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Check of QCD based on ther-decay data analysis in the complexj? plane
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The thorough analysis of the ALEPH data on hadrandecay is performed in the framework of QCD. The
perturbative calculations are performed in three- and four-loop approximations. The terms of the operator
product expansiofOPE are accounted for up to the dimensi@n=8. The value of the QCD coupling
constantas(mf):O.SSSt 0.025 is found from the hadronic branching raRa. The V+A andV spectral
functions are analyzed using the analytical properties of the polarization operators in the whole cgfnplex
plane. Borel sum rules in the compla® plane along the rays, starting from the origin, are used. It is
demonstrated that QCD with OPE terms is in agreement with the data for a coupling constant close to the lower
error edgeas(mf):0.330. The restriction on the value of the gluonic condensate was found to be
{(as/ m)G%)=0.006+0.012 GeV. The analytical perturbative QCD is compared with the data. It is demon-
strated to be in strong contradiction with experiment. The restrictions on the renormalon contribution are
found. The instanton contributions to the polarization operator are analyzed in various sum rules. In the Borel
transformation they appear to be small, but not in the spectral moment sum rules.
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I. INTRODUCTION In the previous paper by two of 8.l. and K.Z) [5] the
difference of vector and axial current correlators was ana-

The high-precision data on hadroniaecay, obtained by lyzed using ALEPH data on decay{1]. The analytical prop-
the ALEPH [1], OPAL [2], and CLEO[3] Collaborations, erties of the polarization operator in the whole compigx
namely, the measurements of the total hadronic branchinglane were exploited and the vacuum expectation values of
ratio R,.=B(7— v,+ hadrons)B(r—ev.v,), vectorV and dimension six and eight operatofgsacuum condensates
axial vectorA spectral functions, allow one to perform vari- were found. Here we consider thé+ A correlator, where
ous tests of QCD at low energies to determin¢Q?) atlow  perturbative corrections are dominant.
Q?, to check the operator product expansi@PBE and to Define the polarization operators of hadronic currents:
perform a search for other possible nonperturbative modifi-
cations of QCD — renormalons, analytical(Q?), instan- ; ) ax +
tons, etc. An early attempt to check OPE in QCD based on HMV(Q):lf eP(TJ,(x)J,(0)")dx
e*e” annihilation data was made by Eidelmanal.[4] but
the accuracy of the data at that time was not good enough. =(0,9,~9,,9)15(9?) +0,9,115(g?), (1)
Also the authors of Ref4] took for granted that the QCD
coupling constant is rather small, th‘e‘Q%D (for three fla- where
vors) is about 100 MeV and neglected the higher-order terms o o
of the perturbative series. Now it is common belief thats J=V,A; V,=uy,d, A,=uy,ysd.
much larger and\(®>~300-400 MeV in the 2—3 loop ap-
proximation. Therefore the problem deserves reconsideraFhe imaginary parts of the correlators are the so-called spec-

tion. tral functions 6=q°2),
The goal of the investigation is to analyze the hadronic
structure functions, found from decay, within the frame- vilay(s)=2m ImII{}h(s+i0),
work of QCD. We first use the standard QCD, by which we
mean perturbative QCD and the terms of OPE with coeffi- ag(s)=2m ImHgo)(eriO) @

cient functions given by perturbation theory. It will be dem-

onstrated that standard QCD is in agreement with the data at . _

the values of the complex Borel parametBorel transform ~ Which gave been measured from hadromidlecays for 0

of Q%) M?>0.8-1.0 Ge\ in the left complex half-plane <S<M:. ) ) .

with accuracy better than 2%. Then nonperturbative modifi- The spin-1 partd[1{"(g?) and I1§(q®) are analytical

cations of QCD will be studied and the restrictions on thefunctions in the complex;” plane with a cut along the right

parameters, characterizing those modifications, will be foungemiaxes starting from the threshold of the lowest hadronic

(Secs. IIl, VI, and VI). state: 4n2 for II{Y and an? for I}, The latter has a
kinematical pole at>=0. This is a specific feature of QCD,
which follows from the chiral symmetry in the limit of mass-

*Email address: geshken@vitep5.itep.ru lessu,d quarks and its spontaneous violation. It can be easily
TEmail address: ioffe@vitep5.itep.ru shown[6] (see also Ref5)), that the kinematical pole arises
*Email address: zyablyuk@heron.itep.ru from the pion contribution td'[ﬁ,,, which is given by
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wheref . is the pion decay constarft,=130.7 MeV|[7].

Il. HADRONIC BRANCHING RATIO
AND THE VALUE OF as(mi)

The total hadronic branching ratio into final state with
zero strangeness is given by a well-known expression, which

can be written in the following forntsee, e.g., Ref.8]):

B(7— v,+hadrong_)

Riv+a= B(1— VTe;e)
2
=6|Vyd ZSwaomE:]—;( 1- %)
1425 | (014 a;+a0)(9)~2—ag(s) .
m? m?Z
4
where|V,4|=0.9735+ 0.0008[ 7] is the Cabibbo-Kaboyashi-

Maskawa matrix element, an®g,=1.0194+0.0040 in-
cludes electroweak correctiof8]. The spin-0 axial spectral
function ay(s) is basically saturated by the— v channel
and can be read off from E@3): ao(s)=2m?f28(s—m?2).
So the last term in Eq4) gives small correction

f2m?
— 2472 ’;nf =-0.008.

ARO= (5)

The rest of Eqg.(4) contains only the imaginary part of
M A (s) + 110)(s), for which the short notatioil(s) will
be used later on. As follows from E¢g), I1)(q?) compen-
sates the kinematical pole @t=0 in I1{"(g%). So the com-
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1 -s
- ﬁln 2 + higher loops

<02n>
n=2 (—s)"

As

1+Cn? .

