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Gravitational signals emitted by a point mass orbiting a neutron star: A perturbative approach
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We compute the energy spectra of the gravitational signals emitted when a pointlike mass moves on a closed
orbit around a nonrotating neutron star, inducing a perturbation of its gravitational field and its internal
structure. The Einstein equations and the hydrodynamical equations are perturbed and numerically integrated
in the frequency domain. The results are compared with the energy spectra computed by the quadrupole
formalism which assumes that both masses are pointlike, and accounts only for the radiation emitted because
the orbital motion produces a time dependent quadrupole moment. The results of our perturbative approach
show that, in general, the quadrupole formalism overestimates the amount of emitted radiation, especially when
the two masses are close. However, if the pointlike mass is allowed to move on an orbit so tight that the
Keplerian orbital frequency resonates with the frequency of the fundamental quasinormal mode of the star
(2wk= wy), this mode can be excited and the emitted radiation can be considerably larger than that computed
by the quadrupole approach.
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[. INTRODUCTION no more than a few orbits near coalescence. Waiting for the

results of fully nonlinear simulations, it is interesting to ex-
The coalescence of binary systems composed of compagtore other techniques that, though approximate, allow one
objects such as black holes or neutron stars is considered offe Obtain some insight into those phases of the coalescence
of the most promising sources of gravitational waves to b&Vnere the quadrupole plus post-Newtonian approaches are

detected by ground-based interferometers. For this reason f2deduate. For instance, we can assume that one of the two
stars is a “true star,” i.e., it is an extended body whose equi-

is important to collect as much mformaﬂqn as.possmle Nibrium structure is described by a solution of the relativistic
the features of the gravitational signal emitted in these prog, -t of hydrostatic equilibrium, and that only the sec-

cesses. This paper focuses on the phenomena which M3y siar is a pointlike mass. Its effect is to induce a pertur-
occur during the premerging phase of the coalescence, Wheflion on the gravitational field and on the thermodynamical
the two stars are still individual bodies in fgst revolution gt cture of the extended companion, which can be evaluated
around each other. The problem of computing the energyy solving the equations of stellar perturbations in general
spectrum and the waveforms of the gravitational waves emitrg|ativity. In this way we can account for the tidal effects of
ted in this regime can be attacked by using different apthe close interaction on one of the two stars and for their
proaches. The easiest is the quadrupole formalism, whicBonsequences on the gravitational emission, and obtain a
assumes that the two stars are pointlike masses, and corue as to the kinds of phenomena that could arise near coa-
putes the emitted radiation in terms of the quadrupole molescence. This approach has already been used in a previous
ment of the system, whose time variation is due to the orbitapaper[2] where we computed the energy spectrum of the
motion. When the two stars are very close, post Newtoniagravitational radiation emitted when a pointlike mass moves
corrections can be included to give a more accurate descripn an open orbit around a compact star. In this paper we shall
tion of the trajectories, and to refine the orbital contributionextend our investigation to the case of closed orbits, either
of the emitted radiation. These calculations can be compleeircular or eccentric, and compute the energy spectra and
mented by the inclusion of radiation reaction effects, whichwaveforms of the emitted radiation.
account for the shrinking of the orbit caused by the emission The purpose of our study is to compare the quadrupole
of gravitational waves. radiation emitted by the system because of its orbital motion
This approach clearly overlooks the fact that the two starg¢o the signal computed in the relativistic, perturbative ap-
are extended bodies with an internal structure and that, wheproach.
they are close, the tidal interaction becomes strong and new The orbital emission will be computed using a hybrid
effects, unpredictable by the quadrupole plus postquadrupole approach, which assumes that the pointlike mass
Newtonian approaches, may arise. An accurate description afioves on a geodesic of the spacetime generated by the star,
these phases of the coalescence requires a solution of thet radiates, according to the standard quadrupole formula,
Einstein equations coupled with those of hydrodynamics iras if it were in flat spacetime.
the nonlinear regime, and many groups in the world are To evaluate the relativistic emission, the equations of stel-
working in this direction[1]. These studies will certainly lar perturbations we integrate in the interior of the star are
yield new and interesting results, but a complete picture ishose derived in Ref]3]; therefore we shall not describe
still far from being reached; indeed, because of the complexthem in detail, but only recall the relevant formulas. In Ref.
ity of this phenomenon the computational tools presently{2], outside the star we integrated the Sasaki-Nakamura
available allow us to follow the evolution of the system for equation[4]; here we consider closed orbits, i.e., a source
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with a compact support, and it is more convenient to inte-
grate the Bardeen-Press-TeukolskBPT) equation [5,6] Hqy=
whose source term has a much simpler form.

Since in this paper we do not consider the effects of ra-
diation reaction, we cannot describe the evolution of the or-
bit and of the waveform during the inspiraling; thus the en- His= V|m[
ergy spectra we show have to be considered as representative
of a certain number of orbital periods over which the radia-
tion reaction effects do not produce a significant change in
the orbital parameters of the pointlike massliabatic ap- Has=
proximation. These effects will be considered in a forthcom-
ing paper.

Stellar perturbations excited by an orbiting particle haveThe functions N, ,Lim,Vim, Tim] @re the radial part of the
also been considered by Kojinf&@], who focused on the polar (even metric components, and’, and hi. are the
energy enhancement with respect to the standard Newtoniaxial (odd) part.
guadrupole formula, due to the excitation of the fundamental The unperturbed metric functiongr) and w,(r) can be
mode by a particle in circular orbit. The excitation of twe  found by solving the equations of hydrostatic equilibrium
modes has been studied by Ruoff, Laguna, and Pullin in #&cf. Ref.[2], Egs.(2.2—(2.4)) for an assigned equation of
time domain approacf8]. state. As in Ref[2], we shall consider as a model a poly-

