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Calculation of a scalar-isoscalar hadronic correlator
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In an earlier work we calculated the continuum contribution to the hadronic current correlator for pseudo-
scalar and scalar-isovector currents. In this work we extend our considerations to the study of a scalar-isoscalar
correlator of scalar operators. In this formalism we explore the distributioqqo$trength as a function of
energy. We perform a covariant random-phase approximation calculation of the scalar-isoscalar states using
parameters that have been determined in earlier studies of pseudoscalar and vector mesons. The state of lowest
energy that we find can be identified with thg980). We find very littleqq strength for energies less than the
energy of thef,(980). That suggests that the nonlinear sigma model is the model of choice, since there is no
low-lying scalar state ofjq character in our mode[The f,(400—1200), which now appears in the data tables,
may be understood as a “dynamically generated” state that appears when one stadieattering. In our
analysis it is not aq state. In the Nambu—Jona-Lasinio model, chiral symmetry requires the same interaction
strengthGg for scalar and pseudoscalar states. If we wished to obtain a scalar state at about 600 MeV, we
would require a major violation of chiral symmetry, such t@aifor scalar states would be about 50% larger
than the value determined from our study of the pseudoscalar mgsgasonclude that, except for certain
limited applications that we have described in earlier work, the linear sigma model, which describes a low-
energyqq state of mass of about 500-600 MeV, does not provide a correct description of the physical
spectrum.
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I. INTRODUCTION Gs 8 _ _
£=qlis=mO)a+ 2 2 [(@h'a)*+ (T ys\'a)’]
We have developed a generalized Nambu—Jona-Lasinio
(NJL) model that includes a covariant model of confinement.
Using this model we are able to calculate meson spectra up
to energies in the 2—3 GeV ran@g,2]. One interesting ap- G
lication of the model is the calculation of hadronic current D — —
Eorrelation functions. In a previous work we calculated such * 7{de(q(1+ 7s)d]+defq(1-ys)al}
functions for pseudoscalar and scalar-isovector curfgits
We were also reasonably successful in reproducing the decay
constants of they(980), ag(1450), andK§ (1430) [4] that
were obtained by Maltman using QCD sum rule techniquediere, the fourth term is the 't Hooft interactiofienso, de-
and other methodis, 6]. notes interactions added to study tensor mesons,/apd
In this work we wish to study a scalar-isoscalar correlatordenotes our model of Lorentz-vector confinement. In Eq.
of the scalargg(x)q(x) andg(0)q(0). While this calcula- (1) m° is the current quark mass matrixn’
tion has some intrinsic interest, we are motivated to study=diag@ri,mgmb), the; (i=1,...,8) are the Gell-Mann ma-
this correlator because it provides a rather direct measure #fices, and\o=/2/31, with 1 being the unit matrix in flavor
the distribution ofgq strength over a broad range of ener- SPace.

gies. In this fashion we can study the relative utility of the e remark that our calculation of the scalar-isoscalar
linear and nonlinear sigma moddig]. states may be considered as essentially parameter-free, since

It is well known that the NJL model without confinement € parameters of our NJL model were fixed in a study of
places the chiral partner of the pion at an energy close tgseudoscalar and vector mesons. It is useful to refer to the
om. wherem. is the constituent quark mass of the up or review of Hatsuda and Kunihirf8] to obtain the values of
dov(\q/n quark ?As we will see ourqgeneralized NIL mcFJ)deI the interaction for various mesons in the presence of the 't

hich includ del of f t ol the lowist "Hooft interaction. For example, our recent study of the
which includes a model of coninement, places e IOWest  \,q54ng required the values of the singlet and octet coupling

state at about 1 GeV in energy where it can be identified Wml:onstants
the f4(980). The Lagrangian of our model is

Gvan . o
-5 2 L@\ )%+ @ ys'a)’]

+ ‘Ctensor'" Econf- (1.1)

2 Go
Ghy=Gs— = (a+B+7y) — 1.2
*Email address: casbc@cunyvm.cuny.edu 00— =S 3(a Bty) 2 (1.2
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and define and calculate a hadronic correlator for scalar-isoscalar
states. Finally, Sec. VII contains some further discussion and

b 1 Gp conclusions.
688265_5(7_201_2@7- (1.3

. Il. CONFINEMENT POTENTIAL AND VERTEX
(We have put the small and somewhat uncertain value of

FUNCTIONS
GHe=0.) In Egs.(1.2) and(1.3), a, B, andy are the vacuum
condensates: a=(Uu), B=(dd), and y=(ss). We have There are two important approximations made in our
takena= 8= —(0.248 GeV§ and y= — (0.258 GeV/¥. analysis which are related to our treatment of confinement.

