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Direct improvement of Hamiltonian lattice gauge theory
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We demonstrate that a direct approach to improving Hamiltonian lattice gauge theory is possible. Our
approach is to correct errors in the Kogut-Susskind Hamiltonian by incorporating additional gauge invariant
terms. The coefficients of these terms are chosen so that theadrdkassical errors vanish. We conclude with
a brief discussion of tadpole improvement in Hamiltonian lattice gauge theory.
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[. INTRODUCTION cussed the improvement of Hamiltonian lattice gauge theory
for gluons. In their study it was discovered that deriving an
The idea of using the lattice as an ultraviolet regulator forimproved Hamiltonian from a Symanzik improved action,
quantum chromodynamic€CD) was proposed by Wilson Whether by transfer matrix or canonical Legendre transfor-
in 1974 in his action formulation of lattice gauge theoty. mation, results in a kinetic Hamiltonian with an infinite num-
Soon after, Kogut and Susskind formulated the Corresponcber of terms Coupling lattice sites which are arbitrarily far
ing Hamiltonian version of lattice gauge theoig]. Both ~ apart. To derive a local kinetic Hamiltonian coupling only
approaches were developed by demanding the correct cofearest neighbor lattice sites it was found necessary to start
tinuum limit be obtained in the limit of vanishing lattice With an improved action with an infinite number of terms,
spacinga. Creutz showed that the Kogut-Susskind Hamil-coupling distant lattice sites.
tonian could be derived from the Wilson action using the With this technique the ordex® errors are removed from
transfer matrix methodi3]. Later, Kogut demonstrated that the Kogut-Susskind Hamiltonian. However, generating
the same could be done by taking the continuous time limitHamiltonians with further improvement would seem exceed-
of the Wilson action and performing a canonical Legendréng|¥ difficult. This is because one would need to start from
transformatior{4]. a Luscher-Weisz improved action with non-planar terms
To date, the majority of work in lattice QCD has been[10]. For this reason we propose a move to the Symanzik
performed in the action formulation. An advantage of thisapproach, as applied to the Hamiltonian, that is, in the spirit
approach is that it readily lends itself to Monte Carlo tech-of the original Kogut-Susskind paper, to construct improved
niques. Working in the Hamiltonian approach brings a differ-Hamiltonians directly by adding appropriate gauge invariant
ent intuition to the problem and serves as a check of univerterms and fixing their coefficients so that errors are canceled.
sality. An advantage of Hamiltonian lattice gauge theory is in  To date we have implemented Symanzik improvement to
the applicability of techniques from many body physiB ordera? in the pure lattice gauge theory Hamiltoniéand to
Also, it appears that in finite density QCD a Hamiltonian ordera® in the kinetic part We report those results herén
approach is favorable due to the so-called complex actiogddition, a brief discussion of tadpole improvement in
problem which rules out the use of standard Monte Carlddamiltonian lattice gauge theory is given in Sec. Ill.
techniques in the action formulatidb].
Much work in the past decade has been devoted to im-
proving lattice action§7]. Initiated by Symanzik in 19833], Il. SYMANZIK IMPROVEMENT
the aim of the improvement program is to reduce the devia- OF THE LATTICE HAMILTONIAN
tion between lattice and continuum QCD at finite lattice A. Introduction
spacing. For pure gauge theory on a lattice, the deviations
between continuum and lattice theories start at oadefhe
motivation for improvement lies in the fact that the compu-
tational cost of a lattice QCD simulation is proportional to
a~k, where 6<k<7. It is by far more efficient to build an
improved theory than it is to work on finer lattices. The
improvement program has allowed accurate calculations tgweow. . I
be performed on relatively coarse lattices and brought the The KOQUt'SUSSk'.nd Hamlltonlan for pure SUY gauge
most complicated calculations within the reach of today'st"€0rYy on the lattice is given by
most powerful computers. H(0) = K (0) 4 \/(0) 1)
In contrast, the improvement of lattice Hamiltonians has '
only recently begun. Perhaps the most extensive treatment to
date is due to Luo, Guo, Kger and Schite [9] who dis-  where the kinetic and potential terms are given respectively

by

In this section we derive an improved Hamiltonidi
rectly using the Symanzik approach of adding irrelevant
terms and fixing their coefficients in order to cancel errors.
As a first step we aim to correct the classical ora€errors
arising in the lattice Hamiltonian for pure SNJ gauge
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as Here we demonstrate an alternative approach, similar in
K= > > THEF(X)EF(X)} (2)  nature to the Symanzik improvement of the Wilson action.
X! One only needs to include additional gauge invariant terms
with appropriate continuum behavior in the kinetic Hamil-
0)_ 2N tonian. The coefficients of the additional terms are chosen so
Vir= ad? Xi2<]. Pij(x). (3)  that the ordem? errors vanish.