The plan of the paper is the following. In Sec. Il we write tropic compact stap=Ke", with K=100 knt andn=2. If
the equations relevant to our problem. In Sec. Ill we discuséhe central density is chosen to lag=3x 10" g/cn?, the
the source term of the BPT equation. In Sec. IV we outline’adius and mass of the star afR=8.86 km and M
the integration procedure, and discuss how to find the power 1.268M ¢, respectively, with a rati®;/M = 4.7. Although
emitted in gravitational waves and the waveforms. In Sec. \ihis model is, to some extent, unrealistic, it is appropriate to
we show how to compute the same quantities by the hybriamderstand the basic features of the problem we want to

quadrupole approach. Numerical results are discussed in sextudy o .
VI and conclusions are drawn in Sec. VII. Inside the star, it is convenient to replace the perturbed

metric functionsV,,, andT,,,, by two new functions

52 to J
R I
co 7

Tim+ Vim| ——
I sireg 92 6
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192
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Tlm+VIm Ylm-
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Il. PERTURBED EQUATIONS X=nV

In order to describe the nonaxisymmetric perturbations of

a nonrotating star ind_uced by an orbiting mass we choose, as g = v, EX—T +£2(e2,u2_ 1)[n(N+T)+N]
in Ref.[2], the following gaugé: n o r
ds?=e?"dt?—e?#2(Ndr2—r2d g>—r? sirf 9d ¢ + ?(NH)_GM(# p)N+%w2e2(M2—V)
2 o iwt 2 2
+ dwe™"'*Y 2e“"N; Y |ndt 2n+1
<) w 1 ImY1m | L—T+ ,
—2e?2 | Y mdr2— 2r2H4qd 62— 2r2 sirf 0H ,d ¢
Yy where n=(1—-1)(1+2)/2. The polar metric functions
—4r?H d0d ¢+ 2 sind = [h) dtdg+hi drdeg] [Nim:Lim Xim>Gim] can be found by solving a set of linear
coupled equationgcf. Ref.[3], Egs.(72)—(75)], from which
2 Nm . the fluid perturbations have been eliminated:
~Sng o [h,dtdo+ h,mdrdﬁ]], (2.2
2 n ., 2.2(up—v)
Xyt F"‘V,r_ﬂz,r X’r-i-—ze #2(N+L)+ we#27 "X
where the perturbed metric functions r
[NimsLim s Vims Timshn hik] - are  functions  of  ,r), -0,

Y\m(8,¢) are the scalar spherical harmonics, and

(r?G),r=nv (N—L)+ ;(62"2—1)(N+L)

IMetric (2.1) in Ref. [2] contained two misprints in the terms
dod¢ anddtdg which have now been corrected. (v, — por) X, + w222 Ir X,
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1 A

—v,N,==G+v [X,+v (N-L)]+ iz(ezﬂz—l) Vim(w,r)= _277J dQdte' LSy (0,0)[r*8W,(t,r,0,4)],
r

2.7

X(N=rX ,—r?G)—e?*2(e+p)
' where _,S5,(0,¢) is the spin-weighted spherical harmonic

XN+ %wzez(”f v)

S.(6.0) 1 Y \m aY|m+ m?
_ b)) = —cotf——
21 2om 2yn(n+1)| 962 90 sirPe
X N+L+—G+—[rXr+(2n+l)X]],
n n- "
2m [ dYm
XY'er?nB &_Q_YImCOte . (28

—L,=(N+2X) +

%—v,r>(—N+3L+2X)
The advantage of using the BPT equation is thdt, is
invariant under gauge transformations and infinitesimal tet-
) rad rotations, and that the squares of its real and imaginary
parts are proportional to the energy flux of the outgoing ra-
(22 diation at infinity in the two polarizations. In addition, the
source termT,(w,r), which will be discussed in detail in
he next section, has a much simpler form than the source of
he Sasaki-Nakamura equation, which we used to study the
gravitational emission in the case of open orbits in R2¥.
At the surface of the star, whelg,(w,r) =0, the relation
between¥,, ZP°', andz is

r2

1
+ N—L+—G+—(rX +X)
n n '

2
S @+,

whereQ=(dp/de)*.

The equations for the axial perturbation can be combine
into a single wave equation by introducing a function
ZX(w,r) related to the axial functions by the equations

i d
hin=——5—(rZin), hin=—e"2"(Z{), (2.3
@ ars r*\n(n 1) _
, o Vim= [VIZin+ (WP 2iw) A L Zi]
wherer, = [{e” " #2dr. The equatiorZ/x(w,r) satisfies is 4w
f. Ref.[3], Eqs.(148 and (149
[C ) [ ] qS( )an ( )] —ram pol—pol pol H pol
d2z2x o2 - ] [VPOZin + (WP 2iw) A L Z[1 ],
Im 2 3 ax__
+ — [(1+21)r+r°(e—p)—6m(r)]; Zjm=0,
(2.4 | .
whereA , =(d/dr,)+iw=(A/r?)(d/dr)+iw, and
which, outside the star, automatically reduces to the Regge-
Wheeler equatiof9]. The polar and axial equationg.2) ax 20
and (2.4) are numerically integrated from=0, where we V¥=—z[(n+1)r-3Mm],
impose a regularity condition up to the surface of the star
=Rs. There we compute the amplitudes of the Zerilli func- 2
tion [10] Wa*=—(r—3M),
r
ZP%(w R)zL M (0,Rs) = ReLm(@,Rg)
Im 11\g nRs+3M n Im 11\g sIm 11xs) |y Vp0|: 2 [nz(n+1)
(2.5) r3(nr+3Mm)?
and of the Regge-Wheeler functioZx(w,Rs), and their Xr3+3Mn’r?+9M?nr+9M?],
first derivatives, which will be used to continue the solution
outside the star. ool nr2—3Mnr—3M?2
To describe the perturbations of the Schwarzschild space- W' = r(nr+3M)
time prevailing outside the star we use the BPT equation
[5,6] According to Eq(2.9) we can write¥,, as a sum of an axial
[ ,d {1 d} (F w2+ 4i(r — M)r2e) and a polar part; i.e.,
A—|— |+
dr|A dr A W)= WX ppol (2.10

—8iwr—2n

}\le(w,r)Z—Tm(w,l’), (2.6 where

whereA =r2—2Mr, and the BPT functioV,,, is related to q,axzrsV”(”"'l) [VAZE 4 (WA 2i ) A, Z2]
the perturbation of the Weyl scalaW , by Im 4o Im +imb
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r3Jn(n+1) wheret,(r), Q,(r) are the time and angular position of the
Who'=— T[mezﬁﬁlﬂwpo”r 2iw)A L Z2. mass on thekth semiorbit, is projected onto the Newman-

(2.1)  Penrose tetrad,l(n,m,m), to find its tetrad components
Ty @)= T""€(p)u€(q)»- These are subsequently expanded in

However, in Sec. IV we will show that depending on thethe spin-weighted spherical harmonigS,,( 6, #), and Fou-

value of the harmonic indicdsandm, only the polar or the rier expanded, as follows:

axial part of ¥, have to be selected.

