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Calculation of a scalar-isoscalar hadronic correlator
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In an earlier work we calculated the continuum contribution to the hadronic current correlator for pseudo-
scalar and scalar-isovector currents. In this work we extend our considerations to the study of a scalar-isoscalar
correlator of scalar operators. In this formalism we explore the distribution ofqq̄ strength as a function of
energy. We perform a covariant random-phase approximation calculation of the scalar-isoscalar states using
parameters that have been determined in earlier studies of pseudoscalar and vector mesons. The state of lowest
energy that we find can be identified with thef 0(980). We find very littleqq̄ strength for energies less than the
energy of thef 0(980). That suggests that the nonlinear sigma model is the model of choice, since there is no
low-lying scalar state ofqq̄ character in our model.@The f 0(400– 1200), which now appears in the data tables,
may be understood as a ‘‘dynamically generated’’ state that appears when one studiespp scattering. In our
analysis it is not aqq̄ state. In the Nambu–Jona-Lasinio model, chiral symmetry requires the same interaction
strengthGS for scalar and pseudoscalar states. If we wished to obtain a scalar state at about 600 MeV, we
would require a major violation of chiral symmetry, such thatGS for scalar states would be about 50% larger
than the value determined from our study of the pseudoscalar mesons.# We conclude that, except for certain
limited applications that we have described in earlier work, the linear sigma model, which describes a low-
energyqq̄ state of mass of about 500–600 MeV, does not provide a correct description of the physical
spectrum.

DOI: 10.1103/PhysRevD.64.094020 PACS number~s!: 12.38.Aw, 12.39.Fe, 14.40.Cs
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I. INTRODUCTION

We have developed a generalized Nambu–Jona-Las
~NJL! model that includes a covariant model of confineme
Using this model we are able to calculate meson spectra
to energies in the 2–3 GeV range@1,2#. One interesting ap-
plication of the model is the calculation of hadronic curre
correlation functions. In a previous work we calculated su
functions for pseudoscalar and scalar-isovector currents@3#.
We were also reasonably successful in reproducing the d
constants of thea0(980), a0(1450), andK0* (1430) @4# that
were obtained by Maltman using QCD sum rule techniq
and other methods@5,6#.

In this work we wish to study a scalar-isoscalar correla
of the scalarsq̄(x)q(x) and q̄(0)q(0). While this calcula-
tion has some intrinsic interest, we are motivated to stu
this correlator because it provides a rather direct measur
the distribution ofqq̄ strength over a broad range of ene
gies. In this fashion we can study the relative utility of t
linear and nonlinear sigma models@7#.

It is well known that the NJL model without confineme
places the chiral partner of the pion at an energy close
2mq where mq is the constituent quark mass of the up
down quark. As we will see, our generalized NJL mod
which includes a model of confinement, places the lowestqq̄
state at about 1 GeV in energy where it can be identified w
the f 0(980). The Lagrangian of our model is
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L5q̄~ i ]”2m0!q1
GS

2 (
i 50

8

@~ q̄l iq!21~ q̄ig5l iq!2#

2
GV

2 (
i 50

8

@~ q̄gml iq!21~ q̄gmg5l iq!2#

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%

1Ltensor1Lconf. ~1.1!

Here, the fourth term is the ’t Hooft interaction,Ltensor de-
notes interactions added to study tensor mesons, andLconf
denotes our model of Lorentz-vector confinement. In E
~1.1! m0 is the current quark mass matrixm0

5diag(mu
0,md

0,ms
0), the l i ( i 51,...,8) are the Gell-Mann ma

trices, andl05A2/31, with 1 being the unit matrix in flavor
space.

We remark that our calculation of the scalar-isosca
states may be considered as essentially parameter-free,
the parameters of our NJL model were fixed in a study
pseudoscalar and vector mesons. It is useful to refer to
review of Hatsuda and Kunihiro@8# to obtain the values of
the interaction for various mesons in the presence of th
Hooft interaction. For example, our recent study of theh
mesons required the values of the singlet and octet coup
constants

G00
P 5GS2

2

3
~a1b1g!

GD

2
~1.2!
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and

G88
P 5GS2

1

3
~g22a22b!

GD

2
. ~1.3!

~We have put the small and somewhat uncertain value
G08

P 50.! In Eqs.~1.2! and~1.3!, a, b, andg are the vacuum

condensates: a5^ūu&, b5^d̄d&, and g5^s̄s&. We have
takena5b52(0.248 GeV)3 andg52(0.258 GeV)3.

The values needed for the study of thef 0 mesons are@8#

G00
S 5GS1

2

3
~a1b1g!

GD

2
~1.4!

and

G88
S 5GS1

1

3
~g22a22b!

GD

2
. ~1.5!

In a recent systematic study of theh~547! and h8~958!
and their radial excitations@9#, we found G88

P 512.46 and
G00

P 58.60 GeV22, from which we inferGS511.24 andGD

52166.4 GeV25. Therefore, for our study of thef 0 mesons,
we obtain the valuesG00

S 513.87 andG88
S 510.02 GeV22

when using Eqs.~1.4! and ~1.5!. The parameterGV
512.46 GeV22 was determined in a study of the vector m
sons @1#. ~That parameter influences the properties of
pseudoscalar mesons when we take pseudoscalar–a
vector mixing into account.! The value of the strange quar
mass was found by fitting the mass of thef~1020! meson
after the confining interaction parameter was fitted by stu
ing the radial excitations of ther andv mesons.

Inspection of the Lagrangian of Eq.~1.1! shows that it is
chiral symmetry that allows us to specify the interaction
the scalar states by fixingGS in a study of the pseudoscala
states. The difference betweenG88 andG00 is proportional to
the strength of the ’t Hooft interactionGD . That interaction
is important in the study of theh and f 0 mesons, since suc
studies involve singlet-octet mixing.

