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Analytic quantization of the QCD string
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We perform an analytic semiclassical quantization of the straight QCD string with one end fixed and a
massless quark on the other, in the limits of orbital and radial dominant motion. We compare our results to the
exact numerical semiclassical quantization. We observe that the numerical semiclassical quantization agrees
well with our exact numerical canonical quantization.
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I. INTRODUCTION

The purpose of this paper is to explore some remarka
results of the QCD string or flux tube model@1–3#. In its
relativistic and single quantized form@3# a particularly
simple pattern emerges when one or both quarks are li
For the purposes of this paper we take the light quarks
have zero mass. In this case the energyE of the light degrees
of freedom ~LDF’s! and the angular and radial quantu
numbers (J andn respectively! are accurately related by

E2

~2!pa
.J12n1

3

2
~1.1!

for one ~or two! light quark~s!. For the case of one ligh
quark the meson energy is the sum ofE and the heavy quark
mass.

The above pattern of angular and radial states result
degenerate ‘‘towers’’ of mesons of the same parity. This
the same pattern as the 3D harmonic oscillator.

The QCD string model is kinematically intricate and
would seem unlikely that it would lead to such a simp
result as Eq.~1.1!. We demonstrate in this paper that a
though Eq.~1.1! is not exact, it is very accurate for mo
accessible quantum states. The quantized relativistic
tube model is of great interest because of the probability
QCD reduces to string-like behavior at large source sep
tions @4#.

The simplest version of a quark string model assumes
the string is always straight. In the limiting cases of circu
motion or pure radial motion this assumption is physica
reasonable. In addition, for massive quarks at the ends
relativistic corrections have been shown@5# to agree with the
Wilson loop description of QCD confinement@6#. Numerical
quantization of the straight string and quark system has b
done canonically@3# with the Nambu-Goto string, as well a
in the WKB approximation with an auxiliary field metho
@7#. Both approaches give results similar to Eq.~1.1!.

More generally, one may allow the string to curve ad
batically by incorporating the string equations of moti
0556-2821/2001/64~9!/094011~7!/$20.00 64 0940
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from the Nambu-Goto action@8#. This more general string
calculation demonstrates that the string curvature rem
small for motion in ordinary hadrons. The string curvatu
only slightly changes the energies of the bound states, ju
fying the use of the simpler straight string approximation

The approach emphasized here is to quantize the stra
string system semiclassically. We will show that this quan
zation agrees well with our previous exact quantizat
method. We will also show that a single integral functio
then predicts the whole spectroscopy when at least one q
is massless. We will approximate this integral analytically
sectors whenJ@n and whenn@J. The latter case where
radial motion dominates is valid over most of the allow
bound states.

II. DYNAMICS AND QUANTIZATION

A. Dynamics

As we mentioned earlier, the straight QCD string is
excellent approximation to the dynamical~curved! string in
normal hadrons. We will therefore restrict ourselves to
relatively simple straight string. We will explicitly conside
the case of one fixed end and a quark of massm at the other.
The string with two light quarks introduces only minor mod
fications, which we discuss at the end of Sec. II. As is w
known @3#, the two constants of motion are the orbital ang
lar momentumJ and the energyE of the light degrees of
freedom, which are given in terms of the quark’s transve
velocity v' and radial momentumpr as

J5Wrg'v'r 1ar2f ~v'!, ~2.1!

E5Wrg'1arS~v'!, ~2.2!

where Wr5Apr
21m2, g'5(12v'

2 )21/2, r is the string
length, anda is the string tension. The functionsf andS that
appear in the expressions for the angular momentum
energy are
©2001 The American Physical Society11-1



en
rb

rv

k

case.

e

ce’’

lly

r-

m

ALLEN, GOEBEL, OLSSON, AND VESELI PHYSICAL REVIEW D64 094011
f ~v'!5
1

2v'

„S~v'!2A12v'
2
…, ~2.3!

S~v'!5
sin21~v'!

v'

. ~2.4!

