
PHYSICAL REVIEW D, VOLUME 64, 093009
Check of QCD based on thet-decay data analysis in the complexq2 plane

B. V. Geshkenbein,* B. L. Ioffe,† and K. N. Zyablyuk‡
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~Received 9 April 2001; published 8 October 2001!

The thorough analysis of the ALEPH data on hadronict decay is performed in the framework of QCD. The
perturbative calculations are performed in three- and four-loop approximations. The terms of the operator
product expansion~OPE! are accounted for up to the dimensionD58. The value of the QCD coupling
constantas(mt

2)50.35560.025 is found from the hadronic branching ratioRt . The V1A and V spectral
functions are analyzed using the analytical properties of the polarization operators in the whole complexq2

plane. Borel sum rules in the complexq2 plane along the rays, starting from the origin, are used. It is
demonstrated that QCD with OPE terms is in agreement with the data for a coupling constant close to the lower
error edgeas(mt

2)50.330. The restriction on the value of the gluonic condensate was found to be
^(as /p)G2&50.00660.012 GeV2. The analytical perturbative QCD is compared with the data. It is demon-
strated to be in strong contradiction with experiment. The restrictions on the renormalon contribution are
found. The instanton contributions to the polarization operator are analyzed in various sum rules. In the Borel
transformation they appear to be small, but not in the spectral moment sum rules.

DOI: 10.1103/PhysRevD.64.093009 PACS number~s!: 13.35.Dx, 11.55.Hx, 12.38.Bx
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I. INTRODUCTION

The high-precision data on hadronict decay, obtained by
the ALEPH @1#, OPAL @2#, and CLEO@3# Collaborations,
namely, the measurements of the total hadronic branch
ratio Rt5B(t→nt1hadrons)/B(t→en̄ent), vector V and
axial vectorA spectral functions, allow one to perform var
ous tests of QCD at low energies to determineas(Q

2) at low
Q2, to check the operator product expansion~OPE! and to
perform a search for other possible nonperturbative mod
cations of QCD — renormalons, analyticalas(Q

2), instan-
tons, etc. An early attempt to check OPE in QCD based
e1e2 annihilation data was made by Eidelmanet al. @4# but
the accuracy of the data at that time was not good enou
Also the authors of Ref.@4# took for granted that the QCD
coupling constant is rather small, theLQCD

(3) ~for three fla-
vors! is about 100 MeV and neglected the higher-order ter
of the perturbative series. Now it is common belief thatas is
much larger andL (3);3002400 MeV in the 2–3 loop ap-
proximation. Therefore the problem deserves reconsid
tion.

The goal of the investigation is to analyze the hadro
structure functions, found fromt decay, within the frame-
work of QCD. We first use the standard QCD, by which w
mean perturbative QCD and the terms of OPE with coe
cient functions given by perturbation theory. It will be dem
onstrated that standard QCD is in agreement with the da
the values of the complex Borel parameter~Borel transform
of Q2) M2.0.821.0 GeV2 in the left complex half-plane
with accuracy better than 2%. Then nonperturbative mod
cations of QCD will be studied and the restrictions on t
parameters, characterizing those modifications, will be fo
~Secs. III, VI, and VII!.
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In the previous paper by two of us~B.I. and K.Z.! @5# the
difference of vector and axial current correlators was a
lyzed using ALEPH data ont decay@1#. The analytical prop-
erties of the polarization operator in the whole complexq2

plane were exploited and the vacuum expectation value
dimension six and eight operators~vacuum condensates!
were found. Here we consider theV1A correlator, where
perturbative corrections are dominant.

Define the polarization operators of hadronic currents:

Pmn
J ~q!5 i E eiqx^TJm~x!Jn~0!†&dx

5~qmqn2gmnq2!PJ
(1)~q2!1qmqnPJ

(0)~q2!, ~1!

where

J5V,A; Vm5ūgmd, Am5ūgmg5d.

The imaginary parts of the correlators are the so-called sp
tral functions (s5q2),

v1 /a1~s!52p Im PV/A
(1) ~s1 i0!,

a0~s!52p Im PA
(0)~s1 i0!, ~2!

which have been measured from hadronict decays for 0
,s,mt

2 .
The spin-1 partsPV

(1)(q2) and PA
(1)(q2) are analytical

functions in the complexq2 plane with a cut along the righ
semiaxes starting from the threshold of the lowest hadro
state: 4mp

2 for PV
(1) and 9mp

2 for PA
(1) . The latter has a

kinematical pole atq250. This is a specific feature of QCD
which follows from the chiral symmetry in the limit of mass
lessu,d quarks and its spontaneous violation. It can be ea
shown@6# ~see also Ref.@5#!, that the kinematical pole arise
from the pion contribution toPmn

A , which is given by
©2001 The American Physical Society09-1
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Pmn
A ~q!p52

f p
2

q2 ~qmqn2gmnq2!2
mp

2

q2 qmqn

f p
2

q22mp
2 ,

~3!

where f p is the pion decay constant,f p5130.7 MeV@7#.

II. HADRONIC BRANCHING RATIO
AND THE VALUE OF as„mt

2
…

The total hadronic branching ratio into final state w
zero strangeness is given by a well-known expression, wh
can be written in the following form~see, e.g., Ref.@8#!:

Rt,V1A5
B~t→nt1hadronsS50!

B~t→nten̄e!

56uVudu2SEWE
0

mt
2 ds

mt
2S 12

s

mt
2D 2

3F S 112
s

mt
2D ~v11a11a0!~s!22

s

mt
2 a0~s!G ,

~4!

whereuVudu50.973560.0008@7# is the Cabibbo-Kaboyashi
Maskawa matrix element, andSEW51.019460.0040 in-
cludes electroweak corrections@9#. The spin-0 axial spectra
function a0(s) is basically saturated by thet→pnt channel
and can be read off from Eq.~3!: a0(s)52p2f p

2 d(s2mp
2 ).

So the last term in Eq.~4! gives small correction

DRt
(0)5224p2

f p
2 mp

2

mt
4 520.008. ~5!

The rest of Eq.~4! contains only the imaginary part o
PV1A

(1) (s)1PA
(0)(s), for which the short notationP(s) will

be used later on. As follows from Eq.~3!, PA
(0)(q2) compen-

sates the kinematical pole atq250 in PA
(1)(q2). So the com-

binationP(q2) has no kinematical poles and is an analytic
function of q2 in the complexq2 plane with a cut along the
positive real axis.

