PHYSICAL REVIEW D, VOLUME 64, 094501
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We present results of quenched lattice calculations of the matrix elements relevaﬂ—fﬁd and Bg
—Es mixing in the standard model. Results for the correspon&ibi§3)-breaking ratios, which can be used to
constrain or determing/,4|, are also given. The calculations are performed at two values of the lattice spacing,
corresponding t@B= 6.0 andB= 6.2, with quarks described by a mean-field-improved Sheikholeslami-Wohlert
action. As a by-product, we obtain the leptonic decay constanBafd D mesons. We also present matrix
elements relevant fab°—D° mixing. Our results are summarized in the Introduction.
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I. INTRODUCTION ag(pm) 5165
_ ~6/2 s\M _
Ca(m)=[as(p)] {H o JS}, =314 O

The study ode—gd oscillations enables measurement of
the magnitude of the poorly known Cabibbo-Kobayashi- . . )
Maskawa(CKM) matrix elementV,y and thus the determi- Since|Vy| is equal to unity to very good accuracy, a mea-
nation of one of the sides of the unitarity triangle. The fre-Surement ofAmy clearly enables the determination|dfg|.

quency of these oscillations is given by the mass difference Ne accuracy of this determination is limited, at present, by
the theoretical uncertainty in the calculation of the nonper-

Amg=MY — M} (1) turbative, strong-interaction effects in the matrix element
= pe
‘ ’ (Bl Og%~%(1)[Bg).

An alternative approach, in which many theoretical uncer-
_ _ _ tainties cancel, is to consider the ratdang/Amy, where
ues of theBy— By system.Amy is experimentally measur- A js the mass difference in the neutBJ— B, system. In
able from tagged84 meson gample’slt is also calculable in  he standard model,
the standard model. Keeping only dimension six operators

whereME‘d andMEd are the heavy and light mass eigenval-

after an operator product expansion in which the top quark Am. V. [2Mg V..|2Mg
and W boson are integrated out, the standard model predic- S_| S| __Tsg2_|tS —r
tion for Amy is, to next to leading ordeiNLO) [3,4], Amg  [Vig| Mg, Via| Mg,
< Vi2Ms, | (B02* 7B
Amy=—— M{IViaVip| 2 78So(x0) Cal 1) =0 = @)
L t Vil Mg, <Bd|O§B:2|Bd>‘
[(BglO3°~2(1)|By)|
(20 where®5B=? is the same operator a855=2, with d re-

2M ' ) T
By placed bys, and where we have omitted the renormalization-

2 o 0.76 scale dependence, as it cancels in the ratio. Because the uni-
wherex;=m;/My, So(x;)=0.784x"" (to better than 1%  ta1ity of the CKM matrix implies|V,{=|V¢y| to a few
is the relevant Inami-Lim functiofb], » the renormalization  percent and a clean extraction 3| can be achieved by

scale, OﬁB:Z the four-quark operator[gy“(l—yf’)d] analyzing semileptonid® decays[6], a measurement of

[by,(1—%d] and 75=0.55 andCg(u), short-distance Ams/Amg yields a determination ofVg|. The high fre-
coefficients. The renormalization-scale dependence ofjuency ofB,— B, oscillations makes this a challenging mea-
Cg(u) and of the hadronic matrix element cancel such thasurement. Nevertheless, the experimental lower bounds ob-
Amy is u independent to the order in perturbation theory attained onAmg [1,2], already yield interesting constraints on
which Cg(u) is calculated. In the naive dimensional regu- the unitarity trianglg1,7-132.

larization modified minimal subtractiotNDR-MS) scheme The matrix elements that appear in Ed) are tradition-
assumed here, ally parametrized as
o [~AB=2 _8p 2 £2
For a recent experimental review see, for instance, [Rebr[2]. <Bq| Oq ()] BQ> =sM quBqBBq('“)’ ®)
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whereq=d or s and where the parametBg (1) measures  cerned, nonperturbativ@(a) improvement has not yet been
deviations from vacuum saturation, corresponding toundertaken, and all lattice calculationsBf s— By s mixing

Bg,(#)=1. Here,fp is the decay constant defined by matrix elements have, as we dO(a.a) discretization er-
o ) rors, or worse()(a) errors. It is also important to remember
<0|byuy5q|Bq(p)>=iprBq. (6) thatO(a?) errors can be significant in the presence of heavy

quarks in a relativistic approach.

One also usually introduces a renormalization-group in- Alternatively, one could take an effective theory approach
variant and scheme-independent paramé@qr, which to  and work with static, nonrelativistic QCINRQCD) or Fer-
NLO in QCD is given by milab quar_ks._ In these approaches, the matrix elements are

expanded in inverse powers of the heavy-quark mass to re-

gnlo_ ()Bg (1) @ move it fr_om the I.ong—d.istgnce dynamics. One important ad-

By B Bg 0 vantage is that discretization errors are no longer enhanced
o . by this mass. An accurate description of the physics ofthe
whereCeg(1) is given by Eq.(3) as long aEBBq(’U“) 1S com- quark, however, requires one to consider corrections in in-
puted in the NDRMS scheme with five active quarks. For yerse powers afn, and the calculation of these corrections is
consistency with the value ofjg given after Eq.(2), a5 made difficult by contributions proportional to inverse pow-
should be taken to have its two-loop value Wim% ers of a. The effective theory and relativistic approaches
=225 MeV. should thus be viewed as complementary.

In the present paper, we report on high statistics, An additional feature of our calculation is that we ex-
guenched lattice QCD calculations of matrix elements andrapolateSU(3)-breaking ratios in the heavy-quark mass di-
the correspondin@ U(3)-breaking ratios relevant for neutral rectly instead of first extrapolating numerator and denomina-
B-meson mixing. We obtain thBU(3)-breaking ratiagqin  tor and then taking their ratio. The heavy-quark-mass
two ways:(1) by calculatingBg_/Bg andfg /fg , and com-  dependence will cancel partially between numerator and de-
bining these two ratios with the experimental mass ratig®ominator and therefore make the extrapolation more reli-
Mg /Mg (“indirect” method); (2) by calculating the matrix @ble. This approach turns out to be particularly fruitful for

N d the determination oifBS/fB, where the statistical error is
significantly reduced by a direct extrapolation of the ratio.

Our main results arfe’

elements(By | O 327%|By.¢), directly and taking their ratio
(“direct” method), as suggested in Ref13].2 They mainly
differ in the required light- and heavy-quark-mass interpola-

tions and extrapolations, since for the “direct” method, it is fg E
the matrix element and corresponding ratio that are interpo- &= ¥=1.1E(2)f‘2‘,
lated and extrapolated, while for the “indirect” method it is de\/B_Bd
the B parameters, decay constants, and corresponding ratios. Mg |2

As described in more detail in Sec. Il, these calculations Fog= | £2=1.386)"L°
are performed at two values of the lattice spacirmg, Msd

[~(2.0GeV) ! and ~ (2.7 GeV) 1], with relativistic Wil- ¢

son fermions. In order to keep discretization errors in check, [&nlo_ +27 B4 [zno_ +6
the lattice calculation is performed with heavy quarks whose fe,V/Be, = 21021) ~25 MeV, fo, B, =0-847)-7,
masses are around that of the charm and the results are ex- ¢ @)
trapolated to the mass of the Even in the charm sector, [Snio_ +30 Bs [=no_ +6
however, quarks have compton wavelengths that are not st BBS_241(14)—27 MeV, BBs_1'0z4)—7’

fp
much larger than our lattice spacings, and it is important to s

reduce discretization errors as much as possible. We attempt Bg,(Mg)=0.914) "5, ég‘g: 1.405)*8,
to do so by describing quarks with mean-field-improved R

[14], Sheikholeslami-WohleiSW) actions[15]. When com- Bg (Mg)=0.902) "5, Bg':= 1.393) 13,
bined with improved operators, these actions lead to discreti- ‘o

zation errors, which are formally smaller than those gener- Bg, /Bg,=0.982) "3,

ated with an unimproved Wilson actigi)(asa) instead of _ _ o
O(a)], and which may be numerically smaller than thosewhere the first error is statistical and the second corresponds
brought about by a tree-level-improved SW action. It is im-t0 the systematic uncertainties added in quadrature. In quan-

portant to note that, as far as four-quark operators are corfies involving ratios ofB parameters, the renormalization-
scale dependence is not specified, as it cancels. We consider

a wide array of systematic uncertainties, as discussed in Sec.

