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Resummation of the hadronic tau decay width with the modified Borel transform method
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A modified Borel transform of the Adler function is used to resum the hadronic tau decay width ratio. In
contrast with the ordinary Borel transform, the integrand of the Borel integral is renormalization-scale invari-
ant. We use an ansatz which explicitly accounts for the structure of the leading infrared renormalon. Further,
we use judiciously chosen conformal transformations for the Borel variable, in order to map sufficiently away
from the origin the other ultraviolet and infrared renormalon singularities. In addition, we applyaBpotexi-
mants for the corresponding truncated perturbation series of the modified Borel transform, in order to further
accelerate the convergence. Comparing the results with the presently available experimental data on the tau
hadronic decay width ratio, we obta’ms(M§)=O.1192t 0.000%,,=0.001Qy+ ckm = 0.0009, =0.0003,4.-

These predictions virtually agree with those of our previous resummations where we used ordinary Borel
transforms instead.
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[. INTRODUCTION on the location of various renormalon singularities via
leading, resummation[8,9]. Full information on the
Extensive perturbative calculations in QCD have madenown leading IR renormalon structure can be incorporated
available the truncated perturbation seri@®9 of various in a natural way through an explicit ansatz, in the approaches
observables to the next-to-next-to-leading ordsiNLO), using Borel transformations of the considered or of the asso-
i.e., including the terms- 2. There is a long-standing prob- ciated observablésee, e.g.[22]). Incorporation of the avail-
lem of how to extrac(resum, in a reasonable manner, the able leading renormalon information appears to influence
values of such observabl&«a.) as functions of the strong- significantly the numerical predictions, particularly for low-
coupling parameteraQ"_S(Mi). Many of the resummation energy(lpw-Qz) QCD observgbles,_through a more accurate
methods are based solely on the available TR$(as). description of the Borel amplitude in the region between the

Some of these methods eliminate thainphysical origin and the leading IR renormalon singularity. This
renormalization-scale(RSc) and renormalization-scheme method has an advgmtage over gg widely u$ag;e-
(RSch dependence of the TPS by fixing the RScl and RSci‘?umE_'eg ohperator %ro luct eXp?t;‘S'.‘i B approaltlcr{ k]’

in the TPS itself. Among them are the RScl fixing of Brod- [Ir_lp\g ¢ c: ed%?‘ﬁ“f Iatlve contr|but]ons are U/SUZ? y taken as
sky, Lepage, and Mackenzi{BLM), motivated by large3; , and additional nonperturbative termd/Q appear
arguments1], the principle of minimal sensitivityPMS) (cf. [24] and references thergirSince the perturbation series
[2], and the éffective charge meth¢BCH) [3—5]. Some of is divergent, the latter approach has the problem that there is

the more recent methods are the approaches using “commeh® natural separation between perturbative contributions and
surate scale relationg6], ECH-related approach§g—10], a power-suppressed nonperturbative terms, a problem which

method using an analytic form of the coupling parameterdoes not occur in the former method._ However, the Bor(_al-
[11], a method using expansions in the two-loop Couplingresummed value for an observable, with the renormalon in-

parameter{12], a method which disentangles the runningformfiﬂon incorporated in ife.g., via an explicit ansatzin
coupling and conformal effectiskeleton coefficients[13] principle still does not represent the full value of the observ-
methods using conformal transformations either for the cou‘—"‘t.)le' bgcause power-suppressed terms ShO.UId be'added to it
pling parametef14] or for the Borel expansion parameter Dlsp_erswe model¢[25] and references thergiontain and .
[15,16, the method of Padapproximants(PAs) [17—19, predict the OPE-type power-suppressed terms. Recently, it

and an RScl-invarianf20] and RScl- and RSch-invariant has been argue@6] that the power-suppressed terms can be
extensions of the PA approag®1] obtained from the knowledge of the perturbation series, or

Some of the aforementioned approaches allow for the inParts thereof, and of the IR renormalon structure of the ob-
corporation of additional, nonperturbative information on theserlvabllle.h . hes. for obvi
observable, e.g., information on the location of the dominant, .1 & these resummation approaches, for obvious reasons,

infrared(IR) renormalon singularity21] via the fixing of the it is highly preferable to consider QCD obs_e_rvables whose
values are presently known at a high-precision level. Pres-

remaining free parameter in the approximant, or information ; . .
ently, high-precision experimental data enlepton decay

widths[27-32 are available. The nonstrange hadronide-

cay width ratioR(AS=0) can be obtained by using con-
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subtracting the strangeness-changing pag R (AS+#0) attractive feature of Grunberg’s transforms is that the inte-

=0.1630+0.0057: grand in the Borel integral is RScl-independent, in contrast
to the case of the ordinary Borel transforms. Another inter-
I'(v~ —v,hadrongvy)) esting feature is that they represent integral transformations
RA(AS=0)= —R(AS#0) (1) of a significantly different form than the ordinary Borel

I'(r —v.e v . : ) \
(r—v.e ve(y) transformation, and have therefore a different singularity

(1-B,—B,) structure. Therefore, their application to the hadronic tau de-
= B? P —R,(AS#0)=3.4713 cay width ratio and the subsequent extraction of the predic-
e tion for aS(Mi) could represent a powerful cross check of
+0.0171. (2)  the results of previous work22] based on ordinary Borel

transformations.

The above ratio is a QCD observable at relatively low mo- In Sec. Il, we recall the kn_own basic theor_etical formulas
menta\/gZ~m.~1.8 GeV, experimentally known to high for R,(AS=0) and the associated Adler functions, as well as
precision, thus presenting an experimental challenge to the reduction to the massless QCD observabldn Sec. Ill,
theory. The challenge consists in predicting the strongwe present the modified Borel transforidgb) of the mass-
coupling constanizS(M2) so that the theoretical uncer- !ess Adler functionD(Q?). We refer to the Appendix for
tainty (das)p, which partly originates from the uncertainty details abouD(b). In Sec. IV, we perform the resummation
of the method of resummation and partly from the uncerfor r ., by contour integration ob(Q?) in the complex mo-
tainty of the associated Adler function, is smaller or compa-mentum plane, explicitly accounting for the leading IR
rable to the uncertaintydas) ey, Originating from the small  renormalon structure ob(b) through an ansatz, choosing
experimental uncertaintyR,.~ +0.017 given above. conformal transformations of the Borel varialdieto map

T_here is now a wealth of theoreti_cal res_ujm,34—40 away other singularities ob(b), and employing Padap-
available on the observabig), and, in particular, on the ,oximants. In Sec. V, we compare the obtained expressions

associated Adler functiold (Q?)—perturbative as well as with the experimental results and determing(m?) and

nonperturbative. The main QCD theoretical problem con-, (\12) \ye further estimate the theoretical uncertainties of

the prediction. Section VI contains a summary and brief dis-

are stomevvlhat Iov¢Q|~tmT (%21:8 tEeV),tant;j ?o the rel- ¢\ ssion of the differences between our resuits and those of
evant coupling parameters(Q©) in the perturbation expan- .o analyses oR. .

sion is large. It is thus important to take into account, in any
resummation procedure fdR. and/orD(Q?), not just the
known perturbative coefficients, but also a significant part of IIl. THE KNOWN BASIC FORMULAS, REDUCTION
the nonperturbative information, i.e., the leading infrared TO MASSLESS QCD

renormalon. On the other hand, the nonperturbative contri- The restrictionAS=0 in Eq.(2) means that only hadrons
butions toR that are represented by power-suppressed OPiith quarksu andd are produced. Thus the observalis
terms(apart from the well known quark mass contributipns giready close to being massless. This fact removes some of
have been shown to be consistent with zero in the ALEPHpe complications in the theoretical analysis.

analysis[27]. The ratio(2) can be expressed, via the application of a

One version of this program was carried out in our previ-yariant of the optical theorem, and the subsequent use of
ous work[22]. There we first used the known information on Cauchy’s theorem and integration by parts, as a contour in-

the leading infraredIR) renormalon and on the correspond- teqra| in the complex momentum plarigee, for example,
ing 1/Q3-suppressed term of the OPE for the Adler function Refs.[24,40):

D(Q?), in order to predict the(«2) coefficientd;(Q?) of
D(Q?). Using this prediction, and judiciously chosen confor- _ R(AS=0)

nected with the observab(@) is that the pertaining momenta

mal transformations, we resumm&q by employing an or- [ +{AS=0)=——————————(1+ dgy) ()
: ~ . . 3|Vud “(1+ Sgw)

dinary Borel transfornD(b) of the Adler function with an

ansatz which explicitly accounted for the leading IR renor- ds s\3

malon structure. Comparing the obtained expression with the =(—ai) ;| 1-=

experimental value&), we obtained definite predictions for ls|=m? S m;

the strong-coupling parameterg(MZ2)=0.1193+0.0007%,, . 4

iO.OOlQWJrCKMiQ.OOO%Em‘_"_O.OOO%\,m: . We fixed _the X[ 1+ = DY T(—s)+ =D%(—s)|—1. (4)

RScl by the principle of minimal sensitivittPMS) applied m2 3

to the approximant, and by choosing the modified minimal

subtraction IS) RSch. Here we factored out, for convenience, the square of the
In the present work instead, in order to obtain a crosgCabibbo-Kobayashi-Maskaw&KM) matrix elemen{V g,

check of the predictions, we employ not ordinary Borelthe electroweak(EW) correction parametedg,=0.0194

transforms but modified Borel transforms Bf(Q?%). Such ~ =0.0050[43,44,24, and the residual EW correction param-

Borel transforms were introduced by Grunb@dd], on the eter 5g,,=0.0010[43]. The contour integration in E¢4) is

basis of the modified Borel transforms of R¢fl2]. One counterclockwise in the complex plane, and the general
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Adler functions D' and Dt are related to thev+A
current-current correlation functions as

()
ud,V

(9

DL*T(—s)-—s— E [T () + T A()], ()

D'(—9)= 2ds{s[ av(S) TS (©®)

Here, J is the spin of the hadronic system in its rest frame
(L:J=0;T:J=1); TI{),,A are the components in the Lor-
entz decomposition,

A% a(a) = (—g*"g?+g#g")11
+0q" I \a(0?)

