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Perturbation spectrum in inflation with a cutoff
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It has been pointed out that the perturbation spectrum predicted by inflation may be sensitive to a natural
ultraviolet cutoff, thus potentially providing an experimentally accessible window to aspects of Planck scale
physics.A priori, a natural ultraviolet cutoff could take any form, but a fairly general classification of possible
Planck scale cutoffs has been given. One of those categorized cutoffs, also appearing in various studies of
quantum gravity and string theory, has recently been implemented into the standard inflationary scenario. Here,
we continue this approach by investigating its effects on the predicted perturbation spectrum. We find that the
size of the effect depends sensitively on the scale separation between cutoff and horizon during inflation.
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I. INTRODUCTION

During the inflationary phase of the very early univer
~see e.g.@1# for an overview and references! space-time is
assumed to expand in a quasiexponential fashion. Quan
fluctuations of the inflaton field are continuously redshift
until their wavelength equals the physical horizon distan
whereupon they become ‘‘frozen’’ until they reenter t
Hubble volume during the ensuing radiation or matter do
nated epochs. These fluctuations are thought to be res
sible for seeding the temperature fluctuations of the cos
microwave background radiation~CMBR! and the gravita-
tional clustering of matter, whose statistical properties m
therefore provide a window into the realm of high-ener
physics.

Crucially, in the case of a sufficiently long period of in
flation, all of the scales of cosmological interest today cor
spond to wavelengths below the Planck length early on w
the initial conditions are prescribed. Therefore, inspired
similar studies in the context of Hawking radiation@2–8#, a
series of papers@9–12# has investigated the sensitivity of th
predictions of inflationary scenarios with respect to chan
of trans-Planckian physics. Those studies encoded tr
Planckian physics in a simple way as nonlinearities of
dispersion relation of the Fourier mode functions~see also
@13# for a different application of this ansatz!.

Since linearity of the field and hence Gaussianity of
fluctuations remains unchanged, the potential conseque
of such modifications are limited to a possible scale dep
dence of the power spectrum and a possible change in
overall amplitude. It was shown@12# that under rather gen
eral conditions on the dispersion relation no observable
fects can be expected, although Ref.@9# reaches a somewha
different conclusion. However, those studies suffer from fu
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damental limitations. First of all, with the exception of Re
@11# all of the employed dispersion relations were chosenad
hocso as to provide bounds on the frequency, wavelength
both without reference to an underlying theory. More imp
tantly, the question of mode generation, i.e. how each se
classical quantum field degree of freedom emerges out of
Planck regime, has not been addressed.

In contrast, Ref.@14# proposes a scenario where the U
cutoff is provided by a modified quantum mechanical co
mutation relation that limits the experimentally attainab
resolution of small spatial distances@23#. This UV cutoff is
one of very few types of short-distance structures that app
in the classification presented in@15#, which applies to all
quantum gravity theories that effectively represent each
mension by a linear operator. Indeed, corresponding sh
distance uncertainty relations of this kind have appeared
various studies of quantum gravity and string theory, see
@16#. In Ref. @14# this short distance cutoff has been impl
mented into the theory of a minimally coupled scalar fie
living in an expanding Friedmann-Robertson-Walker~FRW!
background and it has been shown how the decoupling
grees of freedom are continuously generated dynamicall
the time of their ‘‘Planck scale crossing.’’ Here, we aim
extend the analysis of@14# by estimating the magnitude o
any corrections to the standard predictions for the statist
distribution of inflationary perturbations arising from th
modified short-distance behavior.

