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Perturbation spectrum in inflation with a cutoff
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It has been pointed out that the perturbation spectrum predicted by inflation may be sensitive to a natural
ultraviolet cutoff, thus potentially providing an experimentally accessible window to aspects of Planck scale
physics.A priori, a natural ultraviolet cutoff could take any form, but a fairly general classification of possible
Planck scale cutoffs has been given. One of those categorized cutoffs, also appearing in various studies of
guantum gravity and string theory, has recently been implemented into the standard inflationary scenario. Here,
we continue this approach by investigating its effects on the predicted perturbation spectrum. We find that the
size of the effect depends sensitively on the scale separation between cutoff and horizon during inflation.
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[. INTRODUCTION damental limitations. First of all, with the exception of Ref.
[11] all of the employed dispersion relations were choaédn

During the inflationary phase of the very early universehocso as to provide bounds on the frequency, wavelength or
(see e.g[1] for an overview and referencespace-time is both without ref(-;-rence to an underlyi.ng theory. More impor—_
assumed to expand in a quasiexponential fashion. Quantufantly, the question of mode generation, i.e. how each semi-
fluctuations of the inflaton field are continuously redshiftedclassical quantum field degree of freedom emerges out of the
until their wavelength equals the physical horizon distancePlanck regime, has not been addressed.
whereupon they become “frozen” until they reenter the [N contrast, Ref[14] proposes a scenario where the UV
Hubble volume during the ensuing radiation or matter domi-cutoff is provided by a modified quantum mechanical com-
nated epochs. These fluctuations are thought to be respopp_utathn relation that I.|m|ts_ the expenm_entally attalr)able
sible for seeding the temperature fluctuations of the cosmiéesolution of small spatial distancga3]. This UV cutoff is
microwave background radiatif€MBR) and the gravita- ©N€ of very f_e_w types of short-distance structures that appear
tional clustering of matter, whose statistical properties may" the classification presented [A5], which applies to all

therefore provide a window into the realm of high-enerquua”t_um gravity theories that effectively represent each di-
physics. mension by a linear operator. Indeed, corresponding short-

Crucially, in the case of a sufficiently long period of in- dist'ance un(;ertainty relations of this kind.have appeared in
flation, all of the scales of cosmological interest today correYarious studies of quantum gravity and string theory, see e.g.
spond to wavelengths below the Planck length early on whehl€)- In Ref.[14] this short distance cutoff has been imple-
the initial conditions are prescribed. Therefore, inspired bymeénted into the theory of a minimally coupled scalar field
similar studies in the context of Hawking radiatif®-g], a 1ving in an expanding Friedmann-Robertson-WalkeRW)
series of paper9—12 has investigated the sensitivity of the Packground and it has been shown how the decoupling de-
predictions of inflationary scenarios with respect to change§rées of freedom are continuously generated dynamically at
of trans-Planckian physics. Those studies encoded tran&2€ time of their “Planck scale crossing.” Here, we aim to
Planckian physics in a simple way as nonlinearities of thefxtend the analysis dfl4] by estimating the magnitude of
dispersion relation of the Fourier mode functiofsee also 1Y .corr.ect|ons. to the standard pred.|ct|ons _fo_r the statistical
[13] for a different application of this ansatz d|str|_put|on of |nflat|onary perturbauons arising from the

Since linearity of the field and hence Gaussianity of themedified short-distance behavior. _ ,
fluctuations remains unchanged, the potential consequences 1€ approach in Ref14] which we will follow here uti-
of such modifications are limited to a possible scale depenfiz€S that, as has been shown [t7], the quantum gravity
dence of the power spectrum and a possible change in i@"d stringy uncertainty relation cutaféee e.g[16]) can be
overall amplitude. It was showfl2] that under rather gen- modeled by corrections to the commutation relations
eral conditions on the dispersion relation no observable ef- [x,p]=i(1+ Bp?) 1)
fects can be expected, although Ré&f. reaches a somewhat
different conclusion. However, those studies suffer from fun-and its higher dimensional generalizations. It is easy to check

