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Quarkonium feed-down and sequential suppression
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About 40-50 % of the quarkonium ground stat¥#g/(1S) and Y (1S) produced in hadronic collisions
originate from the decay of higher excitations. In a hot medium, these higher states are dissociated at lower
temperatures than the more tightly bound ground states, leading to a sequential suppression pattern. Using new
finite temperature lattice results, we specify the in-medium potential between heavy quarks and determine the
dissociation points of different quarkonium states. On the basis of recent Collider Detector at Fé@DiRab
data on bottomonium production, we then obtain first predictions for sequéftgippression in nuclear
collisions.
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[. INTRODUCTION dissolve at different temperatures of the medildg], and
through a lowering of the open charmb flavor) threshold

The large values of the charm and bottom quark massegith temperature, dissociation iyD or BB decay becomes
permit potential theory to provide a realistic account ofpossible for higher excited states even below the deconfine-
quarkonium spectroscoppl—3|. From these studies, it is ment poinf13]. Since the lifetime of the excitations is much
known that the intrinsic length scales of qua_rkonia are muctparger than that of the medium, feed-down production will
smaller than those of the usual hadrons, wiff,~0.2 fm  yegyit in a characteristic sequential suppression pattern
andry~0.1 fm for the radii of the lowestc andbb vector  [14,15, with the fraction ofJ/¢ or Y produced through the
mesons, respectively, in contrast with about 1 fm for light  decay of higher excitations becoming suppressed at lower
state radii. This “short-distance” nature of quarkonium statestemperatures than in the directly produced ground states.
suggests that at least some features of their production in To fully predict this sequential suppression, two prerequi-
hadronic collisions should be accessible to perturbative QCRites are needed. We have to know what fractions of the
calculations, and that indeed turns out to be the case. quarkonium ground state production originate from which

The simplest and most general model for quarkonium prohigher excitations, and we have to know at what temperature
duction, the color evaporation model], postulates that the o energy density of the hot medium a given excitation dis-
cross section for the production of a given charmonium Orggjyes. The first can be determined either experimentally or
bottonium state is simply a fixe@nergy-independenfrac-  hrough a viable model for quarkonium hadroproduction.
tion of the corresponding perturbatively calculatedor bb  The second is a well-defined problem for finite temperature
production cross section. The resulting predictions for theattice QCD studies. At present, neither problem is com-
energy variation of thel/¢y and 'Y hadroproduction cross petely solved. However, in the case of charmonium, the pro-
sections are experimentally very well confirmed, for e  qyction rates of the higher excitations are experimentally
over a range from/s=20 to 1800 Ge\[5]. The assumed known, and for bottonium production, recent Fermilab data
energy independence of the production ratios 8f15 and  [10,9] provide the basis for fairly reliable estimates. This
35/1S states is found to hold over the same rafge determines the structurée., the sequence and the different

Higher quarkonium excitations decay into lower statesheightg of the various suppression steps #3gy andY pro-
with generally known branching ratios and widths. As anduction, but not the actual positions of these steps as function
example, they'=y(2S) decays intoJ/(1S)+anything  of the temperature or energy density. To estimate these, we
with a branching ratio of 55%, after a mean lifetime of moremake use of recent lattice studies calculating the temperature
than 16 fm. As a consequencel/ss or Y production in  pehavior of the heavy quark potential in full QQ3,16.
hadronic collisions occurs in part through the production ofas a result, we obtain a modifiedl s suppression pattern
higher excited states which subsequently decay into thg14 15 including the decay o’ andy. in confined matter
quarkonium ground states. It is known experimentally tha{13], and then first quantitative predictions for the sequential
for both J/4 and’Y about 40—50 % of the hadroproduction y suppression to be studied in forthcoming BNL Relativistic
rate is due to such feed-down from higher excitationsHeavy lon Collider(RHIC) and CERN Large Hadron Col-
[6-10. lider (LHC) experiments.