The approach in Ref.@14# which we will follow here uti-
lizes that, as has been shown in@17#, the quantum gravity
and stringy uncertainty relation cutoff~see e.g.@16#! can be
modeled by corrections to the commutation relations

@x,p#5 i ~11bp2! ~1!

and its higher dimensional generalizations. It is easy to ch
that such correction terms give rise to a lower boundDxmin

5Ab for distance measurements. The form of these corr
tion terms is unique to first order inb. Correspondingly, the
signature of the first order effects of this type of natu
cutoff should be unique when moving up from low energie
see@18#.
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Hilbert space representations of relations of the type
Eq. ~1! are given by introducing an auxiliary variabler
which is essentially the momentum variablep but differs
from it at small distances, i.e. at distances close toDxmin .
While this is initially a quantum mechanical structure, it c
be implemented into quantum field theory, see Ref.@14#.
Within the scalar quantum field theory on an inflationa
background as defined in Ref.@14# one finds that, interest
ingly, those variables,k̃, in which the mode equations de
couple, no longer strictly coincide with the comoving m
mentum variables, k, although they do of course
approximately coincide for smallk, i.e. for large distances
Conversely, this means that the comoving momentum mo
now decouple only when they have grown to large pro
distances and that the comoving momentum modes
couple initially when they emerge from the cutoff scale. F
the quantum theory of the actual mode creation mechan
see Ref.@14#. Explicitly, one obtains within this framework
the following mode equation for the decouplingk̃ modes:

f k̃
91

n8

n
f k̃

81S m23S a8

a D 8
29S a8

a D 2

2
3a8n8

an Df k̃50.

~2!

Here,a is the scale factor of the FRW line element and
defined the functions

m~h,k̃!ª2
a2plog~2b k̃2/a2!

b„11plog~2b k̃2/a2!…2
~3!

n~h,k̃!ª
e23/2plog(2b k̃2/a2)

a4
„11plog~2b k̃2/a2!…

~4!

that utilize the ‘‘product log’’ plog, which is the inverse o
the functionx→xex. The solutions are automatically define
only from a finite value ofh, i.e. every mode possesses
‘‘creation time.’’ It is the time when, in terms of proper dis
tances, the mode equals the size of the cutoff scale, i.e.
the conformal timehc defined implicitly by

a~hc!5 k̃Aeb; k̃ Dxmin . ~5!

At the creation time, the differential equation possesses w
is called an irregular singular point. To see this, note that
function plog which enters the differential equation throu
the functionsm and n is not analytic at the creation time
Below, we will further discuss possible implications for th
choice of initial conditions and therefore for the choice —
possible uniqueness — of the initial vacuum.

All physical observables in our model universe can
expressed in terms ofk̃ instead of the usual Fourier variab
k. This argument applies also to the transfer functionT(t,k̃)
which relates today’s observable perturbations to the hori
crossing amplitude off k̃ , provided that the perturbation am
plitudes are measured as a function ofk̃. In practice, these
measurements are carried out on cosmological scales w
k̃5k to extremely good accuracy, so we do not expect a
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consequences from the relabeling of physical observa
such as the angular size distribution of cosmic microwa
background radiation~CMBR! fluctuations. In other words
any statement about the scale dependence and Gaussian
the horizon crossing amplitudes off k̃ translate into corre-
sponding statements about CMBR fluctuations, at least to
same extent as in the standard theory. Let us note, howe
that this would not be true if the cutoff had different prope
ties for different fields, e.g. if linear metric fluctuations b
have differently on small scales than the inflaton field. T
following analysis assumes that this is not the case@24#.

Equation ~2! is linear in f k̃ so that Gaussianity of the
distribution of fluctuations ink̃-space is protected. Conse
quently, we expect no deviations from Gaussianity owing
the proposed modifications of the short-distance behav
We can therefore restrict attention to examining possible n
effects on the scale dependence and overall amplitude o
power spectrum.

II. ANALYSIS IN OSCILLATOR VARIABLES

It turns out to be very convenient to change from the fie
variables used in Ref.@14# to slightly new variables defined
by

w k̃[n1/2f k̃ . ~6!

Indeed, while the mode equation Eq.~2! in terms of the
original field f is of the type of a harmonic oscillator with
friction, there is no friction term in the mode equation wh
written in terms of the new variablew:

w k̃
91v2~h!w k̃50 ~7!

wherev(h) obeys the time dependent, nonlinear dispers
relation

v2~h!5m26S a8

a D 2

1S n8

2n D 2

2
3~a8n81a9n!

an
2

n9

2n
.

