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Short distance current correlators: Comparing lattice simulations to the instanton liquid

Thomas DeGrand
Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 8 June 2001; published 9 October 2001!

Point to point correlators of currents are computed in quenched QCD using a chiral lattice fermion action,
the overlap action. I compare correlators made of exact quark propagators with correlators restricted to low
~less than 500 MeV! eigenvalue eigenmodes of the Dirac operator. In many cases they show a qualitative
resemblance~typically at small values of the quark mass and distances larger than 0.4 fm! and they differ
qualitatively at larger quark masses or at very short distance. Lattice results are in qualitative agreement~and
in the difference of vector and axial vector channels, quantitative agreement! with the expectations of instanton
liquid models. The scalar channel shows the effects of a quenched finite volume zero mode artifact, a negative
correlator.

DOI: 10.1103/PhysRevD.64.094508 PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Aw, 12.38.Gc
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I. INTRODUCTION

One of the earliest attempts to study nonperturbative
havior in QCD was through an analysis of correlators
hadronic currents. The QCD sum rule approach treats s
distance physics in the context of the operator product
pansion~OPE!, and parametrizes long distance physics
terms of vacuum condensates@1,2#. The approach was quit
successful in the vector and axial vector channels, but n
perturbative effects are very large in the pseudoscalar
scalar channels. The realization that instanton effects ap
in precisely those channels in which nonperturbative effe
are large led to the development of instanton liquid mod
@3,4#. It would be an interesting exercise to ‘‘validate’’ th
parametrization and results of these models directly from
QCD Lagrangian, by using lattice methods. This paper i
step in that direction.

We are concerned with flavor nonsinglet current corre
tors separated by a~four dimensional Euclidean! distancex,

P i~x!5Tr^Ji
a~x!Ji

a~0!&, ~1!

where the current will be proportional to

Ji
a~x!5c̄~x!taG~ i !c~x!, ~2!

with ta an isospin label andG a product of Dirac matrices. In
practice~and to be consistent with the standard approach
these correlation functions@5#! I present results for the corr
elators scaled with respect to the massless free field cur
current correlatorP i

0(x) ~the precise kind of free fermion
will be described below!:

Ri~x!5P i~x!/P i
0~x!. ~3!

The label i will include the pseudoscalar~PS!, scalar~S!,
vector ~V! and axial vector~A! currents.

The Euclidean space correlators whose Fourier transfo
into coordinate space I am measuring obey a dispersion
lation which relates them to their absorptive part
Minkowski space, the spectral densityr(s):
0556-2821/2001/64~9!/094508~12!/$20.00 64 0945
e-
f
rt

x-

n-
nd
ar

ts
ls

e
a

-

to

nt-

s
e-

P~q2!5
1

pE ds
r~s!

s1q2 . ~4!

r(s) in turn is proportional to the total cross section f
scattering in the appropriate channel, and should then
positive. The point-to-point correlators measured here
then related to the spectral density through

P~x!5E d4q exp~ iq•x!
1

pE ds
r~s!

s1q2 , ~5!

or, more directly,

P~x!5
1

pE dsr~s!D~As,uxu!, ~6!

where

D~As,uxu!5
1

4p2E
0

` p2dp

Ap21s
exp~2uxuAp21s! ~7!

is the Euclidean propagator for a free particle of squa
masss. If we were measuring a conventional~for the lattice!
qW 50 correlator, Eq.~7! would be replaced by

DqW 50~m,uxu!5
exp~2muxu!

2m
. ~8!

In principle, lattice calculations could check results of insta
ton liquid models@5#. In practice, however, lattice simula
tions have been contaminated by the use of fermion act
which are not chiral. Since the continuum analyses dep
crucially on chiral symmetry arguments, one might wish
be cautious about drawing conclusions from simulations w
nonchiral lattice fermions. The recent discovery of latti
actions which support an exact chiral symmetry@6# ~notably
the overlap action@7#! allows one to revisit these question
in a theoretically clean context. That is the subject of t
paper: a study of current correlators from an overlap ferm
action.

Because I am working with an action with exact chir
symmetry, I have to be careful with my definitions and ma
©2001 The American Physical Society08-1
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them consistent with current commutation relations. If I a
sume that I am modeling a theory with a flavorSU(2)V
3SU(2)A.O(4) symmetry, I can write down two rea
O(4) vectors of currents

fW 15~pa, f 0! ~9!

and

fW 25~a0
a ,h!, ~10!

where pa5 i c̄g5(ta)c[JPS is the pseudoscalar~PS! cur-
rent,a0

a52c̄(ta/2)c[JS is the scalar~S! isotriplet current,

f 05c̄c is the scalar isoscalar current, andh5 i c̄g5c is the
pseudoscalar isoscalar current.~Correlators of the last two
currents involve disconnected diagrams and I will not co
sider them further.!