The organization of our work is as follows. In Sec. II w
review our model of confinement and define various ver
functions. We discuss our choice of Lorentz-vector confi
ment and the approximations made in our calculations,
most important being the neglect of any pair currents gen
ated by the confining interaction. In Sec. II we also introdu
various vacuum polarization integrals of the NJL model. W
make use of these expressions when providing a simple
grammatic derivation of random-phase approximation~RPA!
equations for the study of thef 0 mesons.~The diagrammatic
analysis is significantly simpler than the usual derivation t
involves construction of the commutator of quark-antiqua
operators with the Hamiltonian and the linearization of t
equations of motion@10#.! In Sec. III we present the equa
tions of the random-phase approximation that we use to
culate the properties of thef 0 mesons. In Sec. IV we discus
the normalization of our wave functions and the calculat
of decay constants of these mesons. Section V is devote
the presentation of some numerical results. In Sec. VI
09402
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define and calculate a hadronic correlator for scalar-isosc
states. Finally, Sec. VII contains some further discussion
conclusions.

II. CONFINEMENT POTENTIAL AND VERTEX
FUNCTIONS

There are two important approximations made in o
analysis which are related to our treatment of confineme
Our confinement model is meant to describe the interac
due to the presence of a chromoelectric flux tube between
quark and the antiquark. We have found it necessary to
glect the generation of pair currents by the confining int
action. As we will see, two important vertex function
G12(P,k) and G21(P,k) appear in our formalism. In the
past we have derived coupled equations satisfied by th
functions. However, in our study of pseudoscalar mesons
found that the coupling terms were so large as to precl
meaningful solutions of the coupled equations, while the
coupled equations were easily solved and gave excellen
sults when the corresponding vertex functions were use
the calculation of meson spectra.~The coupled equations fo
GP

12 and GP
21 for pseudoscalar mesons were presented

Appendix C of Ref.@11#. There it may be seen that the co
pling terms are very much larger than the terms that conn
G12 and G21 to themselves. It is the coupling terms th
give rise to the pair currents mentioned above.! We have
solved the uncoupled equations for the vertex functions
the meson rest frame. Once the various vertex functions
calculated, the formalism can be made covariant, as no
later in this section.@See Eqs.~2.15!–~2.17!.#

The other important approximation we have made is
use constant values for the constituent quark masses. In
earlier work@12#, we solved the Bethe-Salpeter equation
conjunction with the Schwinger-Dyson equation in Eucli
ean space. It was then easy to show that Goldstone’s theo
was satisfied, with the pion as the Goldstone boson. T
procedure led to some momentum dependence of the
stituent quark mass in Euclidean space. It is unclear a
how to carry out such a calculation in Minkowski spac
There are also some questions that arise when attemptin
derive a Schwinger-Dyson equation, since our model of c
finement is based upon the potential generated by the c
moelectric flux tube between the quark and the antiqua
The Schwinger-Dyson equation refers to the properties o
single quark. It is rather difficult to imagine the quark em
ting and absorbing the flux tube in analogy with the electr
self-energy calculation in QED. Given these difficulties, w
have proceeded with a phenomenological scheme in wh
we choose constants for the constituent quark masses. T
constant values may be thought of as momentum-space
erages of the running quark mass values which are prese
unknown.

It is of some interest to note that the problem of lar
pair-current effects may be avoided if we use the confin
interaction used in Ref.@12# which has a ‘‘V2A’’ form. That
is, we substract from our model of vector confinement
expression for axial-vector confinement. In that case we
readily solve the equations for the vertex function witho
0-2
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making any approximations with respect to pair-current
fects. However, we have not as yet developed a Minkow
space phenomenology for the interaction introduced in R
@12#. Therefore, in the present work we will continue to u
Lorentz-vector confinement and solve the uncoupled eq
tions for the vertex functionsG12(P,k) andG21(P,k).

Our model of confinement is based upon the coordina
space potentialV(r )5kr exp@2mr#, wherem is a small pa-
rameter introduced to facilitate our momentum-space ca
lations. Note that we do not have absolute confinement in
model. However, theqq̄ states in the confining field ar
readily separated into states inside the potential barrier
scattering states that show little barrier penetration. We h
Vmax5k/me, which for k50.055 GeV2 and m50.010 GeV
yields Vmax52.023 GeV. Thus, we can find bound states
the interior region of the potential up toEmax5ma1mb
12.023 GeV forqq̄ states withL50. For constituent masse
mu50.364 andms50.565 GeV, Emax52.751 GeV if we
studynn̄ systems andEmax52.952 GeV forns̄ systems with
L50. Smaller values ofm may be used if we wish to in
crease the value ofEmax. For m50.010 GeV, we can find
from eight to ten states bound in the confining field when
study scalar-isovector mesons, for example.~Barrier penetra-
tion is of no importance in this model.!

The Fourier transform ofV(r ) is

VC~kY2kY8!528pkF 1

@~kY2kY8!21m2#2
2

4m2

@~kY2kY8!21m2#3G .

~2.1!

The model is made covariant through the use of the fo
vectors

k̂m5km2
~k•P!Pm

P2 , ~2.2!

and

k̂8m5k8m2
~k8•P!Pm

P2 , ~2.3!

since in the meson rest frame (PY 50W ) k̂m2 k̂8m5@0,kY2kY8#.
Thus, we may write

VC~ k̂2 k̂8!528pkF 1

@2~ k̂2 k̂8!21m2#2

2
4m2

@2~ k̂2 k̂8!21m2#3G . ~2.4!

