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A systematic analysis is presented of compactifications of the type 1IB superstring aixAei$ wherel”
is a non-Abelian discrete group. Every possiblevith orderg=31 is considered. 45 such groups exist but a
majority cannot yield chiral fermions due to a certain theorem that is proved. The lowest order to embrace the
non-SUSY standar&U(3) X SU(2) X U (1) model with three chiral families iE =D ,X Z3, with g= 24, this
is the only successful model found in the search. The consequent uniqueness of the successful model arises
primarily from the scalar sector, prescribed by the construction, being sufficient to allow the correct symmetry

breakdown.
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[. INTRODUCTION sponding to the weak interaction scale. There is also a po-

tentially serious problem with the proton lifetime.

In particle phenomenology, the impressive success of the Conformality is inspired by superstring duality and as-
standard theory based &U(3)XSU(2)xU(1) has natu- sumes that the particle spectrum of the standard model is
rally led to the question of how to extend the theory to higherenriched such that there is a conformal fixed point of the
energies. One is necessarily led by weaknesses and incorfénormalization group at the TeV scale. Above this scale the
pleteness in the standard theory. If one extrapolates the stagoupling do not run so the hierarchy is nullified.
dard theory as it stands one fintlpproximate unification Conformality is the approach followed in this paper. We
of the gauge couplings at 10'® GeV. But then there is the shall systematically analyze the compactification of a type
hierarchy problem of how to explain the occurrence of the 1B superstring on Ad$x S°/T" whereT is a discrete non-
tiny dimensionless ratio-10 ** of the weak scale to the Abelian group.
unification scale. Inclusion of gravity leads tesaperhierar- The duality between weak and strong coupling field theo-
chy problem of the ratio of the weak scale to the Planckries, and then between all the different superstring theories
scale,~ 10" GeV, to even tinier~10~ 1" dimensionless ra- has led to a revolution in our understanding of strings.
tios. Although this is obviously a very important problem Equally profound, is the AdS conformal field theci@FT)
about which conformality in itself is not informative, we duality which is the subject of the present article. This AdS
shall first discuss the hierarchy rather than the superhieraffFT duality is between string theory compactified on anti—
chy. de-Sitter space and conformal field theory.

There are four well-defined approaches to the hierarchy Until very recently, the possibility of testing string theory
problem: (1) supersymmetry(2) technicolor, (3) extra di- seemed at best remote. The advent of AdS/CFT’s and large-
mensions, and4) conformality. scale string compactification suggest that this point of view

Supersymmetriias the advantage of rendering the hierar-may be too pessimistic, since both could lead-tb00-TeV
chy technically natural: once the hierarchy is put into theevidence of strings. With this thought in mind, we are en-
Lagrangian it need not be retuned in perturbation theorycouraged to build AdS/CFT models with realistic fermionic
Supersymmetry predicts superpartners of all the known passtructure, and reduce to the standard model betdwv TeV.
ticles, and these are predicted to be at or below a TeV scale Using AdS/CFT duality, one arrives at a class of gauge
if supersymmetry is related to the electroweak breaking. Infield theories of special recent interest. The simplest compac-
clusion of such hypothetical states improves the gauge couification of a ten-dimensional superstring on a product of an
pling unification. On the negative side, supersymmetry doe#\dS space with a five-dimensional spherical manifold leads
not explain the origin of the hierarchy. to an N=4 SU(N) supersymmetric gauge theory, well

Technicolorpostulates that the Higgs boson is a composknown to be conformally invarianfl]. By replacing the
ite of a fermion-antifermion pair bound by a negechni- ~ manifold S° by an orbifold S°/T", one arrives at less super-
color strong dynamics at or below the TeV scale. This ob-symmetries corresponding f6=2, 1 or 0 dependin§2] on
viates the hierarchy problem. On the minus side, nowhether(i) 'CSU(2), (i) 'CSU(3) but '¢SU(2), or
convincing simple model of technicolor has been found. (i) TCSU(4) butl’@ SU(3) respectively, wher€ is in all

Extra dimensiongan have a range as large as 1(TeY/) cases a subgroup &U(4)~SQ(6), theisometry of theS®
and the gauge coupling unification can occur quite differ-manifold.
ently than in only four spacetime dimensions. This replaces It was conjectured in Refl3] that suchSU(N) gauge
the hierarchy problem with a different fine-tuning question oftheories are conformal in thd— o limit. In Ref. [4] it was
why the extra dimension is restricted to a distance correeonjectured that at least a subset of the resultant nonsuper-
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symmetricN=0 theories are conformal even for finitd, ~ esting non-Abelian case has=24, and gives three chiral
and that one of this subsets provides the right extension damilies in a Pati-Salam-type modgl6].
the standard model. Some first steps to check this idea were Before proceeding to details, it is worth reminding the
made in Ref[5]. Model building based on an Abelidhwas ~ "éader that the conformal field theory that it exemplifies
studied further in Refs[6—8§], arriving in Ref.[8] at an should be fret_a of aII_dwergc_ances, even logarithmic ones, _|f
SU(3)’ model based o'=Z, which has three families of the conformality conjecture is correct, and be completely fi-
chiral fermions, a correct value for ghand a conformal nite. Fgrther' the theory IS originating f".)m a sgperstrmg
scale~10 TeV,. theory in a hlgh_e_r dlmen5|o(10) qnd contains grawt{/l?—_

The case of non-Abelian orbifolds bases on non-AbeIiariﬁ]eggycgg?ﬁzﬁgg?gig a?fst:se?slst;r?r?g:-?r:rgc?rr;/wl)nn?:]gré\lgtTogs
gugatson%tep;:::/'zotl;]i{ i??senasgﬁgiIX§li Osrt:fgfﬂt Fr)r?(r)trlgu%athwe derive it, gravity is absent because we have not kept these

- L .graviton modes(of course, their influence on high-ener
ematically sophisticated. However, we shall show here that FIF . g 9y

. : : ysics experiments is generally completely negligible un-
can be handled systematically as in the Abelian case, a ss the compactification scale is “largi20]); here we shall

leads to richer structures and interesti_ng resul_ts. _neglect the effects of gravity.

. In such constructions, the cance!lanon of chml anomahgs It is worthwhile noting the degree of constraint imposed
in the four-dimensional theory, as is necessary in extensiog o symmetry and particle content of a model as the num-
of the standard modd.g. Refs]9,10D, follows from the ber of irrepsNg of the discrete group’ associated with the

fact that the progenitor ten-dimensional superstring the°r¥:hoice of orbifold changes. The number of gauge groups

has a cancghng hexagon anpmél;_l]. grows linearly inNg, the number of scalar irreps grows
<3Vge_|%0enss;dv3;r2” dgzz;ﬁ\)zzhﬁn di';ﬁlr ?;eRge{rﬂ(;lszlsﬂ Ofl_r?é?gr roughly quadratically witiNg, and the chiral fermion con-

' . o tent is highlyl" dependent. If we require a minimBlthat is
are exact_ly 45 S.UCh _non-Abehar_l groups. Because the gaqurge enough for the model generated to contain the fermions
group arrived at in this constructidf] is ©;SU(Nd;) where of the standard model and have sufficient scalars to break the

d; are the dimensions of the'lrredumble representatiors, of symmetry to the level of that of the standard model, then
and one can expect to arrive at models such as the Pati:

. =QXZ; appears to be that minimal choif21].
SaIamSU(4)><'S.U(2)><SU'(2) model[16] by chopsmgN Although a decade ago the chances of testing string
=2 and combining two singlets and a doublet in thef

. theory seemed at best remote, recent progress has given us
SU(4). Indeed we sha!l ShOW. that SUCh. an accommodauorhope that such tests may indeed be possible in AdS/CFT’s.
of the standard model is po_53|ble by usmg_a_non-Abdﬂan The model provided here demonstrates that the standard
The procedures for building a model within such a con-

model can be accommodated in these theories, and suggests
formality approach are the following(l) Choosel'. (2) ug

; o= the possibility of a rich spectrum of new physics just around
Choose a proper embeddifgCSU(4) by assigning the e Tev corner.

components of thd of SU(4) to irreps ofl", while at the
same time ensuring that thl&eof SU(4) is real.(3) Choose
N, in the gauge grou®;SU(Nd;). (4) Analyze the patterns [l. NON-ABELIAN GROUPS WITH ORDER g=31
of spontaneous symmetry breaking.

In the present study we shall most often choNse2 and
aim at the gauge groupU(4)x SU(2)X SU(2). To obtain

From any good textbook on finite group$2] we may
find a tabulation of the number of finite groups as a function
. ; oS of the orderg, the number of elements in the group. Up to
chiral ferm|onf,, Itis neces§a|[‘ﬁ] thqt th_e4 of SU.(4) be_ order 31 there is a total of 93 different finite groups of which
complex: 4+ 4* . Actually this condition is not quite suffi- slightly over one hal{48) are Abelian

cient to ensure chirality in the present case because of the Among finite groups, the non-Abelian examples have the
pseudoreality 081)(2). Wemust ensure that theis not just advantage of nonsinglet irreducible representations which

pseudoreal. . . can be used to interrelate families. Which such group to se-
This last condition means that many of our 45 CanOI'date?ect is based on simplicity: the minimum order and most
for T do not lead to chiral fermions. For exampl€, ... omical use of representatidiig—15

=Q2,CSU(2) has irreps of appropriate dimensionalities for ) o4 ;s first dispense with the Abelian groups. These are all
our purpose, but wittN=2 it will not sustain chiral fermions made up from the basic uni,, the orderp group formed

. p!
underSU(4)xX SU(2) X SU(2) because these irreps are all, from the pth roots of unity. It is important to note that the

like hS U(z)i pseudor%ajl.Aplpllying the ruI(T t?at4| must be pRroductZyZq s identical toZq if and only if p andq have
neither real nor pseudoreal leaves a total of only 19 possiblg, common prime factor.

non-Abelian discrete groups of ordg31. The smallest If we write the prime factorization of as

group which avoids pseudoreality has order 16 but gives

only two families. The technical details of our systematic

search will be given in Secs. V and VI. The simplest inter- g:H p:ﬁ, (1)
I

INote that were we usiny=3, then a pseudoredlwould give ~ Where the product is over primes, it follows that the number
chiral fermions. N.(g) of inequivalent Abelian groups of orderis given by
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TABLE |. The non-Abelian finite groups of ordex32 con-

Na(g):g P(ki), (2)  structed from direct products @y, Dy, Qon, Sy, andT.
where P(x) is the number of unordered partitions &f g Ds=S,
For example, for ordeg=144=23” the value would be g b SQ:Q
Na(144)=P(4)P(2)=5x2=10. Forg=<31 it is simple to “’D 4
evaluateN,(g) by inspection.N,(g) =1 unlessg contains 12 D Q5 T
a nontrivial power k=2) of a prime. These excep- [, Gb &
tions are Na(g=4,9,12,18,20,25,28)2, Nu(8,2427)=3, ¢ Ds.0s zz><704 2,50
andN,(16)=5. This confirms that 18 D, Z,xD,
31 20 D10,Q10
> Nu(g)=48. (3 22 Dy
g=1 24 D12,Q12,22XDg,Z5XQg,Z5XT,
Z3XDy,Z3XQ,Z,XD3,S,
We do not consider the Abelian cases further in this paper. ¢ Dy
Of the non-Abelian finite groups, the best known are per-g D14.Qu

haps the permutation grouf§ (with N=3) of orderN. The 5,
smallest non-Abelian finite group &; (=Dj), the symme-

try of an equilateral triangle with respect to all rotations in a
three dimensional sense. This group initiates two infinite segenera[15]. Dy, for oddN, has two singlet representations

ries Sy and Dy . Both have elementary geometrical signifi- 1,1 andm=(N—1)/2 doublets 2, (1=j=<m). The muli-
cance since the symmetric permutation gr&yps the sym- piication rules are ) '

metry of the N-plex in N dimensions while the dihedral

D15,DgXZ3,D3XZ5

group Dy is the symmetry of the planax-agon in three 1'X1'=1, 1'X2}=2(, (4)
dimensions. As a family symmetry, tH&, series becomes

uninteresting rapidly as the order and the dimensions of the 21X 2(jy=0ij(1+ 1)+ 2(minfi+j.N-i-])
representions increase. Orfly andS, are of any interest as

symmetries associated with the particle spectfddi, also +(1=6i))2(i-j)) - ®)

the order(number of elemenjsof the Sy groups grow fac-
torially with N. The order of the dihedral groujs, are 2N —1) doublets 2, (1=<j<m—1), wherem=N/2 with mul-
and so increase only linearly witN, and their irreducible tiolicati ) '

. : ) - tiplication rules
representations are all one and two dimensional. This is

For evenN, Dy has four singlets 1,11”,17” and (m

reminiscent of the representations of the electroweak 1'X1'=1"X1"=1"x1"=1, (6)
SU(2), used in nature. Each is a subgroup o©(3) and
has a counterpart double dihedfalso known as dicyclic 1'x1"=1"1"%x1"=1":1"x1"=1",
group Q. of order AN, which is a subgroup of the double @)
coveringSU(2) of O(3).