20Our method differs slightly from that of Ref13] in that we

actually calculate
3The results of preliminary analyses on the same lattices were

R |(HAB=2 M
<_BS|OS—|BS> B presented in Ref§16-18.
(By|O53%=?|By) | Ms, "We takeMg,=5279 MeV, Mg_=5375 MeV, Mp=1864 MeV,
and multiply by the experimentally measured vaIueMgS/MBd. and Mp = 1969 MeV.
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VII. We normalize dimensionful quantities, involving decay TABLE I. Simulation parameterssgyy is the clover coefficient.
constants, byf D, because some systematand statistical

uncertainties, including possibly those associated with B 6.2 6.0

quenching, partially cancel in the ratio. The original quanti- ¢_ 1.442 1.479

ties can then be recovered by using the experimental mea-gj,q 28% 48 16 48

surement OffD # of configurations 188 498
The results of Eq(8) will be compared, in Sec. VI, to

earlier calculations of some or all of these quantities per-

formed with propagating heavy quark$3,23,24 and with -

nonrelativistic quark$25,26.. The comparison of th& pa- fp VBR°=22210)"32 MeV, fD VBRe=0.943)"2

rameters with results obtained using static heavy qu&ks Ds

30] will be addressed elsewhel@1l]. (10)

Because decay constants and the corresponding matrix el-

ements are necessary for obtaining the results of &gwe whereég"’ is obtained by multiplyind5(Mp) by Cp(Mp),
also have results for these decay constants. We find with

fg=17717)725 MeV,

Col)=Tas(pu)] 9% 1+ 5425 o

fs,=20412) %34 MeV, fp=21010)"1] MeV, DLAI=Las\ 1 47 4P T4 3750
(11
f +17
o —=11582)7;, fp =2368) 1) MeV, (9 where the two-loop ay(n) is evaluated with AG2
=350 MeV.

fg +4 st +4
f_DS_O'”(G)*& K—1.1:{2),2 IIl. SIMULATION DETAILS
f Our results are based on quenchetll(3) gauge configu-
1—082(3) rations, calculated on a 2448 lattice at3=6.2 and a
fo > 16°x 48 lattice at3=6.0. The configurations are generated

S

using the hybrid over-relaxed algorithm described in Ref.

where the first error is statistical and the second systemati¢55]. The parameters of the simulations are summarized in
as discussed in Sec. VII. A comparison with recent quenchedable I.
results]32—39 will be made in Sec. VIl and a discussion of ~ We describe quarks with the Sheikholeslami-Wohlert
unquenched resulf88—41] will be undertaken in Sec. VIIF.  (SW) action[15]’
Note that results fofgz can be combined with the measure-
ment of the branching ratio for the rare ded®y—r"v,, Ky .
R//he|neit becomes available, to yield a clean determination of ~ S2¥=SY—ig, Cow- X%V P(X) Py (X) 0 th(X),

ubl-

While short-distanc®®— D mixing is highly suppressed
in the standard mod¢#8], it can be enhanced in supersym-
metric extensiong49-53, above even the long-distance whereSt' is the standard Wilson action, the bare gauge
contributions discussed in Ref54]. Thus, we give theB coupling,P,,, a lattice definition of the field strength tensor,
parameter and decay-constant combinations relevant for thie, the appropriate quark hopping parameter, a&gg, the
matrix element of the left-leftA C= 2 operator, which is one So-called clover coefficient. Herg; stands for both lighta)
of the operators that can contribute in supersymmetric exterand heavy(Q) quarks. While with the Wilson actioncgy

(12

sions: =0) spectral quantities suffer from discretization errors of
O(a), the tree-level valuesgy= 1, guarantees that these er-
Bp(Mp)=0.823)"%, BN°=1.124)"3 rors are reduced t®(aa) [15,56. In the present paper, we

work with a mean-field estimate of the clover coefficient
[14,57), csw= 1/ug with uy=(3TrU,)""*. Since this estimate
Referencd19] givesfp =241(32) MeV as a summary number, accounts for large tadpole contributions and is closer to the
which is in good agreement with our determination of this quantitynonperturbative value of the clover coefficigisg], which
[see Eq(9) below]. However, recent determinations appear to yieldremovesO(a) errors to all orders irxg, our discretization
larger  values, albeit with large uncertainties:f,  errors may be numerically smaller than fogy=1. It is
=285(20)(40) MeV[20], fp =323(44)(36) MeV[21], and fp_
=280(19)(44) MeV[22].
SFor recent reviews of lattice calculations of the quantities pre- ‘Here and belowr,,=(i/2)[ y,,v,], wherey, are the usual set
sented in Eqs(8) and (9), please se€l7,42—-41. of Euclideany matrices with{y,,v,} =26,
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TABLE Il. Hopping parameters,,, of the light (#=q) and heavy ¢/=Q) quarks used in the simula-
tions. In brackets, we give the masseg, of light-light pseudoscalar mesons composed of a degenerate
quark and antiquark with hopping parametgy, obtained as described in Sec. IV. We also provide the
massed p, of heavy-light pseudoscalar mesons composed of a heavy quark with hopping parageter
a massless antiquark, obtained as described in Sec. IV and Sec. VI. Error bars are statistical only. The scales
used to translate these masses into MeVairé=2.73 GeV at3=6.2 anda 1=2.00 GeV at3=6.0, as
obtained in Sec. V.

B Kq [My in MeV] kg [Mp in MeV]
6.2 0.13640831(4)], 0.13710[6084)], 0.120[223814)], 0.123[200613)],
0.13745[466(6)] 0.126175711)], 0.129[148810)]
0.13211869)]
6.0 0.13700827(1)], 0.13810[5873)], 0.114[21836)], 0.118[19715)],
0.13856[454(3)] 0.122[17464)], 0.126[15034)],

0.130[12343)]

important to note, however, that in the presence of heavyhat have improved overlap with the ground state. Of course,
quarks with masseamgy~0.3 or more, discretization errors operators whose maitrix elements we wish to compute are

of (’)((amQ)z) may be comparable to those O asamg). kept local.
In order to improve matrix e_Iements up ©(asa), we Statistical errors are estimated from a bootstrap procedure
must further “rotate” the quark fieldg56]: [61], which involves the creation of 1000 bootstrap samples

from our set of 188(498 configurations at3=6.2 (B
a . =6.0). Correlators are fitted for each sample by minimizing
y—1-5lzy-D-(1-2)m,] ¢, (13)  x2. The quoted statistical errors are obtained from the central
68% of the corresponding bootstrap distribution.
. To convert our values for decay constants into physical
whereD , is the symmetric covariant derivative,, the bare  units, we need an estimate of the inverse lattice spacing. The

quark mass to be defined later, ands a real parameter, determination of this quantity is discussed in Sec. V.
which can have any value between 0 and 1. For heavy

quarks, a large source of discretization errors is the mismatch
in the normalization of tree-level, zero-momentum, con-

. . . Ill. MATCHING AND RUNNING
tinuum and lattice quark propagators. Equat{@8) with z

=0 corrects this mismatch &(a). Since we can compen- Because the lattice and the continuum treat ultraviolet
sate this mismatch completely by implementing the El-modes differently, the extraction of continuum matrix ele-
Khadra-Kronfeld-MackenziéEKM) normalization[59] ments from lattice calculations requires a matching proce-
dure. Ideally, this matching is performed nonperturbatively.

