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Resummation of the hadronic tau decay width with the modified Borel transform method
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A modified Borel transform of the Adler function is used to resum the hadronic tau decay width ratio. In
contrast with the ordinary Borel transform, the integrand of the Borel integral is renormalization-scale invari-
ant. We use an ansatz which explicitly accounts for the structure of the leading infrared renormalon. Further,
we use judiciously chosen conformal transformations for the Borel variable, in order to map sufficiently away
from the origin the other ultraviolet and infrared renormalon singularities. In addition, we apply Pade´ approxi-
mants for the corresponding truncated perturbation series of the modified Borel transform, in order to further
accelerate the convergence. Comparing the results with the presently available experimental data on the tau
hadronic decay width ratio, we obtainas(M z

2)50.119260.0007exp.60.0010EW1CKM60.0009th.60.0003evol..
These predictions virtually agree with those of our previous resummations where we used ordinary Borel
transforms instead.
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I. INTRODUCTION

Extensive perturbative calculations in QCD have ma
available the truncated perturbation series~TPS! of various
observables to the next-to-next-to-leading order~NNLO!,
i.e., including the terms;as

3 . There is a long-standing prob
lem of how to extract~resum!, in a reasonable manner, th
values of such observablesS(as) as functions of the strong

coupling parameteras
MS(M z

2). Many of the resummation
methods are based solely on the available TPSS[3] (as).
Some of these methods eliminate the~unphysical!
renormalization-scale~RScl! and renormalization-schem
~RSch! dependence of the TPS by fixing the RScl and RS
in the TPS itself. Among them are the RScl fixing of Bro
sky, Lepage, and Mackenzie~BLM !, motivated by large-nf
arguments@1#, the principle of minimal sensitivity~PMS!
@2#, and the effective charge method~ECH! @3–5#. Some of
the more recent methods are the approaches using ‘‘comm
surate scale relations’’@6#, ECH-related approaches@7–10#, a
method using an analytic form of the coupling parame
@11#, a method using expansions in the two-loop coupl
parameter@12#, a method which disentangles the runni
coupling and conformal effects~skeleton coefficients! @13#,
methods using conformal transformations either for the c
pling parameter@14# or for the Borel expansion paramet
@15,16#, the method of Pade´ approximants~PA’s! @17–19#,
and an RScl-invariant@20# and RScl- and RSch-invarian
extensions of the PA approach@21#.

Some of the aforementioned approaches allow for the
corporation of additional, nonperturbative information on t
observable, e.g., information on the location of the domin
infrared~IR! renormalon singularity@21# via the fixing of the
remaining free parameter in the approximant, or informat
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on the location of various renormalon singularities v
leading-b0 resummation @8,9#. Full information on the
known leading IR renormalon structure can be incorpora
in a natural way through an explicit ansatz, in the approac
using Borel transformations of the considered or of the as
ciated observable~see, e.g.,@22#!. Incorporation of the avail-
able leading renormalon information appears to influen
significantly the numerical predictions, particularly for low
energy~low-Q2) QCD observables, through a more accura
description of the Borel amplitude in the region between
origin and the leading IR renormalon singularity. Th
method has an advantage over the widely used~unre-
summed! operator product expansion~OPE! approach@23#,
in which the perturbative contributions are usually taken
TPS, and additional nonperturbative terms}1/Q2n appear
~cf. @24# and references therein!. Since the perturbation serie
is divergent, the latter approach has the problem that the
no natural separation between perturbative contributions
power-suppressed nonperturbative terms, a problem w
does not occur in the former method. However, the Bor
resummed value for an observable, with the renormalon
formation incorporated in it~e.g., via an explicit ansatz!, in
principle still does not represent the full value of the obse
able, because power-suppressed terms should be added
Dispersive models~@25# and references therein! contain and
predict the OPE-type power-suppressed terms. Recentl
has been argued@26# that the power-suppressed terms can
obtained from the knowledge of the perturbation series,
parts thereof, and of the IR renormalon structure of the
servable.

In all these resummation approaches, for obvious reas
it is highly preferable to consider QCD observables who
values are presently known at a high-precision level. Pr
ently, high-precision experimental data ont lepton decay
widths @27–32# are available. The nonstrange hadronict de-
cay width ratioRt(DS50) can be obtained by using con
strained fit values@33# of the ~basis modes! leptonic branch-
ing ratios Be[B(t2→e2n̄ent)5(17.8360.06)31022 and
Bm[B(t2→m2n̄mnt)5(17.3760.07)31022 of t, and
©2001 The American Physical Society16-1
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CVETIČ, DIB, LEE, AND SCHMIDT PHYSICAL REVIEW D64 093016
subtracting the strangeness-changing part@32# Rt(DSÞ0)
50.163060.0057:

Rt~DS50![
G„t2→nthadrons~g!…

G„t2→nte
2n̄e~g!…

2Rt~DSÞ0! ~1!

5
~12Be2Bm!

Be
2Rt~DSÞ0!53.4713

60.0171. ~2!

The above ratio is a QCD observable at relatively low m
mentaAq2;mt'1.8 GeV, experimentally known to hig
precision, thus presenting an experimental challenge to
theory. The challenge consists in predicting the stro

coupling constantas
MS(MZ

2) so that the theoretical unce
tainty (das) th , which partly originates from the uncertaint
of the method of resummation and partly from the unc
tainty of the associated Adler function, is smaller or comp
rable to the uncertainty (das)exp originating from the small
experimental uncertaintydRt'60.017 given above.

There is now a wealth of theoretical results@24,34–40#
available on the observable~2!, and, in particular, on the
associated Adler functionD(Q2)—perturbative as well as
nonperturbative. The main QCD theoretical problem co
nected with the observable~2! is that the pertaining moment
are somewhat lowuQu;mt ('1.8 GeV), and so the rel
evant coupling parameteras(Q

2) in the perturbation expan
sion is large. It is thus important to take into account, in a
resummation procedure forRt and/or D(Q2), not just the
known perturbative coefficients, but also a significant par
the nonperturbative information, i.e., the leading infrar
renormalon. On the other hand, the nonperturbative con
butions toRt that are represented by power-suppressed O
terms~apart from the well known quark mass contribution!
have been shown to be consistent with zero in the ALE
analysis@27#.

One version of this program was carried out in our pre
ous work@22#. There we first used the known information o
the leading infrared~IR! renormalon and on the correspon
ing 1/Q2-suppressed term of the OPE for the Adler functi
D(Q2), in order to predict theO(as

4) coefficientd3(Q2) of
D(Q2). Using this prediction, and judiciously chosen confo
mal transformations, we resummedRt by employing an or-
dinary Borel transformD̃(b) of the Adler function with an
ansatz which explicitly accounted for the leading IR ren
malon structure. Comparing the obtained expression with
experimental values~2!, we obtained definite predictions fo
the strong-coupling parameteras(M z

2)50.119360.0007exp

60.0010EW1CKM60.0009meth60.0003evol. We fixed the
RScl by the principle of minimal sensitivity~PMS! applied
to the approximant, and by choosing the modified minim
subtraction (MS) RSch.

In the present work instead, in order to obtain a cro
check of the predictions, we employ not ordinary Bo
transforms but modified Borel transforms ofD(Q2). Such
Borel transforms were introduced by Grunberg@41#, on the
basis of the modified Borel transforms of Ref.@42#. One
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attractive feature of Grunberg’s transforms is that the in
grand in the Borel integral is RScl-independent, in contr
to the case of the ordinary Borel transforms. Another int
esting feature is that they represent integral transformat
of a significantly different form than the ordinary Bore
transformation, and have therefore a different singula
structure. Therefore, their application to the hadronic tau
cay width ratio and the subsequent extraction of the pre
tion for as(M z

2) could represent a powerful cross check
the results of previous work@22# based on ordinary Bore
transformations.

In Sec. II, we recall the known basic theoretical formul
for Rt(DS50) and the associated Adler functions, as well
the reduction to the massless QCD observabler t . In Sec. III,
we present the modified Borel transformsD̄(b) of the mass-
less Adler functionD(Q2). We refer to the Appendix for
details aboutD̄(b). In Sec. IV, we perform the resummatio
for r t , by contour integration ofD(Q2) in the complex mo-
mentum plane, explicitly accounting for the leading I
renormalon structure ofD̄(b) through an ansatz, choosin
conformal transformations of the Borel variableb to map
away other singularities ofD̄(b), and employing Pade´ ap-
proximants. In Sec. V, we compare the obtained express
with the experimental results and determineas(mt

2) and
as(M z

2). We further estimate the theoretical uncertainties
the prediction. Section VI contains a summary and brief d
cussion of the differences between our results and thos
other analyses ofRt .

II. THE KNOWN BASIC FORMULAS, REDUCTION
TO MASSLESS QCD

The restrictionDS50 in Eq.~2! means that only hadron
with quarksu andd are produced. Thus the observable~2! is
already close to being massless. This fact removes som
the complications in the theoretical analysis.

The ratio ~2! can be expressed, via the application of
variant of the optical theorem, and the subsequent use
Cauchy’s theorem and integration by parts, as a contour
tegral in the complex momentum plane~see, for example,
Refs.@24,40#!:

r t~DS50![
Rt~DS50!

3uVudu2~11dEW!
2~11dEW8 ! ~3!

5~2p i!E
usu5mt

2

ds

s S 12
s

mt
2D 3

3F S 11
s

mt
2D DL1T~2s!1

4

3
DL~2s!G21. ~4!

Here we factored out, for convenience, the square of
Cabibbo-Kobayashi-Maskawa~CKM! matrix elementuVudu,
the electroweak~EW! correction parameterdEW50.0194
60.0050@43,44,24#, and the residual EW correction param
eterdEW8 50.0010@43#. The contour integration in Eq.~4! is
counterclockwise in the complexs plane, and the genera
6-2
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RESUMMATION OF THE HADRONIC TAU DECAY WIDTH . . . PHYSICAL REVIEW D64 093016
Adler functions DL1T and DL are related to theV1A
current-current correlation functions as

DL1T~2s!52s
d

ds (
J50,1

@Pud,V
(J) ~s!1Pud,A

(J) ~s!#, ~5!

DL~2s!5
s

mt
2

d

ds
$s@Pud,V

(0) ~s!1Pud,A
(0) ~s!#%. ~6!

Here,J is the spin of the hadronic system in its rest fram
(L:J50;T:J51); Pud,V/A

(J) are the components in the Lo
entz decomposition,

Pud,V/A
mn ~q!5~2gmnq21qmqn!Pud,V/A

(1) ~q2!

