PHYSICAL REVIEW D, VOLUME 64, 093006

Skewed quark distribution of the pion in the light-front quark model
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We calculate the skewed quark distributiq®QDs9 of the pion in the light-front quark model, and discuss
the calculation of the nonvalence contribution to the SQDs in this model. The frame independence of our
model calculation is guaranteed by the constraint of the sum rule between the SQDs and form factor. Our
numerical results show large nonvalence contributions to the SQDs at a small momentum transfer region as the
skewedness increases.
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[. INTRODUCTION factors in the spacelikeqf<0) region can be obtained if
one usesJ’(=J%+J% and the Drell-Yan-West " =0)
ame where only the parton-number-conserving valence

. . r
Recently there has been great interest in the Oﬁ'forwariock state contribution is needed. The successful phenom-

gorf_nogforward,d_off-dla??]naél parton dtls_trlbrtlon ftunc;ut))r_}s nological calculations of form factors in the spacelike re-
elinea as nondiagonal hadronic matrix elements o Iocagion can be found in the light-front quark modglFQM)

products of the light-front quarl§ apd gluon ﬁe.ld operators[ll_“]_ On the other hand, form factors in the timelike
[1—10].“The off-forward parton Q|str|but|or1 functions, the so (q%>0) region such as the weak form factors for exclusive
called “skewed parton distribution$SPDs,” are the gener-  gemjjentonic decays require the >0 frame, which in turn
alization of the ordinaryforward) distribution functions. A require parton-number-changing nonvalence Fock state con-
well-known and practical example of SPDs as nonperturbaginutions as well as the valence o5, 16. Similarly, while
tive information entering the light-front dominated hard scat-ipe ordinary parton distributiong@nalogous tag™ =0 limit
tering processes is the deeply virtual Compton scatteringf form factoy can be represented in terms of squared light-
(DVCS) y*p—yp for a large initial photon virtualityQ®  front wave functions of a hadron, one cannot avoid nonva-
and smallt region, which can be factorized into a hard lence contributions to SPDs since they always involve non-
photon-parton and a skewed parton distribuidr 3]. zero ¢ corresponding tog®#0 in timelike form factor

In the present work we formulate the pion form factor in calculations. In recent papef8,10], the nonvalence contri-
terms of the SPDs. Since the usual local photon vertex in theution to the SPDs has been rewritten in terms of light-front
pion form factor analysis is replaced by a nonlocal operatoivave functions with different parton configurations. How-
of the SPDs, one can explore new physics. The physicadver, the representation given p§,10] requires finding all
interpretation of the SPDs becomes clear in the light-fronthe higher Fock-state wave functions while there has been
frame with the light-front gaugéA™=0. In the light-front  relatively little progress in computing the basic wave func-
coordinates, the SPDs are in general functions of the longitions of hadrons from first principles. Our approach provides
tudinal momentum fraction variable the skewedness pa- an alternative way of handling the nonvalence contribution
rameter é&=(P—P’)"/P* measuring asymmetry between which is more suitable for the constituent quark model
initial (P) and final (') hadron state momenta, and the (CQM) specific to the low momentum transfer processes. We
squared momentum transferA simple physical interpreta- use the light-front Bethe-SalpetéBS) formalism for the
tion of the SPDs, in light-front quantization, is that they pro- SPDs as an extension of our treatment of the pion form fac-
vide a link between the ordinary parton distributions of had-tor [14]. Although the present work has many features simi-
rons and the hadronic form factors, i.e., the ordinary partoriar to that of the Fock state expansion, we utilize the close
distributions are forward4=0 andt=0) limits of the SPDs relation in the BS formalism between what is interpreted as
and the form factors are given by moments of them. the valence and nonvalence wave functions in the Fock state

Because of this dual role of SPDs, they are closely relatedpproach.
to form factors with the only difference between SPDs and In an effort to apply light-front wave function based phe-
form factors being that the momentum of the “probednomenology to form factors in timelike exclusive processes,
qguark” in SPDs is not integrated over but rather kept fixed atwe have presented {i6] an effective treatment of handling
the momentum fractior. For example, in studying the light- the nonvalence contribution to the weak form factors, based
front wave functions of hadrons, the overlap representatiomn the BS formalism, and obtained reasonably good numeri-
of the light-front wave functions of hadrons for the form cal results for the processes in the small momentum transfer
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Defining the four momentum transfar=P—P’, one has
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FIG. 1. Handbag diagram contributing dominantly to Compton A=P—-P'=\¢P", p+ AL )

scattering in the deeply virtual region. The lower soft part consists

of a hadronic matrix element which is parametrized in the form ofwhereM is the pion mass and=A"/P™" is the skewedness

skewed parton distribution functions. parameter describing the asymmetry in plus momentum. The
squared momentum transfer then reads

region. The main purpose of the present work is to apply the (= AZ— 2P A= £M2+ A7
effective method presented [16] of handling the nonva- 1-¢
lence contribution to the SPDs of the pion at small momen-

tum transfer region in LFQM. The paper is organized asSinceA?=0, t has a minimum value- t,,,=£&M?(1-§) at
follows. In Sec. Il, we briefly introduce the necessary kine-given §. As shown in Fig. 1, the parton emitted by the pion
matics in which we follow the notation employed by Rady- has the momenturk, and the one absorbed has the momen-
ushkin[3]. In Sec. lll, we represent the SPDs of the pion intumk’.