1 .
T(p)(q)lm(w:f)ZZJ dtdQe' ' S () T o) (1., Q),

lIl. SOURCE TERM OF THE BPT EQUATION
(3.6
We shall assume that the pointlike masgwhich excites
the perturbations of the star follows a geodesic of the unpewhere s=—2,—1,0 for Tim)» Tnym), and Ty, re-
turbed spacetime on the equatorial plane, with en&gynd  spectively. As a result of this procedure we find

angular momentuni,, so that the geodesic equations are o

dt E T(p)(q)lm(w’r)z(kE eik["’“mAw])To(p)(q)lm(wvr)-

=—

ar o 37

The explicit expressions Ofg(p)(q)im are given in Appendix
A. By making use of the relation

L2
?E =t\/E2—(1—ZTM)(1+—;), 3_(P:L_ +oo +oo
7 r T > ekX= 2772 S(X—2j), (3.9
(3.1 K=—o

N

N

For a closed orbit the motion takes place between a periast is easy to see that E¢3.7) can be written as
tronrp and an apoastron,, roots of the equatioy=0 (a

third root marks the onset of a plunging motion, that is not =
relevant for our study We can define the semilatus rectpm Ty @m(@,r)= At Z_m (@ = wm)) Top)(gym(@.1),
and the eccentricitye in terms ofrp andr, through the ) 3.9
relations
where
r pM A= pM (3.2 2 A
p= AT _ 4 . T|+m
te’ 1-e me-:%EjQpl—me, (3.10

Both p ande are dimensionless, and they are, respectively, a
measure of the size and of the degree of noncircularity of thand the source of the BPT equation takes the form
orbit. Note that B<e<<1. The orbit is periodic in the radial

coordinate, and quasiperiodic in tigecoordinate, i.e -
' o Tn(@.) =57 2 8@ om)Tom(@,). (310
r(t+At)=r(t), 3.3 =
It should be noted tha®, and(}, are the two characteristic
e(t+At)=¢(t)+A¢. frequencies of the problem. The frequen@y=2m/At is
) ) associated with the periodicity of the radial motion, whereas
The source term of the BPT equatiah6) is Q,=A¢/At is the angular velocity of an inertial observer
with respect to which thep motion of the orbiting mass
Tim(@,1)==2n(N+ DrT o) mym(@,1) appears to be periodic.
|’5
—2\ynAA, A Toymim(@.r) IV. SOLUTION OF THE BPT EQUATION
A 6 The inhomogeneous BPT equati¢h6) can be integrated

—A+rKA+rT(a)(;),m(w,r), (3.4 by constructing a Green function which ensures thdt,
matches regularly with the interior solution at the boundary
the star, and behaves as a pure outgoing wave at infinity.
is problem has been solved by Detweiler in the case of
black holeq11]; here we briefly describe the simple gener-
o " alization of the method to the case of stars. First we discuss
wv_ 47Tm0 dz* dz” _ (2) some symmetry properties of the functions involved in the
T ST Ot —1y(r) 8 (Q = Qy(r)), T
k=== 12|yl dr dr problem we want to solve. Under complex conjugation,
(3.5  spherical harmonics behave as Y}.(6,9)

and can be found as follows. The stress-energy tensor of th[efh
orbiting mass
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=(—1)"Y,_(6,¢); consequently, the perturbed metric func- Lepr¥i (w,r)=
tions in Eq.(2.1) and the functionZP°' andz3, satisfy the Lgpr¥ P (w,r)=0, 1 —
property Fi¥(r,w)=(—1)"F,_(r,— »). From Egs.(2.1)) WO (@, —00) = 3T Vin(w,Re) =V n(o,Rs),
m\ @, ) , _
it follows that xpllm(w,Rs) =¥/ (w,Ry),
(V0,1 = (D™ N (—w,r), 49
| | andW,,(w) is the Wronskian:
(U (0,r)*=(—1)"° (- w,r). 4.9
By inspection of the source term, we find thd,, must Win(w)= A[‘Prm‘lﬁmr Wi, ] (4.9

satisfy an additional relation

From Eq.(4.4) it is easy to see that the amplitude of the
Win(r0) = (= D)'"WP_n(r, — o). 42 wave at infinity is

In order that Eqs(4.1) and (4.2) be consistent, and looking
at Egs.(2.10, we see that the following selection rules must Apn(w)=
hold: if (I+m) is even, ¥, =WP°': and if (I +m) is odd, Wlm(w)
V,n=". Thus, depending on the value of the harmonic (4.7)
indicesl andm, ¥, is either polar or axial. As explained in
Sec. I, we integrate the equations of stellar perturbations in
the interior of the stafEgs. (2.2 and (2.4)], and construct
the functionsZ®(w,rs) and ZP°%(w,rs) and their first de- An(w)=—
rivatives atr =Rg; from these we comput®*(w,R) and

WPol(w,Ry), as given in Egs(2.11), and their first deriva- edr’
tives, which are needed to integrate the BPT equation outside X f — Wl (0,1 Tom(w,r'). (4.9
the star. However, it should be noted that the regularity con- Ry AZ
dition imposed at =0 allows one to determingx andZf°'
only up to an unknown amplitudg,,(»), to be determlned
by the matching conditions at the boundary of the star. In

what follows, we shall indicate by\If n(0,Rg) and
WP (w,Ry) the values of the axial and polar parts of the <dE> . E 1 D f q
w

wave functionW,, as computed by numerical integration of dat/ im == lim = =
the interior equations. The problem we want to solve there-

fore is where the energy spectrutit/dw can be expressed in terms
of the wave amplitude at infinit w) as[12
Lept¥im(@,r)==Tin(o,r), P Aim(w) as[12]

