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The additivity of Breit-Wigner phases has been proposed to describe interfering resonances in partial waves
in 77 scattering. This assumption leads to an expression for partial wave amplitudes that involves products of
Breit-Wigner amplitudes. We show that this expression is equivalent to a coherent sum of Breit-Wigner
amplitudes with specific complex coefficients which depend on the resonance parameters of all contributing
resonances. We use the analyticity7ofr partial wave amplitudes to show that they must have the form of a
coherent sum of Breit-Wigner amplitudes with complex coefficients and a complex coherent background. The
assumption of the additivity of Breit-Wigner phases is a new constraint on partial wave amplitudes independent
of partial wave unitarity. It restricts the partial waves to analytical functions with a very specific form of
residues of Breit-Wigner poles. Since there is no physical reason for such a restriction, we argue that the
general form provided by the analyticity is more appropriate in fits to data to determine resonance parameters.
The partial wave unitarity can be imposed using the modern methods of constrained optimization. We discuss
the production amplitudes inN— 7N reactions, and use analyticity in the dipion mass variable to justify
the common practice of writing the production amplitudes in production processes as a coherent sum of
Breit-Wigner amplitudes with free complex coefficients and a complex coherent background in fits to mass
spectra with interfering resonances. The unitarity constraints srpartial wave amplitudes with resonances
determined from fits to mass spectra of production amplitudes measuretlin 77N reactions can be
satisfied with an appropriate choice of complex residues of contributing Breit-Wigner poles.

DOI: 10.1103/PhysRevD.64.096003 PACS nuniberl1.80.Et, 13.75.Gx

I. INTRODUCTION the multiresonance contributions in tBenatrix by the prod-
uct of isolated Breit-Wigner contributions for each reso-
In the 1930s, Breit and Wigner introducgtl2] a param- nance. Since each term is unitary, the product also satisfies
etrization of resonances observed in the energy dependenaaitarity. The partial wave phase shift is then a sum of Breit-
of integrated and differential cross sections of nuclear reacwigner phases of contributing resonances and a background
tions. The original Breit-Wigner formula was only a one- phase. As a result, the expressions for partial wave ampli-
resonance approximation and its justification was initiallytudes involve products of Breit-Wigner amplitudes. This
only phenomenological. A theoretical justification for the method was recently used by Buggal. [13] and Ishida
Breit-Wigner formula later emerged from quantum collision et al. [14] in their analyses ofrm phase shift data.
theory[3]. The evident existence of multiple and overlapping  Up to now the connection between these two descriptions
resonances in nuclear reactions led to two distinct generalief multiresonance contribution@nterfering resonancgesas
zations of the Breit-Wigner formula for an isolated resonancenot been clarified. In this work we show that the Hu descrip-
to multiresonance description of the scattering process.  tion is a special case of a more general description based on
One generalization was undertaken by FeshbjgkB],  analyticity. We show that the Hu method also leads to a
Humblet[6], and McVoy[7], who used the analyticity prop- coherent sum of Breit-Wigner amplitudes with complex co-
erties of theS matrix to show that the transition matrix can efficients and a complex coherent background for any partial
be written as a coherent sum of Breit-Wigner terms withwave, as expected from the analyticity of tBenatrix. How-
complex coefficients and a coherent background. Since thever, the complex coefficients have a very specific form in
transition matrix must satisfy unitarity, the parameters anderms of resonance parameters of all contributing resonances.
coefficients of this multiresonance parametrization are noThe assumption of the additivity of Breit-Wigner phases is a
independenf5,8]. In principle it is possible to use the meth- new constraint that restricts the partial waves to analytical
ods of nonlinear programmini®,10] and constrained opti- functions with these specific residues of Breit-Wigner poles.
mization with computer programs such rasios developed Furthermore, we show that the additivity of Breit-Wigner
at Stanford University11] to impose the conditions of uni- phases is an assumption entirely independent of the unitarity

tarity in fitting the experimental data. property of partial wave amplitudes, which is a condition
Another approach to the multiresonance description ofmposed on their inelasticity.
scattering processes was proposed by Hu in 19428 He Since there is no physical reason why physical partial

observed that the Breit-Wigner contribution of an isolatedwaves must have the form of a coherent sum of Breit-Wigner
resonance to th8 matrix is unitary, and proposed describing amplitudes with specific complex coefficients required by the
additivity of Breit-Wigner phases, we conclude that the gen-
eral form imposed by the analyticity is more appropriate for

*Electronic address: milo@smetana.physics.mcgill.ca fits to data to determine resonance parameters. This conclu-
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sion is particularly relevent for analysis of interfering reso- *

nances in the mass spectra in production processes such as f(k,e):E (21+1)T,(k)P;(cosh). (2.2

7N— N or pp— wpp. Using analyticity in the invari- 1=0

ant mass variables, we justify the common practice of params

etrizing the production amplitudes in terms of a coherent

sum Breit-Wigner amplitudes with free complex coefficients 1

and a complex coherent backgrouidb—-23. T=-—[S(k)—1], (2.3
The paper is organized as follows. In Sec. Il we briefly 2ik

review the unitarity and the problem of interfering reso- . . : .

nances in potentialyscattering zince it motivates theganalysivthereS‘(k) is called theS matrix. For elastic scattering,

in hadronic reactions. In Sec. lll we review the two-body S =e? K, (2.4)

partial wave unitarity inmr scattering and its relation to the

general form of isospin partial waves. In Sec. IV, we intro-yhere the phase shift, describe the interaction and are

duce the assumption of additivity of Breit-Wigner phases inre|ated to the potentia¥(r). For elastic scatteringS|=1,

the war scattering, and show that it leads to partial waves inyhich is the condition of elastic unitarity.