P /—1+am¢,¢, (14) For our mean-field-improved action, however, nonperturba-

tive matching coefficients are not available and we resort to

erturbation theory instead.
we choose the latter instead of EG3). P y

: : . The simulation is performed with the fermion action of
At both values of the lattice spacing, we work with sev-

. _ 3 . _
eral values of the heavy-quark hopping parameter s,traddlin{;fE 9. (12) with Cey,=1/uo and the 'stan.dard Wilson gauge ac
. -Hon. However, the fully mean-field-improved action would
the charm. This enables us to extrapolate our results ir . . . .
; ._Involve normalizing each occurrence of a link variable in the
heavy-quark mass from the charm sector, where discretiza- .
. . action by the measured valuewf. To recover the results we
tion errors appear to be only a fraction of the result, to the : .
would have obtained had we used the latter, we must, in
bottom sector, where these errors would be very large were . X )
. . . . mterpreting the results of our simulation, use rescaled bare
we to perform the simulation directly with such quarks. We _ = 4 — _ >
also consider several values of the light-quark hopping pa0UuPlings as=as/ug and «,=Uo, with as=gy/(4m).
rameter around that of the strange. Then, we interpolate otfisw already has its desired rescaled value and no additional
results in the light-quark mass to the strange and extrapolatescaling is necessary is actually only a first guess at an
them to the chiral limit. The values of the hopping param-improved expansion parameter and one may try to optimize
eters used in our paper are given in Table Il. For completethis choice[14]. This issue will be elaborated on at the end
ness, the masses of the corresponding light-light and heavyf the present section and, for the moment, we will generi-
light pseudoscalar mesons are also given in physical units.cally denote the coupling by .
To isolate the ground state more efficiently in the correla- In perturbation theory, the effect of normalizing link vari-
tion functions that we calculate, we use fuzzed sourcesbles is obtained by expanding the factorsigin powers of

and/or sinkg60]. These are extended interpolation operatorghe strong coupling. AO(«s) we have[14]
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2

1 1/4 g . A (9'5‘;’“= X0
Up={=Tru,) =1+-—X with X=———. (15
P 4

v
3 3 o
where a sum over Lorentz indices is implicit and where

This means that every occurrence ©f, in a first order T'XT stands for (1% (1+am,) (1+amg) (2kq2ko)

perturbative expression, must be replaced Ry (1  (QI'q)(QI'q). The parity even component (ﬁéFzz corre-
—(ag/4m)X). Because factors afsy, always appear multi- sponds to the continuum equivalent 6f2' so that, at one
plied by at least one power of; in perturbative expressions, |oop
Csw=1—3(a/4m)X can be replaced bys,=1 in first or- 5
der expressions. This is what we do to determine the central,,ar=2 lat lat
valuespof our results. However, in obtaining errors, we con-bq (m)=Zy(as,ap)| Oy (a)+i22 Zii(ag) O7(@) |.
sider the variation induced by takingy,= 1/u3. (20)

To extract theB parameters of Eq(5) from ratios of
three-point and two-point correlation functions on the lattice,Z;; has a logarithmic dependence am, where n is the
we must match the mean-field improved, EKM-normalizedscale at which the continuum operator is renormalized, while

lattice axial-vector current to its Euclidean continuum coun-Z4;, i=2,...,5,remains finite asa vanishes. Mean-field
terpart via improving the dimensional reductiofDRED) results of
A,=Za( as)Al,ft(a), (16) Refs.[6_2—§£ﬂ apd using the mgtchlng between DRED.and
NDR-MS given in Ref[65], we find that one-loop matching
with to the NDRMS scheme is given by
lat, 1 — — — — — ag 1
A(a)= ;\/1Jn';\rnq\/1+amQ\/ZKq 2ko(Qy,vs0)(a), Zy(as,ap) =1+ —| —4In(ap)+ Z{5(A, +4, ,)
(17)
—(Aj+A,)+8Ay }—2-2X (21)

where am, o= (1/kq o~ 1/ke)/2, with x., the mean-field
improved version of the critical hopping parametey,,
which is determined nonperturbatively as detailed in Sec. V.

_q_ s
Using the results of Ref$62,63, we find at one loop =1= g, [4In(an)+24.52-9.3Fsw

as

4 o 2
Zp(ag=1+7—|3(A, , +4A5)=X 4.8&5],

Yu?s
X
ag 2 Zalas)= 12471'[AI AYS]
=1- 5 ~[7.90+0.3%gy~ 3.005],

o
(18) =— ﬁ[8.84— 9.15cgy+3.1%3,],

where, in the notation of Ref62], Anms andAE1 arise from

the one-loop corrections to the vertgy ys and to the quark Zig(ag)=— %le( ag), Zilag)= %le(as),
wave function, respectively. The effect of the mean-field im-

provement is encoded in the term proportionaktdVithout 2

mean-field improvement, i.&X=0, the coefficient ofxy/4m Zys(@s) = 77Z12(as),

would be substantially larger: 18.39 instead of 5.23dgy,
=1.

The matching of the four-quark operatd?y™=> (F
stands for the flavor of the heavy quaik complicated by
the fact that Wilson-type fermions break chiral symmetry
explicitly, inducing mixing among four-quark operators of
different chirality. The following five operators form a com-
plete basis for this mixing on the lattice in the parity-
conserving sector:

where theAr, I'=vy,, v,vs, | andys arise from the one-
loop corrections to the bilinear vertices associated With

For the numerical evaluation of the renormalization con-
stants, we choose to work with thS coupling aws, ob-
tained via

aws(3.418) = a(€783.41k) , (22

(04
142
v

O ¥ X Y Yu¥sX V¥,
L2 TR SR TR TS T TS where oy is the coupling defined from the heavy-quark po-

O55=1 X1+ y5X ys, (19 tential. The latter is obtained from our simulations by solving
[14]

8In practice, we use Ref63] where results are given for arbitrary
csw and where loop integrals are calculated to higher numerical °Here again, we use the more precise and gerryglresults of
accuracy. Ref.[63] for Ar.
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TABLE Ill. The coupling aws(q) at different values ofy as
obtained in the simulations #&=6.0 and 6.2.

PHYSICAL REVIEW D 64 094501

TABLE IV. Fit ranges for the correlation functions and ratios
used in this paper.

B ays(l/a) ays(2/a) ae(mla) B 6.2 6.0
6.2 0.1730 0.1402 0.1250 ch-FIcihchh 34<t,<38 33<t,=<37
6.0 0.1921 0.1522 0.1343 10sty<14 1=t <15
ch-FIcERcER 34<t,<38 33<t,<37
10<t,<14 11=<t,<15

a
In(up) = 7 a(3.418)(1—-1.18%). (23) CEL(t)/CEE(t,) 15<t,<23 13<t,<23
ctr 13<t,=<23 1li1=t,<23
Values of ays for scales different from 3.44/are obtained FL 13<t,<23 11=t,<23
by solving the two-loop running equation numerically, with

n;=0. Both ays and @y, have been shown to lead to expan- Chp 10=t,=<20 S=t1,<23
sions that are much more convergent than those in terms of Cg'g(tx)/CE,f(tx) 15<t,<23 1i=t,<23

the bare lattice coupling14]. For completeness, we give
values ofagg(u) for a collection ofw in Table IlI.

Having chosen the coupling, we must fix the sogie at
which it is evaluated. We take 2/as a central value but
allow g* to vary from 1A to 7/a to estimate the uncertainty
associated with this choice. This range @dr covers typical,
ultraviolet lattice scales.

BBq(,u):[CB(M Bd)/CB(,LL)] BBq(MBd), with or without an

expansion inxg of the term proportional tds in Eqg. (3).
Since we match the matrix elements aBdparameters

defined in Eq.(5) at one loop, we may choose to expand

. . . . 2
As it is convenient for the heavy-quark extrapolations andcombinations of renormalization constants sucZagZ, or
does not generate large logarithms, we match the lattice re11Z1i. 1=2,....5, toorder as. In the present paper, all

sults for theB parameters g =M P whereM P, is the mass

of the heavy-light meson composed of a heavy antiq@rk
and a massless quaitksd or u. As we will see in Sec. VI,
the heavy-quark extrapolation yieIcB;aq(MBd). Values for

central values are obtained without expansion. Nevertheless,

we have checked that expanding these combinations makes

negligible differences in the final results. This is because the
one-loop corrections to the renormalization constants are
small, especially after mean-field improvement.

the renormalization-group-invariant and scheme-independent

B parameters are then simply obtained from E@sand(3):
ég’;’= Cs(Mg)Bg (Mg,). Values for Bg (u), with s

IV. CORRELATION FUNCTIONS

#Mg, can also be obtained straightforwardly through To determineAF =2 matrix elements and thel param-

1.0 T | T T T T I T T T T

- matched at 2/a -

- kg=0.1200 :
- k,=0.1364 -
fit © 20 < T—t,+t, < 28

o 4

I 1 1 1 1
25
T—t +t,

B Parameter

0.6

0.4 1 | 1 1 1 1
20

30

FIG. 1. Plateau for théd parameter of the operatap ;"2
renormalized aju=2/a in the NDRMS scheme, foi3=6.2[i.e.,
Eq. (26) times 3/(&3)]. The correlation function is obtained for
10sty=<14 and 16<T—t,=<14. Points with the samé—t,+t, are
shifted for clarity.

eters, as well as decay constants, we compute the following
two- and three-point functions:

Cha(t) =2 (PL(X)PE(0)),

Chb(t) =2 (PL(X)AL(0)), (24)

CHF(te.ty) =2 (PL(Y)O(0)PL(X)),
X,y

as well asCR4(t,) and CER(t,). Here, the subscript on
operators indicate that they are fuzZ&d], while operators
with no F are local. For the correlation functions, the super-
scriptsF andL indicate which of their operators are fuzzed
(F) or local (L). In Eq. (24), A{)a‘ is the time component of
the EKM-normalized axial-vector current defined in Eq.
(17), Pg is a fuzzed 60] version of the pseudoscalar density