In the cases of the V~vector! (G5gm), and A~axial vec-
tor! (G5gmg5) currents, I sum the correlator over the fo
values ofm. The most interesting way to present results
correlators in the vector and axial vector channels is to lo
at the sum or difference of vector and axial vector corre
tors:

RV6A~x!5
PV~x!6PA~x!

2PV
0~x!

. ~11!

In the sum rule or OPE approachRV1A is dominated by
perturbative physics and is expected to take a value v
close to unity, whileRV2A is zero at smallx and receives
only nonperturbative contributions which are relevant to c
ral symmetry breaking. The instanton liquid model produc
a large part of the correlatorRV2A , as emphasized recentl
by Schafer and Shuryak@8#.

In a recent publication@9# we showed that the low lying
eigenmodes of a chiral lattice fermion Dirac operator,
overlap fermion operator~described in Ref.@10#!, has a local
chiral densityc(x)†g5c(x) which shows a peaked structur
The positions and signs of the peaks are strongly correl
with the locations of topological objects, which would b
identified as instantons and anti-instantons detected usi
pure gauge operator. Zero modes correlate with only
sign of topological objects, while nonzero eigenmodes of
Dirac operator interpolate between both signs of topolog
objects. This correlation dies away slowly as the eigenva
of the mode rises. Spatially averaged correlation function
hadrons made of light quarks are saturated by propagato
quarks restricted to a few low eigenmodes. The whole p
ture is very reminiscent of an instanton liquid model.

Reference@9# did not consider the possibility that the de
sity of the fermionic modes might be large in places wh
the local chiral density was small. Subsequently, this po
was raised by the authors of Ref.@11#. Reference@12#
showed that this possibility did in fact not occur for th
overlap action used in Ref.@9#. Similar results have bee
presented using an alternative chiral lattice action~the Wil-
son overlap action! @13#, two lattice actions with improved
but inexact chiral symmetry~domain wall fermions@14#, and
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an approximate Ginsparg-Wilson action@15#! and with an
improved operator in a lattice action with inexact chiral sy
metry~the clover action! @16#. None of these last three work
compared the distribution of chirality with topologica
charge density measured with a gauge observable.

It is an uncontrolled approximation to replace a qua
propagator by the quark propagator restricted to a sum ov
small number of small eigenvalue eigenmodes of the Di
operator. However, if an observable computed with trunca
propagators resembles the same observable computed
exact propagators, and if further the low modes couple
particular structures in the QCD vacuum, then this rese
blance is a strong~qualitative! signal that the particular
vacuum structure is connected with that observable.

For example, consider the difference of vector and ax
vector currents.RV2A(x), either extracted fromt decay or
measured in Monte Carlo simulation, is zero at smallx and
increases withx. The same behavior is seen in a calculati
based on propagators truncated to a small number of ei
modes: in fact, at a small quark mass~pseudoscalar to vecto
mass ratio less than 0.5! the difference between the exact an
truncatedRV2A(x) is small. Since in Ref.@9# the locations of
peaks in the low eigenvalue modes were correlated with
locations of peaks in the topological charge density, one
infer that instantons are connected with the rise inRV2A(x).

If the current correlator based on truncated propaga
does not reproduce the full calculation, the truncated pro
gator must be missing some important physics. For exam
in most channels,R(x) approaches unity asx falls to zero.
Approximating quark propagators by a few low eigenval
modes does not reproduce this behavior: in this caseR(x)
typically vanishes at smallx. PresumablyR(x)→1 as x
→0 is asymptotic freedom at work: the correlator reduces
its free-field value. The low eigenmodes are extended
space and decouple from short distance physics.

Previous studies@17,18# of point-to-point correlators have
been mostly concerned with the long-distance behavior
these observables, including the extraction of particle mas
and couplings. I will not attempt to do that here, because
simulation volume is very small. Some studies@19# have also
compared the correlators in a ‘‘full’’ QCD simulation with
propagators truncated to a set of low-eigenvalue eigenmo
They saw results similar to the ones I report, the main d
ference being that they needed many more eigenmode
saturate the correlator. I believe that this difference is due
the poor chiral behavior of the action, the usual thin li
Wilson action, used by these authors.

Along the way, I observe an interesting artifact of th
quenched approximation in the scalar channel—the corr
tion function becomes negative. This behavior is incomp
ible with a normal spectral representation. In my data
seems to be associated with a finite-volume quenched
proximation artifact arising from the exact zero modes of
Dirac operator.