1qmqnPud,V/A
(0) ~q2! ~7!

of the two-point correlation functionsPud,V/A
mn of the vector

Vud
m 5d̄gmu and axial-vectorAud

m 5d̄gmg5u ~color-singlet!
currents

2 i Pud,V
mn ~q!5E d4x eiqx^0uT$Vud

m ~x!Vud
n ~0!†%u0&, ~8!

2 i Pud,A
mn ~q!5E d4x eiqx^0uT$Aud

m ~x!Aud
n ~0!†%u0&. ~9!

In the massless quark limit (mu,d→0), DL(s) vanishes and
the vector and axial-vector contributions toDL1T become
equal in perturbation andDL1T(2s)→@11D(2s)#/(2p2),
whereD(Q2) is the canonically normalized massless Ad
function with the perturbative expansion1

D~Q2!5aF11 (
n51

`

dnanG . ~10!

Here,a5as(m
2;c2 ,c3 , . . . )/p is the QCD couplant at the

renormalization scale~RScl! m2 and in the renormalization
scheme~RSch! characterized by the coefficientscj ( j >2) in
the beta function

m2
d

dm2
a[b~a!52b0a2@11c1a1c2a21•••#. ~11!

Here, b05(1122nf /3)/4 and c15(102238nf /3)/(16b0)
are two universal constants which depend only on the n
ber of active quark flavorsnf . The Adler functions are qua
siobservables, in the sense that they are independent o
RScl and RSch.

In order to apply the massless QCD analysis tor t(DS
50) ~4!, we have to subtract from it the quark mass (mu,d
Þ0) contributions. This can be carried out@24# within an

1The (ud) Adler functionsDL1T andDL @Eqs. ~5! and ~6!# usu-
ally include, by convention, the additional CKM factoruVudu2 ~e.g.,
see Refs.@40#!.
09301
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operator product expansion~OPE!. The largest quark mas
contributions are quark condensate terms of dimensiod
54 (}1/mt

4),

dr t~DS50!mu,dÞ0

'16p2
~mu1md!^q̄q&

mt
4 F11

23

8 S as~mt
2!

p D 2G ~12!

'2
16p2f p

2 mp
2

mt
4 F11

23

8 S as~mt
2!

p D 2G
'20.002 653~110.03!'20.0027. ~13!

In Eq. ~12! we denoted̂ q̄q&[^ūu&'^d̄d&. Here renormal-
ization scale can be taken to bem'mt . In Eq. ~13! we used
the PCAC relation (mu1md)^q̄q&'2 f p

2 mp
2 ( f p592.4

60.3 MeV;mp25139.6 MeV). There are corrections t
this relation and to expression~13! of the order;mu,d

2 /mt
2 ,

i.e., of the order of the OPEd52 terms which can reach, a
most, values;1024. In obtaining the numerical value in Eq
~13!, we further usedmt51777 MeV and as(mt

2 ,MS)
'0.32.

The OPE approach of@24# includes other power-
suppressed nonperturbative terms that contribute tor t but do
not stem from quark masses: thed54 gluon condensate term
and thed56 term. The latter term could be large, but it h
also comparably large uncertainties@24#. The gluon conden-
sate contribution tor t in the OPE isas

2-suppressed. The
ALEPH analysis@27# indicates that thesed54,6 nonpertur-
bative contributions tor t are consistent with the value zero
dr t(NP;mu,d50)50.00060.004. We should keep in mind
however, that the ALEPH analysis assumed that the par
the associated Adler function which has no pow
suppressed terms is an (N3LO) TPS, while we will perform
resummations of this part by taking into account its renorm
lon singularity structure. Nonetheless, we consider
ALEPH analysis as indicative that even in our resummat
framework the power-suppressed OPE-type terms inr t
~apart from the quark mass terms! are either consistent with
zero or very small. Therefore, we will ignore in our analys
of r t any OPE power-suppressed nonperturbative terms o
than those in Eqs.~12! and ~13!.

We thus regard, in our framework, as nonperturbat
massless contributions only those contributions which app
as a consequence of explicit IR renormalon structure of
Borel transforms in the resummation. For example, the le
ing IR renormalon of the Adler functionD(Q2) ~which we
will account for! gives contributions toD(Q2) which can
be partially represented as ad54 power-suppressed
term }1/Q4. This, however, does not necessarily mean t
there is no additional, genuine OPE-typed54 term
(}^aGG&/Q4) in D(Q2). The uncertainties of the OPEd
54,6 massless terms as given by ALEPH are large enoug
accommodate the possibility of significant nonzero values
these terms. For example,^aGG&50.00160.015 GeV4.
6-3
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Toward the end of Sec. V, we will briefly discuss how t
latter uncertainties would influence the final prediction foras
in our analysis.

The ALEPH analysis further assumed that masslesd
52 terms (}1/Q2) are not present in the Adler function~and
thus in r t), as suggested by the OPE. Such terms were s
gested by the authors of Refs.@45,46# as an effective tachy
onic gluon mass contribution reflecting nonperturbat
short-distance QCD. However, the authors of Ref.@47#
showed that the strength of such terms is consistent w
zero.2

When subtracting the quark mass contributions~12! and
~13! from Eq.~4!, we end up with the massless QCD obse
able

r t[r t~DS50;mu,d50!5r t~DS50!2dr t~DS50!mu,dÞ0

~14!

52
i

2pEusu5mt
2

ds

s S 12
s

mt
2D 3S 11

s

mt
2D D~2s!, ~15!

5
1

2pE2p

p

dy~11ei y!3~12ei y!D~2s5mt
2eiy!, ~16!

with the canonically normalized massless Adler functi
D(Q2[2s) defined in Eq.~10!.

The perturbation coefficientsdj5dj (m
2/Q2;c2 , . . . ,cj )

in Eq. ~10! depend on the RSclm2 and the RSch paramete
cj in a known specific manner, becauseD(Q2) is RScl- and
RSch-independent. Knowing them at a specific RScl a
RSch, we know them at any RScl and RSch—see Eqs.~A5!–
~A8! in the Appendix. The first two coefficients have alrea
been calculated, and in theMS RSch and at RSclm25Q2,
for nf53, they ared1

(0)51.6398@50#; d2
(0)56.3710@51# @the

superscript~0! denotes the value at the aforementioned R
and RSch#.

In order to extract the experimental value ofr t ~14!, ac-
cording to Eq.~3! we need to use the valuesRt(DS50) of
Eq. ~2!, dEW50.019460.0050 @43,44,24#, dEW8 50.0010
@43#, dr t(DSÞ0)mu,dÞ0 ~13!, and in addition the value of the

CKM matrix elementuVudu, which we take as3

2They did this by fitting ad52 finite energy sum rule, which is
apparently well satisfied at the used relevant scales@48,49#, to the
new ALEPH data on spectral functions extracted from thet decay
measurements.

3The standard model~SM! unitarity-constrained fit predictsuVudu
50.974960.0008@33#. However, the values extracted from the d
cays of mirror nuclei are lower:uVudu50.974060.0010. This ex-
traction has significant theoretical uncertainties~see@33# for further
references!. The values extracted from neutron decays are e
lower, uVudu50.972860.0012~@33# and references therein!, but ap-
pear to have smaller theoretical uncertainties. In view of all th
considerations, we take in our analysis the value range as give
Eq. ~17!. Here, the central value is from the unitarity-constrained
and the uncertainty is increased so that Eq.~17! covers all the
values from the decays of mirror nuclei and the upper half of
interval from neutron decays.
09301
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uVudu50.974960.0021. ~17!

This leads us, via Eqs.~2!, ~3!, and ~13!, to the following
values for the massless QCD observable~14!:

r t[r t~DS50;mu,d50!

50.196060.0059exp60.0059EW

60.0051CKM ~18!

50.196060.0098. ~19!

In Eq. ~19!, the three uncertainties of Eq.~18! were added in
quadrature.

The values~18!, together with the contour integral expre
sion ~16!, will be the starting point for our massless QC
resummation analyses of hadronict decays.

III. MODIFIED BOREL TRANSFORMS

The most straightforward way to perform the resumm
tion for r t given in Eqs.~15! and~16! would be to insert the
known truncated perturbation series~TPS! for D(2s) given
in Eq. ~10! and perform the momentum-contour integratio
i.e., the approach of@39#. The method is, first, fraught with
ambiguities from the choice of RScl and RSch. The fin
result contains residual, but significant, RScl and RSch
pendence, due to the truncation of the series in Eq.~10!.
Secondly, the method does not incorporate the known re
malon structure of the Adler function’s Borel transfor
D̃(b).

In a previous paper@22#, two of us addressed the secon
problem, by employing in the resummation a~ordinary!
Borel transformD̃(b) that includes the leading IR renorma
lon via the ansatzD̃(b)5R(b)/(12b/2)11n, and by intro-
ducing in addition conformal transformationsb5b(w) in or-
der to map sufficiently far away from the origin th
singularities of the UV~and the remaining IR! renormalons.
However, the integrand in the~ordinary! Borel integral is
RScl- and RSch-dependent. This can be inferred from
definition

D~Q2!5
1

b0
E

0

`

db

3expF2
b

b0a~m2;c2 , . . . !
G D̃~b;m2/Q2,c2 , . . . !,

~20!

and from the expansion of the transform around the orig

D̃~b;m2/Q2,c2 , . . . !

511
d1~m2/Q2!

1! S b

b0
D

1 (
n52

`
dn~m2/Q2;c2 , . . . ,cn!

n! S b

b0
D n

. ~21!

n

e
in

,

e
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For example, direct application of the derivative with resp
to the RSclm2 gives

]

b0] ln m2
@e2b/(b0a)D̃~b!#

5e2b/(b0a)H Fb~a!

b0a2
11G b

b0
1Fd1S b~a!

b0a2
11D

1
c1

2 G 1

1! S b

b0
D 2

1Fd2S b~a!

b0a2
11D

1
1

3
~2c1d11c2!G 1

2! S b

b0
D 3

1•••J , ~22!

using the notations of Eq.~11!. Once going beyond the one
loop approximation of the RGE evolution~11!, the integrand
is RScl-dependent. If we knew the exact expression of
integrand, the total integral~20! would be RScl-independen
However, since we have a TPS available forD̃(b), we are
forced to use a TPS forR(b)[(12b/2)11nD̃(b). This trun-
cation then results in the residual RScl and RSch depend
of the resummed result forD(Q2) and thus forr t . In @22#
we fixed the RScl parameterj2[m2/Q2 according to the
principle of minimal sensitivity~PMS!, i.e.,]r t /]j250. The
RSch was chosen to beMS.