‘le(w r )Tlm(w r )

By the use of Eq(3.1]) this expression becomes

m(w At J—z—oc 6 @ wmj

Some further details related to the evaluation of the ampli-
tude[Eq. (4.8)] are given in Appendix A.
We shall now compute the time-averaged energy flux:

dE

d—w)lm, 4.9

T—x T—w

dE

: 1
Wi (1 —2) =% A (), @) =52 |Am(w) . (4.10
Im

¥im(©,R9) = Xim(@) ¥im(@,Rs), Since the wave amplitude can be written[ak Eq. (4.8)]

q’l,m(w-Rs):le(w)qlllm(vas)a o

(4.3 A|m(w)=j2x Aim(©) 80— o)), (4.12)

wherel.gpt is the differential operator on the left hand side

of the BPT equation. If I(+m) is even, \Em(w,RS)
P°'(w Ry, Whereas if (+m) is odd ¥, (w,Ry) dE 1
W(w,Ry). Ajm(w) is the unknown wave amplitude to be < dt>_ lim — % 2 J do"8(w— wmj)zlz 3| Am(@)]?

determined. The general solution of E¢4.3) is J

we have

T—oo

1 [ o [rar Sy i A
I P L |(w)|—EEE,
Vim(w,r) W lmJRSAZ WinTim Im j=—< 4 e ™

, (4.12

0
+‘I’|1mfr > YimTim|» (44 where “6%” is the regularized squared function, such that

where W) and W are two independent solutions of the lim ﬁ"(s(w_wmj)f’:(s(w_wmj), 4.13
homogeneous BPT equation defined as T T
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and we have defined the time-averaged power spectrum rh;g(t,r,a &) =[(O,,— ny)cos’-qb+Qxysin 264]

. 1 . X (1+cog6)+[Q,,—Q,,]cos

€= [An(om) . 4.1 oSO TQyQud

m +sz_ Qxx:
In conclusion, the gravitational emission is characterized by T B - -
a series of spectral lines at frequencigg;. From the sym- rhog(tr,0,¢)=—CoSOL(Qu— Qyy)
metry properties X sin 2+ ZQxy(l— 2 cod)],
w_j_m= - wmj (415 (51)

and where Q,, denotes the components of the reduced quadru-

pole moment,Q,,=my(X*X'—15[|X|?), and 6,¢ are the
Al (0mp)=(— 1)IA|_m(w_j_m)’ j>0 (4.16  polarangles. The two-dimensional veckois the position of
the particle along its trajectory in the equatorial plaXe
it follows that = (r(t)cose(t).r(t)sine(t)), andr(t) and ¢(t) are given by
the geodesic equatior{8.1). The expressions of the second
ER .. = Elanj _ (4.17) tirp()a derivative of the components Qj in terms ofr (t) and
o(t) are

Thus, once we know the power spectrEﬁ]j as a function
of the frequenciesor,;, for an assigned value dfand for
positive m, the spectrum for negativen is obtained by Eq.

Qux=Mo(a cos 2p— B sin 2¢+ 5/2),

(4.17) Qyy=Mo(— a cos 2p+ B sin 20+ 8/2),

Since §W,(t,r,0,¢) and the gravitational wave ampli- . ) .
tude in the radiation gauge are related by Quy=Mo(asin2¢+Bcos2p),  Qz=—Mod, 5.2

1.
SVt 0,6)=—S[ATT(Lr,0,0) +ihLT(Lr,0,0)],  Where
(4.18 a=r2+411 —2r2¢? (5.3

using Eq.(2.7) we find B=A4rr o+12p,  6=2(r2+r7)/3.
[rh+|m(t,r,0,¢)]rﬂm= _>Sim(6,00Ree'™? In Appendix B we explicitly compute the Fourier transform

of metric components$5.1), which will be used to evaluate

% E A (o e iomt=rs) the energy flux, and we show that they can be written as
— Im\®Wmj *

mJ
. hia(@,r,0,)= > 2 80— wm)H gl @mj, 0,0),
[th|m(t!r101¢)]r~>0€:*ZSIm(G!O)Imelmd) m_7202J_7
“o2 . .
X 2~ An(ompeomitr), hog(wrr,6.6)=— ZZZJ_ZOCM Om)Hog(@mj.0,4),
mj

(5.9

(4.19
. wherewp,; are defined in Eq(3.10, andH 4, andH,, are
where we have separated tlge dependence of the spin given in Appendix B. We shall now derive the time-averaged

weighted ~ spherical harmonics,  _,S,(6,¢)  quadrupole energy fluEq. (4.9)]. Since
= —ZSIm(e!O)elm¢'
dE(Q) h 2 hTT 2
V. QUADRUPOLE EMISSION dsdt 167 {l J(Lr.0. )2+ [hgi(tr.6.9)]7),

We shall now compute the gravitational radiation emitted 69
by the massm, because of its accelerated orbital motionit follows that
around the star. The energy flux is computed by using a )
semirelativistic approximation, which assumes that, dE@) " im e f dtj dO{|ATT2+ AT
moves along a geodesic of the curved spacetime, but radiates dt |/ 16m; : {Ingo ool
as if it were in flat spacetime. Using the quadrupole formula, (5.6)
it is easy to show that thET components of the gravitational
wave emitted by the particle afé3] using Parseval's theorem this becomes
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FIG. 1. The gravitational emission associated with an eccentric orbit,ewith.1 andr,=3Rg, is illustrated by plotting the amplitude
of the spectral lines vs the dimensionless frequeMay,,;. The radiation computed by the hybrid quadrupole apprdﬁ%p(a) has to be

compared with that computed by the relativistic approﬁﬁh for =2 (b). In (c) and(d) we plot the relativistid =3 and 4 contributions.
In this figure and in the following the spectral lines are normalizemgo

dE(Q) r2 ~
— = — 24
< dt > 1677jz_m{mzz,o,zfdﬂwm'

X|H60(wmj10a¢)|2

+m:222 deﬁ“”H"‘f’(wmi'e'(ﬁ)'z}

=2 2 Eq (5.7)
j=—» m=-202
where
o ok
E%J: 167 fdQ[|H00|2+|He¢|2], for m=-2,2,

o) rzwﬁ” 2

(5.9

VI. NUMERICAL RESULTS

The equations of stellar perturbatioii®.2), (2.4), and

flux, we have seen that the energy is emitted at a discrete,
infinite set of frequencies,;, with —o«<j<+, defined

in Eq. (3.10. The output of our perturbative calculations are
the amplitudes of the spectral IinEﬁnj [Eq. (4.14)] and the
corresponding waveforn{€q. (4.19].