II. LATTICE CALCULATION

The overlap action used in these studies@10# is built from
an action with nearest and next-nearest neighbor coupli
8-2
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SHORT DISTANCE CURRENT CORRELATORS: . . . PHYSICAL REVIEW D64 094508
and APE-blocked links@20#. Eigenmodes of the massles
overlap Dirac operatorD(0) are constructed from eigen
modes of the Hermitian Dirac operatorH(0)5g5D(0), us-
ing an adaptation of a conjugate gradient algorithm of Bu
et al. and Kalkreuter and Simma@21#. These eigenmodes ar
used to precondition the calculation of the quark propaga
~by use of a conjugate gradient algorithm! and are addition-
ally used to construct quark propagators truncated to s
number of low lying eigenmodes.

Later we will need a few simple facts about the eige
modes of the overlap Dirac operator, so let us recall th
now. The eigenmodes of any massless overlap operato
located on a circle in the complex plane of radiusx0 with a
center at the point (x0,0). The corresponding eigenfunction
are either chiral~for the eigenmodes with real eigenvalu
located atl50 or l52x0) or nonchiral and paired; the tw
eigenvalues of the nonchiral modes are complex conjuga
The massive overlap Dirac operator is conventionally
fined to be

D~m!5S 12
m

2x0
DD~0!1m, ~12!

and it is also conventional to define the propagator so that
chiral modes atl52x0 are projected out:

D̂21~m!5
1

12m/~2x0! S D21~m!2
1

2x0
D . ~13!

Then the contribution to the propagator of a single~positive
chirality! zero mode in the basis whereg55diag(1,21) is

D̂~m!215
1

mS 1 0

0 0D . ~14!

The j th pair of nonchiral modes contributes a term

D̂~m! j
215S a j 2b j

b j a j
D , ~15!

where, definingm5m/(2x0), e j5l j /(2x0), the entries are

a j5
1

2x0

m~12e j
2!

e j
21m2~12e j

2!
, ~16!

b j5
1

2x0

e jA12e j
2)

e j
21m2~12e j

2!
, ~17!

and D(0)2f j5l j
2f j ; the eigenmodes ofD(0) have eigen-

values 2x0(e j
26 i e jA12e j

2). For a summary of these usefu
formulas, see Ref.@22# ~for the special casex051/2).
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The data set used in this analysis is generated i
quenched approximation using the Wilson gauge action
couplingb55.9. The nominal lattice spacing isa50.11~in-
ferred from the Sommer parameter using the interpolat
formula of Ref.@23#! or 0.13 fm from the rho mass. This wil
be discussed in more detail below. It consists of 20 124 con-
figurations. The fermions have periodic boundary conditio
in the spatial directions and antiperiodic temporal bound
conditions. I calculated the ten smallest eigenvalue mode
H2(0) in the chiral sector of the minimum eigenvalue, a
reconstructed the degenerate eigenstate of opposite chir
of H2(0) when one was present. These modes are then
coupled into eigenmodes ofD(0). Their eigenvalues have
imaginary parts ranging up to 0.3/a– 0.35/a, or about 500
MeV @9#.

The lattice analysis has one strong point and one w
point. The strong point is the use of an action with exa
chiral symmetry. This means that there is no additive ren
malization of the quark mass. It also means that there are
exceptional configurations, so the simulations can be p
formed at small quark mass. Instead of exceptional confi
rations, there are contributions to the quark propagator fr
zero modes of the Dirac operator. Because of chiral sym
try, these zero modes contribute in a ‘‘dangerous’’ way,
finite volume effects only in the PS and S channels. T
particular choice of action, with a fat link, also has rath
mild multiplicative renormalization of current matrix ele
ments. The perturbation theory has not been done for
action, but similar calculations done for the fat link clov
action have vector and axial vector lattice-to-continuu
renormalization factors quite close to unity@24#.

The weak point of the calculation is its use of a sm
volume. The lattice has a size of about 1.5 fm, assumin
lattice spacing of 0.13 fm.

One annoyance encountered in this study is the differ
finite volume effects suffered by the free massless curr
correlator and the correlator in the nontrivial gauge ba
ground. At large distance the free correlator can receive c
tributions in which the quark and antiquark wind in oppos
directions around the lattice, so that the correlator has
topology of a single line encircling the simulation volum
This contribution is not present in the nontrivial backgroun
since it corresponds to a single Polyakov loop windi
around the lattice. Confinement forces the expectation va
of this operator to be zero. The way I got around this pro
lem is the same as was used in Ref.@17#.