(1)
ud,V/A

(a?)
(7)

of the two-point correlation functlonﬁud,\,,A of the vector
=dy*u and axial- vectorAf;=dy*ysu (color-singlej

currents
—ng;V(q)zf d*x €9(0| T{VE(x)VL4(0) T} 0), (8)
—i I A(a) = f d*x €9(0| T{AL(X)AL4(0)T}|0). 9

In the massless quark limit{, 4—0), DY(s) vanishes and
the vector and axial-vector contributions B>*T become
equal in perturbation anB- " T(—s)—[1+D(—s)]/(272?),
whereD(Q?) is the canonically normalized massless Adler
function with the perturbative expansfon

©

D(Q?¥)=a| 1+ Zl d,a" (10)

Here,a=a(u?,Cy,C3, ... )/ is the QCD couplant at the
renormalization scaléRSc) w2 and in the renormalization
scheme&RSch characterized by the coefficients (j=2) in
the beta function

d
—a=p(a)=—Bea’[1+ciatca’+---]. (11)

d

Here, Bo=(11-2n¢/3)/4 and c;=(102—38n:/3)/(168,)
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operator product expansiqi@®PE. The largest quark mass
contributions are quark condensate terms of dimension
=4 («1/m?),

5 (AS=0)r, 20

Py 2\\ 2
%16W2(mu+rr:‘(‘j)<qq>{l+%3( as(mr)) } (12)
1672f2m?2 23(as(m§))2
S A

T

~—0.00265<(1+0.03~—0.0027. (13

In Eq. (12) we denoted qq)=(uu)~(dd). Here renormal-
ization scale can be taken to pe=m,. In Eq.(13) we used

the PCAC relation if,+my)(qq)~—f2m2 (f,=92.4
+0.3 MeV;m_,-=139.6 MeV). There are corrections to
this relation and to expressida3) of the order~mj o/m?2,
i.e., of the order of the OPH=2 terms which can reach, at
most, values- 10 “. In obtaining the numerical value in Eq.
(13), we further usedm,=1777 MeV and ay(m?,MS)
~0.32.

The OPE approach off24] includes other power-
suppressed nonperturbative terms that contribute tut do
not stem from quark masses: tthe 4 gluon condensate term
and thed=6 term. The latter term could be large, but it has
also comparably large uncertaintigst]. The gluon conden-
sate contribution ta . in the OPE ISa -suppressed. The
ALEPH analysiq 27] |nd|cates that thesd 4,6 nonpertur-
bative contributions te . are consistent with the value zero,
or (NP;m, 4=0)=0. OOOtO 004. We should keep in mind,
however, that the ALEPH analysis assumed that the part of
the associated Adler function which has no power-
suppressed terms is an {ND) TPS, while we will perform
resummations of this part by taking into account its renorma-
lon singularity structure. Nonetheless, we consider the
ALEPH analysis as indicative that even in our resummation
framework the power-suppressed OPE-type termsr in
(apart from the quark mass terjrere either consistent with
zero or very small. Therefore, we will ignore in our analysis
of r . any OPE power-suppressed nonperturbative terms other
than those in Eqg12) and(13).

We thus regard, in our framework, as nonperturbative

are two universal constants which depend only on the nummassless contributions only those contributions which appear

ber of active quark flavora; . The Adler functions are qua-

as a consequence of explicit IR renormalon structure of the

siobservables, in the sense that they are independent of tf&@rel transforms in the resummation. For example, the lead-

RScl and RSch.

In order to apply the massless QCD analysisr {pAS
=0) (4), we have to subtract from it the quark mass,
#0) contributions. This can be carried d@4] within an

The (ud) Adler functionsD"*T andD" [Egs.(5) and (6)] usu-
ally include, by convention, the additional CKM factaf,q|? (e.g.,
see Refs[40]).

ing IR renormalon of the Adler functio® (Q?) (which we

will account fop gives contributions tdD(Q?) which can

be partially represented as d=4 power-suppressed
term « 1/Q*. This, however, does not necessarily mean that
there is no additional, genuine OPE-typg=4 term
(=(aGG)/Q* in D(Q?). The uncertainties of the OP&
=4,6 massless terms as given by ALEPH are large enough to
accommodate the possibility of significant nonzero values of
these terms. For examplédaGG)=0.001+0.015 Ge.
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Toward the end of Sec. V, we will briefly discuss how the |Vyql =0.9749 0.0021. (17)
latter uncertainties would influence the final predictiondgr
in our analysis. This leads us, via Eq€2), (3), and(13), to the following

The ALEPH analysis further assumed that masskss values for the massless QCD observalil4):
=2 terms (1/Q?) are not present in the Adler functi¢and
thus inr ), as suggested by the OPE. Such terms were sug- r=r(AS=0;m,4=0)
gested by the authors of Refd5,46 as an effective tachy-

onic gluon mass contribution reflecting nonperturbative =0.19600.005Q,;+ 0.0053w

short-distance QCD. However, the authors of Ref7] +0.005%y (18)
showed that the strength of such terms is consistent with
zero? =0.1960+ 0.0098. (19

When subtracting the quark mass contributi¢h8) and
(13) from Eq.(4), we end up with the massless QCD observ-In Eq. (19), the three uncertainties of E(L8) were added in
able quadrature.
The valueg18), together with the contour integral expres-
r=r(AS=0imy4=0)=r(AS=0)=r(AS=0)m, +0 sion (16), will be the starting point for our massless QCD
(14 resummation analyses of hadronidecays.
3( S
1+ —
m2
T The most straightforward way to perform the resumma-
1 (= _ , ‘ tion for r . given in Eqgs.(15) and(16) would be to insert the
= Ef dy(1+e')3(1—€eY)D(—s=m?eY),  (16)  known truncated perturbation seri€ePS for D(—s) given
o in Eq. (10) and perform the momentum-contour integration,
i.e., the approach df39]. The method is, first, fraught with
ambiguities from the choice of RScl and RSch. The final

result contains residual, but significant, RScl and RSch de-

5 pendence, due to the truncation of the series in E&Q).
in Eq. (10) depend on the RSg and the RSch parameters Secondly, the method does not incorporate the known renor-

c; in a known specific manner, becau3¢Q?) is RScl- and
J m A m
RSch-independent. Knowing them at a specific RScl anc. alon structure of the Adler function’s Borel transfor

RSch, we know them at any RScl and RSch—see &f®— D(b).

(A8) in the Appendix. The first two coefficients have already N @ Previous papeji22], two of us addressed the second
been calculated, and in thdS RSch and at RSck2=Q?, problem, by employing in the resummation (ardinary)

for n;=3, they ared(o)—l 6398[50]; d(o)—6 3710[51] [the Borel transformf)(b) that includes the leading IR renorma-
superscript0) denotes the value at the aforementioned RSclon via the ansatd (b)=R(b)/(1—b/2)**, and by intro-
and RSch ducing in addition conformal transformatiobhs-b(w) in or-

In order to extract the experimental valuergf(14), ac- der to map sufficiently far away from the origin the
cording to Eq.(3) we need to use the valug&(AS=0) of  singularities of the UMand the remaining IRrenormalons.
EQ. (2), JSgw=0.0194-0.0050 [43,44,24, 5f,=0.0010 However, the integrand in théordinary Borel integral is
[43], 6r (AS# o)m (40 (13), and in addition the value of the RScl- and RSch-dependent. This can be inferred from the

CKM matrix elementjvud| which we take as definition

1 o
D(Q2)=%fo db

- ds(,_ s D(-s), (15 lll. MODIFIED BOREL TRANSFORMS
27 )|s=m? S m2 '

T

with the canonically normalized massless Adler function
D(Q?=—s) defined in Eq(10).
The perturbation coefficientd; =d; (,u 1Q%¢y, ..., cj)

They did this by fitting ad=2 finite energy sum rule, which is

apparently well satisfied at the used relevant scg8s49, to the
new ALEPH data on spectral functions extracted from theecay % ex;{ _ B(b;MZ/QZ.Cz, ),
measurements. Boa(m?cy, .. .)
3The standard modéBM) unitarity-constrained fit predictd/, |
=0.9749*+0.0008[33]. However, the values extracted from the de- (20

cays of mirror nuclei are lowelV, 4 =0.9740-0.0010. This ex-
traction has significant theoretical uncertaintigse[33] for further
references The values extracted from neutron decays are even

and from the expansion of the transform around the origin,

lower, |V4|=0.9728+0.0012(]33] and references thergjrbut ap- D(b;MZ/Qz'CZ’ o)

pear to have smaller theoretical uncertainties. In view of all these dl(,LLZ/QZ) b

considerations, we take in our analysis the value range as given in =1+ —(—)

Eq.(17). Here, the central value is from the unitarity-constrained fit, 1! Bo

and the uncertainty is increased so that ELj) covers all the © ( 2/Q2'C c)

values from the decays of mirror nuclei and the upper half of the +> ® 2t n ( ) . (21
interval from neutron decays. n=2 n! Bo
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For example, direct application of the derivative with respect SinceD(Q?) andp,(Q?) in Eq.(23) are RScl- and RSch-

to the RSclu? gives independent, sB (b;c) possesses no explicit RScl and RSch
dependence. However, as shown in the Appendix, the modi-
J bl(Bga) fied Borel trgnsformationz3) is one in a large class of Borel
oo SLe %D (b)] transformations, where each of them corresponds to a spe-
o T K cific choice of the RScl and RSch. The transformati@®) is
B(a) l b { (ﬂ(a) ) obtained from this class by choosing the so-called modified
d 1

2 2
Po2 show that in this case the constamtis in fact the RScl
integrand in the Borel integral is RScl-independent

ci|1 (b B(a) parameterc= 3, In(&%), where &2=u?/Q? This special
+to ( ) +|d; 1
Bo
1/p)3 (c-independent Therefore, we can call it the RScl-
PR