With only the use oDy, Q,y, Sy, and the tetrahedral 1"X21=2), (8)
groupT (of order 12, the even permutations subgrousgof
we find (see Table)l 32 of the 45 non-Abelian groups up to 1"X2()=1"X2(=2(mj) ©)
order 31, either as simple groups or as products of simple
non-Abelian groups with Abelian groupgNote that D 2(1)X 20 =2[j1 T+ 2(min(j +k.N-] k) (10

=Z,XDg3, D;p=2Z,XDsandD,,~Z,XD5.) Some of these it k%], (M=])
groups are familiar from crystallography and chemistry, but I 1,
the non-Abelian groups that do not embedsi(2) are less 20X 2y =2(minzjN-2ip + 11’ (12)
likely to have seen wide usage.
There remain 13 other groups formed by twisted products TABLE II. All non-Abelian finite groups of order:32 contain-
of Abelian factors. Only certain such twistings are permis-ing twisted products of Abelian factors.
sible, namely(completing ally<31) those given in Table II.
It can be shown that these 13 groups exhaust the classificg-
tion of all inequivalent finite groups up to order 812]. 16 7,XZg (two, excludingDg), ZyX Z4,Z,X (Z,X Z,) (two)
Of the 45 non-Abelian groups, the dihedral3() and g

double dihedrals @,y), of order N and 4N respectively, 2% (233 Z5)
form the simplest sequences. In particular, they fall into sub- 24525
groups of O(3) and SU(2) respectively, the two simplest 21 Z3XZ;
non-Abelian continuous groups. 24 Z3XQ,Z3X Zg,Z3X Dy
For Dy and Q,y, the multiplication tables, as derivable 27 ZoX Z3,Z3% (23X Z3)

from the character tables, are simple to express in
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if j#m/2, sults; or else4 is pseudoreal, e.g.,42,+2,. In this case
one can check that the embedding is consistent becalise (
2() X 2(m-j)= 2m-2j| + 1" +1" (120 ®4),nisymmetriciS real. But it is equally easy to check that
the product of this pseudored! with the complete set of
irreducible representations @Jg is again real and that the
resultant fermions are nonchiral.

The lesson is contained in the following theorefo: ob-
This last is possible only ifn is even and hence ikl is  t@in chiral fermions from compactification ohdSsx S/T,
divisible by 4. the em_bedd_lng of" in SU(4) must be such that the 4 of

For Q,y, there are four singletel, 1/, 1", and 1) and SU(4) is neither real nor pseudoreal
(N—1) doublets 2y [1<j<(N—1)]. The singlets have

and

202X 2mp=1+1"+1"+1", (13

multiplication rules IV. CHIRAL FERMIONS FOR ALL NON-ABELIAN g=31
11— Looking at the full list of non-Abelian discrete groups of
1X1=1'x1"=1 14 . L
' (149 orderg=31 as given explicitly in Ref.15] we see that of the
1"%1"=1"x1"=1" (15) 45 such groups 32 are simple groups or semidirect products
' thereof; these 32 are listed in the table on page 4691 of Ref.
1'x1"=1", 1"x1'=1" (16) [15], and reproduced in Sec. Il above. The remaining 13 are

formed as semidirect product grou8DPG’9 and are listed
for N=(2k+1), but are identical to those fa@, whenN N the Table on page 4692 of Refl5] and in Sec. II. We

=2k. The products involving the 3 are identical to those shall follow this classification closely.
given forDy (N even above. Using the pseudoreality considerations of Sec. Ill, we can

This completes the multiplication rules for 19 of the 45 Pareé d,own the full list of 45 to only 19 which include 13
groups. As they are not available in the literature, and some>PPG'S. The lowest order non-Abelian grolipwhich can
what tedious to work out, we have provided complete mul-éad to chiral fermions ig=16. The only possible orders

tiplication tables for all the non-Abelian groups with order 9=31 are the seven valuesg=16(§5SDPGY),
g=<31 in the Appendix. 18(21SDPQG]), 20(41sSDPQq]), 21(1sSDPQq]),
24(6[3SDPGY), 27(42SDPGY), and 30(20SDPQ)).

In parentheses we show the number of groups at gydand
the number of these that are SDPG’s is in square brackets;
Theorem: A pseudorea of SU(4) cannot yield chiral they add to(1913 SDPG'Y). We shall proceed with the
fermions In Ref.[6] it was proved that if the embedding in analysis systematically, in progressively increasing magni-
SU(4) is such that is real,4=4*, then the resultant fermi- tudes ofg.
ons are always nonchiral. It was implied there that the con- g=16. The nonpseudoreal groups number five, and all are
verse holds, that i#t is complex,4# 4%, then the resulting SDPG's. In the notation of Thomas and Wofd2], which
fermions are necessarily chiral. Actually fBrcSU(2) one  we shall follow for definiteness both here and in the Appen-
encounters the intermediate possibility that thes pseu- dix, they are 16/8, 9, 10, 11, and 13. So we now treat these in
doreal In the present section we shall show that is pseu-  the order they are enumerated by Thomas and Wood. Again,
doreal then the resultant fermions are necessarily nonchiraihe relevant multiplication tables are collected in the Appen-
The converse now holds: if thé is neither real nor pseu- dix. N
doreal then the resultant fermions are chiral. Group 16/8; also designate(lz,xZ,) X Z,. This group
ForI'CSU(2) it is important that the embedding be con- has eight singlets;11,, . . ., 15 and two doublets 2and 2.
sistent with the chail’ CSU(2)C SU(4); otherwise the em- In the embedding of 16/8 i8U(4) we must avoid the sin-
bedding is not a consistent one. One way to see the incon-

IIl. MATHEMATICAL THEOREM

sistency is to check the reality 6= (4®4)antisymmetric If TABLE lll. Chiral fermions for 16/8 with4=(2,,2,).
6+ 6* then the embedding is clearly improper. To avoid this
inconsistency, it is sufficient to include only complete irre- L L 1, L, L 1% 1 1l 2y 2
ducible representations &U(2) in the4 of SU(4). 1, % X

An explicit example will best illustrate this propriety con- 1 % %
straint on embeddings. Let us considér Qg, the dicyclic 1 X
group of orderg=12. This group has six inequivalent irre- 13 % X
ducible representations 1;,11”, 1”7, 2,, and 2. 1, 1, and 14 % %
2, are real. ¥ and 1” are a complex conjugate pair, ang 2 15 % %
is pseudoreal. To embell=QzCSU(4) we must choose _°
from the special combinations which are complete irreduc—l7 ii:

8

ible representations U(2) namely 1, 222,, 3=1'+2;
and 4=1"+1"+2,. In this way the embedding either 2, XX XX XX XX
makes the4 of SU(4) real, e.g., £1+1'+2;, in which 2, xx xx xx xx

case the theorem of Reff6] applies, and non-chirality re-
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TABLE IV. Chiral fermions for 16/8 withd=(1,,15,2;). Because 2=23 form a complex conjugate pair, the em-
bedding4=(2,,2,) is pseudoreal4=4* and the fermions
are nonchiral as is easily confirmed. For this embedding, the

1, X X X result is nonchiral for either of the casés=4, or 4,=4,.

1, X X X (In the future, we shall not even consider such trivially real

15 X X X nonchiral embeddings.

1, X X X Finally, for 16/8, consider the embeddidg- (1,,15,2);

15 X X X see Table IV[In general there will be many equivalent em-

16 X X X beddings. We will give one member of each equivalence

1, X X X class. Cases that are obviously nonchivactorlike will, in

1g X X X general, be ignored, except for a few instructive examples at
order 16 and 18.These examples of embeddings fbr

2, X X X X X X - ; o

2, X X x X % x =16/8 clearly show how the number of chiral families de-

pends critically on the choice of embeddibig- SU(4). To
actually achieve a model that is phenomenologically viable,
glet 1;; otherwise there will be a residual supersymmetryWe must study the possible routes through SSB for each
with A=1. Consider the embedding defined 4y (2,,2;). chiral model. We postpone this until we find all models of
To find the surviving chiral fermions we need to proddct Potential interest.
with all ten of the irreps of 16/8. The results are given in  Group 16/9; also designated (Z,xZ,)XZ,]". This
Table IlI. group has irreps which comprise eight singlets 1. .,1g

If we choose N=2, the gauge group isSU(2)°  and two doublets 22,. With the embeddingi=(2;,2,)
X SU(4)?, and the entries in Table Il correspond to bifun- and using the multiplication table from the Appendix, we
damental representations of this grdepg., the entry nearest arrive at the fermion bilinears. These are nonchiral and the
the top right corner at the position {12) is the represen- model has no families. This was the only potentially chiral
tation 2(2,1,1,1,1,1,1,1;8)]. If we identify the diagonal embedding. In what follows, nonchiral models will not be
subgroup of the first fouBU(2)’s asSU(2), , that of the displayed, however, as the unification scale can be rather low
second four asSU(2)g, and that of the twaSU(4)'s as  in AAS/CFT models, it would also be interesting to investi-
color SU(4), the result is nonchiral due to the symmetry gate vectorlike models of this class.

about the main diagonal of the above table. Group 16/10; also designated,X Z,. The multiplication
On the other hand, if we identif¢, with 4, there are table is identical to that for 16/9, as mentioned in the Appen-
potentially eight chiral families dix; thus the model building for 16/10 is also identical to
16/9 and merits no additional discussion.
8[(2,1,4)+(1,2,_4)] (17 Group 16/11; also designatedgizz. Again there are

eight singlets and two doublets. The singlets; 4 ; are real
underSU(2), X SU(2)gX SU(4). This is the maximum to- While the other singlets fall into two conjugate pairg 1
tal chirality for this orbifold, but, as we will see in Sec. V, the =1} and J=15 . The doublets are complex;2 25 .
allowed chirality at any stage is as usual determined by spon- The multiplication table in the Appendix includes the
taneous symmetry breakin@SB generated in the scalar products 1357X2:,=2;, and 1 469<21,=25;. Also
sector. In this section we give the maximum chirality for 2,X2,=2,X2,=1,+1,+1¢+1g, wWhile 2;X2,=1,+14
each orbifold; in Sec. V we study SSB for those models with+ 15+ 1,. This means that there are no interestiffepiti-
sufficient chirality to accommodate at least three families. mate and chiralembeddings of the type41+2 or 2+2.

TABLE V. Chiral fermions for 16/11 withid=(1,,1,,1,,1,).

1, (x)*

1, (x)*

13 (x)*

1, (x)*

15 (x)*

1g (x)*

1; (x)*
1g (x)*

2y (x)*
2, (x)*
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TABLE VI. Chiral fermions for 16/11 withtd=(1,,1,,1,,1,).

1g X X X X

2, X X X X
2, X X X X

The most chiral possibility is the embeddingt All four singlets are real: &=1;. The three doublets
=(1,,1,,1,,1,) which leads to the fermions in Table Mn comprise a conjugate complex paif=22% # 27 and the real
this table, (<)*=(x x x x).] This gives rise to twelve chi- 2,=2% .

ral families if we setN=3 and identify and 3=3,=35 With the embeddingt=(13,14,2,) the resultant model
=3g, 3,=3¢ and 3=3. UnderSU(3)3 the chiral fermions  has the chiral fermion of Table VII. Fod=2 if we identify
are SU(2),_ with the diagonal subgroup of the first and fourth
SU(2)’s, and SU(2)g with the diagonal subgroup of the
8[(33, 1)+(1,3,_3,)+(§’3’1)] (18) second and thir&U(2)’s, then there are four chiral families

if we embed4lzzg and breaksU(4), completely.

together with real nonchiral representations. In Sec. VI For 16/13 with4=(2,,2,) the chiral fermions are given
where we discuss spontaneous symmetry breaking, we wilh Table VIII. With 4,=4, there are potentially eight chiral
see if this type of unification is possible. families. A similar result occurs, of course, fér=(25,25).

With the different embeddingd=(1,,1,,1,,1,) the But the embeddingl=(2,,25) is manifestly nonchiral be-
model changes to a less chiral but still interesting fermioncause of the symmetry of the table, as can be shown from the
configuration given in Table VI. If we can identif§U(3)’'s  embedding as follows: Even though and 2 are complex,
as 3=3,=3;=3g, 3,=3; and 3%=3; this embedding 2,=2%, so 4 =(2,,23)*=(23,2;). We can rotate this

gives just four chiral families: within SU(4) to 4=(24,23). Therefore, the 4 is pseudoreal
and the fermions are vectorlike as expected. Also the embed-
4[(3.3,1)+(1,3,3+(3,3,1)] (19) ding4=(2,,2,) in 16/13 gives rise to no chirality and hence

to zero families. Finally, the embeddidg (24,2,) of 16/13
leads to the intermediate situation shown in Table IX. This

3 . .
under SU(3)" together with real representations. To check ives rise to four potential chiral families with the identifi-

consistency, we have verified that real and legitimate embecgation 4,=1,

dings for 16/11 like4=(13,15,15,13) and4=(2,,2,) give 1773 :

o %hiral formions (13,1515, 13) (21,22) 9 To summarize the “double doublet” embedding$
o . ~_ . =(2;,2;) of 16/13: for equivalent embeddings, ) =(1,1)

psgjrggr%;;/: lféarﬂéz-i%zﬁggte’{sdig/%]ié uor:i;[qhueiafil\riehg\?irllw_g or (3,3), there are up to eight chiral families; for the other

. ) . mutually equivalent casesi,{)=(1,2), (3,2), (2,3), or
only four inequivalent singlets,1 1,, 15, and 1, but three . el )
doublets 2, 2,, and 2. (2,1) there are up to four chiral families; finally for the pseu

doreal casesi(j)=(1,3), (3,1) and the real case (2,2) there

TABLE VII. Chiral fermions for 16/13 withd=(13,14,2,). TABLE VIII. Chiral fermions for 16/13 with4=(2,,2,).

