computed in the relativistic, perturbative a
proach.

The orbital emission will be computed using a hybr
quadrupole approach, which assumes that the pointlike m
moves on a geodesic of the spacetime generated by the
but radiates, according to the standard quadrupole form
as if it were in flat spacetime.

To evaluate the relativistic emission, the equations of s
lar perturbations we integrate in the interior of the star
those derived in Ref.@3#; therefore we shall not describ
them in detail, but only recall the relevant formulas. In R
@2#, outside the star we integrated the Sasaki-Nakam
equation@4#; here we consider closed orbits, i.e., a sou
©2001 The American Physical Society07-1
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with a compact support, and it is more convenient to in
grate the Bardeen-Press-Teukolsky~BPT! equation @5,6#
whose source term has a much simpler form.

Since in this paper we do not consider the effects of
diation reaction, we cannot describe the evolution of the
bit and of the waveform during the inspiraling; thus the e
ergy spectra we show have to be considered as represen
of a certain number of orbital periods over which the rad
tion reaction effects do not produce a significant change
the orbital parameters of the pointlike mass~adiabatic ap-
proximation!. These effects will be considered in a forthcom
ing paper.

Stellar perturbations excited by an orbiting particle ha
also been considered by Kojima@7#, who focused on the
energy enhancement with respect to the standard Newto
quadrupole formula, due to the excitation of the fundamen
mode by a particle in circular orbit. The excitation of thew
modes has been studied by Ruoff, Laguna, and Pullin
time domain approach@8#.

The plan of the paper is the following. In Sec. II we wri
the equations relevant to our problem. In Sec. III we disc
the source term of the BPT equation. In Sec. IV we outl
the integration procedure, and discuss how to find the po
emitted in gravitational waves and the waveforms. In Sec
we show how to compute the same quantities by the hy
quadrupole approach. Numerical results are discussed in
VI, and conclusions are drawn in Sec. VII.

II. PERTURBED EQUATIONS

In order to describe the nonaxisymmetric perturbations
a nonrotating star induced by an orbiting mass we choose
in Ref. @2#, the following gauge:1

ds25e2n(r )dt22e2m2(r )dr22r 2du22r 2 sin2udf2

1(
lm

E
2`

1`

dve2 ivtH 2e2nNlmYlmdt2

22e2m2LlmYlmdr222r 2H33du222r 2 sin2uH11df2

24r 2H13dudf12 sinu
]Ylm

]u
@hlm

0 dtdf1hlm
1 drdf#

2
2

sinu

]Ylm

]f
@hlm

0 dtdu1hlm
1 drdu#J , ~2.1!

where the perturbed metric function
@Nlm ,Llm ,Vlm ,Tlm ,hlm

0 ,hlm
1 # are functions of (v,r ),

Ylm(u,f) are the scalar spherical harmonics, and

1Metric ~2.1! in Ref. @2# contained two misprints in the term
dudf anddtdf which have now been corrected.
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H115FTlm1VlmS 1

sin2u

]2

]f2
1cotu

]

]u D GYlm ,

H135VlmF ]2

]f]u
2

]

]f
cotuGYlm ,

H335FTlm1Vlm

]2

]u2GYlm .

The functions@Nlm ,Llm ,Vlm ,Tlm# are the radial part of the
polar ~even! metric components, andhlm

0 and hlm
1 are the

axial ~odd! part.
The unperturbed metric functionsn(r ) andm2(r ) can be

found by solving the equations of hydrostatic equilibriu
„cf. Ref. @2#, Eqs. ~2.2!–~2.4!… for an assigned equation o
state. As in Ref.@2#, we shall consider as a model a pol
tropic compact star,p5Ken, with K5100 km2 andn52. If
the central density is chosen to beec5331015 g/cm3, the
radius and mass of the star areRs58.86 km and M
51.266M ( , respectively, with a ratioRs /M54.7. Although
this model is, to some extent, unrealistic, it is appropriate
understand the basic features of the problem we wan
study.

Inside the star, it is convenient to replace the perturb
metric functionsVlm andTlm by two new functions

X5nV

G5n ,rFn11

n
X2TG

,r

1
1

r 2
~e2m221!@n~N1T!1N#

1
n ,r

r
~N1L !2e2m2~e1p!N1

1

2
v2e2(m22n)

3FL2T1
2n11

n
XG ,

where n5( l 21)(l 12)/2. The polar metric functions
@Nlm ,Llm ,Xlm ,Glm# can be found by solving a set of linea
coupled equations@cf. Ref. @3#, Eqs.~72!–~75!#, from which
the fluid perturbations have been eliminated:

X,r ,r1S 2

r
1n ,r2m2,r DX,r1

n

r 2
e2m2~N1L !1v2e2(m22n)X

50,

~r 2G!,r 5nn ,r~N2L !1
n

r
~e2m221!~N1L !

1r ~n ,r2m2,r !X,r1v2e2(m22n)rX,
7-2
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2n ,rN,r52G1n ,r@X,r1n ,r~N2L !#1
1

r 2
~e2m221!

3~N2rX ,r2r 2G!2e2m2~e1p!

3N1
1

2
v2e2(m22n)

3H N1L1
r 2

n
G1

1

n
@rX ,r1~2n11!X#J ,

2L ,r5~N12X! ,r1S 1

r
2n ,r D ~2N13L12X!

1F2

r
2~Q11!n ,r GFN2L1

r 2

n
G1

1

n
~rX ,r1X!G ,

~2.2!

whereQ5(]p/]e)s
21 .