In the present paper we apply, instead of the ordin
Borel transform, several variants of the modified Borel tra
form D̄(b) of the Adler functionD(Q2). The integrand will
be RScl-independent. This Borel transform was introdu
for QCD and QED~quasi!observables by Grunberg@41#,
who in turn constructed them on the basis of the modifi
Borel transformations of Ref.@42#. The integral transforma
tion for D̄(b) is written in the form

D~Q2!5
1

b0
E

0

`

db expF2
@r1~Q2!1 c̃#b

b0
G D̄~b; c̃!.

~23!

Here, D̄(b; c̃)5exp(c̃ b/b0)D̄(b;0) and has noQ2 depen-
dence;c̃ is a specific arbitrary constant;r1 is the first RScl
and RSch invariant@2# of the Adler function,

r1~Q2!52d1~m2/Q2!1b0 ln
m2

L̃2
5b0 ln

Q2

L̄2
, ~24!

where L̃ is the universal scale appearing in Stevenso
equation@2#, andL̄ is a scale which depends on the obse
able but is RScl- and RSch-independent. We note
r1(Q2)5@1/a(1-loop)(Q2)1c#, wherec is a constant. There
fore, D̄(b; c̃) reduces to the ordinary Borel transfor
D̃(b;m2/Q251, . . . ) times the factor exp@(c1c̃)b/b0#, when
higher than one-loop effects are ignored~large-b0 approxi-
mation!.
09301
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SinceD(Q2) andr1(Q2) in Eq. ~23! are RScl- and RSch
independent, soD̄(b; c̃) possesses no explicit RScl and RS
dependence. However, as shown in the Appendix, the m
fied Borel transformation~23! is one in a large class of Bore
transformations, where each of them corresponds to a
cific choice of the RScl and RSch. The transformation~23! is
obtained from this class by choosing the so-called modifi
’t Hooft RSch ~mtH RSch:cj5c1

j , j 52,3, . . . ). Wealso

show that in this case the constantc̃ is in fact the RScl
parameter c̃5b0 ln(j2), where j2[m2/Q2. This special
Borel transformation has the remarkable property that
integrand in the Borel integral is RScl-independe
( c̃-independent!. Therefore, we can call it the RSc
independent Borel transformation, since the change of
RScl only changes the convention of separating the~RScl-
invariant! integrand in Eq.~23! into two factors.

Yet another useful property of the modified Borel tran
form ~23! is the following: due to the very simpleQ2 depen-
dence of the integrand in Eq.~23!, the contour integration
~16! in the complex momentum plane can be performed a
lytically, leading to a rather simple expression for the obse
able r t , as will be shown in the next section. This is n
possible if the mtH RSch is abandoned.

The coefficients of expansion ofD̄(b; c̃) in Eq. ~23!
around b50 are related with those of the expansion
D(Q2) most easily when we use for the latter expansion
specific mtH RSchck5c1

k (k>2) and RSclm25Q2 @41#,

D̄~b; c̃!5
~c1b/b0!c1b/b0

G~11c1b/b0!
expS ~ c̃2d̃1!b

b0
D

3H 11
~ d̃12c1!

~11c1b/b0! S b

b0
D

1 (
n52

`
~ d̃n2c1d̃n21!

~11c1b/b0!~21c1b/b0!•••~n1c1b/b0!

3S b

b0
D nJ . ~25!

Here, d̃ j5dj (m
2/Q2;c2 , . . . ,cj ) with m25Q2, ck5c1

k (k
52, . . . ,j ). We refer to the Appendix for details. Expandin
each term on the right-hand side in powers ofb then yields
the expansion ofD̄(b; c̃) around b50. Here we can see
again that in the large-b0 approximation (c1→10) the
above expansion reduces to the expansion~21! of the ordi-
nary Borel transformD̃(b;1, . . . ) times the factor exp@(c̃
2d̃1)b/b0#.

The ordinary Borel transformD̃(b) is known to have sin-
gularities at b521,22, . . . ~UV renormalons! and at b
52,3, . . . ~IR renormalons!. The renormalon resummatio
of D(Q2) and of the hadronict decay width in the large-b0
limit has been performed in Refs.@52–54#. The IR renorma-
lons on the contour of the Borel integration~20! cause am-
biguities, above all the leading IR renormalon (b52). The
singularity of D̃(b) at b5n has the form 1/(1
6-5
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2b/n)21gn81nc1 /b0 for n>3 and 1/(12b/2)11g2812c1 /b0 at
b52, wheregn8 is the one-loop anomalous dimension of t
operators corresponding to the 1/Q2n terms in the operato
product expansion of the Adler functionD(Q2). In the case
n52, it is known thatg850 @55#. Thus, at the leading IR
renormalon we have D̃(b)}1/(12b/2)11n, with n
52c1 /b0 (51.580, whennf53).

On the other hand, the modified Borel transformD̄(b) in
Eq. ~23! has the~IR and UV! renormalon singularities at th
same locations asD̃(b), but with simpler powers@41,42#—
the IR renormalon singularities are of the form 1/

2b/n)21gn8 for n>3 and 1/(12b/2)1 for the leading IR
singularity4 @see Eq.~A13! in the Appendix, withk5n#.
Therefore, we can define a new functionR̄(b; c̃),

R̄~b; c̃![~12b/2!D̄~b; c̃!, ~26!

which has a considerably softened singularity atb52 ~cut
instead of pole!. This function can be determined by resum
mations of the TPS ofR̄(b; c̃) ~cf. also Ref.@15#!. The latter
TPS is known to the same order asD̄(b; c̃)—see Eq.~25!:
d1

(0) andd2
(0) (⇔d̃1 ,d̃2) are known exactly, andd3

(0) (⇔d̃3)
is known approximately. The same is true for the modifi
functions R̄j (b; c̃) ( j 51,2,3) discussed below, Eqs.~27!–
~30!.

The functionD̄(b; c̃) as defined in Eq.~23! has additional
singularities, as seen from the expansion~25!: ~i! it is
nonanalytic atb50, due to the~finite! factor (c1b/b0)c1b/b0;
~ii ! it has additional ~spurious! poles at b52b0 /c1
('21.266 whennf53), b522b0 /c1, etc. In approximate
numerical evaluations ofD(Q2) and r t via D̄(b; c̃), such
singularities may have disturbing effects unless they are
ficiently far away from the origin. Therefore, we can defi
the following variants which will be used in~approximate!
resummations:

R̄1~b; c̃!5~12b/2!~c1b/b0!2c1b/b0G~11c1b/b0!

3ec1b/b0D̄~b; c̃! ~27!

5~12b/2!exp@~ c̃1c12d̃1!b/b0#

3H 11
~ d̃12c1!

~11c1b/b0! S b

b0
D1•••J , ~28!

R̄2~b; c̃!5R̄1~b; c̃!
~11c1b/b0!

~21c1b/b0!
, ~29!

R̄3~b; c̃!5R̄1~b; c̃!
~11c1b/b0!~21c1b/b0!

~31c1b/b0!2
. ~30!

4This is true even when the mtH RSch is abandoned and
integral transformation~cf. the Appendix! becomes considerabl
more complicated—as follows from the considerations of Ref.@42#.
09301
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We recall thatR̄j (b; c̃)5exp(c̃ b/b0)R̄j(b;0). In the above ex-
pressions, we restored analyticity atb50 by factoring out,
instead of the factor (c1b/b0)c1b/b0, the combination
(c1b/b0)c1b/b0e2c1b/b0/G(11c1b/b0). Our main motivation
for this lies in the following: the factor (c1b/b0)c1b/b0 is
increasing extremely fast with increasingb, while the afore-
mentioned combination has weakb dependence,

~c1b/b0!c1b/b0e2c1b/b0

G~11c1b/b0!
5

1

A2pc1b/b0

when b→`.

~31!

Hence, functionsRj (b; c̃) behave at largeb roughly as
R(b; c̃) or D̄(b; c̃),

R̄j~b; c̃!;~12b/2!A2pc1b/b0D̄~b; c̃! when b→`,

~32!

i.e., they neither decrease nor increase violently. Theref
any approximate resummation method will have a be
chance when applied to them than to an extremely fast
creasing or decreasing version. On the other hand, if we
factored out the factor (c1b/b0)c1b/b0, the resulting function,
though analytic atb50, would decrease violently at largeb,
as;(c1b/b0)2c1b/b0D̄(b; c̃).

The functionR1(b; c̃) has spurious~unphysical! poles at
b52b0 /c1 , 22b0 /c1 , . . . ('21.261, 22.53, whennf
53). But the functionR2 has a possible advantage overR1
in resummations, since it has no spurious~nonphysical! pole
at b52b0 /c1, andR3 has no such poles atb52b0 /c1 and
22b0 /c1.

Since the coefficientsd1
(0) and d2

(0) (⇒d̃1 ,d̃2) of the
~massless! Adler function are known, the power expansion
R̄j (b; c̃) is known to the next-to-next-to-leading orde
~NNLO, including the term;b2) via Eqs.~25!–~30!. In a
previous work@22#, we presented an argument, via a biloc
expansion of the Borel amplitudeD̃(b), that d3

(0)'2565.
We also discussed there the estimates ofd3

(0) presented by
other authors, and concluded that the following estimate
rather safe:

d3
(0)@[d3~m25Q2;MS!#525610. ~33!

We will use the above values which allow us to obtain t
power series ofR̄j (b; c̃) up to N3LO (;b3).

IV. RESUMMATION PROCEDURE

We will apply summations to the N3LO truncated power
series~TPS! of the functionsR̄j (b; c̃). However, in order to
obtain the~resummed! values of the massless QCD obser
able r t ~14!, we have to perform first the complex mome
tum contour integration~16!, with the massless Adler func
tion there having the integral form~23! in terms of the
invariant Borel transformD̄(b;Q25mt

2eiy), i.e., in terms of

the related functionsR̄j ~27!–~30!. This angulary integration
can be performed exactly, because they dependence of the

e

6-6
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invariantr1 ~24! appearing in Eq.~23! is simple,

r1~mt
2eiy!5r1~mt

2!1 ib0y ~34!

⇒r t5
1

pb0
ReF E

02 i«

`2 i«

db expF2
@r1~mt

2!1 c̃#b

b0
G

3
sin~pb!

b~12b!~12b/3!~12b/4!
D̄~b; c̃!G ,

~35!

5
1

pb0
ReH E

02 i«

`2 i«

db expF2
@r1~mt

2 ;a0!1 c̃#b

b0
G

3
sin~pb!

b~12b!~12b/2!~12b/3!~12b/4!