The values needed for the study of themesons argg] ~ Our confinement model is meant to describe the interaction
due to the presence of a chromoelectric flux tube between the
2 Gp quark and the antiquark. We have found it necessary to ne-
Go=Gs+ §(a+,8+ 7)7 (1.4  glect the generation of pair currents by the confining inter-
action. As we will see, two important vertex functions
r*=(pP,k) andT'""(P,k) appear in our formalism. In the
past we have derived coupled equations satisfied by these
1 G functions. However, in our study of pseudoscalar mesons we
G§8=Gs+ —(y—2a—2p) -b (1.5 found that the coupling terms were so large as to preclude
3 2 meaningful solutions of the coupled equations, while the un-
. coupled equations were easily solved and gave excellent re-
In a recent systematic study of thyi547é and 7'(958  gyits when the corresponding vertex functions were used in
and their radial excitation§9], we found Ggg=12.46 and  the calculation of meson spect@he coupled equations for
Gpo=8.60 GeV?, from which we inferGs=11.24 andGp '}~ andI'p* for pseudoscalar mesons were presented in
=—166.4 GeV °. Therefore, for our study of thiy mesons,  Appendix C of Ref[11]. There it may be seen that the cou-
we obtain the valuesS5,=13.87 andGge=10.02 GeV?  pling terms are very much larger than the terms that connect
when using Egs.(1.4) and (1.5. The parameterGy, TI'*~ andI'"* to themselves. It is the coupling terms that
=12.46 GeV 2 was determined in a study of the vector me- give rise to the pair currents mentioned abowde have
sons[1]. (That parameter influences the properties of thesolved the uncoupled equations for the vertex functions in
pseudoscalar mesons when we take pseudoscalar—axighe meson rest frame. Once the various vertex functions are
vector mixing into account.The value of the strange quark calculated, the formalism can be made covariant, as noted
mass was found by fitting the mass of th#€1020 meson |ater in this section[See Eqs(2.15—(2.17).]
after the confining interaction parameter was fitted by study- The other important approximation we have made is to
ing the radial excitations of the and w mesons. use constant values for the constituent quark masses. In our
Inspection of the Lagrangian of E¢L.1) shows that itis earlier work[12], we solved the Bethe-Salpeter equation in
chiral symmetry that allows us to specify the interaction forconjunction with the Schwinger-Dyson equation in Euclid-
the scalar states by fixinGs in a study of the pseudoscalar ean space. It was then easy to show that Goldstone’s theorem
states. The difference betwe€ig andG is proportional to  was satisfied, with the pion as the Goldstone boson. That
the strength of the 't Hooft interactioB . That interaction procedure led to some momentum dependence of the con-
is important in the study of theg andfy mesons, since such stituent quark mass in Euclidean space. It is unclear as to
studies involve singlet-octet mixing. how to carry out such a calculation in Minkowski space.
The organization of our work is as follows. In Sec. Il we There are also some questions that arise when attempting to
review our model of confinement and define various vertexderive a Schwinger-Dyson equation, since our model of con-
functions. We discuss our choice of Lorentz-vector confinefinement is based upon the potential generated by the chro-
ment and the approximations made in our calculations, thenoelectric flux tube between the quark and the antiquark.
most important being the neglect of any pair currents generfhe Schwinger-Dyson equation refers to the properties of a
ated by the confining interaction. In Sec. Il we also introducesingle quark. It is rather difficult to imagine the quark emit-
various vacuum polarization integrals of the NJL model. Weting and absorbing the flux tube in analogy with the electron
make use of these expressions when providing a simple diaelf-energy calculation in QED. Given these difficulties, we
grammatic derivation of random-phase approximatiRRA) have proceeded with a phenomenological scheme in which
equations for the study of thigy mesons(The diagrammatic we choose constants for the constituent quark masses. These
analysis is significantly simpler than the usual derivation thatonstant values may be thought of as momentum-space av-
involves construction of the commutator of quark-antiquarkerages of the running quark mass values which are presently
operators with the Hamiltonian and the linearization of theunknown.
equations of motiorf10].) In Sec. Ill we present the equa- It is of some interest to note that the problem of large
tions of the random-phase approximation that we use to cabair-current effects may be avoided if we use the confining
culate the properties of thigy mesons. In Sec. IV we discuss interaction used in Ref12] which has a v — A” form. That
the normalization of our wave functions and the calculationis, we substract from our model of vector confinement the
of decay constants of these mesons. Section V is devoted &xpression for axial-vector confinement. In that case we can
the presentation of some numerical results. In Sec. VI weeadily solve the equations for the vertex function without

and
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making any approximations with respect to pair-current efto an effectivescalar confinement model, which hides the
fects. However, we have not as yet developed a Minkowskiunderlying Lorentz-vector character of the confining interac-
space phenomenology for the interaction introduced in Reftion. These authors also point out that vector confinement is
[12]. Therefore, in the present work we will continue to usethe natural choice if one wishes to write a chirally symmetric
Lorentz-vector confinement and solve the uncoupled equdnteraction that allows for spontaneous chiral symmetry
tions for the vertex function§* ~(P,k) andI'~ " (P,k). breaking in the vacuum and the appearance of Goldstone
Our model of confinement is based upon the coordinatebosons. It is also noted that scalar confinement does not lead
space potentiaV/(r) = «xr exd —ur], whereu is a small pa- to a stable vacuum stafé3].
rameter introduced to facilitate our momentum-space calcu- We use the confining interaction to construct equations for
lations. Note that we do not have absolute confinement in ouvarious vertex functiongl,2]. Let us consider the case of the
model. However, thegq states in the confining field are scalar vertex for equal mass quarks. In the meson rest frame
readily separated into states inside the potential barrier ange may write
scattering states that show little barrier penetration. We have
Vmas= ke, which for k=0.055 GeV and =0.010 GeV
yields V,,,,,=2.023 GeV. Thus, we can find bound states in
the interior region of the potential up t&,,=my,+m, o
+2.023 GeV forgq states withL = 0. For constituent masses XS(=P2+K')y,IVE(k=K'). (2.9
m,=0.364 andmg=0.565 GeV, E,;,=2.751 GeV if we _
studynn systems and,,,=2.952 GeV foms systems with  [See Fig. 18) and Eq.(2.19 below] Here, I'S(P,k) has a
L=0. Smaller values ofx may be used if we wish to in- matrix structure. The Dirac matriceg andy, appear in Eq.
crease the value df,,. For u=0.010 GeV, we can find (2.5 because we are using Lorentz-vector confinement. It is
from eight to ten states bound in the confining field when weuseful to introduce functions¢ ~ andI's ™ [1,2]. First, we
study scalar-isovector mesons, for examfBarrier penetra-  define the projection operators
tion is of no importance in this modgl.

