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We establish general properties of supersymmetric flow equations and of the superpotential of five-
dimensional\V=2 gauged supergravity coupled to vector multiplets and hypermultiplets. We provide neces-
sary and sufficient conditions for BPS domain walls and find a set of algebraic attractor equatidfis Zor
critical points. As an example we describe in detail the gauging of the universal hypermultiplet and a vector
multiplet. We study a two-parameter family of superpotentials with supersymmetric AdS critical points and we
find, in particular, an\'=2 embedding for the UV-IR solution of Freedman, Gubser, Pilch, and Warner of the
N=8 theory. We comment on the relevance of these results for brane world constructions.
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I. INTRODUCTION AND GOALS special coordinatesy, are constants related to the Fayet-
lliopoulos terms, andg, are black hole electric charges.

Among the remarkable spinoffs of the AdS-conformal Many critical points of both these systems are known. One
field theory (CFT) correspondence between strings on AdSalways finds AdS vacua(and domain walls with AdS vacua
X X and boundary superconformal theories, a lot of interestvhen scalars from vector multiplets reach their fixed points.
is devoted to the duality between domain wall supergravityThese fixed points are specified by the algebraic equation
solutions and renormalization groufiRG) flows of field V,=h(¢c)W,, Whereh,(¢) are the dual special coordi-
theory couplings. nates. This equation is analogous to the equatin

The purpose of this paper is to find out the general prop=h,(¢.)Z., which defines the fixed scalars near the hori-
erties of supersymmetric flows and vacua@£5, N=2 zon of theD=5 electrically charged black holes. Both of
supergravity coupled to hypermultiplets and vector multip-these equations were derived and analyzel8]n
lets with nonconstant scalars, based on the theofg]of his The solutions without hypermultiplets are also known to
analysis aims at following the lines of the attractor fldq@6  have specific properties, like the fact that they always ap-
for black holes in four and five dimensions that paved theproach a UV fixed point, i.e., the AdS boundd#;5]. This
way to finding Bogomol'nyi-Prasad-SommerfiglBPS so-  feature leads to a no-go theorem for the “alternative to com-
lutions. pactification” Randall-SundruniRS) smooth scenarif6].

The basic interest in domain wall or supersymmetric However, the situation may change when hypermatter is
flows is due to the possible correspondence between BP&lded and thus it is important to elucidate the nature of the
domain walls of gauged supergravity and exact supersynfixed scalars in the BPS domain wall configurations in this
metric vacua of the fundament® or string theory. Unlike case. The first examples of domain walls were found in the
black holes, the domain wall solutionsn=5 interpolating  coupling with the universal hypermultiplet. The one[if|
between AdS vacua do not bre@k=4 Lorentz symmetry does not have AdS critical points, whereas the on¢8ih
and therefore may give interesting possibilities for the real-displayed one UV and one IR critical point. In the latter, the
istic vacua of our 4D world. On the other hand, the intuitionauthors claimed that their model could give &2 realiza-
gained in studies of black hole attractors may be useful fotion of the domain wall solution found by Freedman, Gubser,
understanding the issues of stabilization of moduli at superPilch, and Warnef9] (FGPW) as holographic dual to a RG
symmetric vacua. flow from anA/=4 to anN=1 Yang-Mills theory. However,

The gauging of supergravity in the vector multiplet sectorthis description relied on a nonstandard formulation of 5D
has been studied with respect to the supersymmetric vacua sfipergravity which has not been proven to be consistent.
the theory. In particular, for 1) D=5 gauged supergravity Other U1) gaugings of the same model were recently
the supersymmetric vacua are defined by the superpotentiatudied in[10-13.

W=h'(¢)V,, which has a dependence on moduli analagous This paper starts with a systematic description of super-
to the black hole central charg@e=h'(#)q, . Hereh'(¢) are  symmetric flow equations in the presence of vector and hy-
permultiplets. We first solve the issue of describing both the
flows and the attractor points in terms of a single superpo-
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We will find thatthe single superpotential {,q) is re-  tors of SU2,1) contribute to one of the (1) generators. We
lated to the norm of the dressed prepotential§#,q) and  further study a two-parameter subclass. We then restrict our-
controls the supersymmetric flow equations if and only ifselves to the theories that have two different AdS critical

their SU(2) phase satisfies the constraint points, as they could be extrema of RG-flows as well as of
Randall-Sundrum-type smooth solutions. This leaves us with
94Q"=0 where P'(¢,q)=h'(¢)P](q)= V2I3WQ, only two independent real numerical parametgrand vy.
The superpotential of the two-parameter model existing on a
(QMH2=1. (1.)  line in the quaternionic manifold parametrized pyis

This may restrict the class of gauged supergravities with hy-
. - 1

permultiplets that have BPS solutions. W= ——[3+ B+(3+7y) p°

We then characterize the critical points by a set of attrac- 4 p?
tor equations. It parallels the attractor mechanism for moduli . .
near the black hole horizd2] and is also supported by an +(1-B+(z—v)p°) cosh2 x)], (1.9
enhancement of unbroken supersymmetry near the AdS
vacua. The attractor equations are simple algebraic condivherep is the vector modulus.

tions which fix the values of the moduli: Again, the nature of the critical points depends on the
relation between the parameters. Quite remarkably, for the
P1(de) — i (der) Ped der,Aen) =0, special valuegd=—1 and y=3/2 we recover precisely the
superpotential and the UV-IR AdS critical points of the kink
KZ=h'(¢)K{(qe) =0. (1.2 solution of Freedman, Gubser, Pilch, and Warf@r This

means that the FGPW flow can be described all within

The first equation is defined by the very special geometry=5 A/=2 gauged supergravityl] coupled to one vector
and is analogous to the one for black holes discussed abovgnd one hypermultiplet, and thus the corresponding sector of
The other one requires a certain combination of quaternioniethe /=2 theory yields a consistent truncation of ten-
Killing vectors to vanist. These algebraic equations are very dimensional type 11B supergravifyl5].
useful in simplifying the general analysis of critical points,  As an outcome of this analysis, we find as an interesting
as they replace the differential equations for the extrema ofeature that domain walls with hypermultiplets can give rise
the superpotential. They will prove to be very useful also intg IR directions. This removes in principle the main obstacle
our simple cases. for realizing a smooth supersymmetric RS scenario with a

Our general theory will be applied to the model of the single brane(RSII), which in the case of vector multiplets
universal hypermultiplet alone as well as coupled to one veconly, resulted in the no-go theorem pf,5]. The next step

tor multiplet. The full moduli space is would be to find in a specific model two IR critical points
and an interpolating solution such that the warp factor ob-
M=0(11) X SU(2,1) (1.3  tains a maximum. The supergravity flow equations impose
TTSU(2)XU(L) ' the condition thaA’ = =W and thus the existence of such a

maximum implies a vanishing superpotential.

For the hypermultiplet alone, we study the properties and On the other hand, the holograptictheorem[16,9,17
parametrizations of the scalar manifold SU(2,1)/SU(2)imposes the monotonicity of the function c~|W| 3. This
XU(1), giving all Killing vectors and prepotentials that al- should imply that it is impossible to connect smoothly two
low us to write down the generic scalar potential. AnalyzingIR points and find a smooth supersymmetric RSIl. However,
all U(1) gaugings systematically, we find that only one criti- the only condition imposed by supergravity and by the BPS
cal point arises. On general grounds we give precise condftow equations is the “monotonicity theorenA”<0. This
tions for determining it§UV/IR) nature, which interestingly leads to a monotonicity of the first derivative of the warp
can be tuned by the choice of the direction gauged within théactor A’=+W and not in general of the function. This
compact subgroup. We compare results with other parametrgoes not exclude flows where the superpotential reaties
zations, that, due to an ill-defined metric, can give rise t0=0. These points may signal some problem with the validity
spurious singular points. Specifically, in Appendix C, weof the five-dimensional supergravity approximation of the
show how this happens [12], where the parametrization of holographic correspondencgl8]. However, BPS flows
[14] was used. crossing such points are perfectly well behaved from the su-

Then we turn to the full model, where we analyze thepergravity perspective. In our specific study we find ex-
most general U(TXU(1) gauging. The requirements for a amples withW vanishing at some poinfsbut the flows by
first critical point lead to three real parameters for the em-
bedding in SU(2XU(1). A linear relation determines

whether extra possibilities exist where noncompact genera- L .
P P 9 2In [19] it is shown that a world-volume theory for a domain wall

at such a place has problems due to unbounded fermions. This has
been investigated in the context of theories with only vector mul-
This requirement appeared|ifi] and was then noticed {ri1] for tiplets. It should be investigated whether similar problems persist
BPS instantons and also fja3]. for fermions with transformation laws like those in hypermultiplets.
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these points always lead to a naked singularity. We concludgredients(for some technical issues, see Appendix Bhe
therefore that, although no example exists at the moment, bosonic part of the Lagrangian is
smooth supersymmetric realization of RSII does not seemto_, .., N N | Cdur 1 X porsY
be ruled out in the presence of vector and hypermultiplets. € Liosonic= ~2R—za13F ,F "= 209xvD ,4"D*q
Conversely, it .is likely that a realistic one—branq Randall- _ %gxyD,u,qu’D gy
Sundrum scenario can be constructed on the basis of any of
the models discussed above with at least one IR critical point 1o wveerel £ K o
by employing a method with supersymmetric singular brane + %CIJKe et"PITE P LA — 9 V(,0),
sourceq 20].
The paper proceeds in Sec. Il with a general discussion Qfhere
supersymmetric flows with an arbitrary number of vector and
hypermultiplets based on the most general consistent gaugD ,q*=a,0*+gA,K[(q), D ,¢*=a,¢*+gA Kl(4).
ings. We start by repeating the general ingredients of the very (2.1
special real and the quaternionic manifolds, and the gauging « . ) )
of the isometries. We provide a general constraint for graviHereK;(q) are the Killing vectors of the gauged isometries
tational stability that can be expressed as the BPS conditiofin the quaternionic scalar manifold parametrized by the hy-
in a domain wall background. We spell out the requirementgerscalarsy*, whereaskj(#) are those of the very special
for a RSII scenario in terms of the concepts of a renormalmanifold spanned by thé* of the vector multiplets. We will
ization group flow. The requirement for critical points of the come back to these below.
(supelpotential can be reduced to algebraic conditions, the The scalars of the vector multiplets can be described by a
attractor equations. We end this section with a summary ofiypersurface in ann(+ 1)-dimensional spaci21]
the features to be investigated in examples.
Section Il starts with motivations for studying a simple Ciakh'(@)h’(p)h (p)=1. (2.2
model with a vector multiplet and a hypermultiplet such as . . ) .
the one giving rise to theV=2 description of the FGPW The 'real coefficientC,;x determine the metrics of “very
flow. Then we study properties and parametrizations of th&Pecial geometry]22]
scalar manifold, giving all Killing vectors and prepotentials . .
that allow us to write down the generic scalar potential. a1=—2Cyykh"+3Cy Comnh h-hh=hyhy+hyhj,
Section IV provides an analysis of gauges and flows in
examples. For the toy model with only a universal hypermul- g,,= thf,au . h=C;kh’nK, hLE - \/gaxh'(@,
tiplet, only one critical point arises, and, depending on the (2.3
direction gauged within the SU(X)U(1) compact sub-
group, it can have different nature. Then we study the fullwhich are further used for raising and lowering indices. A
model and examine the possibility of finding different flows Non-Abelian structure in the absence of tensor multiplets
between two fixed points, proving in particular that theshould satisfy
FGPW flow can be recovered.
We finish with some concluding remarks in Sec. V. CLisfom=0. Ki= \/ghKfJK,hJX (2.9
Our conventions are generally thosd df. In Appendix A
we present a convenient table for the reader to recall the usehich implies
and range of all the indices. In Appendix B we repeat some

notational issues, paying attention to reality conditions. In hfichK=0—Kjh'=0. (2.9
Appendix C we comment on the toy model in a different o . _
parametrization, useful for comparison with2]. The quaternionic Klaler geometry is determined by

