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Unitarity and interfering resonances in pp scattering and in pion production pN\ppN
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The additivity of Breit-Wigner phases has been proposed to describe interfering resonances in partial waves
in pp scattering. This assumption leads to an expression for partial wave amplitudes that involves products of
Breit-Wigner amplitudes. We show that this expression is equivalent to a coherent sum of Breit-Wigner
amplitudes with specific complex coefficients which depend on the resonance parameters of all contributing
resonances. We use the analyticity ofpp partial wave amplitudes to show that they must have the form of a
coherent sum of Breit-Wigner amplitudes with complex coefficients and a complex coherent background. The
assumption of the additivity of Breit-Wigner phases is a new constraint on partial wave amplitudes independent
of partial wave unitarity. It restricts the partial waves to analytical functions with a very specific form of
residues of Breit-Wigner poles. Since there is no physical reason for such a restriction, we argue that the
general form provided by the analyticity is more appropriate in fits to data to determine resonance parameters.
The partial wave unitarity can be imposed using the modern methods of constrained optimization. We discuss
the production amplitudes inpN→ppN reactions, and use analyticity in the dipion mass variable to justify
the common practice of writing the production amplitudes in production processes as a coherent sum of
Breit-Wigner amplitudes with free complex coefficients and a complex coherent background in fits to mass
spectra with interfering resonances. The unitarity constraints onpp partial wave amplitudes with resonances
determined from fits to mass spectra of production amplitudes measured inpN→ppN reactions can be
satisfied with an appropriate choice of complex residues of contributing Breit-Wigner poles.
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I. INTRODUCTION

In the 1930s, Breit and Wigner introduced@1,2# a param-
etrization of resonances observed in the energy depend
of integrated and differential cross sections of nuclear re
tions. The original Breit-Wigner formula was only a on
resonance approximation and its justification was initia
only phenomenological. A theoretical justification for th
Breit-Wigner formula later emerged from quantum collisi
theory@3#. The evident existence of multiple and overlappi
resonances in nuclear reactions led to two distinct gene
zations of the Breit-Wigner formula for an isolated resonan
to multiresonance description of the scattering process.

One generalization was undertaken by Feshbach@4,5#,
Humblet@6#, and McVoy@7#, who used the analyticity prop
erties of theS matrix to show that the transition matrix ca
be written as a coherent sum of Breit-Wigner terms w
complex coefficients and a coherent background. Since
transition matrix must satisfy unitarity, the parameters a
coefficients of this multiresonance parametrization are
independent@5,8#. In principle it is possible to use the meth
ods of nonlinear programming@9,10# and constrained opti
mization with computer programs such asMINOS developed
at Stanford University@11# to impose the conditions of uni
tarity in fitting the experimental data.

Another approach to the multiresonance description
scattering processes was proposed by Hu in 1948@12#. He
observed that the Breit-Wigner contribution of an isolat
resonance to theSmatrix is unitary, and proposed describin
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the multiresonance contributions in theSmatrix by the prod-
uct of isolated Breit-Wigner contributions for each res
nance. Since each term is unitary, the product also satis
unitarity. The partial wave phase shift is then a sum of Bre
Wigner phases of contributing resonances and a backgro
phase. As a result, the expressions for partial wave am
tudes involve products of Breit-Wigner amplitudes. Th
method was recently used by Bugget al. @13# and Ishida
et al. @14# in their analyses ofpp phase shift data.

Up to now the connection between these two descripti
of multiresonance contributions~interfering resonances! has
not been clarified. In this work we show that the Hu descr
tion is a special case of a more general description base
analyticity. We show that the Hu method also leads to
coherent sum of Breit-Wigner amplitudes with complex c
efficients and a complex coherent background for any pa
wave, as expected from the analyticity of theSmatrix. How-
ever, the complex coefficients have a very specific form
terms of resonance parameters of all contributing resonan
The assumption of the additivity of Breit-Wigner phases is
new constraint that restricts the partial waves to analyt
functions with these specific residues of Breit-Wigner pol
Furthermore, we show that the additivity of Breit-Wign
phases is an assumption entirely independent of the unita
property of partial wave amplitudes, which is a conditio
imposed on their inelasticity.

Since there is no physical reason why physical par
waves must have the form of a coherent sum of Breit-Wig
amplitudes with specific complex coefficients required by
additivity of Breit-Wigner phases, we conclude that the ge
eral form imposed by the analyticity is more appropriate
fits to data to determine resonance parameters. This con
©2001 The American Physical Society03-1
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sion is particularly relevent for analysis of interfering res
nances in the mass spectra in production processes su
pN→ppN or pp→pppp. Using analyticity in the invari-
ant mass variables, we justify the common practice of par
etrizing the production amplitudes in terms of a coher
sum Breit-Wigner amplitudes with free complex coefficien
and a complex coherent background@15–23#.

The paper is organized as follows. In Sec. II we brie
review the unitarity and the problem of interfering res
nances in potential scattering since it motivates the anal
in hadronic reactions. In Sec. III we review the two-bo
partial wave unitarity inpp scattering and its relation to th
general form of isospin partial waves. In Sec. IV, we intr
duce the assumption of additivity of Breit-Wigner phases
the pp scattering, and show that it leads to partial waves
a form of a coherent sum of Breit-Wigner amplitudes w
specific complex coefficients and a coherent background
Sec. V we generalize dispersion relations for partial wa
amplitudes inpp scattering to Breit-Wigner poles, and sho
that the form obtained from the additivity of Breit-Wigne
phases is a special case. In Sec. VI we focus the discus
of the two methods to a finite energy interval, and argue t
the addition of Breit-Wigner phases imposes an unjustifi
constraint on fits to data. In Sec. VII we formulate unitar
for production amplitudes inp2p→p2p1n reaction and
contrast it with partial wave unitarity inpp scattering. In
Sec. VIII we show that the method of addition of Bre
Wigner phases can be generalized to production amplitu
We also use analyticity in the invariant mass to obtain a m
general form for production amplitudes in terms of a coh
ent sum of Breit-Wigner amplitudes with free complex co
ficients ~pole residues! and a complex coherent backgroun
We argue that this general form is more appropriate in fits
measured mass spectra. Although the discussion is con
to pion production amplitudes inpN→ppN, the conclu-
sions have a general validity. We also comment on deter
nation of pp partial wave amplitudes from resonance p
rameters determined in measurements of produc
amplitudes inpN→ppN reactions. The paper closes with
summary in Sec. IX.