As noted above, in our work we have used a model
Lorentz-vector confinement. Various arguments have b
put forth by Szczepaniak and Swanson@13# to justify the use
of Lorentz-vector rather than scalar confinement. For
ample, scalar confinement is generally used in the cas
heavy quark systems. In Ref.@13# it is argued that nonper
turbative mixing between ordinary and hybridqq̄ states leads
09402
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to an effectivescalar confinement model, which hides th
underlying Lorentz-vector character of the confining intera
tion. These authors also point out that vector confinemen
the natural choice if one wishes to write a chirally symmet
interaction that allows for spontaneous chiral symme
breaking in the vacuum and the appearance of Goldst
bosons. It is also noted that scalar confinement does not
to a stable vacuum state@13#.

We use the confining interaction to construct equations
various vertex functions@1,2#. Let us consider the case of th
scalar vertex for equal mass quarks. In the meson rest fr
we may write

ḠS~P,K !512 i E d4k8

~2k!4 @grS~P/21k8!ḠS~P,k8!

3S~2P/21k8!gr#VC~kY2kY8!. ~2.5!

@See Fig. 1~a! and Eq.~2.19! below.# Here, ḠS(P,k) has a
matrix structure. The Dirac matricesgr andgr appear in Eq.
~2.5! because we are using Lorentz-vector confinement.
useful to introduce functionsGS

12 andGS
21 @1,2#. First, we

define the projection operators

L~1 !~kY !5
k”1m

2m
~2.6!

and

L~2 !~2kY !5
k”̃1m

2m
, ~2.7!

with km5@E(kY ),kY # and k̃m5@2E(kY ),kY #. Note that
L (1)(kY )1L (2)(kY )51, with L (2)(kY )5(2k”1m)/2m. Then
we write ~for PY 50W !

L~1 !~kY !ḠS~P,k!L~2 !~2kY !5GS
12~P,k!L~1 !~kY !L~2 !~2kY !,

~2.8!

L~2 !~2kY !ḠS~P,k!L~1 !~kY !5GS
21~P,k!L~2 !~2kY !L~1 !~kY !,

~2.9!

L~1 !~kY !ḠS~P,k!L~1 !~kY !5GS
11~P,k!L~1 !~kY !,

~2.10!

and

L~2 !~2kY !ḠS~P,k!L~2 !~2kY !5GS
22~P,k!L~2 !~2kY !.

~2.11!

As we will see, the use of Eqs.~2.8!–~2.11! makes it particu-
larly simple to neglect pair currents in our formalism. Equ
tions for GS

12 , GS
21 , GS

11 , andGS
22 may be obtained by

multiplying Eq.~2.5! from the left and from the right by one
of the projection operators in Eqs.~2.6!, ~2.7! and then tak-
ing the trace. In our work we obtained the followingun-
coupled equations forGS

12 ,(P,k) and GS
21(P,k) in the

frame wherePY 50W @2#:
0-3
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GS
12~P0,k!511

1

~2p!2 E k82dk8@2k82k2V0
C~k,k8!

1m2kk8V1
C~k,k8!#

1

k2E2~kY8!

GS
12~P0,k8!

P022E~kY8!

~2.12!

and

GS
21~P0,k!512

1

~2p!2 E k82dk8@2k82k2V0
C~k,k8!

1m2kk8V1
C~k,k8!#

1

k2E2~EY 8!

GS
21~P0,k8!

P012E~kY8!
.

~2.13!

The calculation ofGS
11(P0,k) andGS

22(P0,k) is described

in Ref. @2#. In Eqs.~2.12! and ~2.13! k5uPY u and k85uPY 8u.
With x5cosu, we have

Vl
C~k,k8!5

1

2 E21

1

dx Pl~x!VC~kY2kY8!, ~2.14!

wherePl(x) is a Legendre polynomial. This formalism ma
be used to obtain covariant expressions for the vertex@1,2#.
We write

ḠS~P,k!5a1~P,k!1k”̂a2~P,k!, ~2.15!

wherek̂m was defined previously in Eq.~2.2!. We have

GS
12~P,k!5a1~P,k!1ma2~P,k!, ~2.16!

GS
11~P,k!5a1~P,k!2

kY2

m
a2~P,k!. ~2.17!

Note that we can writea1(P,k)5a1(P2,A2 k̂2) and

a2(P,k)5a2(P2,A2 k̂2). The Lorentz invariantsa1 anda2
may be determined by relating them to the rest frame va
of GS

12(P0,ukY u) andGS
11(P0,ukY u) @1,2#. ~The case in which

the quark masses are different is discussed in great deta
Ref. @1#.! Using this formalism, vacuum polarization dia
grams and meson decay amplitudes may be calculated in
Lorentz frame and we have made a number of such calc
tions.

It is important to note thatGS
12(P0,k)50 when P0

52E(kY ). Thus, the ratioGS
12(P0,k)/@P022E(kY )# is finite.

It is that feature that leads to real values of the polarizat
integrals forP0.2mq .

The vertex functions defined above are represented by
filled triangular region in Fig. 1~a!. We may also define ver
tex functions that are the solutions of the homogeneous e
09402
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tion depicted in Fig. 1~b!. The resulting vertex functions an
corresponding wave functions describe theqq̄ states bound
by the confining fieldVC.

In this work we will be mainly interested in the solutio
of the equation depicted in Fig. 1~c!. As may be inferred
from the figure, the resulting vertex functions, and cor
sponding wave functions, describe the bound states tha
influenced byboth the confining field and the short-rang
NJL interaction. The normalized vertex functions will be d
noted by a caret, so that the scalar vertex will be written

ĜS(P,k), for example.@See Eqs.~3.21! and ~3.22! below.#
The vacuum polarization function seen in Fig. 2~a! is

FIG. 1. ~a! Schematic representation of the equation for t
confinement vertex. HereVC denotes the confining field@1,2#. ~b!
The homogeneous version of the equation shown in~a! is repre-
sented.~c! A representation of the homogeneous equation for

vertexĜ that includes the effects of both confinement and the sh
range NJL interaction is shown.