Think of the finite volume lattice as a piece of an infini
lattice. A propagator from a point source in the finite latti
corresponds, on the infinite lattice, to a sum of propaga
from sources which include the original source, plus a se
image points on all the ‘‘copies’’ of the finite lattice whic
tile the infinite lattice. We only want to include contribution
to correlators from infinite-volume propagators where t
source points for the quark propagator and antiquark pro
gator coincide, and so do the sink points. These qua
antiquark correlators look like closed fermion loops. Cont
butions in the finite volume in which the quark and antiqua
propagate in opposite directions around the finite volume
the same sink point are topologically equivalent
8-3
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FIG. 1. Saturation of the point-to-point pseu
doscalar correlator by low-lying eigenmodes
H(0)2. ~a! amq50.01 (mPS/mV.0.34). ~b!
amq50.02 (mPS/mV.0.50). ~c! amq50.04
(mPS/mV.0.61). ~d! amq50.06 (mPS/mV

.0.64). Octagons show the full hadron co
relator. Squares show the contribution from th
lowest ten modes. Diamonds show the contrib
tion from the zero modes, which just scale
1/(amq)2.
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lines in the infinite volume, where the quark source and
tiquark source sit on different image points and the t
propagators terminate on the same sink point.

To compute the necessary free field current-current c
relator, I construct an approximation of the infinite volum
free fermion propagator by computing the free~overlap! fer-
mion propagator on a large lattice~I used a 244 volume!, and
approximate the quark-antiquark correlators in the small v
ume as a sum of the ‘‘direct’’ term and propagators fro
sources located on~the same! nearest image point.

The hadron correlators also suffer finite volume effects
particular, the lattice volume cuts off the long distance p
of the hadron correlator, which in most cases contains
contribution to the correlator of the lightest state in the ch
nel. Thus I have not tried to do any fits to the mass of t
state, in contrast to Refs.@17,18#. Note, however, that for
short distances~less than 0.5 fm or so!, the effects of finite
volume are not too important. Also, comparisons of a f
correlator to a correlator computed using truncated propa
tors are not affected by the free field correlators, so the
servation that low modes saturate a correlator~or not! are not
so compromised.

At very light quark mass, chiral symmetry breaking b
gins to be modified by the small volume. The relevant p
rameter is the Leutwyler-Smilga@25# parameterz5mqSV

for quark massmq , infinite volume condensateS5^q̄q&,
and simulation volumeV. A large volume corresponds toz
@1. Using the value ofS computed for this action at thi
coupling in Ref.@10#, z.0.8(amq/0.01) ~to showz in units
of the smallest quark mass used!. At this quark mass the
scaled lattice sizeL is mpL.2.4.
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III. RESULTS

A. Pseudoscalar and scalar channels

In Fig. 1 is shown the pseudoscalar correlator for seve
choices of light quark masses, with pseudoscalar to ve
meson mass ratios (mPS/mV) inferred from Ref.@9#: ~a!
amq50.01 (mPS/mV.0.34), ~b! amq50.02 (mPS/mV

.0.50), ~c! amq50.04 (mPS/mV.0.61), and ~d! amq
50.06 (mPS/mV.0.64). The separationx is measured in
units of the lattice spacing in the simulation. Also shown
the contribution to the correlator from the lowest ten mod
of the Dirac operator, as well as the contribution to the c
relator given by the zero modes alone. Quark interaction
this channel are strongly attractive. The enormous attrac
in the pseudoscalar channel is well known in continuu
~compare Ref.@26#! and lattice~compare Ref.@17#! analyses.
In instanton liquid phenomenology it is ascribed to the eff
of the ‘t Hooft interaction, which is strong and attractive
the pseudoscalar channel. At low quark masses (mPV /mV
<0.5 or so! the low mode truncation saturates the correla
at largerx. As these are the modes which couple to insta
tons, there seems to be a connection between instantons
the strong attraction in the pseudoscalar channel atx/a
55 –9.

The fact that the contribution of the low modes begins
R(x50)50 and not 1 is just a sign that at tinyx the channel
is dominated by free-field modes~which presumably do no
couple to topology!, but by a distance of 2–4 lattice spacing
~0.2–0.4 fm! the light quark mass correlator is complete
dominated by the low modes. As the quark mass falls to z
the pure zero modes make an ever larger contribution to
8-4
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FIG. 2. Nonsaturation of the point-to-poin
pseudoscalar correlator for heavier quark mas
by low-lying eigenmodes ofH(0)2. ~a! amq

50.10 (mPS/mV.0.75). ~b! amq50.15
(mPS/mV.0.84). ~c! amq50.20 (mPS/mV

.0.87). ~d! amq50.25 (mPS/mV.0.91). Octa-
gons show the full hadron correlator. Squar
show the contribution from the lowest ten mode
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point-to-point correlators, as well: their contribution scale
1/mq

2 times a quark-mass-independent function ofx andy:

Pzero~x,y!5
1

mq
2U (

j Pzero
f j~x!f j~y!†U2

. ~18!