terms of light-front vertex functions, starting from the cova- As in the case of spacelike form factors, we choose a
riant Bethe-Salpeter model of ¢31)-dimensional fermion frame where the incident spacelike photon cargés=0,

field theory. The nonvalence part of SPDs is expressed in

terms of light-front vertex functions of a hadron and a gauge (qu+A)%  EM2+A?
boson. The link operator connecting—1 body ton+1 ¢Pt * (1—¢)P* Aoy
body in a Fock state representation is obtained by an analytic

4

01

continuation of the usual BS amplitude. We also show that (q,+A,)2
the complicated rf+2)-body energy denominators are ab- q'= gP*,%,qﬁrAL . 5)
sent throughout the calculation of the light-front time- &P

ordered diagrams. Of particular interest, the instantaneou]s
contribution of the quark propagator to the nonvalence dia'"
gram is separated from the on-shell propagating part. In Sec.
IV, we replace the light-front vertex functions obtained from Q2

Sec. Il with our LFQM wave functiorf12] and show our Pa_
numerical results for the SPDs of the pion at small momen- a
tum transfer region. We also show that the frame indepeni-_e_, ¢ plays the role of the Bjorken variable in DVCS. For a

dence of our model is guaranteed by the sum rule betweef\oq valie of—t. the allowed range of is given by
the SPDs and form factor of the pion. Conclusions follow in '

deeply virtual Compton scatterin@VCS) where Q%=
g is large compared to the massand —t, one obtains

&, ©6)

Sec. V. (-t)[ [ 4am?
Osés< 1+ —-1/. 7
¢ 2M? (-t @

Il. KINEMATICS
. . . . . I1l. SKEWED QUARK DISTRIBUTION OF THE PION
We begin with the kinematics of the virtual Compton scat-
tering (see Fig. 1 of the pion Analogous to the pion electromagnetiEM) form factor
calculation

7A@+ (P = AQ)+ (P, @ 3HO=(P'[1(0)y* f(O)|P)=F ,()(P+P)*, (®)

we define the skewed quark distributiof®QDs F.(&,x,t)

where the initial(final) hadron state is characterized by the :
of a pion by

momentumP (P') and the incoming spacelike virtual and
outgoing real photon momenta loyandq’, respectively. We dz= . . _
shall use the component notatidh=(V*,V~,V,) and our j+5f 4—e'XP z /2<P’|¢(0)7+¢(Z)|P>|z+:zl:0
metric is specified byV*=(V°+V3) and V?=V*'Vv~ m
~V2. =F(EXD(P+P)T, 9
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FIG. 2. Diagrams for SQDs in different kinematic regions for the gas@. The covariant diagrarfa) corresponds to the sum of the LF
valence diagranfb) defined iné<x<1 region and the nonvalence diagréch defined in 0<x< ¢ region. The large white and black blobs
at the meson-quark vertices (b) and(c) represent the ordinary LF wave function and the nonvalence wave function vertices, respectively.
The small white blob at the quark-gauge boson vertex indicates the nonlocality of the vertex.

where z=(z",z",z,) in a light-front representation. Note require that the highest power &fin the polynomial expres-
that the path-ordered exponential of the gauge fieldgion of F (£,t) should not be larger than. These polyno-
Pexdifz“A,], required by gauge invariance in E@) does  miality conditions are fundamental properties of the SQDs
not appear in the light-front gauge” =0. As one can See hich follow from the Lorentz invariance. In case of a spin-
from Egs.(8) and(9), the F, involves one less integration 1/2 composite systerf,8], where the helicity nonfligd)

than the form facto~ . due to nonlocality of the current P :
matrix element. The SQDs display characteristics of the orfind helicity flip€) SQDs are involved, the secorm 2)

dinary (forward quark distribution in the limit o€—0 and moment of each SQD yields tgedependent form factors of

t—0: on the other hand, the first moment of the SQDs iSthe energy-momentum tensor, although the sum of the mo-

related to the form factor by the following sum ruf3: ~ Ments produces the-independent form factors of the
energy-momentum tensor. When the sum nute@) is ex-

1 trapolated to—t=0 [2], it provides the information on the
jo dxF(€x,0)=F (1), 10 fotal quark(i.e., quark orbital contribution to the nucleon
spin. For the spin-0 composite system like the pion, the situ-
where fﬂ(g,X,t)Zeufﬁ',(f,X,t)—edfi(&X,t) and we as- ation is quite different because only one SQIX,x,t) ex-
sume isospin symmetrg(,=mg) so that FU(&xt) ists. We discuss our numerical resultsFf(¢,t)(n=1,2,3)

=]-‘?T(§,x,t). Note that Eq(10) is independent o€, which for the pion in the next sectiofgec. 1V).

provides important constraints on any model calculation o(N al\?e If?uer]:;i[OSr;lf(cz]r’ ttr?ee gée[)rlsaﬁa;eE;eesnegﬁg?nnegffrlégr:t{ggrf];r_
the SQDs. In general, the polynomiality conditions for the

£ th DE20 2 i mal definitions of light-front field operators. In this work,
moments of the SQDE0,21] defined by however, we shall derive the SQDs of the pion starting from

1 . the covariant Bethe-SalpetBS) amplitude of the curreny’
fo dxxX" T HEX D) =FL(€,1) (11 given by[see Fig. 23)]
|
d*k S(X—KT TP )H o H (o S*