TS P d4k, NS ’
r (P,K)=1—IJW[7PS(P/2+k )I'>(P,K")

i i ~ k+m
The Fourier transform o¥/(r) is ARy = — 2.6
I 1 4u?
VE(K—K')= — 8| —— - K . and
[(k=K)2+p?12 [(K=K)2+ )
_ k+m
(2.2 A<’)(—k)=ﬂ, 2.7

The model is made covariant through the use of the four- R ~ o
vectors with  k#*=[E(k),k] and k*=[—-E(k),k]. Note that

AR+ AT (k) =1, with AT)(K)=(—Kk+m)/2m. Then

. M -~ >
ki =K+ — (k—;)i, (2.2 we write (for P=0)
and ADRCSPKAT(=K)=T4 (PKAT (KA (—k),
(2.9
(KPP _
K=kt g, (2.3 AC(=KTSP,KAD(K)=Tg*(P,K)A(—K)AT(K),
(2.9
since in the meson rest fram@®€0)k*—k’#=[0k—k']. o . .
Thus, we may write ADOTP AT () =T " (P,k)A ™ (K),
(2.10
o 1
VC(k—k')=—8m«k — and
[[—(k—k')2+,u2]2

A(=RTSPKA T (—K)=T5 (P,KA)(—K).
e 2.4 (2.1

L Dr\2 213
[=(k=k)"+ 7] As we will see, the use of Eq&.8)—(2.11) makes it particu-
As noted above, in our work we have used a model of@y S|mple to neglect palr currents in our formalism. Equa-
v e
Lorentz-vector confinement. Various arguments have beeHons forl's™, I's™, T's™, andI's ™ may be obtained by

put forth by Szczepaniak and Swangdg] to justify the use multiplying Eq (2.5 from the left and from the right by one
of Lorentz-vector rather than scalar confinement. For ex®f the projection operators in Eq&.6), (2.7) and then tak-

ample, scalar confinement is generally used in the case &fd the trace. In our wo[k we obtained the following-
heavy quark systems. In Rdfl3] it is argued that nonper- coupled equations forl's™,(P,k) and I's "(P,k) in the
turbative mixing between ordinary and hybrid states leads frame whereP=0 [2];

2
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1 P/2+k P/2+k P/2+k
I‘éf*(PO,k):]__’_ zf erdkr[Zk/ZkZVg(k,kr) :
( ’7T) P.. - .. PR }VC
1 Ti(POK) -Pr2+k Pr2+k P2k
+ MKk VE(k K] ——— ‘Z - (a)
KE (k ) P _2E(k ) P/2+k P/2+k
(212 @f/ ) @ﬁo
and o > I -Pi2+k

pr2+k P/2+k C PRk

1 +
rs*(POk)=1— (277)2[ k'2dk'[ 2k 2k2VE(k,k') < i @\/\Vc R @m k
-P/2k N przak Pl

1 s (PO,K) . -Pr2+k!
! C
K2E2(E’) P°+2E(K’)

+m?kk' V§(k,k")]

FIG. 1. (a) Schematic representation of the equation for the
(213 confinement vertex. Herg¢® denotes the confining fieldl,2]. (b)
The homogeneous version of the equation showiajnis repre-
The calculation of"$ " (P%,k) andI's ~(P°,k) is described  sented.(c) A representation of the homogeneous equation for the
in Ref.[2]. In Egs.(2.12 and (2.13 k=|P| andk’=|P’|. vertexI” that includes the effects of both confinement and the short-
With x=cos#, we have range NJL interaction is shown.

C Sl J'l Cik_ K/ tion depicted in Fig. (b). The resulting vertex functions and
Virkk) 2 71dx ROOVEk=kT, (2.19 corresponding wave functions describe the states bound
by the confining fieldvC.
whereP|(x) is a Legendre polynomial. This formalism may  In this work we will be mainly interested in the solution
be used to obtain covariant expressions for the veite®.  of the equation depicted in Fig.(d. As may be inferred
We write from the figure, the resulting vertex functions, and corre-
sponding wave functions, describe the bound states that are
p o influenced byboth the confining field and the short-range
T's(P.k)=ay(P.k)+kaz(P.k), 2159 L interactign. The normalizeg vertex functions will be 3e-
noted by a caret, so that the scalar vertex will be written as

fS(P,k), for example[See Egs(3.21) and(3.22 below]
The vacuum polarization function seen in Figa2is

wherek* was defined previously in Eq2.2). We have

s~ (P,k)=a.(P,k)+may(P,k), (2.16
++ k2 P/2+k
ISt (Pk)=ay(P,k)— —ay(Pk). (2.17)
m iJg(P?) P (:>---P
Note that we can writea;(P,k)=a;(P%\—k? and ' -Pl2+k
a,(P,k)=a,(P% v —k?. The Lorentz invariants, anda, (a)
may be determined by relating them to the rest frame values P/21ic
of I's “(PY,|k|) andT'$ " (P?,|k|) [1,2]. (The case in which o
the quark masses are different is discussed in great detail in K (P7) P ~P
Ref. [1].) Using this formalism, vacuum polarization dia- b
grams and meson decay amplitudes may be calculated in any f2-x
Lorentz frame and we have made a number of such calcula- (b)
tions.
It is important to note thaf’s ~(P°k)=0 when P° FIG. 2. (a) The diagram serves to define the functiend(P?).