that such correction terms give rise to a lower bownq,;,
= /B for distance measurements. The form of these correc-
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Hilbert space representations of relations of the type otonsequences from the relabeling of physical observables
Eqg. (1) are given by introducing an auxiliary variabje  such as the angular size distribution of cosmic microwave
which is essentially the momentum varialpebut differs  background radiatiotCMBR) fluctuations. In other words,
from it at small distances, i.e. at distances clos@\iq,;,,. any statement about the scale dependence and Gaussianity of
While this is initially a quantum mechanical structure, it canthe horizon crossing amplitudes @f; translate into corre-
be implemented into quantum field theory, see Ré&#]. sponding statements about CMBR fluctuations, at least to the
Within the scalar quantum field theory on an inflationary same extent as in the standard theory. Let us note, however,
background as defined in Rdfl4] one finds that, interest- that this would not be true if the cutoff had different proper-
ingly, those variablesk, in which the mode equations de- ties for different fields, e.qg. if linear metric fluctuations be-
Coup|e, no |Onger Stric“y coincide with the Comoving mo- have fjifferently -On small scales than the inflaton field. The
mentum Variab'eS, k, a|though they do of course fOIIOW|ng analySIS assumes that this is not the d&g
approximately coincide for smak, i.e. for large distances. ~ Equation(2) is linear in ¢y so that Gaussianity of the
Conversely, this means that the comoving momentum modedistribution of fluctuations irk-space is protected. Conse-
now decouple only when they have grown to large propequently, we expect no deviations from Gaussianity owing to
distances and that the comoving momentum modes dthe proposed modifications of the short-distance behavior.
couple initially when they emerge from the cutoff scale. ForWe can therefore restrict attention to examining possible new
the quantum theory of the actual mode creation mechanisneffects on the scale dependence and overall amplitude of the
see Ref[14]. Explicitly, one obtains within this framework power spectrum.

the following mode equation for the decouplikgmodes:
II. ANALYSIS IN OSCILLATOR VARIABLES

, V’ , I\ ar 2 3ar V’
bt 7¢R+ pu—=3— -9 = T a ¢x=0. It turns out to be very convenient to change from the field
variables used in Refl14] to slightly new variables defined
by
Here,a is the scale factor of the FRW line element and we
- : ox=v""¢x. (6)
defined the functions k k
) 5 5 Indeed, while the mode equation E) in terms of the
()= — a“plog(— pk*/a’) (3y  original field ¢ is of the type of a harmonic oscillator with

B(1+plog( — pk?/a?))? friction, there is no friction term in the mode equation when
written in terms of the new variable:
e~ 3/2plog(~ Ak?/a?)

k):= _ P TSR
v(7,K) (11 plog — BRI (4) et o(n) k=0 )

wherew(7) obeys the time dependent, nonlinear dispersion

that utilize the “product log” plog, which is the inverse of relation

the functionx— x€*. The solutions are automatically defined

only from a finite value ofy, i.e. every mode possesses its N2 p\2 3@y +a'v) v
“creation time.” It is the time when, in terms of proper dis- w’(n)=p—"6 a + 2—) a2
tances, the mode equals the size of the cutoff scale, i.e. it is v v v ®)
the conformal timey,, defined implicitly by
~ ~ The Wronskian condition from Ref14] now also simplifies
a(ne) =kyeB~k Axpin. 5 o
At the creation time, the differential equation possesses what or ‘PE r_ ‘P"lli ‘P'E =i 9)

is called an irregular singular point. To see this, note that the

function plog which enters the differential equation through,g ;531 Note also that if we denote the standard field mode
the functionsu and v is not analytic at the creation time. | .h 4 vanishing minimum position uncertainty ag;

Below, we will further discuss possible implications for the _ ¢i(8—0), we obtain the usual equation of motion for the

choice of initial conditions and therefore for the choice—or~Ii de of a f inimall led lar field i
possible uniqueness — of the initial vacuum. mode ot a free, minimaily coupled scalar Tield In an ex-

All physical observables in our model universe can bepanding FRW space-time, whegeis in the conventions, of

. - . _ e.g.,[19,25:
expressed in terms d&f instead of the usual Fourier variable 9.l .

k. This argument applies also to the transfer funcfigh k) Xﬁ+ w(Z)XRIO (10)
which relates today’s observable perturbations to the horizon