:eb/(ﬁoa)[ = F+ 1 > 't Hooft RSch (mtH RSch:cJ:cjl, j=2,3,...). Wealso
0 ﬁoa
Y Borel transformation has the remarkable property that the
0@
1 : . .
+ §(chd1+ Cy) AV independent Borel transformation, since the change of the

RScl only changes the convention of separating (R8cl-
invariany integrand in Eq(23) into two factors.

using the notations of Eq11). Once going beyond the one-  vet another useful property of the modified Borel trans-
|00p apprOXimation of the RGE eVOIUtiC(ﬂl) the integrand form (23) is the f0||OW|ng due to the very S|mp@2 depen_

is RScl-dependent. If we knew the exact expression of thglence of the integrand in E423), the contour integration
integrand, the total integrak0) would be RScl-independent. (16) in the complex momentum plane can be performed ana-
However, since we have a TPS available Extb), we are lytically, leading to a rather simple expression for the observ-
forced to use a TPS fcR(b) (l b/2)1+"5(b) This trun- able r., as will be shown in the next section. This is not
cation then results in the residual RScl and RSch dependen&@ssible if the mtH RSch is abandoned.

of the resummed result fdd (Q?) and thus forr .. In [22] The coefficients of expansion dD(b c) in Eq. (23

we fixed the RScl parameter= u?/Q? according to the aroundb=0 are related with those of the expansion of
principle of minimal sensitivitfPMS), i.e.,dr./9&?=0.The D(Q?) most easily when we use for the latter expansion the

RSch was chosen to BdS. specific mtH RSce,=cX (k=2) and RSclu?=Q? [41],
In the present paper we apply, instead of the ordinary o

Borel transform, several variants of the modified Borel trans- — b (C1bl Bo)®1P'Po p((C—dl)b

form D(b) of the Adler functionD (Q?). The integrand will (bic)= F(1+clb/,80) Bo

be RScl-independent. This Borel transform was introduced ~

for QCD and QED(quasjobservables by Grunber#1], w11 (di—cy) (b

who in turn constructed them on the basis of the modified (1+c4b/Bo) \ Bo

Borel transformations of Ref42]. The integral transforma- 5 5
(dn_cldn—l)

tion for S(b) is written in the form
o n=2 (1+c1b/Bo)(2+cib/ Bo) - - - (N+c1b/ Bo)
[p2(Q*)+Cb| =~ )
Bof dbe ‘{ B x(ﬂ) ] (25)
(23 Bo

- ~ - — : k
Here, D(b;c)=explch/B,)D(b;0) and has noQ? depen- Here dj=d;(r?Q%c,, . .. ¢)) With u?=Q% c=cf (K

~ o . o ) . We refer to the Appendlx for details. Expanding
dence;c is a specific arbitrary constan; is the first RScl J)
and RSch invariani2] of the Adler function, each term on the rlght hand side in powershahen yields

the expansion oD(b c) aroundb=0. Here we can see
again that in the larg@, approximation ¢;— +0) the

[

+

2 2
p1(Q3) = —d;(1?Q?) + By |n__,30 In 8 (24)  above expansion redLJces to the expangii) of the ord~i—
nary Borel transformD(b;1,...) times the factor eXjc
—dp)b/ o).
where A is the universal scale appearing in Stevenson’s The ordinary Borel transforr® (b) is known to have sin-
equation[2], andA is a scale which depends on the observ-gularities atb=—1,—2,... (UV renormalons and atb
able but is RScl- and RSch-independent. We note that2 3 . . . (IR renormalon}s The renormalon resummation

p1(Q?)=[1/2*"°P(Q?) +c], wherec is a constant. There- of D(Qz) and of the hadronie decay width in the largg,

fore, D(b ¢) reduces to the ordinary Borel transform limit has been performed in Refg&52—54. The IR renorma-
D(b; u2Q?=1, ...)times the factor exjic+c)b/5,], when lons on the contour of the Borel integrati¢20) cause am-
higher than one-loop effects are ignor@arge3, approxi- biguities, above~all the leading IR renormaldn=2). The
mation. singularity of D(b) at b=n has the form 1/(1
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—b/n)2* mtnelbo for n=3 and 1/(k-b/2)L* 72" 21/ at  We recall thaiR;(b;c) = exp{b/By)R;(b;0). In the above ex-
b=2, wherey,, is the one-loop anomalous dimension of the pressions, we restored analyticity ka0 by factoring out,
operators corresponding to theQ® terms in the operator instead of the factor a;b/Bo)®*#o, the combination
product expansion of the Adler functid(Q?). In the case (C1b/Bo)1”Foe™“1PAo/T'(1+c4b/ By). Our main motivation

n=2, it is known thaty’ =0 [55]. Thus, at the leading IR for this lies in the following: the factor a;b/B,) "0 is
renormalon we have D(b)<1/(1—b/2) %, with v increasing extremely fast with increasibgwhile the afore-

=2¢,/B, (=1.580, whem; =3). mentioned combination has wealdependence,

On the other hand, the modified Borel transfdﬁﬁb) in (C1bl Bo)C1P/Pog=Cc1b/Bo 1
Eq. (23 has the(IR and UV) renormalon singularities at the = . ;Jr o = when b—o.
same locations aB(b), but with simpler power§41,42— (14¢16/Bo) V2mCib/ o

the IR renormalon singularities are of the form 1/(1 (31)

—b/n)** " for n=3 and 1/(1+-b/2)" for the leading IR Hence, functionsR;(b;c) behave at largeb roughly as
singularity [see Eq.(A13) in the Appendix, withx=n]. R(b:S) or D(b;%)

Therefore, we can define a new functiBb;c),

o L R;(b;¢)~(1—b/2)\2mc,b/BeD(b;c)  when b—e,
R(bi¢)=(1-b/2)D(b;), (26) (32

which has a considerably softened singularitybat2 (cut i.e., they neither decrease nor increase violently. Therefore,
instead of polg This function can be determined by resum- @1y approximate resummation method will have a better

. =~ chance when applied to them than to an extremely fast in-
mations of the TPS oR(b;c) (cf. aIs_o Ref[15]). The latter creasing or decreasing version. On the other hand, if we just

TPS is known to the same order B¢b;c)—see EQ.(25:  factored out the factorcyb/ By)c1*/4o, the resulting function,
d®) andd$” («d,,d,) are known exactly, and{” (<ds)  though analytic ab=0, would decrease violently at large
is known approximately. The same is true for the mOdiﬁedas~(clb/ﬁo)’Clb’ﬁOS(b;E)_

functions R;(b;c) (j=1,2,3) discussed below, Eq&7)- The functionR,(b;c) has spuriougunphysical poles at
(30). o b=—Bq/c;, —2BylCq, ... (=—1.261, —2.53, whenn;
The functionD (b;c) as defined in Eq(23) has additional =3). But the functionR, has a possible advantage oWwRyr
singularities, as seen from the expansi@®b): (i) it is  in resummations, since it has no spurigaenphysical pole
nonanalytic ab=0, due to thefinite) factor (c,b/B)“1”#o;  atb=— B,/c,, andR, has no such poles at= — 8,/c; and
(i) it has additional (spurioug poles at b=—pq/c, —2Bo/Cy.
(~—1.266 whem;=3),b=—2p,/c,, etc. In approximate  gjnce the coefficientsl{”) and d® (=4,,d,) of the
numerical evaluations ob(Q?) andr, via D(b;c), such  (masslessAdler function are known, the power expansion of
singularities may have disturbing effects unless they are sufﬁ(b;’é) is known to the next-to-next-to-leading order
ficiently far away from the origin. Therefore, we can define(,\JlNLO, including the term~b?) via Egs.(25)—(30). In a
the following variants which will be used itapproximat®  yrevious work{22], we presented an argument, via a bilocal

resummations: expansion of the Borel amplitud®(b), that d{¥)~25+ 5.

We also discussed there the estimatesjgﬁ presented by
other authors, and concluded that the following estimate is

> eclb/ﬁos(b;“é) 27) rather safe:

Ry(b;¢)=(1—b/2)(c,bl By) ~C1P'Aol (1+ ¢ b/ Bo)

O = 2_ 2 M)\ — 95+
= (1—Db/2)exq (C+c,—dy)b/ Bo] dy”’[=d3(u®=Q%*MS)]=25+10. (33

We will use the above values which allow us to obtain the

(d;—cy) (b) ] o5 R (b2 3
X{1l4 —— | | 4... ¢, 28 power series oR;(b;c) up to N’LO (~b3).
(1+c:blfo) | o 29
IV. RESUMMATION PROCEDURE
Ry(b:3) = Ry(b:3) L C1blBo) (29)
€)= C) T v a . .
2(b3¢) =Ry )(2+c1b/ﬁ0) We will apply summations to the }O truncated power
series(TPS of the functionst(b;E). However, in order to
RybT)=R (b_E)(1+Clb/ﬂo)(2+01b/ﬁo) 30 obtain the(resummed values of the massless QCD observ-
soE s (3+¢4b/By)? ' abler, (14), we have to perform first the complex momen-

tum contour integratiori16), with the massless Adler func-

tion there having the integral forn@23) in terms of the
. . — . 2 2 . .