II. UNITARITY AND INTERFERING RESONANCES
IN POTENTIAL SCATTERING

A. Unitarity

We will consider the scattering of a spinless particle
mass m by a real, central potentialV(r ) @24#. In the
asymptotic form of the stationary scattering wave functio
the outgoing wave is characterized by the scattering am
tude f (k,u), where k is the wave number of the particl
related to its energy by

E5
p2

2m
5

\2k2

2m
, ~2.1!

and u is the scattering angle. In units of\51 the wave
numberk has the meaning of the momentump. The scatter-
ing amplitude can be written in the form
09600
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`

~2l 11!Tl~k!Pl~cosu!. ~2.2!

The partial wave amplitudesTl are given by

Tl5
1

2ik
@Sl~k!21#, ~2.3!

whereSl(k) is called theS matrix. For elastic scattering,

Sl5e2id l (k), ~2.4!

where the phase shiftsd l describe the interaction and ar
related to the potentialV(r ). For elastic scattering,uSl u51,
which is the condition of elastic unitarity.

When a particle collides with a target, nonelastic pr
cesses are possible, and particles are removed from the
dent~elastic! channel. Since the interaction can alter only t
outgoing part of the wave function, we require that the a
plitude of the outgoing wave be reduced if nonelastic p
cesses occur. The reduction of scattering amplitudes lead
conditions of inelastic unitarity:

uSl u<1. ~2.5!

This suggests that we write

Sl5h l~k!e2id l (k), ~2.6!

whereh l is called the inelasticity, and has values

0,h l<1. ~2.7!

The partial wave then has a general form

Tl5
1

2ik
@h le

2id l21#. ~2.8!

From Eq.~2.8! it follows that

Im Tl5kuTl u21
1

4k
~12h l

2!. ~2.9!

This equation expresses the unitarity condition on the pa
wavesTl .

B. Interfering resonances

In the following we will work with partial wave ampli-
tudes

t l5kTl5
1

2i
@h le

2id l21#, ~2.10!

and the energyE instead ofk. A detailed study of the poten
tial scattering@24# shows that the phase shift may be deco
posed asd l5j l1r l , where j l is the background phas
which does not depend on the shape and depth of the in
action potentialV(r ) while the partr l does depend on the
details of the potential. Near resonant energyEr ,
3-2
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tanr l'
G~E!

2~Er2E!
, ~2.11!

whereG(E) is the width of the resonance. We introduce
Breit-Wigner resonance phased l

r :

d l
r5tan21H G~E!

2~Er2E!J 5argFEr2E1 i
1

2
G~E!G ,

~2.12!

such that in the energy intervalDE centered aboutEr we
haver l'd l

r and

d l'j l1d l
r . ~2.13!

From Eq.~2.12! it follows that

e2id l
r
5

E2Er2
1
2 iG

E2Er1
1
2 iG

5112ial , ~2.14!

where

al5
2 1

2 G

E2Er1
1
2 iG

~2.15!

is the Breit-Wigner amplitude of the resonancer. For an
isolated resonance we then obtain

t l5
1

2i
~h le

2i j l21!1h le
2i j lS 2 1

2 G

E2Er1
1
2 iG

D . ~2.16!

If N resonances contribute over an intervalDE then, follow-
ing Hu @12# and Refs.@13,14#, we can write

e2id l
r
5 )

n51

N E2Er
(n)2 1

2 iG (n)

E2Er
(n)1 1

2 iG (n)
5 )

n51

N

~112ial
(n)!.

~2.17!

Prescription~2.17! clearly satisfies unitarity but seems
lead to a complicated expression for partial wavest l in terms
of Breit-Wigner amplitudesal

(n) .
On the other hand, the analyticity of theS matrix was

used by Feshbach@4,5#, Humblet @6# and McVoy @7# to de-
rive a general form fort l @5#,

t l5Bl~E!1 (
n51

N Al
(n)~E!

E2Er
(n)1 1

2 iG (n)~E!
, ~2.18!

where Bl is a background term andAl
(n)(E) are complex

coefficients. The sum in Eq.~2.18! can be written as a co
herent sum of Breit-Wigner amplitudes:

t l~E!5Bl~E!1 (
n51

N

Rl
(n)~E!

2 1
2 G (n)~E!

E2Er
(n)1 1

2 iG (n)~E!
.

~2.19!
09600
In Sec. IV we show that prescription~2.17! leads to an ana-
lytical form @Eq. ~2.19!# with specific expressions for th
coefficientsRl

(n) and the backgroundBl .

III. ISOSPIN AMPLITUDES AND UNITARITY
IN pp\pp SCATTERING

Hadron resonances have definite values of spin and i
pin. It is therefore necessary to express the amplitudes
charged pion processespp→pp in terms of isospin ampli-
tudesTI(E,u), with a definite isospinI 50,1,2, and work
with partial wave amplitudesTl

I(E) @25#. At first we will
work with the center-of-mass~c.m.! energyE5As to pursue
the analogy with the potential scattering.

The partial wave amplitudesTl
I satisfy partial wave uni-

tarity equations@25,26#

Im Tl
I5quTl

I u21D l
I , ~3.1!

whereD l
I are contributions from inelastic channels, such

pp→pppp, KK̄, NN̄, and q5A1
4 (s24m2) is c.m. mo-

mentum wherem is the pion mass.. Let us writeD l
I in the

form

D l
I5

1

4q
@12~h l

I !2#. ~3.2!