Quarkonium production through feed-down becomes par- The structure of this paper is the following. In Sec. II, we
ticularly interesting when quarkonium states are used t@irst summarize the hadroproduction cross sections for the
probe the hot and dense medium created in high energyifferent charmonium states and then determine the corre-
nuclear collisions. It was predicted that color deconfinemengponding bottonium cross sections from the mentioned new
(quark-gluon plasma formatiorwould lead toJ/y suppres-  Collider Detector at FermilalfCDF) data. As a result, we
sion, since sufficiently hot deconfined media dissolve any can fully describe the origin of thé&/« andY produced in
binding[11]. However, different quarkonium excitations will hadronic collisions in terms of feed-down from higher ex-
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TABLE I. Cross sections for direct charmonium productionsinN andpN collisions, normalized to the
overall J/ ¢ production cross section in the corresponding read@nfeed-down fractions and mass gap to
the open charm threshold.

State Ri(7~N) Ri(pN) fi(m~N) (%) fi(pN) (%) Eqis (MeV)
I (19) 0.57+0.03 0.62-0.04 573 62+ 4 0.642
v1(1P) 0.72+0.18 0.60-0.15 20+5 16+4 0.229
va(1P) 104029  0.99-0.29 15+ 4 14+4 0.183
W(29) 0.14+0.04 0.14-0.04 g+ 2 8+2 0.054
Jl 1 1 100 100

cited states. In Sec. Ill, we consider the temperature depefransverse momenta=5 GeV lead to 0.120.05 and are
dence of the heavy quark potential obtained in recent latticghus within errors in accord with the quoted average value.
QCD studies. Solving the corresponding Sdhinger equa-  Similarly, the ratio ofy to J/¢ production is found to be
tion, we then determine in Sec. IV the dissociation paramgonstant over the ranggs=7-65 GeV[5]. As noted, the
eters for the different states in a deconfined medium. Thigolor evaporation model postulates that the different charmo-
leads to quantitative estimates of the sequedligf andY  piym state cross sections” are constant(i.e., energy-
suppression patterns. independent fractions ¢; of the overall “hidden charm”
cross section
II. QUARKONIUM PRODUCTION AND FEED-DOWN

A. Charmonium states 0'?(5) =Cjocd(s) with M =<2Mp. (2

It is well known thatJ/¢ production in hadron-hadron This assumption is thus indeed very well satisfied, even
collisions is to a considerable extent due to the production P . /ery o
though the corresponding production cross sections them-

and subsequent decay of higher excicedstateq6-8|. We  gelves vary considerably in the energy range in question, in
shall here summarize the situation following systematic studz.ord with the perturbatively calculable variationogf(s).
ies using pion and proton beams at 300 GeV incident ENergy, 1o thatS.c.<1 since more than half of thec pairs

~1 ’

[8]. In the first two columns of Table I, we list the cross . _ ) o
sectionso obtained for the direct productiofexcluding formed WIthM c<2Mp acquire the missing energy fro”.” the
feed-downl of the different charmonium stateg(1S) color field and then cqntnbute to open charm productlon.
f T S The color evaporation model does not predict the values
x(1P) and " =y(2S) in @ -nucleon ancp-nucleon inter- ¢ w0 £ torec. . More detailed arguments do, however, lead
to some relations between the different cross sections. Pro-

actions, normalized to the overall measutl@ cross sec-
tion oy, which includes all feed-down contributions. . . . — .

jecting a color singletc state onto different quantum num-
ber configurations leads to the estimpi&]

Hence Ri(7m~ N)=o"(7 N)/oy, (7 N) for the directly
produced staté in 7~ N interactions, and similarly fopN

collisions. 3
Making use of the branching ratid{ y;(1P)— #(15)] a%(28) T(y(2S)—e'e’) [ My, ~024, (3
=0.27-0.02, B[x,(1P)— (1S)]=0.14+0.01, and ad(1S) F(y(1S)—ete )\ M v T

B[ #(2S)— #(1S)]=0.55+0.05, one obtains the fractional
feed-down contributionsf; of the different charmonium
states to the observeld production; these are shown in the
next two columns of Table I. Also listed are the dissociation
energiesEy;,

wherel" denotes the corresponding dilepton decay width of

the state in question, ani¥ its mass. The values 0.23

+0.06 and 0.22:0.05 obtained from Table | forr"N and

pN collisions, respectively, agree well with relati¢d).