“This is true even when the mtH RSch is abandoned and thinvariant Borel transfornD (b;Q“=mze"), i.e., in terms of

integral transformatior(cf. the Appendix becomes considerably the related function§j (27)—(30). This angulary integration
more complicated—as follows from the considerations of REfl.  can be performed exactly, because yhdependence of the
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invariantp, (24) appearing in Eq(23) is simple,

p1(m2) +iBoy (34)

1 [pa(m?)+c]b
:I’T—W—IBOR% Jofig dbEX[{— BO

5
p1(mzeY)=

sin(7b) _
X B(1=b)(1=b/3)(1—b/a P PO |
(35
1 =i [p1(mZ;a0)+Clb
_W_BOR% fo—is dbex;{— Bo

sin(wb)
><b(l—b)(l—b/2)(1—b/3)(1—b/4)

(Clb/BO)Clb/BOe— Clb/ﬁo

fj(bﬁ,-(b;”é)], (36)

I (1+c,b/By)
where
1 if j=1,
fi(b)=1 (2+c1b/Bo)/ (1+c1b/ Bo) if j=2,
(3+c1bl Bg)2l(1+c1bl Byl (2+c1bl By)  if j=3.
(37

The integration contour in Eq935) and (36) is chosen

PHYSICAL REVIEW D64 093016

Here, theMS coefficients are functions of the number of

active quark flavorsi; and are known up to the3O (c}'S
four-loop) [56]. The number of active quark flavors is as-
sumed here to ba;= 3, because the scale of the process is
JIQZ=m, (=1.777 GeV).

We can note from Eq(36) that ambiguity of integration
over b in r_ at the first infrared renormalon singularity of
D(b) atb=2 is suppressed, because the factorgifhas a
zero there. This is similar to the one-loop approximation in
the approach with the ordinary Borel transfor6,57.
However, here the absence of the ambiguity is not due to an
approximation; it is exact and due to the discussed RScl-
invariant Borel approach.

Although the ambiguity ab=2 is suppressed in the Borel
type of integration(36), we wish to emphasize that it is
nonetheless very important to factor out the leading renorma-
lon factor 1/(1-b/2) there[according to Eq(26)]. This is so
because any resummation of a TBB(epresents also a qua-
sianalytic continuation of the corresponding function into the
region away from the origin, and such continuation is of a
better quality when there are as few singularities near the
origin as possible. The functions which we will resum in Eq.
(36 areRJ-(b;E), i.e., the functions which have their original
pole singularity ab= 2 factored away according to E@6).

The remaining singularity ier(b;E) is then significantly
weaker; it is a cut of the type-In(1-b/2) [see Eq.(A13)
with =1 andx=2, in conjunction with Eq(A20)]. In this
way, in the relatively wide regiob=<2 we can achieve rea-
sonably good values of the integrand of H&6), which
leads then to good predictions fioy via Eq.(36) as functions

slightly below (or abové the positive axis, in order to avoid Of @4 (m?). If we did not factor out the mentioned singu-
possible singularities of the integrand on the positive axislarity, the obtainedresummedivalues would definitely lead
When knowing reasonably well the RScl- and RSch-to bad values of the integrand lat-2, which would influ-
invariant functionsR;(b) in Eq. (36), e.g., via resummations ence the predicted values of and thus ofa3(m?). The

as discussed below the massless QCD observablee-

numerical importance of factoring out the Ieadlng IR renor-

comes an expression whose value depends uniquely on thealon singularity of the Borel transforms of the Adler func-

value of the QCD coupling parameter, e.g., @g(mi;MS)

tion atb=2 before doing resummation was pointed out in

=a,. This dependence originates from the known depeneur previous work22], which involved ordinary Borel trans-

dence of the mvarlanpl(m ) in the exponent in Eq(36),

forms. There we showed that the predicted values of

the latter being determined by an integrated version of tthMS(m ) fromr . depend crucially on whether this factoring-

RGE, called also théunsubtractedStevenson equatioi],

2
m
pi(m?;a0)=—d{”+ B, In TT

Cidg
1+cqag

1
=—d9+ —+c, In(
o

(38)

ao 1 BO
+fo dx{x2(1+clx)+/3m_s(x) :

out procedure has been performed.

The functionsR;(b;c) in Eg. (36), whose TPS’s we want
to resum via methods of quasianalytic continuation, have the
singularities near the origin which are negatiat b=—1
and lowej. The nearest singularity on the positive axis is at
b=3. Atb=2 (IR,) there is a weaker logarithmic singular-
ity. The negative singularities near the origin constrain the
convergence radius of the perturbatigpowen series of

Rj(b;E)’s to r=1, and thus represent a possible hindering
element to efficient resummations. In our previous W&X|

we proposed how to extend the convergence radius up to
IR,, by either of the following two conformal transforma-

where the perturbation expansion of the last term is given vidions w=w(b):

the definition(11) of the 8 function,

Bris(X)! Bo= —X3(1+Cyx+cMSx2+ cVSx3+ .. ).
(39

wath)— J1+b-1-b/3 walb)— J1+b—1-bl/a
3 1+b+y1-b3 ° Jl+b+1—b/4
(40)
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Conformal transformatiorws(b) maps all the renormalon ;
singularities to the unit circle in the plane, except for the
first IR renormalon, which is mapped to;(b=2)=1/2. We
further note thatw;(b=3)=1 andwy(b=-1)=-1. Fur-
thermore, all the spurious singularitieb=—ngy/c,

(< —1.265) are also sent to the unit circle. Conformal trans-
formation w,(b) does the same thing, except that the first
two IR renormalon singularities are both inside the unit
circle: wy(b=2)~0.42, w,(b=3)=0.6. We further note
thatw,(b=4)=1 andw,(b=—1)=—1. The inverse trans-
formations are

w3—p1ane

w(b=—1)=-1

3ws (16/5w,

wrwd) M emwarwd)
(41)

b(ws)=

) . . . FIG. 1. Integration in thew; plane along the rayws;
which are monotonously increasing functions for 0 _, eynig) (0<x<1, $;3=0.50536) gives the same result as

<Wws,Wu<1. We can now reexpress the {O) TPS of e integration parallel to the positive real axis{@<1) and arc
R;(b;c) (in powers ofb) as (NPLO) TPS in powers ofv; or ~ w=exp(~ig¢’) (0< ¢’ < ds).

w,, by simply using the power expansions of E4l). The

advantage of using this form of TPS for resummations lies in=\,(b=4)=exp(~i¢,), as shown in Fig. 1. However, for
the fact that the convergence radius for the power series Qfractical calculations, it is much more convenient to use the
R;is nowr,, = 1/2 in thew; plane, andw4~0.42 in thew, integration along the ray;=x exp(—i¢;) (0<x<1), as de-
plane, and the circle of convergence reaches thus the first IRoted in Eq.(42) and shown in Fig. 1. Both paths give the
renormalon singularitp(w,) =2 (k=3,4), in contrast to the Same answer, since the closed contour in Fig. 1 does not
case of nontransformekl In this way, the hindering influ- contain any singularities of the integrand. In the case/gf
ence of the UV singularitiefnegativeb’s) has been signifi- the trick is the same, and we choogg=0.1 instead of¢p,
cantly weakened. The mappimg,(b) apparently suppresses =0 for the ray(see Fig. 2, in order to avoid any possible
even more strongly the influence of the UV singularities tharProblems with numerical instability that would otherwise
ws(b), but probably less strongly the influence of the NLO arise from the_too extreme vicinity of the integration path to
IR renormalon singularityt{=3). The final formula for .in ~ the possible singularities of the integrand.

this formulation follows directly from the forni36): At this point, we can thus already regard th&L® TPS
of the function R;(b(wy);c)=exqcb(wy)/BolRj(b(wy);0)

1 Lo [t db(w) (k=3,4) as a form of resummation &;, solely via the

rT_qr_Bo Re e fo dx dw mappings(40). Consequently, expressio®2) evaluated us-

ing the aforementioned MO TPS of R;(b(wy);c) can be
[pl(mf;ao) +<¢]b(w) regarded as our resummed predictions g&r (ay), being
Xexpg — Bo functions of the mentioned strong QCD couplagt There
is, however, an additional freedom of choosing the value of
sin(b(w))

X Bw)[ 1—b(w) ][ 1—b(w)/2][ 1—b(w)/3][ 1—b(w)/4]

[Clb(W)/ﬁo]Clb(W)/ﬂoe— c1b(w)/Bg

vsa—plane

I'(A+cib(w)/Bg)
X fi(b(W))R;(b(w);c : 42
j( (W)) j( (W) C) erid;} ( ) w(b=—T1)=—1 w(b=2) w(b=3)
ﬁ)\—\y w(b=4)=1
wheref;(b)’s are given by Eq(37), w stands forw; or wy, ray
and we integrate actually only up tong,,, corresponding to w(b=5)

b~4 [for w3, ¢3=0.50536, W3ya=eXp(—ids); for w,,
¢4=0.1~0, Wyna=exp(—=ig,)~1]. This upper bound o

is justified because the contributions from high&rare very
strongly suppressed due to the exponent in(Bg). Strictly
speaking, the path in the; plane should be along the posi-
tive axis(below it) from w;=0 tows= 1, and then along the FIG. 2. Integration in thew, plane along the rayw,
arc (inner sidg of the unit circle betweemw;=1 andw, =xexp(ig,) (0<x<1, ¢,=0.1).
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the constantt in Eq. (42).° Since the available series of [2/3] gms(X), particularly because of its reasonable singular-

R;j(b(wy);¢) is truncated, the results of E¢42) will have ity structure &uqe~0.311, corresponding t@2”°~0.98).
some unphysical dependence on the value. dfi one of our The latter S|g_nals t_he breakdown of perturbatlve QCD
approaches, we will choose the latter value by the principldPQCD), and this choice 0Bs(x) has been used previously

of minimal sensitivity(PMS), i.e., by the condition y some of us in Ref§22,21]. Since the effective energy in
the discussed QCD observalile is relatively low E~m.

<2 GeV, we can expect that this choice is not entirely ir-
— (43 relevant numerically. Later we will comment on how much
dc the results change when employing the3(®) TPS for
Bwis(X), instead.

Jr (ag:C)

when using forR; (b(wy)) their N°LO TPS forms.