1, 1, 1, 1, 2, 2, 23 1, 1, 1, 1, 2, 2, 23
1, X X X 1, X X
1, X X X 1, X X
15 X X X 1, X X
1, X X X 1, X X
2, X X X X X 2; X X X X X X
2, X X X X 2, X X X X
25 X X X X X 25 X X X X X X
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TABLE IX. Chiral fermions for 16/13 withd=(2,,2,). TABLE XI. Chiral fermions for 20/5 withd=(1,,1,,1,,1,).
1, 1, 1, 1, 2, 2, 23 1, 1, 1, 1, 4
1, X X 1, XX X X
1, X X 1, XX X X
1, X X 1, X X X X
1, X X 1, XXXX
21 X X X X X 4 X X X X X
25 X X X X X X
23 X X X X X

inequivalent choices, bearing in mind the multiplication table
provided in the Appendix aret=(1,,1,,1,,1,) and 4
are, because of the mathematical theo@amd as we have =(1,,1,,1,,1,).
now verified by direct calculationno chiral fermions. The first4=(1,,1,,1,,1,) yields the chiral fermions in
g=18. The nonpseudoreal groups number two, and one iFable XI. PuttingN=3 this embedding gives four chiral
a SDPG. In the notation of Thomas and Wdd@] they are  families when we identifySU(3);=SU(3), and drop real
18/3 and 18/5. We now treat these in the order they wereepresentations, giving
enumerated by Thomas and Wood. - L
Group 18/3; also designated £X Z5. This group has ir- 4[(3,3,1)+(1,3,3+(3,1,3)] (20
reps which fall into six singlets 1,’11a, 1'e, 1a? and
1’ a? and three doublets 2,42 and 2¢%. Using theD; mul-  underSU(3)XSU(3) X SU(3). This possibility for the 20/5
tiplication table from the Appendix, the embedding Nnon-Abelian orbifold certainly merits further study. The sym-
=(1la,1’,2a) yields the fermions of Table X. WheN=2 metry breaking for this model will be investigated in Sec. V.
there is sufficient chirality to provide three families but we  The second inequivalent embeddidg(1,,15,15,1,)

will find the spontaneous symmetry breaking difficult to gives rise to the fermions in Table XII. Identifyi§U(3)3
carry out. =SU3), as before foN=3 this is less chiral and gives rise

Group 18/5; also designate(Zsx Z5) X Z,. This group € iust two chiral families
has two singlets 1 and’land four doublets 2 2,,2;, and
2,4. Using the multiplication table from the Appendix we
compute_ the Tod,els/correspcindmg to the thrtie 'nequ'yalerﬂ}nderSU(C%)xSU(3)><SU(3).
embeddings4=(1',1",2;), 4=(2,,2;) and 4=(21,2,); - L _
. N g=21. One nonpseudoreal group exists in this case: a
however, all three turn out to be vectorlike. This is easy toSDPG In the notation of Thomas and Wodd], it is 21/2
understand when one realizes that all of the irreducible rep- ' ' '

resentations of 18/5 are individually either real or pseudoreal Group 21/2; also designated;X Z5. This group has ir-

2[(3,3,1)+(1,3,3+(3,1,3)] (21)

[12], making a complex embedding dfimpossible. reps which comprisg three singlet@,_]_’Lz, and 1 and two
g=20. There is one nonpseudoreal group, a SDPG. In th&iplets 3, and 3. With the embeddingl=(1,,3,) (recall
notation of Thomas and Wodd.2] it is 20/5. that 1; must be avoided to obtaivV=0), the resultant fer-

mions are given in Table XIII.
Putting N=2, the gauge group iSSU(2)*xSU(6)>.

learly the model is chiral, as seen in the asymmetry of the
able. For example, puSU(2),=SU(2); and SU(2)g
=SU(2),, breakSU(2); entirely, and usé;—4,6,—4 to
find two chiral families.
TABLE X. Chiral fermions for 18/3 withd=(1e,1’,2a). g=24. The nonpseudoreal groups number six, and three
are SDPG's. In the notation of Thomas and W¢&d] they
1 1 2 la 1la 2a 1a?2 1'a® 2a? are 24/7, 8, 9, 13, 14, and 15. So we now treat these in the
order they were enumerated by Thomas and Wood.

Group 20/5; also designatedsX Z,. The group has four
singlets %, 1,, 15, and 1, and a 4. The singlets;land 1
are real, and the other two form a complex conjugate pai
1,=1}. 6, which is the antisymmetric produck= (4
X4),, must be real for a legitimate embedding. The two

1 X X X
1 X X X TABLE XlI. Chiral fermions for 20/5 withd=(1,,1,,1,,1,).
2 X X X XX

1 1 1 1 4
la X X X ! 2 N 4
la X X X 1, X X X X
2 X X X X X 1, X X X X

X X X X

1a? X X X 13 Y x »
1 a? X X X 4
2¢° X X XX X 4 X X X X X
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TABLE Xlll. Chiral fermions for 21/2 with4=(1,,3;). 22

23
1 1 1 31 32
1, X X
1, X X
13 X X
3; X X X X 2a0c
3, X X X X X X

Group 24/7; also designated X Z3. This group has 12
singlets La', 1a', 130!, and La' (i=0-2) and three
doublets 2v' (i=0-2); herea=exp(n/3). The embedding
4=(1,2,1,,2«) was studied in detail in our previous paper
[21] where it was shown how it can lead to precisely three
chiral families in the standard model. For completeness we  2zx?
include the chiral fermions in Table XIVit was presented in
a different equivalent way in Ref21]).

By identifying SU(4) with the diagonal subgroup of
SU(4),3, breaking SU(4); to SU(2){ XSU(2)g, then
identifying SU(2), with the diagonal subgroup of
SU(2)e 78 and SU(2), andSU(2)g with the diagonal sub-
group of SU(2)10,1112and SU(2)x, we are led to a three- models discussed in this paper. The group has, as irreps,
family model as explained already in R¢21]. eight singlets (1a',1,&') and four doublets @ (]

It is convenient to represent the chiral fermions in a=0,1,2,3), wherex=exp(/4).
quiver diagran{22] as shown in Fig. 1. This model is espe- The embeddingl=(1,a%,1,a%,2a%) must satisfya,
cially interesting because, uniquely among the large numbe# 0 (for A’=0) anda;+a,= —2az (mod 4 [to ensure the
of models examined in this study, the prescribed scalars aneality of 6=(4%4),]. There are several interesting possi-
sufficient to break the gauge symmetry to that of the standartilities  including (La,1,a,2a), (11a,1,a% 2a%),
model. (1,0%,1,,20%), (1,0%1,,2a), and (402 1,a%,2). The

Group 24/8; also designated QZ;. The multiplication  third and fourth cases are equivalent, as can be seen by let-
tables ofD, and Q and hence the multiplication tables of ting a go to %, and the last case has only real fermions
24/7 and 24/8 are identical. Model building for 24/8 is there-since a?=—1, i.e., the fermions fod= (1,02 1,02 2) are
fore the same as 24/7 and merits no additional discussion. vectorlike.

Group 24/9; also designated {XZ,. This group gener- For 24/9 with 4= (1,a,1,a32a? we find the fermions
ates one of the richest sets of chiral models in the class dre chiral and fall into the irreps as displayed in Table XV.

FIG. 1. Quiver diagram for chiral fermions in the 24/7 model.

TABLE XIV. Chiral fermions for 24/7 withd=(1,a,1,,2«).

1, 1, 1; 1, 2 Lia la lza 1o 2a 1,0° 1,02 130° 1,02 242

= =
w w
N
X
X
X
X X X X X
X
X X X X X

X
X X X X X
X
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TABLE XV. Chiral fermions for 24/9 withd=(1,a,1,a°2a?).

1, 1, 2 La 1l 2a 102 1,02 2a° 1,68 1,0° 248
1, X X X
1, X X X
2 X X X X X
1 X X X
12a X X X
2a X X X X X
1,0 X X X
1,02 X X X
2a? X X X X X
1,08 X X X
1,08 X X X
208 X X X X X
TABLE XVI. Chiral fermions for 24/9 withd=(1,a,1,a,2a).

11 12 2 110' 12a Za 11a2 1202 2a2 11“3 12&3 20’3
1, X X X
1, X X X
2 X X X X X
L X X X
L X X X
2a X X X X X
1« X X X
La X X X
2a? X X XX X
L X X X
Lo X X X

2a8 X X XXX

TABLE XVII. Chiral fermions for 24/9 withd=(1,a2,1,,2a).

11 12 2 11& 120{ 20{ 11&2 12&2 2&2 11&3 12&3 20(3
1, X X X
1, X X X
2 X X X X X
1,a X X X
1Loa X X X
2 X X X X X
1,0° X X X
1,02 X X X
2a? X X X X X
1,08 X X X
1,08 X X X
2a8 X X X X X
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TABLE XVIII. Chiral fermions for 24/9 with4=(2«,2«).

1, 1, 2 La 1, 2a 102 1,6° 2a®> 1,08 1,08 24°

1, X X
1, X X
2 X X X X X X

11(1 X X
12& X X
2a X X X X X X

1,02 X X
12(12 X X
202 X X X X X X

11&3 X X
1,08 X X
2a8 XX XX XX

With the embeddingt=(1,a,1,a,2a), the chiral fermions to less than three families. If, instead, we embéd

are given in Table XVI. IdentifyingsU(2), with the diago- =(2,,23) the fermions are manifestly nonchiral.

nal subgroup 05U(2); 2 34 SU(2)g With the diagonal sub- Group 24/14; also designatedgX Zz. There are eight

group of SU(2)s67,8 and the4 of SU(4) with the 4 of  singlets and four doublets, with multiplication table as in the

SU(4),zand the4 of SU(4), 4leads to eight chiral families. Appendix. With the embedding=(2,,2,) one arrives at an
Taking the embedding=(1,a?,1,,2a) gives as chiral arrangement with no chiral families.

fermions of Table XVII. We identifySU(2), and SU(2)g A chiral embedding occurs &= (2,,2,) giving rise to

with the diagonal subgroups &U(2);, andSU(2)34, re-  the fermions of Table XX. FoN=2, if we identify SU(2),

spectively, and completely breeﬂ(U(2)5678 The general- as the diagonal subgroup 8U(2);,5sandSU(2)g as the

ized color embedding=4,=4,=4,=4, leads to four chiral diagonal subgroup 0BU(2)z47s then identify the4 of

families. This can be reduced to three families by furtherSU(4) with the 4 of SU(4), 3 and the4 of SU(4); 4, this

symmetry breaking using the same idea as in R&f]. An model has eight chiral families unde8U(2) X SU(2)g

even more interesting embedding for 24/9 is to det XSU(4).

=(2a,2a) which gives a reab as requiredsince a’=—1 Group 24/15; also designated /X Z5. The group 24/15

is rea). See Table XVIII for the corresponding fermions. has nine inequivalent irreducible representations, four sin-

Identifying SU(2)_. with the diagonal subgroup of glets and five doublets. With the embeddifrg (23,25), the

SU(2)1357 SU(2)r with the diagonal subgroup of fermions are shown in Table XXI.

SU(2)2,4,68 breakingSU(4), 5, and keeping the unbroken |dentifying SU(2), =SU(2), 5 and SU(2)g=SU(2), 4

SU(4) which is the diagonal subgroup 81U(4), 4 gives rise  gives rise to two chiral families foN=2. Another chiral

to eight chiral families: embedding igt=(1,,15,2;) which gives the chiral fermions
of Table XXII.
8[(2,1.4)+(1,2,4)]. (22) Identifying SU(2),_ with the diagonal subgroup of;land

15, SU(2)g with 1, and 1, then identifying 2=4 and 2,
The possibility of achieving the relevant symmetry breaking_4’.6md.flnally p_reakmg Te other thrékl)(4)’s gives rise
will be examined below in Sec. V. to six chiral families forN=2.
e . As an alternative 24/15 model we can embéd
Group 24/13; also designated XZz. This group has  _ (5 5y and obtain the fermions of Table XXIIl. With
three singlets 1, 1,, and 1, three doublets 2, 2,, and %,
and one ftriplet 3. FON=2 the gauge group is therefore  tag E xx. Chiral fermions for 24/13 withd= (2, ,2,).
SU(2)3X SU(4)3X SU(6). ’
With the embeddingt=(2,,2,) the chiral fermions are 1, 1, 15 2 2, 2, 3
those of Table XIX. If we identify SU(2), =SU(2),

SU(2)r=SU(2),, and breakSU(2), there are two chiral il X § "

families for 4=4,=4,=4,. However, forN=3 or larger 12 x %

there is more chiralitythe total number of chiral states in-

creaseswhen we increashl, and therefore the opportunities 21 X X XX
for model building increase. While we ignore these possibili-22 y X i ii

ties here, they are straightforward to investigate since thé&3
tables of fermions we display are independentNorThis is 3 X X X X X X
also why we display the fermions when tNe=2 case leads
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TABLE XX. Chiral fermions for 24/14 withd=(2,2,). TABLE XXIII. Chiral fermions for 24/15 with4=(23,25).
1, X X 1, X X
1, X X 1, X X
1, X X 1, X X
1, X X 1, X X
X X

Ls 2, XX XX
14 X X

2, X X X X
1, X X

24 X X XX XX
15 X X

2, XX X X X X
2, X X X X X X 25 XX XX
2, X X X X X X
2, X X X X X X
2, X X X X X X SU(2), and SU(2)gr as diagonal subgroups ddU(2),

XSU(2); andSU(2),XSU(2), respectively, and breaking
SU(4), completely, this leads to four chiral families when
N=2.

g=27. The non-pseudoreal groups number two and both
are SDPG's. In the notation of Thomas and W¢&d] they
are 27/4 and 27/5, and we treat them in that order.