FIG. 2. ~a! The diagram serves to define the function2 iJs(P2).
The triangular filled regions are the vertex functions shown in F
1~a!. ~b! The diagram represents the function2 iK s(P2) that de-
scribes polarization effects due to coupling to two-meson de

channels. The channelspp, KK̄, hh, andhh8 were considered in
Ref. @2# and values forKpp

S (P2) and K
KK̄

S
(P2) were presented

there.
0-4
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given by the integral

2 iJS~P2!522nCE d4k

~2p!4 Tr@ iS~P/21k!

3ḠS~P,k!iS~2p/21k!#, ~2.18!

when we study scalar mesons. HerenC53 is the number of
colors and the factor 2 arises from the flavor trace. In
~2.18! S(P/21k) andS(2P/21k) are propagators for con
stituent quarks of mass m,S(p)5@p”2m1 ih#21. In evalu-
ating Eq.~2.18! it is useful to use a representation defined
the meson rest frame (PY 50W ):

S~P/21k!5
m

E~k!
F L~1 !~kY !

P0/21k02E~kY !1 ih

2
L~2 !~2kY !

P0/21k01E~kY !2 ih
G , ~2.19!

etc. When the projection operatorsL (1)(kY ) and L (2)(2kY )

appear on either side ofḠS(P,k) they give rise to the func-
tions GS

21(P,k) and GS
12(P,k) defined in Eqs.~2.8! and

~2.9!. In that manner, after integrating in the complexk0

plane, we obtain

JS~P2!524nCE d3k

~2p!3 F kY2

E2~kY !
Ge2kY2/a2FGS

12~P0,ukY u!

P022E~kY !

2
GS

21~2P0,ukY u!

P012E~kY !
G . ~2.20!

In Eq. ~2.20! we have included a Gaussian regula
exp@2kY2/a2#, which can be written in a covariant form usin
the four-vectork̂m of Eq. ~2.2!. ~In our earlier work, we used
a50.605 GeV and we will use that value here.!

It is important to note that from Eqs.~2.12! and~2.13! we
have

GS
21~2P0,ukY u!5GS

12~P0,ukY u!, ~2.21!

so that Eq.~2.20! becomes

Js~P2!524nCE d3k

~2p!3 S kY2

E2~kY !
D e2kY /a2

GS
12~P0,ukY u!

3F 1

P022E~kY !
2

1

P012E~kY !
G . ~2.22!

In some of our calculations we have kept only the first te
in the square bracket of Eq.~2.22!. That procedure define
the Tamm-Dancoff approximation, while the complete e
pression defines the RPA.
09402
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For further analysis it is useful to define two auxilia
functions that are expressed in terms of the normalized

tex functionsĜ(P,k):

J̃nn̄
S ~P2!524nCE d3k

~2p!3 F kY2

En
2~kY !

G Ĝnn̄
12~P0,ukY u!

3F 1

P022En~kY !
2

1

P012En~kY !
G ~2.23!

and

J̃ss̄
S ~P2!524nCE d3k

~2p!3 F kY2

Es
2~kY !

G Ĝss̄
12~P0,ukY u!

3F 1

P022Es~kY !
2

1

P012Es~kY !
G . ~2.24!

Here,nn̄5(1/&)@uū1dd̄#, so thatJ̃S(P2) is defined sepa-
rately for the up~or down! quarks and the strange quar
These functions are useful in a diagrammatic derivation
RPA equations made using Fig. 1~c!.

In Fig. 2~b! we give a pictorial representation of a vacuu
polarization function2 iK S(P2) that describes the influenc
of the coupling to the two-meson continuum. That coupli
is calculated at one-loop order, with the result thatKS(P2) is
of order 1, whileJS(P2) is of ordernC . We will discuss the
role of KS(P2) at a later point in this work. At this point, we
note that for thef 0 mesons the relevant two-meson dec
channels arepp, KK̄, hh, hh8, etc.

III. RANDOM-PHASE APPROXIMATION FOR
SCALAR-ISOSCALAR MESONS

We may use Eqs.~2.12! and ~2.13! to obtain equations
that determine the bound states in the confining field con
ered in isolation. Let us define the wave function solutions
the homogeneous equations for the confining interaction

fc,nn̄
1 ~Pi

0,k!5
GS

12~Pi
0,k!

Pi
022En~k!

~3.1!

and

fc,nn̄
2 ~Pi

0,k!52
GS

21~Pi
0,k!

Pi
012En~k!

, ~3.2!

with similar definitions offc,ss̄
1 (k) andfc,ss̄

2 (k). Here,Pi
0 is

the eigenvalue for the bound state labeled by the indexc.
Using Eqs.~2.12! and ~2.13!, we have
0-5
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@P022En~k!#fc,nn̄
1 ~k!5

1

~2p!2 E k82dk8

3@2k82k2V0
C~k,k8!

1m2kk8V1
C~k,k8!#

3
1

k2E2~k8!
fc,nn̄

1 ~k8! ~3.3!

and

@P012En~k!#fc,nn̄
2 ~k!

52
1

~2p!2 E k82dk8@2k82k2V0
C~k,k8!

1m2kk8V1
C~k,k8!#

1

k2E2~k8!
fc,nn̄

2 fc,nn̄
2 ~k8!.

~3.4!

There are two other similar equations forfc,ss̄
1 (k) and

fc,ss̄
2 (k). Here, we have suppressed the indexi. We remark

that these equations do not require regularization for largk
or k8.