Then the unitarity equation~3.1! has the same form as Eq
~2.9!, and the partial wavesTl

I can be written as

Tl
I5

1

2iq
$h l

Ie2id l
I
21%, ~3.3!

whered l
I(E) are phase shifts and the inelasticity

h l
I~E!5A124qD l

I~E! ~3.4!

is given by the inelastic unitarity contributionsD l
I . In anal-

ogy with potential scattering we expect that 0,h l
I<1. As

we shall see later, the descriptions of interfering resonan
in pp scattering do not depend on the condition thath l

I

<1.
The positivity of inelasticityh l

I in Eq. ~3.4! imposes a
constraint

D l
I<

1

4q
. ~3.5!

We can now show that the unitarity equation~3.1! admits no
solution forD l

I.1/4q. If the inelastic unitarity contributions
satisfy this condition, we can write

D l
I5

1

4q
@11~h l

I !2#, ~3.6!

where (h l
I)2.0. SettingTl

I5Vl
I /2q from unitarity equation

~3.1! we obtain

~ReVl
I !21~ Im Vl

I21!252~h l
I !2, ~3.7!
3-3
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M. SVEC PHYSICAL REVIEW D 64 096003
which is not possible. Thus conditions~3.5! represent genu
ine constraints on the inelastic unitarity contributionsD l

I and
the parametrization@Eq. ~3.3!# of partial wave amplitudes
with ~3.4! is the most general solution of unitarity equatio
~3.1! for all E.

Since the values of inelastic termsD l
I in partial wave uni-

tarity equations like Eq.~3.1! are not known, we constrain
the partial wavesTl

I by inequalities imposed by the unitarity
From the positivity ofh l

I and condition~3.5!, we obtain

Im Tl
I<quTl

I u21
1

4q
. ~3.8!

If we add the requirement thath l
I<1, thenD l

I>0 from Eq.
~3.2!, and we also have the usual unitarity constraint

Im Tl
I>quTl

I u2. ~3.9!

Inequality ~3.9! implies a positivity

Im Tl
I>0 ~3.10!

at all energies.
Finally we note the following observation. Letf (z) be

any complex function. Then 112i f (z) is a complex function
that can be written as

112i f ~z!5h~z!e2id(z), ~3.11!

whereh.0 andd is real. Thus any complex function can b
written in the form

f ~z!5
1

2i
~he2id21!, ~3.12!

and satisfies the equation

Im f 5u f u21
1

4
~12h2!. ~3.13!

We see that unitarity equations like Eq.~3.1! are a special
case of Eq.~3.13! with h given by Eq.~3.4!.

IV. INTERFERING RESONANCES IN pp SCATTERING
USING THE ADDITION OF BREIT-WIGNER

PHASES

The general form of the phase shift parametrization
partial wave amplitudesTl

I is

Tl
I5

1

2iq
@h l

Ie2id l
I
21#, ~4.1!

with the inelasticityh l
I determined by unitarity via Eq.~3.4!.

In the following we will omit the indicesl andI for simplic-
ity. In analogy with potential scattering, we decompose
phase shiftsd into two parts:

d5j1d r , ~4.2!
09600
f

e

wherej is the nonresonant background phase andd r is the
phase due to physical particle resonances occurring in
partial waveTl

I . The phase of a single isolated resonance
given by the Breit-Wigner formula

e2idr
5

E2Er2
1
2 iG~E!

E2Er1
1
2 iG~E!

. ~4.3!

Let us consider thatN resonances contribute to the parti
wave amplitudeTl

I . Following Refs.@12–14# we now as-
sume that the resonant phase shiftd r is given by the sum of
the Breit-Wigner phases of the contributing resonances:

d r5 (
n51

N

dn
r . ~4.4!

We assume thatN is finite. Then

e2idr
5 )

n51

N

e2idn
r
5 )

n51

N E2En2 1
2 iGn

E2En1 1
2 iGn

. ~4.5!

For each Breit-Wigner phase we can write

e2idn
r
5112ian , ~4.6!

wherean is the Breit-Wigner amplitude:

an5
2 1

2 Gn

E2En1 1
2 iGn

. ~4.7!

Then we can write

e2idr
5112iTres , ~4.8!

where Tres is given in terms of products of Breit-Wigne
amplitudesan The partial wave amplitudeTl

I then has a gen-
eral form

T5
1

2iq
~he2i j21!1

1

q
e2i jhTres . ~4.9!

Let us consider the caseN52. Then the resonant part o
the amplitudeTl

I is

Tres5a11a212ia1a2 , ~4.10!

where the interference term

a1a25
~2 1

2 G1!~2 1
2 G2!

~E2E11 1
2 iG1!~E2E21 1

2 iG2!
. ~4.11!

With a notation

zk5Ek2
1

2
iGk , ~4.12!

we write
3-4
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1

~E2z1!~E2z2!
5F A

E2z1
1

B

E2z2
G 1

C
. ~4.13!

The requirement that this equality holds leads to a relatio

~A1B!E2~Az21Bz1!5C. ~4.14!

Next we require thatA52B to eliminate theE dependent
term, and obtainC5A(z12z2). Then Eq. ~4.13! has the
form of a sum,

1

~E2z1!~E2z2!
5

1

z12z2
F 1

E2z1
2

1

E2z2
G , ~4.15!

and we can write the resonant part@Eq. ~4.10!# of the partial
wave amplitude as the sum of two Breit-Wigner amplitud

Tres5C1
(2)

2 1
2 G1

E2E11 1
2 iG1

1C2
(2)

2 1
2 G2

E2E21 iG2
, ~4.16!

where the complex coefficients

C1
(2)5122i

1
2 G2

z12z2
,

~4.17!

C2
(2)5112i

1
2 G1

z12z2

are exactly such that the unitarity condition

ue2idr
u5u112iTresu51 ~4.18!

is satisfied for allE. The energy dependence of the widt
Gn(E) introduces an energy dependence inCn(E), n51,2.

Now consider the case of three interfering resonanceN
53. Then

Tres5a11a21a312i ~a1a21a1a31a2a3!1~2i !2a1a2a3.