TABLE XXI. Chiral fermions for 24/15 withd=(2;,2s). Group 27/4; also designatedyX Z5. 27/4 has nine sin-

glet 1;, ...,15 and two triplet 3 and 3, irreducible repre-
1, 1, 1, 1, 2, 2, 2, 2, 2 sentations. Wt_e may choose the embeddlng(zlz,Sl) for
which the chiral fermions become those listed in Table
1, X X XXIV.
1, X X Putting N=2, the gauge group iSU(2)°xSU(6),
15 X X X SU(6), and the chiral fermions are
1, X X
) i=9 i=9
1 X XX X = — — _ —
> x %« (El 2i,61| + (61,6, 3(62)+| 62,2 21| +(62,6).
25 X X XX X (23)
2, X X X X X
25 X X X X X X Though asymmetric in representations, this result is anomaly
free with respect to botBU(6); and SU(6),.
Group 27/5; also designate@ ;X Z5) X Z5. The multipli-
cation tables, and hence the model building, are identical for
2714 and 27/5. The group 27/5 merits no separate further
discussion.
TABLE XXIV. Chiral fermions for 27/4 with4=(1,,3;).
TABLE XXII. Chiral fermions for 24/15 with4=(1,,13,23). 1, 1, 1, 1, 15 1 17 13 19 31 3
1, X X
1, X X X 1; X X
1, X X X 1, X X
15 X X X 1 X X
1, X X X 1g X X
2, X X X X 1z x x
1g X X
2, X X X X
1q X X
23 X X X X X
2, X X X X X 3 X XXX
25 X X X X 3, X X X X X X X X X X
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TABLE XXV. Chiral fermions for 30/2 withd=(1«,1',2a).

1 1’ 2 2« la 1l'a 2a 2'a la® 1'a? 2a° 2'a°

1 X X

1 X X
2 X X X
2’ X

X X X X

XX

la X X

1l X X
2a X X X
2'a X

X X X X
X

XX

1a? X

1'a? X
2a? X X
2'a?

X X X X

X X X

g=30. The nonpseudoreal groups number two, and neibedding 4=(1a%,1'a®?,2¢*) must satisfy a;+a,
ther is a SDPG. In the notation ¢12], they are 30/2 and = —2a; (modp) for consistency, as well @ # 0 to ensure
30/3. We now treat these in the order they are enumeratef=0. There are several interesting such examples, one of
by Thomas and Wood. which is 4=(1a,1',2a?) where Table XXVI displays the

Group 30/2; also designated {X Z3. 30/2 has six sin- fermions.
glets 1o',1'e¢' and six doublets @', 2'a' with « In an obvious notation, the chiral fermions are
=exp(n/3) andi=0,1,2. Choosingl=(1la,l’,2«) yields
the fermions of Table XXV.

Identifying SU(2), with the diagonal subgroup of
SU(2);XSU(2), (associated with 1,3 and SU(2)g with
the diagonal subgroup &U(2)5X SU(2)e (associated with
1a?,1'a?), we break theSU(4)’s associated with 2 and
242 to arrive at two chiral families wheN=2. Identifying, for examplethere are equivalent cyclic permu-

Group 30/3; also designated {X Zs. This group has ir- tationg, SU(2)_ as the diagonal subgroup d®U(2),
reps which comprise ten singlets and five doublets andk SU(2),XSU(2);XSU(2)g, SU(2)g as the diagonal sub-
yields, forN=2, the gauge groupU(2)!°xSU(4)°. Aswe  group of SU(2)sXSU(2)eX SU(2)gX SU(2)19, and the
have encountered for groups; <X Z, (with g=6p), the em-  generalized colorSU(4) as the diagonal subgroup of

(202, 43+ 44)+ (254 24,44+ 45) + (25+ 26, 45+ 41)

(274 28,41+ 4) + (29+ 210,45+ 43). (24)

TABLE XXVI. Chiral fermions for 30/3 with4=(1a,1’,2a?).

1 1 2 la l'a 2a 1la® 1a® 2a% 1a® 1a® 2a° 1a* 1'a* 2a°

1 X X X
1’ X X X
2 X X X X X

1’ a? X X X

1a® X X X

1'a® X X X

2¢° X X X X X
la* X X X

1’ a* X X X

2a* X X X X X
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SU(4);XSU(4);, and completely breakingSU(4), 45,
gives rise to four chiral families.

We can examine the infinite seri@;xZ, for p=3 (as
necessary for nonpseudorealityrhe order isg=6p. By
generalizing the above discussions of 18[3;K Z3), 24/9
(D3xZ,) and 30/3 D3XZs) we find that with the same

PHYSICAL REVIEW D54 086007

24/9 with 4=(1,02,1,,2a) and y=192 with N=2.

24/9 with 4=(2a,2«) and =384 with N=2.

24/13 with 4=(2,,2,) and y=48 with N=2.

type of embedding one arrives at a maximal number of

2[p/2] chiral families whergx] is the largest integer not
greater thanx. For example, withp=3,4,5,6,7,8,9,10.. .
one obtains 2,4,4,6,6,8,81. . chiral families respectively.

24/14 with 4=(2,,2,) and y=192 with N=2.

24/15 with 4=(1,,13,2;) and =27 with N=2.

This is an example of accessing the more difficult non-

AbelianT" with g=32 at least for orderg=6p=36.

That completes the analysis of the occurrence of chiral

fermions forl” with g<31. For the cases where there ar8

chiral families, it remains to check whether the spectrum of

24/15 with 4=(2;,25) and y=2" with N=2.

24/15 with 4=(23,23) and =28 with N=2.

complex scalars is sufficient to allow spontaneous symmetry-,, it 4=(1,,3,) and y=324 with N=2.

breaking to the standard model gauge group. This is the sub-

ject of Secs. V and VI.

V. SCALAR SECTOR

In order to carry out spontaneous symmetry breaking in

30/2 with 4=(1a,1’,2e) and y=336 with N=2.

30/3 with 4=(1a,1',2a?) and y=320 with N=2.

the chiral models we found in Sec. IV, we must first extract  First we consider16/8 with 4=(1,,1,,2;), where we

the scalar sector from E@5), where6 is obtained from the
embedding of 4X4),, which in turn follows from the em-

have included this example to demonstrate improper embed-
ding. This representation is complex and would be expected

bedding ofd. We only consider models of phenomenologicalto lead to chiral fermions, bub=(4x4),=1,+2(2;+2,;)
interest, i.e., those which potennall)_/ have thrge or more+ (15+ 1+ 17+ 1g) 5 is complex(for any choice of singlet in
families, but preferably three. With this perspective in mindthe last parenthetical expressjpand therefore the embed-

we first collect the following models:

16/8 with 4=(2;,2;) and y=2% with N=2.

16/8 with 4=(1,,15,2;) and y=2" with N=2.

16/11 Wlth 4:(12,12,12,14) and X:216 Wlth N=3.

16/13 with 4=(15,1,,2;) and y=2% with N=2.

16/13 with 4=(2;,2,) and y=2% with N=2.

16/13 with 4=(2;,2;) and y=27 with N=2.

18/3 with 4=(1a,1’,2a) and y=192 with N=2.

21/2 with 4=(1,,3;) and y=108 with N=2.

2417 with 4=(1a,1',2a) and y=240 with N=2.

24/9 with 4=(1,a,1,a%,2a%) and y=320 with N=2.

24/9 with 4=(1,a,1,a,2¢) and y=320 with N=2.

ding 4=(1,,1,,2;) is improper and we need not consider
this or other such models further.

Let us define the chirality measupe of a model as the
number of chiral fermion states. This variable applies to any
irreps and provides a somewhat finer measure of chirality
than the number of families. As spontaneous symmetry
breaking proceedsy decreasedexcept under unusual cir-
cumstances For instance, the standard model and minimal
SU(5) both initially havey=45. By the time the symmetry
is broken toSU(3)XUgu(1), x=3 since the neutrino’s
cannot acquire mass due to glok&lL symmetry. On the
other hand, three familysO(10) andEg models start with
x=48 and 81 respectively but both breakye- 0.

In model building with AdS/CFT'’s we are faced with a
number of choices. If we require the initial model be chiral
before SSB, then we neeg=45 initially. However, since
the scale of SSB/ py4gin these models can be relatively low
(a few tens of TeV, vectorlike models are more appealing
than usual, and we could allow an initigl=0 without re-
sorting to incredibly detailed fine tunings. Our prejudice is to
still require a chiral model withy=45 initially in order to
gain some control in model building, but we want to make it
clear that, even though we have not displayed them explic-
itly, the entire class of vectorlike model based on the non-
Abelian orbifold classification given here would be worthy
of detailed study. There are also modglkiral or vectorlike
that break fromGagsto SU(3) X Ugy(1) but without going
through SU(3)XSU(2)XU(1) directly. As M 45 may be
not far aboveM, there may be models in this class that
could be in agreement with current data, but again we restrict
most of our discussion to chiral models that break through
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TABLE XXVII. The scalars for 16/8 with4=(2;,2;), which fixes the6 to be 6=3(1s) + 15+ 1;+ 1g.
(Below we give only the embedding of tlkin the table captions, as it fixes tieand hence the scalars.

® 1, 1, 1, 1, 15 1g 1, 1g 2 2’
1, X X X X X X
1, X X X X
1, X X X X
1, X X X X X X
15 X X X X X X
1 X X X X
1, X X X X
1g X X X X X X
2 X X X
X X X
2’ X X X
X X X

TABLE XXVIII. The scalars for 16/8 withd= (15,14, ,24).

® 1, 1, 1, 1, 15 1g 1, 1g 2 2'
1, X (5) (6) X X
1, (6) X (5) X X
15 X (5) (6) X X
1, (6) X (5) X X
15 X(5) (6) X X
1s (6) X (5) X X
1, X (5) (6) X X
1g (6) X (5) X X
2 X X X X X X X X X X
2’ X X X X X X X X X X
TABLE XXIX. The scalars for 16/11 witi=(1,,1,,1,,1,).

® 1, 1, 1, 1, 1s 1 1, 1g 2 2'
1 (x)°

1, (x)®

13 (x)°

1, (x)®

1q (x)°

1 (x)°

1, (x)®

1g (x)®

2 (x)°

2' (x)®
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TABLE XXX. The scalars for 16/11 with=(1,,1,,1,,1,).

® 1, 1, 15 1, 1

1 1, 1 2 2/

(x)?

1, (x)®

(x)?

1, (x)°

1s (x)?

1; (x)3

2!

(x)°
(x)°
(x)°
(x)°
(x)°
(x)°

the standard model. What is encouraging is the fact that orx 2,) ,+ (1,+1,+13+1,)5, we find the scalars in Table

bifold AdS/CFT's provide such a wealth of potentially inter-
esting models.

16/8 with4=(2;,2,). Here6=3(1s5) + 15+ 1,+ 1g which
is real so the embedding is proper and the scalar sector
given in Table XXVII.

16/8 with 4=(1;,,144i,2) and 6=[1,,2,2',(1s+ 1
+1,+1g)al, wherex=6, 5, 8, or 7 fori=1, 2, 3, and 4.

XXXII. Here we insertX’s at the locations in parentheses
when the singlets are chosen properly from the antisymmet-
ric products of the doublets. There are three inequivalent
thoices: eithefi) put X X at location(2), (ii) put anx at(2)

and one at3), or (iii) put X at(2) and X at (1). All other
choices lead to equivalent models. Thus without a detailed
knowledge of the antisymmetric products, we can still reduce

The fermionic sectors of these models are identical up tdhe analysis to the consideration of these three cases.

permutation, but there are two potential types of scalar sec- Finally  for

tors, depending on whethdy ;) is the same as or different
from the antisymmetric product2{x2;),. Let us relabel
the singlets so4;X2;)a=1g, and then choosé,, to be
either 15 or 1. Now the two inequivalent scalar sectdis

16/13 with 4=(2,,2) and 6
=(1,,1,,1,,13,2,) [which is equivalent to 6
=(1,,13,15,13,2,) for SSB up to a relabeling of irrepshe
scalar are given in Table XXXIII.

Moving on to 18/3 there is only one case of interest where

this instance, it is easier to analyze both models and show=(1'a,1’,2a) and6=(1'a,2e,2a? 1 «?) and the scalars
that neither phenomenology is interesting, rather than unare in Table XXXIV.

tangle the correct antisymmetric singlet i8,&2;)5; see
Sec. VI are shown in Table XXVIII. Herd5) is replaced by
an “X” and (6) by a blank if 1,)=15, and vice versa if

Proceeding to 20/5 there are two interesting cases; the
firSt has4: (12 f 12 ’ 12 ’ 12) and 6: (13 ’ 13 ’ 13 f 13 , 13 , 13) W|th
the scalars shown in Table XXXV and is very much like the

Liy=1. 16/11 model with similar embedding. Note that a VEV for
For 16/11 with 4=(1,,1,,1,,1,)) and 6  any of these scalars renders the entire fermion sector vector-
=(15,15,15,15,15,1;) we find the scalar of Table like. The second example is 20/5 wid(1,,1,,1,,1,) and

XXIX. The other interesting case for 16/11 is whede
= (12,12,12,14) and6: (11,11,11,13,13,13) WhICh |eadS to
the scalars of Table XXX.