The equations for the axial perturbation can be combi
into a single wave equation by introducing a functi
Zlm

ax(v,r ) related to the axial functions by the equations

hlm
0 52

i

v

d

dr*
~rZlm

ax!, hlm
1 52e22n~rZlm

ax!, ~2.3!

wherer * 5*0
r e2n1m2dr. The equationZlm

ax(v,r ) satisfies is
@cf. Ref. @3#, Eqs.~148! and ~149!#

d2Zlm
ax

dr
*
2

1H v22
e2n

r 3
@ l ~ l 11!r 1r 3~e2p!26m~r !#J Zlm

ax50,

~2.4!

which, outside the star, automatically reduces to the Reg
Wheeler equation@9#. The polar and axial equations~2.2!
and ~2.4! are numerically integrated fromr 50, where we
impose a regularity condition up to the surface of the star
5Rs . There we compute the amplitudes of the Zerilli fun
tion @10#

Zlm
pol~v,Rs!5

Rs

nRs13M F3M

n
Xlm~v,Rs!2RsLlm~v,Rs!G ,

~2.5!

and of the Regge-Wheeler function,Zlm
ax(v,Rs), and their

first derivatives, which will be used to continue the soluti
outside the star.

To describe the perturbations of the Schwarzschild spa
time prevailing outside the star we use the BPT equa
@5,6#

H D2
d

dr F 1

D

d

drG1F ~r 4v214i ~r 2M !r 2v!

D

28ivr 22nG J C lm~v,r !52Tlm~v,r !, ~2.6!

whereD5r 222Mr , and the BPT functionC lm is related to
the perturbation of the Weyl scalardC4 by
10400
d

e-

e-
n

C lm~v,r !5
1

2pE dVdte 22
ivt Slm* ~u,f!@r 4dC4~ t,r ,u,f!#,

~2.7!

where 22Slm(u,f) is the spin-weighted spherical harmon

22Slm~u,f!5
1

2An~n11!
F ]2Ylm

]u2
2cotu

]Ylm

]u
1

m2

sin2u

3Ylm1
2m

sinu S ]Ylm

]u
2Ylm cotu D G . ~2.8!

The advantage of using the BPT equation is thatdC4 is
invariant under gauge transformations and infinitesimal
rad rotations, and that the squares of its real and imagin
parts are proportional to the energy flux of the outgoing
diation at infinity in the two polarizations. In addition, th
source termTlm(v,r ), which will be discussed in detail in
the next section, has a much simpler form than the sourc
the Sasaki-Nakamura equation, which we used to study
gravitational emission in the case of open orbits in Ref.@2#.

At the surface of the star, whereTlm(v,r )50, the relation
betweenC lm , Zlm

pol , andZlm
ax is

C lm5
r 3An~n11!

4v
@VaxZlm

ax1~Wax12iv!L1Zlm
ax#

2
r 3An~n11!

4
@VpolZlm

pol1~Wpol12iv!L1Zlm
pol#,

~2.9!

whereL15(d/dr* )1 iv5(D/r 2)(d/dr)1 iv, and

Vax5
2D

r 5 @~n11!r 23M #,

Wax5
2

r 2 ~r 23M !,

Vpol5
2D

r 5~nr13M !2 @n2~n11)

3r 313Mn2r 219M2nr19M3#,

Wpol52
nr223Mnr23M2

r 2~nr13M !
.

According to Eq.~2.9! we can writeC lm as a sum of an axia
and a polar part; i.e.,

C lm5C lm
ax1C lm

pol , ~2.10!

where

C lm
ax5

r 3An~n11!

4v
@VaxZlm

ax1~Wax12iv!L1Zlm
ax#,
7-3



he

e

ria

o

y,
th
l

f t

e
n-
s
in

as
r

ry
nity.

of
r-
uss
he
n,

GUALTIERI, BERTI, PONS, MINIUTTI, AND FERRARI PHYSICAL REVIEW D64 104007
C lm
pol52

r 3An~n11!

4
@VpolZlm

pol1~Wpol12iv!L1Zlm
pol#.

~2.11!

However, in Sec. IV we will show that depending on t
value of the harmonic indicesl andm, only the polar or the
axial part ofC lm have to be selected.

III. SOURCE TERM OF THE BPT EQUATION

We shall assume that the pointlike massm0 which excites
the perturbations of the star follows a geodesic of the unp
turbed spacetime on the equatorial plane, with energyE and
angular momentumLz , so that the geodesic equations are

dt

dt
5

E

12
2M

r

,

dr

dt
[g56AE22S 12

2M

r D S 11
Lz

2

r 2 D ,
dw

dt
5

Lz

r 2
.

~3.1!

For a closed orbit the motion takes place between a pe
tron r P and an apoastronr A , roots of the equationg50 ~a
third root marks the onset of a plunging motion, that is n
relevant for our study!. We can define the semilatus rectump
and the eccentricitye in terms of r P and r A through the
relations

r P5
pM

11e
, r A5

pM

12e
. ~3.2!

Both p ande are dimensionless, and they are, respectivel
measure of the size and of the degree of noncircularity of
orbit. Note that 0<e,1. The orbit is periodic in the radia
coordinate, and quasiperiodic in thew coordinate, i.e.,

r ~ t1Dt !5r ~ t !, ~3.3!

w~ t1Dt !5w~ t !1Dw.

The source term of the BPT equation~2.6! is

Tlm~v,r !522An~n11!r 4T(n)(n) lm~v,r !

22AnDL1

r 5

D
T(n)(m̄) lm~v,r !

2
D

2r
L1

r 6

D
L1rT (m̄)(m̄) lm~v,r !, ~3.4!

and can be found as follows. The stress-energy tensor o
orbiting mass

Tmn5 (
k52`

`
4pm0

r 2ugu

dzm

dt

dzn

dt
d„t2tk~r !…d (2)

„V2Vk~r !…,

~3.5!
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wheretk(r ), Vk(r ) are the time and angular position of th
mass on thekth semiorbit, is projected onto the Newma
Penrose tetrad, (l ,n,m,m̄), to find its tetrad component
T(p)(q)5Tmne(p)me(q)n . These are subsequently expanded
the spin-weighted spherical harmonicssSlm(u,f), and Fou-
rier expanded, as follows:

T(p)(q) lm~v,r !5
1

2pE dtdVe s
ivt Slm* ~V!T(p)(q)~ t,r ,V!,

~3.6!

where s522,21,0 for T(m̄)(m̄) , T(n)(m̄) , and T(n)(n) , re-
spectively. As a result of this procedure we find

T(p)(q) lm~v,r !5S (
k52`

1`

eik[vDt2mDw] DT0(p)(q) lm~v,r !.