For our present purposes we will introduce a set of dim
sionless variables. As our units we take the circular o
radius~in the limit of a massless quark!

r 052A J

pa
, ~2.5!

and corresponding string energy

E05AJpa. ~2.6!

Our dimensionless variablesD, r, andw are defined by

E

E0
[A11D2, ~2.7!

r

r 0
[A11D21rD, ~2.8!

and

w[
Wr

E0
. ~2.9!

The leading~classical! Regge trajectory corresponds toD
50 and radial excitation occurs for positiveD.

In terms of these dimensionless variables the conse
quantities~2.1! and ~2.2! become

152 wg' v'@A11D21rD#

1
4

p
f ~v'!@A11D21rD#2, ~2.10!

A11D25wg'1
2

p
S~v'!@A11D21rD#. ~2.11!

After some work, we can eliminate the productwg' to ob-
tain

2v'@A11D21rD#A11D22
4

p
„v'S~v'!

2 f ~v'!…@A11D21rD#251 ~2.12!

and rewrite Eq.~2.11! to find an expression forw:

w5A12v'
2 FA11D22

2

p
S~v'!~A11D21rD!G .

~2.13!

At the radial turning pointspr50. The radial velocity also
vanishes, except in the massless quark limit.
09401
-
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The reason for the definition of the radial coordinater in
Eq. ~2.8! will be evident in this limit. If we take the limit

v'51 this will correspond toṙ 50 in the massless quar
case. Usingf (1)5p/4 andS(1)5p/2 in Eq. ~2.12! we see
that the solution isr251 for any D. The pointsr561
therefore correspond to possible turning points.

By Eq. ~2.13! we see that atv'51, w50. This would
seem to be the expected result in the massless quark
However, as we see in Fig. 1, the second factor in Eq.~2.13!
has a zero atr,1 and is the true turning point. In Fig. 1 w
show representative numerical solutions withD50.5 andD
52.0. First we solve Eq.~2.12! for v' for 21,r,11 and
substitute into Eq.~2.13! to computew(r). The turning
points of the general motion arer2521 andr1,1. We
will show later that in the massless quark case

p

2
21<r1<1, ~2.14!

where the lower limit is achieved for largeD and r151
whenD50.

The outer turning point in the massless case is a ‘‘boun
where ṙ discontinuously changes sign.

B. Quantization

The semi-classical quantization condition for a spherica
symmetric system is@9#

E
r 2

r 1

drpr~r ,J11/2!5pS n1
1

2D , ~2.15!

wheren50,1,2, . . . and it isunderstood that the Langer co
rection@9,10# replaces the classical angular momentumJ by
J11/2, whereJ is now the angular momentum quantu
number. In terms of our dimensionless parametersr andw,
the above quantization condition becomes

FIG. 1. Exact numerical solutions of Eq.~2.12! and Eq.~2.13!
for w(r) andv'(r) for the valuesD50.5 andD52.0.
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4

p E
21

r1

drAw22
m2

S J1
1

2Dap

5
~2n11!

S J1
1

2DD

. ~2.16!

For our purposes, the massless quark will be of cen
interest. In this case, there is noJ dependence on the le
hand side of Eq.~2.16! and, by defining

I ~D!5
4

pE21

r1

dr w~r!, ~2.17!

we obtain

D I ~D!5
2n11

J1
1

2

. ~2.18!

The remarkable aspect of the massless quantization
dition is that the whole spectrum is revealed onceI (D) is
computed. In Fig. 2, we show the numerical result of t
integration. For a givenD and r we use Eq.~2.12! to find
v' . The result is used in Eq.~2.13! to find w(r). This is turn
is used in Eq.~2.17! to computeI (D). The upper integration
limit is determined by the zero inw(r), as shown in Fig. 1.