)

Consider at first the perturbative part. For its calculation,
it is convenient to use the Adler function, which is perturba-
tively constructed as an expansion in coupling constant

dI1(Q?)
2y —= — 2 2 _
b= dInQ? nZO Knd
azé, QZE_S! (8)

which is known up to the 4-loop term in the modified mini-
mal subtraction MS) renormalization schem&,=K;=1
and K,=1.64 [14], K3=6.37 [15] for 3 flavors. The
renormalization-group equation fa(Q?) reads:

da
— a)=— an+2
dnoz - A@ 2 B
Q? f aQ® da
=In—5=-— — 9
W2 L B@ ©
In the MS scheme for 3 flavorsB,=9/4, B,=4, B,

=10.06, andB;=47.23[16,17]. This allows us to get the
perturbative contribution to the polarization operator explic-
itly at any order of perturbation theory:

a 2
11(Q?) - HwZ)——f “b@——. 10

B(a)
Let us putu?= mf and choose some valwémf). From Eq.
(9) we can finda(Q?) for any Q? and by analytical continu-

ation at anys. Computing the integrall0) it is possible to
find the perturbative part dil(s) as a function of(s) in the

binationII(g?) has no kinematical poles and is an analyticalwhole complexs plane. The substitution dii(s) into Eq.(6)

function of g2 in the complexg? plane with a cut along the
positive real axis.

The convenient way to calculate tiRe in QCD or, turn-
ing the problem around, to finds(mi) from experimentally
known R, is to transform the integral in Eq4) to the
integral over the contour in the complex plane going
couterclockwise around the circlg|=m? [10-13:

R 6771 | Vg 2Se fﬁ ds(l 5)2
- =6l —|1-—
WVA+A ud W |s\=m§m§ m2

T

S
X 1+2W>H(s)+AR(T°). (6)

gives(up to the power correctionshe dependence @, on
a(mf). It must be stressed, that in this calculation, no expan-
sion in inverse powers of I@? is performed: only the valid-

ity of the expansion series in E(B) and Eq.(9) is assumed.
Such representation has a serious advantage: on the right
semiaxes, i.e., in the physical region, there is no expansion in
w/In(Q%A?), which is not small at intermedia®?. For in-
stance, in the next to leading order

1
27 ImIl(s+i0)=1+ —
( ) Ba

T 1 | S
E —arcta ; nxz
(11)

instead of

The polarization operator is given by the sum of perturbative
and nonperturbative terms. If we restrict ourselves by OPE !Such manner of calculation in Refl] was called contour-

terms, then

improved fixed-order perturbation theory.
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| — Re Io.s/n | n; f?gl(“cnaf)
-------- Imay/n ]
\ ~~~~~~~~~ | 2 (GRGI| 1+ § 2|+ gros e’
’VW———”— x| 1+ gﬁi—;mi—i) - <82> . (13
01 /2>1‘ o, GeV2 ] The contribution of thédd =2 operator, due to nonzero quark

! - i ! 1 ! massesn, 4, is negligible and omitted here. We have also
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neglected theD=4 quark condensate &,+my){qq),

FIG. 1. Real and imaginary parts afys(s)/ 7 as exact numeri- ~ which is an order of magnitude less than the gluonic conden-
cal solution of RG equatiof®) on real axes for different number of sate. The coefficients in front of tH2=4,6 operators, have
loops. The initial condition is chosea,=0.355 ats=-m2, Ny been computed by Shifman, Vainstein, and Zakhd®vz)
=3. Vertical dotted lines display the position of the unphysical [21], The a, corrections to thé =4 operator were found in
singularity ats=—Qj for each approximation (41 from leftto  Ref. [22]; as corrections to theD =6 operator were calcu-
right). lated [23]; ambiguities among them were also discussed

there.
A few comments about the operatOg are in order. In the

nonfactorized form withoutrg corrections, it looks as fol-

27 ImII(s+i0)=1+ o
BoIn(s/A9) lows [21]:

which would follow in the case of smait/In(s/A?). [Equa- _ _ _
tion (11) was first obtained in Ref{18], the systematical (Oe>=—27Tas<(Um)\ad)(dm)\au)+(U757M?\ad)
method of analytical continuation from the spacelike to the
timelike region with summation ofr? terms, was suggested _ 2
in Ref.[19] and developed in Ref20].] In the higher order, X(dysy, \®u)+ §(U7M7\au
where a(s) cannot be expressed via %) in terms of
elementary functions, this analysis is performed numerically. _ _
It is well known, that in the one-loop approximation of +dy,\%) > (QV,J\aQ)>- (14)
the B function, the couplinga(Q?) has an infrared pole at vds
someQ2=Q(2) (in some conventions coinciding with?). In
then-loop approximationti>1) instead of pole a branch cut After factorization, three terms in E¢L4) give the following
appears with a singularity- (1—Q?/Q3) M. The position ~ contributions:
of the singularity is given by

Q% (= da
L) 2

— 1 4
<06>:47Tas<QQ>2< _W)<1_1+§ G

where N, is the number of colors. SVZ assumed that the

Near the singularity the last term in the expansiong¢d)  accuracy of the factorization procedure is of ordef?

(9) dominates and gives the aforementioned behavior. To il-~10%, in the case of th¥ correlator, where the coefficient
lustrate the behavior of the running coupling constant, wen the second bracket in E¢L5) is equal to—7/9. Remem-
plotted the real and imaginary part afs/7 for the n ber that in theV—A correlator, the first term has opposite
=1,2,3,4-loopB function in Fig. 1. It demonstrates, that for sign and the third term is absent, so the accuracy of the
real positives, the difference between various approxima- factorized operatoDy * is at least, not worse, than in the
tions is almost unnoticable beyond the second loop and thease. On the other hand in thle- A correlator two compara-
expansion in inversin(s/A%)—ix| works well. At the same tively large terms cancel each other under the factorization
time the behavior in the unphysical cut strongly depends omssumption in Eq(15). Consequently the accuracy of the
the number of loops and cannot be described by some simpfermula (15) for the operatoiOg is less, perhaps 20—30%.
approximation. Only as<—1 Ge\?, 2—4 loop calculations ~Large a; corrections to all independeBt=6 operatorg23]

more or less coincide. can only increase the errors.