a form of a coherent sum of Breit-Wigner amplitudes with  \when a particle collides with a target, nonelastic pro-

specific complex coefficients and a coherent background. |gesses are possible, and particles are removed from the inci-

Sec. V we generalize dispersion relations for partial wavejent(elastig channel. Since the interaction can alter only the

amplitudes inr 7 scattering to Breit-Wigner poles, and show outgoing part of the wave function, we require that the am-

that the form obtained from the add|t|V|ty of Breit'Wigner p||tude of the Outgoing wave be reduced if nonelastic pro-

phases is a special case. In Sec. VI we focus the discussi@sses occur. The reduction of scattering amplitudes leads to
of the two methods to a finite energy interval, and argue thagonditions of inelastic unitarity:

the addition of Breit-Wigner phases imposes an unjustified

constraint on fits to data. In Sec. VII we formulate unitarity |S|=<1. (2.5
for production amplitudes inr~p—~ 7 n reaction and

contrast it with partial wave unitarity inrsr scattering. In  This suggests that we write

Sec. VIII we show that the method of addition of Breit- )

Wigner phases can be generalized to production amplitudes. Si=m(k)e? 2, (2.6)
We also use analyticity in the invariant mass to obtain a more ) ) o

general form for production amplitudes in terms of a coherWhere 7, is called the inelasticity, and has values

ent sum of Breit-Wigner amplitudes with free complex coef-

ficients (pole residuesand a complex coherent background. O<nm<1. 2.7
We argue that this general form is more appropriate in fits t .
meaSL?red mass spgectra. Although the dispcrzjsspion is confinzr(;e partial wave then has a general form

to pion production amplitudes isrN— 7N, the conclu- 1

sions have a general validity. We also comment on determi- Ti=5-[me??-1]. 2.9
nation of 77 partial wave amplitudes from resonance pa- 2ik
rameters determined in measurements of productio
amplitudes inmN— 7r7wN reactions. The paper closes with a
summary in Sec. IX.

he partial wave amplitudeg; are given by

rIlrom Eq.(2.9) it follows that

2 1 2
Im T,=K|T| +@(1_77')' (2.9
II. UNITARITY AND INTERFERING RESONANCES
IN POTENTIAL SCATTERING This equation expresses the unitarity condition on the partial
o wavesT, .
A. Unitarity
We will consider the scattering of a spinless particle of B. Interfering resonances

mass m by a real, central potentiaV(r) [24]. In the In the followi i K with ial i
asymptotic form of the stationary scattering wave function,tu dgs € following we will work with partial wave ampii-

the outgoing wave is characterized by the scattering ampli-
tude f(k,6), wherek is the wave number of the particle 1 _
related to its energy by t,=kT|:E[77,e2'5I— 1], (2.10

p2 _ﬁZkZ
2m  2m’

2.1 and the energ¥ instead ofk. A detailed study of the poten-
tial scatterindg 24] shows that the phase shift may be decom-
posed asé =¢ +p,, where ¢ is the background phase

and 6 is the scattering angle. In units df=1 the wave which does not depend on the shape and depth of the inter-

numberk has the meaning of the momentynThe scatter- action potentiaV(r) while the partp, does depend on the
ing amplitude can be written in the form details of the potential. Near resonant enekgy
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I'(E)

SE_E) (2.1

tanp|~

whereI'(E) is the width of the resonance. We introduce a

Breit-Wigner resonance phase:

rE) | 1
m}—ar Er—E+I§F(E) ,
(2.12

such that in the energy intervalE centered abouE, we
havep,~ 8, and

5 = tanl(

5|N§|+5|r. (213)
From Eq.(2.12 it follows that
. E—E,—3il )
e?li= —————=1+2ia,, (2.14
E—E,+3il
where
_ %F
a,=—1. (2-15)
E-E+s3il’

is the Breit-Wigner amplitude of the resonanceFor an
isolated resonance we then obtain

1

E—E,+ 3il

If N resonances contribute over an intend then, follow-
ing Hu[12] and Refs[13,14], we can write

N g_gm_iipm N
E-E il

2i 6| r 2 iq(n)

e [] EW L LT ® [T (1+2ia{™).

n=1E— n=1
(2.17

Prescription(2.17) clearly satisfies unitarity but seems to
lead to a complicated expression for partial watyés terms
of Breit-Wigner amplitudesa(™ .

On the other hand, the analyticity of tf&matrix was
used by Feshbad,5], Humblet[6] and McVoy|[7] to de-
rive a general form fot, [5],

N A|(n)(E)

=1 E-EM+ Lir™M(E)’

t,=B,(E)+ (2.18

where B, is a background term anA,(”)(E) are complex
coefficients. The sum in E42.18 can be written as a co-
herent sum of Breit-Wigner amplitudes:

N _17(n)

> RM(E) )

<~ _pM 1) ey

n=1 E-E"+ il ("(E)
(2.19

ty(E)=B\(E)+
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In Sec. IV we show that prescriptidq2.17) leads to an ana-
lytical form [Eq. (2.19] with specific expressions for the
coefficientsR("™ and the backgrouns, .

I1l. ISOSPIN AMPLITUDES AND UNITARITY
IN war— @ SCATTERING

Hadron resonances have definite values of spin and isos-
pin. It is therefore necessary to express the amplitudes for
charged pion processesr— 7 in terms of isospin ampli-
tudes T'(E, 6), with a definite isospin =0,1,2, and work
with partial wave amplituded|(E) [25]. At first we will
work with the center-of-mas&.m) energyE = \/s to pursue
the analogy with the potential scattering.