We can, however proceed in a different way. Thit ® V. PREDICTIONS FOR a.: THEORETICAL
TPS of R, ;(b(w);c) can be further resummed using Pade UNCERTAINTIES ESTIMATE
approxmants(PAs) [58].5 The authors of Ref[59] pre-
sented compelling arguments that combining the conformal As discussed in the previous section, for a given choice of
transformations with the PA type of resummations in general 5 — ~
leads to significantly improved results, at least when a suffido=@s(M7>;MS)/m and of constant, we calculate the ob-
cient number of terms in the power expansion are knownservabler =r (ay;c) (42), using forR;(b(wy);c) one of the
Especially the diagonal or almost diagonal PE&8,59, in  Variants(27)—(30) (j=1,2,3), and one of the two conformal
our case[Z/l]R (W) and[1/2]R (w,), may represent an ef- transformat|ons(41) (k=3,4), and for the resummation of

ficient way of extendlng the apphcablllty of expressions for R; j(b(wy)) either the NLO TPS or[2/1] PA. We thus use, at
R; into the region sufficiently far away from the origigua- ~ given ¢, altogether & 2x2=12 ways of calculating , as

sianalytic continuation function of ao—as(mT,MS)/qr. The valuec is adjusted as
However, there is a possibility that PA's do not lead to andescribed at the end of the previous sect(maccording to

improvement. This is sometimes the case when the TPS ifhe pMS (43) when using NLO TPS for R, ((b(wy); (b)

question is known to a relatively low order, e.g., to the accordlng to the pole requiremenig®®= —1 or+1 (wEoe

N3LO. Since our available TPS's & i (Wi C) (k=3,4) are —1 or +0.6) when using PA2/11= (w.) for R.(b(w
known to the NLO (provided a specmc value otﬂ(o) is ) g PA ]R( k) 5(B(Wi)-

taken, we have to find criteria for keeping or rejecting the
resulting PAs. The PA[Z/l]E(Wk 'C) predicts one real sin-

We repeat the analysis for three ch0|ces of tﬁdz(DJ coeffi-
cientd? (33) of the Adler function:d{)=25,15,35. In the
central case ofl”’= 25, and forr, close to the central mea-
gularity of R;(b(wy);c), and[l/Z]R (W, ;€) two singularities  sured value .=0.1960(18), we display the relevant numeri-
which can be either real or mutually complex conjugate.cal results in Tablel Displayed are the predictions of various
Physically,R;(b(w,);c) has the strongest singularitiggy ~ @pproximants for the input valueg,(m?;MS)=0.325 and
and IR renormalon singularitieatb(w,)=—1,—2, ... and 0.326. The first 14 entries are predictions of E4R) when
b(wy)=3,4,....This means that in the case of conformal using PAs[2/1]R (wy) (j=1,2,3k=3,4), wherec was ad-
transformat|on5{40) the singularities of PA's should prefer- justed so that these PA's yield the aforementioned pole values
ably be atw, values corresponding to=—1 or 3:w§"®=  of the leading UV or subleading IR renormalon pole. The
—1 or +1; w§®=—1 or +0.6. We will include in our next six entries are predictions when usindL® TPS for
analysis the predictions with those PAB/1]g (W) whose R (b(w,)) in Eq. (42) with ¢ adjusted so that the PMS prin-
poles satisfy the latter conditions. For that, we will use ourciple (43) is satisfied(local maximum. The last entry con-
freedom to adjust the value of the constarih Eq.(42). On  tains the arithmetic average of all 20 predictions, for the
the other hand, PA$1/2]R (wy; c) which have two poles, aforementioned two values mfs(mz'MS) From that entry,
only rarely satisfy approximately the aforementioned condi-We deduce that the central measured valie0.1960(18) is
tions simultaneously. achieved by this arithmetic average. at as(m MS)
Furthermore, in practical calculations, we prefer to use for=0.3254. The uncertainty of the prediction due to the resum-
the Bws (39 in the Stevenson equatiof38) the PA  mation method(“truncation” error) can be estimated by
comparing the aforementioned prediction with the prediction
which differs the most from it, i.e., with the prediction using
Svariation ofc in Eq. (42) corresponds to changing somewhat the the PA[2/1]R (wy) with j=3, k=4, andc=1.34 (see the

ntémerlcal procedure used. _ _ o 14th entry of Table)L This prediction differs from the afore-
PA[n/m]g(w) to a functionR(w) is a ratio of polynomials i mentioned one bysag|,~0.0024.
of degreen (numerator andm (denominatoy. The power expansion Repeating the very same calculaticias the same values

of [n/m]r(w) must reproduce the terms of the power expansion of
R(w) up to, and including, the termw* ™. PA[ n/m](w) can be of ¢) for the he correspondingly higher and lower input values

determined if we know the TPS &(w) up to, and including, the Of as(m ;MS), we obtain the corresponding predictions of
term ~w"*™ PAs[n/n] are called diagonal. as(mT ;MS) for the upper and lower bounds of the measured
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TABLE 1. The resultsr , of calculations according to E¢42), usingd{”)= 25, employing the conformal
transformationg41) (k=3,4) and the resummations é_a‘j(wk) (27-(30) (j=1,2,3) as PA2/1] and as
(N3LO) TPS. The constant was varied so as to achieve eithef®®=—1 or wi®®=+1 (W8°=+0.6)
when using PA9 2/1], or stationarity according to the PMS condititdB) when using (NLO) TPS. The
resultsr . are given for the choiceag(m? MS) 0.325 and 0.326. The central measured valLe0.1960
(18) is achieved by the arithmetic averagpat as(m MS) 0.3254.

(i, k); approximant r, [as(mf)=0.325;0.32¢ c Comments
(1,3);[2/1] 0.19543; 0.19641 +0.28 wPoe~ —1.0
(1,4); [2/1] 0.19524; 0.19621 +0.17 wPle~ —1.0
(2,3); [2/1] 0.19533; 0.19631 —-0.27 wPle~ —1.0
(2,4);[2/1] 0.19531; 0.19629 —0.28 wPe~ —1.0
(3,3);[2/11] 0.19570; 0.19668 -0.15 wPoe~—1.0
(3,4);[2/11] 0.19554; 0.19651 -0.22 wPoe~ —1.0
(2,3); [2/1] 0.19470; 0.19567 -0.71 wPoe~ —1.0
(2,4);[2/11] 0.19466; 0.19563 -0.89 wPoe~—1.0
(1,3);[2/1] 0.19503; 0.19600 +1.95 wPe~+1.0
(1,4);[2/11] 0.19587; 0.19686 +2.275 wPe~ 1+ 0.6
(2,3);[2/1] 0.19648; 0.19748 +1.23 wPPe~ +1.0
(2,4);[2/1] 0.19746; 0.19847 +1.61 wP~ +0.6
(3,3); [2/1] 0.19686; 0.19786 +0.97 wPe~ +1.0
(3,4); [2/1] 0.19792; 0.19895 +1.34 wP~ +0.6
(1,3); TPS 0.19449; 0.19546 +0.92 local max.
(1,4); TPS 0.19433; 0.19529 +0.54 local max.
(2,3); TPS 0.19545; 0.19643 +0.47 local max.
(2,4); TPS 0.19516; 0.19614 +0.12 local max.
(3,3); TPS 0.19568; 0.19666 +0.31 local max.
(3,4); TPS 0.19535; 0.19633 -0.01 local max.
arithm. averagei 0.19560; 0.19658

values ofr . (18) by demanding that the arithmetic average ~confining ourselves to just one conformal transformation, the
be equal to those upper and lower bounds. This procedureentral value changes by only 0.0001(0.3255 fork=3;

then results in the prediction 0.3253 fork=4). If using only the six entries from the ap-
_ proach with the PMS, the central value is 0.3259. If using
adS(m?) = 0.3254+ 0.006Q,,* 0.006Q,* 0.0052y only the entries witw{®®~ — 1, the central value is 0.3258.

If using only the entries wittw5®®~ +1 andwi"®~ +0.6,
the central value changes to 0.3244.

It is gratifying that in the case af{’=25 so many PA cases Further, for most of the approximants of the first eight
give phyS|caIIy acceptable pole structure, and that the predi@ntries of Table Kexcept those withj=1), when using the
tions for a (m ) of the aforementioned 20 different ap- Same values of but using PAs[1/2] instead of[ 2/1] for

proaches d|ffer from each other only a litle—they differ by R, i(wy), the predictions ; differ from those Of[2/1] by no
at most 0.0024 from the prediction of their total average. Ifmore than 0.0005, and the predlcuonsag(m ) also by no

+0.0024 (d{=25). (44)
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TABLE II. Results analogous to those of Table I, but for the oﬂ?éz 15. The results , are given for
the choice&xs(mi;MS)=0.331 and 0.332. The central measured value0.1960(18) is achieved by the
arithmetic average, at as(m?;MS)=0.3299.

(i, k); approximant r, [as(m?)=0.331;0.332 T Comments
(1,3);[2/1] 0.19625; 0.19717 +1.20 wPoe~ —1.0
(1,4);[2/1] 0.19600; 0.19692 +1.10 wPoe~—1.0
(2,3);[2/11] 0.19712; 0.19806 +0.83 wPoe~—1.0
(2,4);[2/1] 0.19688; 0.19781 +0.74 wPoe~ —1.0
(3,3);[2/1] 0.19776; 0.19871 +0.55 wPoe~ —1.0
(3,4);[2/1] 0.19750; 0.19844 +0.46 wPY%~ —1.0
(1,3); [2/1] 0.19601; 0.19693 +2.52 wPY%~ +1.0
(1,4);[2/11] 0.19687; 0.19781 +2.83 wP~ 1+ 0.6
(2,3);[2/11] 0.19758; 0.19853 +1.98 wP%~ +1.0
(2,4);[2/11] 0.19856; 0.19953 +2.30 wPY~ +0.6
(3,3); [2/1] 0.19831; 0.19927 +1.64 wPfle~ 4+ 1.0
(3.4); [2/1] 0.19942; 0.20040 +1.97 wPoe~ +0.6
(1,3); TPS 0.19543; 0.19634 +1.6 local max.
(1,4); TPS 0.19525; 0.19616 +1.3 local max.
(2,3); TPS 0.19666; 0.19759 +1.2 local max.
(2,4); TPS 0.19640; 0.19733 +0.9 local max.
(3,3); TPS 0.19732; 0.19826 +0.9 local max.
(3,4); TPS 0.19703; 0.19797 +0.6 local max.
arithm. average . 0.19702; 0.19796

more than 0.0005. In these cases of good agreement, thgithmetic average, of all these 18 entries is then equal to
poleswf®"® of the PA'S[1/2] do not lie deep inside the(w,)  the central measured valug18) r.=0.1960 when
intervals[ — 1,+ 3]. In most of the cases when the disagree-o (m?;MS)=0.3299, i.e., a value higher by 0.0045 than the
ment is larger, at least one of the poles of 2] falls deep  corresponding central prediction of E¢44) of the case
inside these intervals, often even within the intervalsd{®)=25,