~8!

The Wronskian condition from Ref.@14# now also simplifies
to

w k̃w k̃
* 82w k̃

8w k̃
* 5 i ~9!

as usual. Note also that if we denote the standard field m
with a vanishing minimum position uncertainty asx k̃
5w k̃(b→0), we obtain the usual equation of motion for th
k̃ mode of a free, minimally coupled scalar field in an e
panding FRW space-time, wherex is in the conventions, of
e.g.,@19,25#:

x k̃
91v0

2x k̃50 ~10!

with

v0
25 k̃22

a9~h!

a~h!
. ~11!
1-2
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PERTURBATION SPECTRUM IN INFLATION WITH A CUTOFF PHYSICAL REVIEW D64 103501
Again, there is the question of initial conditions forw k̃

that determine the vacuum forf̂. Ideally, regularity argu-
ments at the irregular singular point of the mode equati
encountered at the creation timehc for each mode, should fix
the choice. We do not have a definite answer at this point,
asymptotic methods will shed some light on the situati
Some indications of vacuum fixation by regularity argume
are sketched in the Conclusions. Indeed, a solution of
singularity problem is not strictly necessary for the pres
analysis. It will be shown below that the evolution ofw k̃ is
essentially adiabatic from a certain timeh i onwards. The
state off̂ at h>h i can be determined by consistency arg
ments to be the adiabatic vacuum~e.g.,@19#!

w k̃~h!5
1

A2v~h!
expS 2 i E

h i

h
v~h̃!dh̃ D , ~12!

where the normalization follows from Eq.~9!. This is be-
cause, as argued in Refs.@12,20#, any small deviation from
the adiabatic vacuum close to the Planck scale would lik
suppress inflation altogether due to back-reaction of the
ergy density contained inw k̃ on the cosmic expansion. I
order to be consistent with the assumptions of Ref.@14# ~i.e.,
negligible back-reaction!, any admissible initial condition
needs to converge to the adiabatic vacuum as soon as
latter is well defined.

III. ADIABATIC ANALYSIS

Equation~7! belongs to the class of harmonic oscillat
equations featuring a dispersion relation that is asympt
cally linear for small physical wave numbers but becom
nonlinear at high wave numbers~small wavelengths!. In the
context of cosmology, such systems were investigated
Refs.@9,10,12#, and in the framework of Hawking radiatio
many times before~see@21# for references!. Unlike in the
above references, where the dispersion relation was typic
tailored ad hoc to fit some desired shape, Eq.~8! followed
directly from a general study of realistic short-distance str
tures of space-time and may therefore perhaps be consid
more fundamental~see also Ref.@11# for a similar approach!.

It is useful to express the separation between the cu
scale~here parametrized byb1/2) and the inflationary horizon
scale in terms of the dimensionless parameters defined as

s[b1/2H. ~13!

If Ab;Dxmin is identified with the Planck length, the am
plitude of temperature fluctuations of the cosmic microwa
background indicates thats;1025 at the time when the
presently observable scales left the horizon during inflati

In order to generalize the notion of ‘‘horizon crossing’’
our nonstandard equation of motion, we Taylor-expand
~8! arounds50 and find thatv(h)25v0

21O(s2). Corre-
spondingly, the usual definition of horizon crossing in ter
of k̃5aH is valid to within the same accuracy.

We are interested in sources of deviation from the st
dard~i.e., b→0) result for the scale dependence and ove
10350
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normalization of the horizon crossing amplitude off k̃ . Fol-
lowing Sec. II and recognizing thatw k̃5f k̃1O(s2) at hori-
zon crossing, we need to compare the amplitudes ofw k̃ and
x k̃ at the horizon crossing timehh , which is when k̃
'a(hh)H @26#.