As the quark mass rises, the approximation ofRPS(x) by
a small number~ten! of low-lying eigenmodes become
poorer and poorer. This is shown in Fig. 2. The correlat
flatten and approach unity over a wide range ofx. That the
low eigenvalue modes do not saturate the correlator sh
physics of these heavier pseudoscalars has little to do
fermion eigenmodes which are strongly coupled to inst
tons. This is not a surprise. It points up the dangerous po
bility, however, that lattice simulations involving pseudosc
lars performed at a pseudoscalar to vector ratio above 0.
so might give misleading results when extrapolated to sm
quark mass.

The scalar correlator shows similar qualitative behavio
the pseudoscalar correlator: strong deviation from un
away from smallx and at small quark mass a large contrib
tion from zero modes. See Fig. 3.

Instanton liquid models predict a repulsive interaction
this channel. We see that, indeed, the interaction betw
quarks is strongly repulsive—so strongly repulsive, that
small quark mass, the correlator becomes negative at la
x.

The bulk of this effect is due to the zero modes. To ma
the argument, I begin by considering the susceptibilities
spatial integrals of the correlators@22#: In the pseudoscala
channel, configuration by configuration, if the configurati
has topological chargeQ,
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V (
x,y,a

^JPS
a ~x!JPS

a ~y!&5
2

V
Tr~D̂21g5!2 ~19!

52
uQu
m2V

1
4

V(
j

~b j
21a j

2! ~20!

5
2

m
^c̄c&. ~21!

The last line is the Gell-Mann–Oakes–Renner relati
which is satisfied exactly by overlap fermions. The isotrip
scalar susceptibility is

xa0
5

1

V (
x,y,a

^JS
a~x!JS

a~y!&52
2

V
Tr D̂22 ~22!

522
uQu
m2V

1
4

V(
j

~b j
22a j

2!. ~23!

Note the negative contribution of the zero modes to the s
lar channel. In general, one would expect the sum over
nonzero modes to contribute a result of order unity to
susceptibility. The contribution of the zero modes shou
scale away as 1/AV, since the existence of a topological su
ceptibility means that̂Q2&.V. Thus the zero mode contri
bution to both the pseudoscalar and scalar channels is a fi
volume artifact, but one which dies away quite slowly.
8-5
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FIG. 3. Saturation of the point-to-point scala
correlator by low-lying eigenmodes ofH(0)2. ~a!
amq50.01 (mPS/mV.0.34). ~b! amq50.02
(mPS/mV.0.50). ~c! amq50.04 (mPS/mV

.0.61). ~d! amq50.06 (mPS/mV.0.64). Octa-
gons show the full hadron correlator. Squar
show the contribution from the lowest 10 mode
Diamonds show the contribution from the ze
modes, which again just scale as 1/(amq)2.
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So much for the integral of the correlator; what about
value point by point? The contributions where both of t
quark lines propagate through zero modes are equal in m
nitude and opposite in sign in the pseudoscalar and sc
channels. If the correlator is dominated by modes whose
genvalues are large compared to the quark mass, one w
expect the nonzero mode sum to contribute positively to
correlator. This is certainly the case for the free theory, a
so we naturally have a situation where the free scalar
relator is positive and the interacting correlator is domina
by its zero modes and is negative.

One can check that the zero mode is the source of the
of spectral positivity by considering the scalar propagato
the subset of our lattices which have zero topological cha
~five of the 20 lattices!. This is shown in Fig. 4. Note that th
scalar correlator in this sector is still saturated by low eig
modes of the Dirac operator formPS/mV<0.5 at a distance
of five lattice spacings (x.0.55 fm). In this sector the chan
nel only becomes strongly repulsive at heavier quark mas
where the low modes do not contribute to the correlator.

TheQ50 sector of QCD is not QCD and so it remains
open question what will happen at larger volumes.

Finally, one might worry that all of the attraction in th
pseudoscalar channel is due to the zero modes. The su
pseudoscalar and scalar correlators,

RPS1S~x!5
PPS~x!1PS~x!

2PPS
0 ~x!

~24!

has no zero mode contribution.
This quantity is shown in Fig. 5. The low modes do n

contribute to the correlator at smallx. At largerx they show
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a significant attractive interaction, saturating the fu
propagator correlator at largerx for mPS/mV<0.5. At
heavier masses they produce too much attraction at largx.

Other possibilities for a negative spectral weight cou
exist in the scalar channel. Schafer and Shuryak@27# actually
showed that the scalar correlator in interacting instan
models becomes negative atx.0.5 fm. They ascribed this
behavior to the strong repulsion in the scalar channel
pected in instanton models becoming a little too strong, a
their calculations of interacting instantons which include d
namical fermion effects soften the interaction and rest
positivity.