[—0.5,+2]. This offers us additional evidence that our re- |n the Casej(o)—35 the numerical situation is less favor-
quirement that the poles ¢22/1] be either atb(wy)=—1  able. None of the approaches with PAR/1]r (wi) have

l(leza(‘j?:;gIRuéngerrrf;{gﬁlgg)eﬁ’gse (r)eaks)(()\rgvgale”, (next-to- acceptable solutions under the requiremefft®= —1. Such

In order to obtain the uncertainties of the prediction due td°°l€s occur at< -2, but the corresponding predictions of
the uncertalntyd(o)—ZSi 10 around the central Va|w30) r, there are quite unstable under the variatiorcofn two

=25, we repeat the procedure for the casel@i=15 and cases acceptable solutions are obtained with the approach
4 =35, with PA's [2/1]R (W) when we requiravi®®=+1 or wh"®

In the cased{)=15, the situation is very similar to the =+0.6—see the first two entries of Table Ill. The approach
aforementioned case df)=25. We obtain six entries when with the PMS(43), when using NLO TPS for R;(b(wy)),

we requirewf”®=—1; three entries each whem®®=+1  appears to be more difficult as well; the derivativies/dc
andw§®®= +0.6; six entries when applying the PMS condi- are never zero, but are negative for all reasonable values of

tion (43) with N3LO TPS forR: ;(b(w,))—see Table Il, when ¢; nonetheless, these slopes have the smallest negative values
two ch0|ceSaS(mT,MS) 0. 331 and 0.332 are made. The at specific values of—see the corresponding six entries in
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TABLE lIl. Results analogous to those of Table |, but for the ca‘é’é: 35. The results , are given for
the choiceSaS(mf;M_S):0.320 and 0.321. In the approach with the®(l®) TPS ofﬁj(wk), the PMS
condition (43) is never exactly satisfied; there, the valuescoivere chosen so that th@egative slope
ar.1dc is the least steep. The central measured vale€0.1960(18) is achieved by the arithmetic average
T, at ag(m?;MS)=0.3194.

(i, k); approximant r, [as(mf):0.331;0.332 c Comments
(1,3);[2/1] 0.19716; 0.19823 +1.02 wPe~ +1.0
(1,4);[2/1] 0.19780; 0.19888 +1.37 wP~ +0.6
(1,3); TPS 0.19744; 0.19852 +0.025 ar,1dc~—2.66x10"3
(1,4); TPS 0.19645; 0.19751 +0.0 ar 1dc~—2.92x10"3
(2,3); TPS 0.19603; 0.19708 +0.375 ar 19c~—3.18x10 3
(2,4); TPS 0.19558; 0.19662 +0.075 Jr.1c~—3.09<103
(3,3); TPS 0.19651; 0.19757 -0.19 or _lac~—2.37x1073
(3,4); TPS 0.19602; 0.19707 -0.49 ar 1dc~—2.29x10"3
arithm. average . 0.19662; 0.19769

Table Ill. Taking the arithmetic average of the eight en- the coupling iSaS(mE;M_S)=O.3285, which is higher by
tries of Table Ill, we infer that the arithmetic average 0.0031 than the central value in E4). Concerning the
achieves the central measured va{li§) r ,=0.1960 for the  change of the next-to-leading RSch parametgrwe note
value as(mf;MS)=O.3194, which is lower by 0.0060 than that c;~5.6;21.0;36.8;16.1 for the mtHVMS, PMS, and
the corresponding central prediction of E¢4) of the case ECH RSch’s. Therefore, we choose a characterictic deviation
d{")=25. of c; from the mtH valuec;=c3~5.6 to becy=c3+31.
From the above considerations we infer that the uncerCompletely analogous analysis to that in the case ofcthe
tainty of the prediction ofry(m? :MS) due to the uncertainty deviation leads to the results of Table V. The arithmetic av-
(33) of d{¥ is +0.0060. erage valuesr, in Table V reach the central value,
There is yet another theoretical uncertainty involved in=0.1960 for the couplingas(mf;M_S)=0.3274, which is
the prediction(44), connected with the choice of the renor- higher by 0.0020 than the central value in E44). There-
malization scheméRSch. As shown in the Appendix, when  fore, adding the deviations 0.0031 and 0.0020 in quadrature
taking a RSch different from the modified ‘'t HoofintH)  gjves the estimated uncertainty due to the changes of the
RSchck=c'§ (k=2,3,...), theintegral transformations in- RSch to be+ 0.0037.
volved become more complicated. Then we end up with, We can thus add to the predicti¢ad) the discussed un-

instead of the simpler formulé42), the more complicated certainties due to the variation df®’ and of the RSch, re-
one (A22). We note that the leading RSch parametghhas  sylting in our final prediction

the valuesc,~3.16;4.47;6.58;5.24 in the mtHMS, prin-

ciple of minimal sensitivity(PMS) [2], and the effective ag"_s(mi):0.3254t0.006priO.OOGQWiO.OOS%KM
charge (ECH) [3] RSch’s (where we taken;=3; and the

PMS and ECH RSch’s refer to the®NO TPS of the Adler +0.006Qq,*0.003%scr*0.0024;, (45)
function). Therefore, we estimate as a characteristic devia-
tion from c,=c?~3.16 the value,~c2+ 3.4. We then per- =0.3254+ 0.006Q,,+ 0.007 R+ cim

form the analysis in the RSch with the latter valuecgf(all
the othercy’s unchangey using formula(A22). We use the
RScl parameter valug®= u?/Q?=1 [Q?=m?exp(y)], for
d{®) we use the central valug{?’=25, and for the func-

+0.0074,. (46)

In the last line, we added the corresponding uncertainties in

. i I h quadrature; the combined uncertainty due to the uncertainty
tions we use again thg2/3] PA form. The results of the of d(30) (33), the resummatiofftruncation”) uncertainty, and

ana[ysis are written in Table IV. The variation of the param- . boch uncertainty we call the theoretict) uncertainty.
eterc allowed us to obtain the desired locations of the polesrhis combined uncertainty is comparable with the two other
only in a few cases. The arithmetic average valug®f  uncertainties in Eq(46). If we use for theMiS A function in
Table IV reach the central value prediction=0.1960 when Eg. (38) the N°LO TPS form instead of thg2/3] pms(X) PA
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TABLE IV. Results analogous to those of Table I, but for the different R$§h:.c§+ 3.4, ckzc'i (k
=3,4,...).ExpressionA22) is used to calculate,. RScl parameter i§?= u?/Q?=1 [Q?=m? exp(y)];
d{¥=25. The results, are given for the choices,(m?;MS)=0.329 and 0.330. The central measured value
r,=0.1960(18) is achieved by the arithmetic averageat as(mf;M_S)=O.3285.

(j, k); approximant r, [ag(m?)=0.329;0.330 c Comments
(2,4);[2/1] 0.19521; 0.19613 +0.01 wPle~ —1.0
(3,3); [2/1] 0.19656; 0.19750 +0.707 wPe~ +1.0
(3,3); [2/1] 0.19770; 0.19866 +1.25 wPe~ +1.0
(2,3); TPS 0.19668; 0.19763 +1.1 local max.
(2,4); TPS 0.19633; 0.19727 +0.8 local max.
(3,3); TPS 0.19672; 0.19767 +1.05 local max.
(3,4); TPS 0.19638; 0.19732 +0.75 local max.
arithm. average . 0.19651; 0.19745

TABLE V. Results analogous to those of Table IV, but for the RScke= c§+ 31.0, ck=c§ (k
=2,4,5...).Expression{A22) is used to calculate,. RScl parameter ig?=1; d{)=25. The results, are
given for the choices(m? :MS)=0.327 and 0.328. The central measured vale0.1960(18) is achieved
by the arithmetic average, at a(m?;MS)=0.3274.