4r-beinsfly (as one-formg'”=fi2dg¥), with the SU2) in-
dexi=1,2 and the Sp(® index A=1,...,2, raised and
Il. SUPERSYMMETRIC FLOW EQUATIONS AND DOMAIN lowered by the symplectic metri€&S,g ande;; (see Appen-
WALL ATTRACTORS dix B for conventions, reality conditions, ¢td’he metric on
the hyperscalar space is given by
A. Basic aspects of the theory
The bosonic sector of 50Dy= 2 supergravity coupled to xv=Fx f&;;Cap="T\Fyia- (2.6
vector multiplets and hypermultiplets has as independent
fields the funfbein e, the n+1 vectors A}, with field
strengthsF),, = d,A,—d,A, +gA, Al T, then scalarse”,
and the 4 “hyperscalars”q*. Full results of the action and
transformation laws are ifil]. We repeat here the main in-

This implies that the vielbeins satisfy also
fXfn=5%, fXfP=615,5 (2.7)

They are covariantly constant, including Levi-Civitannec-
tion I'y," on the manifold, Sp(8) connectionwy®,, and
SU(2) connectionwy;’, which are all functions of the hyper-
3We omit tensor multiplets for simplicity. scalars:
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ItV =Ty f P+ R oxg + oy 1¥/=0. (2.8
The SU2) curvature is
Rxvii=Fxciffy 2.9
and there is a connectian,,;'= (3,0%) wy;' such that
RXYij:za[XwY]ij_Zw[x\i\ka]kj:iR;(Y(O'r)ijr
R'=do"—&"'wsw! (2.10

with r=1,2,3 and realR {, [see Eq.(B2)]. The SU2) cur-

PHYSICAL REVIEW D64 104006

1 _
5el/l#i:Du(w)Ei+|%g'yﬂpij6J

1 _
:aM€i+%’yabw’u'abfi_a)MiJE]‘+|%g’yﬂpijej,
SN'=—13(be") €+ge Py,

(2.19

where[as for all tripletsP;; =iP"(o");; ; see Eq.(B2)]

8h= =13t (49" e+ ge VT,

P'=h'($)Pi(q), Pl=—+/26,P'=h!P!,

vatures have a product relation that reflects that they are

proportional to the three complex structures of the quater- NG 5
nionic space NA= L fAKX= Z_fA R rYXp pr
I 4 iX \/6 iX Y 1
RYyR = =788~ 36™RY % (2.19)
KX=h'(¢)K{(q). (2.17)
The Killing vectors on the hyperscalal‘s>< can be ob- h | ial is ai b

tained from an S(®) triplet of real prepotential®|(q) that e scalar potential is given by
are defined by the relatigr23—25,7] V= —4PrPr+2PrXP;gXV+ IN AN, 2.18

RiK'=DxP[, DyxP|=0xP|+2e™'w}P}.

(2.12
These yield using Eq.(2.11)]
Kf=—4R"ZXDyP| . (2.13
These prepotentials satisfy the constraint
IRSWKIKY—ePPPY+ 3 TSP =0.  (2.19

This expression can be understood as in all supersymmetric
theories(see[26] for a proof in four dimensionsy squaring
the scalar part of the supersymmetry transformations of the
fermions using their kinetic terms. The kinetic terms of the
fermions are

e 1‘c§>3/r:m2,kin: - % w;/, 7MVP(9V¢p_ %)\IX’YV&V)MX_ é’AYVaIEgAlg)

This defines the metric to be used to square the supersym-
metry transformations:

In local supersymmetry, the prepotentials are defined _%(5515@#)ywp(&z’scl//p)_%(55115(:{;()“(552138\?)

uniquely from the Killing vectors. Indeet,

1
DXKIYRXW

P{:E

(2.195
satisfies Eq(2.12), and any covariantly constant shFPq(O)r
is excluded as the integrability conditiafi>'R 3, P(©!=0
implies that P{®’=0. As in four dimensiong25|, these

(8, 5™V (e, scln) =50%€1y" V. (2.20
The gravitino gives the negative contribution to the potential,
while the gauginos and hyperinos give the positive contribu-
tions.

We introduce the scalar “superpotential” functiow,
which can be read off the gravitino supersymmetry transfor-

shifts are interpreted as the analogues of the Fayet-lliopould®ation, by

(FI) terms for theD=4, N'=1 theories. However, in local

supersymmetry we thus find the absence of the FI term ex-

cept when there are no hypermultiplfs in rigid supersym-

metry where the S(2) curvature vanishds such that the potential gets, under certain conditions, the
We will also need the bosonic part of the supersymmetryform that has been put forward for gravitational stability:

transformations of the fermions, which afeith vanishing

vectors

W= \/%Pijpij:\/éprpra (2.21)

9
V=—6W?+ EgAEﬁAW<92W, (2.22

“This formula can also be derived from the harmonicity property

of the quaternionic prepotenti@*DyP|=2rP] [13]. SAs a convention, we pick a positive definité
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whereg,s is the metric of the complete scalar manifold, = When all vectors are vanishing, the relevant supersymme-
involving the scalars of vector multiplets as well of hyper- try flow equations for the gravitinog', the gauginix, and
multiplets. It is easy to see that in this case critical points ofthe hyperiniz” are
W are also critical points of.
For one scalar, a proof of gravitational stability was found 1a i ‘
in [27] (even without supersymmelnyn four dimensions, Ochui=ad &t y, 5;7’5€i+7gpij€'
and extended to higher dimensions and to the multiscalar - B 6
case in[28] for potentials that are a function of the “super-
potential” as in Eq(2.22. However, more general potentials X I ;
are also compatible with the gravitational stability. More re- Oethsi =€~ wxi'ej+ %gﬁp” €,
cently, this issue has been revived[i7,29.
The negative part of the potenti@.18 straightforwardly

takes the form of the first term in ER.22). For the contri- SN=— I—y5ei ¢X'+gPin e,
bution of the hypermultiplets, the forgi‘Yd9,Wa, W follows 2
from
A_ £A _I_ 5X’_2_g r XY r
W= =—P'DyP,==—P'R{ K (2.23

(2.27

where the prime is a derivative with respectxt'b and we
Haave assumed tha[lx depends only ox®.

3w 3w

and Eq.(2.11). However, for the vector multiplets the analo-
gous expression cannot be obtained in general. Using t

decomposition of the vectd?" in its norm and phases The equationsys=0 gives just the dependence of the
Killing spinor on the fifth coordinate. We assufraso that
the Killing spinor does not depend ott.

_ 3 _
Pr= \/;WQr' QQ'=1, (2.24 The first Killing equation gives
one sees that the ternrP2P™ in Eq. (2.18 gets the form of a’ 2 A
the vector multiplet contribution in Eq2.22) if 15 vs€i= \39Pije (2.28
(0xQ")(#Q")=0=49,Q"=0. (2.25  whose consistency as a projector equation requires

This conditioff is satisfied in several cases. When there are 2

o @
no hyperscalars and only Abelian vector multiplets, the con- 4 (E
straints (2.12 and (2.14 imply that theQ" are constants.
Also, when there are no physical vector multiplets, this con-This can then be easily written in terms \&f as
dition is obviously satisfied. We will see below that Eg.
(2.25 is related to a condition of unbroken supersymmetry.
In the explicit example that we will show in Sec. IV, there
will be flows whereQ" is independent of the scalars in vector
multiplets, such that again ER.25 is satisfied. For any preserved supersymmetry, this gives us an equation

relating the warp factor and the superpotentigith g>0):

€.=0. (2.29

2PPJ
9°3P

2
_ 92w2

!

S €=0. (2.30

B. BPS equations in a domain wall background , ,
a (

We are looking for supersymmetric domain wall solutions gW= a

that preserve half of the original supersymmetries of Ahe

=2 supergravity. Thus we use as a generic ansatz for th@smg the notatiorf2.24), the projection2.28) is [we further
metric keep consistently the upper and lower signs as they appear in

ds?=a(x®)2dx“dx’n,,,+ (dx°)?, (2.26  Ea-(2.3D]

ys€i=*+Q o €. (2.32
where,u v=0,1,2,3, which respects four-dimensional Poin-
careinvariance, and we model this solution by allowing the  The gaugino equation, after using K8.28), gives rise to
scalars to vary along the fifth directior?. These solutions the condition
are obtained when we require that the supersymmetry trans-
formation rules on this background vanish for some Killing
spinor parametee'. ’In some cases there may be other solutions. At the critical points,
the supersymmetry is doubled, the extra Killing spinors being of the
type with extra dependence on tké. Here we restrict ourselves to
5This constraint is equivalent to the one found . solutions with Killing spinors that do not depend rf.
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!

o, a ) is easy to see that the conditioh®=0 implies. AL, =0, and
P el =—3—gVa,P; el (2.33 y oty P v
j a yrij

is thus the remaining necessary and sufficient condition.
With Eqg. (2.23), this implies
Using the decomposition &' in Eq. (2.24) one finds

, a’ gaxW=/% 9QR KY=F30xvq"’ (2.41
WQ ¢ :—3§gxy(Qfayw+waer). (2.34
One can also show that this equation is sufficient for the
SinceQ'9,Q"=0, the two pieces on the right are orthogonal Killing equations.

to each other and so we derive as independent conditions ~We have obtained the same condition for the scalars of
hypermultiplets as for vector multiplets, and we can write

3,Q"=0 (2.35  collectively for all the scalar fieldg* ={¢*,q*}

and[using Eq.(2.3D] SN =539 g a5 W, (2.42
¢ =F3ggYa,W. (2.3
This equation, together with the constrai.35 and the

The first condition is Eq(2.29, and we thus find that the flow equation for the warp factot2.31), completely de-
BPS condition is equivalent to requiring that the potentialscribes our supersymmetric flwA solution to these equa-
can be written in the stability forni2.22. Notice that the tions is also a solution of the full set of equations of motion.
projection given in Eq(2.32 therefore only depends on the  The fact that BPS states are described by E242 and
hypermultiplets’ (2.31) can also be seen from the expression of the energy