The partial wave amplitude§, satisfy partial wave uni-
tarity equationg25,26|

ImT|=q|T||?+A], (3.1

whereA| are contributions from inelastic channels, such as

mr—mamm, KK, NN, andq=yi(s—4u?) is c.m. mo-
mentum whereu is the pion mass.. Let us WritA} in the
form

A':i[l—( 2] (3.2
| 4q Yi . .

Then the unitarity equatiofB.1) has the same form as Eq.
(2.9), and the partial wave§|' can be written as

-1

Sl
Ti=gig (e -1, (33

where §/(E) are phase shifts and the inelasticity
7(E)=1-40A|(E) (3.4

is given by the inelastic unitarity Contributiomﬁ . In anal-
ogy with potential scattering we expect that@h'sl. As
we shall see later, the descriptions of interfering resonances
in 7rr scattering do not depend on the condition thﬁlt
S

The positivity of inelasticityz| in Eq. (3.4 imposes a
constraint

A<

aq (3.5
We can now show that the unitarity equati@l) admits no
solution forA|>1/4q. If the inelastic unitarity contributions
satisfy this condition, we can write

A':i[1+( H2] (3.6
| 4q Yi ’ .

where ()?>0. SettingT|=V|/2q from unitarity equation
(3.1) we obtain

(ReV)2+(ImV|—1)2=— ()2, (3.7
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which is not possible. Thus conditioit3.5) represent genu- where¢ is the nonresonant background phase &hds the

ine constraints on the inelastic unitarity contrlbutlaﬂsand phase due to physical particle resonances occurring in the
the parametrizatioEq. (3.3)] of partial wave amplitudes partial waveTI The phase of a single isolated resonance is
with (3.4) is the most general solution of unitarity equation given by the Breit-Wigner formula

(3.1 for all E.

Since the values of inelastic terrml, in partial wave uni- o st E—-E,—3il(E)
tarity equations like Eq(3.1) are not known, we constrain e = —E—E L1 iF(E)' 4.3
the partial waved| by inequalities imposed by the unitarity. ree
From the positivity of; and condition(3.5), we obtain Let us consider thaN resonances contribute to the partial
1 wave amplitudeT| . Following Refs.[12-14 we now as-
ImT|<q|T}|2+ (3.9  sume that the resonant phase sBiflis.givgn by the sum of
4q the Breit-Wigner phases of the contributing resonances:
If we add the requirement thag<1, thenA|=0 from Eq.
(3.2), and we also have the usual unitarity constraint &= Z S - (4.9
| 12
ImTi=q|Ti|* (3.9 We assume thatl is finite. Then
Inequality (3.9) implies a positivity N 1.
29 =[] e?%=]] E-En—ziTh 4.5
ImT|=0 (3.10 a o1 E—E,+ il '
at all energies. _ _ For each Breit-Wigner phase we can write
Finally we note the following observation. Lé(z) be
any complex function. Then-2if (z) is a complex function Q=1+ 2ia,, (4.6)

that can be written as
wherea, is the Breit-Wigner amplitude:

1+2if(z)=n(2)e?%®, (3.11)
_1
wheren>0 and§ is real. Thus any complex function can be a,= Z—F“ 4.7
written in the form E—E,+ 3il,
1 , Then we can write
f(2)= 5 (ne? = 1), (3.12
€29 =14 2iT,qs, (4.9

and satisfies the equation o _ o
where T,.5 iS given in terms of products of Breit-Wigner

, . 1 ) amplitudesa,, The partial wave amplitud‘§|I then has a gen-
Imf=|f| +Z(l—77 ). (3.13 eral form
We see that unitarity equations like E@.1) are a special T= e2é_ 1)+ 1e2.g T 4.9
case of Eq(3.13 with # given by Eq.(3.4). 2|q 2iq\” ) q- Tres 9

Let us consider the casé¢=2. Then the resonant part of

IV. INTERFERING RESONANCES IN 7w SCATTERING . D
the amplitudeT, is

USING THE ADDITION OF BREIT-WIGNER

PHASES Ties—a;+ta+2iaja,, (4.10

The general form of the phase shift parametrization of
partial wave amphtudei‘, is where the interference term

1 I 92'5|—1] (4.1 a,a,= (C M=zl (4.11
2igt ' (E—Ej+ 3iT)(E—Ey+ §ily)

Ti=

with the inelasticityy| determined by unitarity via Eq3.4..  With a notation
In the following we will omit the indices and| for simplic-

ity. In analogy with potential scattering, we decompose the 7 —E.— Eil“ 4.12
phase shiftss into two parts: Ko=k ke '
S=E&+ 6, (4.2 we write

096003-4
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1 —
(E-2z1)(E—2) a

A N B
E_Zl E_22

1

c:

(4.13

The requirement that this equality holds leads to a relation

(A+B)E—(Az,+Bz)=C. (4.14

Next we require thaA=—B to eliminate theE dependent
term, and obtainC=A(z,—2,). Then Eq.(4.13 has the
form of a sum,

1 _ 1
(E-z)(E-2) z1—7,

1
E_Zl E_Zz

, (4.1

and we can write the resonant pHeig. (4.10] of the partial

PHYSICAL REVIEW D64 096003

A 73—

5T X

B z3—z

Ke=p="x

C z,-7
Ke=p= —x (4.22

with
X=2125(21—25) + 2321(Z3— 21) + 2325(Z3— 2,) -

(4.23

The resonant part of the partial wave amplitude is again a

wave amplitude as the sum of two Breit-Wigner amplitudes,coherent sum of the Breit-Wigner terms with complex coef-

I'y -3,

(2)
E_El+ %'Fl

. E—E,+il’,’ (4.16

where the complex coefficients

1

_rz
cP=1-2i 2
VAR

1

21

CP¥=1+2i
2123

are exactly such that the unitarity condition

€29 | =1+ 2iT,ef =1 (4.18

is satisfied for allE. The energy dependence of the widths

I' ,(E) introduces an energy dependenceCif(E), n=1,2.
Now consider the case of three interfering resonamtes
=3. Then

Tres=ay+a,+agz+2i(a,a,+aa;+ aag) + (2i)%a,a,as.