J“=iNcJ (12

(2m)* [K—mP+ie][(k—A)2—m?+ie][(P—K)2—m?+ie]’

where N, is the color factor,5(x—k*/P™) represents the we can express the trace tet in Eq. (12) in terms of the
composite operatdi3] denoted by a small white blob at the on-mass shell propagating part of quark propagators and the
quark-gauge boson vertex in Fig. 2, aHd,, (H(,,) is the instantaneous one as follows:

covariant initial (final) state meson-quark vertex function

that satisfies the BS equation. We refer to the black vertex in S =Tr ys(py+m) y*(P2+m) ys(— Pyt m)]

Fig. 2(c) as the nonvalence wave function vertex. In the BS
formalism it is obtained by a continuation of the usual BS =T s Bront M) Y*(Baort M) vs( — Baont M) ]
amplitude, as we discuss below. >t Fon Zon >t Faon

Using the following identity +Tr[inst], (14
p+m=(pont m)"'%’)ﬁ(pi_pgn)! (13 with
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THinst]=2(Py = P1on [ PhorPgon™ P2orPhon

+9** (P2on Pgont M) 1+ 2(P; ~ Paor) [ PhonPgon

= P1oPhont 9" (P1on Paont M?)]

s + + X 1= K x 1-£
+ 2( pa - paon)[ p’for’p20n+ plorpgon (>3 2>2)
_Ant . +m2) 1+ 2g+t FIG. 3. Nonvalence vertetblack blob linked to an ordinary
9" (P1on P2on )]+2g light-front wave function(white blob.
+ — — — —
X Paor(P1 — P1on) (P2 — P2or), (19
aon P2~ P1on) (P2 = Pzon the calculation of nonvalence contribution in FigcR We
where p;=k,p,=k—A, and p;=P—k and the subscript describe this below. In4+1 QCD modeld9,19], it is shown
(on) means on-mass shell quark propagator. that expressions for the nonvalence vertex analogous to our
The SQD is given by the solutions to the BS equationform given in Eq.(18) are obtained.
[16-19 Corresponding to these two regions of the BS amplitude,
the Cauchy integration ovée in Eg. (12) has two nonzero
(Mé—Mé)X(xi Ki) contributions to the residue calculations, one coming from
the interval(l) A" <k*<P* [see Fig. 20)] and the other
= | rdyird®, 1cx ki cy L 1), from (1) 0<k™ <A™ [see Fig. 2o)].
f[ YA IR Ky Xy di) (1) In the region ofA*<k™<P™, the residue is at the

(16) pole of k- =P —[k?+m?—ie]/(P—k)" (i.e., Py = Pgon):
) S which is placed in the upper half of the complex-plane.
where/C is the BS kernel which in principle includes all the Thys, the Cauchy integration of ¥ in Eq. (12) over k™
higher Fock-state ~contributions, M¥=M?/(1-¢),M§  gives
=(m2+kH)/(1—x)—(m*+kT)/(é—x), and x(x; ki) is

the BS amplitude. Both the valence and nonvalence BS am- _ Nc 1dx S(x—kT/P™)

plitudes are solutions to E416). For the normal BS ampli-  F7 (£&,X,0)= (P+P’)+f 167° x(1—x

tude, referred to as the valence wave function hgre¢, ¢ 1om

while for the nonvalence BS amplitude<¢. We use the X L, )

notation for these two solutions Xf Aok x(2-2) (X, K1) S X (2-2)(X K],
X(zﬁz):)(vaI (29
X(1H3)=Xn°n”a'- 17y  Wwhere

This notation is motivated by the relationship to the Fock h e 2_karmz k% +m?

state picture, in which for the nonvalence vertex the parton X(—2)(X.K0) M2—M2’ Mo= 1—x * x
number before and after the kernel is interpreted as changing 0
(from 1 to 3. However, as illustrated in Fig.(®, the non-

valence BS amplitude is an analytic continuation of the va- X! (x' K )= L
lence BS amplitude. In the LFQM the relationship between ~@#—2°" "™t M2—My?’
the BS amplitudes in the two regions is given [d]
ki2+m?  k|?+m?
(ME_M%)X(l—G)(Xi Kii) M(')2= & +— , (20)
1-x’ x'
:f [dYJ[dzh]IC(Xi KisYia o xe—2) (Y, and
(18) . 4P+ 5
. . o . Sya= - (kp-k[+m9). (21
where again the kernel includes in principle all the higher (1—x")

Fock-state contributions because all the higher Fock compo- _
nents of the bound state are ultimately related to the lowesthe internal momenta of thstruck quark for the final state
Fock component with the use of kernel. This is illustrated inare given by

Fig. 3.
Equations(16) and (18) are integral equations for which = X—¢ K —K. + 1_XA 22)
one needs nonperturbative QCD to obtain the kernel. We do 1—¢" 71—

not solve for the BS amplitudes in this work, but a nice
feature of Eq(18) is a natural link betweeg"°™2 andy*®  While the light-front vertex functiorh ¢ (h{¢) formally is
which enables an application of a light-front CQM even for given by the covariant ., (H(,,), in the present work the
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(@

FIG. 4. Effective treatment of
the light-front nonvalence ampli-
tude given by Fig. &).

radial wave functiony_.,) (X(Iz%z)) [consequentlyh, ¢ instantaneous contribution from the spectatpg)(line in