The formula(2.36 can be generalized to the hypermul- functional. Once the2.35 condition is satisfied, such a
tiplets. In view of this, we turn to the hyperino Killing equa- functional can be written as
tion, the last of Eq(2.27). For the first term, we can already

use Eq(2.32. We multiply the transformation of the hyperi- Foo 1 ) a’ 2
nos bnyj. Equations(2.6) and (2.9) lead to E—f dx®a* §(¢A 1395AW)2—6(319W) }
ijAfi)?: 39vxdj + R yx; - (2.37) . p . P
— 5_ 7 (A4 5 " (Aa347
This gives +39f7w dx ax5(a W)+4Jloo dx &x5(a a’.
_ . 1 , (2.43
Oz[gyx5j|+2iRyer'rjl] _|QSO'Skqx +g\/—KX5ik:|Ek,
(2.39 C. Renormalization group flow
This we write as a matrix equatiQAijekzo: The above formulas can be used to obtain the equations
that give the dependence of the scalars on the warp factor
0=[A$5jk+A§i(ar)jk]ek, Using the chain rule, the relevant supersymmetry flow equa-
& tions for all the scalar fields reduce to
gvé = _ .
A== KyFRY,QQY, d ax® gt
4 IBAEa_QSA: a— ——
Ja da gx°
— 1 rsty> s t X' g\/— X
A=§Qq+8RQ + ——R K™ a
The reality of these quantities implies that the determinant of IsW
the matrixAy is = —3gA2W. (2.44
det Ay=(A%)2+ (A2 (2.40

The notation as a beta function follows from the interpreta-
If there are any preserved supersymmetries, then this detetion as a conformal field theory, where the scalars play the
minant has to be zero. Thereforé,?(:A’Y:O. However, it role of coupling constants and the warp factois playing

the role of an energy scale.

8In the presence of tensor multiplets, the gaugino supersymmetry
(SUSY) rule would have been modified by an additional term °This flow equation also appears [8]. However, there it was
SIN\=gWe; . However, this would have been put to zero by the derived using a condition that is stronger than the one we need. Our
gaugino projector equationd*'e;= (A% + A™i(0,), ) =0 condition is the one that also implies the stability form of the po-
where A ”=W* and A™ was implicit in Eq.(2.33. tential.
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This same function can be used to determine the nature dfhe right-hand side is thus the sum of all the eigenvalues.
the critical points¢*. Whether¢* has to be interpreted as This implies that there are no pure IR fixed points, i.e., there
UV or IR in the dual CFT can be inferred from the expansionare at most fixed points for which flows in particular direc-
of Eq. (2.49 tions are of the IR type.

These same eigenvalues are related to the scalar masses

d apt through the mass matr
A= @45 " wl

¢* MyF=WE ULA (U —45,%). (2.51

This tells us that any time the matrix The scaling dimensions of the dual conformal fields are

A ) therefore the eigenvalues of
2AE_ Ip :igAE "W (2.46 Equations (2.31) and (2.42 also lead directly to the
> o W= 9p>ap= " monotonicity theorem foA’. Indeed, defining
has a positive eigenvalug* is a UV critical point, whereas A=Ina, A'==gW, (2.52

when it has negative eigenvalugs is IR.

The eigenvalues dff are the conformal weights, of the
associated operators in the conformal picture. One can obtain
a general formuld30] for U/

we have directly that
A"=+gW =—3g%(9,W)g**(ssW)<0. (2.53

ThereforeA’ is a monotonically decreasing function. In the

§5 Y_ ij zp Y ij PKZ usual ho_Iegraphic correspondence, this is related to the
2% WU X TE o WYX monotonicity of thec function[16,9,17,31,3R
U= , (2.4 The above issues can be applied to address the question of
_ i(& K2) 7, 25 the existence oémooth Randall-Sundrustenarios. In such
w2 ¥ z X a scenario, the scalars should get to a constant valué at

= *oo, and with Eq.(2.42 this means thaiV should have an
where the first entry corresponds to hypermultiplets and thextremum ak®= + o, i.e., with Eq.(2.44), a zero of the beta
second to vector multiplets. The quantitigsand £ are de-  function and thus a critical point. For a RS scenario the warp
fined as® factor should be small there, i.e., it should be a critical point
for a small energy scale, an IR critical point. Thus, we need
DxKy=Txy+ Lxy, Jxy=2P'R%y. (248  a solution that interpolates betweswo IR critical pointsfor
x°=+o0, getting to a maximum of the warp factérat the
center of the domain wall, placed, for instance,xat0.
This requires that at the same polft should be zero.
Yo Z_  3w2s Z Yr Z r N Z This situation can in principle be realized without violat-
Ix Iv"==2aWoox",  Ix Ly"=Lx IV, ing the condition(2.53. Indeed, take &V that decreases to
Iy LX=0. (2.49 zero atxs=0 from positivex_5. With_a sm_ooth flew, one
might expect thatV changes sign, as its derivative is nonzero
The decomposition 0DK in Eq. (2.48 is a split of the at this point. Note, however, that ol is always positive
isometries in S(R) and USp(2) parts. due to its definition as the norm of the &Y vectorP'. This
The lower right entry of Eq(2.47), a consequence of the IS Necessary because in the geometry of hypermultiplets the
basic equations of very special geometry, is the statemed@cal SU2) is essential, andl has to be an invariant func-
that for only vector multiplets there are only UV critical tion. It thus bumps up again and increases. But at the same
points, preventing the RS scenaries5]. The other entries time the unit vectolQ" jumps to its negative. In this way,
imply that the appearance of IR directions can be due to twd® =WQ' behaves smoothly, leading to a smooth flow de-
different mechanismgs]. One is the presence of the hyper- SPite the apparent jumps. Because of the sign switche/in
multiplets, if the upper left entry gets negative values,and Q, for negativexs, one must take consistently all the
whereas the other is due to the possibility of mixing betweerflifferent signs in Eqs(2.3)—(2.42. Note that the two sign
vector and hypermultiplets. To have negative eigenvaluefips combine such that the projection of the Killing spinor in
due to the hypermultiplets only, th@matrix has to get large. Ed. (2.32 will not change. TherW will increase again for
This means that the gauging has to be “mainly” outside thenegativexs and the monotonicity of the warp factor will not
SU(2) group. We will see this explicitly in the examples of be violated.

They commute,7? is proportional to(minug the unit ma-
trix, and the trace of7L is zero:

Sec. IV, where the orthogonal part to @Jis a U1) group. Of course in the holographic interpretation of théheo-
An immediate consequence of Eg.47) is that rem, the central charge would blow up or the height function
would become singular at the zero of the superpotefitiH|
Tri/=6r+2n. (2.50 and the dual field theory would be ill defined at that point. In

spite of this, the supergravity monotonicity theorem can fur-
ther be satisfied with increasi, if it was decreasing at the
OThis splitting was also put in evidence [ih3]. other side ofx°=0.
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The interesting points are thus the zeros that we just dis- By direct inspection of the supersymmetry transforma-
cussed, and the critical points, whetgW=0. We now turn  tions we observe that the first term in the gaugino and hy-
to discussing the properties of the latter. perino transformation vanishes and we get
SAN'=g Pixj =0,

D. Enhancement of unbroken supersymmetry and algebraic
attractor equations \/6
The search for critical points can be nicely formalized as SLh=10 Tng €=0. (2.5
an attractor mechanism, which was discoverg@irand was
studied in great detail in the absence of hypermultiplets. Sg-hg first of these equations far#0 can be satisfied if and
far only partial investigations exist for the coupling of both only if
vector multiplets and hypermultiplets, in the context of do-
main walls[8,11,33 and in the context of the BPS instantons (3yP") ay=0, (2.57)
[34]. At the fixed points of the solution the moduli are de- .
fined by the condition\V;,=0 [1], which impliesk*X=0, as  Which, for AdS vacua, can also be written as
can be understood from Eq.17) and(2.23. This fact was
also observed if34,8,11,13 (Q"oyW+W3,Q") =0=(9,W)a=0 and (aer)attr;g-
Here we will use the fact derived in the previous section, (2.58

that the Killing spinor projectoQ" must satisfy Eq(2.25.  The implication follows from the same argument as for Eq.
Only in such case does the superpotentietontrol the flow (2 35,

equations.Using the enhancement of supersymmetry near Finally, we have to derive the necessary and sufficient
the critical points we will derive all necessary and sufficientconditions to satisfy the hyperino equation also. Evaluating
conditions for critical pointsOur method follows2,35,3,  Eq. (2.39 at the attractor poing’*=0 for € +0 requires
where the geometric tools of special geometnbir-4 and
very special geometry iD =5 were used to convert the BPS g\/E g\/g
differential equations into algebraic ones and where enhance- (AY)at= —2 Kv=0, (AY)ar= > RYxK*=0.

ment of unbroken supersymmetry played an important role. (2.59
Consider the domain wall solutions of the previous sub-
section in the limit where the scalars are frozen: The solution of this equation is
: a’ (K)ar=h'(¢)Ki(q)=0. (2.60

g'=0, ¢*=0, = tWg=const. (254
As previously noticed, this is an algebraic equation that de-
fines the fixed values of the scalars at the critical point and
If const # 0, the flow tends to the AdS horizon in case of thesplvess.;A=0.

IR critical point and to the boundary of the AdS space in case The algebraic rather than differential nature of this condi-

of the UV critical point. This becomes clear when the metriction stimulates us to look for an algebraic equation also in

is rewritten asds®=a®(dx%)?+(1/MW?)(da/a)®. For con- the vector multiplet sector of the theory. Indeed, such an

stantnonvanishing Wsmalla define the horizon of the AdS algebraic attractor equation was known to be valid for AdS

space whereas largecorrespond to its boundary. critical points in theories without hypermultipl€td] and we
The gravitino supersymmetry transformation at the criti-now try to generalize it. We start with E¢2.57 and multi-

cal point(2.54 acquires a second Killing spinor. This is the ply this equation byg¥a,h, . Using the fact that I, ,h))

same doubling that always occurs in the AdS backgroundorms an +1)x(n+1) invertible matrix in very special
near the black hole horizon. One finds that geometry(2.3)' this equation becomes

