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v dependence of the scalar field in Brans-Dicke theory
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This article examines the claim that the Brans-Dicke scalar fieldf→f01O(1/Av) for largev when the
matter field is traceless. It is argued that such a claim cannot be true in general.
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Brans-Dicke~BD! theory @1# is generally regarded as
viable alternative to Einstein’s theory of general relativi
This theory has recently regained interest because, in
Einstein conformal frame, it turns out to be the low ener
limit of many theories of quantum gravity, such as the sup
symmetric string theory@2# or Kaluza-Klein theory@3#. The
theory is relevant also in the extended inflationary scen
of cosmology @4#. The BD theory, which accommodate
Mach’s principle, describes gravitation through a spacet
metric (gmn) and a massless scalar field (f) that couples to
both matter and spacetime geometry. The strength of the
pling is represented by a single dimensionless constantv. In
the Jordan conformal frame, the BD action takes the form

A5
1

16pE d4xA2gS fR2
v

f
gmnf ,mf ,n1LmatterD ~1!

whereLmatter is the Lagrangian density of ordinary matter.
variation of Eq.~1! with respect togmn andf gives, respec-
tively, the field equations

Rmn2
1

2
gmnR5

8p

f
Tmn1

v

f2
~f ,mf ,n2gmnf ,sf ,s!

1
1

f
~¹m¹nf2gmnhf!, ~2!

hf5
8pT

~2v13!
~3!

whereR is the Ricci scalar, andT5Tm
m is the trace of the

matter energy momentum tensor.
In the weak field approximation, the metric tensor can

written as

gmn5hmn1hmn

where hmn is the Minkowskian metric tensor. Similarlyf
5f01j, wheref0 is a constant. Using these approxim
tions in Eqs.~2! and ~3!, one concludes that@5#
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f5f01OS 1

v D ~4!

and

R;OS 1

v D . ~5!

Thus it appears from above equations that the po
Newtonian expansion of BD theory reduces to general re
tivity in the infinite v limit. But it was reported@6# that a
number of exact solutions of BD theory do not go over to t
corresponding solutions of general relativity in the limitv
→`. Recently, Banerjee and Sen@7# illuminated this point
through the study of the BD field equations and pointed
that, when the trace~T! of the energy momentum tensor va
ishes, the asymptotic behavior off is not represented by Eq
~4! but follows the relation

f5f01OS 1

Av
D . ~6!

Faraoni@8# also claimed to have found a similarv depen-
dence. As a result, the BD theory does not tend to gen
relativity in the v→` limit. This feature is significant be-
cause the lower limit ofv(;500) for the solar system mea
surements is fixed using theO(1/v) behavior in the standard
parametrized post-Newtonian~PPN! approximation. It is
therefore important to study the situation more close
which we do here.

We noticed that Eq.~6! is not valid in general. In this
Brief Report we will discuss some counterexamples to E
~6! in BD theory. We will also point out some assumptio
inherent in@7# and @8# that led to Eq.~6!.

WhenT50, BD field equations yield

hf50 ~7!

and

R5
v

f2
~f ,af ,a!. ~8!

From the above equation, Banerjee and Sen@7# argued thatf
will exhibit the asymptotic behavior as given in Eq.~6!. But
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such a conclusion holds only if R is assumed to be indep
dent ofv. This is a strong condition which is not justified i
general. Note that, Eq.~8! contains two unknown function
of v: R andf. Hence if one knows the dependence onv
of one of the functions, the same for the other could
obtained from Eq.~8!. It is true that thev independence ofR
leads to Eq.~6! but there is no way to know the functiona
behavior ofR a priori unless one considers specific sol
tions. On the other hand, it is known that for a number
exact solutions of BD theory having traceless source,R is a
function of v.

To clarify the situation further, let us consider the sta
spherically symmetric vacuum solution of the BD theo
given by Brans and Dicke@1#:

ds25e2adt22e2b~dr21r 2du21r 2 sin2 udf2! ~9!

where

e2a5S 12B/r

11B/r D
2/l

~10!

e2b5S 11
B

r D 4S 12B/r

11B/r D
2(l2C21)/l

~11!

f5f0S 12B/r

11B/r D
C/l

~12!

with

l5S @C11#22CF12
vC

2 G D 1/2

. ~13!

The Ricci scalar for the above metric is given by

R5
4vC2B2r 4

l2
~r 1B!24$11[(C11)/l] %

3~r 2B!24$12[(C11)/l] %. ~14!