=2E(K). Thus, the ratid" ~(P°,k)/[ P°— 2E(k)] is finite.  The triangular filled regions are the vertex functions shown in Fig.
It is that feature that leads to real values of the polarizatiori(@). (b) The diagram represents the functierik %(P?) that de-
integrals forP°> 2m,. scribes polarization effects due to coupling to two-meson decay

The vertex functions defined above are represented by théhannels. The channetsr, KK, 77, and 77" were considered in
filled triangular region in Fig. (). We may also define ver- Ref. [2] and values fork$_(P?) and KEE(PZ) were presented
tex functions that are the solutions of the homogeneous equihere.
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given by the integral

d*k
—iJS(P?)= —2ncf WTr[iS(P/ZJr k)

XTS(P,K)iS(—pl2+Kk)], (2.18

when we study scalar mesons. Herg=3 is the number of
colors and the factor 2 arises from the flavor trace. In Eq.
(2.18 S(P/2+k) andS(—P/2+k) are propagators for con-
stituent quarks of mass n§(p)=[p—m+iz] *. In evalu-
ating Eq.(2.18 it is useful to use a representation defined in

the meson rest frameP=0):

A(+)(IZ)
PY2+KkO—E(K)+in

S(P/2+k)=

E(k)

A(f)(—IZ)
PY2+ KO+ E(K)—in

: (2.19

etc. When the projection operatois *)(k) and A()(—k)

appear on either side &f5(P,k) they give rise to the func-

tions I's "(P,k) andI's ~(P,k) defined in Egs(2.8) and
(2.9). In that manner, after integrating in the complie%
plane, we obtain

3 2 _— F+— PO, R
JS(PZ):—4ncf dk3 —kA]e—k/w s (7LD 'J)
(27)° | EZ(k) PO—2E(k)
st (—POk
s PR ’[kD . (2.20
PO+ 2E(k)

In Eq. (2.20 we have included a Gaussian regulator
exp[—l?/az], which can be written in a covariant form using
the four-vectork” of Eqg. (2.2). (In our earlier work, we used

a=0.605 GeV and we will use that value here.
It is important to note that from Eq#2.12 and(2.13 we
have

Ts*(—POIK)=T¢ (PO k), (2.20)

so that Eq(2.20 becomes

dk [ K - 5 _
PP =—anc | ——| ——|e T (PO |k))
| (277)3(E2(k)) s (PRl
1 1
X - —|. (2.22
PO—2E(k) P%+2E(k)

PHYSICAL REVIEW D 64 094020

For further analysis it is useful to define two auxiliary
functions that are expressed in terms of the normalized ver-

tex functionsf(P,k):

B d3k |22 ~ L N
55061 —ane [ 5 E oo
(2m)%| E2(K)
1 1
% — - (2.23
PO—2E,(k) P°+2E,(k)
and
_ d3k |22 AL -
J§(P2)=—4ncf—3 ——|Tss (PYIKD
(27)°| E4(K)
1 1
% - —|. (2.24
PO—2E (k) P°+2E4Kk)

Here,nn=(1/2)[uu+dd], so thatiS(P?) is defined sepa-
rately for the up(or down quarks and the strange quark.
These functions are useful in a diagrammatic derivation of
RPA equations made using Fig(cl

In Fig. 2(b) we give a pictorial representation of a vacuum
polarization function—iK ¢(P?) that describes the influence
of the coupling to the two-meson continuum. That coupling
is calculated at one-loop order, with the result tKatP?) is
of order 1, whileJg(P?) is of ordernc. We will discuss the
role of K¢(P?) at a later point in this work. At this point, we
note that for thef, mesons the relevant two-meson decay

channels arerm, KK, 57, 7, etc.

IIl. RANDOM-PHASE APPROXIMATION FOR
SCALAR-ISOSCALAR MESONS

We may use EQgs(2.12 and (2.13 to obtain equations
that determine the bound states in the confining field consid-
ered in isolation. Let us define the wave function solutions of
the homogeneous equations for the confining interaction,

s (P2k)
+ 0 _ S i
be i PLK) = PO2E.(K) (3.2
and
- PO = I's " (Pk) .
R ST

In some of our calculations we have kept only the first term

in the square bracket of Eq2.22. That procedure defines with similar definitions ofg, (k) and ¢ (k). Here,P is
the Tamm-Dancoff approximation, while the complete ex-the eigenvalue for the bound state labeled by the irdex
pression defines the RPA. Using Egs.(2.12 and(2.13, we have
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[P°—2En(k)]¢§nﬁk)=%zf k'2dk’ AT RT (POKIAST (K)
_F T (PO )

(=AM (k). (3.9

X[2k"2k2V§(k,k")