EidisEZMD_Miv (1) _ The ratios between the di_fferem(lP) states are pre-
dicted to be governed essentially by the orbital angular mo-

mentum degeneradyt9]; we thus expect for the correspond-

measuring how far the mass of statées below the zero- | )
ing cross sections

temperature open charm threshollg=3.740 GeV.
From Table | it is seen that some 60% of the obsed/efl
are directly produced, about 30% come frgmand about Xo(1P):x1(1P):x2(1P)=1:3:5. (4)
10% from ¢’ decay. According to the color evaporation
model, feed-down fractions as well as cross section ratios aerom Table | we have foir N collisions y,(1P)/x,(1P)
energy independent. The results shown in Table | for the=1.44+0.38 and thus reasonable agreement with the pre-
ratio of 4’ to overallJ/¢ production are in excellent agree- dicted ratio 1.67. FopN interactions, the experiment mea-
ment with a variety of experimental results over the rangesures only the combined effect gf and y, decay(30% of
Js=18-65 GeV, which give 0.1#0.034 as averagfs].  the overalld/y production; the listed values are obtained by
Even Tevatron results at/s=1.8 TeV for charmonium distributing this in the ratio 3:5.
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1000 S B TABLE II. Cross sections for direct bottomonium production in
2S —e— p-p collisions, normalized to the overdll production cross section
100 ¢ 38 —=— 1 [10,9]; feed-down fractions and mass gap to the open bottom
10 ba- threshold; feed-down fractions obtained in nonrelativistic QCD
2 (NRQCD.

1 = — =
State  Ri(pp)  fi(pp) (%) Eais (GEV) f,(pp)nraco (%)

0.1

Bns s+ ,-d0/dy dpyi [pb/GeV?]

Y(1S) 0.52:0.09 52:9 1.098 05234
0.01 Cm Xo(1P) 1.08:0.36  26-7 0.670 0248
I Y(2S) 0.33t0.10 10:3 0.535 87
0.001 : - - Xo(2P) 0.84:04  10:7 0.305 144
0 5 10 15 20 Y(3S) 0.20:0.04 2+05 0.203 22
P Y 1 100 100

FIG. 1. The transverse momentum dependence of the inclusive
production cross sections for differemt®) bottomonium states; the

lines are exponential fits. a(Y')= 2 B[i —>Y’]crid , 7
1

B. Bottonium states

Production cross sections for the different§} bottonium and

states below the open beauty threshold are known over a a(Y") =c%(39) (8)
considerable energy rang6,9], and as for charmonia, the

resulting ratios are with very good precision energy indepentor the three differenbb S states. The branching rati@ i
dent[5]. Corresponding cross sections for the sub-threshold., y'] andB[i—Y'] are compiled inf21].

(nP) states are so far available only for transverse momenta The experimen{10] further provides the fractionsi”
pr=8 GeV/c [10]. To analyze the complete feed-down pat- ;2P of Y production coming from the differentP and

tern, we thus have to find a way to extrapolate these data top XbYstates For these fractions we know

pr=0.

In Fig. 1, we show the distributions of theY, Y', and
Y"” states. It is evident that they exhibit a very similar trans-
verse momentum behavior, which can be parametrized quite
well by the form and

F%%(Y)=Zi B[i—(1P)]B[(1P)—Y]s! 9

d i
ﬁﬂiexp{(—OAlSpT}, ) F2Po(Y)=2, B[i—(2P)]B[(2P)—Y]o? (10

where N; specifies the overall cross section values of then terms of the direct production cross sections for the dif-
different statesi. We shall therefore now assume that all ferent states. The branching ratios are again givefRin.
bottonium statesnP as well asnS, are governed by the Equations(9) and(10) illustrate that the observeg, states
samep- distribution, so if we know a production ratio in one that can decay intd" arise themselves in part through feed-
pr inteval, we know the ratio of the overall cross sections. Todown from still higher excited states. We have to specify the
test the Va||d|ty of assuming such auniverpakjependence' different fractions for thiS, since e.g. the meltlng of the
we have compared data for the differer states taken in Y (2S) will also remove that fraction of the observgg(1S)
the interval kp;<18 GeV to an extrapolation of corre- Production that comes frofii (2S) decay.
sponding data for & p;<18 GeV. The resulting difference  The experimental values fdFy” and F{” are given in
of about 10% indicates the uncertainty inherent in our pro{10] for transverse momenta;=8 GeV/c. Since the differ-
cedure. ent S states show a universpl dependence, we assume the
To complete the feed-down analysis, we need the decagame to hold for theP states and thus take the measured
branching ratios from higher to lower bottonium states,values
which can be readily computed from the Particle Data Group
compilation. From the measured cross sections including
feed-down effectdenoted byo) we now want to recon- to remain applicable for the entigg; range. Making use of