(4.19
We can write the last term as a sum:
1 A B CcC |1
= + + —.
(E_Zl)(E_Zz)(E_ZS) E_Zl E_22 E_23 D
(4.20

Requiring that terms proportional & andE in the numera-
tor on the right-hand side of E@4.20 vanish, we obtain a
sum

(4.20)

where

ficients
T =E C(3)—n, (4.24
A T E-E+ LT,
where
ll" ll" 1 1
(3)= Y 2 2 o 2 3 N2 -
CiV=1 2|Zl Z 2|zl 23+(2|)(2F2)(2F3)K1,
CO=1+2i 21 Lo ® i Rl R, |k
2 z— Z,—7 ( 2 1 2 3 2
(4.25
ll" ll" 1 1
(3): .2 1 .2 2 .\ 2 - -
C3/=1+2i 7= 3+2|22_23+(2|) <2F1)(2F2)K3.

This procedure is general and valid for any firlteAssum-
ing that the resonant phas® can be separated from the
phase shift§ and is given by the sum of Breit-Wigner
phases, we will always obtain the resonant gagt; of the
partial wave amplituded| in Eq. (4.9 as a sum of Breit-
Wigner amplitudes:

3Tn(E)
E-E,+ 3il,(E)

N
Tres(B)= 2, C{V(E) (4.26

In Eqg. (4.26) the complex coefficientéIE]N) have an explicit
form in terms of resonance paramet&s,I',,,n=1,... N,
such thafT,.¢ satisfies unitary conditiof4.18. The form of
coefficientsC{") depends on the number of resonances con-
tributing to the partial Wavé',I .

As the result of Eq(4.26) we can conclude that the mul-
tiresonance parametrization of partial wave amplitudes,
based on the additivity of Breit-Wigner phases, has the gen-
eral form of a coherent sum of Breit-Wigner amplitudgs
with complex coefficients and a complex coherent back-
ground,

096003-5
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1 N
~IB(E)+ >, RM(
q n=1

_1
2

E-E,+i3l,

Iy

T= E) (4.27)

where

1 .
= 206 _
B 2i[7]e 1],

4 (4.28
RV =g?¢)cN=(1+2iB)CV.

Comparing Eq(4.27) with expressior(2.19), we see that the

description of multiresonance contributions using the addi-
tion of Breit-Wigner phases leads to the same form of partial

wave amplitudes as the analyticity of tBenatrix. However,
the complex backgrounl and the complex coefficieng&{
in Eq. (4.27 have the explicit fornjEq. (4.28] imposed by
the additivity of Breit-Wigner phases.

Note that in the derivation of Eq4.26) for T,.s, and in
the resultant formfEq. (4.27) with Eq. (4.28], we have not
needed or used the assumption that inelastigityl. The
Hu method is based on the unitarity of-2iT,., and is not
rei\lated to the unitarity of the whole partial wave amplitude
.

Finally we give a relativistic form for the multiresonance

description of partial wave amplitudes. The relativistic form .

of Breit-Wigner amplitude$Eqg. (4.7)] is given by

_mnFn(S)
s—ma+im. I (s)’

(4.29

an=

where we have usead, instead ofg,, to emphasize thd,, is
the mass of the resonance. To obtaln the correspondlng co
efficients CV, we make replacements in E¢4.17) or

(4.29:

(4.30

Ern—”’nnrn-

1
z,=E,— Eil"n—>zn=mﬁ—imnl“n.

The partial wave amplitudes then have the relativistic form
N

T<s>=% B(s)+ 2, RI(s)an(s)|,  (4.31

whereB andR™™) are still given by Eq(4.28 with replace-
ments[such as Eq(4.30] to satisfy the unitarity off .

V. GENERALIZED DISPERSION RELATIONS FOR
PARTIAL WAVE AMPLITUDES AND INTERFERING
RESONANCES IN w7 SCATTERING

In this section we shall relate the multiresonance param-

etrization[Eq. (4.31)] of partial wave amplituded| | with a

PHYSICAL REVIEW D 64 096003

ti(s)=qT|(s),

wheres is the Mandelstam energy variable.

Our starting point is the well-knowf27] dispersion re-
spresentation of a complex functidifz) with simple poles
atz,, n=1,2,... N in the complex plane, a branch cut
along a positive real axis fromx to « and with asymptotic
property|z|f(z) — 0 as|z|]—=. We shall also assume that the
function f(z) is a real function f(z*)=1*(z). Using
Cauchy’s integral theorem and the process of contour defor-
mation, it can be show[27] that

(5.9

N

Rn
f(z)=2,

n=12—12,

1fwlmf(x’)dx’
+—= ’
7le X -2

A remarkable feature of the proof of E(h.2) is that it takes
place for a fixed value of [27]. As the result, dispersion
relation (5.2 is also valid for moving poles for whiclz,
=2z,(2). In such a case the residugs, in Eq. (5.2 also
depend ory, i.e., R,=Ry(z). Furthermore, dispersion rela-
tion (5.2) is easily generalized to include a left-hand cut and
for functions that are not real. In the latter casef (ri) in
Eqg. (5.2 is replaced by a discontinuity function along the
cuf(s).