. -0
+m2kk' VE(k, k)] Similar  definitons are made forI'S; (P%k) and

F;{(Po,k). It is then useful to define bound state wave

y 1 C ) (33 functions
k2E2(k/) ¢c,n# ) . N
Fnﬁ_(POlk)
and P k)= ————, (3.9
P”—2E,(Kk)
0 -
[P +2En(k)]¢cvnﬁ(k) B F:{(Po,k)
1 dok)=— Py (3.10
——z-f k'2dk'[ 2k’ 2k2V§ (k, k") P"+2E,(k)
(2m)
1 L I'ss (Po,k)
MK VE(K) ) gz e benn K- pedk)=———, (3.1
PY—2E4(k)
(3.9
and
There are two other similar equations f@fzsg(k) and e
¢.s{K). Here, we have suppressed the indeXe remark dk)=— I'ss (Po.k) _ (3.12
thalz these equations do not require regularization for large * PO+ 2E4(k)
or k'
We have now obtained equations that allow us to solve fokye recall thatl " (—P%,k)=T"- (P° k), etc.

the wave functions bound in the confining fie[@ee Fig. (+)/i
1(b).] To proceed we need to add the terms that allow us to W_e may m(u_l)tlpIyQEq.(3.5) on the left byA, (k_) and on
solve for the wave functions associated with the vertex functhe right byA (—k) and form the trace to obtain an equa-

tions of Fig. 1c), I'(P,k). For the moment, we may neglect tion for [y (k). If we multiply from the left by
the confining interaction and consider only the NJL interac-A () (— k) and on the rlght by\”)(k) we obtain an equa-

tion. The use of the auxiliary functionis(P?) allows us to  tion for I' .= (—P°%k)=T = (P°k). Using Egs. (3.9-
provide an elementary derivation of a covariant version 0f(3.12), we f|nd

the RPA for the study of meson statesq character(We
will introduce the NJL regulator at a later pointie begin

by using amn-ssrepresentation. Thus, we may write equa-

tions for the vertex function¥ (k) andI'{(Kk):
(k) =357 PA) Gt I PGz (3.9
and
I'sgk) =3 P)Gsssst i P)Grnss: (3.6

In writing Eqg. (3.5 we have removed a common factor of
A [see Eq.(3.23] and in the case of Eq3.6) we have
removed a common factor ofgg. Also, since we are work-

ing with scalar-isoscalar states, we have a unit matrix in the

Dirac space that is not written explicitly in Eg€3.5 and
(3.6). Let us define

ALV G POKO AL (=)
=T (POOA (AL (=) (3.7)

and

[P~ 2E,(K) 1K) = [ AR H(k K )Gl (K)
+ (k)]
+J dk Hag(k,k") Gagnl bk’
+oedk)]

+f dk'VE&(k,k') k"), (3.13

[P°+2En(k)]¢rﬁk)=—f dk"Hrin(k,K') Gyl b K')
+ (k)]
—J k' Hed(k,K') Gagnr
X[pes(K)+pedk)]

—f dk'VE(k,K' ) k'), (3.14

094020-6
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and two similar equations fo:;b;—s(k) and ¢.{k). Here we
have used Eqg3.3) and(3.4) so as to include the confining
interaction in Eqs(3.13 and(3.14). Note that the confining
interaction only coupleaﬁﬁ(k) to itself and¢ (k) to itself,
etc. This feature is related to the neglect of pair currents in
the meson rest frame.

It is useful to symmetrize the interaction by introducing
the functions

Sark)= < P K) (3.15
nn En(k) nn ' '
_ k?
b k)= & iy S ). (3.16
FIG. 3. (a) The normalization constant of the meson wave func-
— k? n tion is obtained by requiring that the meson contain a single quark.
(K= E(k) dsdk), (3.17 The wavy line serves to introduce the quark number operator. The
S cross-hatched area denotes the vertex that includes both the effects
and of confinement and the short-range NJL interactidm.The figure
shows the Goldstone diagrams that result when one completes the
_ k2 integral overk® implied in (a) above. Here, time increases to the
<K= E(K) dsdK). (3.18  right. The first and second diagrams introduce the wave functions
S

with plus and minus superscripts, respectively.

The functionsg ~(k), ¢.~(k), ¢{(k), and ¢_(k) satisfy

equations of the form of Eqg3.13 and (3.14), etc., with ()‘rﬁ) _ (7‘9/‘/2) (3.23
Hun(k,k'), Heg(k,K'), VS(k,k'), and VE(k,k') replaced Ass, No/V2 '
by Hun(k,k'), Heg(k,K'), Vie(k,k'), and Vi(kk'). The _
form of the latter interactions is given in the Appendix. with
The RPA equations are regulated by the replacements
— k21202 — k21242 M = i 1o (3.24
Goo—e Gooe (3.19 “Alovz 1 :
and
- o We also note that
GSBHe_k 2a GSBe_k 2a ) (32@
. . . . Ggs Gao Ghnnn Gnnss!
(We recall that the confining interaction does not require ( )Z 1( ' ' )M (3.2
regulation) We also see that the replacements of EgsL9 Gos Goo Gssnn Gssss,
and (3.20 correspond to regulating the vacuum polarization
function Jg(P?) with a Gaussian factor ekpk®a?]. [See and
Eqgs.(2.20 and(2.22.]
We may normalize these wave function amplitudes by Hgs Hago Hm O
requiring that the meson contain a single quatee Sec. ( ): 1( )M (3.26
IV.) The normalized functions may be denoted as Hos Hoo 0 Hgy

