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Hypermultiplets, domain walls, and supersymmetric attractors
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We establish general properties of supersymmetric flow equations and of the superpotential of five-
dimensionalN52 gauged supergravity coupled to vector multiplets and hypermultiplets. We provide neces-
sary and sufficient conditions for BPS domain walls and find a set of algebraic attractor equations forN52
critical points. As an example we describe in detail the gauging of the universal hypermultiplet and a vector
multiplet. We study a two-parameter family of superpotentials with supersymmetric AdS critical points and we
find, in particular, anN52 embedding for the UV-IR solution of Freedman, Gubser, Pilch, and Warner of the
N58 theory. We comment on the relevance of these results for brane world constructions.
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I. INTRODUCTION AND GOALS

Among the remarkable spinoffs of the AdS-conform
field theory ~CFT! correspondence between strings on A
3X and boundary superconformal theories, a lot of inter
is devoted to the duality between domain wall supergrav
solutions and renormalization group~RG! flows of field
theory couplings.

The purpose of this paper is to find out the general pr
erties of supersymmetric flows and vacua ofD55, N52
supergravity coupled to hypermultiplets and vector mult
lets with nonconstant scalars, based on the theory of@1#. This
analysis aims at following the lines of the attractor flows@2#
for black holes in four and five dimensions that paved
way to finding Bogomol’nyi-Prasad-Sommerfield~BPS! so-
lutions.

The basic interest in domain wall or supersymmet
flows is due to the possible correspondence between
domain walls of gauged supergravity and exact supers
metric vacua of the fundamentalM or string theory. Unlike
black holes, the domain wall solutions inD55 interpolating
between AdS vacua do not breakD54 Lorentz symmetry
and therefore may give interesting possibilities for the re
istic vacua of our 4D world. On the other hand, the intuiti
gained in studies of black hole attractors may be useful
understanding the issues of stabilization of moduli at sup
symmetric vacua.

The gauging of supergravity in the vector multiplet sec
has been studied with respect to the supersymmetric vacu
the theory. In particular, for U~1! D55 gauged supergravity
the supersymmetric vacua are defined by the superpote
W5hI(f)VI , which has a dependence on moduli analag
to the black hole central chargeZ5hI(f)qI . HerehI(f) are
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special coordinates,VI are constants related to the Faye
Iliopoulos terms, andqI are black hole electric charges
Many critical points of both these systems are known. O
always finds AdS5 vacua~and domain walls with AdS vacua!
when scalars from vector multiplets reach their fixed poin
These fixed points are specified by the algebraic equa
VI5hI(fcr)Wcr , wherehI(f) are the dual special coordi
nates. This equation is analogous to the equationqI
5hI(fcr)Zcr , which defines the fixed scalars near the ho
zon of theD55 electrically charged black holes. Both o
these equations were derived and analyzed in@3#.

The solutions without hypermultiplets are also known
have specific properties, like the fact that they always
proach a UV fixed point, i.e., the AdS boundary@4,5#. This
feature leads to a no-go theorem for the ‘‘alternative to co
pactification’’ Randall-Sundrum~RS! smooth scenario@6#.

However, the situation may change when hypermatte
added and thus it is important to elucidate the nature of
fixed scalars in the BPS domain wall configurations in t
case. The first examples of domain walls were found in
coupling with the universal hypermultiplet. The one in@7#
does not have AdS critical points, whereas the one in@8#
displayed one UV and one IR critical point. In the latter, t
authors claimed that their model could give anN52 realiza-
tion of the domain wall solution found by Freedman, Gubs
Pilch, and Warner@9# ~FGPW! as holographic dual to a RG
flow from anN54 to anN51 Yang-Mills theory. However,
this description relied on a nonstandard formulation of
supergravity which has not been proven to be consistent

Other U~1! gaugings of the same model were recen
studied in@10–12#.

This paper starts with a systematic description of sup
symmetric flow equations in the presence of vector and
permultiplets. We first solve the issue of describing both
flows and the attractor points in terms of a single super
tential W for generic~non-Abelian! gaugings. This is non-
trivial, since the theory is defined in terms of the SU~2! trip-
let of quaternionic prepotentialsPI

r(q) dressed with the
hI(f) functions of the scalars in vector multiplets.
©2001 The American Physical Society06-1
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We will find that the single superpotential W(f,q) is re-
lated to the norm of the dressed prepotentials Pr(f,q) and
controls the supersymmetric flow equations if and only
their SU~2! phase satisfies the constraint

]fQr50 where Pr~f,q![hI~f!PI
r~q![A2/3WQr ,

~Qr !251. ~1.1!

This may restrict the class of gauged supergravities with
permultiplets that have BPS solutions.

We then characterize the critical points by a set of attr
tor equations. It parallels the attractor mechanism for mod
near the black hole horizon@2# and is also supported by a
enhancement of unbroken supersymmetry near the
vacua. The attractor equations are simple algebraic co
tions which fix the values of the moduli:

PI
r~qcr!2hI~fcr!Pcr

r ~fcr ,qcr!50,

Kcr
X[hI~fcr!KI

X~qcr!50. ~1.2!

The first equation is defined by the very special geome
and is analogous to the one for black holes discussed ab
The other one requires a certain combination of quaternio
Killing vectors to vanish.1 These algebraic equations are ve
useful in simplifying the general analysis of critical point
as they replace the differential equations for the extrema
the superpotential. They will prove to be very useful also
our simple cases.

Our general theory will be applied to the model of t
universal hypermultiplet alone as well as coupled to one v
tor multiplet. The full moduli space is

M5O~1,1!3
SU~2,1!

SU~2!3U~1!
. ~1.3!

For the hypermultiplet alone, we study the properties a
parametrizations of the scalar manifold SU(2,1)/SU(
3U(1), giving all Killing vectors and prepotentials that a
low us to write down the generic scalar potential. Analyzi
all U~1! gaugings systematically, we find that only one cri
cal point arises. On general grounds we give precise co
tions for determining its~UV/IR! nature, which interestingly
can be tuned by the choice of the direction gauged within
compact subgroup. We compare results with other param
zations, that, due to an ill-defined metric, can give rise
spurious singular points. Specifically, in Appendix C, w
show how this happens in@12#, where the parametrization o
@14# was used.

Then we turn to the full model, where we analyze t
most general U(1)3U(1) gauging. The requirements for
first critical point lead to three real parameters for the e
bedding in SU(2)3U(1). A linear relation determines
whether extra possibilities exist where noncompact gen

1This requirement appeared in@1# and was then noticed in@11# for
BPS instantons and also in@13#.
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tors of SU~2,1! contribute to one of the U~1! generators. We
further study a two-parameter subclass. We then restrict
selves to the theories that have two different AdS criti
points, as they could be extrema of RG-flows as well as
Randall-Sundrum-type smooth solutions. This leaves us w
only two independent real numerical parametersb and g.
The superpotential of the two-parameter model existing o
line in the quaternionic manifold parametrized byx is

W5
1

4 r2
@31 b1~ 3

2 1g! r6

1~12b1~ 1
2 2g! r6! cosh~2 x!#, ~1.4!

wherer is the vector modulus.
Again, the nature of the critical points depends on t

relation between the parameters. Quite remarkably, for
special valuesb521 andg53/2 we recover precisely the
superpotential and the UV-IR AdS critical points of the kin
solution of Freedman, Gubser, Pilch, and Warner@9#. This
means that the FGPW flow can be described all withinD
55, N52 gauged supergravity@1# coupled to one vector
and one hypermultiplet, and thus the corresponding secto
the N52 theory yields a consistent truncation of te
dimensional type IIB supergravity@15#.

As an outcome of this analysis, we find as an interest
feature that domain walls with hypermultiplets can give r
to IR directions. This removes in principle the main obsta
for realizing a smooth supersymmetric RS scenario with
single brane~RSII!, which in the case of vector multiplet
only, resulted in the no-go theorem of@4,5#. The next step
would be to find in a specific model two IR critical poin
and an interpolating solution such that the warp factor
tains a maximum. The supergravity flow equations impo
the condition thatA856W and thus the existence of such
maximum implies a vanishing superpotential.

On the other hand, the holographicc theorem@16,9,17#
imposes the monotonicity of thec function c;uWu23. This
should imply that it is impossible to connect smoothly tw
IR points and find a smooth supersymmetric RSII. Howev
the only condition imposed by supergravity and by the B
flow equations is the ‘‘monotonicity theorem’’A9<0. This
leads to a monotonicity of the first derivative of the wa
factor A856W and not in general of thec function. This
does not exclude flows where the superpotential reacheW
50. These points may signal some problem with the valid
of the five-dimensional supergravity approximation of t
holographic correspondence@18#. However, BPS flows
crossing such points are perfectly well behaved from the
pergravity perspective. In our specific study we find e
amples withW vanishing at some points,2 but the flows by

2In @19# it is shown that a world-volume theory for a domain wa
at such a place has problems due to unbounded fermions. This
been investigated in the context of theories with only vector m
tiplets. It should be investigated whether similar problems per
for fermions with transformation laws like those in hypermultiple
6-2
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HYPERMULTIPLETS, DOMAIN WALLS, AND . . . PHYSICAL REVIEW D64 104006
these points always lead to a naked singularity. We concl
therefore that, although no example exists at the momen
smooth supersymmetric realization of RSII does not seem
be ruled out in the presence of vector and hypermultiple

Conversely, it is likely that a realistic one-brane Randa
Sundrum scenario can be constructed on the basis of an
the models discussed above with at least one IR critical p
by employing a method with supersymmetric singular bra
sources@20#.

The paper proceeds in Sec. II with a general discussio
supersymmetric flows with an arbitrary number of vector a
hypermultiplets based on the most general consistent g
ings. We start by repeating the general ingredients of the v
special real and the quaternionic manifolds, and the gaug
of the isometries. We provide a general constraint for gra
tational stability that can be expressed as the BPS cond
in a domain wall background. We spell out the requireme
for a RSII scenario in terms of the concepts of a renorm
ization group flow. The requirement for critical points of th
~super!potential can be reduced to algebraic conditions,
attractor equations. We end this section with a summary
the features to be investigated in examples.

Section III starts with motivations for studying a simp
model with a vector multiplet and a hypermultiplet such
the one giving rise to theN52 description of the FGPW
flow. Then we study properties and parametrizations of
scalar manifold, giving all Killing vectors and prepotentia
that allow us to write down the generic scalar potential.

Section IV provides an analysis of gauges and flows
examples. For the toy model with only a universal hyperm
tiplet, only one critical point arises, and, depending on
direction gauged within the SU(2)3U(1) compact sub-
group, it can have different nature. Then we study the
model and examine the possibility of finding different flow
between two fixed points, proving in particular that t
FGPW flow can be recovered.

We finish with some concluding remarks in Sec. V.
Our conventions are generally those of@1#. In Appendix A

we present a convenient table for the reader to recall the
and range of all the indices. In Appendix B we repeat so
notational issues, paying attention to reality conditions.
Appendix C we comment on the toy model in a differe
parametrization, useful for comparison with@12#.

II. SUPERSYMMETRIC FLOW EQUATIONS AND DOMAIN
WALL ATTRACTORS

A. Basic aspects of the theory

The bosonic sector of 5D,N52 supergravity coupled ton
vector multiplets andr hypermultiplets3 has as independen
fields the fünfbein em

a , the n11 vectors Am
I with field

strengthsFmn
I 5]mAn

I 2]nAm
I 1gAm

J An
K f JK

I , then scalarsfx,
and the 4r ‘‘hyperscalars’’qX. Full results of the action and
transformation laws are in@1#. We repeat here the main in

3We omit tensor multiplets for simplicity.
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gredients~for some technical issues, see Appendix B!. The
bosonic part of the Lagrangian is

e21L bosonic
N52 52 1

2 R2 1
4 aIJFmn

I FJmn2 1
2 gXYD mqXD mqY

2 1
2 gxyD mfxD mfy

1
1

6A6
CIJKe21«mnrstFmn

I Frs
J At

K2g2V~f,q!,

where

D mqX5]mqX1gAm
I KI

X~q!, D mfx5]mfx1gAm
I KI

x~f!.
~2.1!