Qvs0d, andQ stands for any of the four-fermion operators in
Egs.(19) and (20). In the present section, we set the lattice
spacinga=1 and omit light-quark indices on heavy-light
guantities, for notational simplicity.
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O R B B B e n T .
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g C ] g %r 7 FIG. 2. Fits of the squared, light-light pseudo-
~ 0.04 [ 4 - C ] scalar meson masses versus light-quark mass to
r ] 0.05 7 the PCAC relation of Eq(29), at 3=6.2 and 6.0.
0.02 r chr=0.13792(2) 7] N ’Ccr=0'13921(1) ]
P74 R VA AT RN R ol v v ey
0 002 004 006 008 0.1 0 0.05 0.1
a(ﬁl1+fﬁz) a(1T11+r'ﬁz)

At large Euclidean time separations, the three-point corbehavior of CE5(t,). Similarly, we get the light-light pseu-
relation functionCg, " (t,t,) has the asymptotic behavir  doscalar meson mags,, from a study of the two-point

function Cp5(t,), wherep=qysd; is the pseudoscalar bi-

CELF(t, ty)— (0| PE|3}<3|(’)| PY(P|P{|0) linear made from the two light quarkg andq,. Finally, the

|23 light-light pseudoscalar decay constant is obtained from a fit
to the ratio Cjz(t,)/CHi(t,), where ay is the EKM-
Xex — Mp(T—t+ 1), (29 normalized version ofj; yoy5d,, much in the same way the

heavy-light decay constant is obtained.
The time ranges over which the various correlation func-
tions and ratios are fitted, are given in Table IV.

whereMy; is the mass of the pseudoscakrTherefore, fits
to the ratios of correlation functions:

FLF

CoAF:Z(txyty) 8
ﬁ_)—zin, (26) V. LIGHT-QUARK-MASS EXTRAPOLATIONS AND
CAP(tx)CAP(ty) 3 DETERMINATION OF THE LATTICE SPACING
FLF _ Results for physicaBy and Bg mesons require investiga-
C,ar=2(ty,t = : d s :
Ch 2tety) ~ <P|(93F ’IP) 27 tions of the dependence of the lattice measurements on light-
CEE(IX)CEE(I){) <O|PF|P><P|PF|0)' and heavy-quark masses. We begin by the light-quark-mass

extrapolations and interpolations. To obtaig, , the critical
where Bp is the B parameter corresponding to the heavy-Vvalue of the quark hopping parameter, we study the behavior
light mesonP, yield the desired quantities up to renormal- of the light-light pseudoscalar meson massg, as a function
ization constants that we determine perturbatiielge Sec. 0f x; andk,, the hopping parameters of the light quarks that
lIl) and factors ofMp and of the type(O|Pg|P), that we compose it. We assume that it obeys the partially conserved
determine from fits to the two-point functio@E5(t,)** and  axial-vector currentPCAQ) relation
CEE(t,), respectively. Note that in Eq$25) and (27), all

5 3 ~ ~

pseudoscalar meson states have vanishing three momentum. (amy)*(k1,x2) = Bm(@m +amy), (29)

An example of a plateau for the ratio of E&6) is shown in ~ . .

Fig )1( P P n I HGO) | wnt wherem; is the O(a)-improved quark mass, given by
To determine the decay constants, we consider M =m(1+b,am), (30)

Craltd Moo B Ma(T/2—t)]. (28  With am=1/(2«;)~ 1/(2xc,) [66]. At tree level, which is
CER(t)  Za(O|PL|P) P v sufficient with our mean-field-improved actioh,,= — 1/2.
K¢ IS then obtained by fitting the function of E9) to our
In order to investigate the dependence of the matrix eleresults for (amp)z, with B, and, as fit parametersc; and
ments and3 parameters on heavy- and light-quark mass, wex, are taken among the values in the row labetgdn Table
need the heavy-light and the light-light pseudoscalar mesoh Addition of a term quadratic in quark mass in EQ9)
masses, and the light-light decay constants, which we use tmakes very little difference to the central value far, and
set the scale. As already stated, we obtain the heavy-lighhis variation has a negligible effect on the light-quark-mass
pseudoscalar meson malsl,, from a fit to the large time extrapolations of the matrix elements of interest. The linear
extrapolation of Eq(29) is shown in Fig. 2.
Form,, and all the quantities we study here, in addition to
1%n our periodic lattices, this correspondsat, and a(T—t,) higher-order polynomial corrections in light-quark mass, chi-
much greater than 1 but small enough so that the desired timeal perturbation theory also predicts the presence of chiral
ordering dominates. Hera,T=48 is the time extent of our lattices. logarithms. These logarithms, however, are difficult to iso-
We consider times, andt, such thafT/2<t,<T and 0<t,<T/2. late numerically and are modified by the quenched approxi-
HUcEL gives a particularly good signal fovi . mation[67—69. Thus, we perform polynomial interpolations
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I R I L R R 0.12
0.08 [ p=6.2 3 I $=6.0 ]
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o P em,=0 1 .- L xm,=0 _ FIG. 3. Interpolation o&if,, according to Eq.
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C ] 0.08 - N B=6.2 and 6.0, fronf, andmy , as described in
B fo/1,=1.16(3) ] - B 1 the text
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and extrapolations from our intermediate values of light-our B-physics results in Sec. VII. A summary of the results
quark mass, only considering, in most cases, the leadingor a=1, «.,, andam used below is given in Table V.
non-trivial dependence on light-quark mass. Having determined the strange quark mass and critical
Next we determine the lattice scale ' and the bare hopping parameter, we interpolate and extrapolate our vari-
strange-quark masamg, in lattice units. We obtain both ous heavy-light matrix elements in light-quark mass to these
guantities simultaneously from the kaon’s decay constantalues. We assume that the up and the down quarks are
fi, and its massng . As long as the mass dependencé of ~ massless. This is an excellent approximation for the quanti-
the decay constant of a light-light pseudoscalar meson, cates we study. As mentioned above, we perform polynomial
be described by a function mm’z) only, Eq.(29) implies that interpolations and extrapolations from our values of light-
both quantities depend only on the sum of quark masses arfilark mass. Thus, we fit all quantities of interéétin lattice
that only an interpolation in these masses, not an extrapolaits, to the functional form
tion, is needed to obtaiafy . The use off, instead of, for
instancemy«, is prompted by the fact that the only quanti- _
ties we report on here, which depend stron(lg., not loga- Y(Kkq,kq)=ayt+ Byamg+ - -. (32
rithmically) ona ™1, are the heavy-light decay constants. Our
procedure has the added benefit that it is also applicable in
unquenched simulatior. Thus, we fit our results for In Figs. 4, 5, 6, and 7 we exhibit the light-quark-mass de-
af,/Zxto pendence and the corresponding fits to €B§) for the quan-
tities 1/@Msp,), Bp, a*(Pgl05 2Py, andafp /Z,, for
all values of heavy-quark mass @t 6.0 and 6.2. For clarity
=ar+Br(amy)®+ yf(amp)*+---. (3D of presentation, th& parameters and*(P,|O5"~2|P,) are
renormalized at a common scale of 5 GéVh all cases, the
light-quark-mass dependence is mild and, to good accuracy,
We find that this parametrization describes our results welllinear. However, we do observe that the matrix elements of
Assuming that the lattice spacing is fixed with (or equiva- 03" =2 have a stronger dependence on light-quark mass than
lently my), we solve Eq(31) for af, (or amy), at the point  the other quantities.
specified by the physical ratiomy/fx, with fg

=159.8 MeV andmy=493.7 MeV.am is then obtained TABLE V. Lattice spacings, critical hopping parameters, and

from the resultingamy , using our earlier fit to Eq29), and  pare, strange quark masses, obtained as detailed in the text. Errors
the lattice spacing from the resultirgy (or amy). The fits  are statistical.