¢:RN(k)’¢n_RN(k)’ etc. These are related to normalized ver-

tex functionsl;7(P°,k) and I ¢{(P°,K): IV. CALCULATION OF NORMALIZED WAVE
) FUNCTIONS AND MESON DECAY CONSTANTS
k2 T = (P%k)

¢+_ (k)= u (3.2 The calculation of the normalization factor that allows us
nn.N En(k) P"=2Eq(k)’ to define normalized wave functions,
S
o= (= Ton (PLK (3.2 (k)= VNi (k) (4.9
nn,N En(k) P0+ 2En(k) ’ .
etc. (0 =VNih=(k), 4.2

It is often useful to solve our RPA equations by passing
from the nn-ssrepresentation to a singlet-octet representaetc., may be made with reference to Fig. 3. We require that
tion. We note that the meson contains a single quark, with the result that
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P2k TABLE 1. The first column shows the mass values obtained
when solving the RPA equations witBge=10.02 GeV?2, Gy,
P :.-:OW p =13.87 GeV?, Gpg=0, k=0.055 GeV, m,=0.364 GeV, andn;
: =0.565 GeV. The second column presents the result including the
P2k effects ofKZ™(P?), which were calculated in Ref2]. The third

(a) column showsn?F; for each state, while the fourth column shows
m?f;, with f;=(0.153 GeVF; .

P2 4+ k -PR2+k

P  (MeV) m (MeV) meF, m?f;
P + P RPA RPA plus dispersive effects (GeV?)  (GeVd)
——

P2k 1004 950 0.472  0.0722
(b) : 1502 1472 0.231 0.0353
: 1560 1540 0.327 0.0500
FIG. 4. (a) The calculation of the meson decay constant requires 1835 1800 0.250 0.0383
the calculation of the Feynman diagram shown. Here the open 1860 1850 0.214 0.0327
circle represents the operatqt0)q(0). (b) The Goldstone dia- 2059 2040 0.280  0.0428
grams that appear when the integral ok®implied in (a) is com- 2105 0.283 0.0433
pleted. The first and second diagrams introduce the wave functions 2241 0.293 0.0448
with plus and minus superscripts, respectively. Here, time increases 2300 0.189 0.0285
as one moves to the right in the diagram. 2397 0.304 0.0465
5 2467 0.196 0.0300
1 2nc( 1 k 2530 0.309  0.0473

i 2 + 2_ |4 2 : .
N, 72 <2Mi)f K dk{Eu(k)} {lom(1P—[pm(K)]%} 2611 0.204  0.0312
on 1 K 12 2644 0.307 0.0470
c + - 2851 0.221 0.0338

+— |55 szdk[—} k)|?— k)|

T (2Mi) Es(k) tedll™ =l ol 3037 0.224  0.0343

4.3

In Eq. (4.3 the wave functions are obtained from thosein our earlier work in order to make contact with Maltman'’s
given by the computer code that solves the symmetrize@nalysis, and we use that value here.
equations

V. NUMERICAL RESULTS

b K) = [Eu(K)/ K] b K), (4.4
, , _ In this work we useu=0.010 GeV,x=0.055GeV, m,
etc.[We recall that the wave functions on the right-hand side_ 0.364 GeV, m.=0.565GeV, Ggg=10.02GeV2 Ggy,
of Eq. (4.4) satisfy the symmetrized RPA equations. See the_ 13 g7 Ge\f,z, a?’ldG()g:O. The calculation of these param-
remarks made after E¢3.18).] . . eters was described in the Introduction, so that our calcula-
To calculate the decay constant we consider the diagramo, of scalar meson properties is essentially parmeter-free.
of Fig. 4. There, the cross-hatched region refer§'t®,k),  we find the lowest scalar-isoscalar state at 1004 M&ée
while the open circle represents the scalar operatoraple |) Dispersive effects due to the presenc&afP?) in
d(0)q(0). Theresult for the decay constant is the formalism move that energy down to 950 MeV, where the
2 state may be identified with thg,(980). These dispersive
{d’:ﬁN(k) + (K} effects and their role in shifting the calculated energies of the
gq states is described in great detail in Rgf]. The calcu-
ne/ 1 K 12 Ia}tion pf K<(P?) is rather complgx. Some of the details are
T ?(ﬁ)] kzdk[m} {¢§§N(k)+¢;§r\|(k)}- given in Ref.[14] where we stid|ed they mesons(There,
: s the decay channels werern, KK, and7'.) Since the cal-
(4.5 culations are covariant, the decay amplitudes, calculated at
) L _ one{quarkjloop order, may be calculated in any Lorentz
[See Fig. 40).] The decay constant of EG.5) is dimension-  game The amplitudes require regulation and the regulator is
less. For ease of comparison to the decay constants calcppgsen so that reasonable widths, which are proportional to
lated for theao0 meséons[B], it is %seful t(()) define a decay | K4(P?), are obtained for the mesons consider@tie do
constantf;=(ms—m,)F;, wheremg andm, are the current o cajculate final-state interactions when calculating the de-
quark masses of the strange and up quarks. The factor ehy amplitudes. Some of the effects of such final-state inter-
(mg—my) is introduced by Maltman so that the, decay actions may serve to modify the value of the regulator cho-
constants are similar in magnitude to the decay constants @fen for the quark-loop integrals.
the K§ mesons in the case that tag andK§ mesons have In Table | we show the mass values obtained from the
similar wave functiong5,6]. We usedn?—m2=0.153 GeV  RPA equations in the first column. The second column shows