(h/£)]is obtained from a light-front constituent quark model addition to the on-mass shell contribution given by E2{),

as we shall show later. It is also interesting to note that in thigvhich leads to

spectator pole diagrarrpfz pqion) with the plus component

of the current, the instantaneous part in Et5) does not N N 4p*

contribute at all, i.e., all particles are on their mass shell. Sny=Sart 1
(1) In the region of B<k™ <A™, the residue is at the pole

of k- =[k?+m?—i€]/k" (i.e., p; =Pio), Which is placed

in the lower half of the complek-" plane. Then the Cauchy

integration of 7* in Eq. (12) overk™ reads

-X(1=X)X'(M?=MJ). (25)
—X

Considering the quark-meson and quark-gauge boson ver-
tices together, we also find that the four-body energy de-
nominator O,) appearing in Fig. 3 is absent in E@R3).
This absence ob, in our nonvalence current matrix ampli-
tude given by Eq(23) is due to the sum of two possible

N, ¢ dx S(x—k*/P*) di ; it C ; ;
F(Ex 1) = J iagrams in the light-front time orderlr{geg Figs. &) _and
i (P+P")"Jo16m® x(1—x)x’ (c)]. Summing over the two time-ordered diagrams Fidb) 4
and (c), one can easily find the following identity, 04D$
XJ 2K, X2y (X, KL ) S x0X, K] ) +1/D,D5=1/DIDY, which removes the complicate four-
body energy denominator term. We thus obtain the amplitude
dy corresponding to the nonvalence contribution given by Eg.
X f —f d2l, K(x,k, 5y,00) (23) in terms of ordinary light-front wave functions of had-
y(1-y) ron (x(2—2)) and gauge bosomf) as shown in Fig. @&).
X X—2)(YslL), (23)  This method, however, requires the relevant operator

K(x,k, ;y,l,) which is in general dependent on the involved
where Eq(18) has been used for the nonvalence wave funcinomenta connecting the one-body to three-body sector as
tion at the black blob in Fig. @), andy? corresponds to the depicted in Fig. 3. While the relevant operatois in general
light-front energy denominator at the small white blob in Fig. dependent on all internal momenta K, ;y.l, ), the integral

Z(C) The exp|icit form OfXg is given by of K over Yy and IJ_ in Eq (23), which we define aﬁﬂ.
= J[dyl[d?l JK(x,k. 3Y,1) x(2—2)(Y,11), depends only on
1 x andk, . In this work, we approximat& , as a constant
X2,k )= A2 (K2+m? KZ+me\ which has been tested in our previous exclusive semileptonic
(1— 5)[_ (ko Tm 4t m decay processg46] and proved to be a good approximation
& X E—X at least for the small momentum transfer region. As we shall

(24 show in the next section, the validity of this approximation

can be checked by examining the frame independence of our
wherek =k, +(x/€)A, . We call 9 the light-front vertex  numerical results.

function of a gauge bosdhin the calculation of the trace

termS;,, one can easily see from E(L5) that there is one
IV. MODEL CALCULATION OF SQD

In the previous sections we have derived the skewed

While one can in principle also consider the BS amplitudefyr  quark distribution function?(&,x,t) starting from a cova-
we note that such an extension does not alter our results within ouiant model. In this section we replace the light-front vertex
approximation in this work because both hadron and gauge bosorfsinctionh g [or equivalentlyy,_.,)(x,k, )] by the standard
should share the same kernel. light-front vertex function[11-13, which is symmetric in
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the variables of the constitueqapair and has been success- 10 ' ' ‘ ‘
ful in predicting many static properties of ground state me- gi‘ge'sy("f"s_":?:zgaemeﬁlz)
sons. Different choices of the vertex function are of course ~ E-06 (:tmi":o'mseev?)
. 0.8 |- v min "~
possible. - purely longitudinal frame
Comparing x(,_.») with our light-front wave function © Amendolia et al.(1986)
; ; ; ¢ Jefferson Lab.(2000)
given by Ref[12], we identify 06 X £0.02(-t,, 810" GeV?)

8773) 1/2

(?kz 1/2[X(1_X)]1/2
X(ZHZ)(X’kL):<N_C ) -\

(9_X MO ¢(X!kL);
(26)

where the Jacobian of the variable transformati&n
=(k,,k,)—(x,k,) is obtained asodk,/dx=Mq/[4x(1
—X)] and the radial wave function is given by

, 1 1/2 , ,
d(ko)= WTzﬁg expl—k“/237), (27)

which is normalized agd>k| ¢(k?)|2=1.
Substituting Eqs(26) and(27) into Eqs.(19) and(23), we

F.{t)

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
—{GeV?]

FIG. 5. The valence contribution to the pion EM form factor
with different skewedness parametérsompared with the experi-
mental datd22,23.

obtain the valence and nonvalence contributions to the SQDs

of the pion in LFQM

_ K\ Y2 gi\ 12
TR

3 x| Lo
=3
(k, -k +m?)
><¢(x/,ki)¢(x,ki)\/ki_:m;\/kiz_i_mz,
(28
and
e 0EX) [k, (k|
fﬂ- (f,X,t)— é fX,(l_X,)(K)

1=3

XXg(X!kl)d)(XvkL)
k. -k +m?+x(1—x)x’ (M2=M3)
VkZ +m?

1 Jl
2 [ 22
Xfo dyJ' d li(ay

Xp(y.l1),

Y2IC(x,ky5y.lL)
VIZ+m?