3
~c1b/b0!c1b/b0e2c1b/b0

G~11c1b/b0!
f j~b!R̄j~b; c̃!J , ~36!

where

f j~b!5H1 if j 51,

~21c1b/b0!/~11c1b/b0! if j 52,

~31c1b/b0!2/~11c1b/b0!/~21c1b/b0! if j 53.
~37!

The integration contour in Eqs.~35! and ~36! is chosen
slightly below~or above! the positive axis, in order to avoid
possible singularities of the integrand on the positive a
When knowing reasonably well the RScl- and RSc
invariant functionsRj (b) in Eq. ~36!, e.g., via resummation
as discussed below, the massless QCD observabler t be-
comes an expression whose value depends uniquely on
value of the QCD coupling parameter, e.g., onas(mt

2 ;MS)
[pa0. This dependence originates from the known dep
dence of the invariantr1(mt

2) in the exponent in Eq.~36!,
the latter being determined by an integrated version of
RGE, called also the~unsubtracted! Stevenson equation@2#,

r1~mt
2 ;a0![2d1

(0)1b0 ln
mt

2

L̃

52d1
(0)1

1

a0
1c1 lnS c1a0

11c1a0
D

1E
0

a0
dxF 1

x2~11c1x!
1

b0

bMS~x!G , ~38!

where the perturbation expansion of the last term is given
the definition~11! of the b function,

bMS~x!/b052x2~11c1x1c2
MSx21c3

MSx31••• !.
~39!
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Here, theMS coefficients are functions of the number
active quark flavorsnf and are known up to the N3LO (c3

MS,
four-loop! @56#. The number of active quark flavors is a
sumed here to benf53, because the scale of the process
AuQ2u5mt ('1.777 GeV).

We can note from Eq.~36! that ambiguity of integration
over b in r t at the first infrared renormalon singularity o
D̄(b) at b52 is suppressed, because the factor sin(pb) has a
zero there. This is similar to the one-loop approximation
the approach with the ordinary Borel transform@16,57#.
However, here the absence of the ambiguity is not due to
approximation; it is exact and due to the discussed RS
invariant Borel approach.

Although the ambiguity atb52 is suppressed in the Bore
type of integration~36!, we wish to emphasize that it i
nonetheless very important to factor out the leading renor
lon factor 1/(12b/2) there@according to Eq.~26!#. This is so
because any resummation of a TPS(b) represents also a qua
sianalytic continuation of the corresponding function into t
region away from the origin, and such continuation is o
better quality when there are as few singularities near
origin as possible. The functions which we will resum in E
~36! areR̄j (b; c̃), i.e., the functions which have their origina
pole singularity atb52 factored away according to Eq.~26!.
The remaining singularity inR̄j (b; c̃) is then significantly
weaker; it is a cut of the type; ln(12b/2) @see Eq.~A13!
with a51 andk52, in conjunction with Eq.~A20!#. In this
way, in the relatively wide regionb&2 we can achieve rea
sonably good values of the integrand of Eq.~36!, which
leads then to good predictions forr t via Eq.~36! as functions

of as
MS(mt

2). If we did not factor out the mentioned singu
larity, the obtained~resummed! values would definitely lead
to bad values of the integrand atb;2, which would influ-

ence the predicted values ofr t and thus ofas
MS(mt

2). The
numerical importance of factoring out the leading IR ren
malon singularity of the Borel transforms of the Adler fun
tion at b52 before doing resummation was pointed out
our previous work@22#, which involved ordinary Borel trans
forms. There we showed that the predicted values

as
MS(mt

2) from r t depend crucially on whether this factoring
out procedure has been performed.

The functionsR̄j (b; c̃) in Eq. ~36!, whose TPS’s we wan
to resum via methods of quasianalytic continuation, have
singularities near the origin which are negative~at b521
and lower!. The nearest singularity on the positive axis is
b53. At b52 (IR2) there is a weaker logarithmic singula
ity. The negative singularities near the origin constrain
convergence radius of the perturbation~power! series of
R̄j (b; c̃)’s to r 51, and thus represent a possible hinderi
element to efficient resummations. In our previous work@22#
we proposed how to extend the convergence radius u
IR2, by either of the following two conformal transforma
tions w5w(b):

w3~b!5
A11b2A12b/3

A11b1A12b/3
, w4~b!5

A11b2A12b/4

A11b1A12b/4
.

~40!
6-7
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Conformal transformationw3(b) maps all the renormalon
singularities to the unit circle in thew plane, except for the
first IR renormalon, which is mapped tow3(b52)51/2. We
further note thatw3(b53)51 andw3(b521)521. Fur-
thermore, all the spurious singularitiesb52nb0 /c1
(,21.265) are also sent to the unit circle. Conformal tra
formation w4(b) does the same thing, except that the fi
two IR renormalon singularities are both inside the u
circle: w4(b52)'0.42, w4(b53)50.6. We further note
thatw4(b54)51 andw4(b521)521. The inverse trans
formations are

b~w3!5
3w3

~12w31w3
2!

, b~w4!5
~16/5!w4

„12~6/5!w41w4
2
…

,

~41!

which are monotonously increasing functions for
,w3 ,w4,1. We can now reexpress the (N3LO) TPS of
R̄j (b; c̃) ~in powers ofb) as (N3LO) TPS in powers ofw3 or
w4, by simply using the power expansions of Eq.~41!. The
advantage of using this form of TPS for resummations lies
the fact that the convergence radius for the power serie
R̄j is now r w3

51/2 in thew3 plane, andr w4
'0.42 in thew4

plane, and the circle of convergence reaches thus the firs
renormalon singularityb(wk)52 (k53,4), in contrast to the
case of nontransformedb. In this way, the hindering influ-
ence of the UV singularities~negativeb’s! has been signifi-
cantly weakened. The mappingw4(b) apparently suppresse
even more strongly the influence of the UV singularities th
w3(b), but probably less strongly the influence of the NL
IR renormalon singularity (b53). The final formula forr t in
this formulation follows directly from the form~36!:

r t5
1

pb0
ReH e2 ifE

0

1

dx
db~w!

dw

3expF2
@r1~mt

2 ;a0!1 c̃#b~w!

b0
G

3
sin„pb~w!…

b~w!@12b~w!#@12b~w!/2#@12b~w!/3#@12b~w!/4#

3
@c1b~w!/b0#c1b(w)/b0e2c1b(w)/b0

G„11c1b~w!/b0…

3 f j„b~w!…R̄j„b~w!; c̃…U
w5xe2 if

J , ~42!

where f j (b)’s are given by Eq.~37!, w stands forw3 or w4,
and we integrate actually only up to awmax corresponding to
b'4 @for w3 , f350.505 36, w3max5exp(2if3); for w4 ,
f450.1'0, w4max5exp(2if4)'1#. This upper bound onb
is justified because the contributions from higherb’s are very
strongly suppressed due to the exponent in Eq.~42!. Strictly
speaking, the path in thew3 plane should be along the pos
tive axis~below it! from w350 to w351, and then along the
arc ~inner side! of the unit circle betweenw351 and w3
09301
-
t
t

n
of

IR

n

5w3(b54)5exp(2if3), as shown in Fig. 1. However, fo
practical calculations, it is much more convenient to use
integration along the rayw35x exp(2if3) (0<x<1), as de-
noted in Eq.~42! and shown in Fig. 1. Both paths give th
same answer, since the closed contour in Fig. 1 does
contain any singularities of the integrand. In the case ofw4,
the trick is the same, and we choosef450.1 instead off4
50 for the ray~see Fig. 2!, in order to avoid any possible
problems with numerical instability that would otherwis
arise from the too extreme vicinity of the integration path
the possible singularities of the integrand.

At this point, we can thus already regard the N3LO TPS
of the function R̄j„b(wk); c̃…[exp@c̃ b(wk)/b0#R̄j„b(wk);0…
(k53,4) as a form of resummation ofR̄j , solely via the
mappings~40!. Consequently, expressions~42! evaluated us-
ing the aforementioned N3LO TPS of R̄j„b(wk); c̃… can be
regarded as our resummed predictions ofr t[r t(a0), being
functions of the mentioned strong QCD couplanta0. There
is, however, an additional freedom of choosing the value

FIG. 1. Integration in thew3 plane along the rayw3

5x exp(2if3) (0,x,1, f350.505 36) gives the same result a
the integration parallel to the positive real axis (0,w,1) and arc
w5exp(2if8) (0,f8,f3).

FIG. 2. Integration in thew4 plane along the rayw4

5x exp(2if4) (0,x,1, f450.1).
6-8
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the constantc̃ in Eq. ~42!.5 Since the available series o
R̄j„b(wk); c̃… is truncated, the results of Eq.~42! will have
some unphysical dependence on the value ofc̃. In one of our
approaches, we will choose the latter value by the princ
of minimal sensitivity~PMS!, i.e., by the condition

]r t~a0 ; c̃!

] c̃
50, ~43!

when using forR̄j„b(wk)… their N3LO TPS forms.
We can, however, proceed in a different way. The N3LO

TPS of R̄j„b(wk); c̃… can be further resummed using Pa´
approximants~PA’s! @58#.6 The authors of Ref.@59# pre-
sented compelling arguments that combining the confor
transformations with the PA type of resummations in gene
leads to significantly improved results, at least when a su
cient number of terms in the power expansion are kno
Especially the diagonal or almost diagonal PA’s@58,59#, in
our case@2/1#R̄j

(wk) and @1/2#R̄j
(wk), may represent an ef

ficient way of extending the applicability of expressions f
R̄j into the region sufficiently far away from the origin~qua-
sianalytic continuation!.

However, there is a possibility that PA’s do not lead to
improvement. This is sometimes the case when the TP
question is known to a relatively low order, e.g., to t
N3LO. Since our available TPS’s ofR̄j (wk ; c̃) (k53,4) are
known to the N3LO ~provided a specific value ofd3

(0) is
taken!, we have to find criteria for keeping or rejecting th
resulting PA’s. The PA@2/1#R̄j

(wk ; c̃) predicts one real sin

gularity of R̄j„b(wk); c̃…, and@1/2#R̄j
(wk ; c̃) two singularities

which can be either real or mutually complex conjuga
Physically,R̄j (b(wk); c̃) has the strongest singularities~UV
and IR renormalon singularities! at b(wk)521,22, . . . and
b(wk)53,4, . . . .This means that in the case of conform
transformations~40!, the singularities of PA’s should prefe
ably be atwk values corresponding tob521 or 3: w3

pole5

21 or 11; w4
pole521 or 10.6. We will include in our

analysis the predictions with those PA’s@2/1#R̄j
(wk) whose

poles satisfy the latter conditions. For that, we will use o
freedom to adjust the value of the constantc̃ in Eq. ~42!. On
the other hand, PA’s@1/2#R̄j

(wk ; c̃), which have two poles
only rarely satisfy approximately the aforementioned con
tions simultaneously.