HereKI
X(q) are the Killing vectors of the gauged isometri

on the quaternionic scalar manifold parametrized by the
perscalarsqX, whereasKI

x(f) are those of the very specia
manifold spanned by thefx of the vector multiplets. We will
come back to these below.

The scalars of the vector multiplets can be described b
hypersurface in an (n11)-dimensional space@21#

CIJKhI~f!hJ~f!hK~f!51. ~2.2!

The real coefficientsCIJK determine the metrics of ‘‘very
special geometry’’@22#

aIJ[22CIJKhK13CIKLCJMNhKhLhMhN5hIhJ1hxIhJ
x ,

gxy[hx
I hy

JaIJ , hI5CIJKhJhK, hx
I [2A3

2 ]xh
I~f!,

~2.3!

which are further used for raising and lowering indices.
non-Abelian structure in the absence of tensor multipl
should satisfy

CL(IJ f K)M
L 50, KI

x5A3
2 hKf JI

K hJx ~2.4!

which implies

hI f JK
I hK50→KI

xhI50. ~2.5!

The quaternionic Ka¨hler geometry is determined b
4r -beinsf X

iA ~as one-formsf iA5 f X
iAdqX), with the SU~2! in-

dex i 51,2 and the Sp(2r ) index A51, . . . ,2r , raised and
lowered by the symplectic metricsCAB and« i j ~see Appen-
dix B for conventions, reality conditions, etc!. The metric on
the hyperscalar space is given by

gXY[ f X
iA f Y

jB« i j CAB5 f X
iA f Y iA . ~2.6!

This implies that the vielbeins satisfy also

f iA
X f Y

iA5dY
X , f iA

X f X
jB5d i

jdA
B. ~2.7!

They are covariantly constant, including Levi-Civita` connec-
tion GXZ

Y on the manifold, Sp(2r ) connectionvX
B

A , and
SU~2! connectionvXi

j , which are all functions of the hyper
scalars:
6-3
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CERESOLE, DALL’AGATA, KALLOSH, AND VAN PROEYEN PHYSICAL REVIEW D64 104006
]Xf Y
iA2GXY

Zf Z
iA1 f Y

iBvXB
A1vXk

i f Y
kA50. ~2.8!

The SU~2! curvature is

RXYi j5 f XC( i f j )Y
C , ~2.9!

and there is a connectionvm i
j5(]mqX)vXi

j such that

R XYi
j52] [XvY] i

j22v [Xu i u
kvY]k

j5 iR XY
r ~s r ! i

j ,

R r5dv r2« rstvsv t ~2.10!

with r 51,2,3 and realR XY
r @see Eq.~B2!#. The SU~2! cur-

vatures have a product relation that reflects that they
proportional to the three complex structures of the qua
nionic space

R XY
r R sYZ52 1

4 d rsdX
Z2 1

2 « rstR X
t Z. ~2.11!

The Killing vectors on the hyperscalarsKI
X can be ob-

tained from an SU~2! triplet of real prepotentialsPI
r(q) that

are defined by the relation@23–25,1#

RXY
r KI

Y5DXPI
r , DXPI

r[]XPI
r12« rstvX

s PI
t .

~2.12!

These yield@using Eq.~2.11!#

KI
Z52 4

3 R r ZXDXPI
r . ~2.13!

These prepotentials satisfy the constraint

1
2 R XY

r KI
XKJ

Y2« rstPI
sPJ

t 1 1
2 f IJ

K PK
r 50. ~2.14!

In local supersymmetry, the prepotentials are defin
uniquely from the Killing vectors. Indeed,4

PI
r5

1

2r
DXKIYR XYr ~2.15!

satisfies Eq.~2.12!, and any covariantly constant shiftPI
(0)r

is excluded as the integrability condition« rstR XY
s P(0)t50

implies that PI
(0)r50. As in four dimensions@25#, these

shifts are interpreted as the analogues of the Fayet-Iliopo
~FI! terms for theD54, N51 theories. However, in loca
supersymmetry we thus find the absence of the FI term
cept when there are no hypermultiplets@or in rigid supersym-
metry where the SU~2! curvature vanishes#.

We will also need the bosonic part of the supersymme
transformations of the fermions, which are~with vanishing
vectors!

4This formula can also be derived from the harmonicity prope
of the quaternionic prepotentialDXDXPI

r52rPI
r @13#.
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decm i5Dm~v!e i1 i
1

A6
ggmPi j e

j

5]me i1
1
4 gabvm,abe i2vm i

je j1 i
1

A6
ggmPi j e

j ,

del i
x52 i 1

2 ~]”wx!e i1ge j Pi j
x ,

dez
A52 i 1

2 f iX
A ~]”qX!e i1ge iN i

A , ~2.16!

where@as for all tripletsPi j 5 iPr(s r) i j ; see Eq.~B2!#

Pr[hI~f!PI
r~q!, Px

r [2A3
2 ]xP

r5hx
I PI

r ,

N i
A[

A6

4
f iX

A KX5
2

A6
f iX

A R r YXDYPr ,

KX[hI~f!KI
X~q!. ~2.17!

The scalar potential is given by

V524Pr Pr12Px
r Py

r gxy12NiAN iA. ~2.18!

This expression can be understood as in all supersymm
theories~see@26# for a proof in four dimensions! by squaring
the scalar part of the supersymmetry transformations of
fermions using their kinetic terms. The kinetic terms of t
fermions are

e21L ferm,kin
N52 52 1

2 c̄mgmnr]ncr2 1
2 l̄x

i gn]nl i
x2 z̄Agn]nzA .

~2.19!

This defines the metric to be used to square the supers
metry transformations:

2 1
2 ~de1 ,scc̄m!gmnr~de2 ,sccr!2 1

2 ~de1 ,scl̄x
i !gn~de2 ,scl i

x!

2~de1 ,scz̄
A!gn~de2 ,sczA!5 1

4 g2ē1gne2 V. ~2.20!

The gravitino gives the negative contribution to the potent
while the gauginos and hyperinos give the positive contri
tions.

We introduce the scalar ‘‘superpotential’’ functionW,
which can be read off the gravitino supersymmetry transf
mation, by5

W5A 1
3 Pi j P

i j 5A 2
3 Pr Pr , ~2.21!

such that the potential gets, under certain conditions,
form that has been put forward for gravitational stability:

V526W21
9

2
gLS]LW]SW, ~2.22!

y
5As a convention, we pick a positive definiteW.
6-4
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where gLS is the metric of the complete scalar manifol
involving the scalars of vector multiplets as well of hype
multiplets. It is easy to see that in this case critical points
W are also critical points ofV.

For one scalar, a proof of gravitational stability was fou
in @27# ~even without supersymmetry! in four dimensions,
and extended to higher dimensions and to the multisc
case in@28# for potentials that are a function of the ‘‘supe
potential’’ as in Eq.~2.22!. However, more general potentia
are also compatible with the gravitational stability. More r
cently, this issue has been revived in@17,29#.

The negative part of the potential~2.18! straightforwardly
takes the form of the first term in Eq.~2.22!. For the contri-
bution of the hypermultiplets, the formgXY]XW]YW follows
from

]XW5
2

3W
PrDXPr5

2

3W
PrR XY

r KY ~2.23!

and Eq.~2.11!. However, for the vector multiplets the anal
gous expression cannot be obtained in general. Using
decomposition of the vectorPr in its norm and phases

Pr5A 3
2 WQr , QrQr51, ~2.24!

one sees that the term 2Px
r Prx in Eq. ~2.18! gets the form of

the vector multiplet contribution in Eq.~2.22! if

~]xQ
r !~]xQr !50⇒]xQ

r50. ~2.25!

This condition6 is satisfied in several cases. When there
no hyperscalars and only Abelian vector multiplets, the c
straints ~2.12! and ~2.14! imply that theQr are constants
Also, when there are no physical vector multiplets, this c
dition is obviously satisfied. We will see below that E
~2.25! is related to a condition of unbroken supersymme
In the explicit example that we will show in Sec. IV, the
will be flows whereQr is independent of the scalars in vect
multiplets, such that again Eq.~2.25! is satisfied.

B. BPS equations in a domain wall background

We are looking for supersymmetric domain wall solutio
that preserve half of the original supersymmetries of theN
52 supergravity. Thus we use as a generic ansatz for
metric

ds25a~x5!2dxmdxnhmn1~dx5!2, ~2.26!

wherem,n50,1,2,3, which respects four-dimensional Po
caréinvariance, and we model this solution by allowing t
scalars to vary along the fifth directionx5. These solutions
are obtained when we require that the supersymmetry tr
formation rules on this background vanish for some Killi
spinor parametere i .

6This constraint is equivalent to the one found in@8#.
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When all vectors are vanishing, the relevant supersym
try flow equations for the gravitinosc i , the gauginil i

x , and
the hyperinizA are

decm i5]me i1gmS 1

2

a8

a
g5e i1

i

A6
gPi j e

j D ,

dec5i5e i82qX8vXi
je j1

i

A6
gg5Pi j e

j ,

del i
x52

i

2
g5e i fx81gPi j

x e j ,

dez
A5 f iX

A F2
i

2
g5qX82

2g

A6
R r XY~DYP!r Ge i ,

~2.27!

where the prime is a derivative with respect tox5, and we
have assumed thatqX depends only onx5.

The equationdc5
i 50 gives just the dependence of th

Killing spinor on the fifth coordinate. We assume7 also that
the Killing spinor does not depend onxm.

The first Killing equation gives

i
a8

a
g5e i5A2

3
gPi j e

j , ~2.28!

whose consistency as a projector equation requires

Fd i
kS a8

a D 2

2g2
2

3
Pi j P

jkGek50. ~2.29!

This can then be easily written in terms ofW as

F S a8

a D 2

2g2W2Ge i50. ~2.30!

For any preserved supersymmetry, this gives us an equa
relating the warp factor and the superpotential~with g.0):

gW5Ua8

a U56
a8

a
. ~2.31!

Using the notation~2.24!, the projection~2.28! is @we further
keep consistently the upper and lower signs as they appe
Eq. ~2.31!#

g5e i56Qrs i j
r e j . ~2.32!

The gaugino equation, after using Eq.~2.28!, gives rise to
the condition

7In some cases there may be other solutions. At the critical po
the supersymmetry is doubled, the extra Killing spinors being of
type with extra dependence on thexm. Here we restrict ourselves to
solutions with Killing spinors that do not depend onxm.
6-5
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Pi j e
jfx8523

a8

a
gxy]yPi j e

j . ~2.33!

Using the decomposition ofPr in Eq. ~2.24! one finds

WQrfx8523
a8

a
gxy~Qr]yW1W]yQ

r !. ~2.34!

SinceQr]xQ
r50, the two pieces on the right are orthogon

to each other and so we derive as independent condition

]yQ
r50 ~2.35!

and @using Eq.~2.31!#

fx8573ggxy]yW. ~2.36!

