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Nonperturbative QCD vacuum effects in nonlocal quark dynamics
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~Received 3 November 1998; published 9 October 2001!

A straightforward calculation reveals a fundamental nonlocality in the leading heavyQQ̄ interaction arising
from nonperterbative gluon field correlations in the model of a fluctuating QCD vacuum. In light of this,
quarkonium spin splitting ratio predictions which have supported the scalar confinement ansatz are reconsid-
ered.
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I. NONLOCAL DYNAMICS

A great deal of work has gone toward the effort to d
scribe the spectrum and high energy scattering of hadron
bound states of quarks and gluons. It remains an open
interesting problem. Part of the difficulty derives from th
historical identification of particle field theory with its fami
iar perturbation expansion in QED, while it is a rather no
perturbative phenomena such as confinement that in Q
plays the more prominent role. Nonperturbative pheno
enology has developed over the past two decades with
aim in view of describing essential features of the fundam
tal field theory for a given arrangement by preserving
effective degrees of freedom and freezing or integrating

those degrees less relevant.~Thus theQQ̄ four point function
averaged over gluon field configurations leads to the st
Wilson loop @1# and simple linear confinement.! There is
unfortunately no unique program by which the reduction
carried out. Two competing approaches among several
those of potential models and sum rule methods; the for
assumes the form of a local interaction in terms of qu
coordinates while the gluon field itself enters more direc
into the latter.

Voloshin and Leutwyler separately demonstrated so
time ago@2# that large scale fluctuations of the QCD vacuu
are not amenable to purely local description. The finding w
corroborated by the leading relativistic interaction Ham
tonian of Eichten and Feinberg@3# ~see also Lemma in@4#!
and subsequently refined at the hands of Marquard
Dosch @5# who considered two extreme regions for t
vacuum field’s correlation length relative to the correlati
length of heavy quarks in a meson. Roughly, forTg!Tq a
local description is derived, while forTg@Tq a nonlocality
appears making the sum rule approach more suitable~addi-
tional refinements along the same lines have been mad
the more recent articles of reference@6#!.

Potential model builders have generally taken this sta
ment to validate the use of local potentials when sufficien
heavy quarks are involved. This is quite right. The quest
of sufficiency however has nowhere in the literature be
addressed. A quantitative sense of this validity in terms
miliar to the language of potential models is gained by im
ining the interaction Hamiltonian to be doubly expanded
the ratios of the two time scales each with a common sc
sayLQCD , appropriate to the above limits. To any specifi
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order in Tq then ~corresponding to an order in 1/mq) the
limits now read,Tg→0 andTg→` , for local and nonlocal
descriptions respectively. FiniteTg'1.0 GeV21 @7# there-
fore requires a generalization of the analysis in line w
intermediate correlations.

This is readily carried out beginning from the Schwing
function of a singletQQ̄ pair in an external color field mod
eled on the idea of a heavy meson@5#. In the dipole approxi-
mation @8#

G;E @dx#expF2
gs

2

36E0

TE
0

T

x~ t1!•x~ t2!

3^Ea~ t1!•Ea~ t2!&Edt1dt2G ~1!

'E @dx#expF E
0

T

dtE
2`

t

dtS x22tx•
p

mD zG
~2!

with

z52
gs

2

36
^Ea~ t !•Ea~ t2!&E , t[t2t2 , ~3!

assuming the correlator falls off rapidly for large Euclide
time differences andx(t2)'x(t)2t ẋ(t).

Hence the nonlocality enters into the interaction Ham
tonian of Eq.~2! at lowest order in quark motion. When th
fields correlate adiabatically, e.g., corresponding to a s
chastic delta correlation~or white noise!, so thatt(p/m)z
'0, a local potential emerges,but only in this limit.All other
correlations lead to nonlocal dynamics, the degree of wh
measured by gluon degrees of freedom, as they occur in
fluctuating vacuum. For a general discussion of the phen
ena in the context of the flux tube picture see Isgur@9#.

A convenient parametrization for the field’s statistical d
tribution is provided by the stochastic vacuum model@10#:

z52
b

12FD~t!1D1~t!1t2
]D1

]t2 G ~4!

with

D,D1;exp~2utu/Tg!. ~5!
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The model calculation estimates nonlocal contributions
Eq. ~2! at '46%.