st”ruct;ht(; dlrtre]ctlgrgdtl:ctlpn crots?sgrcr:!oidlengtett:i btfi) 0]; the measured overall cross sections=26.9+0.6 mb,
all sub-threshold bottonium statesThis leads to the rela- oy:=13.1+0.5 mb andoy,=5.5-0.5 mb, we can then

tions solve the five equation®)—(10) for the different direct pro-
duction cross sections. The results are shown in Table II,

6) normalized tooy, together with the relative fractions each
state contributes to the overall production. For thé® states

Fif=0.27+0.11, F32°=0.11+0.06 (12)

o(Y)=2, Bli—Y]o?,
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Xb, the shown values are based on the overall cross section T II I
(xb)=0(xpo) T 0(xp1) T o(xp2), With the three orbital O [pmmunrrupmy gy o4 $4 - -%%%——H "
states assumed to contribute in the ratio8:5[19]. Again \ oot } m r ol
we also list the values 002} ﬁ 1
=
Edis=2Mp—M; 12 & o4l . %
iy
of the corresponding zero-temperature dissociation energies.= 06 | }
For the feed-down pattern if production we thus find
approximately 50% direcY (1S) production, 30% from di- -0.08
rect xp(1P), 10% from directY’(2S) and 10% from direct
2P) production and subsequent decay iNtfLS). Again -0.1 b . . . . . . . .
Xo(2P) p ; yMELS). Ag 02 04 06 08 1 12 14 16 18 2

the energy independence of these fractions, as required by
the color evaporation model, is well satisfied for the mea-

sured rat!os[5]. To test the Consistency .Of thg feed-down FIG. 2. The color averaged potential Bt=1.03T .. (triangles,
pattern with more recent theoretical considerations, we have_ 4 4or (circles andT=23.84T, (squarek The vertical lines in-
. Cc . Cc

also calculated the fractions for the whole measuedn- gjcate the points, beyond which the potential becomemdepen-
terval using the NRQCD factorization formuld0,21]. The  gent.

results are presented in the last column of Table II; the details

of the calculations are given in the Appendix.

r (fm)

some representative temperatures. It is seen that beyond a
certain separation distanece=ry(T), the free energy of the
IIl. THE HEAVY QUARK POTENTIAL IN HOT MEDIA heavy quark system becomes a constant, indicating that

In finite temperature lattice QCD, the temperature behavwithin the accuracy of the calculation, ti@Q interaction

ior of the statioQ Q potentialV(T,r) is obtained from Polya- Potential vanishes. The resultimg(T) as a function of the
kov loop correlations measuring the free eneRdyT,r), tempe_rature is given in Fig. 3. Slnge forro(T), there is no
more interaction between the static color sourcgél) pro-

—TIn{L(O)L*(r))=F(T,r)+C=V(T,r)—TS+C, vides a natural limit to all bound state radii.
(13 The potential/(T,r) obtained from Eq(14) is the aver-

) i age over color singlet and color octet contributions; it can be
where S denotes the entropy due to the introduction of anyitten in the form

unboundcc or bb pair into the medium an@ the (undeter-
mined Polyakov loop normalization. This can in principle 1
be fixed by requiring that at very short distanaes,T~?, the V(T,r)=—T In‘—exp[ =V (T,r)/T]

potential has the purely Coulombic forew/r, since in the 9

limit r—0, the effects of the medium should become negli- 8

gible. At present, however, lattice calculations for high tem- +§exq—V8(T,r)/T]] , (15
peratures are probably not yet precise enough to reach the

small r range required; forT<T., the normalization is

found to be more reliablg13]. We therefore here leave ~ Where V,(T,r) and Vg(T,r) specify the singlet and octet
open; as will be seen, this does not affect the determination

of the dissociation points of the different bound states; it only 2
prevents a reliable determination of the binding energy. The
definition of Sin Eq. (13) assumes that for—o, V(T,r)
—O0VT. We thus obtairV(T,r) from the relation

