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Analytic quantization of the QCD string
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We perform an analytic semiclassical quantization of the straight QCD string with one end fixed and a
massless quark on the other, in the limits of orbital and radial dominant motion. We compare our results to the
exact numerical semiclassical quantization. We observe that the numerical semiclassical quantization agrees
well with our exact numerical canonical quantization.
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I. INTRODUCTION from the Nambu-Goto actiof8]. This more general string
calculation demonstrates that the string curvature remains
The purpose of this paper is to explore some remarkablemall for motion in ordinary hadrons. The string curvature
results of the QCD string or flux tube moddl-3]. In its  only slightly changes the energies of the bound states, justi-
relativistic and single quantized forrfi3] a particularly  fying the use of the simpler straight string approximation.
simple pattern emerges when one or both quarks are light. The approach emphasized here is to quantize the straight
For the purposes of this paper we take the light quarks tstring system semiclassically. We will show that this quanti-
have zero mass. In this case the endtgf the light degrees zation agrees well with our previous exact quantization
of freedom (LDF's) and the angular and radial quantum method. We will also show that a single integral function
numbers { andn respectively are accurately related by then predicts the whole spectroscopy when at least one quark
is massless. We will approximate this integral analytically in
sectors whenJ>n and whenn>J. The latter case where
(2)7a23+2”+ 2 (1.1 radial motion dominates is valid over most of the allowed
bound states.

for one (or two) light quark’s). For the case of one light
g}u;tsrg‘ the meson energy is the sumEoénd the heavy quark Il. DYNAMICS AND QUANTIZATION

The above pattern of angular and radial states results in A. Dynamics
degenerate “towers” of mesons of the same parity. This is
the same pattern as the 3D harmonic oscillator.

The QCD string model is kinematically intricate and it
would seem unlikely that it would lead to such a simple
result as Eq.(1.1). We demonstrate in this paper that al-
though Eq.(1.1) is not exact, it is very accurate for most
accessible quantum states. The quantized relativistic flu
tube model is of great interest because of the probability th
QCD reduces to string-like behavior at large source sepa
tions[4].

The simplest version of a quark string model assumes th
the string is always straight. In the limiting cases of circular
motion or pure radial motion this assumption is physically J=W,y,0,r+ar?f(v,), 2.1
reasonable. In addition, for massive quarks at the ends the
relativistic corrections have been sho}#j to agree with the
Wilson loop description of QCD confineme]. Numerical E=W,y, +arS(v,), (2.2
guantization of the straight string and quark system has been
done canonically3] with the Nambu-Goto string, as well as
in the WKB approximation with an auxiliary field method where W, = pr+m?, 'yi=(1—vf)_l/2, r is the string
[7]. Both approaches give results similar to E.1). length, anda is the string tension. The functiofisnd S that

More generally, one may allow the string to curve adia-appear in the expressions for the angular momentum and
batically by incorporating the string equations of motionenergy are

EZ

As we mentioned earlier, the straight QCD string is an
excellent approximation to the dynamigaurved string in
normal hadrons. We will therefore restrict ourselves to the
relatively simple straight string. We will explicitly consider
the case of one fixed end and a quark of nmas# the other.
The string with two light quarks introduces only minor modi-
ﬁcations, which we discuss at the end of Sec. Il. As is well
rak_nown [3], the two constants of motion are the orbital angu-
Far momentumJ and the energ)e of the light degrees of
J{eedom, which are given in terms of the quark’s transverse
velocity v, and radial momenturp, as
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1
f(UL):Z(S(Ul)—\/l—vl), 2.3
sin"(v,)
S(UL):T- (2.9

For our present purposes we will introduce a set of dimen-
sionless variables. As our units we take the circular orbit

radius(in the limit of a massless quark

fo=2'y ma'

and corresponding string energy

(2.9

Eo=Jma. (2.6)

Our dimensionless variables, p, andw are defined by

— 2
Ey 1+A°, (2.7

r
r—E\/1+A +pA, (28)
0
and
_ W 2.9
—E—O. (2.9

The leading(classical Regge trajectory corresponds 1o
=0 and radial excitation occurs for positive
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FIG. 1. Exact numerical solutions of E(R.12 and Eq.(2.13
for w(p) andv, (p) for the valuesA =0.5 andA =2.0.

The reason for the definition of the radial coordinate
Eq. (2.8) will be evident in this limit. If we take the limit

v, =1 this will correspond tar=0 in the massless quark
case. Using(1)= /4 andS(1)= /2 in Eq.(2.12 we see
that the solution isp?=1 for any A. The pointsp=+1
therefore correspond to possible turning points.