~3.7!

The explicit expressions ofT0(p)(q) lm are given in Appendix
A. By making use of the relation

(
k52`

1`

eikX52p (
j 52`

1`

d~X22p j !, ~3.8!

it is easy to see that Eq.~3.7! can be written as

T(p)(q) lm~v,r !5
2p

Dt (
j 52`

1`

d~v2vm j!T0(p)(q) lm~v,r !,

~3.9!

where

vm j5
2p j 1mDw

Dt
[ j V r1mVw , ~3.10!

and the source of the BPT equation takes the form

Tlm~v,r !5
2p

Dt (
j 52`

1`

d~v2vm j!T0lm~v,r !. ~3.11!

It should be noted thatV r andVw are the two characteristic
frequencies of the problem. The frequencyV r52p/Dt is
associated with the periodicity of the radial motion, where
Vw5Dw/Dt is the angular velocity of an inertial observe
with respect to which thew motion of the orbiting mass
appears to be periodic.

IV. SOLUTION OF THE BPT EQUATION

The inhomogeneous BPT equation~2.6! can be integrated
by constructing a Green function which ensures thatdC4
matches regularly with the interior solution at the bounda
of the star, and behaves as a pure outgoing wave at infi
This problem has been solved by Detweiler in the case
black holes@11#; here we briefly describe the simple gene
alization of the method to the case of stars. First we disc
some symmetry properties of the functions involved in t
problem we want to solve. Under complex conjugatio
spherical harmonics behave as Ylm* (u,f)
7-4
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5(21)mYl2m(u,f); consequently, the perturbed metric fun
tions in Eq.~2.1! and the functionsZlm

pol andZlm
ax , satisfy the

propertyFlm* (r ,v)5(21)mFl 2m(r ,2v). From Eqs.~2.11!
it follows that

~C lm
ax~v,r !!* 5~21!m11C l 2m

ax ~2v,r !,

~C lm
pol~v,r !!* 5~21!mC l 2m

pol ~2v,r !. ~4.1!

By inspection of the source term, we find thatC lm must
satisfy an additional relation

C lm* ~r ,v!5~21! lC l 2m~r ,2v!. ~4.2!

In order that Eqs.~4.1! and ~4.2! be consistent, and looking
at Eqs.~2.10!, we see that the following selection rules mu
hold: if ( l 1m) is even,C lm5C lm

pol ; and if (l 1m) is odd,
C lm5C lm

ax . Thus, depending on the value of the harmo
indicesl andm, C lm is either polar or axial. As explained i
Sec. II, we integrate the equations of stellar perturbation
the interior of the star@Eqs. ~2.2! and ~2.4!#, and construct
the functionsZlm

ax(v,r s) and Zlm
pol(v,r s) and their first de-

rivatives atr 5Rs ; from these we computeC lm
ax(v,Rs) and

C lm
pol(v,Rs), as given in Eqs.~2.11!, and their first deriva-

tives, which are needed to integrate the BPT equation out
the star. However, it should be noted that the regularity c
dition imposed atr 50 allows one to determineZlm

ax andZlm
pol

only up to an unknown amplitudex lm(v), to be determined
by the matching conditions at the boundary of the star.
what follows, we shall indicate byC̄ lm

ax(v,Rs) and

C̄ lm
pol(v,Rs) the values of the axial and polar parts of t

wave functionC lm as computed by numerical integration
the interior equations. The problem we want to solve the
fore is

LBPTC lm~v,r !52Tlm~v,r !,

C lm~r→`!5r 3eivr
* Alm~v!,

C lm~v,Rs!5x lm~v!C̄ lm~v,Rs!,

C lm8 ~v,Rs!5x lm~v!C̄ lm8 ~v,Rs!,
~4.3!

whereLBPT is the differential operator on the left hand sid
of the BPT equation. If (l 1m) is even, C̄ lm(v,Rs)
5C̄ lm

pol(v,Rs), whereas if (l 1m) is odd C̄ lm(v,Rs)

5C̄ lm
ax(v,Rs). Alm(v) is the unknown wave amplitude to b

determined. The general solution of Eqs.~4.3! is

C lm~v,r !52
1

Wlm
FC lm

0 E
Rs

r dr8

D2
C lm

1 Tlm

1C lm
1 E

r

`dr8

D2
C lm

0 TlmG , ~4.4!

where C lm
0 and C lm

1 are two independent solutions of th
homogeneous BPT equation defined as
10400
t

in

de
-

n

-

H LBPTC lm
0 ~v,r !50,

C lm
0 ~v,r→`!5r 3eivr

* , H LBPTC lm
1 ~v,r !50,

C lm
1 ~v,Rs!5C̄ lm~v,Rs!,

C lm
18~v,Rs!5C̄ lm8 ~v,Rs!,

~4.5!

andWlm(v) is the Wronskian:

Wlm~v!5
1

D
@C lm

1 C lm,r
0 2C lm

0 C lm,r
1 #. ~4.6!

From Eq. ~4.4! it is easy to see that the amplitude of th
wave at infinity is

Alm~v!52
1

Wlm~v!
E

Rs

`dr8

D2
C lm

1 ~v,r 8!Tlm~v,r 8!.

~4.7!

By the use of Eq.~3.11! this expression becomes

Alm~v!52
1

Wlm~v!

2p

Dt (
j 52`

1`

d~v2vm j!

3E
Rs

`dr8

D2
C lm

1 ~v,r 8!T0lm~v,r 8!. ~4.8!

Some further details related to the evaluation of the am
tude @Eq. ~4.8!# are given in Appendix A.

We shall now compute the time-averaged energy flux:

K dE

dt L 5 lim
T→`

E

T
5 lim

T→`

1

T (
lm

E dvS dE

dv D
lm

, ~4.9!

where the energy spectrumdE/dv can be expressed in term
of the wave amplitude at infinityAlm(v) as @12#

S dE

dv D
lm

5
1

2v2 uAlm~v!u2. ~4.10!