Recently, a discussion of the same effect has been g
by Thackeret al. @28# in the context of quenched chiral pe
turbation theory@29#: In full QCD the quark and antiquark
in the eta-prime, the flavor singlet pseudoscalar meson,
annihilate and the~multi! qq̄ pair~s! Fock state of the meson
can mix with a quarkless intermediate state. This mixi
shifts the mass of the eta-prime. In the quenched approxi
tion the sum of mixing graphs truncates with a single te
and the propagator consists of a single pole and a do
pole with a negative coefficient, a ghost:

G~p!5
1

p21m2 2
1

p21m2

m2

3

1

p21m2 . ~25!

A negative spectral weight in the scalar channel can app
because the scalar particle can couple to an intermediate
which is a combination of a pion and a quenched eta-prim
whose propagator is the second term~hairpin! part of Eq.
~25!. This is a connected graph so in the quenched appr
mation it can be constructed. It is shown in Fig. 6.
8-6
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FIG. 4. Comparison of the point-to-point sca
lar correlator to the scalar correlator composed
low-eigenvalue quark modes in theQ50 sector.
~a! amq50.01 (mPS/mV.0.34). ~b! amq

50.02 (mPS/mV.0.50). ~c! amq50.04
(mPS/mV.0.61). ~d! amq50.06 (mPS/mV

.0.64). Octagons show the full hadron co
relator. Squares show the contribution from th
lowest ten modes.
e
ns
n

ic
i-
While we do not know the overall magnitude of th
graph, the particle in all the propagators is the flavor no
inglet pseudoscalar, whose mass is known from conventio
spectroscopy calculations. If I assume that the scalar part
09450
-
al
le-

pion-eta coupling is just a scalar constantg, then I can com-
puter(s) from the graph of Fig. 6~b!. Because of the minus
sign in Eq.~25! the amplitude is negative and it is also d
vergent at threshold:
-
tor

es
s.

ty.
FIG. 5. Saturation of the sum of point-to
point pseudoscalar and scalar correlators sec
by low-lying eigenmodes ofH(0)2. ~a! amq

50.01 (mPS/mV.0.34). ~b! amq50.02
(mPS/mV.0.50). ~c! amq50.04 (mPS/mV

.0.61). ~d! amq50.06 (mPS/mV.0.64). Octa-
gons show the full hadron correlator. Squar
show the contribution from the lowest ten mode
The curve in panel~a! is from a simple phenom-
enological parametrization of the spectral densi
8-7



n
to
f t
to

to
an
ir
t

m
h
u
p
t-
f

el
r

a

e

r

le

t

of

e
to

ht

of
uts

t
ler
ice

in-
the
ark

h

o-

THOMAS DeGRAND PHYSICAL REVIEW D 64 094508
r~s!52
m2g2

As~s24mp
2 !

~26!

Then the shape ofR(x) can be computed exactly up to a
overall normalization. This contribution can have nothing
do with the zero modes because the spatial correlations o
zero modes do not depend on the quark mass. Attempts
the lattice data of Fig. 3 to a conventional@5# combination of
continuum-like backgroundr(s)5„3s/(8p2)…u(s2s0) plus
a possible scalar resonance plus the ghost term~even varying
the strength of the ghost coupling with quark mass! were
unsuccessful.

Schäfer and Shuryak presented predictions for point
point correlators in the instanton liquid model. It would be
interesting exercise to compare our lattice results to the
Because of the presence of the zero mode contribution in
pseudoscalar and scalar channels, it probably makes the
sense to consider the sum of pseudoscalar and scalar c
nels, from which the zero modes decouple. Next one m
choose a lattice spacing. Because the correlators rise u
strongly withx, they are very sensitive to the choice of la
tice spacing. I have collected a number of observables
this simulation, which happen to have more or less w
known continuum values, and which might be used to infe
lattice spacing, in Table I. The quantityr 0 is the Sommer
parameter, from Ref.@23#. The rho mass, pseudoscalar dec
constant, and pseudoscalar matrix elementlp

5^0uc̄g5cuPS& ~all extrapolated to zero quark mass! are
determined from simulations on 123324 lattices at the sam
parameter values@9#, while the infinite volumeS measure-
ment is from Ref.@10#. The phenomenological estimate fo
lp , which is equal tof pmp

2 /(mu1md), is from Ref.@5#. The
inferred lattice spacing, shown in the fourth column of Tab
I, includes the unknown~but believed to be close to unity!
lattice-to-continuum renormalization factors appropriate
each observable.

FIG. 6. The quark line graph~a! and associated Feynman grap
~b! which makes a ghost contribution to the scalar correlator.
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The dominant feature ofRPS(x) or RPS1S(x) is the pion.
Its contribution is proportional tolp

2 , or to the fourth power
of the lattice spacing. This is the source of the sensitivity
the correlator toa.