One possible signature of the cutoff in the spectrum is d
to nonadiabatic particle production during the evolution fro
h i to hh , which may give rise to a modulation ofw k̃(hh)
around the amplitude predicted forb→0 @12#. This may, in
turn, be reflected by a breaking of scale invariance of
perturbation power spectrum. Therelative magnitude of this
effect, denoted in Ref.@12# as bk , can be shown to be
bounded by the maximum of the adiabaticity parameter

C~h!5Uv8~h!

v2~h!
U . ~14!

If C&1, the usual notions of semiclassical quantum fie
theory in nonstationary space-times apply, with the adiab
vacuum, Eq.~12!, serving as a natural ground state. O
finds numerically thatC'1 for h5h i and drops to neglib-
igle levels afterwards, where

h i'hc~11s2! ~15!

for s ranging from 1027 to 0.1. Perhaps not surprisingly, th
beginning of adiabaticity approaches the initial singular
arbitrarily closely if cosmic expansion becomes sufficien
slow. Conversely, any bound on nonadiabatic particle p
duction due to the cutoff derived from inflation is strong
than the equivalent bound from cosmic expansion today. F
thermore, if one defines a natural time scale for the evolut
of w k̃ at the timeh i as t(h i);1/v(h i), one can check nu-
merically thath i'0.75t. In other words, the ‘‘non-adiabatic
epoch’’ following the Planck scale crossing of each mo
lasts about as long as the typical evolution time scale of
mode itself. Whatever physics determines this phase
mains, for the time being, unknown. However, as argued
Sec. II, self-consistency demands the solution to conve
onto the adiabatic vacuum as soon as it is well defined~i.e.,
as soon asC!1) @12,20# and this is the case for allh*h i .

Having shown that scale invariance is preserved ifs is
small, we need to consider the overall amplitude of t
power spectrum. Taking the adiabatic solution Eq.~12! as a
reasonable approximation to the exact functionsw k̃(h) and
x k̃(h) on length scales larger than the cutoff but smaller th
the horizon scale~where expansion violates adiabaticity!, i.e.
for timesh i!h!hh , one finds that

D~h![
w k̃~h!

x k̃~h!
5S k̃

v~h!
D 1/2

. ~16!

A good estimate for the impact of the nonlinear dispers
relation on the amplitude of the power spectrum is obtain
by noting that this expression forD(h) remains approxi-
mately valid untilhh , since cosmic expansion affects bo
solutions in roughly the same way. It is readily verified
this case thatD(hh)511O(s2). Hence, the impact of the
1-3
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ACHIM KEMPF AND JENS C. NIEMEYER PHYSICAL REVIEW D64 103501
cutoff on the perturbation spectrum depends crucially on
separation between the cutoff and the Hubble scale, b
negligible if s!1.

IV. SCALING ANALYSIS

The scaling behavior of the perturbation spectrum c
also be investigated by studying the scaling behavior of
wave equation, Eq.~2!. Let us begin by considering the cas
of an exactly de Sitter type expansion. In this case, we ex
that time translation invariance is broken neither by our
troduction of a cutoff nor by the background expansion.
therefore expect a scale invariant perturbation spectrum.

Indeed, we first observe that iff k̃(h) is a solution to the
k̃ mode equation andr is any arbitrary positive number the
f k̃(rh) is a solution of the mode equation for the moderk̃.
This is straightforward to verify and it is of course also tr
for the usual inflationary scenario without a cutoff.

The solutionsf rk̃(h) that are obtained in this way b
scaling the solutionf k̃(h) all obey of course the same initia
conditions. We can also conclude that ifh is a special time
for the solutionf k̃ , then, correspondingly,h/r is a special
time for the solutionf rk̃ . For example, if we denote th
creation and the horizon crossing times of the modef k̃ by
hc andhh , then the modef rk̃(h) possesses the creation a
the horizon crossing timeshc(rk̃)5hc /r and hh(rk̃)
5hh /r .

Let us further assume that the solutionf k̃(h) is normal-
ized with respect to the Wronskian condition. We also ne
that all the solutionsf rk̃(h) are normalized with respect t
the Wronskian condition for the respectiverk̃ modes. As is
straightforward to verify, the ansatz

f rk̃~h!5N~r !f k̃~rh! ~17!

yields

N~r !5r 3/2 ~18!

so thatf rk̃(h)5r 3/2f k̃(rh), and therefore

f rk̃~h/r !5r 3/2f k̃~h!. ~19!