Furthermore, in practical calculations, we prefer to use
the bMS ~39! in the Stevenson equation~38! the PA

5Variation of c̃ in Eq. ~42! corresponds to changing somewhat t
numerical procedure used.

6PA @n/m#R(w) to a functionR(w) is a ratio of polynomials inw
of degreen ~numerator! andm ~denominator!. The power expansion
of @n/m#R(w) must reproduce the terms of the power expansion
R(w) up to, and including, the term;wn1m. PA @n/m#R(w) can be
determined if we know the TPS ofR(w) up to, and including, the
term ;wn1m. PA’s @n/n# are called diagonal.
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@2/3#bMS(x), particularly because of its reasonable singul
ity structure (xpole'0.311, corresponding toas

pole'0.98).
The latter signals the breakdown of perturbative QC
~pQCD!, and this choice ofbMS(x) has been used previousl
by some of us in Refs.@22,21#. Since the effective energy in
the discussed QCD observabler t is relatively low E;mt
,2 GeV, we can expect that this choice is not entirely
relevant numerically. Later we will comment on how muc
the results change when employing the (N3LO) TPS for
bMS(x), instead.

V. PREDICTIONS FOR as ; THEORETICAL
UNCERTAINTIES ESTIMATE

As discussed in the previous section, for a given choice
a0[as(mt

2 ;MS)/p and of constantc̃, we calculate the ob-

servabler t[r t(a0 ; c̃) ~42!, using forR̄j„b(wk); c̃… one of the
variants~27!–~30! ( j 51,2,3), and one of the two conforma
transformations~41! (k53,4), and for the resummation o
R̄j„b(wk)… either the N3LO TPS or@2/1# PA. We thus use, a
given c̃, altogether 33232512 ways of calculatingr t as
function of a0[as(mt

2 ,MS)/p. The valuec̃ is adjusted as
described at the end of the previous section:~a! according to
the PMS ~43! when using N3LO TPS for R̄j„b(wk)…; ~b!
according to the pole requirementsw3

pole521 or 11 (w4
pole

521 or 10.6) when using PA@2/1#R̄j
(wk) for R̄j„b(wk)….

We repeat the analysis for three choices of the N3LO coeffi-
cient d3

(0) ~33! of the Adler function:d3
(0)525,15,35. In the

central case ofd3
(0)525, and forr t close to the central mea

sured valuer t50.1960~18!, we display the relevant numeri
cal results in Table I. Displayed are the predictions of vario
approximants for the input valuesas(mt

2 ;MS)50.325 and
0.326. The first 14 entries are predictions of Eq.~42! when
using PA’s@2/1#R̄j

(wk) ( j 51,2,3;k53,4), wherec̃ was ad-
justed so that these PA’s yield the aforementioned pole va
of the leading UV or subleading IR renormalon pole. T
next six entries are predictions when using N3LO TPS for
R̄j„b(wk)… in Eq. ~42! with c̃ adjusted so that the PMS prin
ciple ~43! is satisfied~local maximum!. The last entry con-
tains the arithmetic averager̄ t of all 20 predictions, for the
aforementioned two values ofas(mt

2 ;MS). From that entry,
we deduce that the central measured valuer t50.1960~18! is
achieved by this arithmetic averager̄ t at as(mt

2 ;MS)
50.3254. The uncertainty of the prediction due to the resu
mation method~‘‘truncation’’ error! can be estimated by
comparing the aforementioned prediction with the predict
which differs the most from it, i.e., with the prediction usin
the PA @2/1#R̄j

(wk) with j 53, k54, and c̃51.34 ~see the
14th entry of Table I!. This prediction differs from the afore
mentioned one byudasu tr'0.0024.

Repeating the very same calculations~at the same values
of c̃) for the correspondingly higher and lower input valu
of as(mt

2 ;MS), we obtain the corresponding predictions
as(mt

2 ;MS) for the upper and lower bounds of the measu

f

6-9
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TABLE I. The resultsr t of calculations according to Eq.~42!, usingd3
(0)525, employing the conforma

transformations~41! (k53,4) and the resummations ofR̄j (wk) ~27!–~30! ( j 51,2,3) as PA@2/1# and as

(N3LO) TPS. The constantc̃ was varied so as to achieve eitherwk
pole521 or w3

pole511 (w4
pole510.6)

when using PA’s@2/1#, or stationarity according to the PMS condition~43! when using (N3LO) TPS. The
resultsr t are given for the choicesas(mt

2 ;MS)50.325 and 0.326. The central measured valuer t50.1960

~18! is achieved by the arithmetic averager̄ t at as(mt
2 ;MS)50.3254.

( j , k); approximant r t @as(mt
2)50.325;0.326# c̃ Comments

(1,3); @2/1# 0.19543; 0.19641 10.28 wpole'21.0

(1,4); @2/1# 0.19524; 0.19621 10.17 wpole'21.0

(2,3); @2/1# 0.19533; 0.19631 20.27 wpole'21.0

(2,4); @2/1# 0.19531; 0.19629 20.28 wpole'21.0

(3,3); @2/1# 0.19570; 0.19668 20.15 wpole'21.0

(3,4); @2/1# 0.19554; 0.19651 20.22 wpole'21.0

(2,3); @2/1# 0.19470; 0.19567 20.71 wpole'21.0

(2,4); @2/1# 0.19466; 0.19563 20.89 wpole'21.0

(1,3); @2/1# 0.19503; 0.19600 11.95 wpole'11.0

(1,4); @2/1# 0.19587; 0.19686 12.275 wpole'10.6

(2,3); @2/1# 0.19648; 0.19748 11.23 wpole'11.0

(2,4); @2/1# 0.19746; 0.19847 11.61 wpole'10.6

(3,3); @2/1# 0.19686; 0.19786 10.97 wpole'11.0

(3,4); @2/1# 0.19792; 0.19895 11.34 wpole'10.6

(1,3); TPS 0.19449; 0.19546 10.92 local max.

(1,4); TPS 0.19433; 0.19529 10.54 local max.

(2,3); TPS 0.19545; 0.19643 10.47 local max.

(2,4); TPS 0.19516; 0.19614 10.12 local max.

(3,3); TPS 0.19568; 0.19666 10.31 local max.

(3,4); TPS 0.19535; 0.19633 20.01 local max.

arithm. averager̄ t
0.19560; 0.19658
u

s
di

-
y

. I

the

-
ng
.

ht
values ofr t ~18! by demanding that the arithmetic averager̄ t
be equal to those upper and lower bounds. This proced
then results in the prediction

as
MS~mt

2!50.325460.0060exp60.0060EW60.0052CKM

60.0024tr ~d3
(0)525!. ~44!

It is gratifying that in the case ofd3
(0)525 so many PA case

give physically acceptable pole structure, and that the pre

tions for as
MS(mt

2) of the aforementioned 20 different ap
proaches differ from each other only a little—they differ b
at most 0.0024 from the prediction of their total average
09301
re

c-

f

confining ourselves to just one conformal transformation,
central value changes by only60.0001 ~0.3255 fork53;
0.3253 fork54). If using only the six entries from the ap
proach with the PMS, the central value is 0.3259. If usi
only the entries withwk

pole'21, the central value is 0.3258
If using only the entries withw3

pole'11 andw4
pole'10.6,

the central value changes to 0.3244.
Further, for most of the approximants of the first eig

entries of Table I~except those withj 51), when using the

same values ofc̃ but using PA’s@1/2# instead of@2/1# for

R̄j (wk), the predictionsr t differ from those of@2/1# by no
more than 0.0005, and the predictions ofas(mt

2) also by no
6-10
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TABLE II. Results analogous to those of Table I, but for the cased3
(0)515. The resultsr t are given for

the choicesas(mt
2 ;MS)50.331 and 0.332. The central measured valuer t50.1960~18! is achieved by the

arithmetic averager̄ t at as(mt
2 ;MS)50.3299.

( j , k); approximant r t @as(mt
2)50.331;0.332# c̃ Comments

(1,3); @2/1# 0.19625; 0.19717 11.20 wpole'21.0

(1,4); @2/1# 0.19600; 0.19692 11.10 wpole'21.0

(2,3); @2/1# 0.19712; 0.19806 10.83 wpole'21.0

(2,4); @2/1# 0.19688; 0.19781 10.74 wpole'21.0

(3,3); @2/1# 0.19776; 0.19871 10.55 wpole'21.0

(3,4); @2/1# 0.19750; 0.19844 10.46 wpole'21.0

(1,3); @2/1# 0.19601; 0.19693 12.52 wpole'11.0

(1,4); @2/1# 0.19687; 0.19781 12.83 wpole'10.6

(2,3); @2/1# 0.19758; 0.19853 11.98 wpole'11.0

(2,4); @2/1# 0.19856; 0.19953 12.30 wpole'10.6

(3,3); @2/1# 0.19831; 0.19927 11.64 wpole'11.0

(3,4); @2/1# 0.19942; 0.20040 11.97 wpole'10.6

(1,3); TPS 0.19543; 0.19634 11.6 local max.

(1,4); TPS 0.19525; 0.19616 11.3 local max.

(2,3); TPS 0.19666; 0.19759 11.2 local max.

(2,4); TPS 0.19640; 0.19733 10.9 local max.

(3,3); TPS 0.19732; 0.19826 10.9 local max.

(3,4); TPS 0.19703; 0.19797 10.6 local max.

arithm. averager̄ t
0.19702; 0.19796
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more than 0.0005. In these cases of good agreement
poleswk

pole of the PA’s@1/2# do not lie deep inside theb(wk)
intervals@21,13#. In most of the cases when the disagre
ment is larger, at least one of the poles of the@1/2# falls deep
inside these intervals, often even within the interv
@20.5,12#. This offers us additional evidence that our r
quirement that the poles of@2/1# be either atb(wk)521
~leading UV renormalon pole! or b(wk)513 ~next-to-
leading IR renormalon pole! was reasonable.

In order to obtain the uncertainties of the prediction due
the uncertaintyd3

(0)525610 around the central valued3
(0)

525, we repeat the procedure for the case ofd3
(0)515 and

d3
(0)535.