It is evident from Fig. 2 thatI (D) is essentially linear in
D with unit slope. The LDF energy dependence is related
D by Eq. ~2.7!:

D5F E2

S J1
1

2Dap

21G 1/2

, ~2.19!

where we have again used the Langer correction to the
gular momentum. Using the quantization condition, E
~2.18!, we can map out the entire Regge structure as sh
by the curves in Fig. 3. The trajectories are labeled by
ferent radial excitationsn50,1,2, . . . . Then50 trajectory
is normally called the ‘‘leading trajectory’’ and then.0 tra-
jectories are known as the ‘‘daughter trajectories.’’ The so
points are the exact numerical solutions by the exact can

FIG. 2. A comparison of the exact numerical solution of E
~2.17! for I (D) with the leading order approximationI (D).D.
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cal quantization method@3#. The nearly perfect agreemen
between the semiclassical and canonical quantization sh
be noted. It is only along the leading trajectory that sm
differences arise. If there are differences, this is where t
should appear since the semiclassical quantization beco
exact for large radial excitation where the wave function h
many nodes.

Figure 2 shows that forD.1, I (D) is essentially equal to
D. In general we expect an expansion inD21 to have odd
powers of the form

I ~D! →
D@1

D1
c

D
1 . . . . ~2.20!

A detailed examination of our exact numerical integration
Eq. ~2.17! shows that

c.20.006. ~2.21!

The small magnitude of the coefficientc reflects the extraor-
dinary accuracy ofI (D)5D for largeD

The string with two light quarks can be considered as t
single light quark strings with their fixed ends coinciding
the center of mass point. The resulting light meson equati
following from Eqs.~2.1! and ~2.2! are

JL5Wrg'v'r L1
1

2
arL

2 f ~v'!, ~2.22!

EL52Wrg'1arLS~v'!, ~2.23!

wherer L52r , JL52J, andEL52E.
We recover Eq.~2.12! upon rescaling:

E0L5A2paJL, ~2.24!

J0L52A2JL

ap
. ~2.25!

Using Eq.~2.13!, we may now identify

.

FIG. 3. The Regge trajectories from the semiclassical anal
~lines! and by numerical canonical quantization~dots!.
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Wr[
1

2
A2paJLw~r!, ~2.26!

and the quantization condition withI (D).D yields

EL
2

2pa
5JL12n1

3

2
, ~2.27!

in agreement with Eq.~1.1!.

III. RADIAL DOMINANCE ANALYTIC SOLUTION

A. Leading order

As verified by examining Fig. 4, largen corresponds to
large D since at fixed angular momentum, both make
LDF energyE increase without bound. By examining E
~2.12!, we see that for largeD eitherr521 or v' is small.
To verify this we note that

v'S~v'!2 f ~v'!52v'/31O~v'
3 !. ~3.1!

Hence, except atr521, v'!1 in theD@1 limit.
In the vanishingv' limit the expression~2.13! for w(r)

then becomes

w~r! →
D@1

DF12
2

p
~11r!G . ~3.2!

We note that the zero inw that follows from Eq.~3.2! is

r15
p

2
21. ~3.3!

In Fig. 5 we show the exact numerical result~solid curve! as
well as the largeD approximation~LO! for D52.

In this regime we may analytically evaluate the quanti
tion integralI (D) in Eq. ~2.17! to be

I ~D!5D. ~3.4!

FIG. 4. The dependence ofD upon the radial quantum numbern
and the angular momentum quantum numberJ. Increasingn leads
to increasingD.
09401
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Substitution of this into Eq.~2.18! with the use of Eq.~2.19!
quickly yields

E2

pa
5J12n1

3

2
. ~3.5!

This is a good representation of the massless quark spec
copy, as we will discuss in the conclusion, Sec. V. This i
reflection of the agreement of the asymptotic~largeD) val-
ues ofI (D) down to smallD.

Finally, we note that the spectrum in Eq.~3.5! is very
similar to the three dimensional harmonic oscillator spectr
as we have pointed out previously in the context of the L
entz scalar confinement of massless quarks.

