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Skewed quark distribution of the pion in the light-front quark model
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We calculate the skewed quark distributions~SQDs! of the pion in the light-front quark model, and discuss
the calculation of the nonvalence contribution to the SQDs in this model. The frame independence of our
model calculation is guaranteed by the constraint of the sum rule between the SQDs and form factor. Our
numerical results show large nonvalence contributions to the SQDs at a small momentum transfer region as the
skewedness increases.
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I. INTRODUCTION

Recently there has been great interest in the off-forw
~or nonforward, off-diagonal! parton distribution functions
defined as nondiagonal hadronic matrix elements of bilo
products of the light-front quark and gluon field operato
@1–10#. The off-forward parton distribution functions, the s
called ‘‘skewed parton distributions~SPDs!,’’ are the gener-
alization of the ordinary~forward! distribution functions. A
well-known and practical example of SPDs as nonpertur
tive information entering the light-front dominated hard sc
tering processes is the deeply virtual Compton scatte
~DVCS! g* p→gp for a large initial photon virtualityQ2

and small t region, which can be factorized into a ha
photon-parton and a skewed parton distribution@1–3#.

In the present work we formulate the pion form factor
terms of the SPDs. Since the usual local photon vertex in
pion form factor analysis is replaced by a nonlocal opera
of the SPDs, one can explore new physics. The phys
interpretation of the SPDs becomes clear in the light-fr
frame with the light-front gaugeA150. In the light-front
coordinates, the SPDs are in general functions of the lo
tudinal momentum fraction variablex, the skewedness pa
rameter j5(P2P8)1/P1 measuring asymmetry betwee
initial ~P! and final (P8) hadron state momenta, and th
squared momentum transfert. A simple physical interpreta
tion of the SPDs, in light-front quantization, is that they pr
vide a link between the ordinary parton distributions of ha
rons and the hadronic form factors, i.e., the ordinary par
distributions are forward (j50 andt50) limits of the SPDs
and the form factors are given by moments of them.

Because of this dual role of SPDs, they are closely rela
to form factors with the only difference between SPDs a
form factors being that the momentum of the ‘‘prob
quark’’ in SPDs is not integrated over but rather kept fixed
the momentum fractionx. For example, in studying the light
front wave functions of hadrons, the overlap representa
of the light-front wave functions of hadrons for the for
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factors in the spacelike (q2,0) region can be obtained i
one usesJ1(5J01J3) and the Drell-Yan-West (q150)
frame where only the parton-number-conserving vale
Fock state contribution is needed. The successful phen
enological calculations of form factors in the spacelike
gion can be found in the light-front quark model~LFQM!
@11–14#. On the other hand, form factors in the timelik
(q2.0) region such as the weak form factors for exclus
semileptonic decays require theq1.0 frame, which in turn
require parton-number-changing nonvalence Fock state
tributions as well as the valence one@15,16#. Similarly, while
the ordinary parton distributions~analogous toq150 limit
of form factor! can be represented in terms of squared lig
front wave functions of a hadron, one cannot avoid non
lence contributions to SPDs since they always involve n
zero j corresponding toq1Þ0 in timelike form factor
calculations. In recent papers@8,10#, the nonvalence contri-
bution to the SPDs has been rewritten in terms of light-fro
wave functions with different parton configurations. How
ever, the representation given by@8,10# requires finding all
the higher Fock-state wave functions while there has b
relatively little progress in computing the basic wave fun
tions of hadrons from first principles. Our approach provid
an alternative way of handling the nonvalence contribut
which is more suitable for the constituent quark mod
~CQM! specific to the low momentum transfer processes.
use the light-front Bethe-Salpeter~BS! formalism for the
SPDs as an extension of our treatment of the pion form f
tor @14#. Although the present work has many features sim
lar to that of the Fock state expansion, we utilize the clo
relation in the BS formalism between what is interpreted
the valence and nonvalence wave functions in the Fock s
approach.

In an effort to apply light-front wave function based ph
nomenology to form factors in timelike exclusive process
we have presented in@16# an effective treatment of handlin
the nonvalence contribution to the weak form factors, ba
on the BS formalism, and obtained reasonably good num
cal results for the processes in the small momentum tran
©2001 The American Physical Society06-1
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region. The main purpose of the present work is to apply
effective method presented in@16# of handling the nonva-
lence contribution to the SPDs of the pion at small mom
tum transfer region in LFQM. The paper is organized
follows. In Sec. II, we briefly introduce the necessary kin
matics in which we follow the notation employed by Rad
ushkin@3#. In Sec. III, we represent the SPDs of the pion
terms of light-front vertex functions, starting from the cov
riant Bethe-Salpeter model of (311)-dimensional fermion
field theory. The nonvalence part of SPDs is expressed
terms of light-front vertex functions of a hadron and a gau
boson. The link operator connectingn21 body to n11
body in a Fock state representation is obtained by an ana
continuation of the usual BS amplitude. We also show t
the complicated (n12)-body energy denominators are a
sent throughout the calculation of the light-front tim
ordered diagrams. Of particular interest, the instantane
contribution of the quark propagator to the nonvalence d
gram is separated from the on-shell propagating part. In S
IV, we replace the light-front vertex functions obtained fro
Sec. III with our LFQM wave function@12# and show our
numerical results for the SPDs of the pion at small mom
tum transfer region. We also show that the frame indep
dence of our model is guaranteed by the sum rule betw
the SPDs and form factor of the pion. Conclusions follow
Sec. V.