~4.19!

We can write the last term as a sum:

1

~E2z1!~E2z2!~E2z3!
5F A

E2z1
1

B

E2z2
1

C

E2z3
G 1

D
.

~4.20!

Requiring that terms proportional toE2 andE in the numera-
tor on the right-hand side of Eq.~4.20! vanish, we obtain a
sum

K1

E2z1
1

K2

E2z2
1

K3

E2z3
, ~4.21!

where
09600
,

K15
A

D
5

z32z2

X
,

K25
B

D
5

z32z1

X
,

K35
C

D
5

z12z2

X
, ~4.22!

with

X5z1z2~z12z2!1z3z1~z32z1!1z3z2~z32z2! .
~4.23!

The resonant part of the partial wave amplitude is agai
coherent sum of the Breit-Wigner terms with complex co
ficients

Tres5 (
n51

3

Cn
(3)

2 1
2 Gn

E2En1 1
2 iGn

, ~4.24!

where

C1
(3)5122i

1
2 G2

z12z2
22i

1
2 G3

z12z3
1~2i !2S 1

2
G2D S 1

2
G3DK1 ,

C2
(3)5112i

1
2 G1

z12z2
22i

1
2 G3

z22z3
1~2i !2S 1

2
G1D S 1

2
G3DK2 ,

~4.25!

C3
(3)5112i

1
2 G1

z12z3
12i

1
2 G2

z22z3
1~2i !2S 1

2
G1D S 1

2
G2DK3 .

This procedure is general and valid for any finiteN. Assum-
ing that the resonant phased r can be separated from th
phase shiftd and is given by the sum of Breit-Wigne
phases, we will always obtain the resonant partTres of the
partial wave amplitudesTl

I in Eq. ~4.9! as a sum of Breit-
Wigner amplitudes:

Tres~E!5 (
n51

N

Cn
(N)~E!

1
2 Gn~E!

E2En1 1
2 iGn~E!

. ~4.26!

In Eq. ~4.26! the complex coefficientsCn
(N) have an explicit

form in terms of resonance parametersEn ,Gn ,n51, . . . ,N,
such thatTres satisfies unitary condition~4.18!. The form of
coefficientsCn

(N) depends on the number of resonances c
tributing to the partial waveTl

I .
As the result of Eq.~4.26! we can conclude that the mu

tiresonance parametrization of partial wave amplitud
based on the additivity of Breit-Wigner phases, has the g
eral form of a coherent sum of Breit-Wigner amplitudesan
with complex coefficients and a complex coherent ba
ground,
3-5
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T5
1

q FB~E!1 (
n51

N

Rn
(N)~E!

2 1
2 Gn

E2En1 i 1
2 Gn

G , ~4.27!

where

B5
1

2i
@he2i j21#,

~4.28!
Rn

(N)5e2i jhCn
(N)5~112iB !Cn

(N) .

Comparing Eq.~4.27! with expression~2.19!, we see that the
description of multiresonance contributions using the ad
tion of Breit-Wigner phases leads to the same form of par
wave amplitudes as the analyticity of theSmatrix. However,
the complex backgroundB and the complex coefficientsRn

(N)

in Eq. ~4.27! have the explicit form@Eq. ~4.28!# imposed by
the additivity of Breit-Wigner phases.

Note that in the derivation of Eq.~4.26! for Tres , and in
the resultant form@Eq. ~4.27! with Eq. ~4.28!#, we have not
needed or used the assumption that inelasticityh<1. The
Hu method is based on the unitarity of 112iTres , and is not
related to the unitarity of the whole partial wave amplitu
Tl

I .
Finally we give a relativistic form for the multiresonanc

description of partial wave amplitudes. The relativistic for
of Breit-Wigner amplitudes@Eq. ~4.7!# is given by

an5
2mnGn~s!

s22mn
21 imnGn~s!

, ~4.29!

where we have usedmn instead ofEn to emphasize thatEn is
the mass of the resonance. To obtain the corresponding
efficients Cn

(N) , we make replacements in Eq.~4.17! or
~4.25!:

1

2
Gn→mnGn , ~4.30!

zn5En2
1

2
iGn→zn5mn

22 imnGn .

The partial wave amplitudes then have the relativistic for

T~s!5
1

q FB~s!1 (
n51

N

Rn
(N)~s!an~s!G , ~4.31!

whereB andRn
(N) are still given by Eq.~4.28! with replace-

ments@such as Eq.~4.30!# to satisfy the unitarity ofTres .

V. GENERALIZED DISPERSION RELATIONS FOR
PARTIAL WAVE AMPLITUDES AND INTERFERING

RESONANCES IN pp SCATTERING

In this section we shall relate the multiresonance para
etrization@Eq. ~4.31!# of partial wave amplitudesTl

I with a
multiresonance parametrization obtained from analyticity.
this end we shall use generalized dispersion relations for
amplitudes
09600
i-
l
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e

t l
I~s!5qTl

I~s!, ~5.1!

wheres is the Mandelstam energy variable.
Our starting point is the well-known@27# dispersion re-

spresentation of a complex functionf (z) with simple poles
at zn , n51,2, . . . ,N in the complex planez, a branch cut
along a positive real axis froma to ` and with asymptotic
propertyuzu f (z)→0 asuzu→`. We shall also assume that th
function f (z) is a real function f (z* )5 f * (z). Using
Cauchy’s integral theorem and the process of contour de
mation, it can be shown@27# that

f ~z!5 (
n51

N
Rn

z2zn
1

1

pEa

` Im f ~x8!dx8

x82z
. ~5.2!

A remarkable feature of the proof of Eq.~5.2! is that it takes
place for a fixed value ofz @27#. As the result, dispersion
relation ~5.2! is also valid for moving poles for whichzn
5zn(z). In such a case the residuesRn in Eq. ~5.2! also
depend onz, i.e., Rn5Rn(z). Furthermore, dispersion rela
tion ~5.2! is easily generalized to include a left-hand cut a
for functions that are not real. In the latter case Imf (x8) in
Eq. ~5.2! is replaced by a discontinuity function along th
cut~s!.