g x An important step in understanding the errors that arise in
the kinetic Kogut-Susskind Hamiltonian involves making the
distinction betweenrattice and continuumfields. We define
the lattice gluon field At (x') to be the average of the con-
tinuum gluon fieldA along the link joiningx andx+au:

HereE" is the lattice chromo-electric field\ is the dimen-
sion of the gauge group, ai};(x) is the plaquette operator
in the (i,j) plane,

Link

1 . 1 . L,
Pij(z)=1- NReTr{ ]} . 4) Ah(x’)= af dxA = U”(X):elgaAﬂ(x ), (D)
1
wherex’ is a point near the points and x+au. On the
We discuss the improvement of the kinetic and potentia’attlce the _gluon f_|eld IS def|r_1ed at on_Iy one point alc(n:_g
: nearby a link. This leads to interpolation errors in the inte-
terms separately in what follows. . ; :
gral in Eq. (7). For instance, by choosing to evaluate the
_ _ gluon field at the midpoint of the link, the lattice and con-
B. Improving the Potential Term tinuum fields are related by

To improve the potential part of the Kogut-Susskind

T . : : a’ 4
Hamiltonian, we follow the process of improving the Wilson AL (x)=A (%) + = A (X) + =3 A (X) + . . . .
action. By introducing the rectangle opera®j(x) in the a . 24 1 H 1920 # #
(i,j) plane(with the long side in the direction), ®)
We see that the lattice gluon field reduces to its continuum
_ 1 . counterpart in the continuum limie(0), but that they dif-
Rij(e) =1~ —ﬁReﬁ{ ‘]} ’ () fer by interpolation errors of orde?. From this we build the
1 sequence of approximations to the lattice gluon field:
o . ) ALx)=A(x)
and expanding in powers dd, we arrive at the ordea
improved potential term: " 1.,
AT X) =Ai(X) + S7a%d Ai(X) €)
2N 5 1
V== > 3P =R +Ri(0]|. (8) , 1, 1,
ag: xi< Al >(x)=Ai(x)+2—4a2ai A(X) + g5 I A (X).

In principle, the next lowest order classical errors could be . P
Perhaps the most important property of the electric field is

corrected by including additional, more complicated opera-, ) . . .
tors in the potential term. This has not been done becauégat it generates group transformations. Mathematically, this

many additional diagrams are required to cancel the |argganslgtes to t_he electric and gluon fields satisfying the com-
number of contributions to the error of ordef. Since these Utation relations,

errors are swamped by ordafg? quantum errors, address- i

ing quantum corrections in the Hamiltonian approach would [Ef‘(x),Ajﬁ(y)]: — 5 Oxy0ij Oap - (10
seem to be of more immediate importance. a

It is desirable for this hold on the lattice for any degree of
C. Improving the kinetic term approximation. Let us consider what happens to these com-
Constructing a kinetic Hamiltonian with a finite number Mutation relations on the lattice for the approximation la-
of terms has proven to be a nontrivial exercise. Luo, GuobPeled by the superscrifpt) in Egs.(9):
Kroger and Schite demonstrated an interesting trade off a2
when using either the transfer matrix or Legendre transfor- [Ei(l)“(x),Aj(l)ﬁ(y)]: |5i(1)0f(x),A]l3(y)Jr _gjzAf(y)},
mation methods to derive an improved Hamiltoni&h Both 24
techniques require the starting point to be an improved ac- (12)
tion. When one starts from an improved action incorporatingye observe that if the lattice electric field is taken to be the
rectangular terms the resulting Hamiltonian has infinitelycontinuum electric field, ordea? errors arise in the commu-
many terms and couples links which are arbitrarily far apartiagtion relations. To cancel this error we set
To produce a Hamiltonian which couples only nearest neigh-
bor links, it was found necessary to start from a carefully
constructed highly non-local improved action.

2
Ei(l)a(x):Ei“(x)— %(9IZEIQ(X) (12
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We can take this to ordex* by setting ad 97
K@=— > Tr{ ——E-(X)EF(x)
a2 7 4 2 X, i 120
E@(x)=E*(x)— ﬁaiin“(xH = 60(9i4Ei“(x). (13)

1., L At
+ gEi (X)U;(X)Ej(x+ai)U; (x)
In this way a sequence of approximations to ldtice elec-
tric field E- can be constructed. L L )
Making use of these approximations we can analyze the ~ TopE WU Ui(x+ai B (x+2ai)
classical errors arising in the kinetic Hamiltonian. To cancel
these errors we take the approach of adding new terms and
fixing their coefficients in order to cancel the or@ererror.
We have a great deal of freedom in choosing additional
terms. They are restricted only by gauge invariance and the Ill. TADPOLE IMPROVEMENT
need for an appropriate continuum limit.