_ JiK _
5.40,=0, (€)au?0, (2.59 Pi=Ciokh*h"P'=h,P". (263

So far the result is valid for any critical point. If we now
without restrictions on the Killing spinors, i.e., they have restrict ourselves to the AdS ones, we can multiply 662

eight real components. by Q" and get
In analyzing the equations we will have to be careful that
we are inside the domain of validity of our coordinate sys- hW=C,,RR<=P,, P,(q)=2P'Q',
tem. In particular, this means thaf, , gxy, fi , andR"*Y
are neither vanishing nor infinite. We will be able to invert ’ﬁl(qg,q):h'\/v_v_ (2.62

these geometric objects using the rules of very special and

guaternionic geometry. The procedure is analogous to thBlote thatP, depends only on quaternions. This type of alge-
steps performed in the previous section to find the solutionsraic attractor equation with constant valuesPpfwas used
with A’=1 unbroken supersymmetry. Now we will specify it in an efficient way in various situations before. In particular,
to the case of frozen moduli antf=2 unbroken supersym- it was used in calculations of the entropy of Calabi-Yau
metry. black holes and the warp factor of Calabi-Yau domain walls
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near the critical points. We have shown here that in the preghat can show all the main features of this kind of analysis is
ence of the hypermultiplets the analogous algebraic equagiven by supergravity coupled to one vector and one hyper-
tions with quaternion-dependeR are valid at the critical multiplet. Thus, as a first step, we describe in full detail the
points. Thus the algebraic equatibyP"=P| is equivalentto  toy model based on the universal hypermultiplet alone. Then
the differential equatio,W=0, since for supersymmetric we analyze the complete model, whose moduli space is
flows thed,Q"=0 condition is satisfied. If we multiply this given by the scalar manifold
by h' we will get an identityP"=P"; however, Eq(2.61) is
not satisfied in general but only at the fixed points where all M=0(11)% SuU(2,1) 3.0
scalars are constant. ' SU(2)XU(1)" '

Thus we have the system of algebraic equations, defining

the critical points: Actually, in this example we focus on one important super-
. “ symmetric domain wall solution that was previously dis-
h (b P (ber,de) =Pi(de), K (¢er,de) =0. cussed as the dual to the renormalization group flow describ-

(263  ing the deformation from a=4 to anA’=1 super Yang-

. . . . Mills theory with SU2) flavor group[9].
They are equivalent to the system of differential equations This solution (at least numericallywas originally ob-

minimizing the superpotential. These equations, together. . i = .
with 4,Q"=0, are equivalent to minimizing the triplet of the tained inside theV=8 gauged supergravity theory, but we

prepotentials will show that it can also have a consistent description in the
standard\V=2 one. Notice that this same flow was claimed
(3P =0, (DyP")=0. (2.64  to be present also in a truncatéd=4 gauged supergravity
coupled to two tensor multiplets, but the relevant model has
The advantage of having algebraic rather than differentiabnly recently been constructed [86]. The older Ref[37]
equations defining the critical points is already obvious in thedealt only with the coupling to vector multiplets and gauging
simple examples that we consider in the models below, but iof the SU(2)k group, whereas[38,39 discussed the
will be even more essential in cases with arbitrarily manySU(2);X U(1)g gauging without any matter coupling.
moduli. More precisely, we will show thahe FGPW flow can be
As a conclusion of this section, we can summarize theconsistently retrieved in théV=2 supergravity with one
relevant equations to be examined in the specific examplesnassless graviton multiplet, a massless vector multiplet, and
Given a scalar manifold, we have to look for the following one hypermultiplet with the gauging of@(1) < U(1) sym-

special points. metry of the scalar manifol¢3.1).
(1) Fixed points These are points whe@ W=0. They In the decompositioh9] of the A’=8 graviton multiplet
are determined by algebraic equations: into N=2 multiplets(which is completely valid only at the
infrared fixed poink, the supergravity fields are arranged into
Fixed points: K*=h'(¢)K{(q)=0, representations of the SU(213x SU(2), residual superal-
gebra. Retaining only SU(2)singlets leaves us with one
Pi(a)=h(¢)P"(¢,q). graviton multiplet, one hypermultiplet, one massive vector

(2.69 multiplet, and one massive gravitino multiplet. Howe{@},

since the only scalars that change along the flow are the two
)belonging to the massive vector multiplet, it is expected that
the theory can be further consistently truncated to one con-

i . St%fining the graviton and massive vector multiplets only, but
they can be used as IR fixed points, and represent the valu%%w can we describe such couplings in the standard frame-

of the scalars ax®>= *= in the RS scenario.
(2) Zeros.These determine the values of the scalars on thgvork 117 -
| f th .d main wall. i.e. where the warp factor reaches The representations of the SU(B,X supergroup not on_Iy
place of the _O an watfl, 1.., where the warp facltor reacheg, . ,qe a massless short graviton multiplet and an arbitrary
an extremum: number of(masslessshort vector andmassivé tensor and
. pr—pl (o) — hypermultiplets, but also present a wide spectrum of long
zeros: P'=h'(¢)Pi(q)=0. (2.69 and semilong supermultiplets. While in the general theory
Note that the presence of zeros implies that ghéunction  [1] the couplings and interactions of short multiplets are ex-
diverges. This indicates that the AdS/CFT correspondencglicitly described, those of massive vector multiplets can
breaks down at this point. These zeros are necessary féfiS€ as the result of a Higgs mechanism where a massless

Randall-Sundrum domain walls but are thus pathological fo€Ctor €ats a scalar coming from a hypermuitiplet.
applications as renormalization group flows. Since the UV fixed point should correspond to the-8

supersymmetric theory, both the graviphoton and gauge vec-
tors must be massless there, as they are both gauge vectors of
U(1)xU(1)CSU(4). Then, along the flow, only one of
them(or at most a combination of the twwill remain mass-

In this and the next section we want to specify the resultdess, while the other will gain a mass, breaking the residual
obtained so far to two detailed examples. The simplest modehvariance to the U(1g subgroup and giving rise to the mas-

In particular, for the AdS case, the eigenvalues of the matri
(2.46 determine whether they are U¥igenvalues positiye
or whether some eigenvalues are negative. In the latter ca

. AMODEL WITH A VECTOR MULTIPLET
AND A HYPERMULTIPLET
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sive vector multiplet described above. Thi§ means that we = —%Iog(S+§— 2CC). (3.4
can further decompose the long vector multiplet into a mass-

less one plus a hypermultiplet, which is exactly the content |5 addition to the many parametrizations existing in the

of the model we are going to analyze now. literature, the one that will prove convenient to us follows
To complete the characterization of the flow we only need,ery closely the notations 4], with some further redefini-

some information to sort out which U(X)U(1) subgroup of  tjons to match the conventions ff]. We thus call the four

the isometry group of the manifold1 has to be gauged. hyperscalarg*={V,q,86,7}, which are related to the previ-
This can be understood by examining the mechanism thajys variables by

gives the mass to one of the two vectors.
The vector mass terms come from the kinetic terms of the S=V+(6*°+7P?)+ioc, C=60—ir. (3.5
hypermultiplet scalars. Indeed, due to the gauged covariant
derivatives(2.1), the kinetic term for such scalars is The domain of the manifold is covered M>0. Note that
L “ X this parametrization of the universal hypermultiplet is the
—2(0,0°+gA,KD)?, 3.2 one that comes out naturally from the Calabi-Yau compacti-

. . fications ofM theory[42,7] and thus one can hope to explic-
an thergfgre for a 1) gauging one has a term like . see how gauging of isometries can be obtained from such
g°A,A*K< in the action, wheré\, is a linear combination

X - # ; o a higher-dimensional description.
of gauge vectors ank” is the corresponding Killing vector Let us define the following one-forms:

of the gauged isometry. This, of course, will act as a mass

term for the A, vector any time the Killing vector has a do+idr 1
nonzero norm. u= ——, v=2—[dV+i(d0'—ZTd0+20d7')],
It is therefore quite easy now to identify the isometries to \/\—/ v
be gauged in order to obtain the FGPW flow. They are those (3.6)

associated with Killing vectorKf‘ that have vanishing norm hich will b ful in the whol tructi Th
at the UV fixed point, and such that along the flow the norm"/ ¢ Wi b€ .very.us?Au 'irl 3 Whoe consiruietion. - ne
quaternionic vielbeind'*=f,'dq™ are then chosen to be

of a combination of them still remains zero. )
[e1,=C4p=+1 are the conventions for the SU(2)

A. The scalar manifold X USp(2) metrics

We now turn to the description of the parametrization and A u —-vu u —v
of the isometries of the scalar manifo(8.1). The Q1,1) f'A=< ) .A=( 4)
factor is relative to the vector multiplet scajarand is given

by a very special manifold characterized by+1=2 func- o ) A — —
tionsh'(p) constrained to the surfad.2). Its essential geo- 1€ Metric is then given bg=f"®fij,=2u®u+2v®uv
metric quantities, th€ constants that determine the embed-2"d reads

ding of this manifold in the ambient space and also fix the a2 1 )
Chern-Simons coupling, can be chosen to be all Gg; _av s _ 2, © 7)
equal to zero. Then we takg40] ds’ * 2V2(d0+20d7 27d6)"+ V(d72+d0 ):

V2
(3.9

(3.7)

v u u

J3 1 21
Coii=—, h°=—p* hil=q/z— : i
011~ 5+ \/§p ' 3p2 The determinant for such a metric isvf/and therefore the
metric is positive definite and well behaved for any value of
12 1 the coordinates except=0. Since in the Calabi-Yau deri-
Opp=—pr Bo0=—5, A= p% ap=0. (3.3 VationVacquires the meaning of the volume of the Calabi-
Yau manifold, we restrict it to the positive branet»>0.

From the vielbeins we can derive the @Jcurvature:
The metricg,, is well behaved fop#0 and, for definite-

ness, we choose the brangh-0. _ 1 _ 1{ —(vv+uu) 2uv

Much more can be said about the second factokfhfand Ril=— s fia/\fA=— = - .
due to its fundamental role we would like to describe it in 2 2 2vu (vv+uu)
some more detail. It is known that the quaternionichiéa (3.9

space SU(2,1)8U(2)X U(1)], classically parametrized by
the universal hypermultiplet, is also a'Kar manifold[41].
This means that it can be derived from ahfexr potential,

R 1
which is usually taken to be Rl=_ [(do+26d7)d 9—drdV],

2\/3/2

Using the triplet of curvatures as in E@.10),

"The numerical factors are partly chosen for convenience and
partly to satisfy the request that there exists a point of the manifold R2=—
where the metri@,; can be put in the form of a deltd,; . AVED

[(do—2rd@)dr+dedV],
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R3=~

These can be derived from the following &Y connections:

dr

1 2

W= W'

_do

W

B. The isometries

The metric(3.8) has an SI,1) isometry group generated

by the following eight Killing vectorskﬁ:

0 0 0
R 1 R 20 R —27 R
k= ol kp=  kg= 1 |’ Kq
0 1 0
\% AN
R o R a?—(V+ 0>+ 12)2
k5(0/2 » ke= agb—7(V+ 6>+ 72) |’
7/2 oT+ O(V+ 0%+ %)
-2V
_ — o0+ Vr+7(6%+ 72)
S T
—207—0/2
-2Vt
. —a7—Vo—0(6°+ 7%
k8( —207+0/2
IV+36%12— 7212

1 1
ydedr+ o (do—2rd6+26dn)dV].

1
3 _ _
, = 4V(d0' 27d6+26d7).

PHYSICAL REVIEW D64 104006

The first three correspond to some constant shift of the co-
ordinates; in particular, the first one was analyzed 7
whereo— o+ ¢, whereas the second and third correspond to
the shifts6— 6+a, r—r+b, ando—o—2ar+2bé. The
fourth Killing vector is the generator of the rotation symme-
try between thed and r coordinates:d—cosp 6—sing 7, T
— sin¢ 7+cos¢ 6, which is the one considered [8]. Fi-
nally, the fifth Killing vector is the generator of dilatations
while the remaining three are other complicated isometries
of the metric.