crossing amplitude oy, provided that the perturbation am- yith

plitudes are measured as a functionkofin practice, these

measurements are carried out on cosmological scales where 2_72 a’(7n) 11
k=k to extremely good accuracy, so we do not expect any @o~ a(n) - (D
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Again, there is the question of initial conditions fer normalization of the horizon crossing amplitudedyf. Fol-
that determine the vacuum fap. Ideally, regularity argu- lowing Sec. Il and recognizing that;= ¢+ O(o?) at hori-
ments at the irregular singular point of the mode equationzon crossing, we need to compare the amplitudegioénd
encountered at the creation time for each mode, should fix yg at the horizon crossing timey,, which is whenk
the choice. We do not have a definite answer at this point, buta(#,)H [26].
asymptotic methods will shed some light on the situation. One possible signature of the cutoff in the spectrum is due
Some indications of vacuum fixation by regularity argumentsto nonadiabatic particle production during the evolution from
are sketched in the Conclusions. Indeed, a solution of they; to 7,, which may give rise to a modulation afi(7p)
singularity problem is not strictly necessary for the presentround the amplitude predicted 8 0 [12]. This may, in
analysis. It will be shown below that the evolution @f is  turn, be reflected by a breaking of scale invariance of the
essentially adiabatic from a certain timg onwards. The perturbation power spectrum. Thelative magnitude of this

state of¢ at 7= ; can be determined by consistency argu-€ffect, denoted in Ref[12] as By, can be shown to be

ments to be the adiabatic vacuumg.,[19]) bounded by the maximum of the adiabaticity parameter
1 7 o'(7n)

W)= ———exg —i 7d7y|, 12 C(n)=‘ - (14)
#k(7) 20(7) P( Liw(ﬂ) 7 (12 0 7)

where the normalization follows from Eq9). This is be- If C= 1_, the usu_al notions of _semiclassical_ quantum fielc_i
cause, as argued in Refd2,20, any small deviation from theory in nonstationary space-times apply, with the adiabatic
the adiabatic vacuum close to the Planck scale would likely@cuum, Eq.(12), serving as a natural ground state. One
suppress inflation altogether due to back-reaction of the erfinds numerically thaC~1 for = »; and drops to neglib-
ergy density contained ig; on the cosmic expansion. In i9le levels afterwards, where

order to be consistent with the assumptions of REf] (i.e., )

negligible back-reaction any admissible initial condition 7~ 7e(1+0%) (15
needs to converge to the adiabatic vacuum as soon as t

e . -
latter is well defined rt]or o ranging from 107 to 0.1. Perhaps not surprisingly, the

beginning of adiabaticity approaches the initial singularity
arbitrarily closely if cosmic expansion becomes sufficiently
IIl. ADIABATIC ANALYSIS slow. Conversely, any bound on nonadiabatic particle pro-

Equation(7) belongs to the class of harmonic oscillator duction due _to the cutoff derived fro_m inflatio_n is stronger
equations featuring a dispersion relation that is asymptotithan the equivalent bound from cosmic expansion today. Fur-
cally linear for small physical wave numbers but becomedhermore, if one defines a natural time scale for the evolution
nonlinear at high wave numbegsmall wavelengths In the ~ Of ¢k at the timez; as 7(7;)~1/w(7;), one can check nu-
context of cosmology, such systems were investigated ifnerically thatz;~0.75r. In other words, the “non-adiabatic
Refs.[9,10,12, and in the framework of Hawking radiation €Poch” following the Planck scale crossing of each mode
many times befordsee[21] for references Unlike in the lasts al_)out as long as the typlcal evolutl_on tlme_ scale of the
above references, where the dispersion relation was typicallfpode itself. Whatever physics determines this phase re-
tailored ad hocto fit some desired shape, E@) followed ~ Mains, for the time being, unknown. However, as argued in
directly from a general study of realistic short-distance strucS€C- |1, self-consistency demands the solution to converge
tures of space-time and may therefore perhaps be consider@gto the adiabatic vacuum as soon as it is well defified,
more fundamentalsee also Ref.11] for a similar approach &S soon ag<1) [12,20 and this is the case for afj=7; .

It is useful to express the separation between the cutoff Having shown that scale invariance is preserved- ifs
scale(here parametrized hg'/?) and the inflationary horizon small, we need to consider the overall amplitude of the

scale in terms of the dimensionless parametefefined as ~ Power spectrum. Taking the adiabatic solution Ep) as a
reasonable approximation to the exact functignézn) and

o=pBY%H. (13)  xk(7) onlength scales larger than the cutoff but smaller than
the horizon scaléwhere expansion violates adiabatigjte.