The energy computed by the hybrid quadrupole approach
is also emitted at the same discrete frequenaigs; how-
ever, whereas the quadrupole emission is resticteld=t®,
andm=(-2,0,2) forhy; andm=(-2,2) for hy; [cf. Egs.
(5.4)], for the relativistic calculationk=2 and— I <m<I for
both polarizations. Thus to compare the outcome of the two
approaches we have to confront the quadrupole spectral lines
Eq; with the | =2 relativistic linesEf; .

In Fig. 1 we show, as an example, the energy output for an
orbit with periastronr p=3R and eccentricitye=0.1 com-
puted by the quadrupole approach, and the relativistic results
for 1=2, 3, and 4 for the same orbit. The spectral lines are
plotted for the discrete values of the dimensionless frequency
Moy, for assigned values of positive. We do not plot the
lines corresponding to negativa because they can be ob-
tained through a reflection across the zero frequency axis of
the positive ones, by virtue of the symmetry propdifg.
(4.17]. A comparison of the quadrupole emissidtig. 1(a)]

(2.6) have been numerically integrated for a set of boundedvith thel =2 relativistic emissiofiFig. 1(b)] shows that, for
orbits identified by selected values of the orbital parametersn=0 and 2, the two spectra are qualitatively similar. As
(E,L,), or, equivalently, é,rp). In computing the energy expected, the three plots which refer to the perturbative re-
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In Fig. 3 we show how the energy output obtained by the
relativistic approach varies as a function of the eccentricity
of the orbit; we consider four cases-10"3, 10°2, 0.1, and
0.4. All orbits have the same periastron: € 3R;), and the
plots are given fot=m=2, since this is the dominant con-
tribution to the emitted radiation. In the zero eccentricity
limit, the whole power is concentrated in the harmonic with
j=0, corresponding to a frequenay,j;.=2A ¢/At=2wy,
where wy is the Keplerian orbital frequency; as the eccen-
tricity increases, the frequency of the highest line slightly
decreases, and higher order harmonics become significant.

We have compared the total power computed by the quad-
I rupole formalism

=
)
i Bk B Bk Bk Bbi Bhbi Bbin B B |

FIG. 2. The ratio of the total power emitted in tht@ multipole,
ER, to the total power emitted ih=2, ER, is plotted as a function
of I, for an orbit withe=0.1 andp=15.64 {p=3Ry). It clearly
shows a power law behavi&R~ p' 2. with that emitted in thd =2 multipole E defined in Eq.

(6.1) and computed by the perturbative approach, for differ-
sults show that most of the energy is emitted in tke2 ~ ent values of the eccentricity and of the periastron. We find
multipole, and that for each thel =m component is always that, in generalEY is systematically smaller thaB?. The

E°= > > ES,. 6.3
j=—o m=-2,0,2

larger than the others. amount of emitted radiation affects the orbital evolution of
It is known that for particles in circular orbit around black the system and the shape of the gravitational signal, in par-
holes the total power emitted in each multipole, ticular during the latest phases of coalescence, where the

orbit is already circularized. To understand the relevance of
o 2 this effect, which may be important for the detection of these
E|R= z z EIF:nj! (6.1) signals by the gr(_)und be_lseq interferometers VIRGO and La-
' 2 ser Interferometric Gravitational Wave ObservatdryGO),
we have computed the relative difference

j=—» m=—

scales with the multipole order as R
E5—EQ

ER-p? ", (6.2 EC
for circular orbits, as a function of the orbital radiug, The

wherep is the orbital semilatus rectufd4]. This power-law  egyits are shown in Fig. 4. For large values of the radius the

scaling was found analytically. Subsequently, Cutler, Kennerg|ative difference tends, as expected, to zero; at a distance of
fick, and Poissoii15] numerically integrated the BPT equa- ten stellar radii it is about 7%, and it becomes greater than
tion for a Schwarzschild black hole with a point particle 1404 when the two stars areR3 apart.

moving on bounded orbits. They showed that the same result |, grder to check the correctness of our results, we have

holds, at least in order of magnitude, for particles in eccentriGepeated the calculation by a different approach, integrating
orbits. We find that a similar power law also exists for stars,the inhomogeneous Zerilli and the Regge-Wheeler equations
both for circular and eccentric orbits, as indicated in Fig. 2oy the same orbits. The results agree to the roundoff error.
where, as an example, we plot the raBB/E5 as a function The situation changes if the point mass moves on an orbit
of I, for an orbit withe=0.1 andp=15.64 (p=3R). In “resonant” with a mode of the star, which means the follow-

Table | we tabulate the ratig/E} for different values of ~ ing. For the model of star we are considering, the lowest

and for two circular orbits withr,= 3R, andr,=10R, re-  frequency mode is the fundamental one, whose frequency is
spectively. M =0.12034. To excite this mode the mass should move

on an orbit such that the frequency of one of the spectral
lines of the quadrupole emissiapy,;, with m=—2, 0, and
2, is very close to or coincides with; . We find that, as the

(6.9

TABLE |. Ratio of the power in thdth multipole, ER, to the
power in thel=2 multipole for two circular orbits of radius,