The convenient way to calculate theRt in QCD or, turn-
ing the problem around, to findas(mt

2) from experimentally
known Rt , is to transform the integral in Eq.~4! to the
integral over the contour in the complexs plane going
couterclockwise around the circleusu5mt

2 @10–13#:

Rt,V1A56p i uVudu2SEW R
usu5mt

2

ds

mt
2S 12

s

mt
2D 2

3S 112
s

mt
2DP~s!1DRt

(0) . ~6!

The polarization operator is given by the sum of perturbat
and nonperturbative terms. If we restrict ourselves by O
terms, then
09300
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P~s!52
1

2p2 ln
2s

m2 1higher loops

1 (
n>2

^O2n&

~2s!n S 11cn

as

p D . ~7!

Consider at first the perturbative part. For its calculatio
it is convenient to use the Adler function, which is perturb
tively constructed as an expansion in coupling constant

D~Q2![22p2
dP~Q2!

d ln Q2
5 (

n>0
Knan,

a[
as

p
, Q2[2s, ~8!

which is known up to the 4-loop term in the modified min
mal subtraction (MS) renormalization scheme:K05K151
and K251.64 @14#, K356.37 @15# for 3 flavors. The
renormalization-group equation fora(Q2) reads:

da

d ln Q2
52b~a!52 (

n>0
bnan12

⇒ ln
Q2

m2 52E
a(m2)

a(Q2) da

b~a!
. ~9!

In the MS scheme for 3 flavors,b059/4, b154, b2
510.06, andb3547.23 @16,17#. This allows us to get the
perturbative contribution to the polarization operator expl
itly at any order of perturbation theory:

P~Q2!2P~m2!5
1

2p2E
a(m2)

a(Q2)
D~a!

da

b~a!
. ~10!

Let us putm25mt
2 and choose some valuea(mt

2). From Eq.
~9! we can finda(Q2) for anyQ2 and by analytical continu-
ation at anys. Computing the integral~10! it is possible to
find the perturbative part ofP(s) as a function ofa(s) in the
whole complexs plane. The substitution ofP(s) into Eq.~6!
gives~up to the power corrections! the dependence ofRt on
a(mt

2). It must be stressed, that in this calculation, no exp
sion in inverse powers of lnQ2 is performed: only the valid-
ity of the expansion series in Eq.~8! and Eq.~9! is assumed.1

Such representation has a serious advantage: on the
semiaxes, i.e., in the physical region, there is no expansio
p/ ln(Q2/L2), which is not small at intermediateQ2. For in-
stance, in the next to leading order

2p Im P~s1 i0!511
1

pb0
Fp2 2arctanS 1

p
ln

s

L2D G
~11!

instead of

1Such manner of calculation in Ref.@1# was called contour-
improved fixed-order perturbation theory.
9-2
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2p Im P~s1 i0!511
1

b0 ln~s/L2!
,

which would follow in the case of smallp/ ln(s/L2). @Equa-
tion ~11! was first obtained in Ref.@18#, the systematica
method of analytical continuation from the spacelike to
timelike region with summation ofp2 terms, was suggeste
in Ref. @19# and developed in Ref.@20#.# In the higher order,
where a(s) cannot be expressed via ln(s/L2) in terms of
elementary functions, this analysis is performed numerica

It is well known, that in the one-loop approximation o
the b function, the couplinga(Q2) has an infrared pole a
someQ25Q0

2 ~in some conventions coinciding withL2). In
then-loop approximation (n.1) instead of pole a branch cu
appears with a singularity;(12Q2/Q0

2)21/n. The position
of the singularity is given by

ln
Q0

2

m2 52E
a(m2)

` da

b~a!
. ~12!

Near the singularity the last term in the expansion ofb(a)
~9! dominates and gives the aforementioned behavior. To
lustrate the behavior of the running coupling constant,
plotted the real and imaginary part ofas /p for the n
51,2,3,4-loopb function in Fig. 1. It demonstrates, that fo
real positives, the difference between various approxim
tions is almost unnoticable beyond the second loop and
expansion in inverseu ln(s/L2)2ipu works well. At the same
time the behavior in the unphysical cut strongly depends
the number of loops and cannot be described by some sim
approximation. Only ats,21 GeV2, 2–4 loop calculations
more or less coincide.

Let us turn now to OPE terms in Eq.~7!. The contribution
of the operators up to dimension 8 have been computed t
retically:

FIG. 1. Real and imaginary parts ofa MS(s)/p as exact numeri-
cal solution of RG equation~9! on real axes for different number o
loops. The initial condition is chosenas50.355 ats52mt

2 , Nf

53. Vertical dotted lines display the position of the unphysic
singularity ats52Q0

2 for each approximation (4→1 from left to
right!.
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^O2n&

~2s!n S 11cn

as

p D
5

as

6pQ4 ^Gmn
a Gmn

a &S 11
7

6

as

p D1
128

81Q6 pas^q̄q&2

3F11S 29

24
1

17

18
ln

Q2

m2D as

p G1
^O8&
Q8 . ~13!

The contribution of theD52 operator, due to nonzero quar
massesmu,d , is negligible and omitted here. We have al
neglected theD54 quark condensate 2(mu1md)^q̄q&,
which is an order of magnitude less than the gluonic cond
sate. The coefficients in front of theD54,6 operators, have
been computed by Shifman, Vainstein, and Zakharov~SVZ!
@21#, Theas corrections to theD54 operator were found in
Ref. @22#; as corrections to theD56 operator were calcu
lated @23#; ambiguities among them were also discuss
there.

A few comments about the operatorO6 are in order. In the
nonfactorized form withoutas corrections, it looks as fol-
lows @21#:

^O6&522pasK ~ ūgmlad!~ d̄gmlau!1~ ūg5gmlad!

3~ d̄g5gmlau!1
2

9
~ ūgmlau

1d̄gmlad! (
u,d,s

~ q̄gmlaq!L . ~14!

After factorization, three terms in Eq.~14! give the following
contributions:

^O6&54pas^q̄q&2S 12
1

Nc
2D S 1211

4

9D , ~15!

where Nc is the number of colors. SVZ assumed that t
accuracy of the factorization procedure is of orderNc

22

;10%, in the case of theV correlator, where the coefficien
in the second bracket in Eq.~15! is equal to27/9. Remem-
ber that in theV2A correlator, the first term has opposi
sign and the third term is absent, so the accuracy of
factorized operatorO6

V2A is at least, not worse, than in theV
case. On the other hand in theV1A correlator two compara-
tively large terms cancel each other under the factoriza
assumption in Eq.~15!. Consequently the accuracy of th
formula ~15! for the operatorO6 is less, perhaps 20–30%
Largeas corrections to all independentD56 operators@23#
can only increase the errors.