(j, k); approximant r, [as(mf)=0.327;0.32$ c Comments
(1,3);[2/11] 0.19478; 0.19570 +1.50 wPoe=~—1.0
(1,4);[2/1] 0.19453; 0.19545 +1.40 wPoe~ —1.0
(2,3);[2/1] 0.19582; 0.19676 +1.11 wPole~ — 1.0
(2,4);[2/11] 0.19558; 0.19652 +1.01 wPoe~—1.0
(3,3);[2/11] 0.19654; 0.19749 +0.80 wPoe=~ —1.0
(3,4); [2/1] 0.19628; 0.19723 +0.70 wPPe~ —1.0
(1,3);[2/1] 0.19456; 0.19549 +2.77 wPPe~ +1.0
(1,4);[2/1] 0.19538; 0.19632 +3.07 wPPe~ + 0.6
(2,3);[2/1] 0.19612; 0.19708 +2.25 wPoe~ +1.0
(2,4);[2/1] 0.19708; 0.19805 +2.56 wPPe~ + 0.6
(3,3);[2/1] 0.19695; 0.19792 +1.90 wPoe~ +1.0
(3,4);[2/1] 0.19796; 0.19894 +2.205 wPPe~ + 0.6
(1,3); TPS 0.19400; 0.19492 +1.9 local max.
(1,4); TPS 0.19383; 0.19475 +1.5 local max.
(2,3); TPS 0.19528; 0.19622 +1.45 local max.
(2,4); TPS 0.19505; 0.19598 +1.1 local max.
(3,3); TPS 0.19602; 0.19696 +1.1 local max.
(3,4); TPS 0.19576; 0.19670 +0.8 local max.
arithm. average . 0.19564; 0.19658
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form, we obtain, in a way completely analogous to that dewere valid also in our frameworkthis &r , pswould have to
scribed in Table I, the central value predicti@@(mf;MS) be subtracted from the values given on the right-hand side of
=0.3245. This is lower by 0.0009 than the central valueEq. (18), resulting in an additional, “PS”-uncertainty term
prediction in Egs.(45) and (46), indicating that those non- *0.0040 for ther .. This would in turn give an additional
perturbative effects which originate from the behavior of theapproximate uncertainty-0.004%s in the result(45) and
B function are not strong. The fact that we used in the Borel46) for as(mf) and =0.000%s in the result (47) for
integral a finiteb(w) nax (=4) does not influence the results. o (M2). The combined uncertainty 0.0015 forag(M?2) in
Namely, if we increase this quantity t®(w),,,=5 [corre-  Eq. (48) would increase ta+0.0016. All the central value
sponding forws to ¢3=0.643 50 in Eq(42), and forw, to  predictions in Eqs(45)—(48) would remain unchanged.
$4=0.40273, the predictions for ag(m?) change by There are at least two indications that the above results
~10°8, i.e., insignificantly. (45) and (46) and (47) and (48) are not wrong. In the ap-
We then RGE-evolved the resui5) and (46) from the  proach of Ref[22], which involved ordinary Borel trans-
scaleu=m,~1.777 GeV to the scal®¥,=91.19 GeV.We form of D(Q?) and where the RScl was fixed according to
used again the aforementionf®3]zys(x) PA form of the  the (local) PMS and we used thMS RSch, the resulting
Bwis function, which is based on the known four-loopll®  predictions were very similarag(m?2)=0.3267= 0.0062y,
TPS form of Bys [56]. Therefore, we employed the corre- +0.0082y, ciy* 0.0073eq and
sponding three-loop matching conditiof&0] for the flavor
thresholds. The matching was performed at(Ny) ag(M?)=0.1193+ 0.000%,p* 0.001Q+ ckm = 0.0009eh
= kMy(N¢) with the choicex=2, wherew(Ny) is the scale

above whichN; flavors are assumed active, angj(N;) is +0.0003 i
the running quark mass,(m,) of the N;th flavor. We fur- —0.1193+ 0.00158
ther assumedn,(m.)=1.25 GeV andn,(m,)=4.25 GeV
[33]. We thus obtain from Eqg45) and (46) Especially the latter values are in virtual agreement with Eq.
(48).
o Yet another indication that the results presented here are
aSMS(Mﬁ)zo.llgﬁ 0.000%;* 0.001Qyy+ cxm = 0.000%, correct comes from repeating the entire resummations, but
this time without employing the conformal transformations
*0.0003,01, (47)  b=b(w). The B functions were again taken in the/3] PA

form. We carried out the resummation with the Borel inte-

gration in Eq.(36) again up tob,,,=4. For simplicity, we
=0.11920.0015. (48)  fixed theC value this time toc=0. In each of the cases

d{®=25, 15, 35, we excluded from the analysis the ap-

o proaches with those PA's which give physically unacceptable
In Eg. (48), we added all the uncertainties in quadrature. '”pole structure, i.e., which have poles well inside thiater-

Eq. (47), we included the uncertainties due to the RGE eVoy,) [ 1,3]. Those of the PAS2/1]x (b) and [1/2] (b)
] ]

luttion, which come primarily from varying: from 1'Et0 3, which were not excluded do not contain poles in thiater-
and from varying the quark masses.(m;)=1.25 val[-0.8,3]

é?%grfgé/ta?&dnb(mb):A“ZSi 0.15 Gev(see Ref[22] In the cased{?’=25, the nonexcluded approaches were
If we repeat the calculation af(m?) and ag(M?2) with those with [,2/_1]51'“)) for 121’2,’3. and[1/2]§j(b) 'for J

the N°LO TPS Bys function [in Eq. (38) and in the RGE =1,2. Gratllfymgly, the e predictions of t.hese ﬁve2 ap-

evolution from m? to MZ], instead of the used PA proaches differ from each other only a littlA ag(my)|

[2/3] sms(X), the central value predictionas(Mg;MS) <0.QOQ4. We took the arithmetic ';weragp of all five r,

=0.1192 remains unchanged up to the displayed digits. Thigredictions, and Obtalnedoas(mf)=0-3257i 0.0061,,

is so because this change Bfss causes the central value *=0.006%kw*0.0053y (for d{)=25).

prediction ofag(m?;MS) to be lower by 0.0008as already ~ In the casedf”’=35, the nonexcluded PA approaches

mentioned after Eqg45) and (46)], but then the RGE evo- were those with{ 2/1]g (b) for j=1,2. In addition, we did

lution to 2®= M with the changegys pushes the result up, not exclude the approaches with theLid TPS ofR;(b) for
approximately neutralizing the former effect. j=2,3, because their predictions are close to the aforemen-

In the analysis leading to the resuk45—(48) we as-  tioned PA approaches. We then took the arithmetic average
sumed that the power-suppressed terms, apart from those

from the quark masses, do not contribute to the considered——

observableR., as already emphasized in Sec. Il. AS men- 7gee the discussion in Sec. Il about the differences between our
tioned in that section, the inclusiv®/ ¢- A) fit of the ALEPH  5nd ALEPH's framework.

Collaboration[27], within their framework, predicted the  ®The method(meth uncertainty in[22] is the combination of
contributions of the(massless power-suppressed terms to uncertainties fromsd{’, the truncation(resummatiop and the

the canonical observable, to be consistent with zero: RScl and RSch ambiguities; the method uncertainty there thus cor-
or . ps=0.000+ 0.004. If we assumed that the latter estimatesresponds to our theoreticéh) uncertainty in Eqs(46) and (47).
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r . of all four r . predictions and obtained for the central value ag"S(Mﬁ) given in Eqgs.(45—(48). These predictions agree

as(m?)=0.3191 [corresponding to the central value,  well with the results obtained in our previous analy&g] of

=0.1960 in Eq.(18)], which is lower by 0.0066 than the r_where we employed the ordinary Borel transforms. The

aforementioned central value 0.3257 of dﬁ@’z 25 case. latter transforms have significantly different behavior, expan-
In the cased?’=15, the nonexcluded approaches weresions, and the strengths of the renormalon singularities, and

those With[2/1]§l(b) and[1/2]§1(b). Using the arithmetic their integrands in the Borel integral are, in contrast with the

| present approach, renormalization-scale—dependent. There-

average  of these twor ; predictions, we obtain the centra fore, our present predictions represent a powerful reconfir-

value ag(m;) =0.3293, which is higher by only 0.0036 than mation of the predictions of22]. We consider this to be

in the dO)= . \ |

n the_dS =25 case. _ . important, because analysesrofwhich do not involve Borel
This leads us to the following predictions of our method. yransforms and do not account for the leading renormalon

when no conformal transformation is used: structure of the associated Adler functidi2?,61,10,19,6p

s o give predictions foreg(m?) and ag(M?2) which significantly
as-(m;)=0.3257 0.006Lx,* 0.008%w-+ ckm = 0.00684,, differ from our predictions and significantly differ among
(49 themselves, as already emphasized[28]. On the other
_ hand, if accounting for the renormalon structure via a large-
a8 (M2)=0.1192+0.000%,,* 0.001Qy+ ok + 0.0008,, Bo resummation of the ordinary Borel transform and em-
ploying an ECH-related resummationnof, as performed by

+0.0003q1, (50 the authors of Ref[9], their predicted valueng"_S(Mf)

which is in almost complete agreement with the predictions= 0-120+0.002 come significantly closer to our prediction
(45) and (47), obtained by the employment of the two con- (47) and (48). Further, our predictionay'(M2)=0.1192
formal transformationg40). In Egs.(49) and (50), we did  *=0.0015 is completely compatible with the world average
not include the uncertainties due to the resummattaim-  0.1184+-0.0031 as given in Refl63], but somewhat less
cation and due to the RSch ambiguities, because we regardompatible with the world average 0.1178.0020 as given
these two predictions only as an additional cross check oin Ref.[64].

our main predictions and uncertainty estima(i4s)—(48).
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modified Borel transform is renormalization-scale invariant.
In our approach, we explicitly account for the structure of the  For a functionf(y) with the (asymptotically divergent
leading infrared(IR) renormalon of the Adler function via expansion aroungt=0,
the corresponding ansatz. Further, to accelerate the conver-
gence, i.e., to minimize the resummati@runcation uncer- o
tainties, we employ two different conformal transformations f(y)=1+ 2 foy", (A1)
which “map away” all the renormalon singularities, except n=1
the leading and subleading IR renormalons, onto the unit
circle. The correct location of the leading ultraviolélV)  the modified Borel transforn#:({) was introduced by the
renormalon or of the subleading IR renormalon is enforcedauthors of{42] via the following expansion:
by employing Pad@pproximants for the truncated perturba-
tion series of the functions associated with the modified i 1
Borel transform. The Borel integration, in this appraoch, F;(z)=1+ i z",
turns out to have suppressed renormalon ambiguity fat =1 (N+C12)(N=1+4¢42)- - (1+642)
the leading IR renormalon singularity, and the ambiguity due (A2)
to the subleading renormalons is strongly suppressed by the ] o
exponent in the Borel integral. We neglect in the observabldvhere ¢, is the coefficient at the two-loop term of the
r . all the possible power correction terrtexcept the dimen- functhn (.11). The authors 0(42] further showed that the
sion d=4 quark mass terms because the results of the following integral transformation connectgy) and 7;(z2):

ALEPH analysig27] suggest that such terms are consistent

APPENDIX A: MODIFIED BOREL TRANSFORMS
IN THE GENERAL RENORMALIZATION SCHEME

with zero or negligibly small even in our resummation _E _ f“ —ayl Y T
framework. o fy)= y(l C1Y) o dze z r+ clz)]:(z)'
Our analysis predicts the values af¥S(m?) and (A3)
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Further, they showed that there corresponds to each singulaand the integral transformatiqi\3) as

ity ~(R—2)~“ %R of the ordinary Borel transfornf(z)
=1+3f,z"/n! a singularity ~(R—2z) "¢ of the modified
Borel tranformF;(z),

o f
Fi(z)=1+ > —z"~(R-z)"* 9k =
n=1 Nn!