=3R, andry=10R;, respectively. quadrupole spectral line frequenayy,; approachesy; for
some value ofn andj, the amplitude of the emitted radia-
ER/ER tion, computed in the perturbative approach, increases. This
suggests that the excitation mechanism could be seen as a
| 3R 10R resonant scattering of the gravitational wave emitted by the
3 8.6x10°? 2.7x10°2 system in the orbital motioifthe quadrupole wayeon the
4 9.2x10°® 9.2x1074 potential barrier generated by the perturbed star. Indeed, the
5 1.0x10°3 3.3x10°° discrete nature of the power spectrum emitted in the quasip-
6 1.2x10°4 1.2x10°° eriodic motion of the point mass suggests an analogy with an

atomic laser: in this picture, the atomic energy levels corre-

104007-8



GRAVITATIONAL SIGNALS EMITTED BY APOINT . .. PHYSICAL REVIEW D 64 104007

10" T T T T T 10* T T T T T
5 [ -3 1 5 I h
10°F e=10" + 10°F e=0.1 +
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FIG. 3. In this figure we show how the spectral content of the gravitational emission changes as a function of the eccentricity, plotting
the spectral IinesE,Ffnj as a function of the dimensionless frequerdyo,;, for I=m=2 and for the same value of the periastign
=3R;. As the eccentricity increases, the location of the highest line shifts slightly toward a lower frequency, and higher order harmonics
become more relevant.

spond to quasinormal mode frequencies, and the quadrupole
radiation frequencies to the energy of the electromagnetic
radiation exciting them.

016 ' In order to excite the fundamental mode of our star, the
014 two bodies must be very close, and therefore it is reasonable
012l to assume that the orbit is circular and thaf; reduces to
Su wcire defined above. To show how efficient this resonant
>?\.0'10 [ mechanism could be, in Fig. 5 we plot the energy output
-II-IIJ 0.08 E5, . and the corresponding quadrupole enekfj for a
Ll 0,06 F point mass moving on an orbit such that...= w¢(rg
- 0,04 =1.3741R,). From this figure we see that the situation
changes dramatically with respect to the nonresonant case:
0,02 - the energy emitted in the relativistic calculation is about 600
o,oo. R R times larger than that computed by the quadrupole approxi-
10 100 mation. Whether the fundamental mode could be excited dur-
ro/Rs ing the coalescence of neutron star binary systems is, how-

ever, questionable, and will be discussed in the concluding
FIG. 4. The relative difference between the total po&rcom- remarks.

puted by the hybrid quadrupole approximation, and the total power It should be mentioned that thfemode excitation by a
emitted in thel =2 multipole, EX, computed by the relativistic particle in circular orbit around a star was studied also by
approach, is plotted for circular orbits as a function of the radjus Kojima [7]. In his paper he only considered circular orbits
(given in units of the stellar radiisWhen the point mass moves on and polar perturbations with=2 andm=*=2. We find the
an orbit far from the star the two approaches give the same resulsame qualitative behavior, although with minor differences
the quadrupole emission becomes significantly larger fBarfor  of the order of 10% in the wave amplitude. We are confident
ro<10Rs. of the correctness of our results since, as mentioned above,
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0,30 . . . .

| E J ! e l.
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FIG. 5. The spectral line emitted by the system when the point 15 7 asin Fig. 6, we plot théa™™ component of the gravita-
mass moves on a close circular orbit is compared to the same quagg,| wave emitted when the point mass moves on an eccentric
tity computed by the hybrid quadrupole formalism. The relativistic o it with e= 0.4 andrp=3R;. The structure of the waveform is

line (in black is much larger than the quadrupole ofie white), o much more complicated, but the beating of the frequencies
because the frequency of the quadrupole line coincides with that gf,q,ced by them=1 axial contribution is still present.

the fundamental mode of the staf, and a mechanism of resonant

excitation occurgsee the text . . . .
¢ 4 a beating of the axial and polar frequencies, clearly seen in

) _ ) the figure. The second effect is that the average of the am-
we obtained them using two completely different yjitydes of the positivéor of the negativepeaks in the rela-
formalisms—one based on the Regge-Wheeler and the othg{istic waveform is smaller than that of the quadrupole
on the Newman-Penrose approach. waveform. This is related to the fact that the2 relativistic

In Fig. 6, we show thet polarization of the waveform—  energy output is systematically smaller than that of the quad-
the X polarization is zero because we assume the observer ffﬁpole as we get close to the staee Fig. 3.
on the equatorial plane—for a circular orbit with radiys A case with large eccentricitye& 0.4) is shown in Fig. 7.
=3R;, and forl =2. The gravitational waveform obtained in The structure of the waveforms is now much more compli-
the quadrupole approximation is also shotdashed lines  cated. However, both effects seen in the circular case are still
for comparison. There are two remarkable effects. The first i%resent. The beating of the axial and polar frequencies pro-
that them=1 axial contribution to the relativistic waveform, qyces similar changes in the maxima of the wave amplitude,
which is usually ignored, is not negligible. Indeed, it induces;j e about 10% in both cases. We have found that the relative

contribution between the axial and polar emission

R I ER®ERP! is quite independent of eccentricity and de-
[ Relativistic ] . . L.
R Quadrupole ] creases approximately asl/p. Thus it becomes negligible
020 | 020.r<3R 1 at large distances but it might be significant in the late stages
) s L

015 | of the inspiraling.
0,10 I

005 i VIl. CONCLUDING REMARKS

rh”

0,00 I . . . . . .
In this paper we have studied the gravitational emission of
005 a binary system composed of a star and a point mass orbiting

0,10 E

/ ; f i : ! ; around it by using a perturbative approach. The results have

015 | i been compared with the orbital emission computed by the
ool ] quadrupole formalism, assuming that both objects are point-

18 10 05 0.0 0.5 10 15 like, thus neglecting the fact that the star is an extended body
(t-r.yat with an internal structure, and that the dynamical evolution