Since the wave amplitude can be written as@cf. Eq. ~4.8!#

Alm~v!5 (
j 52`

`

Âlm~v!d~v2vm j!, ~4.11!

we have

K dE

dt L 5 lim
T→`

1

T (
lm

(
j 52`

1` E dv9d~v2vm j!
29

1

2v2 uÂlm~v!u2

5(
lm

(
j 52`

1`
1

4pvm j
2

uÂlm~vm j!u2[(
lm

(
j 52`

1`

Ėlm j
R ,

~4.12!

where ‘‘d2’’ is the regularized squaredd function, such that

lim
T→`

2p

T
9d~v2vm j!

295d~v2vm j!, ~4.13!
7-5
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and we have defined the time-averaged power spectrum

Ėlm j
R [

1

4pvm j
2

uÂlm~vm j!u2. ~4.14!

In conclusion, the gravitational emission is characterized
a series of spectral lines at frequenciesvm j . From the sym-
metry properties

v2 j 2m52vm j ~4.15!

and

Âlm* ~vm j!5~21! l Âl 2m~v2 j 2m!, j .0 ~4.16!

it follows that

Ėl 2m2 j
R 5Ėlm j

R . ~4.17!

Thus, once we know the power spectrumĖlm j
R as a function

of the frequenciesvm j , for an assigned value ofl and for
positive m, the spectrum for negativem is obtained by Eq.
~4.17!.

Since dC4(t,r ,u,f) and the gravitational wave ampl
tude in the radiation gauge are related by

dC4~ t,r ,u,f!52
1

2
@ ḧ1

TT~ t,r ,u,f!1 iḧ3
TT~ t,r ,u,f!#,

~4.18!

using Eq.~2.7! we find

@rh1 lm
TT ~ t,r ,u,f!# r→`522Slm~u,0!Reeimf

3 (
j 52`

`
2

vm j
2

Âlm~vm j!e
2 ivm j(t2r

*
),

@rh3 lm
TT ~ t,r ,u,f!# r→`522Slm~u,0!Im eimf

3 (
j 52`

`
2

vm j
2

Âlm~vm j!e
2 ivm j(t2r

*
),

~4.19!

where we have separated thef dependence of the spi
weighted spherical harmonics, 22Slm(u,f)
522Slm(u,0)eimf.

V. QUADRUPOLE EMISSION

We shall now compute the gravitational radiation emitt
by the massm0 because of its accelerated orbital moti
around the star. The energy flux is computed by usin
semirelativistic approximation, which assumes thatm0
moves along a geodesic of the curved spacetime, but rad
as if it were in flat spacetime. Using the quadrupole formu
it is easy to show that theTT components of the gravitationa
wave emitted by the particle are@13#
10400
y

a

tes
,

rhuu
TT~ t,r ,u,f!5@~Q̈xx2Q̈yy!cos2f1Q̈xy sin 2f#

3~11cos2u!1@Q̈yy2Q̈zz#cos2u

1Q̈zz2Q̈xx ,

rhuf
TT~ t,r ,u,f!52cosu@~Q̈xx2Q̈yy!

3sin 2f12Q̈xy~122 cos2f!#,

~5.1!

whereQkl denotes the components of the reduced quad
pole moment,Qkl5m0(XkXl2 1

3 d l
kuXu2), and u,f are the

polar angles. The two-dimensional vectorX is the position of
the particle along its trajectory in the equatorial planeX
5(r (t)cosw(t),r(t)sinw(t)), and r (t) and w(t) are given by
the geodesic equations~3.1!. The expressions of the secon
time derivative of the components ofQkl in terms ofr (t) and
w(t) are

Q̈xx5m0~a cos 2w2b sin 2w1d/2!,

Q̈yy5m0~2a cos 2w1b sin 2w1d/2!,

Q̈xy5m0~a sin 2w1b cos 2w!, Q̈zz52m0d,
~5.2!

where

a5 ṙ 21r r̈ 22r 2ẇ2, ~5.3!

b54r ṙ ẇ1r 2ẅ, d52~ ṙ 21r r̈ !/3.

In Appendix B we explicitly compute the Fourier transfor
of metric components~5.1!, which will be used to evaluate
the energy flux, and we show that they can be written as

huu
TT~v,r ,u,f!5 (

m522,0,2
(

j 52`

`

d~v2vm j!Huu~vm j ,u,f!,

huf
TT~v,r,u,f!52 (

m522,2
(

j 52`

`

d~v2vm j!Huf~vm j ,u,f!,

~5.4!

wherevm j are defined in Eq.~3.10!, andHuu and Huf are
given in Appendix B. We shall now derive the time-averag
quadrupole energy flux@Eq. ~4.9!#. Since

dE(Q)

dSdt
5

1

16p
$uḣuu

TT~ t,r ,u,f!u21uḣuf
TT~ t,r ,u,f!u2%,

~5.5!

it follows that

K dE(Q)

dt L 5
r 2

16p
lim

T→`

1

TE0

T

dtE dV$uḣuu
TTu21uḣuf

TTu2%;

~5.6!

using Parseval’s theorem this becomes
7-6
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FIG. 1. The gravitational emission associated with an eccentric orbit, withe50.1 andr P53Rs , is illustrated by plotting the amplitude

of the spectral lines vs the dimensionless frequencyMvm j . The radiation computed by the hybrid quadrupole approachĖm j
Q ~a! has to be

compared with that computed by the relativistic approachĖlm j
R for l 52 ~b!. In ~c! and~d! we plot the relativisticl 53 and 4 contributions.

In this figure and in the following the spectral lines are normalized tom0
2.
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K dE(Q)

dt L 5
r 2

16p (
j 52`

` F (
m522,0,2

E dVvm j
2

3uHuu~vm j ,u,f!u2

1 (
m522,2

E dVvm j
2 uHuf~vm j ,u,f!u2G

5 (
j 52`

`

(
m522,0,2

Ėm j
Q , ~5.7!

where

Ėm j
Q 5

r 2vm j
2

16p E dV@ uHuuu21uHufu2#, for m522,2,

Ėm j
Q 5

r 2vm j
2

16p E dV@ uHuuu2# for m50. ~5.8!