We have now obtained equations that allow us to solve
the wave functions bound in the confining field.@See Fig.
1~b!.# To proceed we need to add the terms that allow us
solve for the wave functions associated with the vertex fu
tions of Fig. 1~c!, Ĝ(P,k). For the moment, we may negle
the confining interaction and consider only the NJL inter
tion. The use of the auxiliary functionsJ̃S(P2) allows us to
provide an elementary derivation of a covariant version
the RPA for the study of meson states ofqq̄ character.~We
will introduce the NJL regulator at a later point.! We begin
by using annn̄-ss̄ representation. Thus, we may write equ
tions for the vertex functionsGnn̄(k) andGss̄(k):

Gnn̄~k!5 J̃nn̄~P2!Gnn̄,nn̄1 J̃ss̄~P2!Gss̄,nn̄ ~3.5!

and

Gss̄~k!5 J̃ss̄~P2!Gss̄,ss̄1 J̃nn̄~P2!Gnn̄,ss̄. ~3.6!

In writing Eq. ~3.5! we have removed a common factor
lnn̄ @see Eq.~3.23!# and in the case of Eq.~3.6! we have
removed a common factor oflss̄. Also, since we are work-
ing with scalar-isoscalar states, we have a unit matrix in
Dirac space that is not written explicitly in Eqs.~3.5! and
~3.6!. Let us define

Ln
~1 !~kY !Gnn̄~P0,k!Ln

~2 !~2kY !

5Gnn̄
12~P0,k!Ln

~1 !~kY !Ln
~2 !~2kY ! ~3.7!

and
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Ln
~2 !~kY !Gnn̄~P0,k!Ln

~1 !~kY !

5Gnn̄
21~P0,k!Ln

~2 !~2kY !Ln
~1 !~kY !. ~3.8!

Similar definitions are made for Gss̄
12(P0,k) and

Gss̄
21(P0,k). It is then useful to define bound-state wa

functions

fnn̄
1 ~k!5

Gnn̄
12~P0 ,k!

P022En~kY !
, ~3.9!

fnn̄
2 ~k!52

Gnn̄
12~P0 ,k!

P012En~kY !
, ~3.10!

fss̄
1~k!5

Gss̄
12~P0 ,k!

P022Es~kY !
, ~3.11!

and

fss̄
2~k!52

Gss̄
12~P0 ,k!

P012Es~kY !
. ~3.12!

We recall thatGnn̄
21(2P0,k)5Gnn̄

12(P0,k), etc.

We may multiply Eq.~3.5! on the left byLn
(1)(kY ) and on

the right byLn
(2)(2kY ) and form the trace to obtain an equ

tion for Gnn̄
12(k). If we multiply from the left by

L (2)(2 k̄) and on the right byLn
(1)( k̄), we obtain an equa-

tion for Gnn̄
21(2P0,k)5Gnn̄

12(P0,k). Using Eqs. ~3.9!–
~3.12!, we find

@P022En~k!#fnn̄
1 ~k!5E dk8Hnn̄~k,k8!Gnn̄,nn̄@fnn̄

1 ~k8!

1fnn̄
2 ~k8!#

1E dk8Hss̄~k,k8!Gss̄,nn̄@fss̄
1~k8!

1fss̄
2~k8!#

1E dk8Vnn̄
C ~k,k8!fnn̄

1 ~k8!, ~3.13!

@P012En~k!#fnn̄
2 ~k!52E dk8Hnn̄~k,k8!Gnn̄,nn̄@fnn̄

1 ~k8!

1fnn̄
2 ~k8!#

2E dk8Hss̄~k,k8!Gss̄,nn̄

3@fss̄,
1 ~k8!1fss̄

2~k8!#

2E dk8Vnn̄
C ~k,k8!fnn̄

2 ~k8!, ~3.14!
0-6
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and two similar equations forfss̄
1(k) and fss̄

2(k). Here we
have used Eqs.~3.3! and~3.4! so as to include the confinin
interaction in Eqs.~3.13! and~3.14!. Note that the confining
interaction only couplesfnn̄

1 (k) to itself andfnn̄
2 (k) to itself,

etc. This feature is related to the neglect of pair currents
the meson rest frame.

It is useful to symmetrize the interaction by introducin
the functions

f̄nn̄
1 ~k!5

k2

En~k!
fnn̄

1 ~k!, ~3.15!

f̄nn̄
2 ~k!5

k2

En~k!
fnn̄

2 ~k!, ~3.16!

f̄ss̄
1~k!5

k2

Es~k!
fss̄

1~k!, ~3.17!

and

f̄ss̄
2~k!5

k2

Es~k!
fss̄

2~k!. ~3.18!

The functionsf̄nn̄
1 (k), f̄nn̄

2 (k), f̄ss̄
1(k), and f̄ss̄

2(k) satisfy
equations of the form of Eqs.~3.13! and ~3.14!, etc., with
Hnn̄(k,k8), Hss̄(k,k8), Vnn̄

C (k,k8), and Vss̄
C (k,k8) replaced

by H̄nn̄(k,k8), H̄ss̄(k,k8), V̄nn̄
C (k,k8), and V̄ss̄

C (k,k8). The
form of the latter interactions is given in the Appendix.

The RPA equations are regulated by the replacements

G00→e2k2/2a2
G00e

2kt2/2a2
~3.19!

and

G88→e2k2/2a2
G88e

2kt2/2a2
. ~3.20!

~We recall that the confining interaction does not requ
regulation.! We also see that the replacements of Eqs.~3.19!
and ~3.20! correspond to regulating the vacuum polarizati
function JS(P2) with a Gaussian factor exp@2k2/a2#. @See
Eqs.~2.20! and ~2.22!.#

We may normalize these wave function amplitudes
requiring that the meson contain a single quark.~See Sec.
IV.! The normalized functions may be denoted
fnn̄,N

1 (k),fnn̄,N
2 (k), etc. These are related to normalized v

tex functionsĜnn̄(P0,k) and Ĝss̄(P0,k):

fnn̄,N
1 ~k!5

k2

En~k!