To establish their claim, Banerjee and Sen leaveC to be
arbitrary but it is not clear to what extent it is so. Any choi
of C arbitrarily dependent onv will not renderR to be v
independent. Only when eitherC is an arbitrary but fixed
constant orC(v)}1/Av for large v doesR become effec-
tively ~but not exactly! independent ofv. Therefore, the ar-
bitrariness ofC as used by Banerjee and Sen is sever
constrained. On the other hand, it is well known that
match the BD class I metric@1# with weak field post-
Newtonian expansion of the BD field equations~which is a
standard and probably unique way to fix unknown consta
present in vacuum solutions!, one must specifyC521/(2
1v). And under this choiceR goes asO(1/v) and so does
f. There are other examples, too. For instance, conside
stationary charged black hole solutions in BD theory recen
obtained by Kim@9# given by
08750
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ds25D22/(2v13) sin24/(2v13)uF2S D2a2 sin2 u

S Ddt2

2
2a sin2 u~r 21a22D!

S
dtdf

1S ~r 21a2!22Da2sin2u

S D sin2 udf2G
1D2/(2v13) sin4/(2v13)uS S

D
dr21Sdu2D ~15!

F~r ,u!5D2/(2v13) sin4/(2v13)u ~16!

Am5
er

S
~dm

t 2a sin2 udm
f! ~17!

where S5r 21a2 cos2 u and D5r 222Mr 1a21e2 with
M , a, and e representing the Arnowitt-Deser-Misne
~ADM ! mass, angular momentum per unit mass and elec
charge, respectively. In this case the source is electrom
netic field and hence traceless. The above solution reduc
the standard Kerr-Newman solution@10# in the limit v→`.
The curvature scalar for the metric is given by

R5vS 4

2v13D 2 1

S
sin24/(2v13)u@~r 2M !2D2(2v15)/(2v13)

1cot2 uD22/(2v13)#. ~18!

It is evident from Eqs.~16! and~18! that both the scalar field
and scalar curvature go asO(1/v) contradicting Eq.~6!.

Faraoni@8# claimed to have deduced a rigorous behav
of f in terms ofv supporting the result of@7#. But the above
examples~BD class I and Kim’s black hole solution! already
contradict such a claim. The author@8# used the conforma
invariance of BD theory under the transformations

g̃mn5f2agmn ~19!

f̃5f122a ~20!

ṽ5
v26a~a21!

~122a!2
, ~21!

aÞ 1
2 . Starting with the fixed value ofv50, Faraoni ob-

tained from the above equations

a5
1

2 S 16
A3

A312ṽ
D ~22!

which gives asa→ 1
2 , ṽ→`. Under this limit, Eq.~20!

gives

f̃→f01
1

Aṽ
ln f~v!. ~23!
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It was argued that thef(v) corresponding tov50 does not

alter in the limitṽ→` and hence one ends up with a beha
ior similar to Eq.~6!. But this argument should be taken wi
care as one may choosef(v) to depend on the same param
etera that appears in the conformal transformation, so t
f(v) changes under transformation~21! even in the limit
a→1/2. A simple example will illustrate the point. Suppo
f(v);11(122a)/Av26a(a21). Under the transfor-
mation~21!, f(v)→x(ṽ);11(1/Aṽ). Then we have from
Eq. ~23! that f̃→f01O(1/ṽ). The inclusion of the param
etera in the specific choice off that we made in the abov
example is not unreasonable as the BD field equations a
an equivalence class of solutions forf with a parametera
~see@8#!, thougha does not appear in the BD action. In th
sense,a could be interpreted as some kind of agauge pa-
rameter. Therefore, a solution corresponding to the choice
a particulargauge, namely,a50, does not have any speci
status and one is free to retaina in the expression forf. The

conclusion thatf̃→f01O(1/Aṽ) for largeṽ thus does not
08750
-

t

it

f

necessarilyfollow from Eq. ~23!. However, iff(v) is cho-
sen not to depend on the parametera that describes the

conformal transformation, the transformed scalar fieldf̃(ṽ)
will truly behave like Eq.~6! in accordance with the claim o
Ref. @8#.

We argue that the functionalv independence of the Ricc
scalarR is not generallytrue. Consequently, the dependen
of the BD scalar fieldf on the coupling constantv essen-
tially remainsarbitrary whenT50 and not necessarily like
the one expressed in Eq.~6!. Usually one fixes the constant
appearing in the exact solutions forf using physical consid-
erations: In the context of the Oppenheimer-Snyder colla
in the BD theory, this point is illustrated in Refs.@11,12#.
Also, very recently, it has been discussed by Miyazaki@13#
that the asymptotic behavior off could be fixed asf
→O(1/v) due to the presence of cosmological matter dis
bution for whichTÞ0 although for local matter distribution
T could be zero. This idea is perfectly consistent with t
Machian nature of the Brans-Dicke theory.
or-
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