at our two values of the coupling are shown in Fig. 3. Be

af

Za

cause of the slight curvature, we favor the quadratic fits. B 6.2 6.0
These fits also give a value 6§ /f ., which is closer to the

experimental result of 1.22: 1.16(3)1.19(2)] for quadratic al (Ge +10 +4
fits instead of 1.131(10J1.147(7) for linear fits, at3 (GeV) 2.13 g 2.00_,
=6.2(6.0. In any case, linear and quadratic fits give nearly Ker 0.137922) 0.139211)
identical results for the scale arain,. The values ofZ, am; 0.028@19) 0.040117)

used are those obtained from HA8) with as= ays(2/a).
Systematic uncertainties in the determinationaof' and
am, will be addressed when we discuss the uncertainties on o
¥These values oBp, and a4(Pq|O§Fﬂ3q) are obtained by
matching the lattice results onto the ND®S scheme at the scale
2The K* is not a stable particle once light-quark loops are al-2/a, then running to 5 GeV in th#S scheme at the two-loop level
lowed. with n;=0 and the coupling constant described in Sec. lIl.
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o[ ‘\g\e\s\@ 3 15 ’\e\e\a\e —
[ x,=0.129 *\@\Sﬁ\e ] i £,=0.126 X\e“e-ﬂ\e ]
~ 1.5 %016 e og o4 > | W e g o - FIG. 4. Light-quark-mass dependence of the
= r ICQ=0.123 *‘e\eﬂ\e 1 = 1+ £q=0. we _ .
= L e0.120 D=4 -am- BN [ k0114 g SO | heavy-light pseudoscalar meson massq, and
> - - = L ] extrapolation and interpolation to vanishing
[ xam=0 ] os L x:aff =0 b quark mass and strange-quark masga®6.2 and
0.5 :_ D;ath=ar’ﬁ! _: : D:aﬁ‘xq=aﬁi, : 60
- B=6.2 1 - p=6.0 -
O _I I 1) | 11| I 11 | 11 | I_ O _I | 1 1 1 1 I 1 1 1 1 I 1 ]
-0.04 —0.02 0 0.02 0.04 -0.05 0 0.05
afl, arfl,
VI. HEAVY-QUARK-MASS EXTRAPOLATIONS for the AF =2 matrix element. Similar scaling functions are

defined for SU(3)-breaking ratios, in which the leading

The second extrapolation we have to perform is in heavyiogarithmic dependence on heavy-quark mass cancels. In

o Suide, WiV 36 & measure of the heavy-ouark mas<EdS: (33 (34, and (35), we evaluateay(M) through

: P , , , 27/ Bolog(M/A gep) ] With Agep=100 MeV andBo=11
everywhere except for klr_lematlcal dependencies, W_here the(2/3)nf with n¢=0, since we are working in the quenched
appropriate meson mass is used. As befosends for either  5,5r6ximation. This one-loop coupling approximates the lat-
ad or au quark. Other choices for the heavy-quark scaleice couplings defined through Eq@2) and(23) rather well,
such asMp, for instance, make very little difference to the for the values oM required here. In fact, final results depend
final results. We match our QCD results onto HQET at theweakly on the value\ ocp used in the heavy-quark extrapo-
heavy-quark scalép, and cancel the leading logarithmic |ations (see also Fig. 8 and discussion bejow
dependence onMp by including terms of the form For X(M pl)=<1>g,::2(M P di(M P @?(Mpl) and the
corresponding scaling functions f&U(3)-breaking ratios,

_ . HQET,
[ag(Mp)] 70" 2P0, wherey ?FT are the relevant, one-loop ing ° ,
! we use the HQET-inspired relation

anomalous dimensions in HQET, amg}, is the one-loop

B-function coefficient.y)°F'=—4 and —8 for the decay 5
constant and four-quark matrix element, respectiy@;71. X(Mp)=Ax| 14 By| ——| +Cy 1 +...
Thus, we define : aMp, aMp,
(36)
afp

q’?(MPl)E ZAq\/aMqu[aS(Mpl)]z’ﬁO, B3 1o investigate the heavy-quark-mass scaling of these quanti-
ties. The leading logarithms make little difference in the ex-
trapolation, as shown in Fig. 8, where we plot the extrapola-
tion of the AF=2 matrix element, which has the strongest
q = 0By logarithmic dependence among the quantities we study, with
Pe(Me) BPQ(M ) X Las(Mp ) T 34 and without these logarithms.
In Figs. 9 and 10 we display our results fg(M pl) and

®_,(M p),  constructed  from qu(M p)  and
(Pgl04F%(Mp)|Pg) renormalized aMp, in the NDRMS

scheme, as functions of inverse heavy-meson masg at
=6.0 and 6.2 and fog=s and l. In Fig. 11, we plot

for the decay constants,

for the B parameters, and

_ 1
q _ A4 AF=2
(DAF=2(MP|)_a <Pq|0q (MP,)|Pq>—aMPq

4B . R
X[as(MP|)] ' (35 dIM pl) versus 1/aMpl). Finally, in Figs. 12, 13, and 14
0.85 T T 0.85 — T+
0.8 :_ £4=0.120 - 0.8 - _:
[ ] [ xq=g.;:g ]
£g=0.126 ] T q=0- ]
= 075 ' 1 & 075 #©g=0.122 7 FIG. 5. Light-quark-mass dependence of the
z F i © . #q=0.126 . heavy-light B parameteerq(S GeV), and ex-
~ 4 w0 - - . . . . .
= R i S ] trapolation and interpolation to vanishing quark
0.65 E ] 0.65 E 3 mass and strange-quark massBat 6.2 and 6.0.
TF o« e =0 . T x:aif, =0 ] Points with the samaan are shifted for clarity.
0.6 :_ O :afi =arh, 6262 _: 0.6 :_ O:afi, =aif, B 6.0 I
Cod o a by | PRI IR T T T T T AT SR S N
-0.04 -0.02 0 0.02 0.04 -0.05 0 0.05
arfi, arfi,
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we plot the extrapolations of the correspondingtwo values of the lattice spacing, however, this is not pos-
SU(3)-breaking ratios. The fit parameters of the heavy-sible. We must therefore use the information that we have to
guark-mass scaling of the various quantities studied are sunaestimate the uncertainty associated with residual discretiza-
marized in Table VI. While the heavy-quark-mass depention effects.

dence of most quantities is mild, that @?(Mpl) and In Table VII, results for the decay constants display some
espeCia”yq)quzz(MPl) is quite severe. dependence on lattice spacing. This suggests that discretiza-

. . . : tion errors for these quantities may be important. The leading
We extrapolateS U(3)-breaking ratios directly in heavy- .qscretization errors with the mean-field-improved SW action
guark mass because the mass dependence cancels partl%l

. ; %formally of O(aga), as they are for the tree-level im-
between numerator and denominator, making the extrapola-roved SW action. Subleading errors be ilﬂﬁtxza)l"' and
tion less pronounced and, thus, more reliable. This is espeo- ' g g s

: e : ; O(a?). To estimate these leading and subleading errors, we
cially visible forfpS/fPI (Fig. 14), where the extrapolation of consider the following variations in our proceduce{.a)

the ratio yields much smaller uncertainties than the ratio Ofmprovement of the axial current requires one to include the

the extrapolations. In all cases, the extrapolation of the ratiQeact of theag P counterterm through the replaceme® (
is in excellent agreement with the ratio of extrapolations. It i:siS the pseudosléalar density

interesting to note, also, that the heavy-quark-mass depen-
dence offpS/fPI appears to be the same as that of A,—A,+cpad,P, (37)

\ MPllMPS.

VII. SYSTEMATIC UNCERTAINTIES

as well as to rescale the quark fields as

ba

l+2

Our main results at the two values of lattice spacing are p— amy |, (38)
summarized in Tables VII, VIII, and IX. In these tables, the
first error on each quantity is statistical. The remaining un

certainties are systematic and we discuss them now.