In 777r scattering, the partial wave amplitudé(ss) have a
right-hand cut fos=4u? (whereu is the pion mass and a
left-hand cut fors<0 due to Mandelstam analyticify28].
Let us assume that the amplitugehas a finite numbeN| of
complex poles,

(5.2

s,=m2—im.I'(s), n=1,... N[, (5.3
correspondlng to the resonancestln Note that the imagi-
nary part of the poles depends on the energy variabla
principle, the massn, could also depend on the energy
This possibility has been recently considered by Pennington
[29]. Omitting the indiced andl, the generalized dispersion

relations for the partial wave amplitudgread

N

t(s)=1(s)+ 2 Rl

1 S— sn(s) 54

where I(s) are the dispersion integrals over the left and
right-hand cutg28], andR,(s) are the pole residues. It is
convenient to rewrite Eq5.4) in a form using Breit-Wigner
amplitudesa,(s),

N
t<s>=|<s>+n§1 Ra(S)an(s), (5.5

where we have redefined the pole residues with

- mnrn(s)
s—mi+impn(s)’

an(s)= (5.6

multiresonance parametrization obtained from analyticity. ToRepresentation.5) is valid for all s=4u2. Representation

this end we shall use generalized dispersion relations for th
amplitudes

.5 of partial wavest| coincides with parametrization
(4.31), provided that

096003-6
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1 i 1o oem )
1(s)=B(s)= 5[ 7(s)e”* 1], t= o (762"~ 1)+ ne? €T, (6.4)
R.(s)=RM(s)= 7(s)e?OcN(s), (5,77  Where the resonant part
M
=(1+2iB)C{V. T%Q:nzl CcMa, 6.5

We see that the multiresonance parametrization, based on the |

additivity of Breit-Wigner phases like Eq4.4), imposes a 'S unitary:

special form on the dispersion integrals and pole residues o sl M)

given by Eq.(5.7). e M=1+2iT o< . (6.6)

In general, a partial Wavé can be written in two forms: Alternatively we can rewrite Eq4.31) in the form

N

t=i[ e??—1]=1+ 2>, Rya (5.8) (MN) ‘ (N)
i L7 < Tndn- : t=B +n§1 RNa,,, 6.7
Apart from the partial wave unitarity equatiori8.1) and  \here
(3.4) and the analyticity assumptions, there are no constraints
on the partial waves. The assumption of additivity of Breit- 1 ' N
Wigner phase$Eq. (4.4)] is a new constraint that restricts B(MN)=E(77€2'§— 1)+ EMH RMa, (6.9
m:

the partial waves to analytical functions that satisfy condi-
tions (5.7). We find no physical justification for such a re-
striction, and no advantage in using it in phenomenologica
fits to data to determine resonance parameters.

is the background term. Note that the sum in Ej7) is not
nitary. We cannot compare the coefficients of Breit-Wigner

amplitudesa,,, n=1,... M in Eq. (6.4) with those in Eq.

(6.7), since éM in Eq. (6.4) contains the terms,,, m

VI INTERFERING RESONANCES =M+1,... N but the sum in Eq(6.7) does not.

IN A FINITE ENERGY INTERVAL If we look at the general forfEg. (5.5] from analyticity,

. . . < i
In the previous two sections we have assumed tha then fors<sy we can write

the total number of resonances contributing to a partial wave. M
Parametrization$4.31) and (5.5 were valid for all energies t=BM+ > R.a,, (6.9
s=4u2. In practiceN is not known, and fits to data are done n=1

in a finite energy interval. Such is the case, e.g., in Refs.
[13,14. In this section we develop parametrizations of par-Where the background term

tial waves appropriate for analyses in a finite energy interval N

where only a few resonances contribute. The parametriza- BM) —| + R

. . o o = A - 6.1
tions will be based both on the additivity of Breit-Wigner m=%+1 mem (610

phases and analyticity, and we shall compare their use in
practical fits to data. The results will be used in Sec. VIII. In Eq. (6.9 the residue®, are not constrained by conditions
Let us consider an energy intervakd<s<s,,, whereM (5.7).
resonances contribute. In the framework of the assumption of In fitting data using parametrizatiof6.4) we explicitly
additivity of Breit-Wigner phases, we will assume that themake use of the assumption of the additivity of Breit-Wigner
resonant phases of resonances outside of this energy interyztiases. This is also the case when we use(&q) if N is
are absorbed in the background phase. The total phase shiitown and the coefficien&{) in R™") can be calculated. In
is then generalN is not known, and the backgrou{™™) and resi-
duesR™) are free parameters. Then there is no difference in
s=&M+ 5y, (6.1)  using Eq.(6.7) or the general formiEq. (6.9)] from analyt-
icity alone, since in Eq(6.9) the backgroun®™ and resi-
where duesR,, are not constrained except for unitarity. In all cases
we use a constrained optimization of th# function. In the
) ) case of Eq(6.4) we require that the inelasticity function
5'\":21 O (6.2 <1. In the case of Eq(6.7) or (6.9), we require that Imt
=1t|?, and use programs such ms\os [11] for constrained
N optimization.
fM =gy E S (6.3 It is not obvious that the use of parametrizatiérd) from
n=M-+1 the additivity of Breit-Wigner phases, and parametrization
(6.9 from analyticity alone, will lead to the same resonance
The partial wave then takes the form parameters in both cases. The use of parametriza€ah
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confers no phenomenological or computational advantagenly linearly. This occurs only when the intermediate state is
over parametrizatioi6.9). The assumption of the additivity = p or #~ 7" n. However, the three-body intermediate state
of Breit-Wigner phases restricts the background and thénvolves a 3-3 amplitude and a three-body phase space
complex coefficients multiplying the Breit-Wigner ampli- integral. Separating the two-body intermediate statep
tudesa,, n=1,... M in parametrizatior(6.4) to specific and«’n, we can write Eq(7.3) in the form