The numerical value of theD56 operator can be esti
mated, for instance, with the help of our previous analysis
V2A sum rules@5#:

l

9-3
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^O6
V2A&52

64

9
pas^q̄q&231.3

52 ~6.862.1!31023 GeV6. ~16!

The coefficient 1.3 stands for theas corrections. We find

^O6&5~1.360.5!31023 GeV6. ~17!

The dimension 8 operators come from many different d
grams, which can be labeled by the number of quarks
vacuum. The purely gluonic condensates are suppresse
the loop factor;as /p and are neglected on this ground. T
four-quark operators, computed in Refs.@24,25# and@5#, van-
ish in the sumV1A after factorization. The uncertainty o
this cancellation can be estimated as;10% ofO8

V2A , which
is about 1023 GeV8. The two-quark operators have the sam
sign in theV andA correlators. They have been computed
Ref. @26# ~we have performed the calculation independen
to confirm this result! and can be written in the following
form:

^O8
(2)&5

2

9K 2i ūga$G(ab)
2 ,Db%u2ūgag5$~G̃G!ab ,Db%u

1
i

4
ūgg@Gab,~DgGab!#u1

1

2
ū~D2Ĵ!u

2 i ūga@Gab ,Jb#uL 1~u→d!, ~18!

whereJm5DnGmn5pasl
a(q(q̄gmlaq). The last two terms

can be factorized and brought to the formpas^q̄q&^q̄Ĝq&.
However the leading terms in the number of colorsNc

0 cancel
each other and only the terms;Nc

22 are left. It has been
shown in Ref.@5#, that the factorization of theD58 opera-
tors is not unambiguous at this level of accuracy. Taking
value of the operator̂q̄Ĝq& from Refs.@27,5#, we may es-
timate the upper limit of the operator~18! as u^O8

(2)&u
,1024 GeV8, which is tiny. So, for the upper limit of the
total D58 operator, we shall use the estimationu^O8&u
,1023 GeV8.

It is worth mentioning that theD56,8 operators in the
V1A polarization function are much smaller than inV or A
separately.

We are now in a position to calculateas(mt
2) from the

experiment. We take the most recent data on the total h
ronic decay ratioRt @7# and the ratio of decays with od
number of strange mesonst2→X(S521)nt @28,29#:

Rt53.63660.021, Rt,S50.16160.007. ~19!

In our analysis we subtractRt,S to avoid the interference
with additional parameters, in particular the mass of ths
quark. One obtains

Rt,V1A53uVudu2SEW~11dEW8 1d (0)1dV1A
(6) !1DR(0)

53.47560.022, ~20!
09300
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where DRt
(0) is given by Eq.~5!. We use conventional in

t-literature notations of fractional correctionsd. The electro-
magnetic correction isdEW8 5(5/12p)aem(mt

2)50.001 @30#,
and theD56 operator correctiondV1A

(6) 52(562)31023 as
follows from our analysis, is in agreement with the estim
tion obtained in Ref.@12#. From Eq.~20! we separate out the
perturbative correction:

11d (0)51.20660.010. ~21!

All errors in here are added in quadratures~perhaps, such a
procedure underestimates the total error, maybe by a fa
of 2!.

The calculation ofas(mt
2) corresponding tod (0) as per-

formed according to the method described above. The de
dence of 11d (0) on as(mt

2) @and ona(MZ
2), to compare

with the other data# for the three-loopb function and three-
loop Adler function is shown in Fig. 2. It follows from Fig 2

as~mt
2!50.35560.025. ~22!

The estimation of the error in Eq.~22! was done with care.
Because of the asymptotic character of the perturbative se
~8! and ~9! the higher loop contribution could be as large
the contribution of the last terms, namely,K3a3 and b2a4.
They result in the uncertainty 0.01520.020 inas(mt

2), de-
pending on its central value. Taking into account the unc
tainty ~21! in d (0), we obtain the error in Eq.~22!. Further-
more, we have performed a two and four-loop calculation
as(mt

2). The unknown four-loop coefficient in the Adle
function ~8! was taken equal toK4550 ~cf. its estimations
@31#!. For each givend (0), the 4-loopas(mt

2) is by 0.005
lower than three-loop value, while 2-loopas(mt

2) is higher
by 0.02. These results are within the error range~22!. If some
nonperturbative terms beyond OPE exist~e.g., instantons!,
they would also contribute to the error in Eq.~22!. In Sec. IV

FIG. 2. Perturbative fractional correctiond (0) versusas(mt
2)

and as(mZ
2) in a conventional and analytical approach in a thre

loop approximation. In the width of the experimental strip, the th
oretical uncertainty of the operator^O6& is included.
9-4



-

re

rt

-

i

in

,

al
o

er

l

.
er

h

lu

en
n

e
ra-
the
es
-
ng

l-
iral
la-

er
be

D

re

e
ness
ive
f

he
-
per-
nds
not
tive
or
.g.,
an
n-

s
up
or
n-
es

urse,
r of
are
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it will be shown that the valueas(mt
2) close to the lower

limit of Eq. ~22! satisfies sum rules at lowQ2 much better.

III. as„mt
2
… AND ANALYTICAL QCD

Shirkov and Solovtsov@32# forwarded the idea of analyti
cal QCD. According to it the coupling constantas(Q

2) is
calculated by the renormalization group in the spacelike
gion Q2.0. Then, by analytical continuation tos52Q2

.0, as(s) was found, in particular, to its imaginary pa
Imas(s) on the right semiaxes. It was assumed, thatas(s) is
an analytical function in the complexs plane with a cut along
the right semiaxes 0<s,`. The analyticalas(s)an is then
defined in the whole complexs plane by the dispersion rela
tion

as~s!an5
1

pE0

` Im as~s8!

s82s
ds8. ~23!

Since the lower limit in this integral is put to zero,as(s)an
indeed has no unphysical singularities~poles, cuts, etc.! at
Q2.0. The idea of analytical QCD has been developed
many papers, see, e.g., Ref.@33# and for review Ref.@34#. In
particular, the calculations ofas(mt

2)an from t-decay data,
were performed within the framework of analytical QCD
Ref. @35#.