<L<0>L*<r>>)
Lz

where|(L)|? denotes the value gL (0)L"(r)) for r—o.
The free energy13) was recently studied on 184 lat-
tices for 3 and 2-1 flavor QCD using improved gauge and
staggered fermion actio$6,17. The quark masses used in 0

these studies were/T=0.4 for 3 flavor andm, 4/T=0.4
andmg/T=1 for the 2+1 flavor case. In our analysis we

use the 3 flavor potential, for which the analysis is the most FiG. 3. The temperature dependence of the paigtbeyond
complete. However, we have verified that differences bewnich the potential becomesindependent. The solid line repre-
tween the potentials as functions ©F calculated in the 2 sents the fit to the data any(T). The dashed lines represent the
+1 and 3 flavor cases are in fact small. The resulting potenerror band and were estimated by fitting the data gshifted up
tial in 3 flavor QCD(14) for T>T, is shown in Fig. 2 for  (down) by one standard deviation.

V(T,r)=—=TIn (14

ro{T) (fm)

1 1.5 2 25 3 3.5 4
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r (fm)
FIG. 5. The temperature dependence of the coupling constant;

FIG. 4. The color averaged potential for temperatuies the line is a fit using the 1-loop running coupling constant formula.

=1.45T; the lines show the fits described in the text.

_— , , A similar behavior of the screening mass was found in pure

contributions, respectively. In perturbation theory, the lead'SU(Z) and SU3) gauge theory24—26.

ing E?rms for both are at high temperature and sma(f We shall now assume that the forh8) of the screening

<T"7) of Coulombic form, mass continues to remain valid as we lower the temperature
to T.. Such a constant screening mass dowif {as again

f ﬂ Vo(T.r)=+ 1 ﬂ (16) expected from studies of pure gauge theory. There the

3 r’ g 6 r '’ screening mass determined from the color averaged potential
decreases fof <1.5T, asT— T, [27]; however, the screen-

with «(T) for the temperature-dependent running coupling.ing mass determined from the color singlet potential appears

In the region just above the deconfinement poirt T,  to be temperature independent o 10T, [24—26.

there will certainly be significant non-perturbative effects of On the other hand, quenched QGpure SU3) gauge

unknown form. We therefore first consider the high temperatheory] studies indicate that whef is lowered toT., the

ture regime, which we somewhat arbitrarily define Bs perturbative ratiov, /Vg=—8 will increase in favor of the

=1.45T,. In this region, we attempt to parametrize the ex-singlet potentia]28]. We therefore try to describe the behav-

isting non-perturbative effects through a conventionalior just aboveT, by a potential of the forni15), in which the

Vi(T,r)=—

screening form, replacing E¢16) by color octet potential is given by
3 a(T) c(T) a(T)
—Zvl(T,r)=6 V8(T,r)=Texp{—,u(T)r}, 17 VB(T,r):TTexp[—,ur} (19

where u(T) denotes the effective screening mass in the delnstead of Eq(17); the factorc(T)<1 accounts for the ex-
confined mediunt.In Fig. 4 we show the fits obtained with Pected reduction of octet interactionss> T.. In the inter-
the form(15)/(17), assumingx(T) and«(T) to be unknown  Vval T<T<1.45T; we thus fit the lattice results for(T,r)
functions ofT. The functional form of the potential is seen to in terms of the two parameterT) and «(T), with w(T)
be reproduced very well, with the values @T) and u(T) given by Eq.(18). In Fig. 7 it is seen that this in fact leads to
as given in Figs. 5 and 6. We conclude that in the high