If B~ AXnmi, is identified with the Planck length, the am- for times 7;<#»<#;,, one finds that

plitude of temperature fluctuations of the cosmic microwave ~ \ 12

background indicates that~10° at the time when the _ o) [k

presently observable scales left the horizon during inflation. (m)= i) w(n)|
In order to generalize the notion of “horizon crossing” to K

our nonstandard equation of motion, we Taylor-expand Eda good estimate for the impact of the nonlinear dispersion

(8 aroundo=0 and find thatw(7)?= w§+O(c?). Corre-  relation on the amplitude of the power spectrum is obtained

spondingly, the usual definition of horizon crossing in termspy noting that this expression fdd(7) remains approxi-

of k=aH is valid to within the same accuracy. mately valid until ,, since cosmic expansion affects both
We are interested in sources of deviation from the stansolutions in roughly the same way. It is readily verified in

dard(i.e., B—0) result for the scale dependence and overalthis case thaD(7,) =1+ O(0?). Hence, the impact of the

(16)
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cutoff on the perturbation spectrum depends crucially on th@roper positions to proper momenta and then, second, by
separation between the cutoff and the Hubble scale, beingcaling to comoving momenta. However, scaling and Fourier
negligible if o<1. transforming do not commute. As a consequence, as is
readily verified,
IV. SCALING ANALYSIS

B(n,k)=a%y(7,k) (22)
The scaling behavior of the perturbation spectrum can
also be investigated by studying the scaling behavior of th@nd in the de Sitter case
wave equation, Eq2). Let us begin by considering the case .
of an exactly de Sitter type expansion. In this case, we expect
that time translation invariance is broken neither by our in- b(m.k) =~ ?'f/’(”'k)' (23
troduction of a cutoff nor by the background expansion. We
therefore expect a scale invariant perturbation spectrum. As far as present day observations of cosmological scales are
Indeed, we first observe that ¢(7) is a solution to the  concerned, the distinction between comoving and decoupling
k mode equation andis any arbitrary positive number then momenta does not matter and we therefore obtain from Eq.

&r(r ) is a solution of the mode equation for the madle (20
This is straightforward to verify and it is of course also true a3
for the usual inflationary scenario without a cutoff. pCn v, rk) =12 75 K). (24)

The solutions¢ () that are obtained in this way by \ye therefore finally obtain for the fields over comoving mo-
scaling the solutiorby(#) all obey of course the same initial menta as conventionally defined the scaling behavior of the
conditions. We can also conclude thatfis a special ime  porizon crossing amplitude

for the solutiongy, then, correspondinglyy/r is a special
time for the solution¢,;. For example, if we denote the y(horizon crossingk)~r ~%? (25
creation and the horizon crossing times of the mageby
7. and 7y, , then the modeb,i.(7) possesses the creation and Which yields indeed the usual scale invariant spectrum:
the horizon crossing timesy (rk)=7./r and 7,(rk)
= 7]h/r .
Let us further assume that the solutigR(») is normal- ~r78, (26)
ized with respect to the Wronskian condition. We also need
that all the solutionsp,z(7) are normalized with respect to Indeed, this was to be expected because neither the back-
the Wronskian condition for the respective modes. As is ~ 9round de Sitter space, nor our introduction of a cutoff, nor
straightforward to verify, the ansatz the choices of initial conditiongll solutions being obtained
from another by mere scalingproke time translation invari-
éii(7) =N(r) ¢i(r 77) (17)  ance.
On the other hand, in the case of a non—de Sitter back-
yields ground, the spectrum is of course not scale invariant. In the
o presence of our cutoff we will then obtain additional scale
N(r)=r (18) invariance breaking effects on the spectrum, because of the
s0 thateg( ) =1 32¢(r 7), and therefore new cutoff dependent terms in the wave equation.

(0] (horizon crossingk) s( horizon crossingk)|0)

bi(nlt)=r¥2¢(n). (19) V. CONCLUSIONS

. . N = We investigated the signature of the cutoff in the pertur-
Choosing forzn the horizon crossing time of the mode we . : :

; . : . bation spectrum from two perspectives, and in both cases we

now obtain how the horizon crossing amplitude scales wher. : - .

scaling the decounling momentum did not need to solve the mode equation explicitly. The adia-