A related approach was suggested by two of us~B.G. and
B.I.! in Ref. @36#. We started from a well-known theorem
that the polarization operator for thee1e2 annihilationP(s)
is an analytical function ofs in the complexs plane with a
cut along positive semiaxes, and assumed that these an
cal properties take place separately for perturbative and n
perturbative parts ofP(s). In the first order ofas , this hy-
pothesis is equivalent to analytical QCD while in high
orders it may be more general.

Let us calculateas(mt
2)an in the framework of analytica

QCD from the same experimental data, i.e.,d (0) given by Eq.
~21!. The only ~but important! difference from the previous
calculation is the following. The couplingas(s)an is an ana-
lytical function of s with a cut froms50 to s5`. Conse-
quently, the contour integral in Eq.~6! is now equal to the
original integral~4! with Im P(s) over the real positive axes
In the previous calculation, if such a transformation is p
formed, the integral would run froms52Q0

2 to mt
2 . Quali-

tatively it leads to much smallerRt , in the analytical QCD
than in the conventional approach with the sameas(mt

2), or
vice versa, the sameRt corresponds to much largeras(s)an.
Direct numerical calculation confirms this expectation. T
dependence of 11d (0) versusas(s)an is also displayed in
Fig. 2. It is seen, that in order to get the experimental va
of d (0) in the analytical QCD, one should takeas(mt

2)an

'1.5– 2.0, which corresponds toas(mZ
2)'0.15, in strong

contradiction with the world averageas(mZ
2)50.119

60.002 @7#. ~The previous calculation of thet decay@35#,
performed with less certainty, demonstrated the same tr
in particular L (3)5700– 900 MeV, much larger than i
standard calculations.!
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In the recent paper@37#, an attempt was made to save th
analytical QCD in the case of vector the polarization ope
tor and to obtain the agreement with ALEPH data on
vector, AdlerD function, by assuming large quark mass
mu5md5250 MeV and some form of Coulomblike quark
antiquark interaction. This hypothesis, however, is in stro
contradiction with all the results following from the wel
established partial conservation of axial current and ch
theory. For example, if the Gell-Mann–Oakes–Renner re
tion and theK/p mass ratios would be violated by an ord
of magnitude, the Goldberg-Treitman relation cannot
proved, etc. Also many sum rules forV2A polarization op-
erator would disagree with the data.

Therefore we come to the conclusion, that analytical QC
in any form, @32# or @36#, is in strong contradiction with
experiment and must be abandoned.

IV. CHECK OF QCD AT LOW Q2 FOR V¿A
CORRELATORS BY USING THE SUM RULES

Let us now turn to the study of theV1A correlator in the
domain of lowQ2, where the OPE terms play a much mo
essential role than in the determination ofRt . A general
remark is in order here. As was mentioned in Ref.@38# and
stressed recently by Shifman@39#, the condensates cannot b
defined in a rigorous way, because there is some arbitrari
in the separation of their contributions from the perturbat
part. Usually@38,39# they are defined by the introduction o
some normalization pointm2 with the magnitude of a few
L2. The integration over momenta in the domain belowm2 is
addressed to condensates, abovem2 — to perturbation
theory. In such formulation the condensates arem dependent
^OD&5^OD&m and, strictly speaking, they also depend on t
way the infrared cutoffm2 is introduced. The problem be
comes more severe when the perturbative expansion is
formed up to higher-order terms and the calculation prete
on high precision. We mention, that this remark does
refer to chirality violating condensates, because perturba
terms do not contribute to chirality violating structures. F
this reason, in principle, chirality violating condensates, e

^0uq̄qu0&, can be determined with higher precission, th
chirality conserving ones. Here we use the definition of co
densates, which can be calledn-loop condensates. As wa
formulated in Sec. II, we treat the renormalization-gro
equation~9! and the equation for the polarization operat
~10! in the n-loop approximation, as exact ones; the expa
sion in inverse logarithms is not performed. Specific valu
of condensates are referred to such a procedure. Of co
their numerical values depend on the accounted numbe
loops; that is why the condensates, defined in this way,
calledn-loop condensates.

Consider the polarization operatorP5PV1A
(1) 1PA

(0) , de-
fined in Eq.~1! and its imaginary part

v~s!5v1~s!1a1~s!1a0~s!52p Im P~s1 i0!. ~24!

In the parton modelv(s)→1 ats→`. Any sum rule can be
written in the following form:
9-5
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E
0

s0
f ~s!vexp~s!ds5 ip R f ~s!P theor~s!ds, ~25!

wheref (s) is some analytical in the integration region fun
tion. In what follows we usevexp(s), obtained from the
t-decay invariant-mass spectra published in Ref.@1# for 0
,s,mt

2 with stepds50.05 GeV2. The experimental erro
of the integral~25! is computed as the double integral wi
the covariance matrixv(s)v(s8)2v̄(s)v̄(s8), which also
can be obtained from the data available in Ref.@1#. In the
theoretical integral in Eq.~25!, the contour goes froms0
1 i0 to s02 i0 counterclockwise around all poles and cu
off the theoretical correlatorP(s), see Fig. 3. Because of th
Cauchy theorem, the unphysical cut must be inside the i
gration contour.

The choice of the functionf (s) in Eq. ~25! is actually a
matter of taste. At first let us consider the usual Borel tra
formation:

Bexp~M2!5E
0

mt
2

e2s/M2
vexp~s!

ds

M2

5Bpt~M2!12p2(
n

^O2n&

~n21!! M2n
. ~26!

We separated out the purely perturbative contributionBpt ,
which is computed numerically according to Eq.~25! and
Eqs. ~8!–~10!. Remember that the Borel transformation im
proves the convergence of the OPE series because o
factors 1/(n21)! in front of the operators and suppresses
contribution of the high-energy tail, where the experimen
error is large. But it does not suppress the unphysical pe
bative cut, the main source of the error in this approach,
even increases it sincee2s/M2

.1 for s,0. So the perturba-
tive part Bpt(M2) can be reliably calculated only forM2

'0.8– 1 GeV2 and higher; below this value the influence
the unphysical cut is out of control.