Let us turn now to OPE terms in E(Y). The contribution The numerical value of th® =6 operator can be esti-
of the operators up to dimension 8 have been computed theorated, for instance, with the help of our previous analysis of
retically: V—A sum ruleg5]:
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V-A 64 T\ 2 L .
(Og ")=— g masdg)“x1.3 o1+ 80 o
° ' & N
[ o Q
— — (6.8+2.1)x10°3 Ge\p. (16 13Ff 2 §°° -
: o
The coefficient 1.3 stands for the; corrections. We find L 2 $ ]
_ -3 :
<06> =(1.3£0.5X10 Ge\. (17) 10 L experimental —— -
The dimension 8 operators come from many different dia- | a(\_?_x\_‘i_‘_"?. ——————
grams, which can be labeled by the number of quarks in |~ | 7 .
vacuum. The purely gluonic condensates are suppressed k7 - as(m2)
the loop factor~ a/ 7 and are neglected on this ground. The ; ; k2o L, L0 0 il |
four-quark operators, computed in Rdf24,25 and[5], van- [ 0.3 04 05 1 20
ish in the sumV+A after factorization. The uncertainty of L s | L agmy)
this cancellation can be estimated-a$0% ofOg *, which 0.1 0.11 0.12 0.13 0.14 0.15

is about 10° Ge\®. The two-quark operators have the same _ _ - 0) )
sign in theV andA correlators. They have been computed in__FIG: 2 Perturbative fractional correctiof®) versus ay(my)
Ref.[26] (we have performed the calculation independentlyanOI as(m3) in a conventional and analytical approach in a three-

to confirm this resujtand can be written in the following |°°P aPproximation. In the width of the experimental strip, the the-
form: oretical uncertainty of the operat¢®g) is included.

2/ _ _ B where AR(? is given by Eq.(5). We use conventional in
(0f)= §< 2iuy*{G,p) ,DP}u=uy*y*{(GG),5,DP}u r-literature notations of fractional correctioAsThe electro-
magnetic correction i$g,= (5/121) aem(m?) = 0.001[30],
and theD =6 operator correctioﬁ{,slA= —(5+2)x10 %as
follows from our analysis, is in agreement with the estima-
tion obtained in Ref{12]. From Eq.(20) we separate out the
perturbative correction:

i— aB 1— .
+Zuy7[G ,(DyGaﬁ)]u+§u(D J)u

—iu_ya[Gaﬁ,Jﬂ]u>+(u—>d), (18)

_ 1+ 6(9=1.206+0.010. (21)
whereJ ,=D,G,,= maA*24(qy,\%q). The last two terms
can be factorized and brought to the fonmxs<qq>(qéq>. All errors in here are added in quadratutperhaps, such a
However the leading terms in the number of colfscancel ~ procedure underestimates the total error, maybe by a factor
each other and only the termsN_? are left. It has been 0f 2).
shown in Ref[5], that the factorization of th® =8 opera- The calculation ofag(m?) corresponding ta5® as per-
tors is not unambiguous at this level of accuracy. Taking thdormed according to the method described above. The depen-
value of the operatofqq) from Refs.[27,5], we may es- dence of 5% on ay(m?) [and ona(M?), to compare
timate the upper limit of the operatofl8) as |<Of32)>| with the other d_at}if_or the thr_ee-l_oopB function and thrge-
<10* Ge\B, which is tiny. So, for the upper limit of the loop Adler function is shown in Fig. 2. It follows from Fig 2
total D=8 operator, we shall use the estimatipfOg)|
<1073 Ge\A. ag(m?)=0.355+0.025. (22)
It is worth mentioning that thé =6,8 operators in the
V+A polarization function are much smaller than\ror A The estimation of the error in E422) was done with care.
separately. Because of the asymptotic character of the perturbative series
We are now in a position to calculate(m?) from the  (8) and(9) the higher loop contribution could be as large as
experiment. We take the most recent data on the total hadhe contribution of the last terms, nameKga® and B,a*.
ronic decay ratioR, [7] and the ratio of decays with odd They result in the uncertainty 0.049.020 in ag(m?), de-
number of strange mesons —X(S=—1)», [28,29: pending on its central value. Taking into account the uncer-
tainty (21) in 6%, we obtain the error in Eq22). Further-
R;=3.636:0.021, R;s=0.161+0.007. (19 more, we have performed a two and four-loop calculation of
as(mf). The unknown four-loop coefficient in the Adler
function (8) was taken equal t&,=50 (cf. its estimations
[31]). For each givens'®), the 4-loopag(m?) is by 0.005
lower than three-loop value, while 2-I0(1ps(mf) is higher

In our analysis we subtrad®, s to avoid the interference
with additional parameters, in particular the mass of she
qguark. One obtains

R. v a=3|Vyd2Sew( 1+ oLyt 8@+ 58 )+ ARO by 0.02. These results are within the error ra(@®. If some
VA= 3Vud “Sew EW ven) nonperturbative terms beyond OPE existg., instantons
=3.475-0.022, (20 they would also contribute to the error in E82). In Sec. IV
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it will be shown that the valuery(m?) close to the lower In the recent papdi37], an attempt was made to save the
limit of Eq. (22) satisfies sum rules at lo®@? much better.  analytical QCD in the case of vector the polarization opera-
tor and to obtain the agreement with ALEPH data on the
vector, AdlerD function, by assuming large quark masses
m,=my=250 MeV and some form of Coulomblike quark-

Shirkov and Solovtsof32] forwarded the idea of analyti- antiquark interaction. This hypothesis, however, is in strong
Ca| QCD According to |t the Coup"ng Constang(Qz) is Contrad|ct|0n W|th a” the reSUItS fO”OW|ng from the We”-
Ca|cu|ated by the renorma”zation group in the Space"ke reestablished pal’tia| Conservation Of aXial current and Chiral
gion Q2>0. Then, by analytical continuation te=—Q?  theory. For example, if the Gell-Mann—-Oakes—Renner rela-
Imag(s) on the right semiaxes. It was assumed, tegs) is ~ ©f magnitude, the Goldberg-Treitman relation cannot be
an analytical function in the complesplane with a cut along Proved, etc. Also many sum rules for— A polarization op-
the right semiaxes €s<. The analyticalay(s),, is then  €rator would disagree with the data.

defined in the whole complexplane by the dispersion rela- Therefore we come to the conclusion, that analytical QCD
tion in any form, [32] or [36], is in strong contradiction with

experiment and must be abandoned.