temperature regime, a perturbative description modified by 14 b |
color screening gives an excellent account for the lattice re- &
sults. The screening mass becomes a constant in units of the 1.2 i & i @ .
temperature, 1} H b
w(T)=(1.15£0.02T. (18) £ 08r
06
L _ , ) 0.4
The form(17) is actually valid only for > 1/T. For the distances
r<1/T most relevant for quarkonium studies, the screening is de- 02r
termined by the momentum-dependent self-enerby(w=0,p) 0 L . . . .
[22]. In coordinate space this leads to alependent effective 15 2 25 3 35 4
screening masg23]. In our case this dependence of the effective /T,

screening mass is not important because of the insufficient accuracy
of the lattice results, which in 3 flavor QCD can be fitted well with  FIG. 6. The temperature dependence of the screening mass; the
a constant effective screening mass. line shows the average value.
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S 004+
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@
> -0.08

-0.1

-0.12

-0.14 i - . : : . : :

0.2 0.4 0.6 0.8 1 1.2 1 1.5 2 2.5 3
r (fm) T,
FIG. 7. The color averaged potential for low temperatuFes FIG. 9. The radii(in fm) of J/¢ and Y states as functions of
<T<1.45T; the lines show the fits described in the text. T/T,, compared ta o(T).

an excellent parametrization of the lattice res(ilt6]. The  thus obtained then have to be compared to the limiting bind-
resulting behavior o€(T) is shown in Fig. 8; that o&(T) is ~ ing radiusro(T) in order to specify the dissociation points of
included in Fig. 5. From these considerations, we obtain théhe different states.
form (17) for the color singlet potential, in whicl(T) is Before doing this, we have to specify the temperature
given by Eq.(18) and «(T) by Fig. 5. scaleT.. In the physically interesting case oft2l flavor
and physical quark masses it is not very well determined. In
the chiral limit of 2 flavor and 3 flavor QCD, one finds
IV. QUARKONIUM DISSOCIATION IN HOT MEDIA =(173+16) MeV (2 flavon and T,=(154+16) MeV (3
hféavor), where the quoted errors are the sum of statistical and
Fstimated systematic discretization errpt$]. For finite u
andd quark masses, the critical temperatures coincide in 2
+1 and 2 flavor QCD. We therefore assume thiat
=173 MeV is the relevant critical temperature and use it in
our calculations. We have also studied the results obtained
1 _, a rrara with the three-flavor temperature=154 MeV; the differ-
2my+ Hav V() | OF=Mid7, (20 ence turned out to be negligible within the present accuracy
of our approach.

-~ ) In Fig. 9, we illustrate the determination of the dissocia-
wherea=c,b specifies charm or bottom quarksdenotes  {jon points by comparing the radii of the charmonium and
the quarkonium state in question, ands the separation of sttonjum ground states with the limiting binding radius
the two heavy quarks. Above the deconfinement point, the 1y |t is seen that thd/y is dissociated at=1.1T, the
string tension vanishes and we are left with the singlet poy 5t7~2 5T_. These results are remarkably consistent with
tential V,(T,r) as determined in the previous sectlo.n. Weinose obtained previousfi4] using a screened Cornell po-
therefore calculate the bound state radii of the differentgnija| together with lattice estimates for the screening mass.

In the absence of any medium, the masses and radii of t
different charmonium and bottonium states are quite wel
described by non-relativistic potential thedfy-3], based on
the Schrdinger equation

states, using Eq17) in the Schrdinger equation. The radii We now want to compare the various thresholds for
quarkonium dissociation. In Table IlI, we list the different
1.2 - ' - ; - charmonium states, together with the corresponding dissocia-
tion temperatures. For th& ¢, this is the valueT=1.1T
T e " " " determined above. Thg. and ¢’ radii exceedry(T,.), S0
o8l / | that these two bound states cannot existlferT ; the same
!’ holds for thex,(2P) and theY (3S) states. On the other
E o6l / | hand, the dissociation points of thg(1P) and theY (2S)
© / states coincide approximately with that of thky; all three
0.4 : values are here found to be slightly aboVg. Bearing in
& mind the unknown systematic errors of the method used
02 1 here, based on the intersectionrg{T) and the bound state
/ mass calculated with a screened Coulombic potential, it
0, 15 > 25 3 35 4 seems possible only to conclude that these states are disso-
7, ciated very close to the deconfinement pdipt This is also