B. Corrections to leading order

Although in leading order inD the resultI (D)5D is very
accurate, the distributionw(r) computed to the same ap
proximation is not as satisfactory, as can be seen in Fig. 5
this section we attempt to obtain a somewhat better appr
mation to these two quantities.

Using Eq.~2.12! and the limiting behavior of Eq.~3.1!,
we find the dependence ofv' on r andD:

v'5F2~A11D21rD!SA11D22
4

3p
~A11D21rD! D G21

.

~3.6!

The value for the upper turning point coordinater1 can be
found from the vanishing of Eq.~2.13! for small v' , which
yields

r15
A11D2

D S p

2
21D . ~3.7!

With this value ofr1 , Eq. ~3.6! determines the value ofv'

at the upper turning point:

FIG. 5. A comparison of the exact numerical solution of E
~2.13! for w(r) ~lowest curve! with the leading order solution Eq
~3.2! ~highest curve! and the solution to next to leading order, E
~3.10! ~intermediate curve!.
1-4
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v'
15S 3

p D 1

11D2 . ~3.8!

To second order inv' , w(r) becomes

w.A11D2S 12
2

p D2
2rD

p

2
v'

2

2 FA11D22
4

3p
~A11D21rD!G . ~3.9!

Upon substitution of the result of Eq.~3.6!, w(r) becomes

w.A11D2S 12
2

p D2
2rD

p

2
@A11D22rD#2

8@A11D22~4/3p!~A11D21rD!#

[w11w2 , ~3.10!

with w1 being the piece of Eq.~3.9! that is finite in the limit
of vanishingv' . The next-to-leading-order result is show
in Fig. 5. We see that it comes much closer to the exactw(r)
but deviates slightly nearr521 where the smallv' expan-
sion fails.

It is not difficult to evaluate the integral in Eq.~2.17! by
changing the integration variable fromr to

x[A11D21rD. ~3.11!

Splitting I (D)5I 1(D)1I 2(D) according to Eq.~3.10!, we
find

I 1~D!5
1

D S 2

p D 2F S p

2
21DA11D21DG2

,

I 2~D!5
1

2pD~11D2! F 2

p
212D22DA11D2

2
4

3p
lnS 3pD

2
~D1A11D2!1

3p24

2 D G .
~3.12!

Asymptotically I (D)5I 1(D)1I 2(D) is linear,

I ~D!.D1S 12
3

p DD211O@D23ln~D!#. ~3.13!

Although the coefficient of 1/D is small, yet higher order
corrections are expected to reduce it to the near zero v
found in Eq.~2.21!.

IV. ANGULAR DOMINANCE ANALYTIC SOLUTION

For largeE2 and small radial excitation,D is small as can
be seen from Eq.~2.18!. Since for a massless quark the lea
ing classical Regge trajectory corresponds to circular mo
and in that caseD50 and we are in the ultra-relativisti
regimev''1. In this section we examine the behavior
09401
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Eqs.~2.12! and ~2.13! asv' approaches unity.
The appropriate expansion parameter in this case is

y5A12v'
2 5

1

g'

, ~4.1!

which would be the radial velocity with a massless qua
since a massless quark must havev25 ṙ 21v'

2 51.
Our first task is to expand Eq.~2.12! for small y andD,

which is an expansion about circular orbits. The result is

8

3p
y32rDy22~12r2!D250. ~4.2!

The cubic term is critical. Without it, there would be no re
solutions forr2,1. Going to quartic order iny makes only
minor changes. To demonstrate the accuracy of this appr
mation, we show in Fig. 6 the solutiony(r) of Eq. ~4.2! and
the exact result obtained by solving the original~exact! Eq.
~2.12! for the valueD50.1.

For smallD the y(r) solution becomes more symmetr
aboutr50. The approximate solution to the cubic equati
~4.2! for small D is

y~r!.S 3p

8 D 1/3

~12r2!1/3D2/31
p

8
rD1 . . . . ~4.3!