Choosing forh the horizon crossing time of thek̃ mode we
now obtain how the horizon crossing amplitude scales w
scaling the decoupling momentum

f rk̃„hh~rk̃ !…5r 3/2f k̃~hh! ~20!

which means

f rk̃~horizon crossing!;r 3/2. ~21!

In order to make contact with the conventions in the lite
ture, let us now recall that, usually, field variablesc(h,k) in
comoving momentak are obtained by first scaling from
proper position coordinates to comoving position coordina
and then, second, by Fourier transforming to the comov
momentum. In@14#, however, we obtained fieldsf(h,k)
over comoving momentak by first Fourier transforming from
10350
e
ng

n
e

ct
-
e

d

n

-

s
g

proper positions to proper momenta and then, second
scaling to comoving momenta. However, scaling and Fou
transforming do not commute. As a consequence, as
readily verified,

f~h,k!5a3c~h,k! ~22!

and in the de Sitter case

f~h,k!52
H3

h3
c~h,k!. ~23!

As far as present day observations of cosmological scales
concerned, the distinction between comoving and decoup
momenta does not matter and we therefore obtain from
~20!

c~hh /r ,rk !5r 23/2c~hh ,k!. ~24!

We therefore finally obtain for the fields over comoving m
menta as conventionally defined the scaling behavior of
horizon crossing amplitude

c~horizon crossing,rk !;r 23/2 ~25!

which yields indeed the usual scale invariant spectrum:

^0uc†~horizon crossing,rk !c~horizon crossing,rk !u0&

;r 23. ~26!

Indeed, this was to be expected because neither the b
ground de Sitter space, nor our introduction of a cutoff, n
the choices of initial conditions~all solutions being obtained
from another by mere scaling! broke time translation invari-
ance.

On the other hand, in the case of a non–de Sitter ba
ground, the spectrum is of course not scale invariant. In
presence of our cutoff we will then obtain additional sca
invariance breaking effects on the spectrum, because of
new cutoff dependent terms in the wave equation.

V. CONCLUSIONS

We investigated the signature of the cutoff in the pert
bation spectrum from two perspectives, and in both cases
did not need to solve the mode equation explicitly. The ad
batic treatment in Sec. III is based on the fact that in orde
be consistent with inflation, each mode needs to be in
adiabatic vacuum shortly after the mode is created, whe
the scaling analysis of Sec. IV utilizes that the wave equat
scales trivially and that there is also no reason for the~still
unknown! initial conditions to break the~almost! time-
translation invariance of the background space-time. B
approaches show that the resulting fluctuation power sp
trum is indeed scale invariant if the background space-tim
de Sitter. The adiabatic analysis, in addition, shows that
corrections of the overall amplitude are at most of orders2,
wheres is the ratio of the horizon scale and the minimu
spatial resolutionDxmin admitted by the commutation rela
tion Eq. ~1!.
1-4



ll
st
Fo

tiv

n
to

e
ow

s
e
a
a
e
le
th
e
th

de
p

n
th
u

he
m
th

be
te

not
the
the
re
ly
tic

a
a

ent
t

f

the
.

l

ith
y’’
di-

for
-
to
de-

i-

PERTURBATION SPECTRUM IN INFLATION WITH A CUTOFF PHYSICAL REVIEW D64 103501
While a detailed analysis in the framework of slow-ro
inflation would be desirable, we expect the following fir
order effect in a more general inflationary space-time.
smalls, the dispersion relation, Eq.~8!, can be approximated
by

v25v0
21B s21O~s4!, ~27!

with

B5
3k4

a2H2
1

5k2

2H2 S a9

a3
2H2D . ~28!