VI. NUMERICAL RESULTS

The equations of stellar perturbations~2.2!, ~2.4!, and
~2.6! have been numerically integrated for a set of bound
orbits identified by selected values of the orbital parame
(E,Lz), or, equivalently, (e,r P). In computing the energy
10400
d
rs

flux, we have seen that the energy is emitted at a discr
infinite set of frequenciesvm j , with 2`, j ,1`, defined
in Eq. ~3.10!. The output of our perturbative calculations a
the amplitudes of the spectral linesĖlm j

R @Eq. ~4.14!# and the
corresponding waveforms@Eq. ~4.19!#.

The energy computed by the hybrid quadrupole appro
is also emitted at the same discrete frequenciesvm j ; how-
ever, whereas the quadrupole emission is resticted tol 52,
andm5(22,0,2) forhuu

TT andm5(22,2) for huf
TT @cf. Eqs.

~5.4!#, for the relativistic calculationsl>2 and2 l ,m, l for
both polarizations. Thus to compare the outcome of the
approaches we have to confront the quadrupole spectral
Ėm j

Q with the l 52 relativistic linesĖlm j
R .

In Fig. 1 we show, as an example, the energy output for
orbit with periastronr P53Rs and eccentricitye50.1 com-
puted by the quadrupole approach, and the relativistic res
for l 52, 3, and 4 for the same orbit. The spectral lines
plotted for the discrete values of the dimensionless freque
Mvm j , for assigned values of positivem. We do not plot the
lines corresponding to negativem because they can be ob
tained through a reflection across the zero frequency axi
the positive ones, by virtue of the symmetry property@Eq.
~4.17!#. A comparison of the quadrupole emission@Fig. 1~a!#
with the l 52 relativistic emission@Fig. 1~b!# shows that, for
m50 and 2, the two spectra are qualitatively similar. A
expected, the three plots which refer to the perturbative
7-7
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sults show that most of the energy is emitted in thel 52
multipole, and that for eachl, the l 5m component is always
larger than the others.

It is known that for particles in circular orbit around blac
holes the total power emitted in each multipole,

Ėl
R5 (

j 52`

`

(
m522

2

Ėlm j
R , ~6.1!

scales with the multipole order as

Ėl
R;p22 l , ~6.2!

wherep is the orbital semilatus rectum@14#. This power-law
scaling was found analytically. Subsequently, Cutler, Ken
fick, and Poisson@15# numerically integrated the BPT equa
tion for a Schwarzschild black hole with a point partic
moving on bounded orbits. They showed that the same re
holds, at least in order of magnitude, for particles in eccen
orbits. We find that a similar power law also exists for sta
both for circular and eccentric orbits, as indicated in Fig
where, as an example, we plot the ratioĖl

R/Ė2
R as a function

of l, for an orbit with e50.1 andp515.64 (r P53Rs). In
Table I we tabulate the ratioĖl

R/Ė2
R for different values ofl

and for two circular orbits withr 053Rs and r 0510Rs , re-
spectively.

TABLE I. Ratio of the power in thel th multipole, Ėl
R , to the

power in thel 52 multipole for two circular orbits of radiusr 0

53Rs and r 0510Rs , respectively.

Ėl
R/Ė2

R

l 3Rs 10Rs

3 8.631022 2.731022

4 9.231023 9.231024

5 1.031023 3.331025

6 1.231024 1.231026

FIG. 2. The ratio of the total power emitted in thel th multipole,

Ėl
R , to the total power emitted inl 52, Ė2

R , is plotted as a function
of l, for an orbit with e50.1 andp515.64 (r P53Rs). It clearly

shows a power law behaviorĖl
R;pl 22.
10400
-

ult
ic
,

In Fig. 3 we show how the energy output obtained by t
relativistic approach varies as a function of the eccentric
of the orbit; we consider four casese51023, 1022, 0.1, and
0.4. All orbits have the same periastron (r P53Rs), and the
plots are given forl 5m52, since this is the dominant con
tribution to the emitted radiation. In the zero eccentric
limit, the whole power is concentrated in the harmonic w
j 50, corresponding to a frequencyvcirc52Dw/Dt52vK ,
wherevK is the Keplerian orbital frequency; as the ecce
tricity increases, the frequency of the highest line sligh
decreases, and higher order harmonics become significa

We have compared the total power computed by the qu
rupole formalism

ĖQ5 (
j 52`

`

(
m522,0,2

Ėm j
Q , ~6.3!

with that emitted in thel 52 multipole Ė2
R defined in Eq.

~6.1! and computed by the perturbative approach, for diff
ent values of the eccentricity and of the periastron. We fi
that, in general,Ė2

R is systematically smaller thanĖQ. The
amount of emitted radiation affects the orbital evolution
the system and the shape of the gravitational signal, in
ticular during the latest phases of coalescence, where
orbit is already circularized. To understand the relevance
this effect, which may be important for the detection of the
signals by the ground based interferometers VIRGO and
ser Interferometric Gravitational Wave Observatory~LIGO!,
we have computed the relative difference

Ė2
R2ĖQ

ĖQ
~6.4!

for circular orbits, as a function of the orbital radius,r 0. The
results are shown in Fig. 4. For large values of the radius
relative difference tends, as expected, to zero; at a distanc
ten stellar radii it is about 7%, and it becomes greater th
14% when the two stars are 3Rs apart.