consistent with the conclusions reached in the study of the
FIG. 8. The ratio—8Vg/V, as function of theemperaturethe  dissociation pattern fof — T, from below. TheY, however,
line is a fit. clearly persists up to temperatures well abde In Table
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TABLE Ill. The dissociation parameters of different quarko-
nium states, as obtained by color screening TorT. (present 1
work) and through decay into open charm liflavor for T<T,
[13]. 08 |
aq T/T, (T w(T) 06 [
J/Iv 1.10 0.91 04 |
xc(1P) 0.74
#(2S) 0.1-0.2 02|
Y (1S) 2.31 0.43
xu(1P) 1.13 0.88 0 . . .
Y(29) 110 0.91 0 0.5 1 1.5 2 25 3
Yo (2P) 0.83 e
Y (39) 0.75

FIG. 11. TheY suppression pattern.

we should be able to give the dissociation points as well in

Ill, we also list the screening masses relative to the deconterms of e. At present, however, various uncertaintigise
finement valuew(T,) for those states that survive beyofig ~ Precision of theT. determination, the quark mass depen-
and are then dissociated by color screening: this provides d#nce ofT. and of ¢, dependence o on the number of
indication of the change in the effective screening radius. 11avors, finite lattice effectslead to uncertainties of about a
Let us next address briefly the survival of those stated@ctor of 2 ine. A precise determination of this quantity is
(¥ .xe,Y",xi) that cannot exist fof =T.. In earlier stud- thus evidently one of the main reasons for insisting on in-

. . . . reased computer performance in finite temperature lattice
ies[12,14], it had been assumed that they are dissociated CD studies; to illustrate, a 10% error Ty leads to a 50%
T=T,. However, a recent analysj43], based on the same ;
. . error ine(Ty).
lattice study as used hef&6], shows that they will in fact
decay into open charm or beauty states already bdlgw V. CONCLUSIONS
Such a decay becomes possible because the open charm or _ ) )
beauty threshold in a hot confining medium decreases with [N the present work, we have studied quarkonium disso-
temperature faster than the masses of the correspondirf@tion by color screening in a deconfining medium. Using
quarkonium states. The relevant decay temperatures were d&€W lattice results on the color-averaged potential in full
termined in[13] and are included in Table III. QCD, we have determined the temperature dependence of
Using the results of Table 1l together with the feed-down the color singlet potential. Solving the Scheger equation
fractions of Tables | and I, we obtain the suppression patfor heavyQQ bound states with the extracted color singlet
terns shown in Figs. 10 and 11. The new analysis of quarkopotential, we have specified the temperatures at which differ-
nia in confined media has thus led to a modified three-stepnt bound states dissolve. Combining the results of this
pattern ford/ ¢ suppression; only the suppression of directly analysis with those recently found for quarkonium dissocia-
producedl/ s requires the onset of deconfinement. For thetion in a confining medium leads to the suppression patterns
Y, we obtain the multi-step form shown in Fig. 11. Here summarized in Figs. 10 and 11.

again, two statesY”, ;) decay belowT; the next two,Y’ For a more accurate determination of the quarkonium sup-
and y,,, are dissociated at or just aboVe, and only theY pression patterns, it would be desirable to carry out direct
survives much further. lattice studies of the color singlet potential and of its quark

Lattice studies of the kind used here to obtain the heavynass dependence, which may become important near the
quark potential can in principle also determine directly thecritical temperature. Furthermore, to make contact with

energy density of the medium at each temperature, so thathuclear collision experiments, a more precise determination
of the energy density via lattice simulations is clearly

needed, as is a clarification of the role of a finite baryochemi-

T 1 cal potential. For the latter problem, lattice studies are so far
08 | very difficult; nevertheless, a recent new approgdj could
' make such studies feasible. Finally we note that in hot media
06 | ] the interaction of a quarkonium state with partonic constitu-
ents, in particular gluon scattering, can obviously also lead to
04 r 1 its dissociatiorf30,31. A study of sequential suppression in
02 | such a framework would certainly be of considerable inter-
est.
O 1 1 L L L
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FrPEREE (OLFPYHTI= S, (0,(°Pyytm?
The NRQCD factorization formula for the inclusive m=n