II. KINEMATICS

We begin with the kinematics of the virtual Compton sc
tering ~see Fig. 1! of the pion

g* ~q!1p~P!→g~q8!1p~P8!, ~1!

where the initial~final! hadron state is characterized by t
momentumP (P8) and the incoming spacelike virtual an
outgoing real photon momenta byq andq8, respectively. We
shall use the component notationV5(V1,V2,V') and our
metric is specified byV65(V06V3) and V25V1V2

2V'
2 .

FIG. 1. Handbag diagram contributing dominantly to Compt
scattering in the deeply virtual region. The lower soft part cons
of a hadronic matrix element which is parametrized in the form
skewed parton distribution functions.
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Defining the four momentum transferD5P2P8, one has

P5F P1,
M2

P1
,0'G ,

P85F ~12j!P1,
M21D'

2

~12j!P1
,2D'G , ~2!

and

D5P2P85F jP1,
D21D'

2

jP1
,D'G , ~3!

whereM is the pion mass andj5D1/P1 is the skewedness
parameter describing the asymmetry in plus momentum.
squared momentum transfer then reads

t5D252P•D52
j2M21D'

2

12j
. ~4!

SinceD'
2 >0, t has a minimum value2tmin5j2M2/(12j) at

given j. As shown in Fig. 1, the parton emitted by the pio
has the momentumk, and the one absorbed has the mome
tum k8.

As in the case of spacelike form factors, we choose
frame where the incident spacelike photon carriesq150,

q5F0,
~q'1D'!2

jP1
1

jM21D'
2

~12j!P1
,q'G ,

q85F jP1,
~q'1D'!2

jP1
,q'1D'G . ~5!

In deeply virtual Compton scattering~DVCS! where Q25
2q2 is large compared to the massM and2t, one obtains

Q2

2P•q
5j, ~6!

i.e., j plays the role of the Bjorken variable in DVCS. For
fixed value of2t, the allowed range ofj is given by

0<j<
~2t !

2M2 SA11
4M2

~2t !
21D . ~7!

III. SKEWED QUARK DISTRIBUTION OF THE PION

Analogous to the pion electromagnetic~EM! form factor
calculation

J1~0![^P8uc̄~0!g1c~0!uP&5Fp~ t !~P1P8!1, ~8!

we define the skewed quark distributions~SQDs! Fp(j,x,t)
of a pion by

J 1[E dz2

4p
eixP1z2/2^P8uc̄~0!g1c~z!uP&uz15z'50

5Fp~j,x,t !~P1P8!1, ~9!

s
f
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FIG. 2. Diagrams for SQDs in different kinematic regions for the casej.0. The covariant diagram~a! corresponds to the sum of the L
valence diagram~b! defined inj,x,1 region and the nonvalence diagram~c! defined in 0,x,j region. The large white and black blob
at the meson-quark vertices in~b! and~c! represent the ordinary LF wave function and the nonvalence wave function vertices, respec
The small white blob at the quark-gauge boson vertex indicates the nonlocality of the vertex.
e
ld

n
t
o

i

o
he

Ds
n-

f
mo-
e

itu-

t
for-
,
m

where z5(z1,z2,z') in a light-front representation. Not
that the path-ordered exponential of the gauge fie
P exp@i*zmAm#, required by gauge invariance in Eq.~9! does
not appear in the light-front gaugeA150. As one can see
from Eqs.~8! and ~9!, the Fp involves one less integratio
than the form factorFp due to nonlocality of the curren
matrix element. The SQDs display characteristics of the
dinary ~forward! quark distribution in the limit ofj→0 and
t→0; on the other hand, the first moment of the SQDs
related to the form factor by the following sum rules@2,3#:

E
0

1

dxFp~j,x,t !5Fp~ t !, ~10!

where Fp(j,x,t)5euF p
u (j,x,t)2edF p

d̄ (j,x,t) and we as-
sume isospin symmetry(mu5md̄) so that F p

u (j,x,t)

5F p
d̄ (j,x,t). Note that Eq.~10! is independent ofj, which

provides important constraints on any model calculation
the SQDs. In general, the polynomiality conditions for t
moments of the SQDs@20,21# defined by