Ĝnn̄
12~P0,k!

P022En~k!
, ~3.21!

fnn̄,N
2 ~k!52

k2

En~k!

Ĝnn̄
12~P0,k!

P012En~k!
, ~3.22!

etc.
It is often useful to solve our RPA equations by pass

from the nn̄-ss̄ representation to a singlet-octet represen
tion. We note that
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S lnn̄

lss̄
D5M S lg /&

l0 /& D ~3.23!

with

M5
1

)
S 1 &

2& 1 D . ~3.24!

We also note that

S G88 G80

G08 G00
D 5M 21S Gnn̄,nn̄ Gnn̄,ss̄

Gss̄,nn̄ Gss̄,ss̄
D M ~3.25!

and

S H88 H80

H08 H00
D 5M 21S Hnn̄ 0

0 Hss̄
D M . ~3.26!

IV. CALCULATION OF NORMALIZED WAVE
FUNCTIONS AND MESON DECAY CONSTANTS

The calculation of the normalization factor that allows
to define normalized wave functions,

fnn̄,N
1 ~k!5ANifnn̄

1 ~k!, ~4.1!

f̄nn̄,N
1 ~k!5ANif̄nn̄

1 ~k!, ~4.2!

etc., may be made with reference to Fig. 3. We require t
the meson contains a single quark, with the result that

FIG. 3. ~a! The normalization constant of the meson wave fun
tion is obtained by requiring that the meson contain a single qu
The wavy line serves to introduce the quark number operator.
cross-hatched area denotes the vertex that includes both the e
of confinement and the short-range NJL interaction.~b! The figure
shows the Goldstone diagrams that result when one complete
integral overk0 implied in ~a! above. Here, time increases to th
right. The first and second diagrams introduce the wave functi
with plus and minus superscripts, respectively.
0-7
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1

Ni
5

2nC

p2 S 1

2Mi
D E k2dkF k

Eu~k!G
2

$ufnn̄
1 ~k!u22ufnn̄

2 ~k!u2%

1
2nC

p2 S 1

2Mi
D E k2dkF k

Es~k!G
2

$ufss̄
1~k!u22ufss̄

2~k!u2%.

~4.3!

In Eq. ~4.3! the wave functions are obtained from tho
given by the computer code that solves the symmetri
equations

fnn̄
1 ~k!5@Eu~k!/k2#f̄nn̄

1 ~k!, ~4.4!

etc.@We recall that the wave functions on the right-hand s
of Eq. ~4.4! satisfy the symmetrized RPA equations. See
remarks made after Eq.~3.18!.#

To calculate the decay constant we consider the diag
of Fig. 4. There, the cross-hatched region refers toĜ(P,k),
while the open circle represents the scalar opera
q̄(0)q(0). Theresult for the decay constant is

mi
2Fi5&

nC

p2 S 1

2mi
D E k2dkF k

Eu~k!G
2

$fnn̄,N
1 ~k!1fnn̄,N

2 ~k!%

1
nC

p2 S 1

2mi
D E k2dkF k

Es~k!G
2

$fss̄,N
1 ~k!1fss̄,N

2 ~k!%.

~4.5!

@See Fig. 4~b!.# The decay constant of Eq.~4.5! is dimension-
less. For ease of comparison to the decay constants c
lated for thea0 mesons@3#, it is useful to define a deca
constantf i5(ms

02mu
0)Fi , wherems

0 andmu
0 are the current

quark masses of the strange and up quarks. The facto
(ms

02mu
0) is introduced by Maltman so that thea0 decay

constants are similar in magnitude to the decay constan
the K0* mesons in the case that thea0 andK0* mesons have
similar wave functions@5,6#. We usedms

02mu
050.153 GeV

FIG. 4. ~a! The calculation of the meson decay constant requ
the calculation of the Feynman diagram shown. Here the o
circle represents the operatorq̄(0)q(0). ~b! The Goldstone dia-
grams that appear when the integral overk0 implied in ~a! is com-
pleted. The first and second diagrams introduce the wave funct
with plus and minus superscripts, respectively. Here, time incre
as one moves to the right in the diagram.
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in our earlier work in order to make contact with Maltman
analysis, and we use that value here.

V. NUMERICAL RESULTS

In this work we usem50.010 GeV,k50.055 GeV2, mu
50.364 GeV, ms50.565 GeV, G88510.02 GeV22, G00
513.87 GeV22, andG0850. The calculation of these param
eters was described in the Introduction, so that our calc
tion of scalar meson properties is essentially parmeter-f
We find the lowest scalar-isoscalar state at 1004 MeV.~See
Table I.! Dispersive effects due to the presence ofKS(P2) in
the formalism move that energy down to 950 MeV, where
state may be identified with thef 0(980). These dispersive
effects and their role in shifting the calculated energies of
qq̄ states is described in great detail in Ref.@2#. The calcu-
lation of KS(P2) is rather complex. Some of the details a
given in Ref.@14# where we studied thea0 mesons.~There,
the decay channels wereph, KK̄, andph8.! Since the cal-
culations are covariant, the decay amplitudes, calculate
one-~quark-!loop order, may be calculated in any Loren
frame. The amplitudes require regulation and the regulato
chosen so that reasonable widths, which are proportiona
Im KS(P

2), are obtained for the mesons considered.~We do
not calculate final-state interactions when calculating the
cay amplitudes. Some of the effects of such final-state in
actions may serve to modify the value of the regulator c
sen for the quark-loop integrals.!