Eu(k)

2k _ n_Cif 2
miFl—x/?WZ(Zmi K2dk
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K", (K), kb (K), k6" _(K), ki, (K)

0.0. — IO.5I — I1.0‘ — 11.5I — I2.0
k (GeV)

FIG. 5. The wave functionkcbrfn{k) (solid line), k¢ (k) (dot-
ted line, k¢5+—s(k) (dashed ling andk¢s{K) (dash-dotted lingare
shown for the 1°P, state that we identify with thé,(980) reso-

nance. These wave functions correspond to the normalized wal

functions introduced in Sec. Il

the values obtained when the effectskaf{ P?) are included
[2]. Values of K¢(P?) calculated for the two-pion decay
channel were given in Ref2]. There, they were denoted as

KST(P?), K& (P?), and Kgg(P?). Since thefy(980) is
mainly annn state we may consider

o Kgg(P?) v2 KT (P?)
Kn—(P2)=T+§KOS(P2)+T.

n

(5.9

A typical value of ImMK™"(P?) is 0.005 GeV [2]. As we will

K (), kb (K), k" (), ki ((K)

00 05 10 15 20
k(GeV)

FIG. 6. The wave function for the 1P, state that we find at
1472 MeV. (See Table ). After consideration of quarkonium-

glueball mixing we would identify this state with thg(1370).

PHYSICAL REVIEW D 64 094020

I

(b)

FIG. 7. (a) Contribution to the scalar-isoscalar correlation func-
tion due to thef, resonances(b) Contribution to the scalar-
isoscalar correlator that depends upon coupling to the two-pion con-
tinuum. (This contribution is quite small and may be neglected.

see, the contribution of I477(P?) to the imaginary part of
the correlator introduced in Sec. VI is extremely small and
ay be neglected.

In Fig. 5 we show the normalized wave function ampli-
tudes for the 1P, state that we identify with thé,(980).

We see that that state is predominantlyranstate. In Fig. 6
we show the wave functions of the state at 1472 MeV. We
see that that state is mainly 8§ character. Some support for
the assignment of that state to thg 1370) is given in Sec.
VIl. However, the states at 1472 and 1540 MeV will mix
with the scalar glueball which is believed to be at about
1.5-1.7 GeVW.

VI. SCALAR-ISOSCALAR HADRONIC CORRELATION
FUNCTION

In this work we study the hadronic correlator

c(P?)=1 | d'x &7 o[ T@x)a(d0)a(0)]0)
(6.1

and consider two contributions. These contributions are de-
picted in Fig. 7. In Fig. 7@ we show the contribution of the
f, resonances.

It is useful to separate the contribution of thg€980) and
write for the resonance contribution to [BfP?)

l|CF>2
;m rR(P?)

1 My I’
4 2 0(980) '0(980)
=m f —
f5(980 ' (980 - [P2

2 ) 2
_mfo(980)] + mf0(980)rf0(980)

1 m;T’;
7 [P?—m{ ]2+ miT;’

16
+Z,2 mf2 (6.2

where the sum is over the states shown in Table I. Here we
choosemf0(980)=0.980 GeV,FfO(980)=O.075 GeV, andl’;

=0.200 GeV. We remarked earlier that the contribution to
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0.025

i 3ot
0.020 |
~ 0015 | e —
Ng/ i _ E B
o I - —_
g 0010 < 2071 =
= L o] L
= _ > i
0.005 - 8 15k —
: £ S =
r  —
0.000 L ! e i
0 2 4 6 8 10 1.0 \_ —
P? (GeV?) i
FIG. 8. Values of (1#)ImC(P? are shown. Here, we use 0.5 - _

m?o(gsgff0(98@:0.0722 Ge\?, Ff0(98@:0.075 Ge\/, andmfo(ggo)
=0.980 GeV. For the other states we tdke 0.200 GeV. The val-
ues of m, and mizfi are given in Table I.[Note that f;
=(0.153 GeVF; for each statd.The values given in the figure ) ) _ _
may be compared to (0.153 GeMn K™(P})~1.2x10"* GeV*. FIG. 9. The first and third columns of levels show tireandss

Therefore, we see that the contribution from coupling to the two-States bound in the confining field, respectively. The second column
pion continuum is negligible shows the 28 levels found when the RPA Hamiltonian is brought to

diagonal form[9]. The various arrows show the parentage of the

. . AN resulting states. The(547) has 75% of the £S, nn state that has
the correlator function arising fros™(P?) is very small, the ys vertex and 25% of the 1S, ss state that has thes vertex.

so that we take I.rﬁZ(PZ):Im Cr(P?) in our analysis. UsiNg  These percentages are reversed for#h€958). The 1'S, nn and
the values given in Table I, we construct Fig. 8, which showsggstates with they, ys vertex are fragmented over many states. The

(1/ar)Im C(P?) for P’<10GeV. The result is quite similar (1295 and 7(1440 are almost entirely of 2S, N character. We
to that obtained for the scalar-isovector correlator describeflave used Ggg=12.46 GeV?2 G,=8.60 GeV?2 and G,

s
3
w
%]

Expt.