Y (nS) cross section states i&1] X B[ xp5(MP)—Y(nS)] (A3)

— 3 e WY(N9 whereB[H—Y (nS)] are the inclusive branching fractions
oY (NS Jinc= olbby(S)) {O1(*Sy) Yinc [21], and(04(3S,))Y ("9 and (O, (3P,))*I™P) are the di-

(0 (3p ))_Y(ns) rect color singlet matrix elements. The latter can be related to
+ >, o[bby( 3PJ)]1—J2'”° thebb wave function(or its derivative at the origin[20]; we
J my have taken this fromi3], calculated for the Buchnfler-Tye
— 3 3c \WY(nS) potential. The inclusive color octet matrix elements
+ ol bbg(*S;)J(O(“S1))inc (0g(38))r "9 were taken from(32]. Given the inclusive
— 1 1 Y(n9 matrix and the Tevatron data or512S, and 3 inclusive
T o1bbg("So) {Os("So))inc production cross sections, one can extract the short distance

cross sectionsr[bb;(3S,)], o{bbg(3S;)] and op. From
the short distance cross sections we can estimate the direct
cross section for different quarkonium states,

+ g (23+1)o[bbg(3P;)]

(Osl *Pg)) 9

m2 , (A1)

o[ Y(nS)]=0[bby(3S))](04( 3Sy))¥Y ("9

3 3c \\Y(nS
where a{bby ("L ;)] are the short distance cross sec- + o1bbs("S) K Os("S)) T,
tions, (O g 2SJ'“1LJ)>%£“S) are the inc!usive NRQCD matrix ol Xoa(NP)]1= o bby( 3P;)1(O4( 3P,)) XXM/ m2
elements, which are non-perturbatiy21], and m, is the (A4)
mass of théo quark. The indices 1 and 8 refer to color singlet
and color octet states, respectively. In the present analysis te the direct cross section for they; states we have ne-
short distance cross sections are not calculated in perturbglected the color octet contribution which is proportional to
tion theory, but extracted from the experimental data on in{Og(*S1))*»¥""), in accordance with the results §82],
clusive cross sections[ Y (nS) ], [10], using the informa- where it was shown tha,; states are predominantly pro-
tion on matrix elements presented[1,32. The color octet duced by a color singlet mechanism. Also the analysis of
matrix elements forJ=0 states, i.e.(Og(1S))n"¥,  Ref.[21] shows that the matrix element©g( 3_51)>ij(@) _
(0g(3Po))r ("9 are compatible with zero within errofa1]. =0. To complete our analysis we have to estimate the direct
In fact it was shown that a good description of the experi-COlOr octet matrix elements entering in Ed4). With the
mental data on bottomonium production can be obtained bssumption thafOg(*S,))*"" =0 we can write for the
simply setting these matrix elements to z¢&2]. Further-  direct color octet matrix elements
more (O;(3P))X("S is very small and we set it to
zero in what follows. We also assume that (Og(®S))ni¥=(0g(3S)))Y*9+B[Y(28)—Y(1S)]

obb,(3P,)]/a[bby(3P;)]=8.3, as predicted by perturba- X (0g(38)) @9+ B[Y(35) - Y(19)]
tive calculationd33,34]. With these assumptions, the inclu-
sive cross section fo states can be written as X {Og(33)))Y (39

(0p(3S)) 29 =(04g(%s))) Y29+ B[ Y(39)— Y (29)]
X (Og(35)) Y39

o[ Y (n9)Jinc=0bby( 31 1(01(3S)))mi"¥ + o[ bbg( °S))]

X(0p(38)) Y+ 20 18,30, ( 3P,)) X9
Mo (0g(3S))) 39~ (0g(3S)) Y 9. (A5)

3 Y(nS
+(O1(°P1))inc 1, (A2) Finally, multiplying the direct cross section for different bot-

_ tomonium states by the corresponding inclusive branching
with op=0o[bb,(3P;)]. The inclusive color singlet matrix fractions from[21], we obtain the feed-down fractions given
elements are defined as in Table II.
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