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Nonperturbative QCD vacuum effects in nonlocal quark dynamics
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A straightforward calculation reveals a fundamental nonlocality in the leading H@&vinteraction arising
from nonperterbative gluon field correlations in the model of a fluctuating QCD vacuum. In light of this,
quarkonium spin splitting ratio predictions which have supported the scalar confinement ansatz are reconsid-
ered.
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I. NONLOCAL DYNAMICS order in T, then (corresponding to an order inrdj) the
limits now readT —0 andT,— , for local and nonlocal
A great deal of work has gone toward the effort to de-descriptions respecuvely F|n|t76 ~1 0 GeV! [7] there-
scribe the spectrum and high energy scattering of hadrons &gre requires a generalization of the analysis in line with
bound states of quarks and gluons. It remains an open ariiteérmediate correlations.
interesting problem. Part of the difficulty derives from the  This is readily carried out beginning from the Schwinger
historical identification of particle field theory with its famil- function of a singleQQ pair in an external color field mod-
iar perturbation expansion in QED, while it is a rather non-eled on the idea of a heavy meddj. In the dipole approxi-
perturbative phenomena such as confinement that in QCmnation[8]
plays the more prominent role. Nonperturbative phenom- )
enology has developed over the past two decades with the GNJ' [dx]exp — %fTJTX(t ) x(t,)
aim in view of describing essential features of the fundamen- 36 ! 2
tal field theory for a given arrangement by preserving its
effective degrees of freedom and freezing or integrating out X(E&(t,)- E 2)>Edt1dt2} (1)

those degrees less relevaithus theQ Q four point function

averaged over gluon field configurations leads to the static

Wilson loop [1] and_ simple linear confi_nemehtThere _is _ QJ' [dx]ex;{ J’Tdtft dr( xz—rx-E) 4

unfortunately no unique program by which the reduction is 0 —w m

carried out. Two competing approaches among several are 2

those of potential models and sum rule methods; the former

assumes the form of a local interaction in terms of quarkVt

coordinates while the gluon field itself enters more directly g

into the latter. {=— o (B (D-Eit))e, 7=t-t5, 3
\Voloshin and Leutwyler separately demonstrated some

time ago[ 2] that large scale fluctuations of the QCD vacuum . . .

are not amenable to purely local description. The finding wadssuming the correlator falls off rapidly for large Euclidean

corroborated by the leading relativistic interaction Hamil-time differences anet(t,)~x(t) — 7(t).

tonian of Eichten and Feinbefg] (see also Lemma if4]) Hence the nonlocality enters into the interaction Hamil-

and subsequently refined at the hands of Marquard angpnian of Eq.(2) at lowest order in quark motion. When the

Dosch [5] who considered two extreme regions for thefields correlate adiabatically, e.g., corresponding to a sto-

vacuum field’s correlation length relative to the correlationchastic delta correlatiofor white noisg¢, so thatz(p/m)¢

length of heavy quarks in a meson. Roughly, Ty<T, a ~0,a chal potential emergelsutonly_in this limit All other .

local description is derived, while foFy>T, a nonlocality correlations lead to nonlocal dynamics, the degree of V\_/h|ch

appears making the sum rule approach more suitauldi- ~measured by gluon degrees of freedom, as they occur in the

tional refinements along the same lines have been made ffctuating vacuum. For a general discussion of the phenom-

the more recent articles of referend). ena in the context of the flux tube picture see Is@jr
Potential model builders have generally taken this state- A convenient parametrization for the field's statistical dis-

ment to validate the use of local potentials when sufficientlytribution is provided by the stochastic vacuum molded]:

heavy quarks are involved. This is quite right. The question 5

of sufficiency however has nowhere in the literature been B Dy

addressed. A quantitative sense of this validity in terms fa- {=—15|D(N+Dy(1)+ Tzﬁ (4)

miliar to the language of potential models is gained by imag-

ining the interaction Hamiltonian to be doubly expanded inyith

the ratios of the two time scales each with a common scale,

say Aqcp, appropriate to the above limits. To any specified D,Dy~exp(—|7]/Ty). (5)
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The model calculation estimates nonlocal contributions tot+ar , and taking the simplifyingp,=—6,=6 , a straight-

Eqg. (2) at ~46%. forward but lengthy calculation yields
A
Il .QU.ARKONIUM SPIN SPLITTINGS. B | L Basr 3>_§a<r 1)+ 5(R,)
The qualitative success of the nonrelativistic potential lscalar= = 1 , (10
model with linear confinement does not entirely carry over 2ag(r 3 — 7 a(r -1+ §<Rl>

when introduced into relativistic kinematics. This problem
has long been thought to be related to the neglect in the
formalism of gluon field momentum. Examples in the study
of Regge behavior are found [d1]. These nonlocal effects
might also be relevant to the question of the Lorentz struc- Mector™ 5