By Eq. (2.13 we see that ab, =1, w=0. This would
seem to be the expected result in the massless quark case.
However, as we see in Fig. 1, the second factor in(Ed.3
has a zero gh<<1 and is the true turning point. In Fig. 1 we
show representative numerical solutions wkhk- 0.5 andA
=2.0. First we solve Eq2.12) for v, for —1<p<+1 and
substitute into Eq.(2.13 to computew(p). The turning

In terms of these dimensionless variables the conserveghints of the general motion age.=—1 andp,<1. We

guantities(2.1) and(2.2) become

1=2wry, v, [V1+A%+pA]

+%f(vl)[\/1+A2+pA]2, (2.10
\/1+A2=W'yi+%S(vl)[\/l-i-Az-i-pA]. (2.11

After some work, we can eliminate the prodwet, to ob-
tain

20, [V1+A%+pA]V1+A— %(ULS(UL)
—f(v, )[VI+AZ+pA]P=1

and rewrite Eq(2.11) to find an expression fow:

w=+1-0v?| J1+A%- %S(Ui)(\/l-i-Az-i-pA)}.
(2.13

At the radial turning pointg,=0. The radial velocity also
vanishes, except in the massless quark limit.

(2.12

will show later that in the massless quark case

(2.19

where the lower limit is achieved for largk andp, =1
whenA=0.
The outer turning point in the massless case is a “bounce”

wherer discontinuously changes sign.

B. Quantization

The semi-classical quantization condition for a spherically
symmetric system if9]

(2.15

:
n+=|,

My
f drp,(r,J+1/2)=m
e 2

wheren=0,1,2 ... and it isunderstood that the Langer cor-
rection[9,10] replaces the classical angular momentiityy
J+1/2, whereJ is now the angular momentum quantum
number. In terms of our dimensionless parameteendw,
the above quantization condition becomes
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FIG. 2. A comparison of the exact numerical solution of Eq.

(2.17) for 1(A) with the leading order approximatidifA) =A. FIG. 3. The Regge trajectories from the semiclassical analysis
(lines) and by numerical canonical quantizati@iots.

- (216 cal quantization metho@i3]. The nearly perfect agreement
between the semiclassical and canonical quantization should
be noted. It is only along the leading trajectory that small

For our purposes, the massless quark will be of Cen,[r‘,igif'ferences arise_. If there are _differ(_ances, thi; is_where they
interest. In this case, there is dodependence on the left should appear since the semiclassical quantization becomes

hand side of Eq(2.16 and, by defining exact for large radial excitation where the wave function has
' ' many nodes.
4 (ps Figure 2 shows that foh >1, I (A) is essentially equal to
I(A)= —f dp w(p), (2.17  A. In general we expect an expansionAn! to have odd
T powers of the form
we obtain Ao .
on+1 I(A)—>A+K+... ) (2.20
Al(A)= . (2.18
J+ = A detailed examination of our exact numerical integration of
2 EqQ. (2.17) shows that
The remarkable aspect of the massless quantization con- c=—0.006. (2.21)

dition is that the whole spectrum is revealed oh¢a) is

computed. In Fig. 2, we show the numerical result of thisThe small magnitude of the coefficienteflects the extraor-
integration. For a gived andp we use Eq(2.12 to find  dinary accuracy of (A)=A for large A

v, . The resultis used in E¢2.13 to findw(p). This is turn The string with two light quarks can be considered as two
is used in Eq(2.17) to computel (A). The upper integration  single light quark strings with their fixed ends coinciding at

limit is determined by the zero iw(p), as shown in Fig. 1.  the center of mass point. The resulting light meson equations
It is evident from Fig. 2 that(A) is essentially linear in following from Egs.(2.1) and(2.2) are
A with unit slope. The LDF energy dependence is related to

A by Eq.(2.7): 1
I =Weysourit zargf(v,), (222
E2 1/2
A= -1| (2.19
J+} EL=2W,y, +ar S(v,), (2.23
> am

wherer, =2r, J,=2J, andE =2E.
where we have again used the Langer correction to the an- We recover Eq(2.12 upon rescaling:
gular momentum. Using the quantization condition, Eq.

(2.18, we can map out the entire Regge structure as shown EoL=v2mal,, (2.24
by the curves in Fig. 3. The trajectories are labeled by dif-

ferent radial excitations=0,1,2 ... . Then=0 trajectory 2

is normally called the “leading trajectory” and the>0 tra- Jo=2 ar (2.29

jectories are known as the “daughter trajectories.” The solid
points are the exact numerical solutions by the exact canonldsing Eq.(2.13, we may now identify
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FIG. 4. The dependence Afupon the radial quantum number
and the angular momentum quantum numbeincreasingn leads
to increasingA.