By substitution of Eq.~4.3!, we see that Eq.~4.2! is satisfied
up to the two leading powers ofD. As D becomes small the
asymmetric term becomes of less relative importance and
may keep only the leading term in Eq.~4.3!:

y~r! →
D!1S 3p

8 D 1/3

~12r2!1/3D2/3. ~4.4!

For D!1 andy!1, the expression~2.13! for w reduces
to

FIG. 6. A comparison of the exact numerical solution fory(r)
5(12v'

2 )1/2 from Eq.~2.13! and the solution of the cubic approx
mation, Eq.~4.2!, for D50.1.
1-5
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w.
2

p
y2.

1

2 S 3

p D 2/3

~12r2!2/3D4/3. ~4.5!

With this approximation forw, the semiclassical quantizatio
integral ~2.17! becomes

I 5
4

pE21

11

dr w~r!5
8

21S 3

p D 5/6GS 2

3D
GS 7

6D D4/3. ~4.6!

Numerically, we find

I ~D!.1.3367D4/3. ~4.7!

In Fig. 7 we show the smallD values ofI (D). At smallD
we observe a distinct deviation from the linearity observed
largerD ~see Fig. 2!. The dotted curve shown in Fig. 7 is th
small D leading term approximation of Eq.~4.7! and the
dashed curve is the largeD approximation toI (D). Although
the smallD analytic approximation clearly is converging
the correct numerical result forD→0, deviations from the
exactI (D) are evident aroundD50.3. ForD.0.4, the large
D approximation toI (D) is better.

V. CONCLUSION

We have argued in Sec. I that the straight string mode
confinement is accurate for ordinary hadron dynamics
that it is therefore a serious candidate for long-range QC
Semiclassical quantization of the straight string agrees w
with a fully quantized calculation@3#, as shown in Fig. 3.
The semiclassical method allows considerable analytic
sight into string confinement in hadrons. In particular, wh
one or two of the quarks are massless, the entire spec
copy is generated by a single integral functionI (D) given in
Eq. ~2.17!. For almost all accessible statesI (D).D which,
by Eq. ~2.18!, immediately gives the simple pattern of E
~1.1!, as illustrated in Fig. 8. Since even low-lying mes

FIG. 7. A comparison of the exact numerical solution forI (D)
~solid line! and the smallD approximation~dotted line! and the
largeD approximation~dashed line!.
09401
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dynamics is dominated by the confining region, the obser
tion of degenerate towers of mesons of the same parity
comes a key prediction of QCD.

The deviations from the simple pattern~1.1! are small and
come whenD,1. For observed meson states this cor
sponds to large angular momentum and small radial exc
tion. That is, deviations from~1.1! occur for mesons lying
near the ‘‘leading’’ Regge trajectory. We showed in Sec.
that I (D) is proportional toD4/3 for D!1 and the analytic
approximation agrees well with the exact numericalI (D), as
can be seen in Fig. 7.

To make the above statement more explicit we show
Fig. 8 a recreation of Fig. 3 but now adding a dashed l
representing the analytic result~3.5! which becomes exac
for large n and smallJ. For largeJ and smalln the Regge
trajectories seem to have a slightly smaller slope. In Fig
we show theD values in this orbital dominant regime and w
see thatD is less than 1. As seen in Fig. 7,I (D),D and this
reduction accounts for the difference between the dashed
solid ~exact! curves in Fig. 8.

FIG. 8. The Regge trajectories from the largeD approximation
~dashed lines! of Eq. ~1.1! in comparison to the exact numerica
semiclassical analysis~lines! and the results of numerical canonic
quantization~dots!.

FIG. 9. The dependence ofD upon the angular momentum
quantum numberJ and the radial quantum numbern. IncreasingJ
leads to decreasingD.
1-6
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A final observation is thatI (D)→D follows from the ra-
dially dominant regime and not from the nearly circular a
proximation. This limit automatically gives straight, even
spaced Regge trajectories.
.

.
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