(29

where we treat the last term in ER9) as a constanG,

In our numerical calculations, we use the model param-
eters M,B)=(0.22,0.3659) GeV obtained in Refl2] for
the linear confining potential model. Before we calculate the
SQDs and the form factor of the pion, we first consider the
valence contribution to the pion EM form factor and see how
much the nonvalence contribution is needed to obtain the
frame-independent result of our model. To this end, we show
in Fig. 5 the valence contributioisee Fig. 2b)] to the pion
EM form factor with different values of, where the thick
solid, cross(x), dotted, dot-dashed, and thin solid lines rep-
resent the purely transversé=0 andA, #0), £=0.02, 0.3,
0.6, and the purely longitudindl.e., £#0 andA, =0) re-
sults, respectively, and compare with the experimental data
[22,23. Note that the purely transverse frame regthick
solid line) is the exact solution within our model calculation.
As one can see from Fig. 5, the nonvalence contribution to
the pion form factor, i.e., the difference betweérn 0 and
£#0 results, increases @sdoes. Our special interesting re-
gion in this work is the small-t region where the nonva-
lence contribution is especially large and our effective
method for the calculation of the nonvalence contributions
works pretty well.

Including the nonvalence contribution given by Eq.
(29 to the SQDs of the pion, we can determine our con-
stant G, in a frame-independent way by the sum rule
JOAXFURI(E = Ox,t) = [FAX FUR(E #0x,t) + [EdX F (&
#0x,t)=F _(t). In Fig. 6, we show th& dependence d& ,
for different —t values, i.e.,—t=0 (diamond, 0.2 (black
circle), 0.5 (white circle), and 1.0(black squargGeV?, re-

which will be fixed by the sum rule eXpressed in terms Ofspective|y_ AS one can see in F|g G,ﬂ_ shows approxi_

Foa and 7™ as

! al ¢ n
FW(t):J’g dxFY: (f,x,t)+Jodx.7-",T“(§,x,t), (30

for given —t. We note that Eq(30) is used as a constraint on

the frame independence of our model.

mately constant behavior f@g>0.1 at given smalk-t. It is
not surprising to see thds, becomes very large as—0,
becauseF" has the form of F'=G_ X [§... from Eq.
(23) and the integral vanishes while a small but nonzero
contribution persists itF . However, this does not cause a
significant error in ourG,. constant approximation because
the nonvalence contribution in the very smdllregion is
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10° . . . . [ ' ' ' '

® For fixed -1=0.20 GeV’
o For fixed ~t=0.50 GeV"
= For fixed —t=1.00 GeV*
 For fixed -t=0.00 GeV’

G,EM
> W
F (&t-t=0.2 GeV?)

10° o :

<.><>g<>§o§<>§og<>g
o C-) i
[ ]

-1

0.4 0.6 0.8 1.0 -
§ X

10

FIG. 6. The¢ dependence db . for different momentum trans-
fers —t=0 (diamond, 0.2 (black circlg, 0.5 (white circle, and 1
(black squareGeV?, respectively.

£=03 (®)

highly suppressed. Therefore the results are consistent witk—~ 0.8 - valence 1
an almost constant value f@ . at least for small-t as we I
show below. On the other hand, we note that there is ary
obvioust dependence fo6,, which might be the limit of .
our constant approximation. In principle, we can obtain the % I
SQDs in a frame-independent way by using the true valuesu® 0.4 r 1
of G, as shown in Fig. 6 for giveng(t). In the following, L nonvalence

we compare the SQDs and the form factor obtained from true , ,, [ =on-shell x
values ofG,. (i.e., frame-independent result of our model | +instantaneoys”™

GeVY)

0.6 | b

-t

with those obtained from a single average value Gof [ | Instantaneous
=G,,e=0.32 for a_II (g,_t) to check the reliability of our 00,5 02 04 06 03 1.0
constantG,, approximation. x

In Figs. 7 and 8, we show the SQF5.(£,x,t) of the pion . ; ; .
for fixed momentum transfer-t=0.2 Ge\? (0=<¢<0.92) i 09 ©
and —t=1.0 GeV (0=¢=<0.98) but with different 12 0 nonvalence ]
skewedness parametefsrespectively. The solid and cross [ i%"s;:;‘g'neo

(x) lines in the nonvalence contributions are the exact solu- 44 [

tions obtained from true values &, and the effective ones < [
obtained from our average value @f,=0.32, respectively. @ 5[ 1
The dotted lines represent the instantaneous contribution & i
to F’(&,x,t) obtained from true values @,,. The SQDs 4 06 | ]
at ¢£&=0 as shown in Figs. (@ and §a) correspond to % i
the ordinary quark distributions with vanishing non- w® o4l 1

valence contributions. The frame independence of our mode
calculation is ensured by the area under the solid lines
(valence+ nonvalence) being equal to the pion form factorat %2 [
given —t. As one can see from Figs(#c) and &b-c), while

the nonvalence contributions are small for snga# 0.3, they 0-00_0 02 04 0.6 0.8 1.0
are large for large skewedness paramefer0.9. In our X

model calculations, the nonvalence contributions obtained

from true values ofG, (solid lines in each figupeat —t

=0.2(1.0) GeV for £=0.3(0.3) and 0.9(0.9) are approxi-

mately 11(4) % and 90(85) %, respectively. Compared with  F|G. 7. Skewed quark distributions of the pion att
the exact solutions, the numerical results with a single aver=0.2 Ge\? with (a) £&=0, (b) 0.3, and(c) 0.9, respectively. The
age G,,=0.32 (cross lines in each figureare shown to solid [cross(x)] line in nonvalence contribution represents the full
reproduce the exact ones up to 97% §e+0.3 and 90% for result of using trugaveragé G, value and the dotted line repre-
£=0.9, respectively. It is also interesting to note that thesents the instantaneous part of the nonvalence contribution.