In pp scattering, the partial wave amplitudest l
I(s) have a

right-hand cut fors>4m2 ~wherem is the pion mass!, and a
left-hand cut fors<0 due to Mandelstam analyticity@28#.
Let us assume that the amplitudet l

I has a finite numberNl
I of

complex poles,

sn5mn
22 imnG~s!, n51, . . . ,Nl

I , ~5.3!

corresponding to the resonances int l
I . Note that the imagi-

nary part of the poles depends on the energy variables. In
principle, the massmn could also depend on the energys.
This possibility has been recently considered by Penning
@29#. Omitting the indicesI and l, the generalized dispersio
relations for the partial wave amplitudet l

I read

t~s!5I ~s!1 (
n51

N
Rn~s!

s2sn~s!
, ~5.4!

where I (s) are the dispersion integrals over the left a
right-hand cuts@28#, and Rn(s) are the pole residues. It i
convenient to rewrite Eq.~5.4! in a form using Breit-Wigner
amplitudesan(s),

t~s!5I ~s!1 (
n51

N

Rn~s!an~s!, ~5.5!

where we have redefined the pole residues with

an~s!5
2mnGn~s!

s2mn
21 imnGn~s!

. ~5.6!

Representation~5.5! is valid for all s>4m2. Representation
~5.5! of partial waves t l

I coincides with parametrization
~4.31!, provided that
3-6
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I ~s![B~s!5
1

2i
@h~s!e2i j(s)21#,

Rn~s![Rn
(N)~s!5h~s!e2i j(s)Cn

(N)~s!, ~5.7!

5~112iB !Cn
(N) .

We see that the multiresonance parametrization, based o
additivity of Breit-Wigner phases like Eq.~4.4!, imposes a
special form on the dispersion integrals and pole resid
given by Eq.~5.7!.

In general, a partial wavet l
I can be written in two forms:

t5
1

2i
@he2id21#5I 1 (

n51

N

Rnan . ~5.8!

Apart from the partial wave unitarity equations~3.1! and
~3.4! and the analyticity assumptions, there are no constra
on the partial waves. The assumption of additivity of Bre
Wigner phases@Eq. ~4.4!# is a new constraint that restrict
the partial waves to analytical functions that satisfy con
tions ~5.7!. We find no physical justification for such a re
striction, and no advantage in using it in phenomenolog
fits to data to determine resonance parameters.

VI. INTERFERING RESONANCES
IN A FINITE ENERGY INTERVAL

In the previous two sections we have assumed thatN is
the total number of resonances contributing to a partial wa
Parametrizations~4.31! and ~5.5! were valid for all energies
s>4m2. In practiceN is not known, and fits to data are don
in a finite energy interval. Such is the case, e.g., in R
@13,14#. In this section we develop parametrizations of p
tial waves appropriate for analyses in a finite energy inter
where only a few resonances contribute. The parametr
tions will be based both on the additivity of Breit-Wigne
phases and analyticity, and we shall compare their us
practical fits to data. The results will be used in Sec. VIII

Let us consider an energy interval 4m2<s<sM , whereM
resonances contribute. In the framework of the assumptio
additivity of Breit-Wigner phases, we will assume that t
resonant phases of resonances outside of this energy int
are absorbed in the background phase. The total phase
is then

d5j (M )1dM
r , ~6.1!

where

dM
r 5 (

n51

M

dn
r , ~6.2!

j (M )5j1 (
n5M11

N

dn
r . ~6.3!

The partial wave then takes the form
09600
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t5
1

2i
~he2i j(M )

21!1he2i j(M )
Tres

(M ) , ~6.4!

where the resonant part

Tres
(M )5 (

n51

M

Cn
(M )an ~6.5!

is unitary:

e2idM
r

5112iTres
(M ) . ~6.6!

Alternatively we can rewrite Eq.~4.31! in the form

t5B(MN)1 (
n51

M

Rn
(N)an , ~6.7!

where

B(MN)5
1

2i
~he2i j21!1 (

m5M11

N

Rm
(N)am ~6.8!

is the background term. Note that the sum in Eq.~6.7! is not
unitary. We cannot compare the coefficients of Breit-Wign
amplitudesan , n51, . . . ,M in Eq. ~6.4! with those in Eq.
~6.7!, since j (M ) in Eq. ~6.4! contains the termsam , m
5M11, . . . ,N but the sum in Eq.~6.7! does not.

If we look at the general form@Eq. ~5.5!# from analyticity,
then fors,sM we can write

t5B(M )1 (
n51

M

Rnan , ~6.9!

where the background term

B(M )5I 1 (
m5M11

N

Rmam . ~6.10!

In Eq. ~6.9! the residuesRn are not constrained by condition
~5.7!.

In fitting data using parametrization~6.4! we explicitly
make use of the assumption of the additivity of Breit-Wign
phases. This is also the case when we use Eq.~6.7! if N is
known and the coefficientsCn

(N) in Rn
(N) can be calculated. In

generalN is not known, and the backgroundB(MN) and resi-
duesRn

(N) are free parameters. Then there is no difference
using Eq.~6.7! or the general form@Eq. ~6.9!# from analyt-
icity alone, since in Eq.~6.9! the backgroundB(M ) and resi-
duesRn are not constrained except for unitarity. In all cas
we use a constrained optimization of thex2 function. In the
case of Eq.~6.4! we require that the inelasticity functionh
<1. In the case of Eq.~6.7! or ~6.9!, we require that Imt
>utu2, and use programs such asMINOS @11# for constrained
optimization.