In order to check the correctness of our results, we h
repeated the calculation by a different approach, integra
the inhomogeneous Zerilli and the Regge-Wheeler equat
for the same orbits. The results agree to the roundoff err

The situation changes if the point mass moves on an o
‘‘resonant’’ with a mode of the star, which means the follow
ing. For the model of star we are considering, the low
frequency mode is the fundamental one, whose frequenc
v fM50.12034. To excite this mode the mass should mo
on an orbit such that the frequency of one of the spec
lines of the quadrupole emissionvm j , with m522, 0, and
2, is very close to or coincides withv f . We find that, as the
quadrupole spectral line frequencyvm j approachesv f for
some value ofm and j, the amplitude of the emitted radia
tion, computed in the perturbative approach, increases. T
suggests that the excitation mechanism could be seen
resonant scattering of the gravitational wave emitted by
system in the orbital motion~the quadrupole wave! on the
potential barrier generated by the perturbed star. Indeed
discrete nature of the power spectrum emitted in the qua
eriodic motion of the point mass suggests an analogy with
atomic laser: in this picture, the atomic energy levels cor
7-8
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FIG. 3. In this figure we show how the spectral content of the gravitational emission changes as a function of the eccentricity,

the spectral linesĖlm j
R as a function of the dimensionless frequencyMvm j , for l 5m52 and for the same value of the periastronr P

53Rs . As the eccentricity increases, the location of the highest line shifts slightly toward a lower frequency, and higher order ha
become more relevant.
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FIG. 4. The relative difference between the total powerĖQ com-
puted by the hybrid quadrupole approximation, and the total po

emitted in thel 52 multipole, Ė2
R , computed by the relativistic

approach, is plotted for circular orbits as a function of the radiusr 0

~given in units of the stellar radius!. When the point mass moves o
an orbit far from the star the two approaches give the same re

the quadrupole emission becomes significantly larger thanĖ2
R for

r 0,10RS .
10400
spond to quasinormal mode frequencies, and the quadru
radiation frequencies to the energy of the electromagn
radiation exciting them.

In order to excite the fundamental mode of our star,
two bodies must be very close, and therefore it is reason
to assume that the orbit is circular and thatvm j reduces to
vcirc defined above. To show how efficient this resona
mechanism could be, in Fig. 5 we plot the energy out

Ė22j
R , and the corresponding quadrupole energyĖ2 j

Q for a
point mass moving on an orbit such thatvcirc5v f(r 0
51.37417Rs). From this figure we see that the situatio
changes dramatically with respect to the nonresonant c
the energy emitted in the relativistic calculation is about 6
times larger than that computed by the quadrupole appr
mation. Whether the fundamental mode could be excited d
ing the coalescence of neutron star binary systems is, h
ever, questionable, and will be discussed in the conclud
remarks.

It should be mentioned that thef-mode excitation by a
particle in circular orbit around a star was studied also
Kojima @7#. In his paper he only considered circular orb
and polar perturbations withl 52 andm562. We find the
same qualitative behavior, although with minor differenc
of the order of 10% in the wave amplitude. We are confid
of the correctness of our results since, as mentioned ab

r

lt;
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we obtained them using two completely differe
formalisms—one based on the Regge-Wheeler and the o
on the Newman-Penrose approach.

In Fig. 6, we show the1 polarization of the waveform—
the3 polarization is zero because we assume the observ
on the equatorial plane—for a circular orbit with radiusr 0
53Rs , and forl 52. The gravitational waveform obtained i
the quadrupole approximation is also shown~dashed lines!
for comparison. There are two remarkable effects. The firs
that them51 axial contribution to the relativistic waveform
which is usually ignored, is not negligible. Indeed, it induc

FIG. 5. The spectral line emitted by the system when the p
mass moves on a close circular orbit is compared to the same q
tity computed by the hybrid quadrupole formalism. The relativis
line ~in black! is much larger than the quadrupole one~in white!,
because the frequency of the quadrupole line coincides with tha
the fundamental mode of the starv f , and a mechanism of resona
excitation occurs~see the text!.

FIG. 6. Theh1
TT component of the gravitational wave, emitte

when the point mass moves on a circular orbit withr 053Rs ~nor-
malized tom0), is plotted vs the retarded time in units of the orbit
period. Since we assume that the observer is on the equat
plane, theh3

TT component vanishes. In order to compare the rela
istic waveform~continuous line! with the waveform computed by
the hybrid quadrupole approach~dashed line!, only the l 52 com-
ponent of the relativistic signal is shown. The difference betwe
the two signals is basically due to them51 contribution of the
axial perturbations to the relativistic waveform~see the text!.
10400
er

is

is

s

a beating of the axial and polar frequencies, clearly see
the figure. The second effect is that the average of the
plitudes of the positive~or of the negative! peaks in the rela-
tivistic waveform is smaller than that of the quadrupo
waveform. This is related to the fact that thel 52 relativistic
energy output is systematically smaller than that of the qu
rupole as we get close to the star~see Fig. 3!.

A case with large eccentricity (e50.4) is shown in Fig. 7.
The structure of the waveforms is now much more comp
cated. However, both effects seen in the circular case are
present. The beating of the axial and polar frequencies p
duces similar changes in the maxima of the wave amplitu
i.e., about 10% in both cases. We have found that the rela
contribution between the axial and polar emissi
Ėl

Rax/Ėl
Rpol is quite independent of eccentricity and d

creases approximately as'1/p. Thus it becomes negligible
at large distances but it might be significant in the late sta
of the inspiraling.

VII. CONCLUDING REMARKS

In this paper we have studied the gravitational emission
a binary system composed of a star and a point mass orb
around it by using a perturbative approach. The results h
been compared with the orbital emission computed by
quadrupole formalism, assuming that both objects are po
like, thus neglecting the fact that the star is an extended b
with an internal structure, and that the dynamical evolut
of the gravitational field couples to the thermodynamic
evolution of the star. Of course the perturbative approa
also is quite a crude approximation of a realistic binary s
tem, since one of the two stars is still considered as a p
mass. However, it allows us to treat at least one star in
exact manner, since its internal structure and its gravitatio
field are exact solutions of the equations of hydrostatic eq
librium. The interaction with the companion is treated as
perturbation, and evaluated by linearizing the Einstein eq
tions coupled with the hydrodynamical equations. In comp

t
an-

of

ial
-

n

FIG. 7. As in Fig. 6, we plot theh1
TT component of the gravita-

tional wave emitted when the point mass moves on an ecce
orbit with e50.4 andr P53Rs . The structure of the waveform is
now much more complicated, but the beating of the frequenc
induced by them51 axial contribution is still present.
7-10
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ing the outcome of the two approaches, we find the follow
effects.