Ill. asy(m?) AND ANALYTICAL QCD

1 (=Imags’) |
as(S)an=; ———ds’. (23 IV. CHECK OF QCD AT LOW Q2 FOR V+A
0 s-—S CORRELATORS BY USING THE SUM RULES

Since the lower limit in this integral is put to zerag(s) an Let us now tugn to the study of thé+ A correlator in the
indeed has no unphysical singularitigmles, cuts, etg.at ~ domain of lowQ?, where the OPE terms play a much more
Q2>0. The idea of analytical QCD has been developed irfessential role than in the determination Rf. A general

many papers, see, e.g., RES3] and for review Ref[34]. In remark is in order here._ As was mentioned in R8B] and
particular, the calculations Q’is(qu-)an from r-decay data, stre_sseq recgntly by Shifm&f9], the condgnsates can.not pe
were performed within the framework of analytical QCD in d€fined in arigorous way, because there is some arbitrariness
Ref. [35]. in the separation of their contrlb_utlons from f{he pertqrbatlve
A related approach was suggested by two ofiS. and part. Usually[_(’>8,i_’>9] they ar2e d_eflned by the_ introduction of
B.l.) in Ref.[36]. We started from a well-known theorem, sozme nqrmallzqtlon poink” with the magmtude of a few
that the polarization operator for tie& e~ annihilationll(s) ~ \'- The integration over momenta in the domain bejofuis
is an analytical function o in the complexs plane with a  2ddressed to condensates, abqué — to perturbation
cut along positive semiaxes, and assumed that these analx{?"—eory' In such formulation the condensates aréependent
cal properties take place separately for perturbative and non©p)={Ob), and, stnctl;g speaking, they also depend on the
perturbative parts ofI(s). In the first order ofag, this hy- W&y the infrared cutoffu” is introduced. The problem be-

pothesis is equivalent to analytical QCD while in higher COMesS more severe when the perturbative expansion is per-
orders it may be more general. formed up to higher-order terms and the calculation pretends

on high precision. We mention, that this remark does not
refer to chirality violating condensates, because perturbative

(21). The only (but important difference from the previous terms do not contribute to chirality violating structures. For
calculation is the following. The coupling(s),, is an ana- thls_reason, in principle, chirality violating condensates, e.g.,
lytical function of s with a cut froms=0 to s==. Conse- (0/dd|0), can be determined with higher precission, than
guently, the contour integral in E@6) is now equal to the chirality conserving ones. Here we use the definition of con-
original integral(4) with Im I1(s) over the real positive axes. densates, which can be calleeloop condensates. As was

In the previous calculation, if such a transformation is performulated in Sec. I, we treat the renormalization-group
formed, the integral would run frors= — Q2 to m?. Quali- equation(9) and the equation for the polarization operator
tatively it leads to much smalleR,, in the analytTicaI Qcp (10)in the n-loop approximation, as exact ones; the expan-

than in the conventional approach with the samémi), or SIfOI’] Ir? dlnr:/erfe Iogr;ar:tr}mr.:, '3 tnot pe}:formtrad. fjp(recﬁgfvalu?s
vice versa, the sanmR, corresponds to much larges(s) an- ot condensates are referred 1o such a procedure. course,

Direct numerical calculation confirms this expectation. Thethe'r r.1umer_|cal values depend on the a_ccou_nted_number of
loops; that is why the condensates, defined in this way, are

dependence of 4 8% versusag(s)a, is also displayed in

Fig. 2. It is seen, that in order to get the experimental valueca"ed n—_Ioop condensgte;. (1) (0)

of 8 in the analytical QCD, one should take(m?),, .. Consider the polarization operatbr=T1y.,+ 1157, de-
: 2 . T fined in Eq.(1) and its imaginary part

~1.5-2.0, which corresponds t@s(m3)~0.15, in strong

contradiction with the world averagms(m§)=0.119 .

+0.002[7]. (The previous calculation of the decay[35], o(8)=0v1(8) +ay(s)+ag(s) =27 ImII(s+i0). (24)

performed with less certainty, demonstrated the same trend;

in particular A®®=700-900 MeV, much larger than in In the parton modeb(s)—1 ats—«. Any sum rule can be

standard calculations. written in the following form:

Let us calculateus(mf)an in the framework of analytical
QCD from the same experimental data, i#°) given by Eq.
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T S-plane
“~._ PT+OPE|works
. ¢/ el cut
1 GeV? =0 PT+OPE fails

FIG. 3. Region of validity of the perturbation theory and OPE.

fs‘)f(s)wexp(s)ds,:iw 3§ f($)[Tpee(s)ds,  (25)
0

wheref(s) is some analytical in the integration region func-

tion. In what follows we usewe,s), obtained from the o.é - 07 08 009 1 11 12 13 14 15
7-decay invariant-mass spectra published in R&f.for 0 _ X )
<s<m? with stepds=0.05 GeV. The experimental error FIG. 4. Borel transformation26) Be(M?) and By(M*) for

as(m§)=0.355 and 0.330. The dashed line displays the OPE con-

. TN , tribution added to the 0.330-perturbative curve. The contribution of
the covariance matrixo(s)w(s') —w(s)w(s'), which also o operatord =4 (standard SVZ valyeand D =6 [central value

can be obtained from the data available in Réf. In the o (17)] with respect to 1, are shown separately in the box.
theoretical integral in Eq(25), the contour goes frons,

+i0 t0 5,—10 counterclockwise around all poles and cutsng instead estimate the theoretical error for any given
off the theoretical correlatdﬂ(_s), see Fig. 3. Be_cal_Jse of the a(mf) as the contribution oKsa®.
Cauchy theorem, the unphysical cut must be inside the inte- As follows from the analysis in Sec. II, fotM?