E
0

1

dxxn21F~j,x,t !5Fn~j,t ! ~11!
e

n
x
BS
S

09300
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require that the highest power ofj in the polynomial expres-
sion of Fn(j,t) should not be larger thann. These polyno-
miality conditions are fundamental properties of the SQ
which follow from the Lorentz invariance. In case of a spi
1/2 composite system@2,8#, where the helicity nonflip(H)
and helicity flip(E) SQDs are involved, the second(n52)
moment of each SQD yields thej dependent form factors o
the energy-momentum tensor, although the sum of the
ments produces thej-independent form factors of th
energy-momentum tensor. When the sum rule(n52) is ex-
trapolated to2t50 @2#, it provides the information on the
total quark~i.e., quark orbital! contribution to the nucleon
spin. For the spin-0 composite system like the pion, the s
ation is quite different because only one SQDF(j,x,t) ex-
ists. We discuss our numerical results ofFn(j,t)(n51,2,3)
for the pion in the next section~Sec. IV!.

In Refs. @8,10#, the overlap representation of light-fron
wave function for the SQDs has been obtained from the
mal definitions of light-front field operators. In this work
however, we shall derive the SQDs of the pion starting fro
the covariant Bethe-Salpeter~BS! amplitude of the currentJ
given by @see Fig. 2~a!#
J m5 iNcE d4k

~2p!4

d~x2k1/P1!HcovHcov8 Sm

@k22m21 i e#@~k2D!22m21 i e#@~P2k!22m21 i e#
, ~12!
the

where Nc is the color factor,d(x2k1/P1) represents the
composite operator@3# denoted by a small white blob at th
quark-gauge boson vertex in Fig. 2, andHcov (Hcov8 ) is the
covariant initial ~final! state meson-quark vertex functio
that satisfies the BS equation. We refer to the black verte
Fig. 2~c! as the nonvalence wave function vertex. In the
formalism it is obtained by a continuation of the usual B
amplitude, as we discuss below.

Using the following identity

p”1m5~p” on1m!1 1
2 g1~p22pon

2 !, ~13!
in

we can express the trace termSm in Eq. ~12! in terms of the
on-mass shell propagating part of quark propagators and
instantaneous one as follows:

Sm5Tr@g5~p” 11m!gm~p” 21m!g5~2p” q̄1m!#

5Tr@g5~p” 1on1m!gm~p” 2on1m!g5~2p” q̄on1m!#

1Tr@ inst.#, ~14!

with
6-3
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Tr@ inst.#52~p1
22p1on

2 !@p2on
m pq̄on

1
2p2on

1 pq̄on
m

1gm1~p2on•pq̄on1m2!#12~p2
22p2on

2 !@p1on
m pq̄on

1

2p1on
1 pq̄on

m
1gm1~p1on•pq̄on1m2!#

12~pq̄
2

2pq̄on
2

!@p1on
m p2on

1 1p1on
1 p2on

m

2gm1~p1on•p2on1m2!#12gm1

3pq̄on
1

~p1
22p1on

2 !~p2
22p2on

2 !, ~15!

where p15k,p25k2D, and pq̄5P2k and the subscrip
~on! means on-mass shell quark propagator.

The SQD is given by the solutions to the BS equat
@16–18#

~M j
22M 0

2!x~xi ,k i'!

5E @dy#@d2l'#K~xi ,k i' ;yj ,l j'!x~yj ,l j'!,

~16!

whereK is the BS kernel which in principle includes all th
higher Fock-state contributions,M j

25M2/(12j),M 0
2

5(m21k'
2 )/(12x)2(m21k'

2 )/(j2x), and x(xi ,k i') is
the BS amplitude. Both the valence and nonvalence BS
plitudes are solutions to Eq.~16!. For the normal BS ampli-
tude, referred to as the valence wave function here,x.j,
while for the nonvalence BS amplitudex,j. We use the
notation for these two solutions

x (2→2)5xval

x (1→3)5xnonval. ~17!

This notation is motivated by the relationship to the Fo
state picture, in which for the nonvalence vertex the par
number before and after the kernel is interpreted as chan
~from 1 to 3!. However, as illustrated in Fig. 2~c!, the non-
valence BS amplitude is an analytic continuation of the
lence BS amplitude. In the LFQM the relationship betwe
the BS amplitudes in the two regions is given by@16#

~M j
22M 0

2!x (1→3)~xi ,k i'!

5E @dy#@d2l'#K~xi ,k i' ;yj ,l j'!x (2→2)~yj ,l j'!,

~18!

where again the kernel includes in principle all the high
Fock-state contributions because all the higher Fock com
nents of the bound state are ultimately related to the low
Fock component with the use of kernel. This is illustrated
Fig. 3.