valence ]
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Exact Sol. (¢=0)
—— Effective(val. + nv.) with £&=0.3

— — - Effective(val.+nv.) with £&=0.9 b
------------ valence with £€=0.9

—-— instantaneous with £&=0.9

o Amendolia et al. (1986) 4
e Jefferson Lab. (2000)

| Gave=0.32
1.0

08 r

w08
04| = S|
I e [ ]
02| N
0-0 I 1 1 1 1
« 0.0 0.2 0.4 0.6 0.8 1.0
—{GeV?]
1.1 . . . . . . . .
FIG. 9. The effective solution of pion form factor using a com-
£=03 (b) mon averages .= G,,.=0.32 value foré=0.3 (thin solid line) 0.9
09 1 (long-dashed line compared with the exact solutiofthick solid

line) as well as experimental daf&2,23. The dotted and dot-
valence dashed lines represent the valence and instantaneous contributions

< 07T ] to the form factor foré=0.9 case, respectively.
[0
0]
'.@ 05 ] taneous part of the nonvalence contribution vanishes as
3 — ¢ =lim._o({—€) as shown in Figs. 7 and 8, the net
v ooal ] result of 1V (&,x,t) including the on-mass shell propagating
part does ndtvanish asx=¢ and consequently causes a
or | nonvalence discontinuity to the zero value of“?(¢,¢,t). However,
+instantaneous such discontinuity ak= ¢ is just an artifact due to the dif-
instantaneous ference in thex— & behavior between the gauge boson ver-
010 o2 oy 0b o8 10 tex (x9(x,k7)) in Eg. (24) and the hadronic vertex
X (x2_.2(x",k])) in Eq. (19) of our approximate model calcu-
lation. We have indeed confirmed that the discontinuity at
1.0 ' ' ' ' x= ¢ does not occur in the limit of a point hadron vertex as
£=0.9 (©) already noticed in the QED calculati$8].® Thus, for a full
0s | ] analysis of DVCS satisfying the factorization theorgr@4,
) it would be necessary to solve the bound-state BS equation
X similar to Eq.(16) for the gauge bosomf) as well as for
a% 06 I nonvalence x * ] the hadron {-_,»). In the chiral quark-soliton model analy-
0] =on—shglk ™ sis of the nucleon SQDR4], the discontinuity ak= ¢ was
I.' imputed to an artifact of neglecting the momentum depen-
%04 i dence of the constituent quark mass. Both the BS amplitude
P S 5 Pt for x9 and the dynamical quark mass anyway would be nec-
essary for the model improvement. Nevertheless, our effec-
02 b i tive method seems useful for the present study of the relation
between SQDs and the form factor in the nonperturbative
valenoe\-.L .
regions.
0.0 ' ' N In Fig. 9, we show our effective solutions of the pion form

0.0 02 04 0.6 08 10 factor for £=0.3 (thin solid line and 0.9(long-dashed ling

X

FIG. 8. Skewed quark distributions of the pion att

cases obtained from our average valueXf= G,,=0.32

=1 Ge\? with different(a) £=0, (b) 0.3, and(c) 0.9, respectively. and compare with the exact solution wigh=0 (thick solid
The same line code is used as in Fig. 7. line) as well as the experimental dg22,23. The dotted and

instantaneous contributiorigotted lines in each figuyebe-
come more pronounced ds- &ax for each—t, which is a 2

n fact, this behavior ofF " (&,x,t) atx= & has been anticipated

very different feature from a scalar theory mofi@] where  in [9] without proof.
there is no such instantaneous contribution. While the instan-3we are grateful to M. Diehl for discussion of this point.
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1.6 T T T T
Total(=val. + nv.) with true value of G
- Valence contribution
—-— nonvalence contribution
Sl x nonvalence frgm average G=0.32 h
2 © F(&=1)-(1-8) [F (&=1)-F (§=0)]
:‘:U', n=1
a 7
e
8 s 5 XX s
o L 7 X 4
8 0.8 ’/’ 9
c 77 x
[ pd <r
g n=2 L7 P
= Y G
€ 04} n= < A
P . 3%
-5 ’d
o5 v‘%‘< <
L% - <
e ) e X7 -r'{‘{
0.0 . ugnﬂzﬁ:z-*'*_’( 1 1
0.0 0.2 0.4 0.6 0.8 1.0
3

FIG. 10. Thenth momentsF (&, —t) of SQDs of the pion at
=0 using the true value of G. The total resusick solid lines for
n=2 and 3 are well fitted by the simple polynomidiamond in &.

For comparison, we include the nonvalence contributions obtained

from the averag& ,=0.32 (cross lines

dot-dashed lines represent the valence and the instantane

contributions to the form factor for the case §&0.9, re-
spectively. In fact, there are t,,;, values for nonzerg@ due
to Afzo [see Eq(4)]. We thus use the analytic continuation
by changingA, toiA, in Eqgs.(28) and(29) to obtain the
result for 0= —t<—t,,, where there is no singularity. A
continuous behavior of the form factor neat,,;,, confirms

the analyticity of our model calculation. Our effective solu-

tion (long-dashed linewith ¢=0.9 shows almost maximum
deviation (£10%) from the exact onéhick solid ling and
the deviation becomes smaller &sreduces. Our effective

method of evaluating the nonvalence diagram with a con-

PHYSICAL REVIEW D54 093006

one can see, the firsh& 1) moment(top thick solid ling is

¢ independent because the sum rule forl yields the
physical pion form factorf,(&,t)=F _(t). Also, the higher
moments F,(&,t)(middle  thick solid ling and
F3(&,t) (bottom thick solid ling satisfy the polynomiality
conditions[see Eq(11)] discussed in the previous section. In
Fig. 10 we also plot the phenomenological form

Fa(ét=0)=Fn(¢=1)— (1= §)][Fy(é=1)—Fn(£=0)]
(31)

shown by the diamonds. The numerical values fgf
=F,(£=0) andF|"=F,(£=1) are summarized in Table I.
Our value ofFj is in good agreement with the value ob-
tained by the QCD sum rules with nonlocal condensates
[25].