The commutators of these vectors confirm that they really
close the S(2,1) algebra. To this purpose, it is easier to
recast them in the following combinations:

(3.10

(3.11)

T1=%(k2_2k8),
0 SU(2){ To=i(ks—2ky),
= , Ta=7(ky+ke—3Kys),
T
3
o u(1) T8=§<k4+kl+k6>,
T4:ik5,
SU((2,1) T5:_i%(k1_k6), (313
U(2) | Te=—i2(ks+2ks), '

T7: - | %(k2+ 2k8)
These generators satisfy the @Ucommutation relations

(3.19

The factors ofi in Eq. (3.13 allow us to have completely
antisymmetric structure constarftgs,=f,z” with f155=1,
f147: 1/2, fl56: - 1/2, f246: 1/2, f257: 1/2, f345: 1/2, f367
=—1/2, fus6=\3/2, fe75=\/3/2. The generator§,, Ts,

Y X Y X_ X
TaayTﬁ_TBayTa— _faﬁ’yT'y .

(3.12 T, and T, are imaginary, such that the real algebra is
SuU2,1).
The relation(2.15 leads directly to the prepotentials
|
1 0 - =
- W
NV 1
e T
o ’ \/v 1 I — 1
6 T \/v
Y] v 1 6%+
2 2V
1 2 2
- W[O’T-i‘ 0(—V+ 67+ 79)]
1 2 2
W[UG—T(—V-FQ +79)] )
- i[az+(02+ )%+ E(02+ )
4 4V 2
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407+ 0 36%— 72 \/V
2V TToW 2
372— 62 B ﬂ , o—46r (3.15
23v 2 23V
3 1 3 1
—§T+N[00+T(02+72)] §0+N[UT—0(02+72)]

As we have seen in the previous sections, these prepotentiadsd the same constant parameters, 8} are used to define
are indeed necessary in order to write an explicit expressiothe gauged prepotenti@". Correspondingly, we find
for the potential (2.18 and superpotentia(2.21) of the
gauged theory and thus to solve the supersymmetry flow W2|(1’0,0'0)=%a,ar. (4.9
equationg2.42).
The value ofW is indeed determined only by the gauging of
the SU2) part of the isotropy group of the corresponding
point. Therefore, any gauging in the direction ©f alone

In this section, we will analyze the flows that can be ob-can give rise to a supersymmetric vacuum of the theory cor-
tained in this model. This requires, as pointed out in Sec. llfesponding to a Minkowski space. This same feature can also
that we perform a specific gauging and search for criticabe observed for the gauging of an SUX)(1) group in the

points and for zeros of the corresponding potential. N=4 theory, namely, the gauging of thé1) isometry alone
gives rise only to Minkowski vacuf38,36. This implies

that, if a dual field theory could be built, it would be in a
confined phase.

We now turn to analyzing the supersymmetric flows that The matrix.7 in Eq. (2.48 is at the base point4.2) pro-
can be obtained in our model with one vector multiplet andportional to«, , while £ is proportional tog, these being the
one hypermultiplet. To this end, it is interesting to start withgaugings in the S(2) and orthogonal directions, respec-
a preliminary study on the vacua obtained by consideringively. The eigenvalues Qi are twice+ aB8/4 (Wherea is
only a U1) gauging of the universal hypermultiplet mani- the length of the vector,) such that the matrix of second
fold, when no other vectors but the graviphoton are presentlerivatives(2.46) according to Eq(2.47) satisfies
This will give us some important hints.

IV. GAUGING AND THE FLOWS

A. Toy model with only a hypermultiplet

As for this casen®=1 is the only component di', the . y 3 B B B B
conditions for critical point$2.65 just reduce to the vanish-  €igenvaluesi{x |(1,o,o,0)=§ 1+ ;,1+ E'l_ Z'l_ ol
ing of a certain linear combinatiok of the Killing vectors (4.5

that give rise to the gauged isometry. In other words, a criti-

cal point should be left invariant under theélygenerated by  and this tells us the nature of the critical point. As an ex-

K. Therefore, such 1) must be part of the isotropy group of ample, consider the gauging in the directionaof a5. Then

the manifold;® i.e., the first two eigenvalues correspond to the ) directions,
and the latter two are of thed(r) directions.

U(D) gaugé=SU2) X U(D). 4.0 In general, the obtained eigenvalues reflect the supersym-
metry structure of the universal hypermultiplet. We know
In a symmetric space any point is equivalent, and for convethat the above eigenvalues are related to the masses of the
nience we have chosen the badsl3 such that the genera- fields and therefore also to their conformal dimensig
torsTy, Ty, T3, andTg are the isotropy group of the point (actually, given the eigenvalues, the relation isEq=| ]

or Eg=|4—6y). For a hypermultiplet two of the scalars

(V,0,0,7)=(1,0,0,0. 4.2 must have the samg, and two must havé,+1. In this
case this is realized by the fact that two hakg=3
The Killing vector that we consider is given by +3pB/2a and two haveEy= 3 +3p/2a.
The critical point(4.2) appears as isolated wheneVgt
3 #a, wherea>0 is the length of the vecta, . If |B|=«,
KZE arTrJrﬁiTS, (4.3 then there is a two-dimensional plane whéte=0. More
= \/§ precisely, we have to distinguish three regions of the param-

eter spacd «, ,B}.
(1 If |B|<a, then the base point is an UV critical point.
12Thjs important feature was not realized in any of the revisions of ~ (2) If | 8|=a then there is a plane of critical points. This
[12], where isometries were gauged outside the compact subgrouplane is parametrized b§ and = with
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-0.75 -0.5 -0.25 0.25 0.

FIG. 2. W as a function of¢ along the line(4.10, for a;=a,
=0, a3=1/6, andB=2./6. Note that the apparent singular point at
£==+/2/3=0.82 is in fact just a regular point, &¥ is the norm of

-2 a vector. We indicate the corresponding valuexfor the flow.
-0.75 -0.5 -0.25 0 0.25 0.5 0.75

FIG. 1. Contours of constaW in the plane ¢,o) with V=1 0=0, V+&£=1 with 0<V<1 or —1<é<1,
— 172, 0=0, for a;=a,=0, az= V6, andg=2+6.
or V=1-tantfy, é&=tanhy with —oo<y<w,

Vo1 g2 2(a10 asT) (4.10
agtB In view of Eq.(4.9), this “line” is actually a plane in the full
2t quaternionic manifold, but as we often use the parametriza-
g _ 220t ar) (4.6 tion (4.10 we will call it a line. The parametrization by,

az+pB involving a hyperbolic function, was introduced if®],
where this variable was callegy. On this line, the first two
components of the Killing vector are zero, and the beta func-
tions of the two field combinations vanish:

In the case3= — a3 the plane is#= r=0. In the orthogonal
directions,W is increasing, i.e., this plane is of the UV type.
(3) If |B|>a, then W decreases in two directions. The

critical point is an IR critical point for flow in these direc- Bg:lgwgzzo 4.11)
tions. In this caseW also has a line of zeros. For example, ' '
for gauging in the directiorr= a3 we find the zeros for Here, the Killing vector has as the only nonzero components
B-a 20 K’=(a—pB)7/2 and K'=—(a—B)6/2. These are indeed
0=0, 6°+7°=—— for B>a>0. never vanishing fo+ « except at the base poif4.2). On
T atp’ Bta @ this line, the superpotential reduces to
The last case shows the aspects of the toy model of the ' :Ia(2—§2)—ﬂ§2| (4.12
universal hypermultiplet that were not known for vector mul- line 2\/5(1_ £2) '

tiplets only. Let us now choose;= a,=0, which we can
safely do due to the S@@) invariance. The superpotential can This means that there is a zero for
be written as
2«
2 212 gZ:aTB’ @13
8\/—V({(a+,8 [1+0°+(V+E9)7]
which is in the domain of definition iB>a>0. We plot the
+2(3a—B)(V— )} +128a(a— B) £2V)'2, superpotential on this line for such a case in Fig. 2, exhibit-
(4.9 ing the zeros, which are in a circle in thé,f) plane.
We will now consider a flow on that line. The critical
where point até=0 is used for the asymptotic values of the zeros at
5 o x=+% and the zero of the superpotential is placedxat
E=0"+1" (4.9 =0. The BPS equatiofR.31) leads on both sides of the zero

We plot in Fig. 1 contours of constam/, where the base to (we put hereg=1)
point is in the middle. One sees thatincreases in the ver- 2 2
tical direction from this point. The central line in the hori- Al = M_
zontal direction represents the locus 2\/5(1— &)

(4.19
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a and the eigenvalues of the Hessian are always spread evenly
from 3/2 as in Eq(4.5). To get IR directions in the critical
point the gauging has to be “mainly” in the direction of K,
while some gauging in the direction £2) is necessary for a
nonzeroW at the critical point. All this will be shown ih30].

B. The full model and the FGPW flow

We now consider the full model, with a vector multiplet
and a hypermultiplet. Taking into account the graviphoton,
we have two vector fields, and therefore we can gauge two

s T 5 ) 25 5 Abelian isometries U(IX U(1). As explained before, we
should find the FGPW flow between an UV and an IR fixed
FIG. 3. Graph of the warp facta(x®)=e” for the valuesa  point by a specific U(1x U(1) gauging.
=6 andB=2.6. We will start by considering the requirements imposed by
the presence of first critical point for which we will
Note that the sign flip has disappeared. For the other BP8hoose the base point
equation(2.42, we use the inverse metric to obt&in
c.p.1l: gq={1,0,0,3, p=1 (4.17

V'=37"W= \/%(,8— )§*= \/g(ﬁ_ @)(1-V), We must first solve the conditiok , ;= (h°Ko+h*K1)¢ 1

(4.19 =0. As in the toy model and as a general result, this implies
thatK ,, generates a () inside the isotropy group of the
scalar manifold. In our specific case, this results in the ab-
ence of contributions from the noncompact generators in the
combinationK ,+ 2K . Furthermore, we can use the @V
invariance to choose just one direction in @J We again
take the generators.

where again the sign flipping has disappeared.