Equations~16! and ~18! are integral equations for whic
one needs nonperturbative QCD to obtain the kernel. We
not solve for the BS amplitudes in this work, but a ni
feature of Eq.~18! is a natural link betweenxnonval andxval

which enables an application of a light-front CQM even f
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the calculation of nonvalence contribution in Fig. 2~c!. We
describe this below. In 111 QCD models@9,19#, it is shown
that expressions for the nonvalence vertex analogous to
form given in Eq.~18! are obtained.

Corresponding to these two regions of the BS amplitu
the Cauchy integration overk2 in Eq. ~12! has two nonzero
contributions to the residue calculations, one coming fr
the interval~I! D1,k1,P1 @see Fig. 2~b!# and the other
from ~II ! 0,k1,D1 @see Fig. 2~c!#.

~I! In the region ofD1,k1,P1, the residue is at the
pole of k25P22@k'

2 1m22 i e#/(P2k)1 ~i.e., pq̄
2

5pq̄on
2 ),

which is placed in the upper half of the complex-k2 plane.
Thus, the Cauchy integration ofJ 1 in Eq. ~12! over k2

gives

F p
val~j,x,t !5

Nc

~P1P8!1Ej

1 dx

16p3

d~x2k1/P1!

x~12x!x8

3E d2k'x (2→2)~x,k'!Sval
1 x (2→2)8 ~x8,k'8 !,

~19!

where

x (2→2)~x,k'!5
hLF

M22M0
2

, M0
25

k'
2 1m2

12x
1

k'
2 1m2

x
,

x (2→2)8 ~x8,k'8 !5
hLF8

M22M08
2

,

M08
25

k'8
21m2

12x8
1

k'8
21m2

x8
, ~20!

and

Sval
1 5

4P1

~12x8!
~k'•k'8 1m2!. ~21!

The internal momenta of the~struck! quark for the final state
are given by

x85
x2j

12j
, k'8 5k'1

12x

12j
D' . ~22!

While the light-front vertex functionhLF (hLF8 ) formally is
given by the covariantHcov (Hcov8 ), in the present work the

FIG. 3. Nonvalence vertex~black blob! linked to an ordinary
light-front wave function~white blob!.
6-4
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FIG. 4. Effective treatment of
the light-front nonvalence ampli-
tude given by Fig. 2~c!.
e
th
t

.
e

y

nc

ig

ver-
de-

i-
e

r-
ude

q.
-

tor
d

r as

nic
n
all
n
our

ed

exo
so
radial wave functionx (2→2) (x (2→2)8 ) @consequentlyhLF

(hLF8 )# is obtained from a light-front constituent quark mod
as we shall show later. It is also interesting to note that in
spectator pole diagram (pq̄

2
5pq̄on

2 ) with the plus componen
of the current, the instantaneous part in Eq.~15! does not
contribute at all, i.e., all particles are on their mass shell

~II ! In the region of 0,k1,D1, the residue is at the pol
of k25@k'

2 1m22 i e#/k1 ~i.e., p1
25p1on

2 ), which is placed
in the lower half of the complex-k2 plane. Then the Cauch
integration ofJ 1 in Eq. ~12! over k2 reads

F p
nv~j,x,t !5

Nc

~P1P8!1E0

j dx

16p3

d~x2k1/P1!

x~12x!x8

3E d2k'x (2→2)~x,k'!Snv
1 xg~x,k'9 !

3E dy

y~12y!
E d2l'K~x,k' ;y,l'!

3x (2→2)~y,l'!, ~23!

where Eq.~18! has been used for the nonvalence wave fu
tion at the black blob in Fig. 2~c!, andxg corresponds to the
light-front energy denominator at the small white blob in F
2~c!. The explicit form ofxg is given by

xg~x,k'9 !5
1

~12j!FD2

j
2S k'9

21m2

x
1

k'9
21m2

j2x D G ,

~24!

wherek'9 5k'1(x/j)D' . We call xg the light-front vertex
function of a gauge boson.1 In the calculation of the trace
term Snv

1 , one can easily see from Eq.~15! that there is one

1While one can in principle also consider the BS amplitude forxg,
we note that such an extension does not alter our results within
approximation in this work because both hadron and gauge bo
should share the same kernel.
09300
l
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instantaneous contribution from the spectator (pq̄) line in
addition to the on-mass shell contribution given by Eq.~21!,
which leads to

Snv
1 5Sval

1 1
4P1

12x8
x~12x!x8~M22M0

2!. ~25!