In Table I we show the mass values obtained from
RPA equations in the first column. The second column sho

s
n

ns
es

TABLE I. The first column shows the mass values obtain
when solving the RPA equations withG88510.02 GeV22, G00

513.87 GeV22, G0850, k50.055 GeV2, mu50.364 GeV, andms

50.565 GeV. The second column presents the result including
effects ofKS

pp(P2), which were calculated in Ref.@2#. The third
column showsmi

2Fi for each state, while the fourth column show
mi

2f i , with f i5(0.153 GeV)Fi .

m̃ ~MeV!
RPA

m ~MeV!
RPA plus dispersive effects

mi
2Fi

~GeV2!
mi

2f i

~GeV3!

1004 950 0.472 0.0722
1502 1472 0.231 0.0353
1560 1540 0.327 0.0500
1835 1800 0.250 0.0383
1860 1850 0.214 0.0327
2059 2040 0.280 0.0428
2105 0.283 0.0433
2241 0.293 0.0448
2300 0.189 0.0285
2397 0.304 0.0465
2467 0.196 0.0300
2530 0.309 0.0473
2611 0.204 0.0312
2644 0.307 0.0470
2851 0.221 0.0338
3037 0.224 0.0343
0-8
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the values obtained when the effects ofKS(P2) are included
@2#. Values of KS(P2) calculated for the two-pion deca
channel were given in Ref.@2#. There, they were denoted a
K00

pp(P2), K08
pp(P2), and K88

pp(P2). Since the f 0(980) is
mainly annn̄ state we may consider

Knn̄
pp~P2!5

K88
pp~P2!

6
1
&

3
K08

pp~P2!1
K00

pp~P2!

3
.

~5.1!

A typical value of ImKnn̄
pp(P2) is 0.005 GeV2 @2#. As we will

FIG. 5. The wave functionskfnn̄
1 (k) ~solid line!, kfnn̄

2 (k) ~dot-
ted line!, kfss̄

1(k) ~dashed line!, andkfss̄
2(k) ~dash-dotted line! are

shown for the 13P0 state that we identify with thef 0(980) reso-
nance. These wave functions correspond to the normalized w
functions introduced in Sec. III.

FIG. 6. The wave function for the 13P0 state that we find at
1472 MeV. ~See Table I.! After consideration of quarkonium
glueball mixing we would identify this state with thef 0(1370).
09402
see, the contribution of ImKnn̄
pp(P2) to the imaginary part of

the correlator introduced in Sec. VI is extremely small a
may be neglected.

In Fig. 5 we show the normalized wave function amp
tudes for the 13P0 state that we identify with thef 0(980).
We see that that state is predominantly annn̄ state. In Fig. 6
we show the wave functions of the state at 1472 MeV.
see that that state is mainly ofss̄character. Some support fo
the assignment of that state to thef 0(1370) is given in Sec.
VII. However, the states at 1472 and 1540 MeV will m
with the scalar glueball which is believed to be at abo
1.5–1.7 GeV.

VI. SCALAR-ISOSCALAR HADRONIC CORRELATION
FUNCTION

In this work we study the hadronic correlator

C~P2!5 i E d4x eiP•x^0uT„q̄~x!q~x!q̄~0!q~0!…u0&

~6.1!

and consider two contributions. These contributions are
picted in Fig. 7. In Fig. 7~a! we show the contribution of the
f 0 resonances.

It is useful to separate the contribution of thef 0(980) and
write for the resonance contribution to ImC(P2)

1

p
Im CR~P2!

5mf 0~980!
4 f f 0~980!

2 1

p

mf 0~980!
G f 0~980!

@P22mf 0~980!
2 #21mf 0~980!

2 G f 0~980!
2

1(
i 52

16

mi
4f i

2 1

p

miG i

@P22mi
2#21mi

2G i
2 , ~6.2!

where the sum is over the states shown in Table I. Here
choosemf 0(980)50.980 GeV,G f 0(980)50.075 GeV, andG i

50.200 GeV. We remarked earlier that the contribution

ve

FIG. 7. ~a! Contribution to the scalar-isoscalar correlation fun
tion due to the f 0 resonances.~b! Contribution to the scalar-
isoscalar correlator that depends upon coupling to the two-pion c
tinuum. ~This contribution is quite small and may be neglected.!
0-9
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the correlator function arising fromKS
pp(P2) is very small,

so that we take ImC(P2).Im CR(P2) in our analysis. Using
the values given in Table I, we construct Fig. 8, which sho
(1/p)Im C(P2) for P2<10 GeV2. The result is quite similar
to that obtained for the scalar-isovector correlator descri
in Ref. @3#.

VII. DISCUSSION

In this work we have used the parameters forGS andGD
that yield a good fit to the energies of theh~547!, h8~958!,
h~1295!, andh~1440! @9#. ~See Fig. 9.! Therefore, except for
relatively small effects due toKS(P2), the calculation re-
ported here is parameter-free. It is found that the lowestf 0
state has a mass of approximately 1 GeV. There is no
dence in our calculations of thef 0(400– 1200) that now ap-
pears in the data tables. This matter is discussed in s
detail in Ref. @15#, where we define ‘‘intrinsic’’ and ‘‘dy-
namically generated’’ states. The intrinsic states are found
studying aqq̄ T matrix @2# or by diagonalizing the RPA
Hamiltonian, as was done in this work. Dynamical sta
appear when studyingpp scattering and these are notqq̄
states. For example,t-channel andu-channelr exchange be-
tween the pions gives rise to a strong attraction that is
sponsible for the rapid increase with energy of theL50, I
50 phase shift in the case ofpp scattering@15#.