1
W, = E\/ZwaJLw(p), (2.26
and the quantization condition witl{fA)=A yields
L J +2 3 2.2
%— |_+ n+ E, ( . 7)

in agreement with Eq1.2).

I1l. RADIAL DOMINANCE ANALYTIC SOLUTION
A. Leading order
As verified by examining Fig. 4, large corresponds to
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FIG. 5. A comparison of the exact numerical solution of Eq.
(2.13 for w(p) (lowest curve with the leading order solution Eq.
(3.2) (highest curveand the solution to next to leading order, Eq.
(3.10 (intermediate curve

Substitution of this into Eq(2.18 with the use of Eq(2.19
quickly yields

EZ

3
%IJ"—ZI’]-FE. (3.5

This is a good representation of the massless quark spectros-
copy, as we will discuss in the conclusion, Sec. V. This is a
reflection of the agreement of the asymptatarge A) val-
ues ofl (A) down to smallA.

Finally, we note that the spectrum in E.5 is very
similar to the three dimensional harmonic oscillator spectrum
as we have pointed out previously in the context of the Lor-

large A since at fixed angular momentum, both make theentz scalar confinement of massless quarks.

LDF energyE increase without bound. By examining Eg.

(2.12), we see that for larga eitherp=—1 orv, is small.
To verify this we note that

v,S(v,)—f(v,)=20v,/13+0(v?). (3.1
Hence, except gi=—1, v, <1 in theA>1 limit.

In the vanishingy, limit the expression(2.13 for w(p)
then becomes

A>1
w(p) — A

2

We note that the zero iw that follows from Eq.(3.2) is

_ 1 3.3

In Fig. 5 we show the exact numerical resigblid curve as
well as the large\ approximation(LO) for A=2.

In this regime we may analytically evaluate the quantiza-

tion integrall (A) in Eq. (2.17) to be

1(A)=A. (3.4)

B. Corrections to leading order

Although in leading order i\ the result (A)=A is very
accurate, the distributiow(p) computed to the same ap-
proximation is not as satisfactory, as can be seen in Fig. 5. In
this section we attempt to obtain a somewhat better approxi-
mation to these two quantities.

Using Eqg.(2.12 and the limiting behavior of Eq3.1),
we find the dependence of onp andA:

2(V1+A%+pA)| y1I+A%— %(\/1+A2+pA)”

(3.6

-1
v, =

The value for the upper turning point coordinate can be
found from the vanishing of Eq2.13 for smallv, , which
yields

V1T A2
pi=y (%— ) 3.7)

With this value ofp, , Eq.(3.6) determines the value af,
at the upper turning point:
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v = 3 —12 (3.9
Lo\lm) 1+A

To second order im, , w(p) becomes

2\ 2pA
WZ\/1+A2 1—;) _PT
2
4
— 5 [VIHAT= = (J1+4%+p0) | (39

Upon substitution of the result of E€3.6), w(p) becomes
2
W= \/1+A2 1- ;)

- [V1+AZ—pAT?
8[V1+A%—(4/37)(V1+A2+pA)]

=W+ Ws,

2pA

ko

(3.10

with w4 being the piece of Eq3.9) that is finite in the limit
of vanishingv, . The next-to-leading-order result is shown
in Fig. 5. We see that it comes much closer to the exdgl)
but deviates slightly negs= — 1 where the smalh, expan-
sion fails.

It is not difficult to evaluate the integral in E¢R.17) by
changing the integration variable fromto

x=\1+AZ+pA. (3.1

Splitting 1(A)=14(A)+1,(A) according to Eq(3.10, we
find

1(2\¥ (=
=322

|

37A
%(A+\/1+A2)+

2
1

V1+AZ+A

1
12(8)= 5 R(1747)

2

o

1-A2—AJ1+ A%

3m—4
2

4|
gn

(3.12
Asymptotically | (A)=1,(A)+15(A) is linear,

_ ( 3
I(M)=a+|1->

A '+0O[A%In(A)]. (313

Although the coefficient of I is small, yet higher order

PHYSICAL REVIEW D64 094011

0.30 T T T

0.25

0.20

0.15

y(p)

0.10

0.05 |

0.00

exact
approximate

-0.10 ' t '
-1.0 -05 0.0 0.5

p

-0.05

1.0

FIG. 6. A comparison of the exact numerical solution yg¢p)
=(1-v?)?from Eq.(2.13 and the solution of the cubic approxi-
mation, Eq.(4.2), for A=0.1.