During inflation, the pressure is roughly equal to the nega
energy density, so that the Friedmann equations yielda9/a3

'2H2. Therefore,B.0 which implies that the dispersio
relation is superluminal in the region of interest. Owing
the normalization in Eq.~12! ~cf. Refs.@10,12#!, the pertur-
bation amplitude drops more quickly than usual asH de-
clines with time, giving rise to additional reddening of th
spectrum. Evidently, this effect vanishes as either the sl
roll parameter ors go to zero.

The scaleDxmin at which a natural ultraviolet cutoff set
in could be as small as the (311)-dimensional Planck scal
of 10235 m, but the natural short distance cutoff scale m
well be larger, as could be the case, e.g., in string theory
theories of large extra dimensions. Evidently, the signatur
the cutoff in the CMBR would increase if the cutoff sca
were larger than the Planck length during inflation. On
other hand, both the scale dependence and the amplitud
the power spectrum are very sensitively dependent on
details of the inflaton potential. Only after a concrete mo
for inflation has been specified one can derive an up
bound onDxmin from observations.

In particular, if we assume conventional slow roll inflatio
with the inflaton coupling fine-tuned such as to obtain
observed amplitude of the CMBR perturbations, then a c
off Dxmin at the Planck length suggestss;1025. The cutoff
induced corrections to the perturbation spectrum would t
be neglible, i.e., the conventional scenario with its para
eters fine-tuned as usual is observationally consistent wi
cutoff Dxmin at the Planck scale.

On the other hand, we may viewDxmin simply as a new
free parameter in model building. For example, it might
possible to gain some more freedom in choosing the po
tial — for the prize of having to fine-tuneDxmin .
-

v.
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An interesting technical question remains: We have
shown how or even if the decoupling modes evolve into
adiabatic vacuum from some natural initial conditions at
singularity. Two possibilities can be imagined: either the
exists a symmetry or regularity condition that unique
specifies initial conditions that later evolve into the adiaba
solution. In this case the discussion in Sec. III applies.

Or, alternatively, the modes are generally created in
highly excited state as seen from the point of view of
comoving particle detector. This case would be inconsist
@12,20# with the assumption of slow-roll inflation made a
the onset of Ref.@14#, indicating that the combination o
short-distance uncertainty of the kind described by Eq.~1!
and inflation is not, in general, self-consistent.

We will conclude with some speculative ideas about
first possibility for the initial conditions at the singularity
Starting with the original equation of motion, Eq.~2!, ex-
panding the coefficients aroundh5hc , and shifting the ori-
gin of the time coordinate tohc , one obtains a differentia
equation of the form

f k̃
92

1

2h
f k̃

81
A

h
f k̃50 ~29!

which can be solved analytically

f k̃~h!5C1F~h!1C2F~h!* , ~30!

where

F~h!5SAA

2
1 iAAh D exp~22iAAh!. ~31!

The two constants can be specified in formal analogy w
the standard procedure by picking the positive ‘‘frequenc
branch and normalizing according to the Wronskian con
tion. The result is regular ath50. A preliminary analysis
appears to indicate that there exists a unique solution
which f†f is analytic at creation time and that it corre
sponds to this solution. If this solution indeed evolves in
the later adiabatic vacuum solution then this would be a
sirable intrinsic mechanism for fixing the vacuum@22,27#.
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@24# At horizon crossing of the modek̃, i.e., whenk̃'aH, we also
note that k̃2 and k2 differ only by the constant factor
2s22plog(2s2), independent ofk, wheres is defined in Eq.
~13!.

@25# Of course, alsok̃5k for b→0. However, for the reasons ex
plained above we prefer to label everything in terms ofk̃ in
order to avoid discussing thek̃→k-map.

@26# Equivalently, we could comparef k̃ anda2x k̃ , asn→a24 for
b→0.

@27# The authors of Ref.@22#, which appeared after this work wa
first posted, use Eqs.~30!,~31! as the leading term in the initia
conditions of a numerical analysis. SettingC250, they repro-
duce the same perturbation amplitude as the one predicte
starting in the adiabatic vacuum, providing some support
our conjecture.
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