6=(1,,1,,1;,15,15,13) where we have the scalars of Table
XXXVI.
Again at order 21 there is only one chiral set of models. It

Moving on to 16/13 there are three cases of interest. Thés 21/2 with4=(1,,3;) and6=3;+ 3, which is real so the

first is when4=(1;,14,2,) and 6=(1,,1.,2;,23), where
1.=(2,%X2;) o and we havel, is eitherl, or 15 (unresolved
here, but see Sec. Vyiving the scalars of Table XXXI.
Next, for 16/13, wherd=(2,,2,) has6=(1,,1;,2;,23),
and where 1,=(2:X2))a=(1,+15+2,), and 1,=(2,

embedding is proper, and where the scalar sector is shown in
Table XXXVII. (All other embeddings of thd with chiral
fermions andV=0 supersymmetry permutations are equiva-
lent to this mode).

TABLE XXXII. The scalars for 16/13 withtd=(24,2,).

TABLE XXXI. The scalars for 16/13 witht=(15,1,,2).

® 1, 1, 1, 1, 2, 2, 23
O S T R S S S S PO CU R T R x
1 X(2) (3 X % L, @ @O @ @ X %
1, X(2) 3 X X 13 ® @ @O @ X X
13 ()] X (2) X X 14 @ & @ O X X
1, 3 X (2) X X 2 X X X x (D@ X X 23
2, X X X X XX XX 2, s (1)(2)
2, XX XX XX (3)(4)
25 X X X X X X X X 25 X X X X 2?3 X X (1)(4)
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TABLE XXXVII. The scalars for 21/2 withd=(1,,3,).

1, X X X X X 1, X X
1, XXX X 1, X X
1, X X X X X 1, X X
1, X X X X 3 X X X X X X X X
2, % X X 3, X X X X X X X X
X X X
2, X X X X KX . . . .
% % For 24/7(or equivalently 24/8 since they have isomorphic
2, XX % irrep product tablgswe have the model of Ref21] where
X X X 4=(1,a,1,,2a) and 6= (12a,12a2,2a,2a2), and the sca-

TABLE XXXIV. The scalars for 18/3 with 4 (1'«,1’,2a).

® 1 1 2 la 1a 2a 1a®> 1'a® 2a?
1 X X X X
1’ X X X X
2 X X XX X X X X
la X X X X
1'a X X X X
2a X X XX X X X X
1la? X X X X

1'e® X X X X

202 X X XX X X XX

TABLE XXXV. The scalars for 20/5 withd=(1,,1,,1,,1,).

® 1, 1, 15 1, 4

1, (x)°

1, (x)°
13 (x)®

14 (x)®

TABLE XXXVI. The scalars for 20/5 wittd=(1,,1,,1,,1,).

® 1, 1, 1, 1, 4
1, X X X X X X

1, X X X X X X

1, X X X X X X

14 X X X X X X

4 (x)°

lars are given by Table XXXVIII.

The next group of interest at order 24 is 24/9 where first
we study the case with4=(1;a,1,0%20%) and 6
=(1,,1,,2a,2a°) where the scalars are shown in Table
XXXIX. Next the scalars for 24/9 are given in Table XL,
when 4= (1,a,1,a,2a) and6=(1,a,2,1,a,2¢?). Proceed-
ing to 249 with 4=(La,1,,2a) and 6
=(1,a%,2a,2a 1, 1,a~ %) where a*=1, Table XLI pro-
vides the scalar sector. Finally there is the 24/9 case involv-
ing only doublets whered=(2a,2a) and 6=3(1,a?)

+ 1,02+ 2a?, and the scalars are collected in Table XLII.

The next example of interest is 24/13 with- (2,,2,) and
6=1;+1,+ 15+ 3 where Table XLIII lists the scalars.

There are two inequivalent models to investigate for the
group 24/15: they are4=(1,,13,23) where 6=1,+ 1,4
+25+ 2, with the two choices of scalargf-or a discussion
of the two possibilities, see the analysis in Sec.) Wi.(2;

X 23)a=1, the scalars are those of Table XLIV, but i@y
X 23)po=1, then the top &4 changes in Table XLIV and is
replaced with Table XLV. The otheR4/15 case has4
=(23,23) where6=3(1,) +1,+2; and the scalars arghis
time swappingl, and 1, gives equivalent modelgjiven in
Table XLVI.

The next model to evaluate i27/4 with 4=(1,,3,),
where 6=3;+3, is real, and the scalar sector is given in
Table XLVII.

Finally, at order 30 we have0/2with 4=(1«,1’,2«) and
6=(1"a+2a+2a"1+1'a") where a®=1. The scalar
sector is shown in Table XLVIII.

The other possibility at order 30 i80/3 with 4
=(1a,1’,20%) where 6=1"a+2a?+2a%+1" a* and a®
=1, and where the scalars are provided by Table XLIX. The
possible patterns of spontaneous symmetry breaking for all
these models will be discussed in Sec. VI.

VI. SPONTANEOUS SYMMETRY BREAKING

We are now in a position to carry out spontaneous sym-
metry breaking for the models with fermions and scalars
given in Secs. IV and V. We restrict ourselves to chiral mod-
els with the potential of at least three familieg=%45) and
for the most part consider only models with= 2, although
we have included twdN=3 models. Again, we move pro-
gressively through the models of increasing ordet ofThe
model is completely fixed by, the embedding oft in T,
and the choice oN.
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TABLE XXXVIII. The scalars for 24/7 withd=(1,«,1,,2«).

® 1, 1, 13 1, 2 Lo la 1za 1o 2a 1i0° 1,0° 130° 140° 207
1, X X X X
1, X X X X
15 X X X X
1, X X X X
2 X X X X X X X X X X
11a X X X X
La X X X X
Lia X X X X
1, X X X X
2a X X X X X X X X X X
1,02 X X X X
1,02 X X X X
1302 X X X X
1,02 X X X X
2¢2 X X X X X X X X X X
TABLE XXXIX. The scalars for 24/9 withd=(1,,1,a° 2a?).
® 1, 1, 2 La 1l 2a 16> 1,0° 2a®> 1,6° 1,0° 248
1, X X X X
1, X X X X
2 X X X X X X X X
L X X X X
L X X X X
2a X X X X X X X X
11a X X X X
La X X X X
2a? X X X X X X X X
1,08 X X X X
L X X X X
2a8 X X X X X X X X
TABLE XL. The scalars for 24/9 withl= (1, «,1,a,2a).
® 11 12 2 11& 12a 2a 11&2 12&2 2a2 1la3 12&3 2&3
1, X X X X
1, X X X X
2 X X X X KX
X X
L X X X X
L X X X X
2a X X X X HXX
X X
L X X X X
Lo X X X X
2a° xx  xx XX
X X
L« XX XX
L X X X X
2a8 xx  xx XX
X X
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TABLE XLI. The scalars for 24/9 wittt=(1,«,1,,2a).

® 1, 1, 2 La la 2a 102 102 2a® 108 10 2a°
1, X X X X
1, X X X X
2 X X X X X X X X
1 X X X X

Lo X X X X

2a X X X X X X X X
1,0 X X X X
1,02 XX X X
2a? X X X X X X X X
1,08 X X X X

1,08 X X X X

2a° X X X X X X X X

The first relevant model i86/8 with4=(2,,2,) and N=2. The chiral fermions are
2[(2,1,1,1,1,11,1;4%(1,1,1,1,2,1,1,1;1,46 (1,2,2,1,1,1,1,1;4,1(1,1,1,1,1,2,1,1;1,4)(1,1,2,1,1,1,1,1;4,1)

+(1,1,1,1,1,1,2,1;14-(1,1,1,2,1,1,1,1;4) (1,1,1,1,1,1,1,2, 14 (2,1,1,1,1,1,1,1; 14+ (1,1,1,1,2,1,1,1;4)

+(1,2,1,1,1,1,1,1; 14+ (1,1,1,1,1,2,1,1;4) +(1,1,2,1,1,1,1,1; 14+ (1,1,1,1,1,1,2,1;4) +(1,1,1,2,1,1,1,1;1 4

+(1,1,1,1,1,1,1,2;41)]

and y=28. From the table of scalars for this model, we find

that if we breakSU(4)XSU(4) to the diagonalSUy(4),
then the model becomes vectorlike.

All scalars that are nontrivial in th&U(4)’s are of the
form (1,1,1,1,1,1,1,1;4)H.c., and a VEV for any one can
be rotated such that the unbroken symmetr§ig;(4). All
other scalars areSU;(2)xXSU;(2) bilinears; hence we
cannot break to a Pati-SalatRS model or any standard
type chiral model.

16/8 with 4=(1,,144i,2;) and N=2, where 6
=[14i),21,2,(15,16,17,1g)a] with x=6,5,8,7 for i
=1,2,3,4. These models have only half the initial chirality of
the previous model ¥=27), and the chiral fermions are
given above if the overall factor of 2 is removed. As above,
we need to break on8U(4), either will do. We choose
SU,(4). For thescalars shown, we can do this with, say,
(1,1,1,2,1,1,1,1;2 4 and (1,1,1,1,1,1,1,2;1,4) VEV’s. The
remaining chiral fermion sector is

TABLE XLII. The scalars for 24/9 witd= (2a,2«).

12 2 11& 12& 2a

11&2 12a2 2“2

XX
XX
XXX

X X X
1,08 X XXX

XXX X

1,02 X XXX
2 XXX X

XX

X X XX

XXX

XX
XX
XXX

X XXX
XXX X

XX
XX

XXX

XX XX

XXX
X XXX

XXX X

XX
XX

XXX

XX X X

XXX
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TABLE XLIV. The scalars for 24/15 withd=(1,,15,2;) if
(25X 23) =14

® 1 1, 1; 2, 2, 23 3
1, X X X X
1, X X X X
15 X X X X
2; X X X X X X

2, X X X X X X

23 X X X X X X

3 X X X X X

(2,1,1,1,1,1;4+(1,1,1,2,1,1;4+(1,2,1,1,1,1;4

+(1,1,1,1,2,1;4+(1,1,2,1,1,1;4+(1,1,1,1,1,2; 4

for G=II,SU(2)XSU(4), with k=1, 2, 3,5, 6, and 7.
There are onlySU;(2)xSU;(2) bilinear scalars of the
form (2;,2) wherei=1, 2, or 3 andj=4, 5, or 6, whose

® 1, 1, 13 1, 2, 2, 25 2, 2
1, X X X X

1, X X X X

1, X X X X

1, XX X X

2, XX X X XX
2, X X X X XX
2; X X X X X X X X

2, X X X X X X XX

25 XX XX X X

2[(2,1,1,1;4,1,3+(1,2,1,1;1,1,4+(1,1,2,1;1,1,4
+(1,1,1,2;4,1,3+(2,1,1,1;1,1,4+(1,2,1,1;41,1)

+(1,1,2,1:41,1)+(1,1,1,2;1,1,4].

VEV'’s reduce chirality further, so we cannot reach a three-

family PS model.

Note that what one would need is bilinears that would
allow one to brealSU;(2) X SU,(2) X SUz(2) to a diagonal
subgroup SU, (2), and similarly for SU,(2)XSUs(2)

X SUg(2) to SUR(2). This would then have been a three-
family PS model.

16/11 with 4=(1,,1,,1,,1,) and N=3. This model is
highly chiral, with =432, and the chiral fermions are

6[(3,31,1,1,1,1,1;1,0+(1,1,1,1,3,31,1:1,1
+(1,3,31,1,1,1,1;1,1+(1,1,1,1,1,3,3;1,1)
+(1,1,3,31,1,1,1;1,2+(1,1,1,1,1,1,3,3L,2)

+(3,1,1,3,1,1,1,1;1)%(1,1,1,1,31,1,3;1,3].

We can ignore thesU(6) X SU(6) sector, since it can be
broken completely without affecting the chirality. If we
then give VEV's to (1,1,1,8,1,1,1,1) and (1,1,1,1,1,1,1,8)
representations of SU(3)%, we arrive at 6(3,3,1)
+(1,3,39+(1,1,3)+(3,1,1)] in the SU,;1(3)XSU,,,(3)

X SU;, 3(3) sector for bothi =0 andi=1. Thei=0 sector

VEV’s of the form(4,,4,) etc., can breal§U,(4) com-
pletely [this group is irrelevant, since there are no chiral
fermions with SU,(4) quantum numbefs VEV's for
(41,43) scalars then brealsU;(4)XSU;z(4) to SUp(4),
such that the fermions become vectorlike. On the other hand,
VEV's for (24,4,) +H.c. reduce the chiral sector to

2[(2,1,1;1,4+(1,2,1;4,2+(1,1,2;4,2+2(1,1,1;1,4
+(2,1,1;41)+2(1,1,1;41) +(1,2,1;1,9

+(1,1,2;1,4],

and then a VEV for (2,4,)+H.c. reduces this further to
2[(2,1;1,4%(1,2;4,1+(1,2;1,49 +(2,1;41)].

As above, a VEV for (4,45) scalars would render the
model vectorlike, while just breakin§U;(4) would give a
one-family model. However, this needs VEV’s for(2,)
and (2,23), but no scalars of this type exist in the model.
We conclude that the model has no Pati-Salam type phenom-
enology.

Next consided @13 with 4=(2,,2,) and N=2. This time
6 is as given in Sec. V, but undetermined up to the identifi-

can be broken completely with (1,1,1,1,8,1)-type VEV's pluscation of antisymmetric singlets ir2(< 2;) , withi=1 and 2.

(1,1,1,3,1,3-type VEV's. The remaining fermions falling
nearly into sixEg— SU(3)X SU(3)X SU(3)-type families.
While close, this model is still unsuccessful.