I will somewhat arbitrarily take the lattice spacing to b
0.13 fm in Fig. 7, where I compare the lattice results
instanton liquid model data from Ref.@27#. The solid line is
a very naive phenomenological calculation ofRPS1S : I take
a spectral function which has a delta-function pion of weig
lp

2 /2 ~with its value from Table I! and add in a step function
representing a continuum:rcont(x).u(s2s0), with s0

50.5 GeV2. This parametrization does a very good job
modeling the low quark mass lattice data, when one inp
the observed lattice values of pseudoscalar mass andlp , as
is shown in panel~a! of Fig. 5. In Fig. 7 the data overshoo
the model by about 30%. It will take simulations at a smal
lattice spacing to disentangle scale violations from latt
spacing uncertainties, to improve this picture.

B. Vector and axial vector channels

The potentially interesting physics in these channels
volves a comparison of lattice data to the predictions of
OPE. With my sign conventions, the coordinate-space qu
propagator~with flavor labelsa andb in slowly varying ex-
ternal fields! is ~for references, see Ref.@3#!

FIG. 7. Comparison of the sum of lattice point-to-point pseud
scalar and scalar correlators, extrapolated to zero quark mass~octa-
gons!, predictions of the instanton liquid model~diamonds! and a
simple phenomenological model forr(s) ~solid line!.
TABLE I. Table of observables and inferred lattice spacings.

Quantity Lattice value Continuum Lattice spacing~fm!

r 0 see Ref.@23# 0.5 fm 0.11
mr amr50.50(2) 770 MeV 0.13
f p a fp50.078(1) 131 MeV 0.12/ZA

lp a2lp50.143(3) (470 MeV)2 0.16ZAZm

^c̄c& a3S50.0039(1) (250 MeV)3 0.13Zm
1/3
8-8
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FIG. 8. Saturation of the difference of poin
to-point vector minus axial correlators by low
lying eigenmodes of H(0)2. ~a! amq

50.01 (mPS/mV.0.34). ~b! amq50.02
(mPS/mV.0.50). ~c! amq50.04 (mPS/mV

.0.61). ~d! amq50.06 (mPS/mV.0.64). Octa-
gons show the full hadron correlator. Squar
show the contribution from the lowest ten mode
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S~x!ab5
dab

2p2

g•x

x4
1

dab

4p2

m

x2 1qa~0!q̄b~0!1
‘ ‘ G’ ’

x2
1 . . . ,

~27!

where the rather schematic ‘‘G/x2’’ represents a long expres
sion which will give the gluon condensate term in a meso
correlator. With this quark propagator all the quark mass
quark condensate dependence in the ‘‘sum’’RV1A correlator
cancels out, while the ‘‘difference’’ correlator for massiv
quarks is

RV2A5
m2x2

2
1mp2^q̄q&x41Ax61 . . . , ~28!

and theAx6 term isAx65(p3/9)as(x)^q̄q&2x6 which is es-
timated by Scha¨fer and Shuryak to be about (x/0.66 fm)6.

The ‘‘sum’’ correlator sees the gluon condensate

RV1A511
as~x!

p
2

1

384̂
g2~Gmn

a !2&x41
2p3

81
as~x!

3^q̄q& log~x2!x61 . . . . ~29!

Figures 8 and 9 showRV6A correlators from the full simu-
lation and from the lowest ten eigenmodes. The low mo
clearly saturate the ‘‘difference’’ correlator atmPS/mV<0.5.
The ‘‘sum’’ correlator is essentially unity, and receives litt
contribution from the low eigenmodes.

Now the lattice data are collected at several values of
quark mass, all of which are greater than the physical qu
mass, and so to make connection with phenomenology
necessary to extrapolate all the data to zero quark mass.
09450
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extrapolation itself can shed light on the OPE prediction
will assume that point by point inx, R(x)5r 01r 1mq

1r 2mq
2 . For both correlators, the mass dependence is w

and the extrapolation is readily performed. However, the
efficients ofmq and mq

2 expected from the OPE@Eq. ~28!#,
are only seen at very lowx, x/a,4.

The extrapolated data can be compared to nonlattice
sults. Figures 10 and 11 show the lattice correlators with
instanton model of Ref.@8# ~crosses! and ALEPHt-lepton
decay, as extracted by Ref.@8# ~lines!. In these figures I have
reintroduced a physical distance scale~in fm! for the separa-
tion x by using the same lattice spacing~0.13 fm, from the
rho mass! as used in Sec. II. Because the correlator is suc
flat function ofx, it is not too sensitive to the choice of lattic
spacing.

Lattice Monte Carlo data, the instanton liquid model, a
the extracted tau decay data forRV2A all agree nicely. This is
a channel which has no short distance contributions, and
long distance contributions are dominated by instant
sensitive eigenmodes.