Considering the quark-meson and quark-gauge boson
tices together, we also find that the four-body energy
nominator (D4) appearing in Fig. 3 is absent in Eq.~23!.
This absence ofD4 in our nonvalence current matrix ampl
tude given by Eq.~23! is due to the sum of two possibl
diagrams in the light-front time-ordering@see Figs. 4~b! and
~c!#. Summing over the two time-ordered diagrams Figs. 4~b!
and ~c!, one can easily find the following identity, 1/D4D2

g

11/D4D2
h51/D2

gD2
h , which removes the complicate fou

body energy denominator term. We thus obtain the amplit
corresponding to the nonvalence contribution given by E
~23! in terms of ordinary light-front wave functions of had
ron (x (2→2)) and gauge boson (xg) as shown in Fig. 4~d!.
This method, however, requires the relevant opera
K(x,k' ;y,l') which is in general dependent on the involve
momenta connecting the one-body to three-body secto
depicted in Fig. 3. While the relevant operatorK is in general
dependent on all internal momenta (x,k' ;y,l'), the integral
of K over y and l' in Eq. ~23!, which we define asGp

[*@dy#@d2l'#K(x,k' ;y,l')x (2→2)(y,l'), depends only on
x and k' . In this work, we approximateGp as a constant
which has been tested in our previous exclusive semilepto
decay processes@16# and proved to be a good approximatio
at least for the small momentum transfer region. As we sh
show in the next section, the validity of this approximatio
can be checked by examining the frame independence of
numerical results.

IV. MODEL CALCULATION OF SQD

In the previous sections we have derived the skew
quark distribution functionFp(j,x,t) starting from a cova-
riant model. In this section we replace the light-front vert
functionhLF @or equivalentlyx (2→2)(x,k')] by the standard
light-front vertex function@11–13#, which is symmetric in

ur
ns
6-5
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the variables of the constituentqq̄ pair and has been succes
ful in predicting many static properties of ground state m
sons. Different choices of the vertex function are of cou
possible.

Comparing x (2→2) with our light-front wave function
given by Ref.@12#, we identify

x (2→2)~x,k'!5S 8p3

Nc
D 1/2S ]kz

]x D 1/2@x~12x!#1/2

M0
f~x,k'!,

~26!

where the Jacobian of the variable transformationk
5(kz ,k')→(x,k') is obtained as ]kz /]x5M0 /@4x(1
2x)# and the radial wave function is given by

f~k2!5S 1

p3/2b3D 1/2

exp~2k2/2b2!, ~27!

which is normalized as*d3kuf(k2)u251.
Substituting Eqs.~26! and~27! into Eqs.~19! and~23!, we

obtain the valence and nonvalence contributions to the SQ
of the pion in LFQM

F p
val~j,x,t !5

u~x2j!

12
j

2

E d2k'S ]kz8

]x8
D 1/2S ]kz

]x D 1/2

3f~x8,k'8 !f~x,k'!
~k'•k'8 1m2!

Ak'
2 1m2Ak'8

21m2
,

~28!

and

F p
nv~j,x,t !5

u~j2x!

12
j

2

E d2k'

x8~12x8!
S ]kz

]x D 1/2

3xg~x,k'9 !f~x,k'!

3
k'•k'8 1m21x~12x!x8~M22M0

2!

Ak'
2 1m2

3E
0

1

dyE d2l'S ] l z

]y D 1/2K~x,k' ;y,l'!

Al'
2 1m2

3f~y,l'!, ~29!

where we treat the last term in Eq.~29! as a constantGp

which will be fixed by the sum rule expressed in terms
F p

val andF p
nv as

Fp~ t !5E
j

1

dxF p
val~j,x,t !1E

0

j

dxF p
nv~j,x,t !, ~30!

for given2t. We note that Eq.~30! is used as a constraint o
the frame independence of our model.
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In our numerical calculations, we use the model para
eters (m,b)5(0.22,0.3659) GeV obtained in Ref.@12# for
the linear confining potential model. Before we calculate
SQDs and the form factor of the pion, we first consider t
valence contribution to the pion EM form factor and see h
much the nonvalence contribution is needed to obtain
frame-independent result of our model. To this end, we sh
in Fig. 5 the valence contribution@see Fig. 2~b!# to the pion
EM form factor with different values ofj, where the thick
solid, cross~x!, dotted, dot-dashed, and thin solid lines re
resent the purely transverse (j50 andD'Þ0), j50.02, 0.3,
0.6, and the purely longitudinal~i.e., jÞ0 andD'50) re-
sults, respectively, and compare with the experimental d
@22,23#. Note that the purely transverse frame result~thick
solid line! is the exact solution within our model calculatio
As one can see from Fig. 5, the nonvalence contribution
the pion form factor, i.e., the difference betweenj50 and
jÞ0 results, increases asj does. Our special interesting re
gion in this work is the small2t region where the nonva
lence contribution is especially large and our effecti
method for the calculation of the nonvalence contributio
works pretty well.