16/11 with4=(1,,1,,1,,1,) and N=3. The chiral fer-
mion sector is exactly half the previous case. Again we brea
SU(6)xSU(6) completely. Then breakindl}_,SU;(3)
completely withSU;(3) octet VEV's finally gives us a chiral
fermion sector B(3,3,1)+(1,3,3 +(1,1,3)+(3,1,1)]. This
is tantalizingly close to the three-family model we seek.

16/13: There are three potential models for this group.
First consider the case with=(2;,2;) and N=2. Here6
=(1,,1,,1,,15,2,) and the chiral fermions are

The chiral fermions are as in the=(2,,2,) case, but with

the overall factor of 2 deleted. A useful strategy is to perform
a generic spontaneous symmetry breaking analysis to try to
obtain a realistic Pati-Salam type phenomenology; then, if
K TABLE XLV. The scalars in the top left 44 for 24/15 with
4=(1,,15,25) if (25X 25)p= 1.

X
X

X
X
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TABLE XLVI. The scalars for 24/15 witil=(23,23).

® 1 1, 13 1 2; 2, 23 2, 25
1, X X X X X
1, X X X X X
1, X X X X X
1, X X X X
21 X X X XX
X X
2, X ke X
X X
2, X X X %
X X
2, X X X %
X X
25 X X e
X X

successful, one asks whether the scalars required to carry out If instead we seek a Pati-Salam model, there are several
the breaking are included in the model. As abo8&),(4)  spontaneous symmetry breaking routes we need to investi-
is irrelevant and can be ignored. If we identify gate. If we break with (1,1,1,1,1,141) scalars to
SU(2)XSUy(2) with SU(2) and SUy(2)XSU3(2)  SU8(2)X SUp(4)X SUs(4) we find the fermions remaining
with SUg(2), we find 4(2,1;1,41(1,2;4,1)+(1,2;1,9 chiral are

+(2,1;4,1)]. Now breaking one of the remaininfgU(4)’s

completely gives two families, and this is the best one can (2,1,1,1,1,1;40+(1,2,1,1,1,1;4,0+(1,1,2,1,1,1; 1.4

do. Hence independent of what scalars are available, there is

no chance to obtain a model with three or more families. +(1,1,1,2,1,1;1,8+(1,1,2,1,1,1; 41)
The remainingl6/13 case is4=(13,14,2;) with N=2.
Now 6=(1,,2;,23,1.), but the chiral fermions are in the +(1’1,1,2’1,1;_41)+(2'1,1,1'1’1;1_,4

same representations as in the previous model, and so we can

immediately conclude on general grounds that there is no

viable phenomenology for this case.

183: Now considerl8/3 with4=(1a,1';2a) and N=3. _ _

This model hasy=192 and chiral fermions Now breaking with a (4,43) or (4;,45) VEV would
render the model vectorlike, so we avoid this and instead

(2,1,1,1,1,1;1,41+(1,2,1,1,1,1;1,4,1+(1,1,2,1,1,1;41,1)  9ive VEV's to (Z,4)) and (Z%,4;) to break SUp(4) to
SU’(2). However, this yields at most two families.

+(1,21,1,1,1;1,%

+(1,1,1,2,1,1;41,1) +(1,1,2,1,1,1:1,1.% We must try another route. If we avoid @) type VEV’s
and give VEV’s only to (2,4) type scalars, we can proceed as

break SUW(2)xSU3(4) down to SUs(2)XSUg(2)
XSU' (2)XSU"(2)xSU(4). Some fermions remain chiral
but they are insufficient to construct families. We conclude
that this model will not provide viable phenomenology.

+(1,1,1,1,1,2,1,4) +(1,1,1,1,2,1;4,1,1

+(1,1,1,1,1,2;4,1,)l+(2,1,1,1,1,1;1,54
TABLE XLVII. The scalars for 27/4 witd=(1,,3;).

+(1,2,1,1,1,1;1,1, 4+ 2[(1,1,1,1,1,1;44,1)

® 1; 1, 13 1, 15 15 1, 1g 13 34 3,

+(1,1,1,1,1,;1,4)+(1,1,1,1,1,1;4,1.4. 1, X X

1, X X

Breaking SU%(2) to a single diagonaSU(2) with all six 13 X x

(2i,2;) type VEV's of SU(2)xSU;(2), andthen further 1 X X

VEV's of the types(2;4,1,1),(2;1,4,1), and(2;1,1,4) to 15 < <

break theSU(4)’s to SU(3)’s leads to the set of remaining 16 i i

chiral fermions: 1 % %
8

_ - 1, X X

2[(3,3D)+(1,33+(3,1,3]. 3; X X X X X X X X X X X X

. 3 3, X X X X X X X X X XXX
Thus this route leads to two families.
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TABLE XLVIII. The scalars for 30/2 withd=(1a,1’,2a).

® 1 1 2 2' la 1va 2a 2'a 1a® 1a® 2a°> 2'a?
1 X X X X
1’ X X X X
2 X X X X X X X X
2’ X X X X X X
la X X X X
la X X X X
2a X X X X X X X X
2'a X X X X X X
1la? X X X X
1’ a? X X X X
2a? X X X X X X X X
2'a? X X X X X X
20/5 Wlth4:(]£,12,12,12) a_nd N=3. Th(ichlra_ISU4(3) (2,1,1,6,11+(1,2,1,6,34‘(1,1,2,6,114‘(2,1,1,1,_6
fermions are #(3,3,1,1)+(21,3,31)+(1,1,3,3+(3,1,1,3)].
[The SU(6) fermion does not participate, and will be ig- +(1,2,1:1,6+(1,1,2;1,6+(1,1,1:66).

nored] The only scalars are in representations (_a;l]),3

+H.c. and (1,3,13+H.c. AVEV to, say, the first of these A VEV for a (6,6) scalar renders the model vectorlike. Our
would breakSU,(3)XSUs(3) to a diagonalSUp(3), and  only other option is to give (2,6) type VEV'2,1,1;6,3
the fermions would become[43,3,1)+(3,3,1)+(3,1,3 breaks the gauge group t&U,(2)XSU;(2)XSU(5)
+(3,1,3)] underSUp(3)X SU,(3)X SU,(3), which is vec-  XSU(6) with chiral fermions 2(1,1;5,1 (1,2;5,1)
torlike. Hence any allowed VEV’s immediately render the +(2,1;5,1+(1,1;1,6§+(2,1;1,§ +(1,2;1,6§ +(1,1,1;56).
model vectorlike. There is insufficient fermion content for a three family Pati-
We get no farther withd4=(1,,1,,1,,1,) and N=3, Salam model if we identifis U,(2) X SUs(2) with SU, (2)
where 6=(13,15,15,1;,1;,1,), since this model has only *<SUr(2). Ouronly other choice is to obtain one of these
half the chirality content of the previous case, and agairpU(2)'s from SU(5)x SU(6). Forinstance &2,,5) VEV
VEV’s will render it vectorlike. breaks the gauge group 8U;(2) X SU(4) X SU(6) but me
21/2 with4=(1,,3;) andN=2. Now 6=(3;,3,). (Other ~ remaining chiral fermions are 4(1,4,£(2,4,1)+3(1,1,9
embeddings oft with A’=0 supersymmetry are permutation +(2,1,6)+(1,2;1,6+(1,1,6)+(1,4,6). We cannot identify
of the representations of this model and therefore all equivaSU(4) with SUp(4), sothis group can only be iSU(6).
lent) The fermions havee=108 and are Breaking SU(6) with an adjoint toSU(2)XSU(4) leaves

TABLE XLIX. The scalars for 30/3 With4=(1a,1’,2a2).

® 1 1 2 la 1a 2a 1a®> 1'a®> 2a° 1a® 1'a® 2a° 1la* 1'a* 2a*

1 X X
1’ X X
2 X X X X X X

X

[EnY
R
X
X

X X X X X X

1’ a?

X
X
X X X X X X X

1'ad

2¢8 X X
la? X
1'a* X

2a* X X X

N
R
N
X
X
X X X X X X X

X
X
X X X X X X X

X X X X
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us with SU(2) X SU(4)X SU(2)x SU(4) fermions that are
again insufficient for a three family Pati-Salam model.
24/7 with4=(1a,1',2a) for N=2. This model, the only

PHYSICAL REVIEW D64 086007

However, the scalars tabulated for this case in Sec. V are
insufficient to allow this pattern of spontaneous symmetry
breaking, and hence no interesting model emerges.

successful one in the present broad search, was discussed in24/9 with4= (1, «,1,a,2«) for N=2. The original gauge

detail in Ref.[21], but for completeness we repeat the deri-

vation here.

group at the conformality scale iSU(4)*x SU(2)® with
chiral fermions as given in Sec. IV and complex scalars as

The original gauge group at the conformality scale isgiven in Sec. V above.

SU(4)3x SU(2)*, with chiral fermions as given in Sec. IV

Achievement of chiral families under the Pati-Salam sub-

and complex scalars as given in Sec. V above. If we breabroup SU(4)x SU(2), X SU(2)s requires the identificat-

the threeSU(4)’s to a single diagonalSU(4) subgroup,
chirality is lost. To avoid this we brea8U(4), completely
and then brealsU(4),X SU(4),2 to its diagonal subgroup
SU(4)p. The appropriate VEV’'s are available as
[(41,2,a")+H.c] with b (b runs from 1 to 4 arbitrary but
k=1 ork=2. The second step requires &itJ(4)p singlet
VEV from (4,,4,2) and/or (4,,4,2). Once a choice is made
for b (we takeb=4), the remaining fermions are, in an in-
tuitive notation,

a=3

a; [(22@,1,4p) + (1,204, 4p)], (25)

ions  SU(2);,=SU(2);,=SU(2)1,,=SU(2);,,=SU(2),
and SU(2)1,43= SU(2)1,,2=SU(2)1 3= SU(2); 0

=SU(2)g; while, for example,SU(4),=SU(4),,3=4 of
SU(4) and SU(4),,=SU(4),,2=4 of SU(4). However,

the scalars tabulated for this case in Sec. V are insufficient to
allow this pattern of spontaneous symmetry breaking, and
hence no interesting model emerges.

24/9 with4= (1,2 1,,2«a) for N=2. The original gauge
group at the conformality scale 8U(4)*xSU(2)8, with
chiral fermions as given in Sec. IV and complex scalars as
given in Sec. V above.

Achievement of chiral families under the Pati-Salam sub-
group SU(4)xXSU(2). XSU(2)g requires the identifica-

which has the same content as a three family Pati-Salamjons SU(Z)ll:SU(2)12:SU(Z)lla:SU(Z)lza:SU(Z)L

model, though with a separa8dJ(2), X SU(2)g per family.

To further reduce the symmetry we must arrange to brea

to a singleSU(2), and a singl&SU(2)g . This is achieved by
modifying step one wher8U(4), was broken. Consider the
block diagonal decomposition o§U(4),; into SU(2),.
X SU(2)r. The representations (@,4;) and (2« 1,4,)
decompose as (&,4,)—(2,a,2,1)+(2,2,1,2) and
(220 1,4))— (2227 1,2,1)+(2,1,1,2). Now if we give
VEV’s of equal magnitude to (gv,2,1),a=1, 2, and 3, and
equal magnitude VEV’s to (2 1,1,2),a=1, 2, and 3, we
breakSU(Z)leﬂgifs U(2,a) to a singleSU(2), and we
breakSU(2),rx II2Z3SU(2,a 1) to a singleSU(2)g. Fi-
nally, VEV's for (2,a,2,1) and (2«,1,2) as well as
(24271,2,1) and (2a1,1,2) ensure that botlsU(2,a)
andSU(2,a~ 1) are broken and that only three families re-
main chiral. The final set of chiral fermions is then
3[(2,1,4)+(1,2,49] with gauge symmetry SU(2),
X SU(2)gXSU(4)p . To achieve the final reduction to the
standard model, an adjoint VEV from (44,2) and/or
(4,.,4,2) is used to brealsU(4)p to SU(3)XU(1), and a
right-handed doublet is used to bregk)(2)g.

24/9 with 4=(1,a,1,0%20?) for N=2. The original
gauge group at the conformality scaleS&J(4)*x SU(2)8,

with chiral fermions as given in Sec. IV and complex scalars

as given in Sec. V above.

Achievement of chiral families under the Pati-Salam sub

group SU(4)XSU(2). XSU(2)g requires the identifica-
tions SU(2);,=SU(2)1,=SU(2);, ,=SU(2),,=SU(2),
and SU(2)1,42=SU(2)1,,2=SU(2); 3= SU(2)y, 03
=SU(2)g, while, for example,SU(4),=SU(4),,=4 of
SU(4) andSU(4),,2=SU(4),,3=4 of SU(4), where here

and below this simplified notation implies diagonal sub-

groups.

E.nd SU(2)11a3:SU(2)12a2:SU(2)11Q3:SU(2)120{3

=SU(2)r; while, for example,SU(4),=SU(4),,5=4 of
SU(4) andSU(4),,=SU(4),,2=4 of SU(4). But again

the scalars tabulated for this case in Sec. V are insufficient to
allow this pattern of spontaneous symmetry breaking, and
hence no interesting model emerges.

24/9 with4= (2«,2«) for N=2. The original gauge group
at the conformality scale iSU(4)*x SU(2)8, with chiral
fermions as given in Sec. IV and complex scalars as given in
Sec. V above.