‘with bothc, andb, evaluated at one loof©6,72. From a

comparison of results obtained withy andb, set to their

tree-level valuesd,=0 andb,=1) to those obtained with

cp andb, evaluated at one loop, we can estimate the effect
Ideally, one would extrapolate all computed quantities toof O(«sa) discretization errors. We do not use the one-loop

the continuum limit, where discretization errors vanish. Withresults as central values for the decay constants to be consis-

A. Discretization errors

011 T 0.15 [
[ p=6.2 ] 0.14
o1 f . : _
- :am =0 r q
§ | ommicen, 1 9oer B
< 0.09 - -4 % r ]
i 1 0.1z & E FIG. 7. Light-quark-mass dependence of the
r ;g:;g;igg ] r ] heavy-light decay constampq, and extrapolation
0.08 [~ *=01% ] 0.1t ¢ E and interpolation to vanishing quark mass and
[ | | | ] L | N strange-quark mass g@=6.2 and 6.0. Points
-0.04 002 0 002 004 s 0 0.05 with the samea'r‘nq are shifted for clarity.
af, af,
q q

14(9(oz§a) errors, as well as all errors proportionaldapare absent in non-perturbativety(a)-improved calculations.
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AL DAL B BN their values. For the one-loop values@f andb,, the can-
cellation is rather good and the resulting one-loop versus
tree-level variation is certainly an underestimate of the re-
sidual discretization errors proportional & To get a more
realistic estimate, we consider the variation brought about by
each replacement separately. These variations are shown as
the second error on the decay constants and their
SU(3)-breaking ratios,st/fD and st/fB. We take the

largest of the two to be a measure of residual discretization
errors proportional t@.*®
To get a handle on errors proportional to higher powers of
a, we consider the result of using the tree-level, quark-field
normalization of Eq.(38) with b,=1, instead of the EKM
normalization of Eq(14). These two normalizations differ at
AP R S B O(a?) and we take the resulting variation to be a measure of
0.5 1.0 1.5 these additional discretization errors. This variation is shown
1/aMp, as the third error on the decay constants and their
FIG. 8. Influence of leading logarithms on heavy-quark-masssU(S)_breakmg_raﬂ,osts./fD, andfe, /e
scaling: behavior 0a4<E||OIAF=2(MP|)|P|>/aMPI (i.e. logarithms _The syr_nmetrlc_ discretization error_that er_1ters the system-
atic error in the final results of Eq9) is obtained by com-
bining, in quadrature, our estimates of the residual discreti-
zation uncertainties proportional goand of the uncertainties

tent with our determination of th® parameters. Indeed, Proportional to higher powers @ While these two uncer-

O(a.a) improvement of the four-quark operators would re- tainties are com.parable At=6.2, the latter are significantly
quire one to consider the mixing of these operators witHarger at3=6.0 in theb-quark sector.

operators of dimension seven, which is beyond the scope of A similar estimate of discretization errors can be carried
the present paper. ' out for the four-quark matrix elements and th&irparam-

As already mentioned, to subtract higher-order discretizaSte'S- However, as we have already mentioned a full quanti-

tion effects, we use the EKM normalization of E@4). Thus fication of O(asa) effects for these quantities is beyond the

we define the one-loop variation in the normalization of theSCOP€ Of this paper. In fact, many discretization effects, such
quark fields through as those associated with the normalization of quark fields,

cancel or partially cancel in the ratios of matrix elements
/1Jr — used to define th& parameters an&U(3)-breaking ratios.
am,,
— 1+
1+am,/2

0.06

0.04

0.02

(@]

—~HQET
: Shp_a(Mp)/(a(Mg ) 7/ %o
: a4<P1|01AF=2(Mp1)|P1> /aMp,

I 1 1 1) I 1 11 1 | [ | 1 ) | 1

0.00

<

o
<3
n
)

omitted and of ®_,(M p)lag(Mg )*** (i.e. leading logarithms
included versus 1/Mp,).

1—loop
b

2

W, (39 Furthermore, in Table VIII, results foB parameters and
SU(3)-breaking ratios exhibit very little lattice-spacing de-
pendence, supporting the idea that discretization errors for

where, using the results of Refi73], we find by =1 these quantities are small. Thus, we assume that their statis-

+(a4m)[24.03+ X]=1+10.87(@/4m) for cgw=1. tical uncertainties encompass possible residual discretization
cx °°P is given by —1.20(a/4m) [73]. We find that the errors. For the quantities in Table 1X, however, which are
replacements of Eq$37) and(39) have opposite effects. The obtained using the decay constants, we take into account the
former lowers the decay constants while the latter increasediscretization errors on these constants.

—

amy

1.0....l|---|- l.O....I...-I-...l..--

0.9
[ FIG. 9. Lattice results for X(Mp)

Elf =®d(Mp) versus 1/4Mp) at =6.2 and 6.0
om
e 08 7] 7 and forg=s andl. The solid lines are fits to the
><:<1>§B linear part of the heavy-quark-mass dependence
L ] L given in Eq.(36).
07— 0:dp  H:dp 0:95 ] 07— 0:dp by O:dg,
b [N B R RPN R R
0 1 2 0.0 0.5 1.0 1.5 2.0
1/(aMp) 1/(aMp)

5The largest variation is the one of E@®9).
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FIG. 10. Lattice results for X(M F>I)
:<I>gF:2(MPI) versus 1/4Mp) at $=6.2 and
6.0 and forg=s andl. The solid curves are linear
and quadratic fits of the heavy-quark-mass depen-
dence given in Eq(36) at 3=6.2 and3=6.0,
respectively.

FIG. 11. Lattice results for X(M pl)
=‘1>?('V|p,) versus 1/4Mp) at B=6.2 and 6.0
and forg=s andl. The solid curves are quadratic
fits of the heavy-quark-mass dependence given in
Eq. (36).

FIG. 12. Lattice results for X(M pl)
=BPS/BPI versus 1/aMPI) at 3=6.2 and 6.0.
The solid line is a fit to the linear part of the
heavy-quark-mass dependence given in (B6).

FIG. 13. Lattice results
for X(Mp)=((PJOST2PY/(P|OFT?P))
X (MPI/MPS) versus 1/aMPI) at B=6.2 and
6.0. The solid line is a fit to the linear part of the
heavy-quark-mass dependence given in (36).
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e ¢ xfp (Mp) 1278 (Mp)*/% x:fp, (Mp,) Y2 /t(Mp) /2
s ] PPN PP R B
04 0 B l | OAlt).O 0.5 1.0 15 2.0
1/(aMp) 1/(aMp)
B. Matching uncertainties C. Heavy-quark-mass extrapolations

As shown in Fig. 11, the decay constants have a pro-
ounced extrapolation in heavy-quark mass, and the term
Squadratic in 1/aMp|) on the right-hand side of Eq36)

contributes significantly. To quantify the systematic error as-

o . . . sociated with this extrapolation-the fifth error on the decay
this with the result obtained foy™ =2/a. We also consider ;o qiants e perform a fit of the heaviest three points in

the variation coming from computirigy;(Mp), Z1i, andZa  Fig 11 to the right-hand side of E¢6), without the qua-
with the constantg,, set to its mean-field-improved value dratic term. For theSU(3)-breaking ratios of decay con-
instead of 1, keeping* = 2/a fixed. SU(3)-breaking ratios stants, we perform a constant fit to these same three points.
of decay constants are not affected by these variations, whil€hese uncertainties are propagated to the results of Table IX.
those of theB parameters are not significantly so. These Figure 9 indicates that the heavy-quark-mass dependence
variations are reflected in the fourth error in Tables VII, VIII, of the B parameters and the8U(3) breaking ratio is mild

and IX. and to very good approximation linear. We have verified that

As already indicated in Sec. Ill, to estimate the systemati(h
errors arising from the perturbative matching of the variou
guantities we compute, we vary the scalf, at which ays
is evaluated, in the range betweea dhdw/a, and compare

TABLE VI. Results for the fit parameters for the heavy-quark-mass dependence of the various quantities
studied.Cx=0 indicates a linear fit an@x=Bx=0, a fit to a constant.

B AX BX CX
DF(Mp) 6.2 0.942) —0.08(1) 0
6.0 0.952) -0.10(2) 0
Dp(Mp) 6.2 0.964) -0.10(2) 0
6.0 0.935) -0.12(3) 0
Bp,/Bp, 6.2 0.973) 0.021) 0
6.0 1.014) 0.032) 0
DRe_o(Mp) 6.2 0.01Q1) —-0.29(1) 0
6.0 0.0584) -0.85(2) 0.221)
Dhr_o(Mp) 6.2 0.0061) -0.29(2) 0
6.0 0.0416) —0.83(6) 0.208)
(PO #IPo)/(Pg|O ™ ~*|Pg)) 6.2 1.5726) 0.046) 0
X (Mp,/Mp) 6.0 1.2814) 0.11(8) 0
DH(Mp) 6.2 0.1G1) -0.32(4) 0.041)
6.0 0.191) -0.53(2) 0.111)
®(Mp) 6.2 0.092) —0.30(8) 0.042)
6.0 0.171) —0.51(4) 0.112)
(fp./fp) 6.2 1.162) 0 0
X \\Mp_Mp 6.0 1.151) 0 0
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TABLE VII. Results at the two values of the lattice spacing. The first error on each quantity is statistical
while the others correspond, respectively, to the variations in procedure described in the first five sections in
Sec. VII. The errors enclosed in brackets reflect the variations considered in quantifying discretization errors.