In the cased3
(0)515, the situation is very similar to th

aforementioned case ofd3
(0)525. We obtain six entries whe

we requirewk
pole521; three entries each whenw3

pole511
andw4

pole510.6; six entries when applying the PMS cond

tion ~43! with N3LO TPS forR̄j„b(wk)…—see Table II, when
two choicesas(mt

2 ;MS)50.331 and 0.332 are made. Th
09301
the

-

s

o

arithmetic averager̄ t of all these 18 entries is then equal
the central measured value~18! r t50.1960 when
as(mt

2 ;MS)50.3299, i.e., a value higher by 0.0045 than t
corresponding central prediction of Eq.~44! of the case
d3

(0)525.
In the cased3

(0)535, the numerical situation is less favo
able. None of the approaches with PA’s@2/1#R̄j

(wk) have

acceptable solutions under the requirementwk
pole521. Such

poles occur atc̃,22, but the corresponding predictions o
r t there are quite unstable under the variation ofc̃. In two
cases, acceptable solutions are obtained with the appr
with PA’s @2/1#R̄j

(wk) when we requirew3
pole511 or w4

pole

510.6—see the first two entries of Table III. The approa
with the PMS~43!, when using N3LO TPS for R̄j„b(wk)…,
appears to be more difficult as well; the derivatives]r t /] c̃
are never zero, but are negative for all reasonable value
c̃; nonetheless, these slopes have the smallest negative v
at specific values ofc̃—see the corresponding six entries
6-11
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TABLE III. Results analogous to those of Table I, but for the cased3
(0)535. The resultsr t are given for

the choicesas(mt
2 ;MS)50.320 and 0.321. In the approach with the (N3LO) TPS of R̄j (wk), the PMS

condition ~43! is never exactly satisfied; there, the values ofc̃ were chosen so that the~negative! slope

]r t /] c̃ is the least steep. The central measured valuer t50.1960~18! is achieved by the arithmetic averag

r̄ t at as(mt
2 ;MS)50.3194.

( j , k); approximant r t @as(mt
2)50.331;0.332# c̃ Comments

(1,3); @2/1# 0.19716; 0.19823 11.02 wpole'11.0

(1,4); @2/1# 0.19780; 0.19888 11.37 wpole'10.6

(1,3); TPS 0.19744; 0.19852 10.025 ]r t /] c̃'22.6631023

(1,4); TPS 0.19645; 0.19751 10.0 ]r t /] c̃'22.9231023

(2,3); TPS 0.19603; 0.19708 10.375 ]r t /] c̃'23.1831023

(2,4); TPS 0.19558; 0.19662 10.075 ]r t /] c̃'23.0931023

(3,3); TPS 0.19651; 0.19757 20.19 ]r t /] c̃'22.3731023

(3,4); TPS 0.19602; 0.19707 20.49 ]r t /] c̃'22.2931023

arithm. averager̄ t
0.19662; 0.19769
e
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Table III. Taking the arithmetic averager̄ t of the eight en-
tries of Table III, we infer that the arithmetic averag
achieves the central measured value~18! r t50.1960 for the
value as(mt

2 ;MS)50.3194, which is lower by 0.0060 tha
the corresponding central prediction of Eq.~44! of the case
d3

(0)525.
From the above considerations we infer that the unc

tainty of the prediction ofas(mt
2 ;MS) due to the uncertainty

~33! of d3
(0) is 60.0060.

There is yet another theoretical uncertainty involved
the prediction~44!, connected with the choice of the reno
malization scheme~RSch!. As shown in the Appendix, when
taking a RSch different from the modified ‘t Hooft~mtH!
RSchck5c1

k (k52,3, . . . ), theintegral transformations in
volved become more complicated. Then we end up w
instead of the simpler formula~42!, the more complicated
one ~A22!. We note that the leading RSch parameterc2 has
the valuesc2'3.16;4.47;6.58;5.24 in the mtH,MS, prin-
ciple of minimal sensitivity~PMS! @2#, and the effective
charge~ECH! @3# RSch’s ~where we takenf53; and the
PMS and ECH RSch’s refer to the N3LO TPS of the Adler
function!. Therefore, we estimate as a characteristic de
tion from c25c1

2'3.16 the valuec2'c1
213.4. We then per-

form the analysis in the RSch with the latter value ofc2 ~all
the otherck’s unchanged!, using formula~A22!. We use the
RScl parameter valuej2[m2/Q251 @Q25mt

2 exp(iy)#, for
d3

(0) we use the central valued3
(0)525, and for theb func-

tions we use again the@2/3# PA form. The results of the
analysis are written in Table IV. The variation of the para
eter c̃ allowed us to obtain the desired locations of the po
only in a few cases. The arithmetic average valuesr̄ t of
Table IV reach the central value predictionr̄ t50.1960 when
09301
r-

,

-

-
s

the coupling isas(mt
2 ;MS)50.3285, which is higher by

0.0031 than the central value in Eq.~44!. Concerning the
change of the next-to-leading RSch parameterc3, we note
that c3'5.6;21.0;36.8;16.1 for the mtH,MS, PMS, and
ECH RSch’s. Therefore, we choose a characterictic devia
of c3 from the mtH valuec35c1

3'5.6 to bec35c1
3131.

Completely analogous analysis to that in the case of thec2
deviation leads to the results of Table V. The arithmetic a
erage valuesr̄ t in Table V reach the central valuer̄ t

50.1960 for the couplingas(mt
2 ;MS)50.3274, which is

higher by 0.0020 than the central value in Eq.~44!. There-
fore, adding the deviations 0.0031 and 0.0020 in quadra
gives the estimated uncertainty due to the changes of
RSch to be60.0037.

We can thus add to the prediction~44! the discussed un
certainties due to the variation ofd3

(0) and of the RSch, re-
sulting in our final prediction

as
MS~mt

2!50.325460.0060exp60.0060EW60.0052CKM

60.0060dd3
60.0037RSch60.0024tr , ~45!

50.325460.0060exp60.0079EW1CKM

60.0074th . ~46!

In the last line, we added the corresponding uncertaintie
quadrature; the combined uncertainty due to the uncerta
of d3

(0) ~33!, the resummation~‘‘truncation’’ ! uncertainty, and
the RSch uncertainty we call the theoretical~th! uncertainty.
This combined uncertainty is comparable with the two oth
uncertainties in Eq.~46!. If we use for theMS b function in
Eq. ~38! the N3LO TPS form instead of the@2/3#bMS(x) PA
6-12
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TABLE IV. Results analogous to those of Table I, but for the different RSch:c25c1
213.4, ck5c1

k (k
53,4, . . . ).Expression~A22! is used to calculater t . RScl parameter isj2[m2/Q251 @Q25mt

2 exp(iy)#;
d3

(0)525. The resultsr t are given for the choicesas(mt
2 ;MS)50.329 and 0.330. The central measured va

r t50.1960~18! is achieved by the arithmetic averager̄ t at as(mt
2 ;MS)50.3285.

( j , k); approximant r t @as(mt
2)50.329;0.330# c̃ Comments

(2,4); @2/1# 0.19521; 0.19613 10.01 wpole'21.0

(3,3); @2/1# 0.19656; 0.19750 10.707 wpole'11.0

(3,3); @2/1# 0.19770; 0.19866 11.25 wpole'11.0

(2,3); TPS 0.19668; 0.19763 11.1 local max.

(2,4); TPS 0.19633; 0.19727 10.8 local max.

(3,3); TPS 0.19672; 0.19767 11.05 local max.

(3,4); TPS 0.19638; 0.19732 10.75 local max.

arithm. averager̄ t
0.19651; 0.19745

TABLE V. Results analogous to those of Table IV, but for the RSch:c35c1
3131.0, ck5c1

k (k
52,4,5, . . . ).Expression~A22! is used to calculater t . RScl parameter isj251; d3

(0)525. The resultsr t are
given for the choicesas(mt

2 ;MS)50.327 and 0.328. The central measured valuer t50.1960~18! is achieved

by the arithmetic averager̄ t at as(mt
2 ;MS)50.3274.

( j , k); approximant r t @as(mt
2)50.327;0.328# c̃ Comments

(1,3); @2/1# 0.19478; 0.19570 11.50 wpole'21.0

(1,4); @2/1# 0.19453; 0.19545 11.40 wpole'21.0

(2,3); @2/1# 0.19582; 0.19676 11.11 wpole'21.0

(2,4); @2/1# 0.19558; 0.19652 11.01 wpole'21.0

(3,3); @2/1# 0.19654; 0.19749 10.80 wpole'21.0

(3,4); @2/1# 0.19628; 0.19723 10.70 wpole'21.0

(1,3); @2/1# 0.19456; 0.19549 12.77 wpole'11.0

(1,4); @2/1# 0.19538; 0.19632 13.07 wpole'10.6

(2,3); @2/1# 0.19612; 0.19708 12.25 wpole'11.0

(2,4); @2/1# 0.19708; 0.19805 12.56 wpole'10.6

(3,3); @2/1# 0.19695; 0.19792 11.90 wpole'11.0

(3,4); @2/1# 0.19796; 0.19894 12.205 wpole'10.6

(1,3); TPS 0.19400; 0.19492 11.9 local max.

(1,4); TPS 0.19383; 0.19475 11.5 local max.

(2,3); TPS 0.19528; 0.19622 11.45 local max.

(2,4); TPS 0.19505; 0.19598 11.1 local max.

(3,3); TPS 0.19602; 0.19696 11.1 local max.

(3,4); TPS 0.19576; 0.19670 10.8 local max.

arithm. averager̄ t
0.19564; 0.19658
093016-13
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form, we obtain, in a way completely analogous to that
scribed in Table I, the central value predictionas(mt

2 ;MS)
50.3245. This is lower by 0.0009 than the central va
prediction in Eqs.~45! and ~46!, indicating that those non
perturbative effects which originate from the behavior of t
b function are not strong. The fact that we used in the Bo
integral a finiteb(w)max (54) does not influence the result
Namely, if we increase this quantity tob(w)max55 @corre-
sponding forw3 to f350.643 50 in Eq.~42!, and forw4 to
f450.402 72#, the predictions for as(mt

2) change by
;1026, i.e., insignificantly.