The first condition is Eq.~2.25!, and we thus find that the
BPS condition is equivalent to requiring that the poten
can be written in the stability form~2.22!. Notice that the
projection given in Eq.~2.32! therefore only depends on th
hypermultiplets.8

The formula~2.36! can be generalized to the hypermu
tiplets. In view of this, we turn to the hyperino Killing equa
tion, the last of Eq.~2.27!. For the first term, we can alread
use Eq.~2.32!. We multiply the transformation of the hyper
nos by f A j

Y . Equations~2.6! and ~2.9! lead to

f Y jAf X
iA5 1

2 gYXd j
i1R YX j

i . ~2.37!

This gives

05@gYXd j
i12iR YX

rs r
j
i #F6

1

2
iQsss

i
kqX81

gA6

4
KXd i

kGek ,

~2.38!

This we write as a matrix equationA Y j
kek50:

05@A Y
0d j

k1A Y
r i ~s r ! j

k#ek ,

A Y
0[

gA6

4
KY7R YX

r QrqX8,

A Y
r [6

1

2
QrqY87« rstR YX

s QtqX81
gA6

2
R YX

r KX.

~2.39!

The reality of these quantities implies that the determinan
the matrixAY is

det AY5~A Y
0 !21~A Y

r !2. ~2.40!

If there are any preserved supersymmetries, then this d
minant has to be zero. Therefore,A Y

05A Y
r 50. However, it

8In the presence of tensor multiplets, the gaugino supersymm
~SUSY! rule would have been modified by an additional te
de8l i

x5gWxe i . However, this would have been put to zero by t
gaugino projector equationA x

k
ie i5(A 0xek1A rxi (s r)k

i)e i50
whereA 0x[Wx andA rx was implicit in Eq.~2.33!.
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is easy to see that the conditionA Y
050 impliesA Y

r 50, and
is thus the remaining necessary and sufficient conditi
With Eq. ~2.23!, this implies

g]XW5A 2
3 gQrR XY

r KY57 1
3 gXYqY8. ~2.41!

One can also show that this equation is sufficient for
Killing equations.

We have obtained the same condition for the scalars
hypermultiplets as for vector multiplets, and we can wr
collectively for all the scalar fieldsfL5$fx,qX%

fL8573g gLS]SW. ~2.42!

This equation, together with the constraint~2.35! and the
flow equation for the warp factor~2.31!, completely de-
scribes our supersymmetric flow.9 A solution to these equa
tions is also a solution of the full set of equations of motio

The fact that BPS states are described by Eqs.~2.42! and
~2.31! can also be seen from the expression of the ene
functional. Once the~2.35! condition is satisfied, such a
functional can be written as

E5E
2`

1`

dx5 a4F1

2
~fL873g]LW!226S a8

a
7gWD 2G

73gE
2`

1`

dx5
]

]x5
~a4W!14E

2`

1`

dx5
]

]x5
~a3a8!.

~2.43!

C. Renormalization group flow

The above formulas can be used to obtain the equat
that give the dependence of the scalars on the warp factoa.
Using the chain rule, the relevant supersymmetry flow eq
tions for all the scalar fields reduce to

bL[a
]

]a
fL5a

]x5

]a

]fL

]x5

573g
a

a8
gLS]SW

523gLS
]SW

W
. ~2.44!

The notation as a beta function follows from the interpre
tion as a conformal field theory, where the scalars play
role of coupling constants and the warp factora is playing
the role of an energy scale.

ry
9This flow equation also appears in@8#. However, there it was

derived using a condition that is stronger than the one we need.
condition is the one that also implies the stability form of the p
tential.
6-6
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This same function can be used to determine the natur
the critical pointsf* . Whetherf* has to be interpreted a
UV or IR in the dual CFT can be inferred from the expansi
of Eq. ~2.44!

a
]

]a
fL5~fS2fS * !

]bL

]fS U
f*

. ~2.45!

This tells us that any time the matrix

U S
L[2

]bL

]fS U
f*

5
3

W
gLJ

]2W

]fS]fJU
f*

~2.46!

has a positive eigenvaluef* is a UV critical point, whereas
when it has negative eigenvaluesf* is IR.

The eigenvalues ofU are the conformal weightsE0 of the
associated operators in the conformal picture. One can ob
a general formula@30# for U:

U5S 3

2
dX

Y2
1

W2
J X

ZL Z
Y

1

W2
J XZ]yKZ

2
1

W2
~]xK

Z!J Z
Y 2dx

y D , ~2.47!

where the first entry corresponds to hypermultiplets and
second to vector multiplets. The quantitiesJ andL are de-
fined as10

DXKY5JXY1LXY , JXY52PrR XY
r . ~2.48!

They commute,J 2 is proportional to~minus! the unit ma-
trix, and the trace ofJL is zero:

J X
YJ Y

Z52 3
2 W2dX

Z, J X
YL Y

Z5L X
YJ Y

Z,

J X
YL Y

X50. ~2.49!

The decomposition ofDK in Eq. ~2.48! is a split of the
isometries in SU~2! and USp(2r ) parts.

The lower right entry of Eq.~2.47!, a consequence of th
basic equations of very special geometry, is the statem
that for only vector multiplets there are only UV critica
points, preventing the RS scenarios@4,5#. The other entries
imply that the appearance of IR directions can be due to
different mechanisms@8#. One is the presence of the hype
multiplets, if the upper left entry gets negative value
whereas the other is due to the possibility of mixing betwe
vector and hypermultiplets. To have negative eigenval
due to the hypermultiplets only, theL matrix has to get large
This means that the gauging has to be ‘‘mainly’’ outside
SU~2! group. We will see this explicitly in the examples o
Sec. IV, where the orthogonal part to SU~2! is a U~1! group.

An immediate consequence of Eq.~2.47! is that

Tr U56 r 12 n. ~2.50!

10This splitting was also put in evidence in@13#.
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The right-hand side is thus the sum of all the eigenvalu
This implies that there are no pure IR fixed points, i.e., th
are at most fixed points for which flows in particular dire
tions are of the IR type.

These same eigenvalues are related to the scalar ma
through the mass matrix@9#

ML
S5Wcr

2 U L
D ~UD

S24dD
S!. ~2.51!

The scaling dimensions of the dual conformal fields a
therefore the eigenvalues ofU.

Equations ~2.31! and ~2.42! also lead directly to the
monotonicity theorem forA8. Indeed, defining

A5 ln a, A856gW, ~2.52!

we have directly that

A956gW8523g2~]LW!gLS~]SW!<0. ~2.53!

ThereforeA8 is a monotonically decreasing function. In th
usual holographic correspondence, this is related to
monotonicity of thec function @16,9,17,31,32#.

The above issues can be applied to address the questi
the existence ofsmooth Randall-Sundrumscenarios. In such
a scenario, the scalars should get to a constant value ax5

56`, and with Eq.~2.42! this means thatW should have an
extremum atx556`, i.e., with Eq.~2.44!, a zero of the beta
function and thus a critical point. For a RS scenario the w
factor should be small there, i.e., it should be a critical po
for a small energy scale, an IR critical point. Thus, we ne
a solution that interpolates betweentwo IR critical pointsfor
x556`, getting to a maximum of the warp factorA at the
center of the domain wall, placed, for instance, atx550.
This requires that at the same pointW should be zero.

This situation can in principle be realized without viola
ing the condition~2.53!. Indeed, take aW that decreases to
zero atx550 from positivex5. With a smooth flow, one
might expect thatW changes sign, as its derivative is nonze
at this point. Note, however, that ourW is always positive
due to its definition as the norm of the SU~2! vectorPr . This
is necessary because in the geometry of hypermultiplets
local SU~2! is essential, andW has to be an invariant func
tion. It thus bumps up again and increases. But at the s
time the unit vectorQr jumps to its negative. In this way
Pr5WQr behaves smoothly, leading to a smooth flow d
spite the apparent jumps. Because of the sign switches in]W
and Q, for negativex5, one must take consistently all th
different signs in Eqs.~2.31!–~2.42!. Note that the two sign
flips combine such that the projection of the Killing spinor
Eq. ~2.32! will not change. ThenW will increase again for
negativex5 and the monotonicity of the warp factor will no
be violated.

Of course in the holographic interpretation of thec theo-
rem, the central charge would blow up or the height funct
would become singular at the zero of the superpotential@11#,
and the dual field theory would be ill defined at that point.
spite of this, the supergravity monotonicity theorem can f
ther be satisfied with increasingW, if it was decreasing at the
other side ofx550.
6-7
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The interesting points are thus the zeros that we just
cussed, and the critical points, where]LW50. We now turn
to discussing the properties of the latter.

D. Enhancement of unbroken supersymmetry and algebraic
attractor equations

The search for critical points can be nicely formalized
an attractor mechanism, which was discovered in@2# and was
studied in great detail in the absence of hypermultiplets.
far only partial investigations exist for the coupling of bo
vector multiplets and hypermultiplets, in the context of d
main walls@8,11,33# and in the context of the BPS instanto
@34#. At the fixed points of the solution the moduli are d
fined by the conditionNiA50 @1#, which impliesKX50, as
can be understood from Eqs.~2.17! and~2.23!. This fact was
also observed in@34,8,11,13#.

Here we will use the fact derived in the previous sectio
that the Killing spinor projectorQr must satisfy Eq.~2.25!.
Only in such case does the superpotentialW control the flow
equations.Using the enhancement of supersymmetry n
the critical points we will derive all necessary and sufficie
conditions for critical points.Our method follows@2,35,3#,
where the geometric tools of special geometry inD54 and
very special geometry inD55 were used to convert the BP
differential equations into algebraic ones and where enha
ment of unbroken supersymmetry played an important ro

Consider the domain wall solutions of the previous su
section in the limit where the scalars are frozen:

qX850, fx850,
a8

a
56Wcr5const. ~2.54!

If constÞ0, the flow tends to the AdS horizon in case of t
IR critical point and to the boundary of the AdS space in c
of the UV critical point. This becomes clear when the met
is rewritten asds25a2(dxm)21(1/W2)(da/a)2. For con-
stantnonvanishing W, smalla define the horizon of the AdS
space whereas largea correspond to its boundary.

The gravitino supersymmetry transformation at the cr
cal point~2.54! acquires a second Killing spinor. This is th
same doubling that always occurs in the AdS backgro
near the black hole horizon. One finds that

decm50, ~e i !attrÞ0, ~2.55!

without restrictions on the Killing spinors, i.e., they ha
eight real components.

In analyzing the equations we will have to be careful th
we are inside the domain of validity of our coordinate sy
tem. In particular, this means thatgxy , gXY , f X

iA , andR r XY

are neither vanishing nor infinite. We will be able to inve
these geometric objects using the rules of very special
quaternionic geometry. The procedure is analogous to
steps performed in the previous section to find the soluti
with N51 unbroken supersymmetry. Now we will specify
to the case of frozen moduli andN52 unbroken supersym
metry.
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By direct inspection of the supersymmetry transform
tions we observe that the first term in the gaugino and
perino transformation vanishes and we get

del i
x5gPi j

x e j50,

dez
A5 f iX

A FA6g

4
KXGe i50. ~2.56!

The first of these equations fore iÞ0 can be satisfied if and
only if

~]yPr !attr50, ~2.57!

which, for AdS vacua, can also be written as

~Qr]yW1W]yQ
r !50⇒~]yW!attr50 and ~]yQ

r !attr50.
~2.58!

The implication follows from the same argument as for E
~2.35!.

Finally, we have to derive the necessary and suffici
conditions to satisfy the hyperino equation also. Evaluat
Eq. ~2.39! at the attractor pointq8X50 for e iÞ0 requires

~A Y
0 !attr[

gA6

4
KY50, ~A Y

r !attr[
gA6

2
R YX

r KX50.

~2.59!