Choosing the integration constant such that the zero i
x°=0 and that the warp factor reaches the vah(@)=1,
the solution is given by

£2(x5) = 2a e B2 (B-a) x5’ Since we now also have a vector multiplet scalar, the
atp critical points of the superpotential are defined by both at-
tractor equationg2.65, and one must also satisfy the re-
. ax’ 1 a+p—2ae FRE-0X quirement for the prepotentialg P'=P|. Due to the self-
AX®)=— ﬁ 5 log B—a : consistency of this equatigmultiplying it by h'), this gives

(4.16 only one triplet of requirements:

r_ r i ;

This flow has a singular point ab®=—2[1/(8 NoP1=hiPo  atthe critical point. 419
— a) Jlog[(a+ B)/2a], where the border of the quaternionic Only the generators of the $2) part of the isotropy group
manifold is indeed reached @$=1. HereA— —. At the  contribute to the prepotentials, and the three generators have
other end, one reaches the fixed AdS critical point{or three independent prepotentials. Therefore, this condition
+o, where the behavior of the warp factor B&— does not lead to any constraint on the noncompact genera-
— (alJ8)x>=—Wx°, which is the asymptotic of an IR tors. However, it does give conditions on the generators in
AdS fixed point. the SU2) part of the isotropy group that imply the absence

We display in Fig. 3 the exponential of the warp factor for of T; andT, from K as well aK,. Furthermore, it fixes the
such a solution, showing that it is perfectly well behaved andelative weight ofT; in both generators. As a result of the
continuous at the point®=0 where it reaches its maximum attractor equations at c.p. 1, we can parametrize the genera-
equal to 1. tors as

As W has no other critical points, one can have zeros only

in that case. If12], where the parametrization ¢f4] was 1 1
used, some misleading results were obtained. We discuss this Ko= \/Ea( > Tat ﬁ v Tgt Tnc) ,
in Appendix C.
These features regarding the case with one hypermultiplet 1
and no ve_ctor multiplets can be generalized to arbitrary Kl=a<T3+ _IBTB_Tnc)a (4.19
quaternionic Kaler homogeneous spaces[8U(2)xK]. V3

There can only be one connected region with critical points,
wherea>0 andT,. is a linear combination of the noncom-
pact Killing vectors.
Balternatively, one can use that the metric reduced to the line is In order to obtain two independent(l)’s we still must
ds?=(2NV?)(d7?+d6?), to obtain, e.g.r' = — (1/2)\32(B—a)7,  impose the requirement that the two generators commute. It
also leading to Eq(4.15. can be easily seen that this is equivalent to requiring a van-
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ishing commutator ofT,,. with the combination3 T;+[ (8 consider a flow along it. In order for the flow to be consistent
+ 7)/\/§]T8 Thus for a genera| quaternionic manifold the with the restriction, the flow equatldﬂ42) should not drive
generators whose roots lie in the direction defined by thighe fields off the line and this translates into requiring that
generator are the ones that can survive, if there are an)8‘7=,8v+§2=0. These conditions are indeed satisfied. Along
Therefore noncompact generators are possible onBrify  the line, the quantitie&, W, andQ simplify to**
=+32 We formulated the analysis such that it is suitable for
an easy generalization to situations with one vector multiplet
and an arbitrary homogeneous quaternionic manifold.

As the prepotentials depend only on the (3Upart, we
find that the value oV at the critical point is proportional to

a. W| line=
Wc.p.1: %a’. (4.20

a

KXjine= 1-B+ o L _ (0,07,— 6)
line \/ng 1Y 2 Y yIO T, ’

|2+ p)(1- 50~ (8
6p%(1- &%) i
+yp%) &, (4.29
We now turn to analyze th€R/UV) properties of the
critical point, computing the eigenvalues of the matrix Qine=*(2601—&2,27y1— €2, — 1+ 2¢?).
(2.47. In the matrices in Eq(2.48, 7 depends only on the . ] -
gauging in the S2) direction, i.e., it is proportional tar, We now fix the end point of the flow at second critical
while £ is a function of the 1) gauging, i.e., it is propor- PoInt and we have again two requirements: the vanishing of

tional to 8+ y. This implies that in the generic case we find the Killing vector, anzd the requireme(®.18. These now fix
the values ofp and & for the critical point.

U. . =diagonal2+ B+ v,2+ B+ v,2— B—, The value ofp for the second critical point follows di-
cpl gonalz Bty 2t Btyi-Bmy rectly from the first of Eqs(4.24), while we use Eq(4.18) to
By, 2} (421 fixalso &2. Along the line, the prepotentials are given by

@Q [(IN2)(2-¢-2y&)
zero eigenvalues. From the form of EQ.47), one can see P! ! _4(1_52) 2— &2 BE?
that the noncompact symmetries can contribute only to the ne (4.25
off-diagonal elements that are in the direction of the zero
modes of the pure hypermultiplet part &f They therefore Note that they now involve &-dependent mixing of the

modify the part (0,0,2) of Eq4.21). The result is that the parameters that appear in E4.19, but are all proportional

r
Thus, noncompact generators can enter when this matrix has PO)

eigenvalues are then to the sameQ". This comes about because, as we mentioned
. . 5 before, the relevant part is the 8) part of the isotropy
eigenvalueslf; ,;={3,3,0,1+ 1+ 6a%1- 1+6a?}, group. This isotropy group rotates within the full G1)

(422 while we move over the line. With onl§; and Tg used in
our gauging, the effective SP) still has its first two com-
ponents zero. That is why all entries in E¢.25 are pro-
portional to the same matri®". The third component of the
SU(2) part of the isotropy group is a linear combination of
Té and Tg, leading to the mixture in Eq(4.25. Using
1/ho=2p°®, we find for the second critical poifit

wherea is the weight with which the noncompact generators
appear(e.g., T, c=aT,).

We should remark that the critical point c.p. 1 does not in
general preserve the full U(XU(1) gauged symmetry. In-
deed, the gauge invariance could be spoiled by the presen
of a mass term for the gauge vector coming from the kineti
part of the hyperscalag8.2). Since the mass is related to the . 2(B-1)

norm of the Killing vectors of the gauged isometries, we see.p. 2: q={V,0,0¢,7¢}, pP=pcrs  Po= 1-2
that the invariance is broken anytinh’e,?<K,X¢0. This hap- Y 4.9
pens whenever we turn on the noncompact generators. In our (4.2
case,T,# 0 implies that at the c.p. 1 the U(X)U(1) isom- 6
etry is broken to the (1) generated b+ 2K;. E=02+r2= 2(1=pe) = 6—4(Aty) ,
As our present interest is specifically aimed at reproduc- o T 3g—1-2p8 3-p+2y—6By
ing the FGPW flow, from now on we restrict consideration to
T,.=0. This allows the existence of a single point where the 3(B—1)
full U(1) X U(1) gauge symmetry is preserved. N b e—
3B—1-2pg

We now go back to analyzing thBPS flowsthat can
originate from c.p. 1. Remember that with mixed vector and
hypermultiplets they have to satisfy the requirement

The = in the expression fof)" is dependent on whether the
3,Q"=0. (4.23 expression inW of which we have to take the modulus is positive or
negative.
This is not satisfied for a generic point in the manifold. How- °As mentioned above, we always have a full circle of critical
ever, it is satisfied on the liné.10 and thus we further points for these values @i, and 7.
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We find for the value of/V at this second critical point

_a(B-2y)  a(2+pd)

a2k eh
such that
Wepr_ 2T __211-pA-2y° o
Wepo (2+p0)°  4(2y=B)° '

The condition that the critical point is in the domain can
be written as

(pe—1)(1-)>0.

Notice that this is exactly the condition that the third and
fourth entries of Eq(4.21) (6 and r directiong are positive.

(4.29

These are the ones that are relevant when one computes t

eigenvalues of the matrix2.47) restricted to the line, and
excludes the possibility that the first critical point has IR
directions along the flow

PHYSICAL REVIEW D64 104006

indeed interested in having an UV and an IR critical point
such that we can reproduce the FGPW flow.

To understand the nature of such points we have to look
again at the Hessian matrices of the superpotential and at
their eigenvalues. At the first critical poifd.17), theld ma-
trix (4.21) reduces to

1 1

2 2

1 1

uC.p.l:diagona‘Ig—i_%ﬁvg—i_%ﬂv 12 2312)'

(4.33

The value of the vector scalar sector is still the characteristic
one of the very special vector scalar manif¢ii5]. The
values in the hypermultiplet sector follow instead the pattern
outlined by the formula2.47. As mentioned already, the
third and fourth entries are positive if we demand the exis-
tence of the second critical poinB& 1). If, in addition, one
satisfies the more stringent constraiit. — 5, then there are
wo IR directions, which, however, are not along the flow.
€At the other critical point the eigenvalues are given by

eigenvaluesi/; , 7={0,3,3,1+ 3/19-98,1- 51/19- 94},
(4.39

To summarize, we have presented above a two-parameter

model, whereB and y are free parameters arddefines an
overall normalization related to the AdS radius.

no matter which point is chosen on the critical circle. With
the limit S<1 that we already obtained, this implies that

We will now give more details of the models for specific there is always one IR direction. If the first critical point has
values of the parameters, leading also to the identification o, |R directiong< —5, then both critical points have an IR
the FGPW potential as a part of our two-parameter modelgjrection. This is thus the first example of a model with two

We will further restrict consideration to the brangh-1 and
thus 8<1. For definiteness we now choose the value aft
the second critical point as i9]:

pe=2=y=1- 5

(4.30

With this choice, the second critical point is thus at

c.p. 2: q:{vcrvoaacraTcr}v pcr:21/6,
3(1-p)

2
o= 5-35 ' o latTa5-3p

o 5-38
(4.30)

We are therefore left with a one-parameter family of model
with two critical points wheres fixes the ratios of the gaug-
ings. A second critical point appears onlyd& 1.

We can also compute the value of the cosmological con
stantW? at the critical points:

2 413 3
2 W, 27
2 _ 2 _ 2 cpl
Wc.p.l_ 4" c.p.2— 9 a, W3 2_ 32’ (4-32
c.p.

the relation that is found also [9], and which we generalize
here for arbitrarys.
Now that we have two critical points we still have to

IR fixed points. However, the flow along the line that we
consider does not connect in these directions. It is difficult to
indicate a flow along another line that would connect the
two, or to exclude this possibility.

Note that Eq.(4.34 is of the form(4.22, with a®=(15
—9B)/24. This can be understood as follows. As we stressed
before, any point in the manifold is equivalent. Thus what we
find at the second critical point should fit in the pattern that
we discussed for the first critical point. However, the genera-
tors T3 and Tg that appear in Eq4.19 are not in the isot-
ropy group of any other point of the manifold. Thus, in this
second critical point, the generatér with T,.=0 should be
interpreted as having a parg [giving rise to Eq.(4.29], a
part Tg, and a partT.#0. Therefore this second critical

oint should fall in the general analysis for a critical point

ith gaugings outside the isotropy group, i.e., the eigenval-
ues should be of the fornt4.22 where a measures the
amount in which the generatofg andTg contribute toT;,..
This principle could be used for an alternative, group-
theoretical, analysis of the possibilities for the second critical
point.

The contribution ofa?=(15—9p)/4 to the eigenvalues
arises in{ by the mixing of the scalars of the vector multip-
let and hypermultiplets.