FIG. 6. ThehT” component of the gravitational wave, emitted of the_ gravitational field couples to the thermodynamical
when the point mass moves on a circular orbit wigh-3R (nor- € volution of the star. OFf course the perturbative approach
malized tomy), is plotted vs the retarded time in units of the orbital 2SO IS quite & crude approximation of a realistic binary sys-

period. Since we assume that the observer is on the equatoriffM, Since one of the two stars is still considered as a point
plane, theh.” component vanishes. In order to compare the relativ-mass. However, it allows us to treat at least one star in an

istic waveform(continuous ling with the waveform computed by ~€Xact manner, since its internal structure and its gravitational
the hybrid quadrupole approag¢tiashed ling only thel=2 com-  field are exact solutions of the equations of hydrostatic equi-
ponent of the relativistic signal is shown. The difference betweeribrium. The interaction with the companion is treated as a
the two signals is basically due to tle=1 contribution of the  perturbation, and evaluated by linearizing the Einstein equa-
axial perturbations to the relativistic waveforigee the text tions coupled with the hydrodynamical equations. In compar-

104007-10



GRAVITATIONAL SIGNALS EMITTED BY APOINT . .. PHYSICAL REVIEW D 64 104007

ing the outcome of the two approaches, we find the followingworking to include these effects in our scheme following
effects. Refs.[15,17], and to evaluate how the evolution of the sys-
(1) The total relativistic poweER emitted in thel=2  t€m changes with respect to the traditional picture. Important
multipole is smaller than that computed by the quadrupol@ueSt'ons that need to bg answered to construct a matched
hEQ filter and to extract the chirp mass of the coalescing system
approachE™. . are as follows{(i) What is the number of cycles the gravita-
(2) The waveforms have different shapes, due to the facfiong| signal does in the bandwidth of the interferometers?
that them=1 axial contribution, which is absent in the quad- (i) How does the amplitude change in tim@®) How much
rupole scheme, produces a beating of the axial and polaio these effects depend on the equation of state of dense

frequencies. matter? All these issues will be considered in subsequent
(3) If the point mass is allowed to come sufficiently close papers.

as to excite the fundamental mode of the star, the amplitude
of the wave computed by the relativistic approach signifi- ACKNOWLEDGMENTS
cantly increases with respect to the quadrupole prediction. _ _
About this point, it should be noted that the frequency of the ~ This work was supported by the EU Program *Improving
fundamental mode of neutron staes,, is expected to be of the Human Research Potentlgl_ and the Socio-Economic
the order of~2—3 kHz, depending on the equation of stateKnowledge Base'(Research Training Network Contract No.
prevailing in the interior. This frequency is too high to be HPRN-CT-2000-0013y7
excited, since the coalescing system would reach the ISCO
(innermost stable circular orbjtand merge, before the reso- APPENDIX A: SOURCE TERM OF THE BPT EQUATION
nant orbit is reached. Howeves, is affected by rotation, |, this appendix we discuss the procedure to find the wave
and for fast rotat!ng stars it may become. small enough to bﬁmplitudeAm(w) [cf. Eq. (4.9]
“excitable.” In this case the emitted radiation would prob-
ably be enhanced by the rotation, and this is an interesting 1 2x
effect that has never been studied in a relativistic framework. Am(w)=——— —

In this paper we have considered a very simple model of
star described by a polytropic equation of state. More realis- edr
tic models of neutron stars allow the existence of other Xf — W (0, Tom(w,r'), (Al
classes of modes at lower frequency with respeebto For 2
instance,g modes may lay in a frequency range of about
~100-400 Hz, which is the region where the ground-basedvhere
interferometers are more sensitive. If the resonant excitation 5
of these modes is efficient, the signal emitted during coales o L1 4 _ o —
cence may suddenly change when the resonant orbit is ap;—ro'm(r'w) 23n(n+ 1)1 Tome = 2nAA. A Toma
proached, introducing a new feature in the expected wave- A 6
form. AL — — —

Besides these, several other issues remain to be clarified. 2r As A A +rTogmm - A2)
The waveforms we produce by the relativistic approach are
different from those computed by the hybrid quadrupole ap-The tetrad components of the stress energy tensor of the
proach. Although this is more accurate than the NewtoniaPCintlike mass are
quadrupole approach, because it assumes that the pointlike
mass moves on a geodesic of the unperturbed spacetime, we T
are aware of the fact that by the parametrized post-
Newtonian(PPN formalism (see, e.g., Ref(16)) it is pos-

W(w) At j;x o(@=wn)

S

E2

v+ 7 cogwt—me)

0(”)(n)|m(w1r):m0[r_2

) . ; ) . 2E .
sible to refine the trajectory of the particle especially near +i—5 siwt—me) | oSk, (7/2,0),
coalescence, and to have a more accurate evaluation of the r
radiation emitted because of the orbital motion. Thus the
question is the following: Is the difference between the sig- \/ELZmO .
nal we compute and the most accurate estimate of the signal Tommim(@,r)=——>—| —sif(wt—me)
which is provided by the PPN formalism still significant?
The answer could be positive, because the difference be- E
tween the relativistic and the quadrupole signals we find +—cos(wt—m<p)} ~1Sin(7/2,0),
could be attributed to the role played by the internal structure 4
of the star, and to the way in which the gravitational field 2L2m
couples with the fluid. However, this question has to be an- — __ =70 _ *
swered by a direct comparison. Tom)(mim(@,r) o cog wt—me) S, (7/2,0),

In order to produce waveforms that can be used as tem-
plates in the data analysis of gravitational wave experimentsyherer,t(r) and ¢(r) refer to the point mass trajectory.
radiation reaction effects have to be considered. We arErom the expression ofy,(r,w) we see that the last two
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terms contain the differential operatar, applied to a func-
tion of r; when we evaluate the integri@l) these terms can

be integrated by parts defining the operators.
=(r?/A)A ., whereA.=d/dr, *iw, and using the prop-
erty

fwdrf(r)fhg(r):—fmdrg(r)f\_f(r), (A3)
Rs Rs

which holds if, as always in our casgyr) or g(r) vanishes

at the extrema of the integration. After applying this proce- g,

dure, and replacing the expressions of g, q)m, the
wave amplitude can be written as

l + o
Aim(©) =~ s 3t ,_E,m 5= o)
xf drflo+1_1+1_5], (A4)
RS
where
=—2\/n(n+1 T0(n)(n)|mq’|m
r2[(Y*+E?)
=-2Jyn(n+1)—|——coqd wt—me)
A2
+2iEsin(wt—mqo)}\lﬁlm(w,r)oa*m(w/Z,O)
5
1= _2\/— A+A Tom)mim
2+y2nL E
= yant, sin(wt—mgo)—i—cos(wt—mgo)}
A Y
2
1/ o 1 *
X| Wim(o,r)— _+IT Vi (o,r)| _1Sh(7/2,0)
1 6
e AL DA T
-2 2rA +A +1 1o(m)y(m)lm
2
=——Z4cos(wt—m<p)
vr
4
(w ry—2 r+|wA)\If|m(w r)
r4 w?r®
+ Ziwp(r M)— T‘I’ (0,r)| oS (7/2,0).