We also compute theth moment of ther wave function,
¢.(y)=F.(£=0y,t=0), defined by 26]

1
(Yn)= f L yY'eéa(y), (32)

wherey=2x—1. Our numerical results are summarized in
Table Il and compared with several other theoretical results.

PR interesting to note that our value ¢f,) is very close to

the asymptotic valu€0.2) of the second moment obtained
from the well-known asymptotic quark distribution ampli-
tude ¢,.(y)=3(1—y?), which is quite different from the
early work obtained with QCD sum rul¢&6] shown in the
second row of Table Il. A later calculation using QCD sum
rules[27], shown in the third row, found moments closer to
the asymptotic values. However, we emphasize that the
Bethe-Salpeter amplitude used in the present work is still a
model rather than a solution to the BS equation with a kernel
derived from nonperturbative QCD.

Finally, in Fig. 11, we obtain the isosinglet SQDs of the

stant operatoG, shows a definite improvement to restore yion py subtracting the valence pafi,(¢=0x,t=0) from
the frame independence of our model and seems to be a quif§e nonvalence partF, (¢=1x,t=0). Our result(dotted

reliable approximation.

In Fig. 10, we show thenth moments (=1,2,3) of
F.(&,x,t) given by Eq.(11) att=0 using the true value of
G, shown in Fig. 6. Although at=0 the skewedness pa-
rameter vanishesee Eq.(7)], we use the model forms for
Fva and F™ given by Egs.(28) and (29) to define the
extrapolation toé#0. The thick solid, dotted, and dot-
dashed lines represent the tota+\{alencer-nonvalence),

line) in Fig. 11 is qualitatively very similar to the total isos-
calar skewed quark distribution in the pion satisfying the soft
pion theorem(Fig. 5 of Ref.[5]), that is obtained by the
low-energy effective field theory based on the instanton
model of the QCD vacuum.

V. CONCLUSION

valence, and nonvalence contributions, respectively. For In this work, we investigated the SQDs of the pion for a
comparison, we also show the nonvalence contribution obsmall momentum transfer{(t<1 Ge\?) region in the light-

tained from the average value &f,=0.32cross lineg As

front quark model. Since the light-front nonvalence contribu-

TABLE I. The nth momentsF,(£,x,t=0) of the SQDs for the pion wherg,=F,(£=0) andF}’
=F,(é=1) represent pure valence and pure nonvalence contributions, respectively.

Model FalF2’] FalF3'] FalFa'] FslFs'] FelFes'] FILF7’]
Ours 0.5090.623  0.3140.433 0.210.322 0.140.25 0.1230.201  0.09§0.165
(5] 0.24-]
[25] 0.29-]
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TABLE Il. The nth moments(y,,) of the ordinary quark distri- 20 : : . .

bution amplitudeg .(y) for the pion. i

15+ 1
Model (Y1) (Y2) (Y3) (Ya) (Ys) (Ye) i
Ours 0.0 0.239 0.0 0.109 0.0 0.062 1.0 _ 1
[26] 0.0 0.43 0.0 0.24 0.0 0.15 s i
[27] 0.0 0.25 0.0 0.12 0.0 0.07 ;L: [ P
[28]2 00 025 00 011 00 006 ¥ 081 \\ ]
8 or the Gaussian paramet@r=0.36 GeV in Ref[28]. @ 0.0
tions to the SQDs of the pion are large especially at small a _ _
momentum transfer region as shown in Fig. 5, it is very — _os[ ggg%ﬂ’;g-g' ;ﬁl:\?aciche] ]
crucial to take them into account to guarantee the frame in- L S SQD(E=1)-5QD(E=0)
dependence of the model. Applying our effective treatment [
[16], i.e., the nonvalence BS amplitude given by Ftf) of 100 o2 o4 06 0.3 .
the nonvalence contribution to the SQDS, (=F'% X

n ; n
.—i_]:”v) of the plpn, We. expresg’;’ [see Eqs.(23) and(29)] FIG. 11. The SQDs of the pion &&0 using the true value of
in terms of ordinary light-front wave functlons of a gaug_e G(=0.384). The thick solid, solid, and dotted lines represent
l:_)oson and_a hadron and calculate this nonvalence Cont”bl&-‘ﬂ(§=0,x,t=0)(va|ence), F.(£=1x,t=0)(nonvalence and
tion numerically. o _ _ their differenceF(£=1x,t=0)— F,(£=0x,t=0), respectively.