Both Bexp andBpt in a 3-loop approximation foras(mt
2)

50.355 and 0.330 are shown in Fig. 4. The shaded a
display the theoretical error. They are taken equal to the c
tribution of the last term in the perturbative Adler functio
expansionK3a3 ~8!. We have also performed the calculatio
with the 4-loopb-function andK4550650, but the result is
very close to the 3-loop one, since positive contribution
the term K4a4 compensates for the small decrease in
couplinga. Since this result is observed by us in many oth
sum rules, we shall not give the 4-loop calculations later

FIG. 3. Region of validity of the perturbation theory and OPE
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and instead estimate the theoretical error for any giv
a(mt

2) as the contribution ofK3a3.
As follows from the analysis in Sec. II, forM2

.1 GeV2, the contribution ofD56,8 operators to the Bore
transform~26! is small in theV1A channel, while the con-
tribution of theD54 condensate must be positive@we as-
sumeas corrections included in the operators^O2n& in Eq.
~26! and later#. So the theoretical curve must go below th
experimental one. The result shown in Fig. 4 is in favor
the lower value of the coupling constantas(mt

2)50.33. Lit-
erally the theoretical curve@perturbative atas(mt

2)50.33
plus the contribution ofO4 and O6 operators# agrees with
experiment starting fromM251.1 GeV2. If the uncertainties
in perturbative contributions are taken into account~shaded
area in Fig. 4! the agreement may start earlier, atM2

51 GeV2.
The Borel transformation in Fig. 4 includes the contrib

tions of different operators. Although it is difficult to separa
the perturbative part from the OPE one, the contributions
different operators can be separated from each other.
way is to differentiate the Borel transformation byM2. This
however leads to the certain loss in the accuracy of the
perimental integral, since the growing power term;sn ap-
pears in the integral. So we apply the method used in@5# for
V2A sum rules, namely the Borel transformation in com
plex M2 plane.

Let us consider the Borel transformB(M2) ~26! at some
complexM25M0

2eif, 0,f,p/2. If the phasef is taken
close top/2, then the contribution of the high-energy ta
becomes high. So we restrict ourselves by the valuesf
<p/4 for the exponent to be decreasing enough. The
part of the Borel transform atf5p/6 does not contain the
D56 operator:

ReBexp~M2eip/6!5ReBpt~M2eip/6!1p2 ^O4&
M4 . ~27!

FIG. 4. Borel transformation~26! Bexp(M
2) and Bpt(M2) for

as(mt
2)50.355 and 0.330. The dashed line displays the OPE c

tribution added to the 0.330-perturbative curve. The contribution
the operatorsD54 ~standard SVZ value! andD56 @central value
of ~17!# with respect to 1, are shown separately in the box.
9-6
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FIG. 5. Real part of the Bore
transform ~26! along the rays at
the anglesf5p/6 andp/4 to the
real axes. The dash line corre
sponds to the gluonic condensa
given by the central value of Eq
~28!.
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The contribution of̂ O8& is less than 0.5% to the perturba
tive term and neglected here. The results are shown in
5~a!. Again it is still difficult to accommodate the positiv
value of the gluonic condensate to the couplingas(mt

2)
50.355 and higher. If we accept the lower value ofas(mt

2),
we get the following restriction on the value of the gluon
condensate:

K as

p
Gmn

a Gmn
a L 50.00660.012 GeV4,

as~mt
2!50.330 andM2.0.8 GeV2. ~28!

The theoretical and experimental errors are added togeth
Eq. ~28!.

The real part of the Borel transform atf5p/4 does not
contain theD54 operator:

ReBexp~M2eip/4!5ReBpt~M2eip/4!2p2 ^O6&

A2M6
. ~29!

The results are shown in Fig. 5~b!. The perturbative curve a
as50.330 is below the data. If we would take this curve
an exact one, without accounting for the perturbative err
then from Eq.~29! we would conclude, that̂O6&,0, which
is in some contradiction with Eqs.~13! and ~17!. However,
the account for the perturbative errors makes the situa
different, but uncertain. Since the value of the^O6& contri-
bution to Eq.~29! is very small,

p2 ^O6&

A2M6
5~0.960.4!31022

GeV6

M6
, ~30!

then by accounting for the perturbative errors, it is possi
to satisfy the sum rule~29! at positive^O6& starting from
M2.0.8 GeV2. ~In the narrow region nearM250.9 GeV2,
the theoretical curve goes out of the data on the 1.522 ex-
perimental error, but we do not consider this a serious c
tradiction.! Unfortunately, no definite conclusion about th
value of ^O6& can be drawn from the Fig. 5~b!. The only
statement is that its value cannot exceed Eq.~17! and prob-
ably is on the lower border of error.
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V. CORRELATOR OF VECTOR CURRENTS

Previously we considered theV1A correlators, where the
power corrections are small. Instead one could take the p
vector current~vector spectral function was published b
ALEPH in @40#!. This does not give us any new informatio
with the t-decay data, sinceV2A correlators have alread
been analyzed in Ref.@5#. Moreover the accuracy of the vec
tor current spectral function is less thanV1A, since both
currents are mixed in some channels withK mesons and the
number of events is twice as less.

However the analysis of the vector current correlator
important since it can also be performed with the experim
tal data one1e2 annihilation. The imaginary part of the
electromagnetic current correlator, measured here, is rel
to the charged current correlator~1! by the isotopic symme-
try. The statistical error ine1e2 experiments is less than int
decays because of significantly larger number of events. S
would be interesting to perform a similar analysis withe1e2

data, which is a matter for separate research.
At first we consider the usual Borel transformation for t

vector current correlator, since it was originally applied
Ref. @4# for the sum-rule analysis. It is defined as Eq.~26!
with the experimental spectral functionvexp52v1 instead of
v11a11a0 @the normalization isv1(s)→1/2 ats→` in the
parton model#. Respectively, on the right-hand side, on
should take the vector operators 2OV5OV1A1OV2A, all
OV2A with D<8 can be found in Ref.@5#. The numerical
results are shown in Fig. 6. The perturbative theoreti
curves are the same as in Fig. 4 the withV1A correlator.
The dashed lines display the contributions of the gluo
condensate given by Eq.~28!, 2O6

V525.531023 GeV6

and 2O8
V5O8

V2A5731023 GeV8, added to the
0.330-perturbative curve. The contribution of each cond
sate is shown in the box below. Notice that for such cond
sate values, the total OPE contribution is small, since p
tive O4 and O8 compensate negativeO6. The agreement is
observed forM2.0.8 GeV2.

Now we apply the method of the Borel transformatio
along the rays to the vector polarization operator to sepa
the contribution of different operators from each other. T
D58 operator is important here, so we shall separateO4,6
from O8.

The Borel transformation at lowM2 exponentially sup-
9-7
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presses the contribution of the larges domain, where the
experimental error is high. Besides this, we may use the
cillating behavior of the complex exponent to further su
press the high-error points nears5mt

2 . This would allow us
to go to higherM2. Here the real part ofB(M2) has an
obvious advantage since the function cos(f1(s/M2)cosf)
has zero ats5mt

2 and f;p/4 already atM2'1 GeV2,
while the largest~in M2) zero of sin(f1(s/M2)cosf) in the
imaginary part is twice as low. So let us take three differ
angles, say,f50, p/6, andp/4. Solving the system of lin-
ear equations, we get

ReF B~0!