This means that when vector multiplets are added to hy-
permultiplets, the appearance of IR directions can be due to
two different mechanisms. One is the presence of the hyper-

discuss their nature. As we have already excluded the posgirultiplets, which allows values as in E¢4.22, which

bility that the first critical point has IR directions along the would lead here to (3,3,1,1,0). The other is due to the pos-
flow, we are interested in whether these models have intessible breaking of the gauge symmetry, which occurs if their
esting applications for renormalization group flows. We aregenerators are outside the isotropy group of the critical point,
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such thatK? in the off-diagonal elements of Eq2.47) is It is therefore more convenient to study its stationary points
nonvanishing. This shifts the (1,1) eigenvalues to the value# the variableqV,o,¢,p}.
in Eq. (4.39). A general analysis of the E¢4.40 gives indeed only the
The resulting form of the superpotential is, using the paiwo expected critical points at
rametrization in Eq(4.10), _
c.p.1: o=¢°=0, V=1, p=e?/®=1 (4.4)

(1-8)

o 1 p® d
W= 1+ 38+ 5 (5-A~—5 (p®—2)cost(2y)|. ~andat

P (4.35 c.p.2: =0, V=3 p=2Y8 =1 (4.42
It is striking that for the choicer=3 and8=—1 one can The first is the expected isolated UV point. As explained
retrieve the superpotentiilpresented 9] above, we can identify it as an UV fixed point by considering

the leading contributions to thg function of the couplings
1 ¢={V,a,6,7,p} that are encoded in the eigenvalues of the
W= — P[(,36—2)cosr(2)() —(2+3p%], (436  matrix (2.46,
p

2
and therefore also the flow. For this value gfwe have 2
indeed one IR and one UV critical point:
uc.p.lz 1 ) (4.43
UV: CP1: p=1, ¢&=0, (x=0), 1

IR:  CP2: p=26, ¢=+1 (xy=*3%log3),
(430 which are all positive.
The second critical poin{4.42 actually represents a
whole circle of saddle points. We show here the explicit form
of the Hessian matrix at the poit=3 and r=0,

and the value oV at these critical points Mlc_p_1=§ for the
UV and W, , = 2%3for the IR, both representing AdS vacua.

C. FGPW flow in N'=2 theory 9 3 SUe3
Let us now give a closer inspection to the FGPW model 4 4
embedded inV=2 theory. In terms of the scalar manifold 3
isometries, the FGPW flow can be retrieved by gauging those 3 1
generated by Usp = o (4.44
3 3 Z = _ 21/6
Ko)= = (kitke)=—=(Ta+\3Tg)  (4.38
0" 2 0
9/2"6 —9/2"8 2

and by

Key=— 3ke=y3(V3Ts—T). 439 \I/Evgf)(s;le.zezl)g\(,av?[\r/]a;u;ai .are 0,3,3%1/7) and (1- \7), which is

As foreseen above, here the mechanism that determines
the appearance of an infrared direction is different from the
one shown for the hypermultiplets alone. In this case indeed

The corresponding superpotentia terms of all the co-
ordinate$ depends or¢ and 7 via the combinatior¢ in Eq.

(4.9 and is the negative eigenvalue comes from the mixed partial deriva-
tives with respect to the hyperscala¥s # and the vector
W= — 16(V+ £2)2+ 202 [ 14 (V+ £2)2]+ p22[ o4 multiplet scalarp. The null e'igenvalue is related to the mass-
4 pZV{ V+&) o [AH(VH )T+l less Goldstone scalar that is eaten by the vector combination
4 3. 42 5 4 which becomes massive at this point.
FVIHAVE 54 (14 £7)°+ 2V (1+3¢7) ] We also want to point out here that the presence of a
1808 (V— £2) [14 024 (V4 £2)2 wholg line of critical points should be connectgd to the fact
8p7 (V=) [1+ 0+ (V4] that in the dual CFT one expects to have a line of exactly
+4V[&5—3£2]1172 (4.40  marginal perturbationgt3] to the theory at such an IR point.

After identification of the correct UV and IR end points,
we now turn to the second important guideline for the iden-
161 [9] W was chosen to be the definitiohi= —|W| rather than tification of the FGPW discussed in Sec. lll, which was re-
the one given in Eq(2.21), and thus differs by a sign from ours. To lated to the mass terms for the gauged vector fields, and thus
compare our flow equations with those[6f, we have to take our to the norm of the gauged Killing vectors. In the FGPW
coupling constant to be 2/3 rather than 2, agdh example, at the UV fixed point both the graviphoton and the
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gauge vector are massless, whereas at the IR point only the/perscalars that acts as a Goldstone boson. Therefore the
graviphoton is still massless and is the gauge vector of thé&ull supersymmetry transformation rule f&, will also con-
residual U(1}) symmetry. tain a term of the typ® ,(4.9).

In order to translate these facts into our present language, If we associate with the graviphoton its Killing vector
we observe that all along the flow wheve=0 andV+ &2 proportional to Kz, we find that the U(1l) symmetry
=1, the two Killing vector ) andK  are proportional to  gauged by the graviphoton is generated by
one another and are equal to

22/3
K =—Kg, (4.51)
0 A \/é R
0
Kay=-— \/EK(o):?’ | (4.49  while the generator of thébroken U(1); isometry associ-
ated with the massive vector is given by
-6
22/3 1
and this translates the statement that along the flow the com- B—T TKm_ 2K (o) | - (4.52
binationV+ 62+ 72 and theo field should remain constant. 2

H H 2 2\
Itis straightforward to see th‘fj“sK(o)(VjL )= 5K(o)0 At the UV fixed poinbne can again rewrite the supersym-

=0 and the same fdK,) . o _ metry rules as in Eqg4.49 and (4.50, provided that now
Equation(4.45 then allows us to identify the graviphoton gne makes the identifications

with the gauge vector of the U(RZU(1)XU(1)CSU(2)

X U(1) symmetry generated by 1
A= —=(A%+\2A}), (4.53
Kr=V2K+ K@) (=0 alongthe flow. (4.46 3
Let us then analyze the relevant supersymmetry transfor- 1 0
mations at the IR and UV fixed points in order to identify B.= ﬁ(Aﬂ_ \/EAM)' (4.54
which mixture of the vector fieId.le gives rise to the gravi-
photon and to the extra vector field. Again, the graviphoton field is identified with thé, com-
We find that upon defining bination, and the gauge vector witf), .
If we relate to these vectors the Killing generators of the
13/ A0 U(1) isometries that they gaudere remark that at this point
A= N \/—%+2A}L : (447 they are both massless and that both are gauge vectors of
U(1) isometrie3, one can see that the graviphoton gauges the
U(1) generated by
21/3 L o
B,= %( V2AL—AD), (4.49 1
KA:ﬁ(K(oﬁ‘ \/EK(l))! (4.59
the SUSY transformations at the IR point reducdablead-
ing order in the Fermi fields whereas the massless vector gauges that generated by
i 1
O, (//Mi=Dluei-l-m(y#,,pei—4gwypei).7:””+- - KB:ﬁ(K(l)_\EK(O))- (4.56

4.4
449 This means that along the flow tl®symmetry gauged by

6 the graviphoton has rotated.
S A, =i T"blﬂei , The interpretation of this fact in terms of the dual CBT
is the following. When one adds a mass term to the CFT at
the UV point, theR current connected to the graviphoton
5B =— E?y N (4.50 becomes anomalouyse., the original graviphoton acquires a
e 2 b ) mass along the flojwwhereas the nonanomalous one is the
combination of the original graviphoton and the other gauge
where we have also defined=d.A. Therefore, by these vector that keeps massless. As stated[8f, this latter
equations one identifies the graviphoton field with thg  couples to the Konishi current, and therefore the one that
combination, and the vector at the head of the massive vect@ouples to the anomaly-free U(d rurrent must be a com-
multiplet with B,, . bination of the original graviphoton and this latter.
At this IR point for the mechanism we showed, the true In detail, at the UV fixed point, botIKfiV and ng are
massive vecto3,, is given by an appropriate sum of Eq. equal to 0, but, as we move away fromdtand(or) 7 will
(4.48 and D ,q, whereq is the right combination of the vary and then they will no longer be 0. For the sake of
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simplicity, choosing th&d=% and7=0 point between the IR =<°) and in the lower supersymmetriX{=T'?) caseg45].
points(4.42), we can also keep= 0 for all the flow(indeed, The latter will be useful in trying to better identify the
for such conditiong3”=0 also, no matter what the, V, and  supergravity details that allow one to select precisely the
p values and parametrize the other variablesés¢ and  dual conformal field theory operators. This will continue the
V=1-£% Then the Kiling vector of the broken U(3) analysis of the previous section along the line§4f].
isometry will be parametrized by This paper has uncovered the properties of a general class
of 5D N'=2 gauged supergravities, which have a rich struc-
ture of vacua and interpolating flows. As a first general re-
sult, we have specified the set of conditions under which
(4.57  supergravity models coupled to both vector and hypermultip-
lets, with Abelian and non-Abelian gauging, give riseX0
=1 BPS domain walls connecting different critical points.
. . . _As more specific results, we performed a systematic study of
anoll th2|s vlwll ther)«(efcz(re give rise to a mass term prqpor.nonalu(l) gaugings of the toy model with the universal hypermul-
to szlz fngY KK for the B, vector field (with kinetic tiplet as well as a thorough analysis of a simple model with
term —3Fy): one vector multiplet and one hypermultiplet. We studied a
family of /=2 supergravity potentials with nontrivial vacua
. 4.59 that are parametrized by two real numbers. As another inter-
(1-£%)? esting result, this model is found to produce, B+ —1 and
y=3/2, an N'=2 description for the kink solution of9]
This is precisely 0 at the UV fixed point and flows to 6 previously known within the\/=8 theory, and therefore of-
x 24392 at the IR. This means also that at this point itsfers a two-parameter generalization of this case. The dual

Kp=—3y3271°

m O O O

2
m3=27x23g?

conformal dimension is given by gauge field theory side of the models with arbitrg@gyand y
is certainly worthy of investigation.
> It will be quite natural to apply our apparatus for the
Eo=2+ 1 /1+ =24 \/7 (4.59 search for flows and critical points in more complicated ex-
ngp_z amples. The first one is a simple model with no vector but
two hypermultipletd46], which has been shown to lead to
which was the expected one for this massive vefr the RG flow proposed by Girardello, Petrini, Porrati, and

An interesting example regarding flows in the theory with Zaffaroni[32]. The second kind of example is given by mod-
two hypermultiplets spanning the ,G/[SU(2)XSU(2)]  els where non-Abelian gaugings can be explicitly performed
manifold has recently been investigated4d], where, using and thus need coupling to more vector multiplets. Another
N=8 supergravity, it has been shown that the effective masgne of investigation concerns the realization of models dual
term of the vector fields reduces to the second derivative ofp flows from conformal to nonconformal field theories that

the warp factor. Although Eq(4.58 does not comply with \yoyid need the presence of both AdS and Minkowski vacua
this request, we still have to take into account the Cont”bu'simultaneously in the same model.

tion coming from the noncanonical normalization of the ki-
netic term. In fact, we have seen in the previous section th 4
the fields that have the interpretation of graviphoton an
(gauge vector rotate along the flow. Thus, one can still ex-
pect the equatiom?~A” to arise upon performing some

nontrivial field redefinitions.