B 6.2 6.0
177+8+117+6+0+16+0 9 +14+231+9+0+18+0
fg [MeV] 177534 1151 5 6 160 205" "5 61 4" 11 15 0
fg
s +6+2+37140+0+3+0 3+2+61+0+0+3+0
o 0.71¢ "1 701 0-2-3-2 0.76' 1701704372
S
+127 +10+13)+8+0+14+6 + 5+ 17271+ 10+0+16+6
fg, [MeV] 20471 26T 0 S 233° "11-0 17413160
fg
s 3[ +2+47+0+0+2+0 17 +3+79+0+0+2+0
— 0.82°3["1751 0 3 2 0 0.87°"1"01"0's2 0
fp
S
fg
5 27 +0+07+0+0+3+3 1r+0+07+0+0+2+3
— 115576 01 0 0 250 114970 601 0 0 350
fg
10 +5447+8+0+14+0 - 4r 7487+ 10+ 041440
fp [MeV] 210051 2 0] "3 0 150 228750 “7 0] 4-0-15-0
+8r+6+47+9+0+12+7 +3r+9+99+11+0+11+7
fp_ [MeV] 2367g “5-0]-3-0-12-0 25473 "5 0l "5 0-12-0
fp
s y+2r +0+07+0+0+3+3 +1r+0+07+0+0+2+3
N 1.13°5[ Z0-0l-0-0-2-0 11153 0 0l 0-0-2-0
D

a linear fit to the three heaviest points gives results that arbehavior ai3= 6.0, where we have five heavy quarks. Thus,
well within the error bars of the fit to all five points @&  we believe that our results f@ parameters and the derived
=6.0. We assume that the same would be trug=a®6.2 if quantities of Table IX aB=6.2, are reliable. The situation is
we also had five heavy quarks, as there is no evidence fagertainly not as favorable for thAF=2 matrix elements
curvature on the three points that we have. themselves. For those, there is evidence for curvature and
The AF =2 matrix elements have a very pronounced de-Our three points a3=6.2 can be thought to yield only a
pendence on heavy-quark mass, as seen in Fig. 10. Since Weugh estimate. Thus, we do not attempt to give a final result
are not reporting results for the four-quark matrix elementdor these matrix elements. from this procedure. In fact, this
themselves, we do not quantify the systematic errors assocf{rong mass dependence is one of the problems that makes a
ated with their determination. reliable determination of iy, from the ratio of individually
One may worry that we have only three heavy quarks acalculated(Bq|(9§ B:2|Bq>, g=s,d, difficult. The extrapo-
B=6.2 in our calculation oAF =2 matrix elements. How- lation ofr g itself, on the other hand, is much milder and the
ever, as we have just seen, the heavy-quark scaling dBthe curvature is much reduced. Thus, we extrapolate it linearly
parameters and theBU(3)-breaking ratio is mild and dis- and verify, at3= 6.0, where we have enough points, that the
plays no evidence for curvature. This is confirmed by theresult of a quadratic fit,rd*=1.50(17), is entirely

TABLE VIII. Results at the two values of the lattice spacingcontinued. rdtect

=(BJ O2B=2By)/(B4|©3%72|By). An error ofx indicates that the variation has not been explicitely per-
formed, but that it is believed to be small. An erroryfmeans that the variation has not been explicitly

performed.

o 6.2 6.0
Bg,(Me) 0.91 3 a0 0 0,897 0370070
Bg (Mg) 0.90 Xy 3xr0+0 09142 +1+0)*3+0+1+0
o 0BT 08T Y3
r diect 1.617 3 Xoya0iyoria L ag X0 areseT
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TABLE IX. Results at the two values of the lattice spacingcontinued. —ringrect

=(Mg /Mg )5 Bs/f5 Bs,]-

B 6.2 6.0
= +20r +10+137+12+0+19+0 127 +16+271+15+0+21+0
de\/Bg';’ [MeV] 210" 30 00T 240719 “11-0' 175713210
foy = i i+ 7p +2+47+2+0+3+0 5r+3+77+2+0+4+40
nio
7~ VBe, 0.897 1 0l 0-3"2-2 0.95°3[*375175 5 4 2
DS
= nio +14r+12+157+13+0+17+7 77 +20+327+18+0+18+8
fs_\/Bg, [MeV] 2413 2T o 277 ¢ 1137 5% 1 5215 18
fo, = i 4r+3+57+2+0+240 2r+4+97+2+0+2+40
nio
. Bs, 1.02550 35815551500 1.09°5 55015556 5
DS
=i 2010 +5+57+13+0+14+0 2407 T[+8+8]+13:0+14+0
foVBp® [MeV] 10l -4-0J-0-0-14-0 6l —7-0/-3-0-14-0
f_D /Bnlo 0.94+3[ +0+11+2+0+1+0 0.94+2[ +0+07+1+0+1+0
f, VoD 943l —0-0l-0-0-1-3 45 —0-0l-0-0-1-2
S
27 +0+07+0+0+2+3 27 +0+07+0+0+3+3
& 11575 5670118075 % 116" 50l 0 05
indirect 6r+1+07+0+0+6+8 y+5r +1+07+0+0+6+8
I'sd 2 i ] B 1.39° "6 0l 0 0-5-0

compatible'® In any event, the final value afyy that we then vary the inverse lattice spacimg®, by +7%. This
quote is that given by the “indirect” method, where none of range covers the variations observed in the determination of
this is a problem. the scale from gluonic or light-hadron spectral quantities,
Another concern may be that our lightest heavy quark i€nd with the same action and parameters as wége’ as
too light to be in the heavy quark scaling regime. HoweverWell as the variation due to the uncertainty in the perturba-
in the extrapolations used to obtain the results of Egjsand ~ tive determination oZ,. S .
(9), the points corresponding to this quark are consistent with Uncertainties in the lattice spacing will obviously affect
the smooth curves determined by the other points. Furthetl® determination of the decay constants and the dimension-
more, our heaviest quarks are as massive as those in othgl quantities derived from them. They will also slightly
relativistic calculationgsee for instance Refi24]). Thus, we ~ change the length of the heavy-quark-mass extrapolations
are not distorting the heavy-quark extrapolations by includ-(F'gS' 11,9, gnd~])0 Furt-hermore, thgy induce a variation of
ing these lighter points, nor are we missing information onorder+15% inams, which we obtain from the mass of the
the heavier-quark end. Finally, as described above, we inkaon, and therefore affect all quantities that depend on this

clude in our errors, the variation obtained by ignoring our™Mass. _ - . .
lightest two points, where appropriate. In practice, we find that the variation of the lattice spacing

Ideally, one would have continuum extrapolations of re_d|scussed above does not induce a significant change B the

sults such as ours and of the same quantities computed in tﬁ)grameters. However, it does affe_ct al _the decay constants
Do : R and the correspondin§U(3)-breaking ratios as well as the
static limit (corresponding to an infinite-mass heavy quark

. , . guantities in Table 1X, which are obtained from these con-
Results for theb would then be obtained by an interpolation stants. All of these observations are reflected in the sixth

in heavy-quark mass instead of by extrapolation, as they arg.. o on the quantities in Tables VII, VIII, and IX.
here. We leave such studies for the future.

E. Determination of the light-quark masses

D. Uncertainties in the determination of the lattice spacing Another source of systematic error is the uncertainty in

In quenched calculations, the value of the lattice spacinghe determination of the light-quark masses. In the previous
varies significantly with the quantity used to set the scalesection we saw that changing the lattice spacing, while keep-
This variation may be due, in part, to quenching effects, a#g fixed the physical quantity used to set the strange-quark
well as any other systematic uncertainty that affects thenass, induced approximatively 215% variation inam.
quantity used to set the scale. In this paper, we determine th®ne can also imagine doing the reverse, i.e. holding the lat-
lattice spacing fronf andmy, as described in Sec. V. We

1’Some of the baryons considered in R&H] would give lattice
16To estimate the heavy-quark extrapolation erroBat6.0, we spacings outside out 7%. However, these particles are more sus-
consider the variation due to the removal of the lightest two pointsceptible, than the particles we are studying here, to systematic ef-
from the linear extrapolation of Fig. 13. fects, such as those associated with the finite volume of the lattice.
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tice spacing fixed while varying the observable used to seshould be remembered, however, that the real world has a
the strange-quark mass. For instance, we could have used ttiérd dynamical light quark and the effects discussed above