Since the integrand of E@GA4) diverges at the turning points
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pM

l+ecosy’ (A5)

r(x)=

wherey ranges from O to zr in a whole orbit. In terms of
the equations of motion become

dt p’M(p—2—2e)Yqp—2+2e)1?
dx (p—2-2ecosy)(1+ecosy)?(p—6—_2ecosy)?
(AB)
3/2M —3_92 1/2

p (p ) (A7)
dx (1+ecosx)z(p—6—2ec05)()1’2
d 1/2
v P . (A8)
dx (p—6-2ecosy)?

APPENDIX B: FOURIER TRANSFORM OF THE
QUADRUPOLE WAVE

In this appendix we explicitly compute the Fourier trans-
form of the metric components of the wave emitted by the
pointlike particle because of its orbital motion, given in Eq.
(5.1), and discuss the symmetry properties of the correspond-
ing spectrum. The orbit is quasiperiodic i but exactly

periodic in (,r,r,¢, ), so that we can decompose the Fou-
rier transform as a sum over periods

h(w)=%f:h(t)ei“’tdt

1 = j(n+l/2)At
_Enz—w (n—1/2)At

X h(t,=to+NAt, @ = @o+nAep)e “ndt,,
(B1)

where (to(r),¢o(r)) indicates the branch of the trajectory
which starts at the periastron<ry) att=0 and ends at the
apoastron (=r,) at t=At/2; and (—ty(r),— ¢o(r)) indi-
cates the “mirror” branch starting at, and ending atp,
with te[ —At/2,0]. An inspection of Egs(5.1) and (5.2
shows that the integrals are essentially of three typ#s:
those containing, sayh,(t), which do not depend oa and
therefore are exactly periodi€?2) those that contain a peri-
odic term, sayh,(t), times sin 2; and(3) those that contain
a periodic term, sal;(t), times cos 2. These integrals can
be developed in the following way:

1 i f(n+1/2)m
zn=7oc (n—1/2)At

1 Atz
_Eﬁ A2

(1) hy(t,)e'“'ndt,

hy(to )elwto 2 elwnAtdt

n=—x

wherey=0, it is convenient to perform the numerical inte-
gration using a different integration variable, defined by the
equation

=]_=Zw S(w—wjo)

1 fm/z -
— h(tg)e'“'odty|.
At _At2 l( 0) 0
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To obtain this result we have used E.8) and definition 2m,
(3.10 of wy,. Similarly we have Hyg(wz; .0, ¢)270039[(13j+15j)
2) X (sin2¢—i cos 2p)],
i E j(nJrlIZ)Ach(tn)Sin 2QDn(':'iwtndtn 2m @ B
27T nZ2 o J(n-12)At Hog(w_2j,0,0)= —cos&[(I 2j I—Zi)
* 1 (At2 gi(@to*2¢0) X (sin2¢+i cos
-3 {&w—w,-z){ﬁ | hatte—— dto} (snzdicos 2l
- B and
1 (A2 el (@to—2¢0) L s
+0(w—wi,)| — —f hy(tg)——=——dty| ¢, o _
(@ wj2) = 5 —At2 2llo)—5; ° } :2j:A_th a COg wj+otoF 2¢g)dt,
©)
1 (At
B i ) =
1 (n+1/2)At » T2i= 37 . B sin(w;+tg+2¢0)dty,
o X ha(ty)cos 2pne“'ndt,
n=-—c« J(n—1/2)At S 1 A2
© ’CJ:A_t 0 6C0$wjoto)dto.

1 fAtlz el (0t 2¢0)

:_E [5(60—&’1'—2) At

j=—

hs(tg) ———dt
e 3(to) 5 o}

1 (A2 el (©to—2¢q)
Atf hs(to)—z dto
2

By using this procedure we find that the wave components E8=4£(w2,)2(12 +78 )2
can be written as . .

In terms of these integrals, the various contributions to the

] average power radiated appearing in form@a/) are given

+ 6(w—wj,) by

TT < EQ _4m§ 2(7¢ 7P ,)?
hao(w,r,9,¢):j:z_ mzzzoz5(w_wmj)H09(wmj'0’¢)’ —2j_T(w—2j)( Lo I)",
TT S EQ—6 0 w2, (IC‘S)2
ha¢(w.r,0,¢)=—j;_w m:E_ZZ o= wn)Hgg(on;, 0,6), 0j

(B2) Using Eq.(4.15 and the definitions of the various integrals,

where it is straightforward to prove that

Iirz,j:.,z-gj, Iéz,]:_zg,
Hpo(wyj . 0,)= —[(Izl+I ) (1+cog6)

K2=K7. (B3)
X (cos2p+isin2¢)], Finally, from Egs.(4.15 and (B3) we find
Mo Q  _gQ —20—
Hoo(-2;,0,8)= —2[(Z%5~Z% 5)(1+co$0) E%y =ERy (m=20-2), (B4)
o that are similar to propertigg.17) for the relativistic energy
X (cos 2p—i sin 2¢)], flux. Thus the quadrupole power spectrum has essentially the
same frequency content and the same symmetry properties as
H ol wo; , 0, ¢) = —IC (00320 1), the relativistic spectrum with=2 and m=-2,0, and 2,

except for them=1 contribution, which is missing.
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