We then RGE-evolved the result~45! and ~46! from the
scalem5mt'1.777 GeV to the scaleM z591.19 GeV. We
used again the aforementioned@2/3#bMS(x) PA form of the
bMS function, which is based on the known four-loop N3LO
TPS form ofbMS @56#. Therefore, we employed the corre
sponding three-loop matching conditions@60# for the flavor
thresholds. The matching was performed atm(Nf)
5kmq(Nf) with the choicek52, wherem(Nf) is the scale
above whichNf flavors are assumed active, andmq(Nf) is
the running quark massmq(mq) of the Nf th flavor. We fur-
ther assumedmc(mc)51.25 GeV andmb(mb)54.25 GeV
@33#. We thus obtain from Eqs.~45! and ~46!

as
MS~M z

2!50.119260.0007exp60.0010EW1CKM60.0009th

60.0003evol, ~47!

50.119260.0015. ~48!

In Eq. ~48!, we added all the uncertainties in quadrature.
Eq. ~47!, we included the uncertainties due to the RGE e
lution, which come primarily from varyingk from 1.5 to 3,
and from varying the quark massesmc(mc)51.25
60.10 GeV andmb(mb)54.2560.15 GeV~see Ref.@22#
for more details!.

If we repeat the calculation ofas(mt
2) andas(M z

2) with
the N3LO TPS bMS function @in Eq. ~38! and in the RGE
evolution from mt

2 to M z
2#, instead of the used PA

@2/3#bMS(x), the central value predictionas(M z
2 ;MS)

50.1192 remains unchanged up to the displayed digits. T
is so because this change ofbMS causes the central valu
prediction ofas(mt

2 ;MS) to be lower by 0.0009@as already
mentioned after Eqs.~45! and ~46!#, but then the RGE evo
lution to m25M z

2 with the changedbMS pushes the result up
approximately neutralizing the former effect.

In the analysis leading to the results~45!–~48! we as-
sumed that the power-suppressed terms, apart from t
from the quark masses, do not contribute to the conside
observableRt , as already emphasized in Sec. II. As me
tioned in that section, the inclusive (V1A) fit of the ALEPH
Collaboration @27#, within their framework, predicted the
contributions of the~massless! power-suppressed terms
the canonical observabler t to be consistent with zero
dr t,PS50.00060.004. If we assumed that the latter estima
09301
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were valid also in our framework,7 this dr t,PSwould have to
be subtracted from the values given on the right-hand sid
Eq. ~18!, resulting in an additional, ‘‘PS’’-uncertainty term
60.0040 for ther t . This would in turn give an additiona
approximate uncertainty60.0041PS in the result~45! and
~46! for as(mt

2) and 60.0005PS in the result ~47! for
as(M z

2). The combined uncertainty60.0015 foras(M z
2) in

Eq. ~48! would increase to60.0016. All the central value
predictions in Eqs.~45!–~48! would remain unchanged.

There are at least two indications that the above res
~45! and ~46! and ~47! and ~48! are not wrong. In the ap-
proach of Ref.@22#, which involved ordinary Borel trans
form of D(Q2) and where the RScl was fixed according
the ~local! PMS and we used theMS RSch, the resulting
predictions were very similar:as(mt

2)50.326760.0062exp

60.0082EW1CKM60.0073meth and

as~M z
2!50.119360.0007exp60.0010EW1CKM60.0009meth

60.0003evol

50.119360.0015.8

Especially the latter values are in virtual agreement with E
~48!.

Yet another indication that the results presented here
correct comes from repeating the entire resummations,
this time without employing the conformal transformatio
b5b(w). Theb functions were again taken in the@2/3# PA
form. We carried out the resummation with the Borel int
gration in Eq.~36! again up tobmax54. For simplicity, we
fixed the c̃ value this time toc̃50. In each of the case
d3

(0)525, 15, 35, we excluded from the analysis the a
proaches with those PA’s which give physically unaccepta
pole structure, i.e., which have poles well inside theb inter-
val @21,3#. Those of the PA’s@2/1#R̄j

(b) and @1/2#R̄j
(b)

which were not excluded do not contain poles in theb inter-
val @20.8,3#.

In the cased3
(0)525, the nonexcluded approaches we

those with @2/1#R̄j
(b) for j 51,2,3 and @1/2#R̄j

(b) for j

51,2. Gratifyingly, the as predictions of these five ap
proaches differ from each other only a little:uDas(mt

2)u
,0.0004. We took the arithmetic averager̄ t of all five r t

predictions, and obtained as(mt
2)50.325760.0061exp

60.0061EW60.0053CKM ~for d3
(0)525).

In the cased3
(0)535, the nonexcluded PA approach

were those with@2/1#R̄j
(b) for j 51,2. In addition, we did

not exclude the approaches with the N3LO TPS ofR̄j (b) for
j 52,3, because their predictions are close to the aforem
tioned PA approaches. We then took the arithmetic aver

7See the discussion in Sec. II about the differences between
and ALEPH’s framework.

8The method~meth! uncertainty in@22# is the combination of
uncertainties fromdd3

(0) , the truncation~resummation!, and the
RScl and RSch ambiguities; the method uncertainty there thus
responds to our theoretical~th! uncertainty in Eqs.~46! and ~47!.
6-14
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r̄ t of all four r t predictions and obtained for the central val
as(mt

2)50.3191 @corresponding to the central valuer t

50.1960 in Eq.~18!#, which is lower by 0.0066 than th
aforementioned central value 0.3257 of thed3

(0)525 case.
In the cased3

(0)515, the nonexcluded approaches we
those with@2/1#R̄1

(b) and @1/2#R̄1
(b). Using the arithmetic

averager̄ t of these twor t predictions, we obtain the centra
valueas(mt

2)50.3293, which is higher by only 0.0036 tha
in the d3

(0)525 case.
This leads us to the following predictions of our metho

when no conformal transformation is used:

as
MS~mt

2!50.325760.0061exp60.0081EW1CKM60.0066dd3
,

~49!

as
MS~M z

2!50.119260.0007exp60.0010EW1CKM60.0008dd3

60.0003evol, ~50!

which is in almost complete agreement with the predictio
~45! and ~47!, obtained by the employment of the two co
formal transformations~40!. In Eqs. ~49! and ~50!, we did
not include the uncertainties due to the resummation~trun-
cation! and due to the RSch ambiguities, because we reg
these two predictions only as an additional cross check
our main predictions and uncertainty estimates~45!–~48!.

VI. SUMMARY

We calculated the hadronic tau decay widthr t by employ-
ing the contour integral form for this quantity in the compl
momentum plane~16! and the modified Borel transform fo
the associated perturbative massless Adler funct
By choosing a special renormalization scheme~modified
’t Hooft scheme:ck5c1

k , k52,3, . . . ), theintegrand of the
modified Borel transform is renormalization-scale invaria
In our approach, we explicitly account for the structure of t
leading infrared~IR! renormalon of the Adler function via
the corresponding ansatz. Further, to accelerate the con
gence, i.e., to minimize the resummation~truncation! uncer-
tainties, we employ two different conformal transformatio
which ‘‘map away’’ all the renormalon singularities, exce
the leading and subleading IR renormalons, onto the
circle. The correct location of the leading ultraviolet~UV!
renormalon or of the subleading IR renormalon is enforc
by employing Pade´ approximants for the truncated perturb
tion series of the functions associated with the modifi
Borel transform. The Borel integration, in this appraoc
turns out to have suppressed renormalon ambiguity forr t at
the leading IR renormalon singularity, and the ambiguity d
to the subleading renormalons is strongly suppressed by
exponent in the Borel integral. We neglect in the observa
r t all the possible power correction terms~except the dimen-
sion d54 quark mass terms!, because the results of th
ALEPH analysis@27# suggest that such terms are consist
with zero or negligibly small even in our resummatio
framework.

Our analysis predicts the values ofas
MS(mt

2) and
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MS(M z

2) given in Eqs.~45!–~48!. These predictions agre
well with the results obtained in our previous analysis@22# of
r t where we employed the ordinary Borel transforms. T
latter transforms have significantly different behavior, expa
sions, and the strengths of the renormalon singularities,
their integrands in the Borel integral are, in contrast with t
present approach, renormalization-scale–dependent. Th
fore, our present predictions represent a powerful recon
mation of the predictions of@22#. We consider this to be
important, because analyses ofr t which do not involve Borel
transforms and do not account for the leading renorma
structure of the associated Adler functions@27,61,10,19,62#
give predictions foras(mt

2) andas(M z
2) which significantly

differ from our predictions and significantly differ amon
themselves, as already emphasized in@22#. On the other
hand, if accounting for the renormalon structure via a lar
b0 resummation of the ordinary Borel transform and e
ploying an ECH-related resummation ofr t , as performed by

the authors of Ref.@9#, their predicted valuesas
MS(M z

2)
50.12060.002 come significantly closer to our predictio

~47! and ~48!. Further, our predictionas
MS(M z

2)50.1192
60.0015 is completely compatible with the world avera
0.118460.0031 as given in Ref.@63#, but somewhat less
compatible with the world average 0.117360.0020 as given
in Ref. @64#.
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APPENDIX A: MODIFIED BOREL TRANSFORMS
IN THE GENERAL RENORMALIZATION SCHEME

For a function f (y) with the ~asymptotically divergent!
expansion aroundy50,

f ~y!511 (
n51

`

f nyn, ~A1!

the modified Borel transformFf(z) was introduced by the
authors of@42# via the following expansion:

Ff~z!511 (
n51

`

f n

1

~n1c1z!~n211c1z!•••~11c1z!
zn,

~A2!

where c1 is the coefficient at the two-loop term of theb
function ~11!. The authors of@42# further showed that the
following integral transformation connectsf (y) andFf(z):

f ~y!5
1

y
~12c1y!E

0

`

dz e2z/yS y

zD
2c1z 1

G~11c1z!
F~z!.

~A3!
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Further, they showed that there corresponds to each sing
ity ;(R2z)2a2c1R of the ordinary Borel transformF f(z)
511( f nzn/n! a singularity ;(R2z)2a of the modified
Borel tranformFf(z),

F f~z!511 (
n51

`
f n

n!
zn;~R2z!2a2c1R ⇒

Ff~z!;~R2z!2a$11O@~R2z!ln~12z/R!#%.
~A4!

On the other hand, the perturbative expansion of the m
less Adler functionD(Q2) has the canonical form~10!, with
a5a(m2;c2 ,c3 , . . . ) being the QCD couplant, and the co
efficients dk having a specific RScl and RSch dependen
dk5dk(j

2;c2 , . . . ,ck) (j2[m2/Q2) determined by the re-
quirement of the RScl and RSch independence ofD(Q2) ~cf.
also @2#, first entry!,

d15d1
(0)1b0 ln j2, ~A5!

d25d2
(0)1~d1

22d1
(0)2!1c1~d12d1

(0)!2~c22c2
(0)!,

~A6!

d35d3
(0)13~d1d22d1

(0)d2
(0)!22~d1

32d1
(0)3!