K* or ¢ meson masses to fim, instead ofm, . Letus ~may be amplified. _
denote the resulting values of the strange quark mass by A thorough estimate of quenching effects for all of the
amy(my«), etc. Due to quenching and other systematic efguantities that we calculate would require a dedicated un-
fectss the ,values obtained may differ. quenched simulation, which is beyond the scope of this pa-
To estimate these differences, we turn to the literature. IPer- Therefore, we do not attempt to quantify these effects
Ref.[75], where the determination of quark masses with dif-SPecifically. Nevertheless, as we mentioned in the two previ-
ferent fermionic actions is reviewed thoroughly, Bhatta-OUs sections, the uncertainties in the lattice scale and in the
charya and Gupta conclude that for mean-field-improved Sv$trange quark mass are, at least in part, quenching effects.

actions such as oursmy(m,)/amg(my)=1.2, a statement

that they find depends very little on the gauge coupfiat VIII. FINAL RESULTS AND DISCUSSION
Ieast. Inarange that covers our tW(.) simulations. This result is Because of the excellent consistency of the results for
obtained with the lattice spacing fixed by the mass ofghe B. B. /B. andf. /f atthe two lattice spacinas
meson. With the lattice spacing set in this way, it is straight- B’ ~Ba’ ~Bs' ~Bg’ Bs' By . p g -
forward to show thataﬁls(mK*)zaFrlS(m¢). This follows and because we cannot perform a continuum extrapolation

from the observed linear behavior of the light vector mesor}',‘”th only two pomts, we take the results frgm thg fmer lat-
masses and the fact that,~ 2my —m,, in nature. The pic- tice at3=6.2, which should have smaller discretization and

ture changes when the value of the lattice spacing diI"feré“"jltChing uncertainties,_ to be_our best estimates. )
from the one given by the mass of the a(m.). In the For theSU(3)-breaking ratiar 4, we also have a choice
L gtween the “direct” and “indirect” approaches described in

present case, however, the values of the lattice spacing thEh duct hile both hods ai its th
we use appear to be consistent, within errors, with the value€'€ Introduction. While both methods give results that are

of a(m ) that can be inferred from Ref75]. Thus, we con- compatible at the two values of the lattice spacing, the “di-
sider ti;)at the 20% upward variationamn, described in Ref rect” method leads to larger variations with lattice spacing
R )

. . X ; d significantly larger statistical errors. Furthermore, as dis-
[75] is a reasonable estimate of the uncertainty associate

_ . . ; -~ 7 Cussed in Secs. V and VI, the light- and heavy-quark-mass
with the different possible choices of an observable to fix th'sextrapolations are better behaved in the “indirect” method.

t?herefore, we takegq (and &) obtained with the “indirect”
Chethod atB=6.2 as our best estimate for this quantity.
A summary of our results for quantities directly relevant

for B—B mixing is given in Eq.(8). These results are com-
patible with previous calculations of some or all of these
Quenching effects for the quantities of interest here haveuantities, which were performed using less improved rela-
been studied using quenched chiral perturbation thEg®) tivistic fermion actions[13,23, as well as with the recent
They are typically a few percent for thg parameters if the calculation of Ref.[24], which makes use of a non-
theory’s couplings are constrained by lafgg-arguments perturbatively,O(a)-improved, Sheikholeslami-Wohlert ac-
and by the reasonable range of R&9], and larger outside tion. While the decay constants in Ref24] are non-
these ranges. Recent results for the decay constants, obtaingetturbatively improved® B parameters and four-quark
with two flavors of dynamical quarksn¢=2), show little  matrix elements are not. Thus, for those quantities, the dis-
variation inst/fB compared to its quenched vall&8—41]. cretization accuracy of that calculation is formally the same
The authors of Ref[38] find that this ratio is enhanced by as ours. Moreover, the authors of Rgf4] do not investigate
(5+3)% in their calculation with light dynamical quarks. cutoff dependence, as we do here with our two lattice spac-
Thus, if quenching effects on the parameters are small, ings. Our results are also consistent, once systematic errors
commensurate variations @gy and ¢ are expected. For the are taken into account, with the NRQCD results of Refs.
decay constants d (Bs) mesons, quenching effects appear[25,26, whoseB parameters are 7—-10% smaller than ours.
to be significan{38—41]. For instance, the authors of Ref. ~ For the decay constants and quantities proportional to
[38] find that these decay constants are enhanced by 11¢8em, the situation is less favorable than ®parameters
(14%) when light-quark loops are included, with a statisticaland SU(3)-breaking ratios. We do observe a two-statistical-
significance of 2 to 3 standard deviations. For hgD,)  Standard-deviation dependence on lattice spacing, indicating
mesons, the effect is of 3%%) and consistent with zero that discretization errors are more important for here. We
within roughly one standard deviation. These latter resultgluantify these discretization effects, as described in Sec.
suggest that quenching errors, at least oritimeeson decays VIl A. The corresponding uncertainty §8=6.0 is large
constants, may be reduced by normalizing these constan@fiough to bridge the gap between the resultsBfaneson
with fp_. The reduction of quenching effects is about 7% anddecay constants at the two lattice spacings. Bemeson

the remaining effects become consistent with zero. To thgecay constants, agreement requires that one also

extent that quenching errors on tBeparameters are negli-
gible, all of these considerations carry over to the quantities
in Table IX, which are proportional to decay constants. It 8Aimost; the authors actually use the perturbative valub of

are reflected in the seventh error on the quantities in Tabl
VII, VIII, and IX.

F. Quenching errors
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take into account the statistical error on the=6.2 results. ing, and leptonic decays & and D mesons. We use mean-
So we take as our best estimates the results from the findield-improved Sheikholeslami-Wohlert actions to describe
lattice, which in principle have smaller discretization andquarks and work at two values of the lattice spacing. We
matching uncertainties, confident that our errors are a reasohave performed an extensive study of systematic errors and
able estimate of the uncertainty associated with our fixedwe believe that our final results, presented in E&, (9),
lattice-spacing calculations. In the future though, whepis and (10), carry errors that reflect conservatively the uncer-

accurately measured experimentally, it will be advantageoutinty associated with our fixed lattice spacing calculations.

to consider the values of these quantities in units of this Our results for neutraB-meson mixing are compatible

decay constant. With this normalization, the discrepancie®ith the results of other calculations of some or all of the

between the results @=6.2 and 6.0, as well as the size of duantities we considg¢i3,23-2§, as well as with the world

systematic(and statistical errors, are significantly reduced, averages of Ref$17,42—-47. The same is true of our results

as can be seen in Tables VII and 1X. for the decay constants, which are compatible with other
Our results for the decay constants are summarized in Eqnodern, quenched determinatiof32—-36,38,39 and the

(9). They are compatible with other recent calculations in thevorld averages of Ref$17,42-47.

quenched approximatidi82—36,38,39 as reviewed in Ref. Fmally, it s_hould be emphasized that all of theS(_a results

[44,46,47. A very recent, non-perturbatively(a)-improved ~ are obtained in the quenched approximation. They include a

calculation by the UKQCD Collaboratidi37] yieldsfg_and ~ guenching error only to the extent that the variations in the

fg which are over two statistical standard deviations higherIattlce spacing and strange quark mass that we account for,

than our results. The authors of RE&7] use the scale, are quenching effects. It is worth noting that when dimen-

[76] to set the inverse lattice spacing 2, which gives an sionless quantities are considered, suchBaparameters,

a~ ! at the top of our range. They further use the preliminarysU(B)_breakmg ratios or quantities normalized bMS’ a

non-perturbative values df, obtained in Refs[77,78 and numbgr of sygtematic upcertainties, including possibly those

the non-perturbative values af, obtained in Ref[79].1° associated Wlth' gugnchmg, partially cancel. Nevertheless, a

Agreement with our results is recovered, nonetheless, whelforough guantification of these effects for neuBaneson

systematic errors are considered. FEmeson decay con- MiXing matrix elements would require a dedicated un-

stants, their results agree with ours within statistical errors,duénched simulation, which is beyond the scope of this pa-
All of our results are obtained in the quenched approxi-P€"- It iS important that such a study be undertaken. The

mation. Some of the error resulting from this approximationPioneeringn;=2 studies of decay constar(i88-41 are a

is accounted for by the variations that the uncertainties in th&rst step in this direction.

lattice spacing and the strange quark mass induce, since these

uncertainties are, at least in part, quenching effects. How-

ever, a thorough estimate of quenching effects for all the This work is supported by EPSRC and PPARC under
quantities that we consider here would require a dedicategirgnts Nos. GR/K41663 and GR/L299-27. We acknowledge
unquenched simulation, which is beyond the scope of thighe help from the UKQCD Collaboration, especially Pablo
paper. Martinez and Peter Boyle, on generating the lattice data. We
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