The main approximation in our effective calculation
is the treatment of relevant operatdé(x,k, :y,l,) in Fig. 11) is also consistent with the result satisfying the low-
Eq. (23 connecting the one-body to three-body sectorenergy soft pion theorerfb].
(see Fig. 4 by taking a constantG, via G, For the model improvement, however, it would be neces-
= [[dy][d?l, ]K(x,k, Y.l X@2-2)(Y.l1), which in general ~ sary to consider not only the dynamical quark mass dis-
depends orx and k, . The reliability of this constant ap- Cussed in our previous woil4] but also the BS amplitude
proximation was checked by examining the frame indepenfor the quark-gauge boson vertex to remove the apparent
dence of our numerical results using the sum rule given byliscontinuity atx=¢ as shown in Figs. 7 and 8. Especially,
Eq. (30), i.e., the exact results oF,(£,x,t) andF (t) ob- I exploring the new physics associated with the SQDs for
tained from the true values o given by Fig. 6 were the treatment Qf the pion form factor, we note from Q).
compared with those obtained from our single average valufhat the definition of7 involves the matrix element of the
of G,=0.32 for all (£,t). The numerical results of our con- light-front operator present in the three-point approach to
stantG . prescription have shown definite improvemépst- ~ quark distributions of hadrons in scaling regions. As was
ter than 90% accuracy f@=<0.9) to restore the frame inde- shown in R(_af.[BO] the treatment of such operato_rs can Igad
pendence of our modésee Figs. 7—9and our prescription One to consider nonlocal quark condepsates, which can intro-
seems to lead to a quite reliable approximation. Our modefluce nonperturbative QCD structure in the quark-gauge bo-
also satisfies the polynomiality conditions for=2 and 3 ~ SON vertex. This will be a subject of future research by the
moments of the SQDee Fig. 1Dand our value oF} is in authors.
good agreement with the QCD sume-rule result with nonlocal
condensatef25]. Moreover, the ordinary quark distribution
amplitude of the piofi¢.(y=2x—1)] can be obtained from The work of H.M.C. and L.S.K. was supported in part by
the two-pion distribution amplitude i§=0 andt=0 limit  the NSF grant PHY-00070888 and that of C.R.J. by the U.S.
where one of the produced pions becomes soft. Our result dOE under grant No. DE-FG02-96ER40947. The North
¢ is very close to the asymptotic quark distribution ampli- Carolina Supercomputing Center and the National Energy
tude consistent with the CLEO measurem¢@8. The isos- Research Scientific Computer Center are also acknowledged
inglet skewed quark distribution amplitude in the pieee for the grant of Cray time.

ACKNOWLEDGMENTS

[1] D. Miller, D. Robaschik, B. Geyer, F. M. Dittes, and J. [6]J. Blumlein, B. Geyer, and D. Robaschik, Nucl. Ph@&560,

Horejd, Fortschr. Phys42, 101 (1994. 283 (1999; J. Blumlein and D. Robaschikipid. B581, 449
[2] X. Ji, Phys. Rev. Lett78, 610(1997); Phys. Rev. D65, 7114 (2000.
(1997. [7] M. Diehl, Th. Feldmann, R. Jakob, and P. Kroll, Eur. Phys. J. C
[3] A. V. Radyushkin, Phys. Rev. B6, 5524(1997). 8, 409(1999.
[4] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev5B) [8] S.-J. Brodsky, M. Diehl, and D. S. Hwang, Nucl. Phi2&96,
2982 (1997). 99 (2002.

[5] M. V. Polyakov and C. Weiss, Phys. Rev.dD, 114017(1999. [9] M. Burkardt, Phys. Rev. 32, 094003(2000.

093006-10



SKEWED QUARK DISTRIBUTION OF THE PION IN . . . PHYSICAL REVIEW D54 093006

[10] M. Diehl, Th. Feldmann, R. Jakob, and P. Kroll, Nucl. Phys. [20] X. Ji, W. Melnitchouk, and X. Song, Phys. Rev. 35, 5511

B596, 33 (2002). (1997.
[11] W. Jaus, Phys. Rev. B4, 2851(1991). [21] A. V. Radyushkin, Phys. Lett. B49 81 (1999.
[12] H.-M. Choi and C.-R. Ji, Phys. Rev. 19, 074015 [22]S. R. Amendolieet al, Phys. Lett.178 435(1986.
(1999. [23] J. Volmeret al, Phys. Rev. Lett86, 1713(2002.
[13] H.-M. Choi and C.-R. Ji, Phys. Rev. b6, 6010(1997. [24] V. Yu. Petrovet al, Phys. Rev. D67, 4325(1998.
[14] L. S. Kisslinger, H.-M. Choi, and C.-R. Ji, Phys. Rev.63, [25] A. V. Belitsky, Phys. Lett. B386, 359(1996.
113005(20017). [26] V. L. Chernyak and I. R. Zhitnitsky, Phys. Ref12 1783
[15] S. J. Brodsky and D. S. Hwang, Nucl. PhyB543 239 (1984.
(1998. [27] S. V. Mikhailov and A. V. Radyushkin, Phys. Rev.45, 1754
[16] C.-R. Ji and H.-M. Choi, Phys. Lett. B13 330(2002. (1992.
[17] S. J. Brodsky, C.-R. Ji, and M. Sawicki, Phys. Re\3®) 1530  [28] C.-R. Ji, P.L. Chung, and S. R. Cotanch, Phys. Re#5>4214
(1985. (1992.
[18] J. H. O. Sales, T. Frederico, B. V. Carlson, and P. U. Sauer{29] CLEO Collaboration, J. Gronbergt al., Phys. Rev. D67, 33
Phys. Rev. (61, 044003(2000. (1998.
[19] M. B. Einhorn, Phys. Rev. 14, 3451(1976. [30] H. Jung and L. S. Kisslinger, Nucl. Phy&586, 682 (1995.

093006-11