The solution of this equation is

~KX!attr[hI~f!KI
X~q!50. ~2.60!

As previously noticed, this is an algebraic equation that
fines the fixed values of the scalars at the critical point a
solvesdez

A50.
The algebraic rather than differential nature of this con

tion stimulates us to look for an algebraic equation also
the vector multiplet sector of the theory. Indeed, such
algebraic attractor equation was known to be valid for A
critical points in theories without hypermultiplets@3# and we
now try to generalize it. We start with Eq.~2.57! and multi-
ply this equation bygxy]yhI . Using the fact that (hIx ,hI)
forms an (n11)3(n11) invertible matrix in very specia
geometry~2.3!, this equation becomes

PI
r5CIJKhJhKPr5hI P

r . ~2.61!

So far the result is valid for any critical point. If we now
restrict ourselves to the AdS ones, we can multiply Eq.~2.61!
by Qr and get

hIW5CIJKh̃I h̃K5PI , PI~q![A2
3 PI

rQr ,

h̃I~f,q!5hIAW. ~2.62!

Note thatPI depends only on quaternions. This type of alg
braic attractor equation with constant values ofPI was used
in an efficient way in various situations before. In particul
it was used in calculations of the entropy of Calabi-Y
black holes and the warp factor of Calabi-Yau domain wa
6-8
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near the critical points. We have shown here that in the p
ence of the hypermultiplets the analogous algebraic eq
tions with quaternion-dependentPI are valid at the critical
points. Thus the algebraic equationhI P

r5PI
r is equivalent to

the differential equation]xW50, since for supersymmetri
flows the]xQ

r50 condition is satisfied. If we multiply this
by hI we will get an identityPr5Pr ; however, Eq.~2.61! is
not satisfied in general but only at the fixed points where
scalars are constant.

Thus we have the system of algebraic equations, defin
the critical points:

hI~fcr!P
r~fcr ,qcr!5PI

r~qcr!, KX~fcr ,qcr!50.
~2.63!

They are equivalent to the system of differential equatio
minimizing the superpotential. These equations, toge
with ]xQ

r50, are equivalent to minimizing the triplet of th
prepotentials

~]xP
r !cr50, ~DXPr !cr50. ~2.64!

The advantage of having algebraic rather than differen
equations defining the critical points is already obvious in
simple examples that we consider in the models below, b
will be even more essential in cases with arbitrarily ma
moduli.

As a conclusion of this section, we can summarize
relevant equations to be examined in the specific examp
Given a scalar manifold, we have to look for the followin
special points.

~1! Fixed points. These are points where]LW50. They
are determined by algebraic equations:

Fixed points: KX[hI~f!KI
X~q!50,

PI
r~q!5hI~f!Pr~f,q!.

~2.65!

In particular, for the AdS case, the eigenvalues of the ma
~2.46! determine whether they are UV~eigenvalues positive!,
or whether some eigenvalues are negative. In the latter c
they can be used as IR fixed points, and represent the va
of the scalars atx556` in the RS scenario.

~2! Zeros.These determine the values of the scalars on
place of the domain wall, i.e., where the warp factor reac
an extremum:

Zeros: Pr5hI~f!PI
r~q!50. ~2.66!

Note that the presence of zeros implies that theb function
diverges. This indicates that the AdS/CFT corresponde
breaks down at this point. These zeros are necessary
Randall-Sundrum domain walls but are thus pathological
applications as renormalization group flows.

III. A MODEL WITH A VECTOR MULTIPLET
AND A HYPERMULTIPLET

In this and the next section we want to specify the res
obtained so far to two detailed examples. The simplest mo
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that can show all the main features of this kind of analysis
given by supergravity coupled to one vector and one hyp
multiplet. Thus, as a first step, we describe in full detail t
toy model based on the universal hypermultiplet alone. Th
we analyze the complete model, whose moduli space
given by the scalar manifold

M5O~1,1!3
SU~2,1!

SU~2!3U~1!
. ~3.1!

Actually, in this example we focus on one important sup
symmetric domain wall solution that was previously d
cussed as the dual to the renormalization group flow desc
ing the deformation from anN54 to anN51 super Yang-
Mills theory with SU~2! flavor group@9#.

This solution ~at least numerically! was originally ob-
tained inside theN58 gauged supergravity theory, but w
will show that it can also have a consistent description in
standardN52 one. Notice that this same flow was claime
to be present also in a truncatedN54 gauged supergravity
coupled to two tensor multiplets, but the relevant model h
only recently been constructed in@36#. The older Ref.@37#
dealt only with the coupling to vector multiplets and gaugi
of the SU(2)R group, whereas@38,39# discussed the
SU(2)R3U(1)R gauging without any matter coupling.

More precisely, we will show thatthe FGPW flow can be
consistently retrieved in theN52 supergravity with one
massless graviton multiplet, a massless vector multiplet,
one hypermultiplet with the gauging of aU(1)3U(1) sym-
metry of the scalar manifold~3.1!.

In the decomposition@9# of the N58 graviton multiplet
into N52 multiplets~which is completely valid only at the
infrared fixed point!, the supergravity fields are arranged in
representations of the SU(2,2u1)3SU(2)I residual superal-
gebra. Retaining only SU(2)I singlets leaves us with on
graviton multiplet, one hypermultiplet, one massive vec
multiplet, and one massive gravitino multiplet. However@9#,
since the only scalars that change along the flow are the
belonging to the massive vector multiplet, it is expected t
the theory can be further consistently truncated to one c
taining the graviton and massive vector multiplets only, b
how can we describe such couplings in the standard fra
work @1#?

The representations of the SU(2,2u1) supergroup not only
include a massless short graviton multiplet and an arbitr
number of~massless! short vector and~massive! tensor and
hypermultiplets, but also present a wide spectrum of lo
and semilong supermultiplets. While in the general the
@1# the couplings and interactions of short multiplets are
plicitly described, those of massive vector multiplets c
arise as the result of a Higgs mechanism where a mass
vector eats a scalar coming from a hypermultiplet.

Since the UV fixed point should correspond to theN58
supersymmetric theory, both the graviphoton and gauge v
tors must be massless there, as they are both gauge vect
U(1)3U(1),SU(4). Then, along the flow, only one o
them~or at most a combination of the two! will remain mass-
less, while the other will gain a mass, breaking the resid
invariance to the U(1)R subgroup and giving rise to the ma
6-9
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sive vector multiplet described above. This means that
can further decompose the long vector multiplet into a ma
less one plus a hypermultiplet, which is exactly the cont
of the model we are going to analyze now.

To complete the characterization of the flow we only ne
some information to sort out which U(1)3U(1) subgroup of
the isometry group of the manifoldM has to be gauged
This can be understood by examining the mechanism
gives the mass to one of the two vectors.

The vector mass terms come from the kinetic terms of
hypermultiplet scalars. Indeed, due to the gauged covar
derivatives~2.1!, the kinetic term for such scalars is

2 1
2 ~]mqX1gAm

I KI
X!2, ~3.2!

and therefore for a U~1! gauging one has a term lik
g2AmAmK2 in the action, whereAm is a linear combination
of gauge vectors andKX is the corresponding Killing vecto
of the gauged isometry. This, of course, will act as a m
term for theAm vector any time the Killing vector has
nonzero norm.

It is therefore quite easy now to identify the isometries
be gauged in order to obtain the FGPW flow. They are th
associated with Killing vectorsKI

X that have vanishing norm
at the UV fixed point, and such that along the flow the no
of a combination of them still remains zero.

A. The scalar manifold

We now turn to the description of the parametrization a
of the isometries of the scalar manifold~3.1!. The O~1,1!
factor is relative to the vector multiplet scalarr, and is given
by a very special manifold characterized bynV1152 func-
tionshI(r) constrained to the surface~2.2!. Its essential geo-
metric quantities, theC constants that determine the embe
ding of this manifold in the ambient space and also fix
Chern-Simons coupling, can be chosen to be all butC011
equal to zero. Then we take11 @40#

C0115
A3

2
, h05

1

A3
r4, h15A2

3

1

r2
,

grr5
12

r2
, a005

1

r8
, a115r4, a0150. ~3.3!

The metricgrr is well behaved forrÞ0 and, for definite-
ness, we choose the branchr.0.

Much more can be said about the second factor ofM, and
due to its fundamental role we would like to describe it
some more detail. It is known that the quaternionic Ka¨hler
space SU(2,1)/@SU(2)3U(1)#, classically parametrized b
the universal hypermultiplet, is also a Ka¨hler manifold@41#.
This means that it can be derived from a Ka¨hler potential,
which is usually taken to be

11The numerical factors are partly chosen for convenience
partly to satisfy the request that there exists a point of the mani
where the metricaIJ can be put in the form of a deltad IJ .
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K52 1
2 log~S1S̄22CC̄!. ~3.4!

In addition to the many parametrizations existing in t
literature, the one that will prove convenient to us follow
very closely the notations of@7#, with some further redefini-
tions to match the conventions of@1#. We thus call the four
hyperscalarsqX5$V,s,u,t%, which are related to the previ
ous variables by

S5V1~u21t2!1 is, C5u2 i t. ~3.5!

The domain of the manifold is covered byV.0. Note that
this parametrization of the universal hypermultiplet is t
one that comes out naturally from the Calabi-Yau compa
fications ofM theory@42,7# and thus one can hope to explic
itly see how gauging of isometries can be obtained from s
a higher-dimensional description.

Let us define the following one-forms:

u5
du1 idt

AV
, v5

1

2V
@dV1 i ~ds22tdu12udt!#,

~3.6!

which will be very useful in the whole construction. Th
quaternionic vielbeinsf iA5 f X

iAdqX are then chosen to b
@«125C12511 are the conventions for the SU(2
3USp(2) metrics#

f iA5S u 2v

v̄ ū
D , f iA5S ū 2 v̄

v u
D . ~3.7!

The metric is then given byg5 f iA
^ f iA52u^ ū12v ^ v̄

and reads

ds25
dV2

2V2
1

1

2V2
~ds12u dt22t du!21

2

V
~dt21du2!.

~3.8!

The determinant for such a metric is 1/V6 and therefore the
metric is positive definite and well behaved for any value
the coordinates exceptV50. Since in the Calabi-Yau deri
vation V acquires the meaning of the volume of the Cala
Yau manifold, we restrict it to the positive branchV.0.

From the vielbeins we can derive the SU~2! curvature:

Ri
j52

1

2
f iA` f jA52

1

2 S 2~vv̄1uū! 2ūv̄

2vu ~vv̄1uū!
D .

~3.9!

Using the triplet of curvatures as in Eq.~2.10!,

R 152
1

2V3/2
@~ds12u dt!d u2dt dV#,

R 252
1

2V3/2
@~ds22tdu!dt1dudV#,

d
ld
6-10
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R 352
1

V
dudt1

1

4V2
@~ds22tdu12udt!dV#.

~3.10!

These can be derived from the following SU~2! connections:

v152
dt

AV
, v25

du

AV
, v352

1

4V
~ds22tdu12udt!.

~3.11!

B. The isometries

The metric~3.8! has an SU~2,1! isometry group generate
by the following eight Killing vectorska

X :

kW15S 0

1

0

0

D , kW25S 0

2u

0

1

D , kW35S 0

22t

1

0

D , kW45S 0

0

2t

u

D ,

kW55S V

s

u/2

t/2

D , kW65S 2Vs

s22~V1u21t2!2

su2t~V1u21t2!

st1u~V1u21t2!

D ,

kW75S 22Vu

2su1Vt1t~u21t2!

1
2 V2u2/213t2/2

22ut2s/2

D ,

kW85S 22Vt

2st2Vu2u~u21t2!