forms. Since there is no physical justification for such a re-

striction, and parametrizatio(6.9) is free from such con- . . .
straints, we suggest that the use of parametrizao® is _'(Txn,oxp_Toxp,xn):Z TOApYOAF’)Txn,ox,;dCDZ
more appropriate in determining resonance parameters in Ap

7 Scattering.
*
+2 f Toxp,oxr’lTAn,o)\édq)z
VII. UNITARITY IN PION PRODUCTION # p—a @Tn A

It is a common misconception to identify partial wave +A>\n,o>\p, (7.4
production amplitudes in reactiom™ p— 7~ 7" n with par-
tial wavesT]| in 77 scattering and demand that the partial whereTOA o) and Tox o are helicity amplitudes of reac-
wave [productio]n amplitudes also satisfy the partial wave unigiong p_m P anda-r p— °n, respectively The ampli-
tarity [Eq. (3.1)]. In this section we clarify the distinction *
between the two kinds of amplitudes and the associated uniUde-rA HUM corfesponds to process’n— " n. The in-
tarity relations. elastic umtarlty contributionAA O (st m?,6,¢) can be
The production process™ p— 7~ 7*n is described by expanded in a form analogous to Eq 2:
production amplitude§25,30,31

o +J

oy 00, (S, 0,0), 0D A 0,2 2 (23FDVAY o (stm))di(6)e™,

where\, and\,, are proton and neutron helicitiesis the (7.5
c.m.s. energy squaretljs the momentum transfer between _ ) _ )
the incident pion and the dipion system (7"), m? is the ~ USiNg expansion&7.2) and(7.9) in Eq.(7.4), we obtain uni-
dipion mass squared, ati= (4, $) is the solid angle of the tarity relations for partial wave production amplitudes
final =~ pion in the dipion rest frame. dipion state does not

have a definite spin. Production amplitudes like &ql) can congd j J*
. . - . —i1(M —M* T M ,dd
be expressed in terms of partial wave production amplitudes (Min,on, = Man o) = Z Ohp 0NN, 0N T2

Mixnvoxp(s,t,mz) corresponding to definite dimeson sgin

using the angular expansi¢@5,30,31, +2 J Toxp,oxr;'\/'f;n,m\rf]dcpz
o +J
a0, = E E (23+1)1/2M>\>\ 0\ (S,t.mz)dio(ﬁ)eiw, -I—A% o, (7.6)
(7.2

. . - L Using time-reversal relations for two-body helicity ampli-
whereJ is the spin and. the helicity of the -~ =) dime- tudes[44]

son system.
It is evident from Eq.(7.2) that the partial wave produc- M2 = (= 1)) 7.7
tion amplitudesMy , o, (Stm %) cannot be identified with Op M Mo Op? '

the =7 partial wave amplitudes'I'J(mZ) The amplitudes
Milknmp(s,t,m ) can be thought of as two-body helicity
amplitudes for a process™ +p—M(J,m)+n, where the

“particle” M(J,m) has spinJ and massn.
The production amplitude§xn,mp satisfy the unitarity

condition[26]

we see that the left hand side of the partial wave unitarity
relation[Eq. (7.6)] does not simplify to 2Ir‘ii/|M 0r, 85 is

the case for the partial Wavé'$ in scattering The right
hand side of Eq(7.6) mvolvesMMn’o)\p only linearly and

not quadratically, as is the case imr scattering. Futher-
more, the right hand side of unitarity relatign.6) includes
(linearly) partial wave production amplitudes for the process
—i(TAn,O)\p—Tgxpmn)=E f TOAanT;‘n,ndCI)n, m°n— " 7" n. We conclude that unitarity relations like Eq.
N 73 (7.6) for partial wave production amplitudel\di)\n,Oxp are
' complex relations that do not have the simple form

whered®, is the n-body Lorentz invariant phase space of
the intermediate stat®. Since the initial state inm p ImT|=q|T||>+A, (7.9
— o~ 7'nis a two-body state and the final state is a three-
body state, the amplitud‘éM o, enters the unitarity integral of the partial wave unitarity relations ifr7r scattering.
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For brevity let us definM‘)XEMi)\n'oxp, whereA stands targets, allowing for amplitude spectroscopy of these inter-

for the helicities. The amplitudd1] is a complex function, ©€Sting processes. . .
and so is the function 42igM?> . In analogy with Eqs The analysis of mass spectra measured in production pro-
(3.12 and(3.3) we can write A " cesses requires a parametrization of the production ampli-

tudes in terms of the Breit-Wigner amplitudes to identify
1 contributing resonances and to determine their parameters.
Mi:-—( nieZiﬁf\— 1), (7.9 Here we discuss two approaches, one based on the additivity
2iq of Breit-Wigner phases and the other on the analyticity of
; . o o production amplitudesA(s,t,m?) in the mass variable at
wheren (s,t,m?) is the “inelasticity” and 8} (s,t,m?) isthe  fixed s andt.
“phase shift.” The amplitudeMJA satisfies a relation similar First we note that the unitarity equati¢n.6) for the par-
to Eq.(3.13: tial wave production amplitudes mN— mrarN is a complex
relation and that the helicity amplituan;f\ or the transver-
ImM?3=q|M3 |2+ %[1_(771)2]' (7.10  sity amplitudesA andA do not satisfy the two-body partial
q wave unitarity equatior(3.1) with Eq. (3.4). Nevertheless,
the experimentally measured production amplitudes

Unlike in 77 scattering, the form of Eq(7.10 does not  A(s,t,m?) are complex functions, and as such can be written
coincide with the form of partial wave unitarifeq. (7.6)],  in the form

and the “inelasticity” nJA cannot be related to the inelastic

unitarity contributionsA? , in contrast to Eq(3.4). As.t,m?) = %[nAemA—l], 8.