22A2
2A2B~p/6!1

B~p/4!

A221
G5p.t.12p2 ^O4&

M4 ,

~31!

Re
2B~0!12B~p/6!22B~p/4!

A221
5p.t.12p2 ^O6&

2M6 .

~32!

For brevity we writeB(f) instead ofBexp(M
2eif), and ‘‘p.t.’’

stands for the perturbative contribution. The results for
Eqs.~31! and ~32! are shown in Figs. 7~a! and 7~b!, respec-
tively.

FIG. 6. Borel transformation for vector currents.
09300
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Figure 7~a! demonstrates that the vector sum rule is sa
fied atas(mt

2)50.330 and gluonic condensate~28! ~although
higher values of the gluonic condensate, e.g., the SVZ va
still does not contradict the data!. Figure 7~b! shows, that the
O6

V contribution works in the right direction; its addition t
the 0.330-perturbative curve shrinks the disagreement
tween the theory and experiment. However, some disc
ancy~about 0.04, i.e., 0.1% in the worst case! still persists. It
may be addressed either to the uncertainty inas(mt

2) — a
slightly higher value would be desirable, or to the undere
mation of O6

V ~in absolute value,O6
V is negative! by

20– 30 %, or both. Remember that the numerical values
the condensates depend on the way, the infrared regio
treated (O6 is chirality conserving!. We are considering here
3-loop condensates, defined in Sec. IV. TheO6

V value was
taken equal to 7/18 ofO6

V2A , obtained fromV2A data
analysis@5#, where perturbative terms are absent, and so
difference is not excluded.

VI. THE CHECK FOR RENORMALON-TYPE TERMS

In the asymptotic perturbative series a special part
terms — renormalons~infrared and ultraviolet! is often sepa-
rated and the summation of them is performed~for a recent
review see Ref.@41#!. In such a sum, the term appears pr
portional to 1/Q2 at largeQ2, looking like a contribution of
the D52 operator.~In OPE theD52 operator is propor-
tional to mq

2 and is very small.! Renormalons conserv
chirality and may contribute toV1A but not toV2A. Un-
fortunately, the coefficient in front of the 1/Q2 term of the
renormalon origin cannot be calculated reliably.~In Ref. @42#
it was claimed, that the renormalons are totally absent in
perturbative series asymptotics and therefore this coeffic
is zero.! In a recent paper@43# the hypothesis was suggeste
that infrared renormalons result in the substitution

as

p
→ as

p S 121.05
l2

Q2D ~33!

in the first as correction to polarization operator or Adle
function ~the Q2 dependence ofas was not accounted for in
Ref. @43#!. In Eq. ~33!, l2 is a tachyonic gluon mass,l2

,0, and for its value the following estimation was found
FIG. 7. The sum rules~a! ~31!
and ~b! ~32! for vector currents.
9-8
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2l25~0.220.5! GeV2. ~34!

The authors of Ref.@43# could not discriminate even th
highest valuel2520.5 GeV2.

Let us try to find the restriction on theO2 operator from
the sum rule for theV1A correlator in the complexq2 plane
from ALEPH data.~For brevity we call itO2, although it is
not theD52 operator, which stands in the OPE.! As we did
in the previous section, for this purpose we take the real
of the Borel transform~26! B(M2eif) at the anglesf
50, p/6, andp/4 and separate the operatorO2 from O4,6:

Re
B~0!22B~p/6!1A2B~p/4!

22A3
5p.t.12p2^O2&

M2 .

~35!

The experimental and perturbative parts of this combina
are plotted in Fig. 8.

The sum rule~35! shown in Fig. 8, gives the following
value of the dimension 2 operator:

^O2&5~1.061.5!31023 GeV2, as~mt
2!50.33.

~36!

We got this estimation atM251 GeV2, where experimenta
error is minimal. In the model of Ref.@43#,

^O2&521.05
as

p

l2

2p2 . ~37!

At as(1GeV2)/p50.18, corresponding toas(mt
2)50.33,

there follows the restriction from Eq.~36!:

2l25~10615!31022 GeV2, ~38!

which is few times smaller than even the lower limit in E
~34!. Notice, that similar restrictions on the value of theD
52 operator have been obtained in Ref.@44# from the other
sum rules.

FIG. 8. Sum rule~35! with O2 but withoutO4,6.
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VII. INSTANTON CORRECTIONS

Some nonperturbative features of QCD may be descri
in the so-called instanton gas model~see Ref.@45# for an
extensive review and the collection of related papers in R
@46#!. Namely, one computes the correlators in t
SU(2)-instanton field embedded in theSU(3) color group.
In particular, the 2-point correlator of the vector currents h
been computed long ago@47#. Apart from the usual tree-leve
correlator; ln Q2, it has a correction that depends on t
instanton position and radiusr. In the instanton gas mode
these parameters are integrated out. The radius is aver
over some concentrationn(r), for which one or another
model is used. Concerning the two-point correlator
charged axial currents, the only difference from the vec
case is that the term with zero modes must be taken w
opposite sign. In coordinate representation, the answer
be expressed in terms of elementary functions, see Ref.@47#.
An attempt to compare the instanton correlators with
ALEPH data in the coordinate space, has been undertake
Ref. @48#.

We shall work in momentum space. Here the instan
correction to the spin-J partsP (J) of the correlator~1! can be
written in the following form:

PV, inst
(1) ~q2!5E

0

`

drn~r!F2
4

3q4

1Apr4G13
30S 2r2q2U 1/2

0,0,22D G ,
PA, inst

(0) ~q2!5E
0

`

drn~r!F2
4

q4 2
4r2

q2 K1
2~rA2q2!G ,

PA, inst
(1) ~q2!5PV, inst

(1) ~q2!2PA, inst
(0) ~q2!, PV, inst

(0) ~q2!50.
~39!

HereK1 is the modified Bessel function, andGmn
pq (zu . . . ) is

the Meijer function. Definitions, properties, and approxim
tions of Meijer functions can be found, for instance, in R
@49#. In particular, the function in Eq.~39! can be written as
the following series:

ApG13
30S zU 1/2

0,0,22D
5

4

3z2 2
2

z
1

1

2Ap
(
k50

`

zk
G~k11/2!

G2~k11!G~k13!