Achievement of chiral families under the Pati-Salam
subgroupSU(4) X SU(2), X SU(2)g requires the identifica-
tions SU(2)1,=SU(2)1,4=SU(2)1,a2= SU(2) 1,43
=SU(2), and SU(2)1,a=SU(2)1,,=SU(2)1,,2
=SU(2)1,,3=SU(2)r; while, for example, SU(4),,
=SU(4),,3=4 of SU(4), andSU(4), and SU(4),,2 are
broken. However, the scalars tabulated for this case in Sec. V
are insufficient to allow this pattern of spontaneous symme-
try breaking, and hence no interesting model emerges.

24/13 with4=(2,,2,) for N=2. The original gauge group
at the conformality scale iISU(6) X SU(4)3x SU(2) with
chiral fermions as given in Sec. IV and complex scalars as
given in Sec. V above. According to the analysis in Sec. IV
this orbifold permits only two chiral families and is therefore

not of phenomenological interest.

24/14 withd=(2,,2,) for N=2. The original gauge group
at the conformality scale iSU(4)*x SU(2)® with chiral
fermions as given in Sec. IV and complex scalars as given in
Sec. V above.

Achievement of chiral families under the Pati-Salam sub-
group SU(4)xXSU(2)_. XSU(2)g requires the identifica-
tions  SU(2);,=SU(2)1,=SU(2),,=SU(2),,=SU(2),
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and SU(2)13=SU(2)14:SU(2)15=SU(2)16=SU(2)R; are insufficient to allow this pattern of spontaneous symme-

while, for example,SU(4),,=SU(4),,=4 of SU(4) and try breakipg, and hence.no interesting model emerges.
SU(4),,=SU(4),,=7 of SU(4) where by this simplified _ 2113 ot (1230 with N o2 Here® ‘(1(31”’32) andthe
notatioﬁ we agaié imply diagonal subgroups. However, th chirar Termions are given In ec_. and &b scalars are o
scalars tabulated for this case in Sec. V are insufficient t&’P® (2 ’6_1)’(2i'62) or (6,,6,) fori=1,2,...,9. AVEV for
allow this pattern of spontaneous symmetry breaking, anéhe (6;,6;)+H.c. scalar breaksSU;(6)xSU,(6) to
hence no interesting model emerges. SUp(6), and themodel becomes vectorlike. Hence we must
24/15 with 4=(1,,15,25) for N=2. The original gauge break only with (2,6) type scalars if there is any hope of a
group at the conformality scale iSU(4)°xSU(2)* with  viable model. We give VEV's to (26,) scalars fori
chiral fermions as given in Sec. IV and complex scalars as=1,2, ...,5 tobreak SU;(6) completely, and VEV’s to
given in Sec. V above. (2},6,) for j=6,7 to breakSU,(6) to SU(4). Then the re-
Achievement of chiral families under the Pati-Salam sub-maining unbroken gauge group iSUg(2)XSUy(2)
groupSU(4) X SU(2), X SU(2)g requires the identifications X SU(4) with fermions (2’1’4}(1’2,4%4(1’1@' which
SU(2),=SU(2),=SU(2).  and  SU(2)1,=SU2)1,  are chiral but not of the correct form.
=SU(2)g; while, for example,SU(4),,=SU(4),,=4 of A more successful variation is obtained with, &) sca-
SU(4). However, the scalars tabulated for this case in Sec. Var VEV's for i=1, 2, 3 and 4 to break the gauge group
are insufficient to allow this pattern of spontaneous symmeto SUs(2) X SUg(2) X SU;(2) X SUg(2) X SUq(2)
try breaking, and hence no interesting model emerges.  xSU'(2)xSU(6) and then VEV's for (2,6,) and (2;,6,)
24/15 with4=(23,25) for N=2. The original gauge group to break toSU,(2)X SUg(2)X SUy(2)XSU'(2)X SU(4)
at the conformality scale iSU(4)°xSU(2)%, with chiral  which has chiral fermions (2,1,1,1,4Y1,2,1,1,4)
fermions as given in Sec. IV and complex scalars as given iq(1,1,2’1,4%3(1,1’1,2,_4_ If we could break SU,(2)
Sec. V above. According to the analysis in Sec. IV this Orbi'xSU8(2)><SU9(2) to a diagonalSU(2) subgroup, we
fold permits only two chiral families and is hence not phe-yyoyid have a three-family Pati-Salam model. However, the
nomenologically interesting. - scalars to accomplish this are not in the spectrum. If we
24/15 with4=(23,25) for N=2. The original gauge group ¢oyiq give VEV's to (2,6,) scalars fori=7,8,9 to break
at the conformality scale iSU(4)°xSU(2)* with chiral SU;(2) X SUg(2) X SUg(2) to aUy(1) without disturbing
fermions as given in Sec. IV and complex scalars as given il't)nesur(z) subgroup oBU;(6), and durther (2,6,) VEV,

Sec. V above.
. ) . . say (2,6,), to breakSU(4) to SUc(3), then we would have
Achievement of chiral families under the Pati-Salam sub—a true three family standardi.e., Uy(1)XSUzy(2)

groupSU(4) X SU(2), X SU(2)g requires the identifications X SUq(3)] model u ; Py / ;

pon identifyingSU’ (2) with SUg\(2).
SU(2),=SU(2);,=SU2). and  SU(2)1,=SU(2),, 302 with 4=(1,a.1,.2a) and N=2. Here 6
=SU(2)g; while, for example,SU(4),,=SU(4),,=4 of  =(1,a,1,0%2¢,2¢%), and the gauge group iSU°(2)
SU(4). However, the scalars tabulated for this case in Sec. \< SU(4). This group has chiral fermions

(21,1,1,1,1;1,1,41,1)%(1,2,1,1,1,1;1,1,4,1, )% (1,1,2,1,1,1;41,1,1,1,2+(1,1,1,2,1,1;41,1,1,1,3
+(1,1,1,1,1,1;1,4,1,1,9+(1,1,1,1,1,1;41,4,1,1,2+2(1,1,1,1,1,1;1,4,4,1,D +(1,1,1,1,1,1;41,1,4,1,)
+(1,1,21,1,1;1,1,1,1,9%(1,1,1,2,1,1;1,1,1,1,9% (1,1,1,1,2,1;1,1,4,1,9+(1,1,1,1,1,2;1,1,4,1,1)
+(1,1,1,1,1,1;1,1,1,4,1)+(1,1,1,1,1,1;1,1,4,4,)+2(1,1,1,1,1,1;1,1,1,4,4) +(1,1,1,1,1,1;1,1,4,1,4
+(1,1,1,1,21;4,1,1,1,)%(1,1,1,1,1,2;4,1,1,1,1)% (2,1,1,1,1,1;1,1,1,1,4) +(1,2,1,1,1,1;1,1,1,1,2)

+(1,1,1,1,1,1;4,1,1,1,4)+(1,1,1,1,1,1;4,1,1,1,1)4 2(1,1,1,1,1,1;1,4,1,1,1)4 (1,1,1,1,1,1;1,4,1,1,4).

The spontaneous symmetry breaking analysis for this model is quite unwieldy, but for the most part can be carried out
systematically. For example, breaking with (1,1,1,1,1,1141,1), (1,2,1,1,1,1,4,1,4,1,1), (1,1,1,1,1,1;4,1,1,114 and
(1,1,1,1,1,1;1,1,4,1,4) VEV’s reduce$SU°(4) to SU,(4)x SUp(4), with fermions remaining chiral in representations:
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(2,1,1,1,1,1; 1. %+(1,2,1,1,1,1;1, %+ (1,1,2,1,1,1;41) (1,44,1,1,)+(4,1,41,1,2+2(1,41,4,1,)
+(1,1,1,2,1,1;41)+(1,1,2,1,1,1; 1 %+ (1,1,1,2,1,1; 1% +(4,1,1,4,1,2+(1,1,1,44,1)+(1,1,41,4,)
+(1,1,1,1,2,1;1,4+(1,1,1,1,1,2;1.% +2(1,1,1,41,4)+(1,1,41,1,4 +(4,1,1,1,41)
+(1,1,1,1,2,1;4,0+(1,1,1,1,1,2;4,0+(2,1,1,1,1,1; 1% +2(4,1,1,1,1,4+2(1,4,1,1,1,4+(1,4,1,1,41).

+(1.211,1,11.4 Identifying SU;(4) with SU,(4), SUs(4) with SU,(4)

Now (1,1,1,1,2,1:4,1) and (1,1,1,1,1,2:4,1) VEV's break@ndSUs(4) with SUs(4) would lead to five families of the
SUs(2)XSUg(2)x SUy(4) to SU'(2) with fermions re- form 5[(4,4,1)+(1,4,4)+(4.1,4]; however, there are no
maining chiral in the representations scalars of the type needed to carry this out.

This analysis is not exhaustive and there may be models
whereSU, (2) or SUx(2) or both are contained i8U%(4).

(21,11;4+(1,21,14+(1,1.2,1,4+(1,1,1.2:4 Since we are starting with a group of rank 24, and seek the

A 2 w standard model of rank 4 or a unified model thereof of rank
+2(11,1.14+2(1,1.1,1;4+(2.1,1,1:9 5 or 6, and since there are 66 Higgs representations in the
+(1,2,1,1:9, theory, the spontaneous symmetry breaking possibilities are

rather complex. Th&l=3 case is obviously even more com-
which is already insufficient to provide three normal fami- plicated, with initial rank 42, and one could try to automate
lies. Other analyses of spontaneous symmetry breaking tdhe search for phenomenological models, although we have
ward constructing a Pati-Salam model starting with this 30/2hot attempted to do so.

model are similarly unsuccessful. 30/3 with 4=(1;a,1,,2¢% and N=2. We now have6
An alternative is to seek a trinification model. To this end, = (1,a,1,a* 203 2a?) wherea®=1.
consider only thesU8(4) fermion sector The chiralSU(2) x SU°(4) fermions are

(114.41,1,0+(11%4,1,4,1,)+(1%2,1%4,1,1,1,) +(1°2,144,1,1,1,) +(11%1,4,4,1,1)
+(11%1,4,1,4,1+(15,2,1%1,4,1,1,)+(17,2,1%1,4,1,1, )+ (11%1,1,44,1) +(11%1,1,41,4)
+(18,2,151,1,41,1)+(1°2;1,1,41,1)+(1'%1,1,1,44)+(11%4,1,1,41)
+(2,1%1,1,1,41)+(1%,2,1%,1,1,1,41)+(11%4,1,1,1,4+(1'%1,4,1,1,4+(1%,2,17;1,1,1,1,

+(1%,2,1%1,1,1,1,9.

Consider the bifundamentals only. VEV's for (1,1,B¢and SU;(2) and SUg(2) with SUg(2), and (v) breaking

(1,44,1,1) scalars reduce the chiral fermion sector too U3(2) X SUsy(2) completely, we would be left with a four

o -~ — _ . family Pati-Salam model. Can we do thigi?) is accom-
2[(4,4,1)+(1,4,4)+(4,1,4)],Whlch provides at most a two plished with (@ (11%4.1,4,1,1); then (i) requires (b)
family model.

. _ 11%1.41.4,1) and(c) (11%1,4,1,1,4) to obtain &Up(4).
If instead we try to construct a Pati-Salam model, and(Breaking this to nothing, we assume that VEVz and (b)

note that there are 2(2;4) type fermions, and that we need o no freedom to rotate thé) VEV to diagonal form.

SiX approprlate ones of these for three fam_llles, we must takﬂowy at this point, we are stymied, as there are insufficient
care in the spontaneous symmetry breaking to preserve thig. ,2;) representations 08U;(2)xSU;(2) to accomplish
much chirality. If we (i) break SU,(4) X SU,(4) X SUs(4) (V).

completely and(ii) break SU;(4)XSUs(4) to SUpd(4), Finally, one can imagine that there exist models with ei-
while (i) equating SUs(2), SUg(2), SUg(2) and (iv)  ther SU.(2) or SUg(2) or both coming fromSU°(4), but
equating SU,¢(2) with SU, (2), and SU;(2), SU,(2), we see no obvious way to carry this out. On the other hand,

086007-24



CLASSIFICATION OF CONFORMALITY MODELS BASED. ...

since there are 60 Higgs representations we are unable to

PHYSICAL REVIEW D54 086007

TABLE L. The groupD;=S;, 6/2.

categorically eliminate this possibility.

® 1 1’ 2

1 1 1 2
VIl. SUMMARY 1’ 1’ 1 2

2 2 2 1+1'+2

We have shown how AdS/CFT duality leads to a large
class of models which can provide interesting extensions of
the standard model of particle phenomenology. The naturally TABLE LI. The groupD,, 8/4.
occurring V=4 extended supersymmetry was completely
broken to A'=0 by choice of orbifoldsS®/T" such that © L L Ls L 2
Zsy(s). 1, 1, 1, 15 1, 2

In the present work, we systematically studied allg, 1, 1, 1, 15 2
such non-AbelianIs with order g<31. We have seen 1, 1, 1, 1, 1, 2
how chiral fermions require that the embedding Iofbe 1, 1, 1, 1, 1, 2
neither real nor pseudoreal. This dramatically reduce% 2 2 2 2 L+1,+15+1,
the number of possibilities to obtain chiral fermions.

Nevertheless, many candidates for models which contain the
chiral fermions of the three-family standard model were TABLE LII. The groupQ, 8/5.
found.