gration contour. . . . >1 Ge\?, the contribution oD = 6,8 operators to the Borel
The choice of th_e functiofi(s) n Eq. (25 is actually a transform(26) is small in theV+ A channel, while the con-
g?ét]i;ig;‘rtaste. At first let us consider the usual Borel tranS;in ition of theD =4 condensate must be positipee as-
' sumeag corrections included in the operatgi®,,,) in Eq.
(26) and late}. So the theoretical curve must go below the
B p(M2)= fmie*S’Mzw p(s)E experimental one. The result shown in Fig. 4 is in favor of
& 0 eV the lower value of the coupling constamg(m?)=0.33. Lit-
erally the theoretical curvéperturbative atas(mf)=0.33
=B t(M2)+27722 & (26) plus the contribution o0, and Og operator$ agrees with
P n o (n—1)IM2" experiment starting frorivi?=1.1 Ge\?. If the uncertainties
in perturbative contributions are taken into acco(sitaded
We separated out the purely perturbative contribulyp, ~ area in Fig. 4 the agreement may start earlier, Bt
which is computed numerically according to E@5) and =1 Ge\~.
Egs. (8)—(10). Remember that the Borel transformation im- The Borel transformation in Fig. 4 includes the contribu-
proves the convergence of the OPE series because of tiiens of different operators. Although it is difficult to separate
factors 1/(]— 1)! in front of the operators and suppresses thethe perturbative part from the OPE one, the contributions of
contribution of the high-energy tail, where the experimentaldifferent operators can be separated from each other. One
error is large. But it does not suppress the unphysical pertuivay is to differentiate the Borel transformation b?. This
bative cut, the main source of the error in this approach, anfowever leads to the certain loss in the accuracy of the ex-
even increases it sina@ ¥M°>1 for s<0. So the perturba- Perimental integral, since the growing power tefns" ap-
tive part Bpt(Mz) can be reliably calculated only fay2 ~ Pearsin the integral. So we apply the method u_se[cB]rior
~0.8-1 GeV and higher; below this value the influence of ¥ —A SUm rules, namely the Borel transformation in com-
the unphysical cut is out of control. plex M plane. )
Both B, and B, in a 3-loop approximation forry(m?) Let us consider the Borel transforB(M<) (26) _at some
_ P p e S mplexM?=M?2e'?, 0< ¢p<m/2. If the phases is taken
=0.355 and 0.330 are shown in Fig. 4. The shaded ared®®MP 0 e phas _
display the theoretical error. They are taken equal to the corf!0S€ t©07/2, then the contribution of the high-energy tail
tribution of the last term in the perturbative Adler function P€comes high. So we restrict ourselves by the valjes
expansiork ;a° (8). We have also performed the calculation < /4 for the exponent to be decreasing enough. _The real
with the 4-loopB-function andK ,= 5050, but the result is part of the Borel transform ap= 7/6 does not contain the
very close to the 3-loop one, since positive contribution of® =6 operator:
the termK,a* compensates for the small decrease in the
couplinga. Since this result is observed by us in many other
sum rules, we shall not give the 4-loop calculations later on,

of the integral(25) is computed as the double integral with

. . 0
ReBeyd M2e ™) = ReB (M 2e ™) + 77'2<M—i. (27)
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FIG. 5. Real part of the Borel
transform (26) along the rays at
the anglesp= /6 andw/4 to the
real axes. The dash line corre-
sponds to the gluonic condensate
given by the central value of Eq.

(29).
L $Qi _______________ M?, GeV? M2, GeV?2
1 sl by b b b IS T T T L 1 1 1 1 1 1 1 1
06 07 08 09 1 11 12 13 14 15 10.6 07 08 09 1 11 12 13 14 15
The contribution of Og) is less than 0.5% to the perturba- V. CORRELATOR OF VECTOR CURRENTS

tive term and neglected here. The results are shown in Fig.
5(a). Again it is still difficult to accommodate the positive
value of the gluonic condensate to the coupliagmf)
=0.355 and higher. If we accept the lower valueag(mf),
we get the following restriction on the value of the gluonic
condensate:

Previously we considered thé+ A correlators, where the
power corrections are small. Instead one could take the pure
vector current(vector spectral function was published by
ALEPH in [40]). This does not give us any new information
with the 7-decay data, sinc¥ — A correlators have already
been analyzed in Ref5]. Moreover the accuracy of the vec-
tor current spectral function is less thaft+ A, since both
ag . . .
<_Ga G2 > =0.006+0.012 GeV, currents are mixed in some channels witimesons and the
moo TR number of events is twice as less.
However the analysis of the vector current correlator is
ag(m?)=0.330 andM?>0.8 Ge\~. (28)  important since it can also be performed with the experimen-
tal data one*e” annihilation. The imaginary part of the
The theoretical and experimental errors are added together glectromagnetic current correlator, measured here, is related

Eq. (29). to the charged current correlattl) by the isotopic symme-
The real part of the Borel transform gt=7/4 does not try. The statistical error ie" e~ experiments is less than in
contain theD =4 operator: decays because of significantly larger number of events. So it
would be interesting to perform a similar analysis wéthe ™
o imm 5 i , (Os) data, which is a matter for separate research.
ReBe,( M€ ™) =ReBy(M“e'™) —m W (29) At first we consider the usual Borel transformation for the

vector current correlator, since it was originally applied in

The results are shown in Fig(l9. The perturbative curve at R?f' [4] for th? sum-rule analysis. It. IS de_flneq as K20)

as=0.330 is below the data. If we would take this curve asW'th the experimental spectral functian,=2v, instead of
S_ . . . - - .

an exact one, without accounting for the perturbative errorsv1+aﬁ—aod[ﬂ:e normah_zat:on 's’l(f])_).l/ﬁ ar':s—:joo |_r(1j the

then from Eq.(29) we would conclude, thatOg)<0, which parton model Respectively, on the right-hand side, one

_V+A V—-A
is in some contradiction with Eq$13) and (17). However, should take the vector operator©2=0 07, all

Ge\f
(0.9+0.4x 102 ,
M6

. . OV~A with D<8 can be found in Refl5]. The numerical
the account for the perturbative errors makes the situation L . .
. ) . . results are shown in Fig. 6. The perturbative theoretical
different, but uncertain. Since the value of #@®¢) contri- h in Fig. 4 the With A lat
bution to Eq.(29) is very small, curves are the same as in Fig. e w correlator.
The dashed lines display the contributions of the gluonic
condensate given by Eq28), 20y=-5.5x10"° Ge\®
2 {O¢) _ 30 and 05=05 “=7x10"° Ge\®, added to the
J2M8 0.330-perturbative curve. The contribution of each conden-
sate is shown in the box below. Notice that for such conden-
then by accounting for the perturbative errors, it is possiblesate values, the total OPE contribution is small, since posi-
to satisfy the sum rulé29) at positive(Og) starting from tive O, and Og compensate negativ®q. The agreement is
M2>0.8 Ge\’. (In the narrow region neavi’=0.9 Ge\?,  observed foM?>0.8 Ge\’.
the theoretical curve goes out of the data on the-R%ex- Now we apply the method of the Borel transformation
perimental error, but we do not consider this a serious conalong the rays to the vector polarization operator to separate
tradiction) Unfortunately, no definite conclusion about the the contribution of different operators from each other. The
value of (Og) can be drawn from the Fig.(B). The only D=8 operator is important here, so we shall sepatig
statement is that its value cannot exceed @d) and prob-  from Og.
ably is on the lower border of error. The Borel transformation at low1? exponentially sup-
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Figure 1a) demonstrates that the vector sum rule is satis-
fied atas(m?)=0.330 and gluonic condensa@s) (although
higher values of the gluonic condensate, e.g., the SVZ value
still does not contradict the datarigure 1b) shows, that the
Oy contribution works in the right direction; its addition to
the 0.330-perturbative curve shrinks the disagreement be-
tween the theory and experiment. However, some discrep-
ancy(about 0.04, i.e., 0.1% in the worst castll persists. It
may be addressed either to the uncertaintyxg(lmf) —a
slightly higher value would be desirable, or to the underesti-
mation of Oy (in absolute value,OY is negativé by
20—-30%, or both. Remember that the numerical values of
the condensates depend on the way, the infrared region is
treated Qg is chirality conserving We are considering here
3-loop condensates, defined in Sec. IV. TBg value was

taken equal to 7/18 oDy *, obtained fromV—A data
analysis[5], where perturbative terms are absent, and some