It is not obvious that the use of parametrization~6.4! from
the additivity of Breit-Wigner phases, and parametrizati
~6.9! from analyticity alone, will lead to the same resonan
parameters in both cases. The use of parametrization~6.4!
3-7
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confers no phenomenological or computational advant
over parametrization~6.9!. The assumption of the additivity
of Breit-Wigner phases restricts the background and
complex coefficients multiplying the Breit-Wigner ampl
tudesan , n51, . . . ,M in parametrization~6.4! to specific
forms. Since there is no physical justification for such a
striction, and parametrization~6.9! is free from such con-
straints, we suggest that the use of parametrization~6.9! is
more appropriate in determining resonance parameter
pp scattering.

VII. UNITARITY IN PION PRODUCTION pÀp\pÀp¿n

It is a common misconception to identify partial wav
production amplitudes in reactionp2p→p2p1n with par-
tial wavesTl

I in pp scattering and demand that the part
wave production amplitudes also satisfy the partial wave u
tarity @Eq. ~3.1!#. In this section we clarify the distinction
between the two kinds of amplitudes and the associated
tarity relations.

The production processp2p→p2p1n is described by
production amplitudes@25,30,31#

Tln ,0lp
~s,t,m2,u,f!, ~7.1!

wherelp and ln are proton and neutron helicities,s is the
c.m.s. energy squared,t is the momentum transfer betwee
the incident pion and the dipion system (p2p1), m2 is the
dipion mass squared, andV5(u,f) is the solid angle of the
final p2 pion in the dipion rest frame. dipion state does n
have a definite spin. Production amplitudes like Eq.~7.1! can
be expressed in terms of partial wave production amplitu
Mlln ,0lp

J (s,t,m2) corresponding to definite dimeson spinJ

using the angular expansion@25,30,31#,

Tln ,0lp
5(

j 50

`

(
l52J

1J

~2J11!1/2Mlln ,0lp

J ~s,t,m2!dl0
J ~u!eilf,

~7.2!

whereJ is the spin andl the helicity of the (p2p1) dime-
son system.

It is evident from Eq.~7.2! that the partial wave produc
tion amplitudesMl,ln ,0lp

J (s,t,m2) cannot be identified with

the pp partial wave amplitudesTJ
I (m2). The amplitudes

Ml,ln ,0lp

J (s,t,m2) can be thought of as two-body helicit

amplitudes for a processp21p→M (J,m)1n, where the
‘‘particle’’ M (J,m) has spinJ and massm.

The production amplitudesTln ,0lp
satisfy the unitarity

condition @26#

2 i ~Tln ,0lp
2T0lp ,ln

* !5(
n
E T0lp ,nTln ,n* dFn ,

~7.3!

wheredFn is the n-body Lorentz invariant phase space
the intermediate staten. Since the initial state inp2p
→p2p1n is a two-body state and the final state is a thr
body state, the amplitudeTln ,0lp

enters the unitarity integra
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only linearly. This occurs only when the intermediate state
p2p or p2p1n. However, the three-body intermediate sta
involves a 3→3 amplitude and a three-body phase spa
integral. Separating the two-body intermediate statesp2p
andp0n, we can write Eq.~7.3! in the form

2 i ~Tln ,0lp
2T0lp ,ln

* !5(
lp8

E T0lp ,0l
p8
T

ln ,0l
p8

* dF2

1(
ln8

E T0lp ,0l
n8
T

ln ,0l
n8

* dF2

1Dln,0lp
, ~7.4!

whereT0lp,0l
p8

and T0lp,0l
n8

are helicity amplitudes of reac

tions p2p→p2p andp2p→p0n, respectively. The ampli-
tudeT

ln ,0l
n8

* corresponds to processp0n→p2p1n. The in-

elastic unitarity contributionDln,0lp
(s,t,m2,u,f) can be

expanded in a form analogous to Eq.~7.2!:

Dln ,0lp
5 (

J50

`

(
l52J

1J

~2J11!1/2Dlln ,0lp

J ~s,t,m2!dl0
J ~u!eilf.

~7.5!

Using expansions~7.2! and~7.5! in Eq. ~7.4!, we obtain uni-
tarity relations for partial wave production amplitudes

2 i ~Mlln ,0lp

J 2M0lp ,lln

J* !5(
lp8

E T0lp ,0l
p8
M

lln ,0l
p8

J*
dF2

1(
ln8

E T0lp ,0l
n8
M

lln ,0l
n8

J*
dF2

1Dln,0lp

J . ~7.6!

Using time-reversal relations for two-body helicity amp
tudes@44#

M0lp ,lln

J 5~21!ln2lp2lMlln ,0lp

J , ~7.7!

we see that the left hand side of the partial wave unita
relation @Eq. ~7.6!# does not simplify to 2ImMlln ,0lp

J as is

the case for the partial wavesTl
I in pp scattering. The right

hand side of Eq.~7.6! involves Mlln ,0lp

J only linearly and

not quadratically, as is the case inpp scattering. Futher-
more, the right hand side of unitarity relation~7.6! includes
~linearly! partial wave production amplitudes for the proce
p0n→p2p1n. We conclude that unitarity relations like Eq
~7.6! for partial wave production amplitudesMlln ,0lp

J are

complex relations that do not have the simple form

Im Tl
I5quTl

I u21D l
I ~7.8!

of the partial wave unitarity relations inpp scattering.
3-8
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For brevity let us defineML
J [Mlln ,0lp

J , whereL stands

for the helicities. The amplitudeML
J is a complex function,

and so is the function 112iqML
J . In analogy with Eqs.

~3.12! and ~3.3! we can write

ML
J 5

1

2iq
~hL

J e2idL
J
21!, ~7.9!

wherehL
J (s,t,m2) is the ‘‘inelasticity’’ anddL

J (s,t,m2) is the
‘‘phase shift.’’ The amplitudeML

J satisfies a relation simila
to Eq. ~3.13!:

Im ML
J 5quML

J u21
1

4q
@12~hL

J !2#. ~7.10!

Unlike in pp scattering, the form of Eq.~7.10! does not
coincide with the form of partial wave unitarity@Eq. ~7.6!#,
and the ‘‘inelasticity’’ hL

J cannot be related to the inelast
unitarity contributionsDL

J , in contrast to Eq.~3.4!.