><UiT(x+ai)UiT(x)). (19

- derstand th fruct f : iant kineti Tadpole improvement, developed by Lepage and Macken-
0 understand the construction of gauge invariant Xinetic;, [12], is an important step in removing errors from lattice

terms it is important to recall that the electric field and I'nkgauge theory. It is necessary for close agreement between

operator transform as follows under a local gauge transforiice perturbation theory and Monte Carlo calculations on

mation A (x): coarse lattices.
+ In the action formulation, tadpole improvement is handled
Ei(X) = A)E(X)AT(X) (14 py dividing all link operators by the mean linkky. In the
Hamiltonian approach two conflicting implementations have
Ui(x)—=A(X)Uj(x)AT(x+ai). (15 been suggested. The earliest starts from a tadpole improved

action and carries factors af, into the Hamiltonian[9].
Consequently, the next most complicated gauge invariantlore recently it was suggested that no tadpole improvement
term we can construcafter TE'E") couples nearest neigh- was necessary in the kinetic term of the improved Hamil-

bor electric fields: tonian[13]. Here we present our own views on the correct
implementation.
TH{EN(X)U;(X)EF(x+ai) Ul (x)}. (16) In the Hamiltonian approach the question of whether the

electric field should be scaled arises. This question is easily
More Comp"cated gauge invariant terms are easily conanswered by Considering the commutation relations between
structed. One only needs to couple electric fields on differenthe link operator and electric field:
links anywhere around a closed loop. Consequently, generat- g
ing Hamiltonians with higher degrees of improvement would [E{*(X),U;j(¥)]= = 6ij xyh “Ui(X). (20)
seem to be more readily achieved within this approach. ) o a

Incorporating nearest neighbor interactions leads to th&Ve see that if we divide all link operators Iy we have

simplest improved kinetic Hamiltonian:

1 1
. EF(X), Uy (Y) | =2 8, 8\ U0 (2D)
0 a 0
KW=2- > THXEF(OEF(x)
2 53 We observe that the electric field cannot be rescaled and still
L L St maintain the correct commutation relations. Thus under tad-
FYEQUIOE (x+ai) Uy ()} 17 pole improvement the electric field cannot change. We must,
however, divide the second of the kinetic terms by a factor of
uS. Tadpoles arise in this term because the electric and gluon
ields do not commute.
Including tadpole improvement in Eq&) and(18) leads
to the ordera? tadpole improved Hamiltonian:

We fix the coefficientsX andY to cancel the ordea? error.
To do this we expand the second term in a Taylor series i
a. Ignoring O(g?a?) errors, we then substitute"~E®)
from Eq. (12). To cancel the ordea® error we must seX
=5/6 andY=1/6. This results in the ordex® improved ki-

netic Hamiltonian HO=K®+v®

a3 5 _a3 S) L L

KW=7 3 Tr| gEFOEN () =75 2 T gEOE(X)
1., L At 1. L —_—
+€Ei (X)Ui(X)Ej(x+ai)Uj(x) . (18 +ﬁEi (X)U;(X)Ej(x+ai)Uj (x)
0

This is the result of Luo, Guo, Kger and Schite [9]. We 2N 5 1
can take this to ordea* by including next nearest neighbor —— 2 | 72 Pij(0)——=[Rij(x)+R;i(x)]|.
) . - - . ao? xi<j | 3u 12u8
interactions. A similar calculation using-~E® from Eq. g 0 0
(13) gives (22
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IV. CONCLUSION Our next step is to perform variational and coupled cluster

We have demonstrated that direct improvement of theSU(3) calculations to determine precisely the level of im-

Kogut-Susskind Hamiltonian by demanding the correct conProvement achieved by the '”.‘pro"ed HamHtomans. Other
tinuum limit is possible. The advantage of our direct ap-9r0uPs have made progress with these calculations &y U
proach is that it is easily extended to more complicated!3l @nd SU2) [14] with promising results.
Hamiltonians. One simply needs to construct suitable gauge !N the near future we intend to extend the direct approach
invariant terms to add to the kinetic Hamiltonian and fix thet0 the cancellation of quantum errors which have not yet

coefficients so that higher order errors are canceled. been examined in Hamiltonian lattice gauge theory.
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