We have found that, if we wish to obtain a scalar state
600 MeV, we have to increaseGS by about 50%, if we main-
tain the same value forGD . That change represents a ve
large violation of the chiral symmetry of the Lagrangian a
is unacceptable.@See Eq.~1.1!.#

The lack of significantq̄q strength below the energy o

FIG. 8. Values of (1/p)Im C(P2) are shown. Here, we use
mf 0(980)

2 f f 0(980)50.0722 GeV3, G f 0(980)50.075 GeV, andmf 0(980)

50.980 GeV. For the other states we takeG50.200 GeV. The val-
ues of mi and mi

2f i are given in Table I. @Note that f i

5(0.153 GeV)Fi for each state.# The values given in the figure
may be compared to (0.153 GeV)2 Im Knn̄

pp(P2).1.231024 GeV4.
Therefore, we see that the contribution from coupling to the tw
pion continuum is negligible.
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the f 0(980) resonance implies that the model of choice is
nonlinear sigma model rather than the linear model. Ho
ever, the fact that an analysis of low-energypp scattering
gives rise to a pole, which corresponds to a ‘‘sigma meso
of mass of about 500–600 MeV and a quite large width, h
created a great deal of confusion@15#. For example, a study
of pp scattering in conjunction with the processpp→KK̄
led Surovtsev, Krupa, and Nagy to identify anf 0(665) @16#.
That result leads to their suggestion that one should cons
a linear realization of chiral symmetry as appropriate. On
other hand, Li, Zou, and Li@17# have also studiedpp scat-
tering and have come to a different conclusion. They sh
that t- and u-channelr exchange gives rise to a pole
(0.3620.53i ) GeV. @They also introduce an additional sta
with a pole at (1.6720.26i ) GeV to increase the phase sh
obtained fromr exchange, so as to fit thepp S-wave ampli-
tude.# The authors of Ref.@17# conclude that there is no stat
of qq̄ character below 1 GeV. We have come to the sa
conclusion using somewhat different arguments@15#. While
we have also studied the role ofr exchange as it pertains t
the S-wave phase shift@15#, we have seen in the work re
ported here that a calculation of scalar-isoscalarqq̄ states
does not produce a low-mass sigma.

-

FIG. 9. The first and third columns of levels show thenn̄ andss̄
states bound in the confining field, respectively. The second colu
shows the 28 levels found when the RPA Hamiltonian is brough
diagonal form@9#. The various arrows show the parentage of t
resulting states. Theh~547! has 75% of the 11S0 nn̄ state that has
the g5 vertex and 25% of the 11S0 ss̄ state that has theg5 vertex.
These percentages are reversed for theh8(958). The 11S0 nn̄ and
ss̄states with theg0g5 vertex are fragmented over many states. T
h~1295! andh~1440! are almost entirely of 21S0 nn̄ character. We
have used G88512.46 GeV22, G0058.60 GeV22, and GV

512.46 GeV22. The masses of theh~547!, h8~958!, h~1295!, and
h~1440! are found to be 550, 924, 1317, and 1411 MeV, resp
tively.
0-10



o

m
ve

n

en
,
e
e-
a

es

u
so
n

lv

ar

n
it

-
t

c

old-
ace,
m-

CALCULATION OF A SCALAR-ISOSCALAR HADRONIC . . . PHYSICAL REVIEW D 64 094020
Another recent work of interest is that of Ref.@18#. There,
the authors obtain as meson of mass 630 MeV at zer
temperature and density and use the ratio of thes mass to
the p mass to provide a quantitative signal for chiral sy
metry restoration at finite temperature and density. Howe
these authors identify thes of their model with thes seen in
pp scattering. It appears clear to us that thes obtained from
the study ofpp scattering is not the chiral partner of the pio
@19#.

The authors of both Refs.@16# and@17# find a quite small
width for the two-pion decay of thef 0(1370). That can be
explained in our model, since the state we tentatively id
tify with the f 0(1370) is mainly ofss̄ character. However
the f 0(1370) decays predominantly to the four-pion chann
That suggests that thef 0(1370) may have a large scalar glu
ball component. The entire matter of quarkonium-glueb
mixing in the scalar-isoscalar states deserves further inv
gation.

We have noted in this work that the nature of the vario
scalar states that appear in the data tables is a matter of
controversy. Various models and configuration assignme
are described in Refs.@19–29#. We believe our work has
introduced an important element in the attempt to reso
these issues.

While the nature of thef 0(400– 1200)@or s~500–600!# is
a matter of some controversy, the nature of thef 0(980) is
also subject to various interpretations. One approach reg
the f 0(980) as a four-quark bound state@30# and another as a
KK̄ ‘‘molecule’’ @31#. It was early thought that thef 0(980)
might be a glueball@32#. Recently thef 0(980) has been see
in neutrino-nucleus charged current interactions, where
found that thef 0(980) behaves as an ordinaryqq̄ state. The
authors of Ref.@33# also remark that ‘‘All measured charac
teristics of f 0(980) production inZ0 decays are consisten
with the f 0(980) being a conventional scalar meson.’’

Finally, we note that confinement is quite a small effe
M
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when calculations are made for thep~138! andK(495) me-
sons. It may be best to neglect confinement for these G
stone bosons, or to perform calculations in Euclidean sp
to ensure that the relations that follow from the chiral sy
metry of the Lagrangian are preserved@12#.

APPENDIX

In this Appendix we provide values forH̄nn̄(k,k8),
H̄ss̄(k,k8), andV̄C(k,k8):

H̄nn̄~k,k8!52
2

p2 nC

k2k82

En~k!En~k8!
e2k2/2a2

e2k82/2a2
,

~A1!

H̄ss̄~k,k8!52
2

p2 nC

k2k82

Es~k!Es~k8!
e2k2/2a2

e2k82/2a2
,

~A2!

V̄nn̄
C ~k,k8!5

1

~2p!2

kk8

En~k!En~k8!
@2kk8V0

C~k,k8!

1mu
2V1

C~k,k8!#, ~A3!

and
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