8ag(r 3+7a(r ! >
1 ag(r ) +7a(r >+§<R(271)>

1 ,
ture of confinement. Evaluation of hea@Q spin splittings 2ag(r )+ a(r )+ §<R(1fo)>

for a given local potential leads to a widely known argument (11)

in favor of dominant scalar confinement. The quantity of

interest is the ratio of-state masseld 2] with R and R given in the Appendix. It is not possible to

establish numerical ranges for these expressions analogous to
= Mz_leO 5 exph ©) those found for the case of local interactions without more
S MMy P information on the nonlocality itself. The analysis as it stands
is indeterminate, favoring no Lorentz structure for confine-
with expected values of less than 0.8 or greater than 2.0 foment over any other.
linear scalar coupling, ranging from 0.8 to 1.4 for the vector
case. All other structures are ruled out by their incompatibil- . SUMMARY AND DISCUSSION
ity with the nonrelativistic limit, assuming a pure Lorentz
source. Here the analysis is reconsidered, taking into account The point emphasized here has been that nonperturbative
possible nonlocal effects. gluon degrees of freedom generally arise in the hadronic
In the conventional treatmeril3] one begins with the bound state as nonlocal quark dynamics. This has been
expansion of a general interaction kernel over five Lorentashown explicitly for theQQ dipole approximation first con-
invariant amplitudegscalar, pseudoscalar, vector, axialvectorsidered in the analysis of Rdf], reconsidered here. A cor-

and tensorin the q®a Dirac space ollary is that the interaction Hamiltonian becomes nonlocal
whenever quark motion is taken into account, e.g., in the
K=V.l® 1+Vp375® 75+VU7M®),#+V%3,M75® YuYs leading relativistic corrections. Effects in quarkonium spin
splitting ratio predictions have been evaluated using a non-
+3Viot'®o,,. (1) local parametrization.

It should be noted for completeness that because the pseu-
A O(m~?) potential is then derived in the usual way by a doscalar, axialvector, and tensor Lorentz structures fail to
reduction of either the transformation matrix or Bethe-reduce individually to suitable static limits, does not exclude
Salpeter equation. Both routes however require the use ahem a priori from contributing at higher orders. On the
free quark propagators of whose adequacy there is somgntrary. The nonrelativistic limit suggests nothing beyond
doubt particularly in the present nonperturbatjté] nonlo-  what might be said of itself. Hence tiecal analysis of13]
cal [15] context. A more suitable approach might be the in-remains indeterminate also. While scalar confinement may or
troduction of a nonlocal minimal coupling, e.g., via the in- may not be the most simple ansatz there are in any event
stantaneous Salpeter equation. The question will not be gongher possibilities: vectot pseudoscalar and vecter axi-
into here. For comparison with local potential results and foralvector + tensor among other combination spin structures
the sake of simplicity we proceed in the usual way as defor a confining local interaction, each yield in acceptable
scribed above. The lowest order nonlocal contribution toranges for they-triplet ratio.
each amplitude in Eq(7) in the center of momentum we  What is needed of course is a better understanding of the
here parametrize as mechanism by which nonperturbative via nonlocal forces en-
ter into the QCD interaction and a reliable means to estimate
V=10 (r),piPj}symm (8)  the effect. The Wilson loop occurs naturally in gauge invari-
. ant formulations of the bound state. (Bnd so interactions
with derived from i} is manifestly nonlocal for nonstatic quarks.
. Its evaluation in the minimal area law, the stochastic vacuum
Oij(r)=01(r) 8+ O,(r)rir; 9 model, and dual QCD has recently been carried out by Bram-
billa and Vario[17]. These are first order approximations in
wherer is the relative coordinate. A similar parametrization three mutually distinct expansions of the Wilson loop—no
is used in[16] where the nonlocality is proposed to resolve one contained entirely within another.
the outstanding small baryon splitting puzzle. Upon aug- Minimal substitution of the relativistic flux tube model
menting the above by the local funnel potentials (a/r) [18] into the linear Dirac equatiofil9] is an example of a
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promising nonlocal model with many attractive features: ap- 1 1 Jd 3
propriate Regge structure and spin orbit sign, to name two. R1-0= =3Ri+ 5Ry+ 7 Rg| 2-0+ —
As a model however it is to be measured against both obser-
vation and the fundamental theory. On the other hand differ- 1 19 4
ences between evaluations of the Wilson loop within any one - ZR“ T ) (A2)
of the above mentioned approximatidri&] is amenable to r
unambiguous, mathematical resolution. These points seem tRith
have been overlooked in R¢R1].
Rt # 21 MK 1) 1 A3)
=—|0l —+=-—=|+0|—=——|—-=6"],
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APPENDIX 3,2 3 3 ’
1 1 J 3 R410(9 31 0’(9 A5
Rz-1)= ~6Ri— gRy— 7R 20+ < il e e pral (A5)
+ ! R to_ 4 Al 2 6
004 T ar 2 (A1) R4——r—26. (AB)
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