Including the nonvalence contribution given by E
~29! to the SQDs of the pion, we can determine our co
stant Gp in a frame-independent way by the sum ru
*0

1dxF p
val(j 5 0,x,t)5*j

1 dxF p
val(j Þ0,x,t)1*0

j dxF p
nv(j

Þ0,x,t)5Fp(t). In Fig. 6, we show thej dependence ofGp

for different 2t values, i.e.,2t50 ~diamond!, 0.2 ~black
circle!, 0.5 ~white circle!, and 1.0~black square! GeV2, re-
spectively. As one can see in Fig. 6,Gp shows approxi-
mately constant behavior forj.0.1 at given small2t. It is
not surprising to see thatGp becomes very large asj→0,
becauseF p

nv has the form ofF p
nv5Gp3*0

j . . . from Eq.
~23! and the integral vanishes while a small but nonze
contribution persists inF p

nv . However, this does not cause
significant error in ourGp constant approximation becaus
the nonvalence contribution in the very smallj region is

FIG. 5. The valence contribution to the pion EM form fact
with different skewedness parametersj compared with the experi-
mental data@22,23#.
6-6
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highly suppressed. Therefore the results are consistent
an almost constant value forGp at least for small2t as we
show below. On the other hand, we note that there is
obvious t dependence forGp , which might be the limit of
our constant approximation. In principle, we can obtain
SQDs in a frame-independent way by using the true val
of Gp as shown in Fig. 6 for given (j,t). In the following,
we compare the SQDs and the form factor obtained from
values ofGp ~i.e., frame-independent result of our mode!
with those obtained from a single average value ofGp

5Gave.50.32 for all (j,t) to check the reliability of our
constantGp approximation.

In Figs. 7 and 8, we show the SQDsFp(j,x,t) of the pion
for fixed momentum transfer2t50.2 GeV2 (0<j<0.92)
and 2t51.0 GeV2 (0<j<0.98) but with different
skewedness parametersj, respectively. The solid and cros
~x! lines in the nonvalence contributions are the exact so
tions obtained from true values ofGp and the effective ones
obtained from our average value ofGave.50.32, respectively.
The dotted lines represent the instantaneous contribut
to F p

nv(j,x,t) obtained from true values ofGp . The SQDs
at j50 as shown in Figs. 7~a! and 8~a! correspond to
the ordinary quark distributions with vanishing no
valence contributions. The frame independence of our mo
calculation is ensured by the area under the solid li
(valence1nonvalence) being equal to the pion form factor
given2t. As one can see from Figs. 7~b-c! and 8~b-c!, while
the nonvalence contributions are small for smallj50.3, they
are large for large skewedness parameterj50.9. In our
model calculations, the nonvalence contributions obtai
from true values ofGp ~solid lines in each figure! at 2t
50.2(1.0) GeV2 for j50.3 ~0.3! and 0.9~0.9! are approxi-
mately 11~4! % and 90~85! %, respectively. Compared wit
the exact solutions, the numerical results with a single a
age Gave.50.32 ~cross lines in each figure! are shown to
reproduce the exact ones up to 97% forj50.3 and 90% for
j50.9, respectively. It is also interesting to note that t

FIG. 6. Thej dependence ofGp for different momentum trans
fers 2t50 ~diamond!, 0.2 ~black circle!, 0.5 ~white circle!, and 1
~black square! GeV2, respectively.
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FIG. 7. Skewed quark distributions of the pion at2t
50.2 GeV2 with ~a! j50, ~b! 0.3, and~c! 0.9, respectively. The
solid @cross~x!# line in nonvalence contribution represents the f
result of using true@average# Gp value and the dotted line repre
sents the instantaneous part of the nonvalence contribution.
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instantaneous contributions~dotted lines in each figure! be-
come more pronounced asj→jmax for each2t, which is a
very different feature from a scalar theory model@9# where
there is no such instantaneous contribution. While the ins

FIG. 8. Skewed quark distributions of the pion at2t
51 GeV2 with different ~a! j50, ~b! 0.3, and~c! 0.9, respectively.
The same line code is used as in Fig. 7.
09300
n-

taneous part of the nonvalence contribution vanishes ax
→j25 lime→0(j2e) as shown in Figs. 7 and 8, the n
result ofF p

nv(j,x,t) including the on-mass shell propagatin
part does not2 vanish asx5j and consequently causes
discontinuity to the zero value ofF p

val(j,j,t). However,
such discontinuity atx5j is just an artifact due to the dif
ference in thex→j behavior between the gauge boson v
tex „xg(x,k'9 )… in Eq. ~24! and the hadronic vertex
„x2→28 (x8,k'8 )… in Eq. ~19! of our approximate model calcu
lation. We have indeed confirmed that the discontinuity
x5j does not occur in the limit of a point hadron vertex
already noticed in the QED calculation@8#.3 Thus, for a full
analysis of DVCS satisfying the factorization theorems@24#,
it would be necessary to solve the bound-state BS equa
similar to Eq.~16! for the gauge boson (xg) as well as for
the hadron (x2→2). In the chiral quark-soliton model analy
sis of the nucleon SQDs@24#, the discontinuity atx5j was
imputed to an artifact of neglecting the momentum dep
dence of the constituent quark mass. Both the BS amplit
for xg and the dynamical quark mass anyway would be n
essary for the model improvement. Nevertheless, our ef
tive method seems useful for the present study of the rela
between SQDs and the form factor in the nonperturba
regions.