II. QUARKONIUM SPIN SPLITTINGS

The qualitative success of the nonrelativistic poten
model with linear confinement does not entirely carry ov
when introduced into relativistic kinematics. This proble
has long been thought to be related to the neglect in
formalism of gluon field momentum. Examples in the stu
of Regge behavior are found in@11#. These nonlocal effects
might also be relevant to the question of the Lorentz str
ture of confinement. Evaluation of heavyQQ̄ spin splittings
for a given local potential leads to a widely known argume
in favor of dominant scalar confinement. The quantity
interest is the ratio ofx-state masses@12#

r[
M22M1

M12M0
'0.5~expt! ~6!

with expected values of less than 0.8 or greater than 2.0
linear scalar coupling, ranging from 0.8 to 1.4 for the vec
case. All other structures are ruled out by their incompati
ity with the nonrelativistic limit, assuming a pure Loren
source. Here the analysis is reconsidered, taking into acc
possible nonlocal effects.

In the conventional treatment@13# one begins with the
expansion of a general interaction kernel over five Lore
invariant amplitudes~scalar, pseudoscalar, vector, axialvec
and tensor! in the q^ q̄ Dirac space

K5Vs1^ 11Vpsg
5

^ g51Vvgm
^ gm1Vavgmg5

^ gmg5

1 1
2 Vts

mn
^ smn . ~7!

A O(m22) potential is then derived in the usual way by
reduction of either the transformation matrix or Beth
Salpeter equation. Both routes however require the us
free quark propagators of whose adequacy there is s
doubt particularly in the present nonperturbative@14# nonlo-
cal @15# context. A more suitable approach might be the
troduction of a nonlocal minimal coupling, e.g., via the i
stantaneous Salpeter equation. The question will not be g
into here. For comparison with local potential results and
the sake of simplicity we proceed in the usual way as
scribed above. The lowest order nonlocal contribution
each amplitude in Eq.~7! in the center of momentum w
here parametrize as

Vnl5$Q i j ~r !,pipj%symm, ~8!

with

Q i j ~r !5u1~r !d i j 1u2~r ! r̂ i r̂ j ~9!

wherer is the relative coordinate. A similar parametrizatio
is used in@16# where the nonlocality is proposed to resol
the outstanding small baryon splitting puzzle. Upon au
menting the above by the local funnel potential,2 4
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1ar , and taking the simplifying,u152u2[u , a straight-
forward but lengthy calculation yields

r scalar5
1

5

8as^r
23&2

5

2
a^r 21&15^R1&

2as^r
23&2

1

4
a^r 21&1

1

2
^R1&

, ~10!

r vector5
1

5

8as^r
23&17a^r 21&1

5

2
^R(221)&

2as^r
23&1 a^r 21&1

1

2
^R(120)&

,

~11!

with R and R given in the Appendix. It is not possible t
establish numerical ranges for these expressions analogo
those found for the case of local interactions without mo
information on the nonlocality itself. The analysis as it stan
is indeterminate, favoring no Lorentz structure for confin
ment over any other.

III. SUMMARY AND DISCUSSION

The point emphasized here has been that nonperturba
gluon degrees of freedom generally arise in the hadro
bound state as nonlocal quark dynamics. This has b
shown explicitly for theQQ̄ dipole approximation first con-
sidered in the analysis of Ref.@5#, reconsidered here. A cor
ollary is that the interaction Hamiltonian becomes nonlo
whenever quark motion is taken into account, e.g., in
leading relativistic corrections. Effects in quarkonium sp
splitting ratio predictions have been evaluated using a n
local parametrization.

It should be noted for completeness that because the p
doscalar, axialvector, and tensor Lorentz structures fai
reduce individually to suitable static limits, does not exclu
them a priori from contributing at higher orders. On th
contrary. The nonrelativistic limit suggests nothing beyo
what might be said of itself. Hence thelocal analysis of@13#
remains indeterminate also. While scalar confinement ma
may not be the most simple ansatz there are in any e
other possibilities: vector1 pseudoscalar and vector1 axi-
alvector1 tensor among other combination spin structu
for a confining local interaction, each yield in acceptab
ranges for thex-triplet ratio.

What is needed of course is a better understanding of
mechanism by which nonperturbative via nonlocal forces
ter into the QCD interaction and a reliable means to estim
the effect. The Wilson loop occurs naturally in gauge inva
ant formulations of the bound state. It~and so interactions
derived from it! is manifestly nonlocal for nonstatic quark
Its evaluation in the minimal area law, the stochastic vacu
model, and dual QCD has recently been carried out by Bra
billa and Vario@17#. These are first order approximations
three mutually distinct expansions of the Wilson loop—
one contained entirely within another.

Minimal substitution of the relativistic flux tube mode
@18# into the linear Dirac equation@19# is an example of a
1-2
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promising nonlocal model with many attractive features:
propriate Regge structure and spin orbit sign, to name t
As a model however it is to be measured against both ob
vation and the fundamental theory. On the other hand dif
ences between evaluations of the Wilson loop within any
of the above mentioned approximations@20# is amenable to
unambiguous, mathematical resolution. These points see
have been overlooked in Ref.@21#.
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APPENDIX
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