In Ref. [3]. =12.46 GeV2 The masses of the(547), 7' (959, 7(1295, and
7(1440 are found to be 550, 924, 1317, and 1411 MeV, respec-
VII. DISCUSSION tively.

In this work we have used the parameters@yandGp the f((980) resonance implies that the model of choice is the
that yield a good fit to the energies of thg547), 7 (958), nonlinear sigma model rather than the linear model. How-
7(12995, and (1440 [9]. (See Fig. 9. Therefore, except for ever, the fact that an analysis of low-energyr scattering
relatively small effects due ti&g(P?), the calculation re- gives rise to a pole, which corresponds to a “sigma meson”
ported here is parameter-free. It is found that the lovigst Of mass of about 500-600 MeV and a quite large width, has
state has a mass of approximately 1 GeV. There is no evicreated a great deal of confusiftb]. For example, a study
dence in our calculations of thig(400—1200) that now ap- of = scattering in conjunction with the processr— KK
pears in the data tables. This matter is discussed in sorred Surovtsev, Krupa, and Nagy to identify &§(665)[16].
detail in Ref.[15], where we define “intrinsic” and “dy-  That result leads to their suggestion that one should consider
namically generated” states. The intrinsic states are found by linear realization of chiral symmetry as appropriate. On the
studying aqq T matrix [2] or by diagonalizing the RPA other hand, Li, Zou, and Li17] have also studiedr= scat-
Hamiltonian, as was done in this work. Dynamical statesering and have come to a different conclusion. They show
appear when studyingrm scattering and these are ngg  that t- and u-channelp exchange gives rise to a pole at
states. For examplé;channel andi-channelp exchange be- (0.36-0.53) GeV. [They also introduce an additional state
tween the pions gives rise to a strong attraction that is rewith a pole at (1.670.26) GeV to increase the phase shift
sponsible for the rapid increase with energy of the0, | obtained fromp exchange, so as to fit ther Swave ampli-
=0 phase shift in the case af7 scattering 15]. tude] The authors of Ref.17] conclude that there is no state

We have found that, if we wish to obtain a scalar state abf qq character below 1 GeV. We have come to the same
600 MeV, we have to increases by about 50%, if we main- conclusion using somewhat different argumdrts]. While
tain the same value foB, . That change represents a very we have also studied the role pfexchange as it pertains to
large violation of the chiral symmetry of the Lagrangian andthe Swave phase shift15], we have seen in the work re-
is unacceptabld.See Eq.(1.1).] ported here that a calculation of scalar-isoscajgrstates

The lack of significanigq strength below the energy of does not produce a low-mass sigma.
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Another recent work of interest is that of REE8]. There, when calculations are made for th€138 andK(495) me-
the authors obtain @ meson of mass 630 MeV at zero sons. It may be best to neglect confinement for these Gold-
temperature and density and use the ratio ofdhmass to  stone bosons, or to perform calculations in Euclidean space,
the 7 mass to provide a quantitative signal for chiral sym-to ensure that the relations that follow from the chiral sym-
metry restoration at finite temperature and density. Howevemetry of the Lagrangian are preservd@].
these authors identify the of their model with ther seen in

77 scattering. It appears clear to us that thebtained from APPENDIX
the study ofrr scattering is not the chiral partner of the pion o
[19]. In this Appendix we provide values foHn(k,k"),

The authors of both Ref§16] and[17] find a quite small ﬁsg(k,k’), andV¢(k,k'):
width for the two-pion decay of thé,(1370). That can be

explained in our model, since the state we tentatively iden- — , 2 k?k'? k21262 — K 2202

tify with the f¢(1370) is mainly ofss character. However, Hin(k.k") =~ ?nCEn(k)En(k’) € '
the f(1370) decays predominantly to the four-pion channel. (A1)
That suggests that tHg(1370) may have a large scalar glue-

ball component. The entire matter of quarkonium-glueball — , 2 k?k’2 k21202 —K' 21202
mixing in the scalar-isoscalar states deserves further investi- Hsstkik')=— 2 "CE (EL(K) © € ’
gation. (A2)

We have noted in this work that the nature of the various
scalar states that appear in the data tables is a matter of some —. , o ,
controversy. Various models and configuration assignments Vin(k, k') = (2m)2 E (K)E,(K) [2kk"Vg(k,k")
are described in Ref§19-29. We believe our work has
introduced an important element in the attempt to resolve +m2VE(k,k)], (A3)
these issues.

While the nature of thé,(400—1200)or o(500—-600]is ~ and
a matter of some controversy, the nature of thEo80) is

!

. . . . 1 kk’
also subject to various interpretations. One approach regards Vs%k,k’)z 5 . [2kk’v0°(k,k’)
the f((980) as a four-quark bound std&0] and another as a (2m)° E{(K)Es(K")
KK “molecule” [31]. It was early thought that th&,(980) +m2VE(k,k")] (A4)
might be a glueball32]. Recently thef ;(980) has been seen
in neutrino-nucleus charged current interactions, where it isvith
found that thef;,(980) behaves as an ordinagy state. The .
authors of Ref[33] also remark that “All measured charac- N & ! CiC_ O
teristics of f5(980) production inZ® decays are consistent Vilk k)= 2 f_ldx POOVEk=K'), (A5)

with the f((980) being a conventional scalar meson.”
Finally, we note that confinement is quite a small effectetc.
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