VIII. INTERFERING RESONANCES IN PRODUCTION
PROCESSES

The amplitudes describing production processes suc
pN→ppN, pp→pppp or pp̄→3p are far more complex
than isospin amplitudes in thepp scattering. As an example
consider pion production inp2p→p2p1n. The angular
distribution of the dipionp2p1 state is described by partia
wave production amplitudesMlln ,0lp

J (s,t,m2) defined in

Sec. VII with Eq. ~7.2. The measurements ofp2p
→p2p1n on a polarized target actually determine t
moduli of nucleon transversity amplitudes@30,31# which are
linear combinations of helicity amplitudesMlln ,0lp

J . For

massesm&1000 MeV, the pion production is described b
two S-wave (J50) nucleon transversity amplitudesSandS̄,
and by sixP-wave (J51) nucleon transversity amplitude

L,L̄,N,N̄,U,Ū @30,31#. The amplitudesĀ5S̄,L̄,N̄,Ū corre-
spond to ‘‘up’’ nucleon transversity, while the amplitudesA
5S,L,N,U correspond to ‘‘down’’ nucleon transversity. Th
amplitudesL and L̄ correspond to dimension helicityl50
while N andN̄ andU andŪ are natural and unnatural parit
amplitudes corresponding to combinations ofl561.

The measurements of pion production on polarized targ
enable one to advance hadron spectroscopy from the lev
spin-averaged cross sections to the level of spin-depen
production amplitudes. These measurements determine
mass spectrauAu2 anduĀu2 of spin-dependent production am
plitudes. Measurements ofp2p→p2p1n on transversely
polarized targets were done at CERN at 17.2 GeV/c @32–
35# and at ITEP at 1.78 GeV/c @36#. Measurements o
p1n→p1p2p @31,37–39# and K1n→K1p2p @40,41# at
5.98 and 11.85 GeV/c on transversely polarized deutero
target were also done at CERN. More recently it was sho
that mass spectra of production amplitudes can be obta
in measurements ofp2p→p0p0n, p2p→hhn @42# and
p2p→hp2n, p2p→hp0n @43# on transversely polarized
09600
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targets, allowing for amplitude spectroscopy of these in
esting processes.

The analysis of mass spectra measured in production
cesses requires a parametrization of the production am
tudes in terms of the Breit-Wigner amplitudes to ident
contributing resonances and to determine their parame
Here we discuss two approaches, one based on the addi
of Breit-Wigner phases and the other on the analyticity
production amplitudesA(s,t,m2) in the mass variable a
fixed s and t.

First we note that the unitarity equation~7.6! for the par-
tial wave production amplitudes inpN→ppN is a complex
relation and that the helicity amplitudesML

J or the transver-

sity amplitudesA and Ā do not satisfy the two-body partia
wave unitarity equation~3.1! with Eq. ~3.4!. Nevertheless,
the experimentally measured production amplitud
A(s,t,m2) are complex functions, and as such can be writ
in the form

A~s,t,m2!5
1

2i
@hAe2idA21#, ~8.1!

where the ‘‘inelasticity’’hA5hA(s,t,m2) and ‘‘phase shift’’
dA5dA(s,t,m2) also depend on the helicities or transver
ties of the amplitudeA. Obviously,

Im A5uAu21
1

4
~12hA

2 !. ~8.2!

However, there is no requirement now thathA<1 sincehA
has no relation to unitarity as in Eq.~3.4!.

We can pursue the analogy with thepp scattering, and
impose an assumption that the ‘‘phase shift’’

dA~s,t,m2!5jA~s,t,m2!1d r~m2!, ~8.3!

whered r is the sum of Breit-Wigner phases of theN reso-
nances contributing to the amplitudeA, andjA is the ‘‘back-
ground’’ phase. If we restrict ourselves to a finite mass int
val 4m2<m2<mM

2 with M resonances, we can write

dA~s,t,m2!5jA
(M )~s,t,m2!1dM

r ~m2!, ~8.4!

A~s,t,m2!5
1

2i
~hAe2i jA

(M )
21!

1hAe2i jA
(M )

Tres
(M )~m2!, ~8.5!

in analogy with Eq.~6.4! for pp scattering@44#.
A more general approach is to use the analyticity

A(s,t,m2) in m2 with s and t fixed. We can assume tha
kinematical singularities have been removed from the p
duction amplitudesA(s,t,m2) @45#. Assuming that there are
N Breit-Wigner poles in the amplitudeA(s,t,m2) in the mass
variablem2, we can use the generalized dispersion relatio
for the variablem2 with s and t fixed to obtain

A~s,t,m2!5I ~s,t,m2!1 (
n51

N

Rn~s,t,m2!an~m2! ~8.6!
3-9
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where I is the contribution of dispersion integrals,Rn are
complex pole residues, andan are the Breit-Wigner ampli-
tudes@Eqs. ~5.6!#. In a finite mass interval 4m2<m2<mM

2

with M resonances we can write

A~s,t,m2!5B(M )~s,t,m2!1 (
n51

M

Rn~s,t,m2!,an~m2! ,

~8.7!

where the background

B(M )~s,t,m2!5I 1 (
m5M11

N

Rmam . ~8.8!

We note that forM5N we reobtain constraints~5.7! with
replacementsh→hA and j→jA . Again, the assumption o
additivity of Breit-Wigner phases restricts the producti
amplitudes to analytical functions that satisfy constrai
~5.7!.

The measured mass spectrauAu2 can now be fitted eithe
with parametrization~8.5! or with the more general param
etrization~8.7!. There are no unitarity constraints to be im
posed on the production amplitudesuAu2 during the fits, since
the right hand side of unitarity relation~7.6! is not known
and the partial wave unitarity@Eq. ~3.1! or ~7.8!# for pp
amplitudesTl

I(s) does not apply to the production amp
tudesA(s,t,m2). The unitarity constraint@Eq. ~3.1! or ~7.8!#
can be imposed only in the analysis of data on thepp
→pp reaction and below we discuss its effect onpp am-
plitudes.