~1! The total relativistic powerĖ2
R emitted in thel 52

multipole is smaller than that computed by the quadrup

approach,ĖQ.
~2! The waveforms have different shapes, due to the

that them51 axial contribution, which is absent in the qua
rupole scheme, produces a beating of the axial and p
frequencies.

~3! If the point mass is allowed to come sufficiently clo
as to excite the fundamental mode of the star, the amplit
of the wave computed by the relativistic approach sign
cantly increases with respect to the quadrupole predict
About this point, it should be noted that the frequency of
fundamental mode of neutron stars,v f , is expected to be o
the order of;2 –3 kHz, depending on the equation of sta
prevailing in the interior. This frequency is too high to b
excited, since the coalescing system would reach the IS
~innermost stable circular orbit!, and merge, before the reso
nant orbit is reached. However,v f is affected by rotation,
and for fast rotating stars it may become small enough to
‘‘excitable.’’ In this case the emitted radiation would pro
ably be enhanced by the rotation, and this is an interes
effect that has never been studied in a relativistic framewo

In this paper we have considered a very simple mode
star described by a polytropic equation of state. More rea
tic models of neutron stars allow the existence of ot
classes of modes at lower frequency with respect tov f . For
instance,g modes may lay in a frequency range of abo
;100–400 Hz, which is the region where the ground-ba
interferometers are more sensitive. If the resonant excita
of these modes is efficient, the signal emitted during coa
cence may suddenly change when the resonant orbit is
proached, introducing a new feature in the expected wa
form.

Besides these, several other issues remain to be clar
The waveforms we produce by the relativistic approach
different from those computed by the hybrid quadrupole
proach. Although this is more accurate than the Newton
quadrupole approach, because it assumes that the poin
mass moves on a geodesic of the unperturbed spacetime
are aware of the fact that by the parametrized po
Newtonian~PPN! formalism ~see, e.g., Ref.@16#! it is pos-
sible to refine the trajectory of the particle especially n
coalescence, and to have a more accurate evaluation o
radiation emitted because of the orbital motion. Thus
question is the following: Is the difference between the s
nal we compute and the most accurate estimate of the si
which is provided by the PPN formalism still significan
The answer could be positive, because the difference
tween the relativistic and the quadrupole signals we fi
could be attributed to the role played by the internal struct
of the star, and to the way in which the gravitational fie
couples with the fluid. However, this question has to be
swered by a direct comparison.

In order to produce waveforms that can be used as t
plates in the data analysis of gravitational wave experime
radiation reaction effects have to be considered. We
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working to include these effects in our scheme followi
Refs.@15,17#, and to evaluate how the evolution of the sy
tem changes with respect to the traditional picture. Import
questions that need to be answered to construct a mat
filter and to extract the chirp mass of the coalescing sys
are as follows:~i! What is the number of cycles the gravita
tional signal does in the bandwidth of the interferomete
~ii ! How does the amplitude change in time?~iii ! How much
do these effects depend on the equation of state of de
matter? All these issues will be considered in subsequ
papers.
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APPENDIX A: SOURCE TERM OF THE BPT EQUATION

In this appendix we discuss the procedure to find the w
amplitudeAlm(v) @cf. Eq. ~4.8!#

Alm~v!52
1

Wlm~v!

2p

Dt (
j 52`

1`

d~v2vm j!

3E
Rs

`dr8

D2
C lm

1 ~v,r 8!T0lm~v,r 8!, ~A1!

where

T0lm~r ,v!522An~n11!r 4T0(n)(n)22AnDL1

r 5

D
T0(n)(m̄)

2
D

2r
L1

r 6

D
L1rT0(m̄)(m̄) . ~A2!

The tetrad components of the stress energy tensor of
pointlike mass are

T0(n)(n) lm~v,r !5m0F 1

r 2 S g1
E2

g D cos~vt2mw!

1 i
2E

r 2 sin~vt2mw!G 0Slm* ~p/2,0!,

T0(n)(m̄) lm~v,r !5
A2Lzm0

r 3 F2sin~vt2mw!

1
E

g
cos~vt2mw!G 21Slm* ~p/2,0!,

T0(m̄)(m̄) lm~v,r !52
2Lz

2m0

gr 4
cos~vt2mw!22Slm* ~p/2,0!,

where r ,t(r ) and w(r ) refer to the point mass trajectory
From the expression ofT0lm(r ,v) we see that the last two
7-11
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GUALTIERI, BERTI, PONS, MINIUTTI, AND FERRARI PHYSICAL REVIEW D64 104007
terms contain the differential operatorL1 applied to a func-
tion of r; when we evaluate the integral~A1! these terms can
be integrated by parts defining the operatorsL̂6

5(r 2/D)L6 , whereL65d/dr* 6 iv, and using the prop-
erty

E
Rs

`

dr f ~r !L̂1g~r !52E
Rs

`

drg~r !L̂2 f ~r !, ~A3!

which holds if, as always in our case,f (r ) or g(r ) vanishes
at the extrema of the integration. After applying this proc
dure, and replacing the expressions of theT0(p)(q) lm , the
wave amplitude can be written as

Alm~v!52
1

Wlm~v!

2p

Dt (
j 52`

1`

d~v2vm j!

3E
Rs

`

dr@ I 01I 211I 22#, ~A4!

where

I 0522An~n11!
r 4

D2
T0(n)(n) lmC lm

1

522An~n11!
r 2

D2F ~g21E2!

g
cos~vt2mw!

12iE sin~vt2mw!GC lm
1 ~v,r !0Slm* ~p/2,0!

I 21522An
C lm

1

D
L1

r 5

D
T0(n)(m̄) lm

52
2A2nLz

D Fsin~vt2mw!2 i
E

g
cos~vt2mw!G

3FC lm
18~v,r !2S 2

r
1 i

vr 2

D DC lm
1 ~v,r !G 21Slm* ~p/2,0!

I 2252
C lm

1

2rD
L1

r 6

D
L1rT0(m̄)(m̄) lm

52
Lz

2

gr 4
cos~vt2mw!

3F r 2C lm
19~v,r !22S r 1 iv

r 4

D DC lm
18~v,r !

1S2iv
r 4

D2
~r 2M !2

v2r 6

D2 DC lm
1 ~v,r !G 22Slm* ~p/2,0!.