VIII. INTERFERING RESONANCES IN PRODUCTION L ) . .
PROCESSES where the “inelasticity” na= 7(s,t,m?) and “phase shift

Sa=8a(s,t,m?) also depend on the helicities or transversi-
The amplitudes describing production processes such dges of the amplitude\. Obviously,
7N— 77N, pp— mmwpp or pp— 37 are far more complex
than isospin amplitudes in ther scattering. As an example 2. 1 2
_ _ S In them ernng. ’ ImA=|AI2+ = (1—73). (8.2
consider pion production it~ p— = 7 n. The angular 4
distribution of the dipionm~ 7" state is described by partial
wave production amplitudeMi)\nmp(s,t,mz) defined in

Sec. VIl with Eg. (7.2. The measurements ofr p
—a 7'n on a polarized target actually determine the
moduli of nucleon transversity amplitudg30,31] which are
linear combinations of helicity amplitudelmi)\nloxp. For Sa(s,t,m?) = £a(s,t,m2)+ &' (M?), 8.3
massesn<1000 MeV, the pion production is described by

2’:}3 %;vinFS:Jwa(\)/)e r}\‘;gi‘;nntgi?esgﬁr; gﬁsavrgfsl;littl;dfrfpr)]lgfaes nances contributing to the amplitude andé&, is the “back-

i S ) b A, ground” phase. If we restrict ourselves to a finite mass inter-
L,L,N,N,U,U [30,31. The amplitudesA=S,L,N,U corre-  y4| 4,,2<m2<mg, with M resonances, we can write
spond to “up” nucleon transversity, while the amplitudés
=S,L,N,U correspond to “down” nucleon transversity. The Sa(s,t,m?) = E(s,t,m?) + 8, (m?), 8.4
amplitudesL and L correspond to dimension helicity=0

while N andN andU andU are natural and unnatural parity
amplitudes corresponding to combinationshaf = 1.

The measurements of pion production on polarized targets )
enable one to advance hadron spectroscopy from the level of + np€%éA ng"s)(mz), (8.9
spin-averaged cross sections to the level of spin-dependent
production amplitudes. These measurements determine tfig analogy with Eq(6.4) for w scattering44]. .
mass spectrA|2 and|A|? of spin-dependent production am- A mare genzera! approach is to use the analyticity of
plitudes. Measurements af p— o 7 'n on transversely A_(s,t,m) N m W'th.s andt fixed. We can assume that
polarized targets were done at CERN at 17.2 Gel82— kmemaﬂcal §|ngular|t|es hzave been rem_oved from the pro-
35] and at ITEP at 1.78 Ge¢/ [36]. Measurements of duct|o_n ampl|tude$\(§,t,m ) [45].' Assummgzthat there are
7o a7 p [31,37-39 and K n—K* 7 p [40,4] at N B_relt-legner poles in the amphtud@(s,t,m ) in t_he mass
5.98 and 11.85 Ge\/ on transversely polarized deuteron variablem . We c?n use the geﬂerallzed dl_spersmn relations
target were also done at CERN. More recently it was show{O" the variablem® with s andt fixed to obtain

However, there is no requirement now tha{<1 sincen,
has no relation to unitarity as in E¢3.4).

We can pursue the analogy with ther scattering, and
impose an assumption that the “phase shift”

where §' is the sum of Breit-Wigner phases of thereso-

1 .
As,tm?) = = ( Al — 1)

that mass spectra of production amplitudes can be obtained N
in measurements ofr p— #°7°n, 7 p— pyn [42] and A(s,t,md)=1(s,t,md) + > Ry (s,t,md)a,(m?) (8.6
m p—nm N, m p— nw’n [43] on transversely polarized n=1
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where| is the contribution of dispersion integralR,, are  Collaboration used the form of E(.7) to fit the Dalitz plot
complex pole residues, aral, are the Breit-Wigner ampli- of D" —a#~ 7" 7" decays in their search for a scalar reso-
tudes[Egs. (5.6)]. In a finite mass interval 4°><m?<mZ,  nanceo [23].

with M resonances we can write Finally we comment on the determination ofr partial
wave amplitudes from measurements ®N— 77N. The
M resonance parameters from the fits to mass spectra such as
A(s,t,m2)=BM)(st,m?d)+ >, R,(s,t,m?),a,(m?), those measured inmN— 77 N on polarized targets
n=1