9 piing batic treatment in Sec. Ill is based on the fact that in order to

be consistent with inflation, each mode needs to be in the

~ T\ — ¢3/2 4~
Pric( (1K) =il 77n) 20 sdiabatic vacuum shortly after the mode is created, whereas
which means the scaling analysis of Sec. IV utilizes that the wave equation
scales trivially and that there is also no reason for (gt#l
¢ (horizon crossing~r¥2. (21)  unknown initial conditions to break the(almosi time-

translation invariance of the background space-time. Both
In order to make contact with the conventions in the litera-approaches show that the resulting fluctuation power spec-
ture, let us now recall that, usually, field variablgsy, k) in  trum is indeed scale invariant if the background space-time is
comoving momentek are obtained by first scaling from de Sitter. The adiabatic analysis, in addition, shows that any
proper position coordinates to comoving position coordinatesorrections of the overall amplitude are at most of oraér
and then, second, by Fourier transforming to the comovingvhere ¢ is the ratio of the horizon scale and the minimum
momentum. In[14], however, we obtained fieldg(#,k) spatial resolutiom x,;, admitted by the commutation rela-
over comoving momentiaby first Fourier transforming from tion Eq. (1).
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While a detailed analysis in the framework of slow-roll  An interesting technical question remains: We have not
inflation would be desirable, we expect the following first shown how or even if the decoupling modes evolve into the
order effect in a more general inflationary space-time. Foradiabatic vacuum from some natural initial conditions at the
small o, the dispersion relation, E¢B), can be approximated singularity. Two possibilities can be imagined: either there
by exists a symmetry or regularity condition that uniquely

by 2 5 4 spec?fies initia_l conditions t_hat Iat_er eyolve into the adiabatic
w*=wy+B o +0(d), (27)  solution. In this case the discussion in Sec. Il applies.
Or, alternatively, the modes are generally created in a

with highly excited state as seen from the point of view of a

3k4  5K2[a" comoving particle detector. This case would be inconsistent
- + a e (29) [12,2Q with the assumption of slow-roll inflation made at
a’H? 2H2%|ad the onset of Ref[14], indicating that the combination of

S ) ~ short-distance uncertainty of the kind described by @&g.
During inflation, the pressure is roughly equal to the negativeynd inflation is not, in general, self-consistent.
energy density, so that the Friedmann equations yiéld’ We will conclude with some speculative ideas about the
~2H?. Therefore,B>0 which implies that the dispersion first possibility for the initial conditions at the singularity.
relation is superluminal in the region of interest. Owing to Starting with the original equation of motion, E€®), ex-
the normalization in Eq(12) (cf. Refs.[10,12), the pertur-  panding the coefficients aroung= 7., and shifting the ori-

bation amplitude drops more quickly than usualtégde-  gin of the time coordinate tay, one obtains a differential
clines with time, giving rise to additional reddening of the equation of the form
spectrum. Evidently, this effect vanishes as either the slow-

roll parameter ol go to zero. , 1, A
The scaleAx,,;, at which a natural ultraviolet cutoff sets &— ﬂ‘ﬁﬂ" 7_7¢k:0 (29)
in could be as small as the {3L)-dimensional Planck scale
of 1073 m, but the natural short distance cutoff scale maywhich can be solved analytically
well be larger, as could be the case, e.g., in string theory and .
theories of large extra dimensions. Evidently, the signature of #i(m)=CaF(m)+CoF(n)*, (30)

the cutoff in the CMBR would increase if the cutoff scale where

were larger than the Planck length during inflation. On the

other hand, both the scale dependence and the amplitude of JA

the power spectrum are very sensitively dependent on the F(n)= 7+iA\/;
details of the inflaton potential. Only after a concrete model

for inflation has been specified one can derive an Uppefhe o constants can be specified in formal analogy with
bound onAxy, from observations. _ . the standard procedure by picking the positive “frequency”
In particular, if we assume conventional slow roll inflation \y.5nch and normalizing according to the Wronskian condi-
with the inflaton coupling fine-tuned such as to obtain the;o, The result is regular ag=0. A preliminary analysis
observed amplitude of the CMBR perturba_t|50ns, then a cutyppears to indicate that there exists a unique solution for
off AXpnjn at the Planck length suggests-107°. The cutoff  \yhich @74 is analytic at creation time and that it corre-
induced corrections to the perturbation spectrum would thegy, s o this solution. If this solution indeed evolves into
be neglible, i.e., the conventional scenario with its paramine |ater adiabatic vacuum solution then this would be a de-

eters fine-tuned as usual is observationally consistent with g opie intrinsic mechanism for fixing the vacula®,27.
cutoff Axq,;, at the Planck scale. '

On the other hand, we may viedx,,;, simply as a new
free parameter in model building. For example, it might be
possible to gain some more freedom in choosing the poten- J.C.N. would like to thank Renaud Parentani for illumi-
tial — for the prize of having to fine-tun&X;,. nating discussions.

exp(—2i VA 7). (31)
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