In Fig. 9, we show our effective solutions of the pion for
factor for j50.3 ~thin solid line! and 0.9~long-dashed line!
cases obtained from our average value ofGp5Gave.50.32
and compare with the exact solution withj50 ~thick solid
line! as well as the experimental data@22,23#. The dotted and

2In fact, this behavior ofF p
nv(j,x,t) at x5j has been anticipated

in @9# without proof.
3We are grateful to M. Diehl for discussion of this point.

FIG. 9. The effective solution of pion form factor using a com
mon averageGp5Gave.50.32 value forj50.3 ~thin solid line! 0.9
~long-dashed line! compared with the exact solution~thick solid
line! as well as experimental data@22,23#. The dotted and dot-
dashed lines represent the valence and instantaneous contribu
to the form factor forj50.9 case, respectively.
6-8
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dot-dashed lines represent the valence and the instantan
contributions to the form factor for the case ofj50.9, re-
spectively. In fact, there are2tmin values for nonzeroj due
to D'

2 >0 @see Eq.~4!#. We thus use the analytic continuatio
by changingD' to iD' in Eqs. ~28! and ~29! to obtain the
result for 0<2t<2tmin where there is no singularity. A
continuous behavior of the form factor near2tmin confirms
the analyticity of our model calculation. Our effective sol
tion ~long-dashed line! with j50.9 shows almost maximum
deviation (&10%) from the exact one~thick solid line! and
the deviation becomes smaller asj reduces. Our effective
method of evaluating the nonvalence diagram with a c
stant operatorGp shows a definite improvement to resto
the frame independence of our model and seems to be a
reliable approximation.

In Fig. 10, we show thenth moments (n51,2,3) of
Fp(j,x,t) given by Eq.~11! at t50 using the true value o
Gp shown in Fig. 6. Although att50 the skewedness pa
rameter vanishes@see Eq.~7!#, we use the model forms fo
F p

val and F p
nv given by Eqs.~28! and ~29! to define the

extrapolation tojÞ0. The thick solid, dotted, and dot
dashed lines represent the total (5valence1nonvalence),
valence, and nonvalence contributions, respectively.
comparison, we also show the nonvalence contribution
tained from the average value ofGp50.32~cross lines!. As

FIG. 10. Thenth momentsFn(j,2t) of SQDs of the pion att
50 using the true value of G. The total results~thick solid lines! for
n52 and 3 are well fitted by the simple polynomial~diamond! in j.
For comparison, we include the nonvalence contributions obta
from the averageGp50.32 ~cross lines!.
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one can see, the first (n51) moment~top thick solid line! is
j independent because the sum rule forn51 yields the
physical pion form factor,F1(j,t)5Fp(t). Also, the higher
moments F2(j,t)~middle thick solid line! and
F3(j,t)~bottom thick solid line! satisfy the polynomiality
conditions@see Eq.~11!# discussed in the previous section.
Fig. 10 we also plot the phenomenological form

Fn~j,t50!.Fn~j51!2~12j!2@Fn~j51!2Fn~j50!#

~31!

shown by the diamonds. The numerical values forFn
v

5Fn(j50) andFn
nv5Fn(j51) are summarized in Table I

Our value ofF3
v is in good agreement with the value ob

tained by the QCD sum rules with nonlocal condensa
@25#.

We also compute thenth moment of thep wave function,
fp(y)5Fp(j50,y,t50), defined by@26#

^yn&5E
21

1

dyynfp~y!, ~32!

wherey52x21. Our numerical results are summarized
Table II and compared with several other theoretical resu
It is interesting to note that our value of^y2& is very close to
the asymptotic value~0.2! of the second moment obtaine
from the well-known asymptotic quark distribution amp
tude fp(y)5 3

4 (12y2), which is quite different from the
early work obtained with QCD sum rules@26# shown in the
second row of Table II. A later calculation using QCD su
rules @27#, shown in the third row, found moments closer
the asymptotic values. However, we emphasize that
Bethe-Salpeter amplitude used in the present work is st
model rather than a solution to the BS equation with a ker
derived from nonperturbative QCD.