The lattice data forRV1A also agree with the instanto
liquid model out to a distance of about 0.6 fm, and th
become less attractive. They undershoot the tau decay
by about 5%. It is plausible to assume that the latter discr
ancy is just due to the lack of lattice physics below the cut
scale, and to the fat link used in the gluon vertex, wh
smears the action out to about two lattice spacings~0.26 fm,
nominally!. It is the same discrepancy as the instanton liq
model data, which does not ‘‘naturally’’ include the pertu
bativeas /p part of the correlator. Of course, as I remark
earlier, I have not computed the lattice to continuum conv
sion factor for the vector and axial currents. While it is u
8-9
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FIG. 9. Comparison of the summed point-to
point vector and axial vector correlators from th
full quark propagator and with the propagat
built of low-lying eigenmodes ofH(0)2. ~a!
amq50.01 (mPS/mV.0.34). ~b! amq50.02
(mPS/mV.0.50). ~c! amq50.04 (mPS/mV

.0.61). ~d! amq50.06 (mPS/mV.0.64). Octa-
gons show the full hadron correlator. Squar
show the contribution from the lowest ten mode
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likely to account for all the discrepancy, it might be th
source of some of it.

The authors of Ref.@8# performed fits toRV6A(x) in order
to extract the various condensate terms~which will appear as
different powers ofxn), as well as to look for logx2 terms so
characteristic of the operator product expansion. I tried to
this with the lattice data. Because the lattice data and ins
ton liquid model data are so similar, the results will be sim
lar to those found in Ref.@8#–that is, difficult to reconcile
with the OPE.

FIG. 10. Comparison of the difference point-to-point vector a
axial vector correlators from the overlap action~octagons!, extrapo-
lated to zero quark mass, and from the instanton model of Ref@8#
~crosses! and ALEPH t-lepton decay, as extracted by Ref.@8#
~lines!.
09450
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For example, considerRV2A . The action itself has orde
a2 discretization errors, which generate terms inR(x) pro-
portional to x2. Good fits to the lattice data can be foun
beginning with any even power ofx. However, if we take the
continuum theory seriously and consider only fits beginn
with thex6 term, one can find fits forx,0.4 fm or so of the
form (x/0.6 fm)6, quite close to the expectation of the OP
and the results of Scha¨fer and Shuryak@27#.

Fits to RV1A designed to expose the gluon condens
term are also not very successful. The fit parameters are q

FIG. 11. Comparison of the sum of point-to-point vector a
axial vector correlators from the overlap action~octagons!, extrapo-
lated to zero quark mass, and from the instanton model of Ref.@8#
~crosses! and ALEPH t-lepton decay, as extracted by Ref.@8#
~lines!.
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sensitive to the range ofx. Most fits ~which range from 0.11
to 0.4 fm or so! give a far too large condensate term and
wrong sign for thex6 term.

IV. CONCLUSIONS

Low-lying eigenmodes of the Dirac operator, which w
previously argued in Ref.@9# to couple strongly to instanton
and anti-instantons, dominate the nonperturbative par
short distance correlators for light quark masses in the p
doscalar, scalar, vector and axial vector channels. In
pseudoscalar channel they are responsible for the bulk o
observed strong attraction. The zero eigenmodes in the s
channel contribute a strong repulsion at larger distances.
pseudoscalar plus scalar channel is more attractive on
lattice than in the instanton liquid model. The low mod
dominate the vector minus axial vector channel, which
no perturbative contribution. The lattice calculations quan
tatively reproduce the results of instanton liquid models
the sum and difference of vector and axial vector chann
The difference between the lattice results and correla
function extracted from tau data in theV1A channel can
plausibly be attributed to short distance physics. As the qu
mass rises, the relative importance of the light modes
creases in all observed channels.

The lattice simulations could be done much better.
seems to me that these simulations are rather more sen
to systematic effects than they are to statistics. Since on
l.

n

cs

r,

A

,
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comparing results to free field theory, an overlap action w
better ‘‘kinetic’’ ~dispersion relation, rotational invariance!
properties might be a better choice@30#. Even though these
correlators are called ‘‘short distance,’’ a larger volume
needed to suppress zero mode effects and to deal with
weak~power law! falloff of the normalizing free correlators
~A nonchiral action would be cheaper to simulate, but wou
suffer from fatal exceptional configurations at the low valu
of quark masses needed to study interesting physics q
tions.! Finally, if one wants to look for OPE terms in th
correlators it will be necessary to drop the lattice spacing
convert to links which smear only a minimal distance—t
hypercubic blocking of Hasenfratz and Knechtli@31# would
be a good choice. It seems to me since most of the phy
which is being explored here involves chiral symmetry,
would be a mistake to look at these correlators with a n
chiral lattice action. With the use of a chiral fermion actio
lattice calculations may be poised to say more interes
things about spectral functions in QCD.
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