22ut1s/2

1
2 V13u2/22t2/2

D . ~3.12!
10400
The first three correspond to some constant shift of the
ordinates; in particular, the first one was analyzed in@7#,
wheres→s1c, whereas the second and third correspond
the shiftsu→u1a, t→t1b, ands→s22at12bu. The
fourth Killing vector is the generator of the rotation symm
try between theu and t coordinates:u→cosf u2sinf t, t
→ sinf t1cosf u, which is the one considered in@8#. Fi-
nally, the fifth Killing vector is the generator of dilatation
while the remaining three are other complicated isomet
of the metric.

The commutators of these vectors confirm that they re
close the SU~2,1! algebra. To this purpose, it is easier
recast them in the following combinations:

SU~2!H T15 1
4 ~k222k8!,

T25 1
4 ~k322k7!,

T35 1
4 ~k11k623k4!,

U~1!H T85
A3

4
~k41k11k6!,

SU~2,1!

U~2! 5
T45 ik5 ,

T552 i 1
2 ~k12k6!,

T652 i 1
4 ~k312k7!,

T752 i 1
4 ~k212k8!.

~3.13!

These generators satisfy the SU~3! commutation relations

Ta
Y]YTb

X2Tb
Y]YTa

X52 f ab
gTg

X . ~3.14!

The factors ofi in Eq. ~3.13! allow us to have completely
antisymmetric structure constantsf abg5 f ab

g with f 12351,
f 14751/2, f 156521/2, f 24651/2, f 25751/2, f 34551/2, f 367

521/2, f 4585A3/2, f 6785A3/2. The generatorsT4 , T5 ,
T6, and T7 are imaginary, such that the real algebra
SU~2,1!.

The relation~2.15! leads directly to the prepotentials
PW 5S 0

0

2
1

4V

D , S 2
1

AV

0

2
u

V

D , S 0

1

AV

t

V

D , S 2
u

AV

2
t

AV

1

2
2

u21t2

2V

D ,

S 2
t

2AV

u

2AV

2
s

4V

D , S 2
1

AV
@st1u~2V1u21t2!#

1

AV
@su2t~2V1u21t2!#

2
V

4
2

1

4V
@s21~u21t2!2#1

3

2
~u21t2!

D ,
6-11
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S 4ut1s

2AV

3t22u2

2AV
2

AV

2

2
3

2
t1

1

2V
@su1t~u21t2!#

D , S 2
3u22t2

2AV
1

AV

2

s24ut

2AV

3

2
u1

1

2V
@st2u~u21t2!#

D . ~3.15!
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As we have seen in the previous sections, these prepoten
are indeed necessary in order to write an explicit expres
for the potential ~2.18! and superpotential~2.21! of the
gauged theory and thus to solve the supersymmetry fl
equations~2.42!.

IV. GAUGING AND THE FLOWS

In this section, we will analyze the flows that can be o
tained in this model. This requires, as pointed out in Sec
that we perform a specific gauging and search for criti
points and for zeros of the corresponding potential.

A. Toy model with only a hypermultiplet

We now turn to analyzing the supersymmetric flows th
can be obtained in our model with one vector multiplet a
one hypermultiplet. To this end, it is interesting to start w
a preliminary study on the vacua obtained by consider
only a U~1! gauging of the universal hypermultiplet man
fold, when no other vectors but the graviphoton are pres
This will give us some important hints.

As for this caseh051 is the only component ofhI , the
conditions for critical points~2.65! just reduce to the vanish
ing of a certain linear combinationK of the Killing vectors
that give rise to the gauged isometry. In other words, a c
cal point should be left invariant under the U~1! generated by
K. Therefore, such U~1! must be part of the isotropy group o
the manifold,12 i.e.,

U~1!gauge,SU~2!3U~1!. ~4.1!

In a symmetric space any point is equivalent, and for con
nience we have chosen the basis~3.13! such that the genera
tors T1 , T2 , T3, andT8 are the isotropy group of the poin

~V,s,u,t!5~1,0,0,0!. ~4.2!

The Killing vector that we consider is given by

K5(
r 51

3

a rTr1b
1

A3
T8 , ~4.3!

12This important feature was not realized in any of the revisions
@12#, where isometries were gauged outside the compact subgr
10400
als
n

w

-
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t
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g
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i-

-

and the same constant parameters$a r ,b% are used to define
the gauged prepotentialPr . Correspondingly, we find

W2u(1,0,0,0)5
1
6 a ra r . ~4.4!

The value ofW is indeed determined only by the gauging
the SU~2! part of the isotropy group of the correspondin
point. Therefore, any gauging in the direction ofT8 alone
can give rise to a supersymmetric vacuum of the theory c
responding to a Minkowski space. This same feature can
be observed for the gauging of an SU(2)3U(1) group in the
N54 theory, namely, the gauging of the U~1! isometry alone
gives rise only to Minkowski vacua@38,36#. This implies
that, if a dual field theory could be built, it would be in
confined phase.

The matrixJ in Eq. ~2.48! is at the base point~4.2! pro-
portional toa r , while L is proportional tob, these being the
gaugings in the SU~2! and orthogonal directions, respe
tively. The eigenvalues ofJL are twice6ab/4 ~wherea is
the length of the vectora r) such that the matrix of secon
derivatives~2.46! according to Eq.~2.47! satisfies

eigenvaluesU X
Yu(1,0,0,0)5

3

2 H 11
b

a
,11

b

a
,12

b

a
,12

b

aJ ,

~4.5!

and this tells us the nature of the critical point. As an e
ample, consider the gauging in the direction ofa5a3. Then
the first two eigenvalues correspond to the (V,s) directions,
and the latter two are of the (u,t) directions.

In general, the obtained eigenvalues reflect the supers
metry structure of the universal hypermultiplet. We kno
that the above eigenvalues are related to the masses o
fields and therefore also to their conformal dimensionE0
~actually, given the eigenvaluesdk , the relation isE05udku
or E05u42dku). For a hypermultiplet two of the scalar
must have the sameE0 and two must haveE011. In this
case this is realized by the fact that two haveE05 3

2

63b/2a and two haveE05 5
2 63b/2a.

The critical point~4.2! appears as isolated wheneverubu
Þa, wherea.0 is the length of the vectora r . If ubu5a,
then there is a two-dimensional plane whereK50. More
precisely, we have to distinguish three regions of the para
eter space$a r ,b%.

~1! If ubu,a, then the base point is an UV critical poin
~2! If ubu5a then there is a plane of critical points. Th

plane is parametrized byu andt with
f
p.
6-12
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V512u22t21
2~a1u2a2t!

a31b
,

s52
2~a2u1a1t!

a31b
. ~4.6!

In the caseb52a3 the plane isu5t50. In the orthogonal
directions,W is increasing, i.e., this plane is of the UV typ

~3! If ubu.a, then W decreases in two directions. Th
critical point is an IR critical point for flow in these direc
tions. In this case,W also has a line of zeros. For examp
for gauging in the directiona5a3 we find the zeros for

V5
b2a

a1b
, s50, u21t25

2a

b1a
for b.a.0.

~4.7!

The last case shows the aspects of the toy model of
universal hypermultiplet that were not known for vector m
tiplets only. Let us now choosea15a250, which we can
safely do due to the SU~2! invariance. The superpotential ca
be written as

W5
1

8A6V
„$~a1b!@11s21~V1j2!2#

12~3a2b!~V2j2!%21128a~a2b!j2V…1/2,

~4.8!

where

j2[u21t2. ~4.9!

We plot in Fig. 1 contours of constantW, where the base
point is in the middle. One sees thatW increases in the ver
tical direction from this point. The central line in the hor
zontal direction represents the locus

FIG. 1. Contours of constantW in the plane (t,s) with V51
2t2, u50, for a15a250, a35A6, andb52A6.
10400
e

s50, V1j251 with 0,V<1 or 21,j,1,

or V512tanh2x, j5tanhx with 2`,x,`.
~4.10!

In view of Eq.~4.9!, this ‘‘line’’ is actually a plane in the full
quaternionic manifold, but as we often use the parametr
tion ~4.10! we will call it a line. The parametrization byx,
involving a hyperbolic function, was introduced in@9#,
where this variable was calledw1. On this line, the first two
components of the Killing vector are zero, and the beta fu
tions of the two field combinations vanish:

bs5bV1j2
50. ~4.11!

Here, the Killing vector has as the only nonzero compone
Ku5(a2b)t/2 and Kt52(a2b)u/2. These are indeed
never vanishing forbÞa except at the base point~4.2!. On
this line, the superpotential reduces to

Wline5
ua~22j2!2bj2u

2A6~12j2!
. ~4.12!

This means that there is a zero for

j25
2a

a1b
, ~4.13!

which is in the domain of definition ifb.a.0. We plot the
superpotential on this line for such a case in Fig. 2, exhi
ing the zeros, which are in a circle in the (u,t) plane.

We will now consider a flow on that line. The critica
point atj50 is used for the asymptotic values of the zeros
x51` and the zero of the superpotential is placed atx5

50. The BPS equation~2.31! leads on both sides of the zer
to ~we put hereg51)

A85
a~22j2!2bj2

2A6~12j2!
. ~4.14!

FIG. 2. W as a function ofj along the line~4.10!, for a15a2

50, a35A6, andb52A6. Note that the apparent singular point
j56A2/350.82 is in fact just a regular point, asW is the norm of
a vector. We indicate the corresponding values ofx5 for the flow.
6-13
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Note that the sign flip has disappeared. For the other B
equation~2.42!, we use the inverse metric to obtain13

V853]VW5A 3
2 ~b2a!j25A 3

2 ~b2a!~12V!,
~4.15!

where again the sign flipping has disappeared.
Choosing the integration constant such that the zero

x550 and that the warp factor reaches the valuea(0)51,
the solution is given by

j2~x5!5
2a

a1b
e2A3/2 (b2a) x5

,

A~x5!52
a x5

A6
1

1

6
log

a1b22ae2A3/2 (b2a) x5

b2a
.

~4.16!

This flow has a singular point atx552A2
3 @1/(b

2a)# log@(a1b)/2a#, where the border of the quaternion
manifold is indeed reached asj251. HereA→2`. At the
other end, one reaches the fixed AdS critical point forx5→
1`, where the behavior of the warp factor isA→
2(a/A6)x552Wcrx

5, which is the asymptotic of an IR
AdS fixed point.

We display in Fig. 3 the exponential of the warp factor f
such a solution, showing that it is perfectly well behaved a
continuous at the pointx550 where it reaches its maximum
equal to 1.

As W has no other critical points, one can have zeros o
in that case. In@12#, where the parametrization of@14# was
used, some misleading results were obtained. We discuss
in Appendix C.

These features regarding the case with one hypermult
and no vector multiplets can be generalized to arbitr
quaternionic Ka¨hler homogeneous spaces G/@SU(2)3K#.
There can only be one connected region with critical poin

13Alternatively, one can use that the metric reduced to the lin
ds25(2/V2)(dt21du2), to obtain, e.g.,t852(1/2)A3/2(b2a)t,
also leading to Eq.~4.15!.

FIG. 3. Graph of the warp factora(x5)5eA for the valuesa
5A6 andb52A6.
10400
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and the eigenvalues of the Hessian are always spread ev
from 3/2 as in Eq.~4.5!. To get IR directions in the critica
point the gauging has to be ‘‘mainly’’ in the direction of K
while some gauging in the direction SU~2! is necessary for a
nonzeroW at the critical point. All this will be shown in@30#.