2~c1/2!~d1
22d1

(0)2!1~c2d12c2
(0)d1

(0)!

2~1/2!~c32c3
(0)!, ~A7!

d45d4
(0)14~d1d32d1

(0)d3
(0)!2~c1/3!~d32d3

(0)!

1~5/3!~d2
22d2

(0)2!2~28/3!~d1
2d22d1

(0)2d2
(0)!

1~2c1/3!~d1d22d1
(0)d2

(0)!1~1/3!~c2d22c2
(0)d2

(0)!

1~14/3!~d1
42d1

(0)4!2~4/3!~c2d1
22c2

(0)d1
(0)2!

1~c3d12c3
(0)d1

(0)!2~1/3!~c42c4
(0)!. ~A8!

Here, the coefficientsdk
(0) are at the RSclm25Q2 (j251)

and in the RSchc2
(0) ,c3

(0) , . . . . Comparing expansions~10!
and ~A1!, and inspecting the integral transformation~A3!,
we may identify

a5y, D~Q2!5
y f~y!

~12c1y!
, ~A9!

which immediately leads to the relationsf 15d12c1 , f k
5dk2c1dk21 (k>2). If we useb[b0z as the Borel vari-
able, this allows us to write expansion~A2! as

FD~b;j2;c2 ,c3 , . . . !

5H 11
~d12c1!

~11c1b/b0! S b

b0
D

1 (
n52

`
~dn2c1dn21!

~11c1b/b0!~21c1b/b0!•••~n1c1b/b0!

3S b

b0
D nJ , ~A10!
09301
ar-
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e

and the integral transformation~A3! as

D~Q2!5
1

b0
E

0

`

db expF2
b

b0aG
3S ab0

b D 2c1b/b0 1

G~11c1b/b0!
FD~b!, ~A11!

5
1

b0
E

0

`

db expF2
b

b0
S 1

a
1c1 ln~c1a! D G

3S c1b

b0
D c1b/b0 1

G~11c1b/b0!
FD~b!. ~A12!

If the ordinary Borel transformD̃(b;j2;c2 , . . . ) ~21! has a
singularity of the form ;(R2b/b0)2a2c1R, then F f(z)
;(R2z)2a2c1R$11O@(R2z)1#%, due to the simple rela
tion dFf /dz5dD̃/dz2c1D̃. Therefore, we can write the sin
gularity relation between the ordinary Borel transformD̃ and
the modified Borel transformFD[Ff in complete analogy
with Eq. ~A4!

D̃~b;j2;c2 , . . . !;~k2b!2a2c1k/b0 ⇒
FD~b;j2;c2 , . . . !;~k2b!2a$11O@~k2b!

3 ln~12b/k!#%, ~A13!

wherek[b0R. We may use the subtracted Stevenson eq
tion @2# @cf. Eq. ~38!# to reexpress~partly! the expression
@1/a1c1ln(c1a)# in the exponential of Eq.~A12! in terms of
ln(m2/Q2)[ln(j2) and of the invariantr1(Q2) ~24!,

1

a
1c1 ln~c1a!5r1~Q2!1d1

(0)1b0 ln j2

2E
0

aF ~12c1x!

x2
1

b0

b~x!G , ~A14!

where b(x) is in the RSch considered, i.e., its expansi
around x50 is b(x;c2 , . . . )/b052x2(11c1x1c2x2

1•••). Therefore, Eq.~A12! can be rewritten

D~Q2![D„a~j2Q2;c2 , . . . !;j2;c2 , . . . …

5
1

b0
E

0

`

db expF2
@r1~Q2!1b0 ln j2#b

b0
G

3expF b

b0
E

0

a

dxS ~12c1x!

x2
1

b0

b~x;c2 , . . . !D G
3

~c1b/b0!c1b/b0

G~11c1b/b0!
expS 2

d1
(0)b

b0
DFD~b;j2;c2 , . . . !.

~A15!

In the general RSch (c2 ,c3 , . . . ) and at thegeneral RScl
j2[m2/Q2, the modifed Borel transform function
FD(b;j2;c2 , . . . ) is related to the function
FD(b;1;c2

(0) , . . . ) in thefollowing way:
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e2b ln j2FD~b;j2;c2 ,c3 , . . . !5FD~b;1;c2
(0) ,c3

(0) , . . . !2
1

2
~c22c2

(0)!S b

b0
D 2

1
1

12
@2~c22c1

2!~b0 ln j2!1~c22c2
(0)!~11c124d1

(0)!2~c32c3
(0)!#S b

b0
D 3

1
1

72
@3~c22c1

2!~b0 ln j2!~2d1
(0)2b0 ln j2!1~22c1

313c3225c1c2!~b0 ln j2!

2~c22c2
(0)!~85c1

224c215c2
(0)250c1d1

(0)19d2
(0)!1~c32c3

(0)!~13c123d1
(0)!

2~c42c4
(0)!#S b

b0
D 4

1O~b5!. ~A16!
io

ty
re

nt
hy
-
his

n
tH

e
res-
r-

2.
for-
-

This can be shown, for example, by using transformat
formulas~A5!–~A8! in the expansion~A10!. The above for-
mulas ~A16! and ~A15! show that the modified ’t Hooft
~mtH! scheme (ck5c1

k , k52,3, . . . ) is aremarkable RSch
choice in the discussed Borel transforms,

e2b ln j2FD~b;j2;c1
2 ,c1

3 , . . . !5FD~b;1;c1
2 ,c1

3 , . . . !,
~A17!

~12c1x!

x2
1

b0

b~x;c1
2 ,c1

3 , . . . !
50, ~A18!

and thus Eq.~A15! reduces in this case to

D~Q2![D„a~j2Q2;c1
2 ,c1

3 . . . !;j2;c1
2 ,c1

3 , . . . …

5
1

b0
E

0

`

db expF2
@r1~Q2!1b0 ln j2#b

b0
G

3
~c1b/b0!c1b/b0

G~11c1b/b0!
expS ~b0 ln j22d1

(0)!b

b0
D

3FD~b;1;c1
2 ,c1

3 , . . . !. ~A19!

This is just the integral transformation~23!, with expansion
~25! and the constantc̃5b0 ln j2 @note that d̃15d1

(0)

5d1(j251)#,

D̄~b; c̃!5ec̃b/b0D̄~b;0!5
~c1b/b0!c1b/b0

G~11c1b/b0!
expS ~ c̃2d1

(0)!b

b0
D

3FD~b;1;c1
2 ,c1

3 , . . . !u c̃5b0 ln j2. ~A20!

The above expression~A19! shows the remarkable proper
of the mtH RSch: the whole integrand in the modified Bo
09301
n

l

transformation in the mtH RSch is RScl-independe
(j2-independent!. This appears to be the main reason w
Grunberg@41# called this Borel transformation ‘‘renormal
ization scheme invariant.’’ Strictly speaking, we see that t
transformation may be called ‘‘renormalization scale~RScl!
invariant,’’ with the choice of the mtH renormalizatio
scheme~RSch!. On the other hand, if we abandon the m
RSch in the general class of Borel transformations~A15!, the
integrand becomes explicitly RScl-dependent,

]@ integrand~b;j2;c2 , . . . !#

b0] ln j2

}~c1b/b0!c1b/b0H S b

b0
D

3F11
~12c1a!b~a;c2 , . . . !

b0a2 G1O~b2!J
5~c1b/b0!c1b/b0H S b

b0
D @12~12c1a!~11c1a

1c2a21••• !#1O~b2!J . ~A21!

In order to obtain the expression forr t in terms of the modi-
fied Borel transformFD(b;j2;c2 , . . . ) in thegeneral RSch,
the contour integration~16! in the complex momentum plan
has to be performed on the massless Adler function exp
sion ~A15!. Further, we can perform in addition the confo
mal transformationb5b(w) of the types~41! and the ray
integration trick in thew plane as explained in Figs. 1 and
The procedure is analogous to the procedure leading to
mula ~42! in the mtH RSch, and we end up with the follow
ing formula in the general RSch:
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r t5
1

2pb0
ReH e2 ifE

0

1

dx
db~w!

dw
expF2

@r1~mt
2 ;a0!1 c̃#b~w!

b0
G

3
@c1b~w!/b0#c1b(w)/b0e2c1b(w)/b0

G@11c1b~w!/b0#
f j„b~w!…R̄j„b~w!; c̃;j2;c2 , . . . …

3
1

@12b~w!/2#
E

2p

p

dy~11eiy!3~12eiy!e2 ib(w)y

3expFb~w!

b0
E

0

a„j2mt
2 exp(iy);c2 , . . . …

dxS ~12c1x!

x2
1

b0

b~x;c2 , . . . !D G J U
w5xeif

, ~A22!
A

-

e

where the weight functionsf j are given in Eq.~37! and the
Borel transform functionsR̄j are defined in analogy with
Eqs.~27!–~30!,

R̄1~b; c̃;j2;c2 , . . . !5~12b/2!exp@~ c̃1c12d1
(0)!b/b0#

3e2b ln j2FD~b;j2;c2 ,c3 , . . . !,

~A23!

R̄2~b; c̃;j2;c2 , . . . !5R̄1~b; c̃;j2;c2 , . . . !
~11c1b/b0!

~21c1b/b0!
,

~A24!

R̄3~b; c̃;j2;c2 , . . . !5R̄1~b; c̃;j2;c2 , . . . !

3
~11c1b/b0!~21c1b/b0!

~31c1b/b0!2
.

~A25!

We introduced an additional freedom factor exp(2c̃ b/b0) in
v.

s.

09301
the exponential in Eq.~A22!, which is then offset by the
factor exp(1c̃b/b0) in the functionsR̄j , in analogy with the
case of the mtH RSch Eq.~42!. The functions
R̄j„b(w);j2; c̃;c2 , . . . … can be resummed, either as P
@2/1#R̄j

(w) or as simple N3LO TPS. The function

exp(2b ln j2)FD(b;j2;c2 ,c3 , . . . ), which is the source of
the RScl dependence inR̄j ’s, has only a weak RScl depen
dence, as can be seen from Eq.~A16!,

e2b ln j2FD~b;j2;c2,c3 , . . . !5FD~b;1;c2 ,c3 , . . . !

1
1

6
~c22c1

2!S b

b0
D 3

~b0 ln j2!

1O~b4!. ~A26!

We further see from Eq.~A22! that in the general RSch w
cannot perform the contour integration overdy analytically,
in contrast to the mtH RSch Eq.~42!.
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