3$@ ln z1c~k11/2!22c~k11!2c~k13!#2

1c8~k11/2!22c8~k11!2c8~k13!%, ~40!

where c(z)5G8(z)/G(z). For largeuzu one can obtain its
approximation by the saddle-point method:

G13
30S zU 1/2

0,0,22D'Apz23/2e22Az, uzu@1. ~41!

The formulas~39! should be treated in the following way
One addsP inst to the usual polarization operator~7! with
9-9



-

B. V. GESHKENBEIN, B. L. IOFFE, AND K. N. ZYABLYUK PHYSICAL REVIEW D64 093009
FIG. 9. The instanton correc
tion to thet decay ratio versus~a!
r0 and ~b! ‘‘versus t mass’’ for
n051.531023 GeV4.
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perturbative and OPE terms. But the terms;1/q4 must be
absorbed by the operatorO4 in Eq. ~7!, since the gluonic
condensatê G2& is averaged over all field configuration
including the instanton one. Notice the negative sign bef
1/q4 in Eq. ~39!. It happens because the negative contrib
tion of the quark condensatêmq̄q& in the instanton field
exceeds the positive contribution of the gluonic condens

^G2&. In the real world ^mq̄q& is negligible at q2

;1 GeV2.
The correlators~39! possess appropriate analytical pro

erties, they have a cut along the positive real axes:

Im PV, inst
(1) ~q21 i0!5E

0

`

drn~r!p3/2r4G13
20S r2q2U 1/2

0,0,22D ,

~42!

Im PA, inst
(0) ~q21 i0!52E

0

`

drn~r!
2p2r2

q2

3J1~rAq2!N1~rAq2!. ~43!

We shall consider below the instanton concentration ad
cated by Shuryak~see Ref.@45# and references therein!. It is
a model with a fixed instanton radius~the RILM model in
Ref. @45#!:

n~r!5n0d~r2r0! ~44!

From Ref.@45# we take the numbers

r051/3 fm51.7 GeV21,

n051 fm2451.531023 GeV4. ~45!

Now we consider the instanton contribution to thet-decay
branching ratio~4!. Since the instanton correlator~39! has a
1/q2 singular term in the expansion near 0@see Eq.~40!#, the
integrals must be taken over the circle, as in Ref.~6!. In the
instanton model, the functiona0(s) differs from the experi-
mentald function, which gives the small correction~5!. So
we shall ignore the last term in Eq.~4! and consider the
integral withPV1A

(1) 1PA
(0) in Eq. ~6!. Here we need the fol-

lowing formulas for the circle integrals, which can be rigo
ously obtained from the series representation of the Me
function ~40!:
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2p R
usu5s0

ds

s0
S s

s0
D k

G13
30S 2r2sU 1/2

0,0,22D
5G24

21S r2s0U 2k,1/2
0,0,22,2k21D , k>2

i

2p R
usu5s0

ds

s0

s

s0
G13

30S 2r2sU 1/2
0,0,22D

52
4

3Apr4s0
2

1G24
21S r2s0U 21,1/2

0,0,22,22D ,

i

2p R
usu5s0

ds

s0
G13

30S 2r2sU 1/2
0,0,22D

52G13
20S r2s0U 1/2

0,21,22D . ~46!

The first term on the right-hand side of the second equa
looks like the contribution of theD54 operator, but in fact it
is not. Indeed, all the expressions on the right-hand side
Eq. ~46! have the same LO term of the asymptotic expans
for larges0, equal to2sin(2rAs0)/(Apr4s0

2). However for
k>3, the accuracy of this approximation is bad and ex
values of Meijer functions should be used for numeric
evaluations.

With the help of Eq.~46!, the instanton correction to th
t-decay branching ratio can be brought to the followi
form:

d inst5248p5/2E
0

`

drn~r!r4G13
20S r2mt

2U 1/2
0,21,24D

'
48p2n0

r0
2mt

6 sin~2r0mt!. ~47!

Since the parameters~45! are determined quite approx
mately, we may explore the dependence ofd inst on them. The
d inst versusr0 for fixed n0 @Eq. ~45!# is shown in Fig. 9~a!.

As seen from Fig. 9~a!, the instanton correction to th
hadronict decay is extremely small except for the unreliab
9-10
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low value of the instanton radiusr0,1.5 GeV21. At the
favorable value@45# r051.7 GeV21 the instanton correc
tion to Rt is almost exactly zero.@Of course, smaller value
of n0 than Eq.~45! are also allowed.# This fact confirms our
calculations ofas(mt

2) ~Sec. II!, where the instanton correc
tions were not taken into account.

The result~47! can be used in another way. Namely, thet
mass can be considered as the free parameters0. The depen-
dence of the fractional correctionsd (0) andd0.330

(0) 1d inst on s0

is shown in Fig. 9~b!.2 The result strongly depends on th
instanton radius and rather essentially on the densityn0. For
r051.7 GeV21 and n051 fm24 ~45!, the instanton curve
is outside the errors already ats0;2 GeV2, where the per-
turbation theory is expected to work. Therefore Fig. 9~b!
shows, that in the random instation liquid model~RILM !, the
instanton radius must be larger~say,r052.5 GeV21) or the
instanton density much (2 – 3 times! lower. The contribution
of the D56 operatordV1A

(6) is not shown in Fig. 9~b!. It is
equal to dV1A

(6) 52(562)31023mt
6/s0

3 and quite large at
s0,1.5 GeV2.

Consequently in this approach the perturbation theory1
OPE1 RILM ~at not very larger0) cannot satisfactory de
scribe the data ats0,1.5 GeV2. Since the instanton contri
bution is large here, we disbelieve all the results obtained
the method of variablet mass in this domain.~Perhaps the
shadowed region in Fig. 3 is of importance in this method
low s0.!

The t decay ratio is not sensitive to the gluonic conde
sate. Let us consider now the sum rules that depend o
The Borel transformation of the instanton part is

B M2P inst52p i R e2s/M2
PV, inst

(1) ~s!
ds

M2

54p2E
0

`

drn~r!F2
4

3M4

1Apr4G12
20S r2M2U 1/2

0,22D G . ~48!