Finally, in Fig. 11, we obtain the isosinglet SQDs of th
pion by subtracting the valence partFp(j50,x,t50) from
the nonvalence partFp(j51,x,t50). Our result ~dotted
line! in Fig. 11 is qualitatively very similar to the total isos
calar skewed quark distribution in the pion satisfying the s
pion theorem~Fig. 5 of Ref. @5#!, that is obtained by the
low-energy effective field theory based on the instan
model of the QCD vacuum.

V. CONCLUSION

In this work, we investigated the SQDs of the pion for
small momentum transfer (2t<1 GeV2) region in the light-
front quark model. Since the light-front nonvalence contrib

d

TABLE I. The nth momentsFn(j,x,t50) of the SQDs for the pion whereFn
v5Fn(j50) and Fn

nv

5Fn(j51) represent pure valence and pure nonvalence contributions, respectively.

Model F2
v@F2

nv# F3
v@F3

nv# F4
v@F4

nv# F5
v@F5

nv# F6
v@F6

nv# F7
v@F7

nv#

Ours 0.503@0.623# 0.312@0.433# 0.215@0.322# 0.16@0.25# 0.123@0.201# 0.098@0.165#
@5# 0.25@–#

@25# 0.29@–#
6-9
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tions to the SQDs of the pion are large especially at sm
momentum transfer region as shown in Fig. 5, it is ve
crucial to take them into account to guarantee the frame
dependence of the model. Applying our effective treatm
@16#, i.e., the nonvalence BS amplitude given by Eq.~18! of
the nonvalence contribution to the SQDsFp (5F p

val

1F p
nv) of the pion, we expressF p

nv @see Eqs.~23! and~29!#
in terms of ordinary light-front wave functions of a gaug
boson and a hadron and calculate this nonvalence cont
tion numerically.

The main approximation in our effective calculatio
is the treatment of relevant operatorK(x,k' ;y,l') in
Eq. ~23! connecting the one-body to three-body sec
~see Fig. 4! by taking a constant Gp via Gp

[*@dy#@d2l'#K(x,k' ;y,l')x (2→2)(y,l'), which in general
depends onx and k' . The reliability of this constant ap
proximation was checked by examining the frame indep
dence of our numerical results using the sum rule given
Eq. ~30!, i.e., the exact results ofFp(j,x,t) and Fp(t) ob-
tained from the true values ofGp given by Fig. 6 were
compared with those obtained from our single average va
of Gp50.32 for all (j,t). The numerical results of our con
stantGp prescription have shown definite improvement~bet-
ter than 90% accuracy forj&0.9) to restore the frame inde
pendence of our model~see Figs. 7–9! and our prescription
seems to lead to a quite reliable approximation. Our mo
also satisfies the polynomiality conditions forn52 and 3
moments of the SQDs~see Fig. 10! and our value ofF3

v is in
good agreement with the QCD sum-rule result with nonlo
condensates@25#. Moreover, the ordinary quark distributio
amplitude of the pion@fp(y52x21)# can be obtained from
the two-pion distribution amplitude inj50 and t50 limit
where one of the produced pions becomes soft. Our resu
fp is very close to the asymptotic quark distribution amp
tude consistent with the CLEO measurements@29#. The isos-
inglet skewed quark distribution amplitude in the pion~see

TABLE II. The nth momentŝ yn& of the ordinary quark distri-
bution amplitudefp(y) for the pion.

Model ^y1& ^y2& ^y3& ^y4& ^y5& ^y6&

Ours 0.0 0.239 0.0 0.109 0.0 0.062
@26# 0.0 0.43 0.0 0.24 0.0 0.15
@27# 0.0 0.25 0.0 0.12 0.0 0.07
@28# a 0.0 0.25 0.0 0.11 0.0 0.06

aFor the Gaussian parameterb50.36 GeV in Ref.@28#.
J.
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Fig. 11! is also consistent with the result satisfying the lo
energy soft pion theorem@5#.

For the model improvement, however, it would be nec
sary to consider not only the dynamical quark mass d
cussed in our previous work@14# but also the BS amplitude
for the quark-gauge boson vertex to remove the appa
discontinuity atx5j as shown in Figs. 7 and 8. Especiall
in exploring the new physics associated with the SQDs
the treatment of the pion form factor, we note from Eq.~9!
that the definition ofFp involves the matrix element of the
light-front operator present in the three-point approach
quark distributions of hadrons in scaling regions. As w
shown in Ref.@30# the treatment of such operators can le
one to consider nonlocal quark condensates, which can in
duce nonperturbative QCD structure in the quark-gauge
son vertex. This will be a subject of future research by
authors.
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FIG. 11. The SQDs of the pion att50 using the true value of
G(50.384). The thick solid, solid, and dotted lines repres
Fp(j50,x,t50)~valence!, Fp(j51,x,t50)~nonvalence!, and
their differenceFp(j51,x,t50)2Fp(j50,x,t50), respectively.
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