Since there is no physical justification for the assumpt
of additivity of Breit-Wigner phases in Eq.~8.3!, and since
the form of Eq.~8.5! confers no phenomenological or com
putational advantage over the more general analytical f
@Eq. ~8.7!#, we conclude that the use of the form of Eq.~8.7!
is more appropriate in fits to mass spectra in production p
cesses to determine the resonance parameters of interf
resonances.

The parametrization of production amplitudes in terms
a coherent sum with complex coefficients and a comp
coherent background as in Eq.~8.7! has been an accepte
practice for a long time. Such parametrizations first appea
in connection with the possible double-pole character of
A2 meson @15# and the splitting of theQ resonance in
K1p2p1 mass spectrum@16#. Recently such a parametriza
tion was used in the study ofs(750)2 f 0(980) interference
in S-wave production amplitudes inp2p→p2p1n mea-
sured on polarized target at CERN@17,18# and in the study
of s2 f 0(980) interference in the central collisionpp
→p0p0pp @19#. More recently, an analysis ofS-wave pro-
duction amplitudes from threshold to 2 GeV inpp
→p0p0pp was made using three@20# and four @21# inter-
fering Breit-Wigner amplitudes and a coherent backgrou
The GAMS Collaboration used four interfering Breit-Wign
amplitudes and a coherent background in their fit ofS-wave
mass spectrum from threshold to 3 GeV inp2p→p0p0n
measured at 100 GeV@22#. Also recently, the Fermilab E79
09600
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Collaboration used the form of Eq.~8.7! to fit the Dalitz plot
of D1→p2p1p1 decays in their search for a scalar res
nances @23#.

Finally we comment on the determination ofpp partial
wave amplitudes from measurements ofpN→ppN. The
resonance parameters from the fits to mass spectra suc
those measured inpN→p1p2N on polarized targets
@17,18,39# or in p2p→p0p0n @20–22# must be the same in
pp partial waves. However, thepp partial wave amplitudes
are expected to satisfy partial wave unitarity constraints~3.1!
and~3.4!, or rather inequalities~3.8! and~3.9!, which for the
amplitudest l

I defined in Eq.~5.1! read

ut l
I u2<Im t l

I<ut l
I u21

1

4
. ~8.9!

Unitarity conditions like Eq.~8.9! can always be satisfied b
an appropriate choice of background and complex resid
Rn(s) in a general parametrization@Eq. ~6.9!# based on ana-
lyticity. Although pp partial waves and production ampl
tudes inpN→ppN with the same spin and isospin share t
same Breit-Wigner poles, they are different analytical fun
tions and thus the residues of the poles and the backgro
are different. In particular, the residues in production amp
tudesA depend on particle helicities and kinematic variab
s and t. Accepting the resonance parameters obtained fr
the fits to the mass spectrauAu2 measured inpN→ppN to
describe the resonances inpp→pp scattering, the effect of
unitarity conditions like Eq.~8.9! is to constrain the residue
Rn(s) and the background term in the general parametr
tion @Eq. ~6.9!# of the pp amplitudes.

It is also possible to use resonance parameters determ
from measurements ofpN→ppN to calculate the resonan
part Tres

(M ) and to define thepp partial waves using param
etrization ~6.4! with free background and inelasticity func
tions j (M )(s) and h(s). The unitarity can be satisfied b
imposing the conditionh<1.

Unitarity constraints like Eq.~8.9! may not uniquely de-
termine the background and pole residues in the param
zation@Eq. ~6.9!# from analyticity, and the use of parametr
zation ~6.4! from additivity of Breit-Wigner phases is
questionable. We conclude that the resonance parameter
termined from mesurements ofpN→ppN alone may not
determine thepp partial wave amplitudes without additiona
assumptions or direct measurements ofpp→pp reactions.

IX. SUMMARY

We have shown that, in the case ofpp scattering, the
assumption of the additivity of Breit-Wigner phases in a p
tial wave amplitude leads to a sum of Breit-Wigner amp
tudes with complex coefficients and a coherent backgro
@Eq. ~4.31!#. The coefficients have a specific form@Eq.
~4.28!# in terms of resonance parameters of all contribut
resonances. The form of Eq.~4.31! is a special case of the
general form@Eq. ~5.5!# based on analyticity and it is no
related to the unitarity property of partial waves@Eqs. ~3.1!
and ~3.4!#. The claims@13,14# that the additivity of Breit-
Wigner phases provides a correct description of interfer
3-10
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resonances inpp scattering are not justified, since there
no physical reason why the Breit-Wigner poles must have
specific residues imposed by this assumption. We found
the Breit-Wigner phases of interfering resonances are
necessarily additive. We suggest that the general form@Eq.
~5.5!# obtained from analyticity is more appropriate in fits
data. Unitarity conditions like Eq.~8.9!, ut l

I u2<Imt l
I<ut l

I u2

1 1
4 , can be effectively imposed using the modern meth

of constrained optimization@9–11#.
Mass spectra in production processes are described

production amplitudes. We used the case of apN
→p1p2N reaction to illustrate the complexity of produc
tion amplitudes. Specifically, the production amplitudes
not satisfy the two-body partial wave unitarity equati
~3.1!; they depend on particle helicities and on several ki
matic variables in addition to the invariant mass. We ha
used the analyticity of production amplitudes in the invaria
an

09600
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ot
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by
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-
e
t

mass variable to justify the common practice@15–23# of
writing the production amplitudes as a coherent sum
Breit-Wigner amplitudes with free complex coefficients a
a complex coherent background in fits to measured m
spectra to determine the resonance parameters of interfe
resonances. Two-body unitarity constraints onpp partial
wave amplitudes with the same resonances can be sati
by an appropriate choice of complex residues of the cont
uting Breit-Wigner poles. This reflects the fact that thepp
partial wave amplitudes and production amplitudes wh
sharing the same resonances are different analytical fu
tions.
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