The integration contour goes around the cut froms51`
1 i0 to s51`2 i0. The term;1/M4 here comes from the
term ;1/q4 in Eq. ~39!; it must be included in thêO4&
contribution in Eq.~26!. The Meijer function in Eq.~48! has
the asymptotics

G12
20S zU 1/2

0,22D'z25/2e2z, uzu@1

and are strongly suppressed atM2.0.8 GeV2. We calcu-
lated the instanton contribution to all Borel-like sum rul

2Figure 9~b! can be compared with Fig. 15 in the ALEPH pap
@1#. The discrepancy between theoretical curves ats0,1 GeV2 is
explained by different approximations; we used 3-loop perturba
theory, while the authors of Ref.@1# used the 4-loop one withK4

550650.
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used here; it is indeed negligible compared to the erro
Consequently the results of previous sections remain
changed.

However, the spectral moment sum rules, often used
t-decay data analysis@1#, can be quite sensitive to the insta
ton corrections. Let us consider the following sum rule, co
structed in this way:

4E
0

s0ds

s0

s

s0
S 12

s2

s0
2Dvexp~s!

5p.t.28p2 ^O4&
s0

2 116p2E
0

`

drn~r!r4

3F2
4

3r4s0
2 1ApG24

21S r2s0U 21,1/2
0,0,22,22D

2ApG24
21S r2s0U 23,1/2

0,0,22,24D G . ~49!

The integral~49! is normalized to one in the parton model.
does not depend on theD56 operator, and the factor 1
2s2/s0

2 is introduced to suppress large experimental err
for large s0. Remember our convention: the contribution
the term;1/q4 in P inst ~39! is included in the operator̂O4&
in Eq. ~49!. The contribution of different parts of Eq.~49! are
plotted versuss0 in Fig. 10. Since the weight function in th
integral vanishes ats50, the contribution of the unphysica
cut is suppressed. So the theoretical errors are diminis
here as well as the sensitivity on various perturbative par
eters. The theoretical curve is shown as single shaded a
which includes both the uncertainty ofas(mt

2) and the error
6K3a3 for eachas(mt

2).
The operator̂ O4& enters with negative sign in Eq.~49!,

so the theoretical curve must go above the experimental
This is certainly not the case if the instanton corrections
not taken into account. Forr052.1 GeV2, the theoretical
and experimental results are in good agreement for^O4&
50. By increasing the instanton densityn0, positive values

n

FIG. 10. Sum rule~49!. Experimental, pure perturbative, an
‘‘perturbative1 instanton’’ parts are shown. TheO4 contribution is
not taken into account.
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of ^O4& become possible. In this aspect the sum rules~47!
with varyingmt and Eq.~49! are not in agreement: Eq.~47!
favors smalln0 while Eq. ~49! prefers largen0.

These results are, however, not convincing. The m
conclusion, coming from consideration of spectral mom
sum rules, is that they are not suitable for QCD analysis u
we have a complete theory.~This statement surely refers als
to the method, where thet mass is considered as a fre
parameter.! The same situation took place forV2A correla-
tors; the spectral moments sum rules worked only at
circle radiuss0.2 GeV2 @5#.

VIII. CONCLUSION

The goal of this paper was to confront the recent prec
experimental data on hadronict decay with QCD calcula-
tions at low Q2 and to check the basic aspects of QC
perturbative series, OPE as well as various nonperturba
QCD approaches. The data present the imaginary par
polarization operators ImPV,A(s), s5q2 at 0,s,mt

2 . If
some procedure is applied to suppress or nullify the influe
of the high-energy domain~Borel transformation, integration
over closed circle in a complexs plane!, then with the help
of the dispersion relation, the values ofPV,A(s) in the whole
complexs plane at lowusu can be found from experimen
~By low usu we meanusu,2 – 3 GeV2.! These experimenta
values ofPV,A(s) can be compared with the theoretical ca
culations in the domain of the complexs plane, where QCD
describes the data well enough, in order to find the value
the QCD parameters:as and condensates.

In Ref. @5#, this program was realized for thePV2A po-
larization operator, and the values of dimension 6 and 8 c
densates were found. In this paper,PV1A andPV polariza-
tion operators were studied, where the perturbat
contribution is dominant~unlike PV2A , which is given en-
tirely by condensates!. It must be stressed, that the prese
situation has changed drastically in comparison with the e
lier study of a similar problem@4#. In Ref. @4#, the perturba-
tive contribution was much less essential and the auth
could restrict themselves to the LO term only. In this pap
the perturbative calculations were performed in the 3 an
loop approximation. The unphysical cut in the complexs
plane in the perturbative part of the polarization opera
was taken into account and the calculations~at least partly!
were performed in such a way, that allows one to minim
its influence~e.g., the Borel transformation along the ray
going from the origin at some angle!. The terms of OPE were
accounted for up to dimensionD58. It was shown that the
D58 contribution is very small in the case ofV1A cor-
relator. The coincidence of theoretical and experimental v
ues with accuracy better than 2% was required. Let us
member that usually the accuracy of the standard QCD s
rule calculations are of order 10– 15 %.

The following results have been obtained.
~1! The value of QCD coupling constantas(mt

2)50.355
09300
in
t

til

e

e

:
ve
of

e

of

n-

e

t
r-

rs
r,
4

r,

e
,

l-
e-

-

60.025 was found from the hadronic branching ratioRt . It
was shown that the sum rules at lowusu favor the value close
to the lower error edgeas(mt

2)50.330, corresponding to
as(mZ

2)50.118.
~2! It was demonstrated that QCD with inclusion of OP

terms, is in agreement with the data at the values of
complex Borel parameteruM2u.0.8– 1.0 GeV2 in the left
complex half-plane.

~3! The restriction on the value of the gluonic condens
was found̂ (as /p)G2&5(0.00660.012) GeV4 in compari-
son with the standard, SVZ value 0.012 GeV4.

~4! The value of theD56 condensate found in Ref.@5# is
in agreement with theV1A and theV sum rules, but canno
be specified.

~5! The analytical perturbative QCD@32,34,36# was com-
pared with the data and it was demonstrated that this
proach is in strong contradiction with the experimental va
of Rt .

~6! The restrictions on the 1/Q2 term in the polarization
operator of the renormalon origin were found to be mu
stronger than in the previous investigation@43#.

~7! The instanton contributions to the polarization ope
tor were analyzed and compared with the data in the fra
work of the RILM @45#. It was shown that the instanto
contribution toRt is very small, and the same is true fo
Borel sum rules. However their contributions can be sign
cant to the spectral moments sum rules, often used in
t-decay data analysis.

~8! It was found that the method of spectral momen
~integration over the circle with a polynomial! is less effec-
tive in the study of the polarization operators at lowQ2, than
Borel sum rule because of larger contributions not given
OPE nonperturbative corrections~see Sec. VII and@5#!.

We believe that the results of this paper will serve f
improving the QCD sum-rules method.
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