B. The full model and the FGPW flow

We now consider the full model, with a vector multiple
and a hypermultiplet. Taking into account the graviphoto
we have two vector fields, and therefore we can gauge
Abelian isometries U(1)3U(1). As explained before, we
should find the FGPW flow between an UV and an IR fix
point by a specific U(1)3U(1) gauging.

We will start by considering the requirements imposed
the presence ofa first critical point, for which we will
choose the base point

c.p. 1: q5$1,0,0,0%, r51. ~4.17!

We must first solve the conditionKc.p.15(h0K01h1K1)c.p.1
50. As in the toy model and as a general result, this imp
that Kc.p.1 generates a U~1! inside the isotropy group of the
scalar manifold. In our specific case, this results in the
sence of contributions from the noncompact generators in
combinationK01A2K1. Furthermore, we can use the SU~2!
invariance to choose just one direction in SU~2!. We again
take the generatorT3.

Since we now also have a vector multiplet scalar,
critical points of the superpotential are defined by both
tractor equations~2.65!, and one must also satisfy the re
quirement for the prepotentialshI P

r5PI
r . Due to the self-

consistency of this equation~multiplying it by hI), this gives
only one triplet of requirements:

h0P1
r 5h1P0

r at the critical point. ~4.18!

Only the generators of the SU~2! part of the isotropy group
contribute to the prepotentials, and the three generators h
three independent prepotentials. Therefore, this condi
does not lead to any constraint on the noncompact gen
tors. However, it does give conditions on the generators
the SU~2! part of the isotropy group that imply the absen
of T1 andT2 from K0 as well asK1. Furthermore, it fixes the
relative weight ofT3 in both generators. As a result of th
attractor equations at c.p. 1, we can parametrize the gen
tors as

K05A2aS 1

2
T31

1

A3
g T81TncD ,

K15a S T31
1

A3
b T82TncD , ~4.19!

wherea.0 andTnc is a linear combination of the noncom
pact Killing vectors.

In order to obtain two independent U~1!’s we still must
impose the requirement that the two generators commut
can be easily seen that this is equivalent to requiring a v

is
6-14
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ishing commutator ofTnc with the combination3
2 T31@(b

1g)/A3#T8. Thus for a general quaternionic manifold th
generators whose roots lie in the direction defined by
generator are the ones that can survive, if there are
Therefore noncompact generators are possible only ifb1g
56 3

2 . We formulated the analysis such that it is suitable
an easy generalization to situations with one vector multip
and an arbitrary homogeneous quaternionic manifold.

As the prepotentials depend only on the SU~2! part, we
find that the value ofW at the critical point is proportional to
a:

Wc.p.15
1
2 a. ~4.20!

We now turn to analyze the~IR/UV! properties of the
critical point, computing the eigenvalues of the mat
~2.47!. In the matrices in Eq.~2.48!, J depends only on the
gauging in the SU~2! direction, i.e., it is proportional toa,
while L is a function of the U~1! gauging, i.e., it is propor-
tional to b1g. This implies that in the generic case we fin

Uc.p.15diagonal$ 3
2 1b1g, 3

2 1b1g, 3
2 2b2g,

3
2 2b2g, 2%. ~4.21!

Thus, noncompact generators can enter when this matrix
zero eigenvalues. From the form of Eq.~2.47!, one can see
that the noncompact symmetries can contribute only to
off-diagonal elements that are in the direction of the z
modes of the pure hypermultiplet part ofU. They therefore
modify the part (0,0,2) of Eq.~4.21!. The result is that the
eigenvalues are then

eigenvaluesUc.p.15$3,3,0,11A116a2,12A116a2%,
~4.22!

wherea is the weight with which the noncompact generato
appear~e.g.,Tnc5aT4).

We should remark that the critical point c.p. 1 does no
general preserve the full U(1)3U(1) gauged symmetry. In
deed, the gauge invariance could be spoiled by the pres
of a mass term for the gauge vector coming from the kine
part of the hyperscalars~3.2!. Since the mass is related to th
norm of the Killing vectors of the gauged isometries, we s
that the invariance is broken anytimeKI

XKIXÞ0. This hap-
pens whenever we turn on the noncompact generators. In
case,TncÞ0 implies that at the c.p. 1 the U(1)3U(1) isom-
etry is broken to the U~1! generated byK01A2K1.

As our present interest is specifically aimed at reprod
ing the FGPW flow, from now on we restrict consideration
Tnc50. This allows the existence of a single point where
full U(1) 3U(1) gauge symmetry is preserved.

We now go back to analyzing theBPS flowsthat can
originate from c.p. 1. Remember that with mixed vector a
hypermultiplets they have to satisfy the requirement

]rQr50. ~4.23!

This is not satisfied for a generic point in the manifold. Ho
ever, it is satisfied on the line~4.10! and thus we further
10400
is
y.

r
t

as

e
o

s

ce
c

e

ur

-

e

d

-

consider a flow along it. In order for the flow to be consiste
with the restriction, the flow equation~2.42! should not drive
the fields off the line and this translates into requiring th
bs5bV1j2

50. These conditions are indeed satisfied. Alo
the line, the quantitiesK, W, andQ simplify to14

KXu line5
a

A6r2 F12b1r6S 1

2
2g D G ~0,0,t,2u!,

Wu line5
a

6r2~12j2!
u~21r6!~12 1

2 j2!2~b

1gr6!j2u, ~4.24!

Qr u line56~2uA12j2,2tA12j2,2112j2!.

We now fix the end point of the flow ata second critical
point and we have again two requirements: the vanishing
the Killing vector, and the requirement~4.18!. These now fix
the values ofr andj2 for the critical point.

The value ofr for the second critical point follows di-
rectly from the first of Eqs.~4.24!, while we use Eq.~4.18! to
fix also j2. Along the line, the prepotentials are given by

S P0
r

P1
r D U

line

5
a Qr

4~12j2!
S ~1/A2!~22j222gj2!

22j22bj2 D .

~4.25!

Note that they now involve aj-dependent mixing of the
parameters that appear in Eq.~4.19!, but are all proportional
to the sameQr . This comes about because, as we mentio
before, the relevant part is the SU~2! part of the isotropy
group. This isotropy group rotates within the full SU~2,1!
while we move over the line. With onlyT3 and T8 used in
our gauging, the effective SU~2! still has its first two com-
ponents zero. That is why all entries in Eq.~4.25! are pro-
portional to the same matrixQr . The third component of the
SU~2! part of the isotropy group is a linear combination
T3 and T8, leading to the mixture in Eq.~4.25!. Using
h1 /h05A2r6, we find for the second critical point15

c.p. 2: q5$Vcr,0,ucr ,tcr%, r5rcr , rcr
6 5

2~b21!

122g
,

~4.26!

jcr
2 5ucr

2 1tcr
2 5

2~12rcr
6 !

3b2122rcr
6

5
624~b1g!

32b12g26bg
,

Vcr5
3~b21!

3b2122rcr
6

.

14The 6 in the expression forQr is dependent on whether th
expression inW of which we have to take the modulus is positive
negative.

15As mentioned above, we always have a full circle of critic
points for these values ofucr andtcr .
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We find for the value ofW at this second critical point

Wc.p.25
a~b22g!

3~122g!rcr
2

5
a~21rcr

6 !

6rcr
2

, ~4.27!

such that

Wc.p.1
3

Wc.p.2
3

5
27rcr

6

~21rcr
6 !3

5
27~12b!~122g!2

4~2g2b!3
. ~4.28!

The condition that the critical point is in the domain c
be written as

~rcr21!~12b!.0. ~4.29!

Notice that this is exactly the condition that the third a
fourth entries of Eq.~4.21! (u andt directions! are positive.
These are the ones that are relevant when one compute
eigenvalues of the matrix~2.47! restricted to the line, and
excludes the possibility that the first critical point has
directions along the flow.

To summarize, we have presented above a two-param
model, whereb andg are free parameters anda defines an
overall normalization related to the AdS radius.

We will now give more details of the models for specifi
values of the parameters, leading also to the identificatio
the FGPW potential as a part of our two-parameter mo
We will further restrict consideration to the branchr.1 and
thusb,1. For definiteness we now choose the value ofr at
the second critical point as in@9#:

rcr
6 52⇒g512

b

2
. ~4.30!

With this choice, the second critical point is thus at

c.p. 2: q5$Vcr,0,ucr ,tcr%, rcr521/6,

Vcr5
3~12b!

523b
, jcr

2 5ucr
2 1tcr

2 5
2

523b
.

~4.31!

We are therefore left with a one-parameter family of mod
with two critical points whereb fixes the ratios of the gaug
ings. A second critical point appears only ifb,1.

We can also compute the value of the cosmological c
stantW2 at the critical points:

Wc.p.1
2 5

a2

4
, Wc.p.2

2 5
24/3

9
a2,

Wc.p.1
3

Wc.p.2
3

5
27

32
, ~4.32!

the relation that is found also in@9#, and which we generalize
here for arbitraryb.

Now that we have two critical points we still have
discuss their nature. As we have already excluded the po
bility that the first critical point has IR directions along th
flow, we are interested in whether these models have in
esting applications for renormalization group flows. We a
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indeed interested in having an UV and an IR critical po
such that we can reproduce the FGPW flow.

To understand the nature of such points we have to l
again at the Hessian matrices of the superpotential an
their eigenvalues. At the first critical point~4.17!, theU ma-
trix ~4.21! reduces to

Uc.p.15diagonal~ 5
2 1 1

2 b, 5
2 1 1

2 b, 1
2 2 1

2 b, 1
2 2 1

2 b,2!.
~4.33!

The value of the vector scalar sector is still the characteri
one of the very special vector scalar manifold@4,5#. The
values in the hypermultiplet sector follow instead the patt
outlined by the formula~2.47!. As mentioned already, the
third and fourth entries are positive if we demand the ex
tence of the second critical point (b,1). If, in addition, one
satisfies the more stringent constraintb,25, then there are
two IR directions, which, however, are not along the flow

At the other critical point the eigenvalues are given by

eigenvaluesUc.p.25$0,3,3,11 1
2 A1929b,12 1

2 A1929b%,
~4.34!

no matter which point is chosen on the critical circle. Wi
the limit b,1 that we already obtained, this implies th
there is always one IR direction. If the first critical point h
an IR directionb,25, then both critical points have an IR
direction. This is thus the first example of a model with tw
IR fixed points. However, the flow along the line that w
consider does not connect in these directions. It is difficul
indicate a flow along another line that would connect t
two, or to exclude this possibility.

Note that Eq.~4.34! is of the form~4.22!, with a25(15
29b)/24. This can be understood as follows. As we stres
before, any point in the manifold is equivalent. Thus what
find at the second critical point should fit in the pattern th
we discussed for the first critical point. However, the gene
tors T3 andT8 that appear in Eq.~4.19! are not in the isot-
ropy group of any other point of the manifold. Thus, in th
second critical point, the generatorKI with Tnc50 should be
interpreted as having a partT38 @giving rise to Eq.~4.25!#, a
part T88 , and a partTnc8 Þ0. Therefore this second critica
point should fall in the general analysis for a critical poi
with gaugings outside the isotropy group, i.e., the eigenv
ues should be of the form~4.22! where a measures the
amount in which the generatorsT3 andT8 contribute toTnc8 .
This principle could be used for an alternative, grou
theoretical, analysis of the possibilities for the second criti
point.

The contribution ofa25(1529b)/4 to the eigenvalues
arises inU by the mixing of the scalars of the vector multip
let and hypermultiplets.