A further class of models is the one possessing diverse IR
xed points. These are aimed at improving the understanding
f a possible supersymmetric realization of the smooth
Randall-Sundrum scenario. Regarding this subject, our work
has come to suggest the following picture. In the presence of

Presently, the vector field kinetic term has in front a func_hypermy_ltlplets and vector mL_JIt|pIets_5N=2_ ga“@!ec?' su-
tion of the vector modulup. This signals the mixing be- pergravmes may have IR AdSixed points which eliminate
tween the two vectors to be resolved. One hopes that a suit?® first reason for the no-go theorem proved[4n5] for
able rescaling of the vector fields yielding the standard’€ctor multiplets where only UV critical points exist.
normalization of the kinetic terms will also do the job of ~ We also found that the interpolation between two IR fixed
disentangling this mixing and of giving the correct relation Points (if such examples are found in the futurfor the
between the effective mass function and the warp factor. Smooth solution must proceed through the point wher&/the

superpotential vanishes. As emphasized in our discussion,
V. DISCUSSION AND OUTLOOK this would not disagree-with the monotonicity theorem for
the warp factoA”<0. This led us to conclude that a smooth

Generic gauged supergravities were not considered reRSlIl scenario can take place in the presence of vectors and
evant from the perspective of a string theory in a flat backhypermultiplets.
ground until very recently. Indeed, due to the discovery of On the other hand, the conjectured holograghilkeorem
the AdS-CFT correspondence, the AdSX® background of s violated since the function c~W~2 blows up atw=0.
string theory and the gauged supergravity in 5D came intd'his poses some problems for the validity of the AdS-CFT
the spotlight both in the maximally supersymmetrig®(  correspondence at such points. However, the general

104006-19



CERESOLE, DALLAGATA, KALLOSH, AND VAN PROEYEN PHYSICAL REVIEW D64 104006

understandint is that at the vanishing points # the phys-  solutions to be valid when account is taken of quantum cor-
ics may not be captured by field theory but by supergravityyrections. It is likely that the clarification of the 11D origin of
and therefore the violation of the holograplsitheorem sig- the 5D models, taking into account anomalies, fluxes, and
nals that gravity near the wall cannot be replaced by fieldluantized charges of-branes, will shed some light on
theory. This obviously does not happer]x — « where the breaking of continuous symmetries of gauged supergravities
c theorem is expected to be valid and a dual field theory 40 their discrete subgroups. In such case the method devel-
well defined. oped here may provide exact supersymmetric vacud of

In this paper we found the general rules for critical pointsString theory.
and zeros of the superpotential. In more general models, pos-
sibly with the use of other scalar manifolds and different ACKNOWLEDGMENTS
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One could also explore how much of our analysis of 5D
can be exported to 4D and 6D, where the geometry described
by hypermultiplets is still quaternionic and where a lot of  Wwe used in this paper the following indices to describe
work has been done fa'=2 Supergravity Coupled with vector mu|tip|ets and hypermu|tip|et3:
vector multiplets only.

Another issue that would be very interesting to discussis x 0,...,3,5 local spacetime
the 11-dimensional origin of the theory at hand. It is indeed
known that five-dimensional supergravity with gauging of ;o ... 3 4Dlocal spacetime
the UQ1) isometry generated by, can be obtained from —
M-theory compactifications on Calabi-Yau manifolds in the
presence of5 fluxes[7,48].

The same question could be addressed for the new gaug-
ings proposed in this paper. At first sight their higher dimen- r 1,2,3  SU2) triplets
sional origin seems quite mysterious, as other isometries are
involved, in addition to the shift in the scalar field that was | 0,...n vectors
discussed ir7,48.

A related issue is how much of our analysis of domain

APPENDIX A: INDICES

1,2 SU2) doublets

walls and supersymmetric vacua may survive in the ekact X 1,...n scalarsin vector multiplets

or string theory rather than in classical 5D supergravity. The

experience with supersymmetric black hole attractors and A 1,...,2 symplectic index for hypermultiplets
guantization of charges suggests the following possibility.

Our domain wall solutions interpolating between supersym- x 1 . 4 scalars in hypermultiplets

metric vacua may be hoped to be exact solutions of quantum
theory at most for a restricted values of gauging parameters.
At the level of 5D classical supergravity these parameters
may take arbitrary continuous values. Classically, there are
no restrictions on the parameters of our model. Originally, « 1,...,8 SU2,1)isometries (A2)
before gauging, they are just parameters of global symme-

tries of ungauged supergravity. These symmetries may well  AppENDIX B: REALITY CONDITIONS AND SU @

A 1,...n+4r allscalars

be broker_1 by quantum effects like instantons. Therefor_e it NOTATIONS
would be inconsistent in the presence of quantum corrections
to perform the gauging for continuous gauging parameters. We first repeat that S@) doublet indicesi,j, ... are

Only for discrete values of the parameters do we expect theaised or lowered using the NW-SE convention dyy= el
with €,,=1. The same applies to the Sp{2 indices

A,B, ..., where a constant antisymmetric mati,g is
"This argument was suggested in discussions with both M. Porused, satisfyin@C ,gCB= 6,C, with CAB=(C,p)*. By a re-
rati and L. Susskind. definition, this matrix can be brought into the standard form
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(°, V). These matrices also enter into reality conditions. Re- In this parametrization, the SB) (parameters\’) and
ality can be replaced by “charge conjugation.” The chargeU(1) (parameter\) isometries that vanish at the origin take
conjugation of a scalafa scalar also in spinor space, an @ simple form on the variables:

SU(2) scalar as well as an Sp(Rscalat is just its complex

conjugate. Charge conjugation does not change the order of 5( Z; ) B ( —Krg

Z3
Ar:%i[((fr)Ar—Fle“]( _, )
2

spinors. For a symplectic Majorana spinor, the charge conju- -2, Ko

gate is equal to the spinor itself. However, for a bispinor, one (C4)
has to introduce a minus sign. Thus, e.g., for Majorana

spinors f&)* =(N&)C=—(\)CEC= —\E. We gauge withkK = K, + BK,. Apart from the critical point

Gamma matrices are “imaginary” under this charge con-at the origin, vanishing Killing vectors occur only if there is
jugation:yS= — y,. For any object that has $p) indices or @ zero mode of the determinant of transformations, i.e., if
Sp(2r) indices, the definition of charge conjugation uses thd@|=B. We find two equations:
symplectic metric ¥;)®=¢;(V))*=(V)* and (V)€

=gl (VI)*=—(V\)* or, similarly, (V4)C=Cag(Vg)*. All (ast+B)z1— (a1 —i@3)2,=0,

the quantities that we introduce in the text are real with re- _

spect to this charge conjugation, e.g., (ayt+iaz)zi+(az—B)z,=0. (CH)
fa=(fa) =2 Cas(flp)*. (B1)  One of the two defines the@eal two-dimensional plane of

_ _ _ _ critical points, and then the other is automatically satisfied if
Symmetric matrices in S(2) space can be expanded in three|o|=g. In terms of the angular coordinates, the critical line

components as is at
— —1; ij . .
R(Ij)_IRr(Ur)lj or Rr_§|R(|J)(O'r)” (Bz) i tle a1+|a2 2ie a/l—|a2
e'fcott = ——-, e?e=—"_—"=,
Invariance ofR;; under charge conjugation translates into aztp aptia;
reality of R". The usualc matrices are ¢');', and (o});; is
defined from the NW-SE contraction conventiono-rIij 21 _(a1)2+(a2)2
E(ar)ikskj. This leads, e.g., t&;;R"=2R'R". cot'z 6= (as+B)? (C6)
APPENDIX C: TOY MODEL IN ANOTHER Although there is clearly no difference in the choice of the
PARAMETRIZATION direction in SU2) space, the choice of angular coordinates

The manifold SU(2,1)/SU(2)x U(1)] can be viewed as make_s _the gauging in the directian diffi(_:ult. For example,
an open ball in real four-dimensional space. Written in com-the Killing vectors in the angular coordinates are
plex coordinateg; andz,, the domain igz;|?+|z,|><1. A
useful parametrization has been introducefili4, and used
in [12] to discuss the toy model that we treated in Sec. IV A.

K,=(0,—sing, — coS¢e cotd,cose sin 16),

The variablesz; andz, are written as functions of variables K,=(0,—cosg,sing cotd, —sine sin~16),
r,0,,4 ast
K53=(0,0-1,0,
z,=r(cos: )T z,=r(sinih)d? )2
(C1) K4=(0,0,0—1). (C7)
The manifold is covered by This gives the impression that;K 3+ 8K, never vanishes,

not even atr =0. However, in this case, the two combina-
tions ofzmentioned above amg =0 andz,=0. The latter is

the line #=0 where the parametrization degenerates. Note
that these singularities are coordinate singularities. There is

osr<1, 0<so0<m, O=s¢,y<2m. (C2

The determinant of the metric is

6P nothing generically different for gauging in the direction
etg= resino _ (3 “3,” as this direction is equivalent to the others in the sym-
4(1—r?)5 metric space. The different features that are mentioned in

[12] are artifacts of the parametrization, which is singular at

Thus in this parametrization the metric is singularria 0 r=0 and atf=0. It is precisely aty=0 that these authors

and for #=0. These belong to the manifold, and thus needobtain different results from ours.

special care. To avoid the singularities, and for showing the main fea-
tures, we will further concentrate on gauging in direction
“1” for the SU(2) and the W1) direction; thus

The relation to the variables in Sec. lll i§=(1—S)/(1+9)
andz,=2C/(1+9S). a,=a3=0, «a18>0. (C8
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FIG. 4. Contours of constaW in the plane (Re;,Rez,) for a;=/3/2 andB=23/2 (left) and fora;= 8= \/3_/2 (right).

With the latter choice, the critical line is @t=0, §=m/2, or ~ As W depends just on two real parameters, we can plot it in
Z,=17,. The zeros that we mentioned in Sec. IV A occur nowthe plane for reak; andz, to see the whole picture. This

for leads to the contour plot in Fig. 4 for a typical cg8e a;
(left figure). Observe that it is similar to Fig. 1, which rep-
N , 2o resented the gauging in direction “3” in the other represen-
¢=0, O=zm T :a1+/3' (C9  tation. The crucial line is the diagonal and along this line the

potential is again the one of Fig. 2. We also clearly see that
This point is only part of the domain 8> «,. The Kiling  the line#=0 (horizontal line in the graptdoes not have any
vector is nonzero at such points. In this case, the nonzergpecial properties. The critical points that were found there in

component is [12] came out of the analysis only due to the singular nature
of the parametrization.
Ky=B—a;. (C10 For the casg8= a4, we have
The total prepotential can be written as 1— |z + 22|
. (C13
o (BT 200B(°=2) () (4 ar+ ) ~ 2l
6(1—r?)2 ' The potential is then constant on the limg=2z,, and we
(C11) have the right plot in Fig. 4. The culmination points of the
lines are ar =1, i.e., they do not belong to the manifold.
where we use This establishes the equivalence of the two parametriza-
o tions. In particular, only one critical point or connected set of
[=r?sinfcose=2,2,+2,2,. (C12 critical points is possible.
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