Fi(2)~(R—2)"{1+0O[(R-2z)In(1-2z/R)]}.
(Ad)

On the other hand, the perturbative expansion of the mass-

less Adler functiorD(Q?) has the canonical forrfl.0), with
a=a(u?c,,C3, ... ) being the QCD couplant, and the co-

1 (= b
D@)= 5. dbexp[‘ﬁ—oa

aBo —c1b/Bg 1
X T m}b(b), (A11)
=ifwdbex;{—£(i+clln(cla)
BoJo Bola
c,b) ¢1P/ho 1
X E) —F(1+C1b/BO)FD(b). (A12)

efficients dk having a SpeCiﬁC RScl and RSch dependenCQf the ordinary Borel transfornﬁ)(b;gz;cz, . ) (21) has a

de=d(€2%:Cy, ... C) (£2=u?1Q?) determined by the re-
quirement of the RScl and RSch independenc @®?) (cf.
also[2], first entry),

d;=d{9+ B, In &, (A5)
do=d+ (df—d{?) +cy(d; —d{?) ~ (¢~ cf),
(A6)
ds=d®+3(d,d,— d{Vd) — 2(d3 - d{V?)
—(€4/2)(d3 ~dV?) + (c,d; — c§d(”)
—(1/2)(c3—c§”), (A7)

da=d{”+4(d;d3—d{"d§”) — (c4/3)(ds—d”)
+(5/3)(d5—d§??) — (28/3)(d7d,— d{?d{”)
+(2¢4/3)(dd, — dPdD) + (1/3)(codp — c§dS)
+(14/3)(d]—d{9% — (4/3)(c,d?— cPd{P?)

+(cgdy—c§d{?) — (1/3) (¢~ c). (A8)

Here, the coefficientsl(”) are at the RSc?=Q? (£2=1)
and in the RScke!”,cy?, . ... Comparing expansiond0)
and (A1), and inspecting the integral transformatioh3),
we may identify

yf(y)

(1—cyy)’ (A9)

a=y, D(Q)=

which immediately leads to the relatiorf§=d;—c,, fy

=dy—cqdy_1 (k=2). If we useb=p,z as the Borel vari-
able, this allows us to write expansioA2) as

‘: D(b1§ 1C21C31 . )

:[ (di—cy)
(dn_ C1dnfl)

M drcnigy
+r122 (1+c4b/Bo)(2+c1bl Bo) - - - (N+ b/ Bo)

&l

X (A10)

singularity of the form~(R—b/By)~ ¢ 1R, then F(z)
~(R—2)"* “R{1+ O[(R—2)']}, due to the simple rela-
tion dF¢/dz=dD/dz—c,D. Therefore, we can write the sin-
gularity relation between the ordinary Borel transfdbnand
the modified Borel transfornFp=F; in complete analogy
with Eq. (A4)
D(b;&%ics, .. )~ (k=b)~ o =
Fo(b;€%cy, .. .)~(k—b) *{1+O[(k—b)

xIn(1—b/x)]}, (A13)

where k= BgR. We may use the subtracted Stevenson equa-
tion [2] [cf. Eq. (38)] to reexpresgpartly) the expression
[1/a+c4In(cia)] in the exponential of EqA12) in terms of
In(?/Q?)=In(&?) and of the invarianp;(Q?) (24),

1
S euin(eia)=p1(Q)+di?+ BoIn 2
J‘a
0
where B(x) is in the RSch considered, i.e., its expansion

around x=0 is B(X;Cy, ...)Bo=—X?(1+Cix+Cpx2
+--+). Therefore, Eq(A12) can be rewritten

(1-cX)  Bo
2 B

. (A14)

D(Q?)=D(a(£2Q%cC,, . ..);£%Cy, .. )
:%fo‘*dbex%_ [Pl(Qz)’;foln gZ]b}
Xex[{%f:dx( (1;(2:1)() + ,B(x;(i(? = )H
o (o

(A15)

In the general RSchcg,c3, ...) and at thegeneral RScl

£=u?/Q? the modifed Borel transform function
Fo(b;é%c,,...) is related to the function
Fo(b;1;¢, .. .) in thefollowing way:
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1 2
e_blnngo(b;fzicz-csa ) =Fp(b;1;e$ e, . -)_§(C2 (O))(ﬁ_)

3
+ 132[2<c2—ci>(/30 In &%)+ (c,—cf?)(11c; — 4d{”) (cg—cé"))](g)
0

+ 732[3<c2— c1)(BoIn £)(2d{”— By In £%) + (2263+ 3cg— 25015)(Bo In €7)

—(cp—

b
— (0)
(Csa—Cq )](,30

This can be shown, for example, by using transformatiortransformation

formulas(A5)—(A8) in the expansiortA10). The above for-
mulas (A16) and (A15) show that the modified 't Hooft
(mtH) scheme ¢k=c‘§, k=2,3,...) is aremarkable RSch
choice in the discussed Borel transforms,

e PN (:¢2c2,c3, .. )= Fp(bil;c2,c3, .. L),

(A17)

(1—c1x)
2

Bo

B(x;ca.c3, ...)

(A18)
X

and thus Eq(A15) reduces in this case to

D(Q)=D(a(£2Q%cf,c}...);é4¢c5.c5,...)
1 3 [p1(Q3)+ BoIn fz]b}
ﬁoj dbe ‘{

Bo
(c1b/Bo) clb/BO %(,3 |n§2 d(O))b)
XF(1+clb/,80)

X Fp(b;1;c2,c3,...). (A19)

This is just the integral transformatid@3), with expansion
(25) and the constanic=p,In& [note that d;=d{”
=d;(£2=1)],

D(b:¢)=eEoD (b; 0)=F

(bl Bo)1*Fo p((E—d&"))b)
T(1+c;b/Bo) M Bo

X Fp(bilici,cl, .. )[e-py i ez (A20)

4
+0(b%).

c)(85c2—4c,+5¢)—50c,d P+ 9d) + (53— i) (13c, — 3d(?)

(A16)

in the mtH RSch is RScl-independent
(£’-independent This appears to be the main reason why
Grunberg[41] called this Borel transformation “renormal-
ization scheme invariant.” Strictly speaking, we see that this
transformation may be called “renormalization scéRSc)
invariant,” with the choice of the mtH renormalization
scheme(RSch. On the other hand, if we abandon the mtH
RSch in the general class of Borel transformatioht5), the
integrand becomes explicitly RScl-dependent,

d[integrandb; £%;c,, .. .)]
BodIn £

b
O‘(Clb/ﬂo)clblﬁol Bo

|14 (1—cla)B(a2;c2, o)) L O(b?)
Boa
b
=(c,bl By) 1P/ Po (IB—)[l—(l—cla)(H—cla
0

+c,a%+ - ~)]+O(b2)]. (A21)

In order to obtain the expression foyin terms of the modi-
fied Borel transformFp(b;£2;c,, . .. ) in thegeneral RSch,
the contour integratiofil6) in the complex momentum plane
has to be performed on the massless Adler function expres-
sion (A15). Further, we can perform in addition the confor-
mal transformatiorb=b(w) of the types(41) and the ray
integration trick in thew plane as explained in Figs. 1 and 2.
The procedure is analogous to the procedure leading to for-

The above expressioi\19) shows the remarkable property mula(42) in the mtH RSch, and we end up with the follow-
of the mtH RSch: the whole integrand in the modified Boreling formula in the general RSch:
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F-= 27730

[ c1b(W)/ Bg]c1PW)/ Bog=C1b(W)/Bo
T[1+c,b(w)/Bo]

—[1 b(w) /2]f dy(1+e")3(1—
b(w)
Bo

where the weight function§; are given in Eq(37) and the

Borel transform functionsﬁj are defined in analogy with
Egs.(27)-(30),

Ri(b;c;€%¢,, .. )= (1—b/2)exd (c+c,—d{?)b/ Bo]
Xe PNEF (b:¢2ic, ca, .. ),
(A23)
o . (1+c1b/By)
Ry(bic;€%ca, .. ) =Ru(biCi€%Co, ')—(2+cib/22)’
(A24)
Ra(b;Cié% ¢y, .. ) =Ry(biC; €% ¢, . . )
X(1+clb//80)(2+clb/,80)
(3+c1b/Bp)? '
(A25)

We introduced an additional freedom factor exp(b/3,) in

e{ "”jd db(w) p[_

a(a,fzm2 exply)icy, d ( (1—cq1x)

PHYSICAL REVIEW D64 093016

[p1(m%;a) +E]b<w>}
Bo

f,(b(W))R;(b(w);C; €% ¢y, .. .)

eW) e~ ib(w)y

Bo

X2 B(X;Cq, ..

) (A22)
w=xe¢

gll

the exponential in Eq(A22), which is then offset by the

factor exp¢-cb/Bp) in the functionsR;, in analogy with the
case of the mtH RSch Eq.(42). The functions

R(b(w) £%.c;c,p, ...) can be resummed, either as PA
[Z/l]R(W) or as simple RLO TPS. The function

exp(—bln &)Fp(b;é%cy,C5, . . .), which is the source of

the RScl dependence Iﬁj S, has only a weak RScl depen-
dence, as can be seen from E416),

e PN (b:¢2cy.Cs, .. )=Fp(b;1:Cs Ca, .. .)

b
) (Boln &)

+t= (Cz Cl)(ﬂ

+0(b%). (A26)

We further see from EqA22) that in the general RSch we
cannot perform the contour integration oxgy analytically,
in contrast to the mtH RSch E®2).
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