This means that when vector multiplets are added to
permultiplets, the appearance of IR directions can be du
two different mechanisms. One is the presence of the hy
multiplets, which allows values as in Eq.~4.22!, which
would lead here to (3,3,1,1,0). The other is due to the p
sible breaking of the gauge symmetry, which occurs if th
generators are outside the isotropy group of the critical po
6-16
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such thatKI
Z in the off-diagonal elements of Eq.~2.47! is

nonvanishing. This shifts the (1,1) eigenvalues to the val
in Eq. ~4.34!.

The resulting form of the superpotential is, using the p
rametrization in Eq.~4.10!,

W5
a

4r2 F11
1

3
b1

r6

6
~52b!2

~12b!

6
~r622!cosh~2x!G .

~4.35!

It is striking that for the choicea53 andb521 one can
retrieve the superpotential16 presented in@9#

W52
1

4r2
@~r622!cosh~2x!2~213r6!#, ~4.36!

and therefore also the flow. For this value ofb we have
indeed one IR and one UV critical point:

UV: CP1: r51, j50, ~x50!,

IR: CP2: r521/6, j56 1
2 , ~x56 1

2 log 3!,
~4.37!

and the value ofW at these critical points isWc.p.15
3
2 for the

UV andWc.p.2522/3 for the IR, both representing AdS vacu

C. FGPW flow in NÄ2 theory

Let us now give a closer inspection to the FGPW mo
embedded inN52 theory. In terms of the scalar manifol
isometries, the FGPW flow can be retrieved by gauging th
generated by

K (0)[
3

A2
~k11k6!5

3

A2
~T31A3T8! ~4.38!

and by

K (1)[23 k45A3~A3T32T8!. ~4.39!

The corresponding superpotential~in terms of all the co-
ordinates! depends onu andt via the combinationj in Eq.
~4.9! and is

W52
1

4 r2 V
$16~V1j2!212s2 @11~V1j2!2#1r12@s4

1V414V3 j21~11j4!212V2 ~113j4!#

18r6 ~V2j2! @11s21~V1j2!2#

14V @j623j2#%1/2. ~4.40!

16In @9# W was chosen to be the definitionW52uWu rather than
the one given in Eq.~2.21!, and thus differs by a sign from ours. T
compare our flow equations with those of@9#, we have to take our
coupling constant to be 2/3 rather than 2, as in@9#.
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It is therefore more convenient to study its stationary poi
in the variables$V,s,j,r%.

A general analysis of the Eq.~4.40! gives indeed only the
two expected critical points at

c.p. 1: s5j250, V51, r[ef3 /A651 ~4.41!

and at

c.p. 2: s50, V5 3
4 , r521/6, j25 1

4 . ~4.42!

The first is the expected isolated UV point. As explain
above, we can identify it as an UV fixed point by consideri
the leading contributions to theb function of the couplings
f5$V,s,u,t;r% that are encoded in the eigenvalues of t
matrix ~2.46!,

Uc.p.15S 2

2

1

1

2

D , ~4.43!

which are all positive.
The second critical point~4.42! actually represents a

whole circle of saddle points. We show here the explicit fo
of the Hessian matrix at the pointu5 1

2 andt50,

Uc.p.251
9

4

3

4
21/6/3

3
3

4

9

4

3

4
221/6

0

9/27/6 29/27/6 2

2 , ~4.44!

whose eigenvalues are 0,3,3,(11A7) and (12A7), which is
Eq. ~4.22! with a51.

As foreseen above, here the mechanism that determ
the appearance of an infrared direction is different from
one shown for the hypermultiplets alone. In this case ind
the negative eigenvalue comes from the mixed partial der
tives with respect to the hyperscalarsV, u and the vector
multiplet scalarr. The null eigenvalue is related to the mas
less Goldstone scalar that is eaten by the vector combina
which becomes massive at this point.

We also want to point out here that the presence o
whole line of critical points should be connected to the fa
that in the dual CFT one expects to have a line of exac
marginal perturbations@43# to the theory at such an IR poin

After identification of the correct UV and IR end point
we now turn to the second important guideline for the ide
tification of the FGPW discussed in Sec. III, which was r
lated to the mass terms for the gauged vector fields, and
to the norm of the gauged Killing vectors. In the FGP
example, at the UV fixed point both the graviphoton and
6-17



t
th

ag

o
t.

n

fo
fy

c

ue
.

the

r

-

he
t
rs of
the

at
n
a
he
ge

hat
-

of

CERESOLE, DALL’AGATA, KALLOSH, AND VAN PROEYEN PHYSICAL REVIEW D64 104006
gauge vector are massless, whereas at the IR point only
graviphoton is still massless and is the gauge vector of
residual U(1)R symmetry.

In order to translate these facts into our present langu
we observe that all along the flow wheres50 andV1j2

51, the two Killing vectorsK (0) andK (1) are proportional to
one another and are equal to

K (1)52A2 K (0)53 S 0

0

t

2u

D , ~4.45!

and this translates the statement that along the flow the c
binationV1u21t2 and thes field should remain constan
It is straightforward to see thatdK(0)

(V1u21t2)5dK(0)
s

50 and the same forK (1) .
Equation~4.45! then allows us to identify the graviphoto

with the gauge vector of the U(1)R,U(1)3U(1),SU(2)
3U(1) symmetry generated by

KR[A2 K (0)1K (1) ~50 along the flow!. ~4.46!

Let us then analyze the relevant supersymmetry trans
mations at the IR and UV fixed points in order to identi
which mixture of the vector fieldsA m

I gives rise to the gravi-
photon and to the extra vector field.

We find that upon defining

Am[
21/3

A6
S Am

0

A2
12 Am

1 D , ~4.47!

Bm[
21/3

A6
~A2Am

1 2Am
0 !, ~4.48!

the SUSY transformations at the IR point reduce to~at lead-
ing order in the Fermi fields!

de cm i5Dme i1
i

4A6
~gmnre i24gmngre i ! F nr1•••,

~4.49!

deAm5 i
A6

4
c̄m

i e i ,

deBm52
1

2
ē igml i , ~4.50!

where we have also definedF5dA. Therefore, by these
equations one identifies the graviphoton field with theAm
combination, and the vector at the head of the massive ve
multiplet with Bm .

At this IR point, for the mechanism we showed, the tr
massive vectorBm is given by an appropriate sum of Eq
~4.48! and Dmq, where q is the right combination of the
10400
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e,
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r-
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hyperscalars that acts as a Goldstone boson. Therefore
full supersymmetry transformation rule forBm will also con-
tain a term of the typeDm(deq).

If we associate with the graviphoton its Killing vecto
proportional to KR , we find that the U(1)R symmetry
gauged by the graviphoton is generated by

KA5
22/3

A6
KR , ~4.51!

while the generator of the~broken! U(1)B isometry associ-
ated with the massive vector is given by

KB5
22/3

A6
S 1

A2
K (1)22K (0)D . ~4.52!

At the UV fixed pointone can again rewrite the supersym
metry rules as in Eqs.~4.49! and ~4.50!, provided that now
one makes the identifications

Am5
1

A3
~Am

0 1A2Am
1 !, ~4.53!

Bm5
1

A3
~Am

1 2A2Am
0 !. ~4.54!

Again, the graviphoton field is identified with theAm com-
bination, and the gauge vector withBm .

If we relate to these vectors the Killing generators of t
U~1! isometries that they gauge@we remark that at this poin
they are both massless and that both are gauge vecto
U~1! isometries#, one can see that the graviphoton gauges
U~1! generated by

KA5
1

A3
~K (0)1A2K (1)!, ~4.55!

whereas the massless vector gauges that generated by

KB5
1

A3
~K (1)2A2K (0)!. ~4.56!

This means that along the flow theR symmetry gauged by
the graviphoton has rotated.

The interpretation of this fact in terms of the dual CFT@9#
is the following. When one adds a mass term to the CFT
the UV point, theR current connected to the graviphoto
becomes anomalous~i.e., the original graviphoton acquires
mass along the flow! whereas the nonanomalous one is t
combination of the original graviphoton and the other gau
vector that keeps massless. As stated in@8#, this latter
couples to the Konishi current, and therefore the one t
couples to the anomaly-free U(1)R current must be a com
bination of the original graviphoton and this latter.

In detail, at the UV fixed point, bothKA
UV and KB

UV are
equal to 0, but, as we move away from it,u and ~or! t will
vary and then they will no longer be 0. For the sake
6-18
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simplicity, choosing theu5 1
2 andt50 point between the IR

points~4.42!, we can also keept50 for all the flow~indeed,
for such conditionsbt50 also, no matter what theu, V, and
r values! and parametrize the other variables asu5j and
V512j2. Then the Killing vector of the broken U(1)B
isometry will be parametrized by

KB523A3 221/3S 0

0

0

j

D , ~4.57!

and this will therefore give rise to a mass term proportio
to 1

2 mB
25 1

2 gXY KB
XKB

Y for the Bm vector field ~with kinetic
term 2 1

4 FB
2):

mB
2527321/3g2

j2

~12j2!2
. ~4.58!

This is precisely 0 at the UV fixed point and flows to
324/3g2 at the IR. This means also that at this point
conformal dimension is given by

E0521A11
m2

Wc.p.2
2

521A7, ~4.59!

which was the expected one for this massive vector@9#.
An interesting example regarding flows in the theory w

two hypermultiplets spanning the G2,2/@SU(2)3SU(2)#
manifold has recently been investigated in@44#, where, using
N58 supergravity, it has been shown that the effective m
term of the vector fields reduces to the second derivative
the warp factor. Although Eq.~4.58! does not comply with
this request, we still have to take into account the contri
tion coming from the noncanonical normalization of the
netic term. In fact, we have seen in the previous section
the fields that have the interpretation of graviphoton a
~gauge! vector rotate along the flow. Thus, one can still e
pect the equationm2;A9 to arise upon performing som
nontrivial field redefinitions.

Presently, the vector field kinetic term has in front a fun
tion of the vector modulusr. This signals the mixing be
tween the two vectors to be resolved. One hopes that a
able rescaling of the vector fields yielding the stand
normalization of the kinetic terms will also do the job
disentangling this mixing and of giving the correct relati
between the effective mass function and the warp factor

V. DISCUSSION AND OUTLOOK

Generic gauged supergravities were not considered
evant from the perspective of a string theory in a flat ba
ground until very recently. Indeed, due to the discovery
the AdS-CFT correspondence, the AdS53X5 background of
string theory and the gauged supergravity in 5D came
the spotlight both in the maximally supersymmetric (X5
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5S5) and in the lower supersymmetric (X55T11) cases@45#.
The latter will be useful in trying to better identify th

supergravity details that allow one to select precisely
dual conformal field theory operators. This will continue t
analysis of the previous section along the lines of@44#.

This paper has uncovered the properties of a general c
of 5D N52 gauged supergravities, which have a rich stru
ture of vacua and interpolating flows. As a first general
sult, we have specified the set of conditions under wh
supergravity models coupled to both vector and hypermul
lets, with Abelian and non-Abelian gauging, give rise toN
51 BPS domain walls connecting different critical point
As more specific results, we performed a systematic stud
U~1! gaugings of the toy model with the universal hyperm
tiplet as well as a thorough analysis of a simple model w
one vector multiplet and one hypermultiplet. We studied
family of N52 supergravity potentials with nontrivial vacu
that are parametrized by two real numbers. As another in
esting result, this model is found to produce, forb521 and
g53/2, an N52 description for the kink solution of@9#
previously known within theN58 theory, and therefore of
fers a two-parameter generalization of this case. The d
gauge field theory side of the models with arbitraryb andg
is certainly worthy of investigation.