[17,18,39 or in 7~ p— 7°7°n [20—22 must be the same in
(8.7) 7 partial waves. However, thes partial wave amplitudes
are expected to satisfy partial wave unitarity constraidt$
where the background and(3.4), or rather inequalitie$3.8) and(3.9), which for the

amplitudest| defined in Eq.(5.1) read
N

BM(s,t,m?) =1+ > Ryanm. (8.9
“M+1

m

1
tl2<Imt<[t]?+ 7. (8.9

We note that forM =N we reobtain constrainté5.7) with  Unitarity conditions like Eq(8.9) can always be satisfied by
replacements;— 7, and §— &, . Again, the assumption of an appropriate choice of background and complex residues
additivity of Breit-Wigner phases restricts the productionR (s) in a general parametrizatiditq. (6.9)] based on ana-
amplitudes to analytical functions that satisfy constraintgyticity. Although == partial waves and production ampli-
(5.7). tudes inmN— 77N with the same spin and isospin share the
The measured mass spectfd” can now be fitted either same Breit-Wigner poles, they are different analytical func-
with parametrizatior(8.5 or with the more general param- tions and thus the residues of the poles and the backgrounds
etrization(8.7). There are no unitarity constraints to be im- gre different. In particular, the residues in production ampli-
posed on the production amplitudes? during the fits, since  tudesA depend on particle helicities and kinematic variables
the right hand side of unitarity relatiofr.6) is not known s andt. Accepting the resonance parameters obtained from
and the partial wave unitaritjeq. (3.1) or (7.8)] for mm  the fits to the mass spectfa|?> measured inN— 77N to
amplitudesT|(s) does not apply to the production ampli- describe the resonancesinr— m scattering, the effect of
tudesA(s,t,m?). The unitarity constraintEq. (3.1) or (7.8]  unitarity conditions like Eq(8.9) is to constrain the residues
can be imposed only in the analysis of data on the  R,(s) and the background term in the general parametriza-
— a7 reaction and below we discuss its effect @ am-  tion [Eq. (6.9)] of the 7o amplitudes.
plitudes. It is also possible to use resonance parameters determined
Since there is no physical justification for the assumptionfrom measurements afN— 77N to calculate the resonant
of additivity of Breit-Wigner phases in E¢8.3), and since part T™) and to define ther partial waves using param-
the form of Eq.(8.5 confers no phenomenological or com- etrization (6.4) with free background and inelasticity func-
putational advantage over the more general analytical fornfgns g(M)(s) and 7(s). The unitarity can be satisfied by
[Eq. (8.7)], we conclude that the use of the form of B8.7)  imposing the conditiony<1.
is more appropriate in fits to mass spectra in production pro- ynitarity constraints like Eq(8.9) may not uniquely de-
cesses to determine the resonance parameters of interferiggmine the background and pole residues in the parametri-
resonances. zation[Eqg. (6.9)] from analyticity, and the use of parametri-
The parametrization of production amplitudes in terms ofzation (6.4) from additivity of Breit-Wigner phases is
a coherent sum with complex coefficients and a complexyyestionable. We conclude that the resonance parameters de-
coherent background as in E@.7) has been an accepted termined from mesurements afN— 7N alone may not
practice for a long time. Such parametrizations first appearegetermine ther partial wave amplitudes without additional

A, meson[15] and the splitting of theQ resonance in

K* 7~ 7" mass spectrurfil6]. Recently such a parametriza-
tion was used in the study @f(750)— f,(980) interference
in Swave production amplitudes im~p— 7~ 7"n mea- We have shown that, in the case ofr scattering, the
sured on polarized target at CERIN7,18 and in the study assumption of the additivity of Breit-Wigner phases in a par-
of o—1y(980) interference in the central collisiopp  tial wave amplitude leads to a sum of Breit-Wigner ampli-
—m97pp [19]. More recently, an analysis &wave pro- tudes with complex coefficients and a coherent background
duction amplitudes from threshold to 2 GeV ipp [Eq. (4.3)]. The coefficients have a specific forhieq.
—7%7%pp was made using thrg@0] and four[21] inter-  (4.28] in terms of resonance parameters of all contributing
fering Breit-Wigner amplitudes and a coherent backgroundresonances. The form of E¢4.31) is a special case of the
The GAMS Collaboration used four interfering Breit-Wigner general form[Eq. (5.5] based on analyticity and it is not
amplitudes and a coherent background in their fitafave related to the unitarity property of partial wavisgs. (3.1
mass spectrum from threshold to 3 GeVin p—#°#°n  and (3.4)]. The claims[13,14 that the additivity of Breit-
measured at 100 Ge)22]. Also recently, the Fermilab E791 Wigner phases provides a correct description of interfering

IX. SUMMARY

096003-10



UNITARITY AND INTERFERING RESONANCES IN . .. PHYSICAL REVIEW D64 096003

resonances inrsr scattering are not justified, since there is mass variable to justify the common practigE5—-23 of
no physical reason why the Breit-Wigner poles must have thevriting the production amplitudes as a coherent sum of
specific residues imposed by this assumption. We found thdreit-Wigner amplitudes with free complex coefficients and
the Breit-Wigner phases of interfering resonances are nat complex coherent background in fits to measured mass
necessarily additive. We suggest that the general fdfm  spectra to determine the resonance parameters of interfering
(5.5)] obtained from analyticity is more appropriate in fits to resonances. Two-body unitarity constraints ear partial
data. Unitarity conditions like Eq(8.9), |t/|><Imt/<|t||>  wave amplitudes with the same resonances can be satisfied
+ %, can be effectively imposed using the modern method®y an appropriate choice of complex residues of the contrib-
of constrained optimizatiof®—11]. uting Breit-Wigner poles. This reflects the fact that the
Mass spectra in production processes are described partial wave amplitudes and production amplitudes while
production amplitudes. We used the case of N  sharing the same resonances are different analytical func-

— ot 7N reaction to illustrate the complexity of produc-

tions.

tion amplitudes. Specifically, the production amplitudes do

not satisfy the two-body partial wave unitarity equation
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