I . difference is not excluded.
presses the contribution of the largedomain, where the

experimental error is high. Besides this, we may use the os-
cillating behavior of the complex exponent to further sup-
press the high-error points ness mf. This would allow us

to go to higherM?. Here the real part oB(M?) has an
obvious advantage since the function @bs(sM?)cosd)

FIG. 6. Borel transformation for vector currents.

VI. THE CHECK FOR RENORMALON-TYPE TERMS

In the asymptotic perturbative series a special part of
terms — renormalon@nfrared and ultravioletis often sepa-
rated and the summation of them is perforntéat a recent
has zero ats=m? and ¢~ /4 already atM?~1 GeV\?,  review see Ref[41]). In such a sum, the term appears pro-
while the largestin M?) zero of sing+(sM?cos¢) in the  portional to 107 at largeQ?, looking like a contribution of
imaginary part is twice as low. So let us take three differenthe D=2 operator.(In OPE theD=2 operator is propor-
angles, say¢=0, m/6, andw/4. Solving the system of lin- tional to m; and is very small. Renormalons conserve
ear equations, we get chirality and may contribute t&+A but not toV—A. Un-
fortunately, the coefficient in front of the @Qf term of the

B(0) B(/4) 2(04 renormalon origin cannot be calculated relialfly. Ref.[42]
R 22 V2B(7/6) + 2-1 =p.t+2m° 7, it was claimed, that the renormalons are totally absent in the
(31) perturbative series asymptotics and therefore this coefficient
is zero) In a recent papdrd3] the hypothesis was suggested,
that infrared renormalons result in the substitution
Re B(0)+ 2B(/6) 28(7T/4)=p.t.+2772<06(>5. ,
\/E_ 1 2M as  ag A
(32 — ?( 1- 1.05(?> (33

For brevity we writeB(¢) instead ofBexp(MZei‘/’), and “p.t.”  in the first ag correction to polarization operator or Adler

stands for the perturbative contribution. The results for thefunction (the Q? dependence ok, was not accounted for in
Egs.(31) and(32) are shown in Figs. (@) and 7b), respec-
tively.

Ref. [43]). In Eq. (33), \? is a tachyonic gluon mas$,?
<0, and for its value the following estimation was found:

FIG. 7. The sum rule$) (31)
and (b) (32) for vector currents.
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2.1 [ VII. INSTANTON CORRECTIONS

Some nonperturbative features of QCD may be described
in the so-called instanton gas modeke Ref.[45] for an
extensive review and the collection of related papers in Ref.
[46]). Namely, one computes the correlators in the
SU(2)-instanton field embedded in ti8U(3) color group.

In particular, the 2-point correlator of the vector currents has
been computed long agd7]. Apart from the usual tree-level
correlator ~In Q?, it has a correction that depends on the
instanton position and radiys In the instanton gas model,
these parameters are integrated out. The radius is averaged
over some concentration(p), for which one or another
model is used. Concerning the two-point correlator of
charged axial currents, the only difference from the vector
case is that the term with zero modes must be taken with
opposite sign. In coordinate representation, the answer can

FIG. 8. Sum rule(35) with O, but withoutOy 6. be expressed in terms of elementary functions, see[Ref.
An attempt to compare the instanton correlators with the
—\?=(0.2-0.5 Ge\~. (34  ALEPH data in the coordinate space, has been undertaken in
Ref. [48].
The authors of Ref[43] could not discriminate even the = We shall work in momentum space. Here the instanton
highest value\?=—0.5 Ge\~. correction to the spid-partsI1® of the correlatok1) can be

Let us try to find the restriction on th®, operator from  written in the following form:
the sum rule for th&/+ A correlator in the compleg? plane .
from ALEPH data.(For brgwty we ca!l itO,, although |t_|s H“’) insl(qz):f dpn(p)| — —
not theD =2 operator, which stands in the OPBs we did 0

in the previous section, for this purpose we take the real part

2,0 1/2
(11‘ the Borel transform(26) B(M<e'?) at the angle&{) +\/;p4Gfg<—p2q2 00_2”,
=0, 7/6, andw/4 and separate the opera@g from Oyg: Y,
B(0)— 2B(/6) + \2B(w/4) (0,) © a2y [© 4®
Re —pt+2m L A ins(d9) = | dpn(p) _?_?Kl(l)\/—q )|
2—3 M 0
(39 nw o0 (-1 (g2 10O (g2=0
Alnsl(q V |nst(q ) A, |nst(q )! V,|nst(q ) .

The experimental and perturbative parts of this combination (39)

are plotted in Fig. 8. o , _ HereK is the modified Bessel function, a&fd(z| .. .) is
The sum I’l..J|e(35)'ShOWH in F|g: 8, gives the following the Meijer function. Definitions, properties, and approxima-
value of the dimension 2 operator: tions of Meijer functions can be found, for instance, in Ref.
[49]. In particular, the function in Eq.39) can be written as

(0,)=(1.01.5%X10"% Ge\?, as(m§)=0.33.( ) the following series:
36
o | 172
We got this estimation a12=1 Ge\?, where experimental TG 0,0-2
error is minimal. In the model of Ref43],
42 2 I'(k+1/2)
A2 32 7" 2( z T2(k+ DT (k+3)

<02>: - 1.05? ﬁ (37)
XA[Inz+ (k+1/12) = 2h(k+ 1) — p(k+3) ]2

At ay(1GeVP)/w=0.18, corresponding targ(m?)=0.33, + ' (k+1/2)—2¢' (k+1)— o' (k+3)}, (40
there follows the restriction from E¢36):
where (z)=T"(2)/T'(z). For large|z| one can obtain its
—\?=(10£15 %1072 Ge\?, (38)  approximation by the saddle-point method:

1/2 _
which is few times smaller than even the lower limit in Eq. G13(z o,o,_z) ~\mz %% % |z=1. (4]
(34). Notice, that similar restrictions on the value of the
=2 operator have been obtained in Rdi] from the other The formulag39) should be treated in the following way.
sum rules. One addsll;, to the usual polarization operat¢r) with
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FIG. 9. The instanton correc-
tion to ther decay ratio versu&)
po and (b) “versus 7 mass” for
no=1.5x103% GeV".