Since the integrand of Eq.~A4! diverges at the turning point
whereg50, it is convenient to perform the numerical int
gration using a different integration variable, defined by
equation
10400
-

e

r ~x!5
pM

11e cosx
, ~A5!

wherex ranges from 0 to 2p in a whole orbit. In terms ofx
the equations of motion become

dt

dx
5

p2M ~p2222e!1/2~p2212e!1/2

~p2222e cosx!~11e cosx!2~p2622e cosx!1/2

~A6!

dt

dx
5

p3/2M ~p232e2!1/2

~11e cosx!2~p2622e cosx!1/2
~A7!

dw

dx
5

p1/2

~p2622e cosx!1/2
. ~A8!

APPENDIX B: FOURIER TRANSFORM OF THE
QUADRUPOLE WAVE

In this appendix we explicitly compute the Fourier tran
form of the metric components of the wave emitted by t
pointlike particle because of its orbital motion, given in E
~5.1!, and discuss the symmetry properties of the correspo
ing spectrum. The orbit is quasiperiodic inw, but exactly
periodic in (r , ṙ , r̈ ,ẇ,ẅ), so that we can decompose the Fo
rier transform as a sum over periods

h~v!5
1

2pE2`

`

h~ t !eivtdt

5
1

2p (
n52`

` E
(n21/2)Dt

(n11/2)Dt

3h~ tn5t01nDt,wn5w01nDw!eivtndtn ,

~B1!

where „t0(r ),w0(r )… indicates the branch of the trajector
which starts at the periastron (r 5r P) at t50 and ends at the
apoastron (r 5r A) at t5Dt/2; and „2t0(r ),2w0(r )… indi-
cates the ‘‘mirror’’ branch starting atr A and ending atr P ,
with tP@2Dt/2,0#. An inspection of Eqs.~5.1! and ~5.2!
shows that the integrals are essentially of three types:~1!
those containingd, sayh1(t), which do not depend onw and
therefore are exactly periodic;~2! those that contain a peri
odic term, sayh2(t), times sin 2w; and~3! those that contain
a periodic term, sayh3(t), times cos 2w. These integrals can
be developed in the following way:

~1!
1

2p (
n52`

` E
(n21/2)Dt

(n11/2)Dt

h1~ tn!eivtndtn

5
1

2pE2Dt/2

Dt/2

h1~ t0!eivt0 (
n52`

`

eivnDtdt0

5 (
j 52`

`

d~v2v j 0!F 1

DtE2Dt/2

Dt/2

h1~ t0!eivt0dt0G .

7-12
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To obtain this result we have used Eq.~3.8! and definition
~3.10! of vm j . Similarly we have

~2!

1

2p (
n52`

` E
(n21/2)Dt

(n11/2)Dt

h2~ tn!sin 2wneivtndtn

5 (
j 52`

` Hd~v2v j 22!F 1

DtE2Dt/2

Dt/2

h2~ t0!
ei (vt012w0)

2i
dt0G

1d~v2v j 2!F2
1

DtE2Dt/2

Dt/2

h2~ t0!
ei (vt022w0)

2i
dt0G J ,

~3!

1

2p (
n52`

` E
(n21/2)Dt

(n11/2)Dt

h3~ tn!cos 2wneivtndtn

5 (
j 52`

` H d~v2v j 22!F 1

DtE2Dt/2

Dt/2

h3~ t0!
ei (vt012w0)

2
dt0G

1d~v2v j 2!F 1

DtE2Dt/2

Dt/2

h3~ t0!
ei (vt022w0)

2
dt0G J .

By using this procedure we find that the wave compone
can be written as

huu
TT~v,r ,u,f!5 (

j 52`

`

(
m522,0,2

d~v2vm j!Huu~vm j ,u,f!,

huf
TT~v,r ,u,f!52 (

j 52`

`

(
m522,2

d~v2vm j!Huf~vm j ,u,f!,

~B2!

where

Huu~v2 j ,u,f!5
m0

r
@~I 2 j

a 1I 2 j
b !~11cos2u!

3~cos 2f1 i sin 2f!#,

Huu~v22 j ,u,f!5
m0

r
@~I 22 j

a 2I 22 j
b !~11cos2u!

3~cos 2f2 i sin 2f!#,

Huu~v0 j ,u,f!5
3m0

r
K j

d~cos2u21!,
ro
,

10400
ts

Huf~v2 j ,u,f!5
2m0

r
cosu@~I 2 j

a 1I 2 j
b !

3~sin 2f2 i cos 2f!#,

Huf~v22 j ,u,f!5
2m0

r
cosu@~I 22 j

a 2I 22 j
b !

3~sin 2f1 i cos 2f!#,

and

I 62 j
a 5

1

DtE0

Dt/2

a cos~v j 62t072w0!dt0 ,

I 62 j
b 5

1

DtE0

Dt/2

b sin~v j 62t072w0!dt0 ,

K j
d5

1

DtE0

Dt/2

d cos~v j 0t0!dt0 .

In terms of these integrals, the various contributions to
average power radiated appearing in formula~5.7! are given
by

Ė2 j
Q 5

4m0
2

5
~v2 j !

2~I 2 j
a 1I 2 j

b !2,

Ė22 j
Q 5

4m0
2

5
~v22 j !

2~I 22 j
a 2I 22 j

b !2,

Ė0 j
Q 5

6m0
2

5
v0 j

2 ~K j
d!2.

Using Eq.~4.15! and the definitions of the various integral
it is straightforward to prove that

I 222 j
a 5I 2 j

a , I 222 j
b 52I 2 j

b ,

K 2 j
d 5K j

d . ~B3!

Finally, from Eqs.~4.15! and ~B3! we find

Ė2m2 j
Q 5Ėm j

Q ~m52,0,22!, ~B4!

that are similar to properties~4.17! for the relativistic energy
flux. Thus the quadrupole power spectrum has essentially
same frequency content and the same symmetry propertie
the relativistic spectrum withl 52 and m522, 0, and 2,
except for them51 contribution, which is missing.
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