It will be quite natural to apply our apparatus for th
search for flows and critical points in more complicated e
amples. The first one is a simple model with no vector b
two hypermultiplets@46#, which has been shown to lead t
the RG flow proposed by Girardello, Petrini, Porrati, a
Zaffaroni@32#. The second kind of example is given by mo
els where non-Abelian gaugings can be explicitly perform
and thus need coupling to more vector multiplets. Anoth
line of investigation concerns the realization of models d
to flows from conformal to nonconformal field theories th
would need the presence of both AdS and Minkowski vac
simultaneously in the same model.

A further class of models is the one possessing diverse
fixed points. These are aimed at improving the understand
of a possible supersymmetric realization of the smo
Randall-Sundrum scenario. Regarding this subject, our w
has come to suggest the following picture. In the presenc
hypermultiplets and vector multiplets 5DN52 gauged su-
pergravities may have IR AdS5 fixed points which eliminate
the first reason for the no-go theorem proved in@4,5# for
vector multiplets where only UV critical points exist.

We also found that the interpolation between two IR fix
points ~if such examples are found in the future! for the
smooth solution must proceed through the point where thW
superpotential vanishes. As emphasized in our discuss
this would not disagree with the monotonicity theorem f
the warp factorA9<0. This led us to conclude that a smoo
RSII scenario can take place in the presence of vectors
hypermultiplets.

On the other hand, the conjectured holographicc theorem
is violated since thec function c;W23 blows up atW50.
This poses some problems for the validity of the AdS-C
correspondence at such points. However, the gen
6-19
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understanding17 is that at the vanishing points ofW the phys-
ics may not be captured by field theory but by supergrav
and therefore the violation of the holographicc theorem sig-
nals that gravity near the wall cannot be replaced by fi
theory. This obviously does not happen atux5u→` where the
c theorem is expected to be valid and a dual field theory
well defined.

In this paper we found the general rules for critical poin
and zeros of the superpotential. In more general models,
sibly with the use of other scalar manifolds and differe
gaugings, one may try to find a smooth supersymmetric
main wall solution of the RS type.

If the search for a smooth RS scenario remains open
alternative strategy would be to introduce some bra
sources as in@20#. This procedure is expected to be qu
straightforward as it will require extending the supersymm
ric brane action in a theory with vector multiplets to inclu
also the hypermultiplets. A more difficult step would be
find the natural mechanism for appearance of such br
sources in string theory withO8-planes andD8-branes, sta-
bilized moduli, and additional fluxes along the lines su
gested in@47#.

One could also explore how much of our analysis of
can be exported to 4D and 6D, where the geometry descr
by hypermultiplets is still quaternionic and where a lot
work has been done forN52 supergravity coupled with
vector multiplets only.

Another issue that would be very interesting to discus
the 11-dimensional origin of the theory at hand. It is inde
known that five-dimensional supergravity with gauging
the U~1! isometry generated byk1 can be obtained from
M-theory compactifications on Calabi-Yau manifolds in t
presence ofG fluxes @7,48#.

The same question could be addressed for the new g
ings proposed in this paper. At first sight their higher dime
sional origin seems quite mysterious, as other isometries
involved, in addition to the shift in thes scalar field that was
discussed in@7,48#.

A related issue is how much of our analysis of doma
walls and supersymmetric vacua may survive in the exacM
or string theory rather than in classical 5D supergravity. T
experience with supersymmetric black hole attractors
quantization of charges suggests the following possibi
Our domain wall solutions interpolating between supersy
metric vacua may be hoped to be exact solutions of quan
theory at most for a restricted values of gauging paramet
At the level of 5D classical supergravity these parame
may take arbitrary continuous values. Classically, there
no restrictions on the parameters of our model. Origina
before gauging, they are just parameters of global sym
tries of ungauged supergravity. These symmetries may
be broken by quantum effects like instantons. Therefor
would be inconsistent in the presence of quantum correct
to perform the gauging for continuous gauging paramet
Only for discrete values of the parameters do we expect

17This argument was suggested in discussions with both M. P
rati and L. Susskind.
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solutions to be valid when account is taken of quantum c
rections. It is likely that the clarification of the 11D origin o
the 5D models, taking into account anomalies, fluxes, a
quantized charges ofM-branes, will shed some light on
breaking of continuous symmetries of gauged supergrav
to their discrete subgroups. In such case the method de
oped here may provide exact supersymmetric vacua ofM or
string theory.
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APPENDIX A: INDICES

We used in this paper the following indices to describen
vector multiplets andr hypermultiplets:

m 0, . . .,3,5 local spacetime

m 0, . . . ,3 4Dlocal spacetime

i 1,2 SU~2! doublets

r 1,2,3 SU~2! triplets

I 0, . . . ,n vectors

x 1, . . . ,n scalars in vector multiplets

A 1, . . . ,2r symplectic index for hypermultiplets

X 1, . . . ,4r scalars in hypermultiplets

L 1, . . . ,n14r all scalars

a 1, . . . ,8 SU~2,1! isometries ~A1!

APPENDIX B: REALITY CONDITIONS AND SU „2…
NOTATIONS

We first repeat that SU~2! doublet indicesi , j , . . . are
raised or lowered using the NW-SE convention by« i j 5« i j ,
with «1251. The same applies to the Sp(2r ) indices
A,B, . . . , where a constant antisymmetric matrixCAB is
used, satisfyingCABCCB5dA

C, with CAB5(CAB)* . By a re-
definition, this matrix can be brought into the standard fo
r-
6-20
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(21 0
0 1 ). These matrices also enter into reality conditions. R

ality can be replaced by ‘‘charge conjugation.’’ The char
conjugation of a scalar@a scalar also in spinor space, a
SU~2! scalar as well as an Sp(2r ) scalar# is just its complex
conjugate. Charge conjugation does not change the orde
spinors. For a symplectic Majorana spinor, the charge co
gate is equal to the spinor itself. However, for a bispinor, o
has to introduce a minus sign. Thus, e.g., for Majora
spinors (l̄j)* 5(l̄j)C52(l̄)CjC52l̄j.

Gamma matrices are ‘‘imaginary’’ under this charge co
jugation:ga

C52ga . For any object that has SU~2! indices or
Sp(2r ) indices, the definition of charge conjugation uses
symplectic metric (Vi)

C5« i j (Vj )* 5(Vi)* and (Vi)C

5« i j (Vj )* 52(Vi)* or, similarly, (VA)C5CAB(VB)* . All
the quantities that we introduce in the text are real with
spect to this charge conjugation, e.g.,

f iA
X 5~ f iA

X !C5« i j CAB~ f jB
X !* . ~B1!

Symmetric matrices in SU~2! space can be expanded in thr
components as

R( i j )5 iRr~s r ! i j or Rr5 1
2 iR( i j )~s r ! i j . ~B2!

Invariance ofRi j under charge conjugation translates in
reality of Rr . The usuals matrices are (s r) i

j , and (s r) i j is
defined from the NW-SE contraction convention: (s r) i j
[(s r) i

k«k j . This leads, e.g., toRi j R
i j 52RrRr .

APPENDIX C: TOY MODEL IN ANOTHER
PARAMETRIZATION

The manifold SU(2,1)/@SU(2)3U(1)# can be viewed as
an open ball in real four-dimensional space. Written in co
plex coordinatesz1 andz2, the domain isuz1u21uz2u2,1. A
useful parametrization has been introduced in@14#, and used
in @12# to discuss the toy model that we treated in Sec. IV
The variablesz1 andz2 are written as functions of variable
r ,u,w,c as18

z15r ~cos1
2 u!ei (c1w)/2, z25r ~sin 1

2 u!ei (c2w)/2.
~C1!

The manifold is covered by

0<r ,1, 0<u,p, 0<w,c,2p. ~C2!

The determinant of the metric is

detg5
r 6sin2u

4~12r 2!6
. ~C3!

Thus in this parametrization the metric is singular inr 50
and for u50. These belong to the manifold, and thus ne
special care.

18The relation to the variables in Sec. III isz15(12S)/(11S)
andz252C/(11S).
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In this parametrization, the SU~2! ~parametersL r) and
U~1! ~parameterL4) isometries that vanish at the origin tak
a simple form on thez variables:

dS z1

2z2
D 5S 2Kr1

Kr2
DL r5 1

2 i @~s r !L
r112L4#S z1

2z2
D .

~C4!

We gauge withK5a rKr1bK4. Apart from the critical point
at the origin, vanishing Killing vectors occur only if there
a zero mode of the determinant of transformations, i.e.
uau5b. We find two equations:

~a31b!z12~a12 ia2!z250,

~a11 ia2!z11~a32b!z250. ~C5!

One of the two defines the~real! two-dimensional plane of
critical points, and then the other is automatically satisfied
uau5b. In terms of the angular coordinates, the critical li
is at

eiwcot12 u5
a11 ia2

a31b
, e2iw5

a12 ia2

a11 ia2
,

cot2 1
2 u5

~a1!21~a2!2

~a31b!2
. ~C6!

Although there is clearly no difference in the choice of t
direction in SU~2! space, the choice of angular coordinat
makes the gauging in the directiona3 difficult. For example,
the Killing vectors in the angular coordinates are

K15~0,2sinw,2cosw cotu,cosw sin21u!,

K25~0,2cosw,sinw cotu,2sinw sin21u!,

K35~0,0,21,0!,

K45~0,0,0,21!. ~C7!

This gives the impression thata3K31bK4 never vanishes,
not even atr 50. However, in this case, the two combin
tions ofz mentioned above arez150 andz250. The latter is
the line u50 where the parametrization degenerates. N
that these singularities are coordinate singularities. Ther
nothing generically different for gauging in the directio
‘‘3,’’ as this direction is equivalent to the others in the sym
metric space. The different features that are mentioned
@12# are artifacts of the parametrization, which is singular
r 50 and atu50. It is precisely atu50 that these authors
obtain different results from ours.

To avoid the singularities, and for showing the main fe
tures, we will further concentrate on gauging in directi
‘‘1’’ for the SU ~2! and the U~1! direction; thus

a25a350, a1b.0. ~C8!
6-21
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FIG. 4. Contours of constantW in the plane (Rez1 ,Rez2) for a15A3/2 andb52A3/2 ~left! and fora15b5A3/2 ~right!.
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With the latter choice, the critical line is atw50, u5p/2, or
z15z2. The zeros that we mentioned in Sec. IV A occur no
for

w50, u5 1
2 p, r 25

2a1

a11b
. ~C9!

This point is only part of the domain ifb.a1. The Killing
vector is nonzero at such points. In this case, the nonz
component is

Kc5b2a1 . ~C10!

The total prepotential can be written as

W25
~br 2!212a1b~r 222!z1~a1!2~424r 21z2!

6~12r 2!2
,

~C11!

where we use

z[r 2 sinu cosw5z1z̄21 z̄1z2 . ~C12!
va
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As W depends just on two real parameters, we can plot i
the plane for realz1 and z2 to see the whole picture. Thi
leads to the contour plot in Fig. 4 for a typical caseb.a1
~left figure!. Observe that it is similar to Fig. 1, which rep
resented the gauging in direction ‘‘3’’ in the other represe
tation. The crucial line is the diagonal and along this line t
potential is again the one of Fig. 2. We also clearly see t
the lineu50 ~horizontal line in the graph! does not have any
special properties. The critical points that were found there
@12# came out of the analysis only due to the singular nat
of the parametrization.

For the caseb5a1 we have

W5A2

3Ub 12 1
2 uz11z2u2

12uz1u22uz2u2
U . ~C13!

The potential is then constant on the linez15z2, and we
have the right plot in Fig. 4. The culmination points of th
lines are atr 51, i.e., they do not belong to the manifold.

This establishes the equivalence of the two parametr
tions. In particular, only one critical point or connected set
critical points is possible.
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