Egs.(2.12 and(2.13 asv, approaches unity.
The appropriate expansion parameter in this case is

1

y=\/1—vf=—,

- (4.

which would be the radial velocity with a massless quark

since a massless quark must have=r?+v?=1.
Our first task is to expand E@2.12 for smally and A,
which is an expansion about circular orbits. The result is

8

37— pAY? = (1-p?)A%=0. 4.2
The cubic term is critical. Without it, there would be no real
solutions forp?<1. Going to quartic order iy makes only
minor changes. To demonstrate the accuracy of this approxi-
mation, we show in Fig. 6 the solutior(p) of Eq. (4.2) and
the exact result obtained by solving the origifexac) Eq.
(2.12 for the valueA=0.1.

For smallA the y(p) solution becomes more symmetric
aboutp=0. The approximate solution to the cubic equation
(4.2) for smallA is

3 1/3
y(p)z(%) (l—p2)1/3A2/3+gpA+.... 4.3

By substitution of Eq(4.3), we see that Eq4.2) is satisfied

corrections are expected to reduce it to the near zero valugp to the two leading powers df. As A becomes small the

found in Eq.(2.21.

IV. ANGULAR DOMINANCE ANALYTIC SOLUTION

For largeE? and small radial excitation is small as can
be seen from Eg2.18). Since for a massless quark the lead-

asymmetric term becomes of less relative importance and we
may keep only the leading term in E@L.3):

37 1/3

(? (1_p2)1/3A2/3.

A<1

y(p) — (4.4

ing classical Regge trajectory corresponds to circular motion

and in that case\=0 and we are in the ultra-relativistic

For A<1 andy<1, the expressiofi2.13 for w reduces

regimev, ~1. In this section we examine the behavior of to
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FIG. 7. A comparison of the exact numerical solution F6A) FIG. 8. The Regge trajectories from the layeapproximation
(solid ling) and the smallA approximation(dotted ling and the  (dashed lingsof Eq. (1.1) in comparison to the exact numerical
large A approximation(dashed ling semiclassical analysidines) and the results of numerical canonical
guantization(dots.
2 1/3 2/3
W _y2: Y (1_P2)2/3A4/3- (45) . . . L. X
T 2\ 7 dynamics is dominated by the confining region, the observa-

tion of degenerate towers of mesons of the same parity be-
With this approximation fow, the semiclassical quantization comes a key prediction of QCD.
integral (2.17 becomes The deviations from the simple patteth 1) are small and
come whenA<1. For observed meson states this corre-
2 sponds to large angular momentum and small radial excita-
4 (1 8/3 5,6F(§) tion. That is, deviations fron@_l.l) occur for mesons lying
| = _f dpw(p)= _( _) DL A4 (4.6) near the “leading” Regge trajectory. We showed in Sec. IV
1 28 7 that 1 (A) is proportional toA* for A<1 and the analytic
6 approximation agrees well with the exact numeridal), as
can be seen in Fig. 7.
Numerically, we find To make the above statement more explicit we show in
Fig. 8 a recreation of Fig. 3 but now adding a dashed line
1(A)=1.336 043 4.7y  representing the analytic resu@8.5 which becomes exact
for largen and smallJ. For largeJ and smalln the Regge
In Fig. 7 we show the small values ofi (A). At small A trajectories seem to have a slightly smaller slope. In Fig. 9
we observe a distinct deviation from the linearity observed atve show theA values in this orbital dominant regime and we
largerA (see Fig. 2 The dotted curve shown in Fig. 7 is the see that\ is less than 1. As seen in Fig. [{A) <A and this
small A leading term approximation of Eq4.7) and the reduction accounts for the difference between the dashed and
dashed curve is the large approximation td (A). Although  solid (exac} curves in Fig. 8.
the smallA analytic approximation clearly is converging to

the correct numerical result fak— 0, deviations from the 3.5
exactl (A) are evident around =0.3. ForA>0.4, the large _
A approximation td (A) is better. 3oy sn=2
25t »n=0
V. CONCLUSION 20
We have argued in Sec. | that the straight string model of < -
confinement is accurate for ordinary hadron dynamics and 155 4.
that it is therefore a serious candidate for long-range QCD. .
Semiclassical quantization of the straight string agrees well or - R
with a fully quantized calculatiofi3], as shown in Fig. 3. o5b “v., XxxxntE xrarad
The semiclassical method allows considerable analytic in- frtrereiiiian.
sight into string confinement in hadrons. In particular, when 0.0 o 5 1'0 1'5 20

one or two of the quarks are massless, the entire spectros-
copy is generated by a single integral functiga) given in

Eqg. (2.17. For almost all accessible states\)=A which, FIG. 9. The dependence af upon the angular momentum
by Eq. (2.18, immediately gives the simple pattern of Eq. quantum numbed and the radial quantum number Increasing)
(1.1, as illustrated in Fig. 8. Since even low-lying meson leads to decreasingy.

J
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