001 [ .
Po» Gev!
»002 1 1 1 1 L L 1 ] 3
1 1.5 2 25 3 3.5 4 4.5 5 0.5 1 15 2 2.5 3
perturbative and OPE terms. But the termd/q* must be i ds/ s - 1/2
absorbed by the operat®, in Eq. (7), since the gluonic - ol ( p’s 0,0~ 2)
2\ . . . 2 |S‘:SOSO SO
condensatg G-) is averaged over all field configurations,
including the instanton one. Notice the negative sign before —k,1/2
1/g* in Eq. (39). It happens because the negative contribu- Gz4(P $010,0~2,—k— 1) =2
tion of the quark condensatgmqq) in the instanton field
exceeds the positive contributi_on of the gluonic condensate i dss ., , | 12
(G%. In the real world (mqgg) is negligible at g° 27 Jig-5,5 So = P S0,0-2
~1 Ge\’.
The correlatorg39) possess appropriate analytical prop- 4 -1,1/2
erties, they have a cut along the positive real axes: = \/— ig2 +G4 p’So 00-2-2/
. * 1/2
|mH§,%?nsl(q2+|0)=f dpn(p)m%p*G2Y p2q 00_2), _
0 s 1o i ff; dsGso( , | 12 )
(42 o 5= 5 S0 130 —P°S 0,0-2
© . s 27T2p2
IMIT, {s(Q°+i0) = —f dpn(p) 1/2
0 Gl3 p S0 0—1,-2/ (46)
X J1(pVa?)N1(p V). (43

The first term on the right-hand side of the second equation
We shall consider below the instanton concentration advotooks like the contribution of th® =4 operator, but in fact it
cated by Shuryaksee Ref[45] and references thergiritis  is not. Indeed, all the expressions on the right-hand side of
a model with a fixed instanton radidthe RILM model in  Eq. (46) have the same LO term of the asymptotic expansion

Ref. [45]): for large sy, equal to—sin(2p+/so)/(Vmp*s3). However for
n(p)=nyd(p—po) (44 k=3, the accuracy of this approximation is bad and exact
values of Meijer functions should be used for numerical
From Ref.[45] we take the numbers evaluations. _ _
L With the help of Eq.46), the instanton correction to the
po=1/3 fm=1.7 GeV r-decay branching ratio can be brought to the following
Ne=1 fm4=15x10"3 Ge\’. (45 ~ form:
. . I 5/ 4 1/2
Now we consider the instanton contribution to thelecay Sins= — 481 dpn(p)p G329 p?m? 10~1—4
branching ratia4). Since the instanton correlat@9) has a
1/g? singular term in the expansion neafsee Eq(40)], the 4872n,
integrals must be taken over the circle, as in RéY. In the ~—5—SiN(2pem,). (47)
instanton model, the functioay(s) differs from the experi- PoM;

mental § function, which gives the small correctiab). So

we shall ignore the last term in E@4) and consider the Since the parametergt5) are determined quite approxi-
integral with H{,ﬂ)AJr Hgo) in Eq. (6). Here we need the fol- mately, we may explore the dependenceSgqf; on them. The
lowing formulas for the circle integrals, which can be rigor- 85 Versusp, for fixed ny [Eq. (45)] is shown in Fig. %a).
ously obtained from the series representation of the Meijer As seen from Fig. @), the instanton correction to the
function (40): hadronicr decay is extremely small except for the unreliably
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The result(47) can be used in another way. Namely, the
mass can be considered as the free paramsgtdihe depen-
dence of the fractional correctiods”) and 6%+ Sinst ON Sp
is shown in Fig. ®).2 The result strongly depends on the 11
instanton radius and rather essentially on the demgjtyFor
po=1.7 GeV ! andny,=1 fm * (45), the instanton curve
is outside the errors already s§~2 Ge\?, where the per-
turbation theory is expected to work. Therefore Figb)9

low value of the instanton radius,<1.5 GeV 1. At the 131 T . T T .
favorable valug45] po=1.7 GeV! the instanton correc- L~
tion to R, is almost exactly zerdOf course, smaller values A ) | exp: VA, 4
of ng than Eq.(45) are also allowed.This fact confirms our L/ DN
calculations ofas(mf) (Sec. I, where the instanton correc- 15 E ,:' ||HIH|ﬂ _‘:\ 1
tions were not taken into account. Tl ',' [, |||{i||;ifﬂ\\

: * /,21_ f Humjﬂ_}H_HmH.lm

~2atN
IIQ ,/604‘\'1 \\\\ lH“‘I

I

—TT

shows, that in the random instation liquid modRILM), the 1 e L '
instanton radius must be larg@ay,po=2.5 GeV ?) or the 03 ! 15 2 25 8
instanton density much (2-3 timelswer. The contribution FIG. 10. Sum rule(49). Experimental, pure perturbative, and
of the D=6 operatorés,ﬁlA is not shown in Fig. &). It is  “perturbative+ instanton” parts are shown. Tt@, contribution is
equal to 8&) ,=—(5+2)x10 3m®/s3 and quite large at not taken into account.
Sp<1.5 Ge’.

Consequenﬂy in this approach the perturbation theery used here; it is indeed negl|g|b|e Compared to the errors.
OPE + RILM (at not very largep,) cannot satisfactory de- Cr:)nseq(t;ently the results of previous sections remain un-

changed.

scribe the data &,<<1.5 Ge\#. Since the instanton contri- )
bution is large here, we disbelieve all the results obtained by However, the spectral moment sum rules, often used in

the method of variable mass in this domain(Perhaps the 7-decay data analysj4], can be quite sensitive to the instan-

shadowed region in Fig. 3 is of importance in this method afOn corrections. Let us consider the following sum rule, con-
structed in this way:

low sg.)
The 7 decay ratio is not sensitive to the gluonic conden- sods s s?
sate. Let us consider now the sum rules that depend on it. 4 o So So 1- gg @explS)

The Borel transformation of the instanton part is
(Oy) *
ds =p.t—8m’—+ 16772J dpn(p)p*
By2lljng= 2 é eis/MZHS/l,i)nst(S)W g So 0 prpIp

4 -1,1/2
" 4 x{——ﬁt\/;GZl( %s ’ )
=4772f0 dpn(p)| — VL 3p4SS 24 P0/0,0,-2,—2
-3,1/2
1/2 - \/;621< p?s, ’ ” (49)
+ \/7_TP4G§3(PZM2 o,—z)] (48) 2417 200,0-2,-4

The integral(49) is normalized to one in the parton model. It

The integration contour goes around the cut frem+c«  does not depend on thB=6 operator, and the factor 1
+i0 to s=+%—i0. The term~1/M* here comes from the —52/sg is introduced to suppress large experimental errors
term ~1/9* in Eq. (39); it must be included in thd0,)  for larges,. Remember our convention: the contribution of

contribution in Eq.(26). The Meijer function in Eq(48) has  the term~1/q* in I, (39) is included in the operatdiO,,)
the asymptotics in Eq. (49). The contribution of different parts of E¢49) are

plotted versus, in Fig. 10. Since the weight function in the
ng( z‘ 1/2 )sz’zeZ I2[>1 integral vanishes a¢=0, the contribution of the unphysical
120710,—-2 ' cut is suppressed. So the theoretical errors are diminished
here as well as the sensitivity on various perturbative param-
and are strongly suppressed M£>0.8 Ge\2. We calcu- ete.rs. The theoretical curve is ghown aszsingle shaded area,
lated the instanton contribution to all Borel-like sum rulesWhich includes both the uncertainty af(m?) and the error
+K,a® for eachag(m?).
e The operatofO,) enters with negative sign in E¢49),
2Figure 9b) can be compared with Fig. 15 in the ALEPH paper SO the theoretical curve must go above the experimental one.
[1]. The discrepancy between theoretical curves,atl Ge\is  This is certainly not the case if the instanton corrections are
explained by different approximations; we used 3-loop perturbatio0t taken into account. Fags,=2.1 GeV, the theoretical

theory, while the authors of Refl] used the 4-loop one witk,  and experimental results are in good agreement(@j)
=50+50. =0. By increasing the instanton density, positive values
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of (O,4) become possible. In this aspect the sum res +0.025 was found from the hadronic branching raio It

with varyingm_ and Eq.(49) are not in agreement: E47)  was shown that the sum rules at I¢s} favor the value close

favors smallng while Eq. (49) prefers largen,. to the lower error edgexs(mi)zo.330, corresponding to
These results are, however, not convincing. The mairbs(mg):o,llg,

conclusion, coming from consideration of spectral moment (2) |t was demonstrated that QCD with inclusion of OPE

sum rules, is that they are not suitable for QCD analysis untiterms, is in agreement with the data at the values of the

we have a complete theor§lhis statement surely refers also complex Borel parametdiM?|>0.8—1.0 GeV in the left
to the method, where the mass is considered as a free complex half-plane.

parametey. The same situation took place for—A correla- (3) The restriction on the value of the gluonic condensate
tors; the spectral moments sum rules worked only at thevas found((as/7)G2)=(0.006-0.012) GeV in compari-
circle radiussy>2 GeV? [5]. son with the standard, SVZ value 0.012 GeV
(4) The value of thed =6 condensate found in Réb] is
VIll. CONCLUSION in agreement with th& + A and theV sum rules, but cannot
be specified.

The goal of this paper was to confront the recent precise Th vtical . 234 )
experimental data on hadronicdecay with QCD calcula- (5 The analytical perturbative QC[B2,34,3§ was com

. 5 : _pared with the data and it was demonstrated that this ap-
tions at I.OWQ -and to check the ba5|q aspects of QCD.' roach is in strong contradiction with the experimental value
perturbative series, OPE as well as various nonperturbatw%

0

QCD. approaches. The data prese_nt 2the 'mag'”agy pfart (6) The restrictions on the @7 term in the polarization
polarization operators Iifly A(s), s=g° at O<s<m-. I oyeai0r of the renormalon origin were found to be much
some procedure is applied to suppress or nullify the mfluencgtronger than in the previous investigatiof8].

of the high-energy domaifBorel transformation, integration 7)"1he instanton contributions to the polarization opera-
over closed circle in a complexplane, then with the help . \ere analyzed and compared with the data in the frame-
of the dispersion relation, the valuesldf; o(s) in the W_hole work of the RILM [45]. It was shown that the instanton
complexs plane at low|s| can be found from experiment. ¢qqtinution toR. is very small, and the same is true for
(By low |s| we mean/s|<2-3 GeV*.) These experimental gqre| sum rules. However their contributions can be signifi-

values oflly,x(s) can be compared with the theoretical cal- cant 1o the spectral moments sum rules, often used in the
culations in the domain of the compleplane, where QCD r-decay data analysis.

describes the data well enough, in order to find the values of (8) It was found that the method of spectral moments

the QCD parametersis and condensates. (integration over the circle with a polynomjas less effec-

In Ref. [S], this program was realized for tHé, A PO- e in the study of the polarization operators at IQ#, than
larization operator, and the values of dimension 6 and 8 congqre| sum rule because of larger contributions not given by
densates were found. In this papHy. » andIly polariza- — opg nonperturbative correctiofisee Sec. VIl andis)).

tion operators were studied, where the perturbative e pelieve that the results of this paper will serve for
contribution is dominantunlike I1y_,, which is given en- improving the QCD sum-rules method.

tirely by condensatesIt must be stressed, that the present
situation has changed drastically in comparison with the ear-
lier study of a similar problenf4]. In Ref.[4], the perturba-
tive contribution was much less essential and the authors We are very thankful to M. Shifman, who informed us of
could restrict themselves to the LO term only. In this paperhis lectureg39], for his valuable correspondence about the
the perturbative calculations were performed in the 3 and 4roblem under consideration and for his interest in our work.
loop approximation. The unphysical cut in the compex B.I. thanks D.V. Shirkov for providing exhaustive informa-
plane in the perturbative part of the polarization operatortion about the publications on analytical QCD, as well as for
was taken into account and the calculati¢asleast partly ~ moral support. B.l. is also thankful to J. Speth and N. Ni-
were performed in such a way, that allows one to minimizekolaev for their hospitality at Juelich FZ, where this work
its influence(e.g., the Borel transformation along the rays,was finished. The authors are indebted to M. Davier for his
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