However, the requirement that the spontaneous symmetr\? L Lo Ls L 2
breaking down to the correct gauge symmetry of the standarg, 1, 1, 1, 1, 2
model be permitted by the prescribed scalar representations 1, 1, 1, 1, 2
eliminates most of the surviving models. We found only oney, 1, 1, 1, 1, 2
allowed model based on the=D,XZ; orbifold. We ini- 1, 1, 1, 1, 1, 2
tially expected to find more examples in our search. The 2 2 2 2 L+1,+15+1,
moral for model building is interesting. Without the rigid
framework of string duality the scalar sector would be arbi-
trarily chosen to permit the required spontaneous symmetry TABLE LIIl. The group Ds, 10/2.
breaking. This is the normal practice in the standard modef; i ,
in grand unification, in supersymmetry and so on. With string ® L L 2 2
duality, the scalar sector is prescribed by the construction and 1 1/ 1” 2!
only in one very special case does it permit the required’ 1’ 1 1 2!
symmetry breaking. This leads us to give more credence tg 2 2 1+1'+2' 242/
thel'=D,X Z5 example that does work, and to encourage itsp’ 2! 2’ 242/ 1+1'+2
further study to check whether it can have any connection te
the real world.

TABLE LIV. The groupT, 12/4.
® 1 1 1" 3
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The following Tables L—LXXIX are the irreducible rep- » 2 2 20 2 1+ 1,42 1y+15+2

resentation muliplication tables for non-Abelian groups witho- 2 2 2 2 1o+ 1542 1,+1,+2

g=31:
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TABLE LVI. The group Qg, 12/5.
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® 1, 1, 1, 1, 2 2'
1, 1, 1, 1, 1, 2 2'
1, 1, 1, 1, 1, 2 2
1, 1, 1, 1, 1, 2 2'
1, 1, 1, 1, 1, 2 2
2 2 2 2 2' 1,+15+2' 1,+1,+2
2/ 2 2 2' 2 1+1,+2 1+1,+2
TABLE LVII. The group D, 14/2.
® 1 1 2, 2, 23
1 1, 1’ 2, 2, 23
1 1 1 2 2, 23
2, 2, 2, 1+1'+2, 2,+24 2,+24
2, 2, 2, 2,+2, 1+1'+2, 2,+2,
23 23 23 2,+25 2,+2, 1+1'+2;
TABLE LVIII. The group (Z,XZ,)XZ,, 16/8
® 1, 1, 1, 1, 1g 14 1, 1g 2 2'
1, 1, 1, 1, 1, 1g 1 1, 1g 2 2'
1, 1, 1, 1, 1, 1g 1 1g 1, 2 2'
1, 1, 1, 1, 1, 1, 1g 1 1g 2 2'
1, 1, 1, 1, 1, 1g 1, 1g 1s 2 2'
1s 1s 1s 1, 1g 1, 1, 1, 1, 2’ 2
1s 1s 1s 1g 1, 1, 1, 1, 1, 2’ 2
1g 1g 1, 14 1 1, 1, 1, 1, 2’ 2
2 2 2 2 2 2 2’ 2 2" 1gt+lg+1,+1g 1,+1,+15+1,
2 2 2’ 2 2 2 2 2 2 L+1,+15+1,  1g+1g+1,+1
TABLE LIX. The groupZ,XZ,, 16/10.
® 1, 1, 1, 1, 1 1 1, 1g 2 2'
1, 1, 1, 1, 1, 1 1 1, 1g 2 2'
1, 1, 1, 1, 1, 1g 1, 1g 1 2’ 2
1, 1, 1, 1, 1, 1, 1g 1s 1g 2 2'
1, 1, 1 1, 1, 1g 1s 1g 1, 2’ 2
1s 1s 1g 1, 1g 1, 1, 1, 1, 2 2'
1, 1, 1g 1 1g 1, 1, 1, 1, 2 2'
1g 1g 1 1 1, 1, 1, 1, 1, 2’ 2
2 2 2 2 2' 2 2' 2 2" 1+13+1+1, 1,+1,+16+1g
2/ 2/ 2 2' 2 2’ 2 2/ 2 L+1,+1g+1g  1;+13+1+1,
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TABLE LX. The groupZgXZ,, 16/11.

® 1, 1, 13 1, 13 15 1, 14 2 2/
1, 1, 1, 13 1, 15 1 1, 1 2 2/
1, 1, 1 1, 1, 13 1, 1z 1 2' 2
1, 1; 1, 1, 1, 1, 1 15 14 2 2/
1, 1, 1, 1, 1 1§ 15 13 1, 2' 2
s 15 1¢ 1, 1z 1, 1, 1 1, 2 2/
16 1 1, 13 1 1, 1 1, 1, 2' 2
1, 1, 1y 15 1g 1, 1, 1, 1, 2 2/
g 1 15 15 1, 1, 1, 1, 1 2' 2
2 2 2 2 2 2 2 22 L+ l,41g+1g 141541541,
2' 2' 2 2 2 2 2 27 2 L+1g+1s+1, L4141+ 1g

TABLE LXI. The groupDyg, (ZgXZ,)’, 16/12 Qg, 16/14, has the same tahle

® 1, 1, 15 1, 2, 2, 25

1, 1, 1, 15 1, 2, 2, 23

2, 2 2, 2 2, 1,+15+2, 2,425 141,42,
2, 2, 2, 2, 2, 2,425 1,41+ 1,+1, 2,42,
2, 2, 2 2, 2 141,42, 2,425 1,+15+2,

TABLE LXII. The group (ZgXZ,)", 16/13.

® 1, 1, 15 1, 2, 2, 23
1, 1, 1, 15 1, 2, 2, 23

1, 1, 1, 1, 15 2, 2, 2,

1 15 1, 1, 1, 25 2, 2

1, 1, 15 1, 1, 2, 2, 2,

2, 2, 25 2, 2, 1,+15+2, 2,+2; 1,+1,+2,
2, 2, 2, 2, 2, 2,+2; 141,415+ 1, 2,425
25 25 2, 2, 2, 1,+1,+2, 2,+2; 1y+15+2,

TABLE LXIIl. The group Dy, 18/4.

® 1 1 2, 2, 2, 2,

1/ 1/ 1 2, 2, 2, 2,

2, 2 2, 1+1'+2, 2,425 2,42, 2542,

2, 2, 2, 2,425 1+1'+2, 2,42, 2,425

2, 25 25 2,+2, 2,42, 1+1'+2, 2,+2,

2, 2, 2, 2542, 2,+2; 2,+2, 1+1'+2,
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TABLE LXIV. The group (Zsx Zz) X Z,, 18/5.
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® 1 1 2, 2, 23 24

1’ 1’ 1 2, 2, 23 2,

2, 2, 2, 1+1'+2, 2:+2, 2,+2, 2,+25

2, 2, 2, 2:+2, 1+1'+2, 2,+2, 2,+25

23 23 23 2,+2, 2,+2, 1+1'+2,4 2,+2,

2, 24 24 2,+25 2,+25 2,+2, 1+1'+2,

TABLE LXV. The groupD,q, 20/3.

® 1, 1, 1, 1, 2, 2, 23 24

2, 2, 2, 2, 24 1,+15+2, 2,+2, 2,+2, 1,+1,+2,

2, 2, 23 2, 23 2,+24 1,+15+2, 2,+25 2,+2,

2, 23 2, 23 2, 2,+2, 2,+2, 1,+15+2, 2,+25

2, 24 2, 2, 2, 1,+1,+2; 2,+2, 2,+25 1,+15+2,
TABLE LXVI. The group ZsXZ,, 20/5.

® 1, 1, 15 1, 4

1, 1, 1, 1, 1, 4

1 1 13 1, 1, 4

1, 1, 1, 1, 1, 4

14 14 11 12 13 4

4 4 4 4 4 L+1,+15+1,+3%X4
TABLE LXVII. The group Z,X Z5, 21/2.

1, 1, 1, 15 3; 3,

12 12 13 11 3]_ 32

1, 1, 1, 1, 3 3,

3, 3; 3, 3; 3,+3,+3, 1,+1,+1,+3,+3,

3, 3, 3, 3, 1,+1,+1;+3,+3, 3,+3,+3,
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TABLE LXVIII. The group D44, 22/2.
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® 1 1 2, 2, 23 2, 25

1 1 1 2, 2, 23 2, 25

1 1’ 1 2, 2, 23 2, 25

2, 2, 2 1+1'+2, 2,+25 2,+2, 23+ 25 2,4+ 25

2, 2, 2, 2,+24 1+1'+2, 2,+25 2,425 25+2,

23 23 23 2,+2, 2,+25 1+1'+24 2,+2, 2,+ 25

2, 2, 2, 23+ 25 25+ 25 2,+2, 1+1'+2; 2,+2,

25 25 25 2,125 23+2, 2,+23 2,+2, 1+1'+2,
TABLE LXIX. The group D4,, 24/10.

1, 1, 1, 1, 1, 25 2, 23 2, 2,

1, 1, 1 1, 1, 25 2, 23 2, 2,

2, 27 2, 25 25 1;+1,+2, 2,+2; 2,+2, 23+ 25 23+ 25

2, 2, 2, 2, 24 2,+25 1,+1,+2, 2,+25 13+1,+2, 23+ 25

2; 23 23 23 23 2,+2, 2,+25 1,+1,+15+1, 2,+25 2,+2,

2, 2, 24, 2, 2, 23+ 25 1;+1,+2, 2,+24 1,+1,+2, 2,+2;

25 25 25 2, 24 23+ 25 23+ 25 2,+2, 2,+23 1,+1,+2,
TABLE LXX. The groupS,, 24/12.

® 1 1 2 3 3

1 1 1 2 3 3

1 1’ 1 2 3 3

2 2 2 1+1'+2 3+3’ 3+3’

3 3 3 3+3’ 1+2+3+3’ 1'+2+3+3'

3’ 3’ 35 3+3’ 1'+2+3+3' 1+2+3+3’
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TABLE LXXI. The group SLy(F3), QX Z5, 24/13.

® 1, 1, 15 2 2, 2, 3

1, 1, 1, 15 2 2, 25 3

1, 1, 15 1, 2, 25 2, 3

1, 15 1 1, 2, 2 2, 3

2 2 2, 2, 1+3 1'+3 1+3 2,+2,+25

2, 2, 25 2, 1'+3 1+3 1+3 2,+2,+25

25 25 2, 2, 1"+3 1+3 1'+3 2,+2,+2;

3 3 3 3 2+2,425  2,42,425  2,42,+25  1;+1,+1,+3+3
TABLE LXXII. The group ZgX Z5, 24/14.

® 1, 1, 13 1, 15 15 1, 1g 2, 2, 2, 2,

1, 1, 1, 13 1, 15 15 1, 14 2 2, 2, 2,

1, 1, 1; 1, 15 1g 1, 13 1, 2, 2, 2, 2

1, 1, 1, 15 1g 1, 1g 1, 1, 2, 2, 2, 2,

1, 1, 15 1 1, 1g 1, 1, 1, 2, 2, 2, 2,

15 1s 1 1, 1g 1, 1, 1, 1, 2 2, 2, 2,

16 1¢ 1, 1g 1, 1, 15 1, 1g 2, 25 2, 2

1, 1, 13 1, 1, 1; 1, 15 1g 25 2, 2, 2,

g 1g 1, 1, 1, 1, 15 15 1, 2, 2, 2, 2,

2, 20 2, 25 2, 2 2, 25 2, 141542, 1,+1g+2, 13+1;425 1,+1g+2,

2, 2, 235 2, 21 25 25 24 27 L4142, 1341342 1,+1g+2, 1;+15+2;

25 25 2, 2, 2, 25 2, 2, 25 13+1,425 1,41g+2, 1,415+2; 1,+1+2,

2, 2, 21 25 25 2, 21 25 25 L,41g+2, 1,415+2; 1,+1g+2, 1s+1,42,
TABLE LXXIIl. The group D,XZ3, 24/15.

® 1, 1, 13 1, 2, 2, 25 2, 25

1, 1, 1, 15 1, 2, 2, 25 2, 25

1, 1, 1, 1, 1, 2, 2, 2, 25 25

1, 1, 1, 1, 1, 2, 2, 25 2, 25

1, 1, 1; 1, 1, 2, 2, 2, 25 25

2, 2 2, 2 2, 13+1542; 141,42, 2,425 25425 2542,

2, 2, 2, 2, 2, 141442, 1,41542, 25425 2,425 2:+2,

25 25 2, 25 2, 2,42 2,425 141,42, 1,+15+2, 2,42,

2, 2, 23 2, 25 2342 2,425 L4+154+2, 141,42, 2,42,

25 25 25 25 25 23+2, 2542, 2,+2, 2,42,  1+1,+1,+1,

086007-30



CLASSIFICATION OF CONFORMALITY MODELS BASED. ... PHYSICAL REVIEW D54 086007

TABLE LXXIV. The group D3, 26/2.

® 11 2, 2, 2, 2, 25 26

1 1 2, 2, 25 2, 25 26
171 1 2 2, 2, 2, 25 26

2, 2, 2, 1+1'+42, 2,42, 2,42, 25+ 25 24+ 26 25+ 26
2, 2, 2 2,42, 141742, 2,424 2,426 25+ 26 24+ 25
2, 25 2 2,42, 2,425 1417425 2,42 2,425 2542,
2, 2, 2, 25+ 25 2,+ 26 2,426 1417425 2,42, 2,425
25 2 2 24+ 26 25+ 26 2,425 2,42,  1+1'42; 2,42,
2 2 2 25+ 26 24+ 25 2:+2, 2,425 2,42, 1+1'+2,

TABLE LXXV. The group (ZsX Zz) X Zs, 27/4.

® 1, 1, 15 1, 1s 1 1, 1g 1 3 3,
1, 1, 1, 15 1, 1s 1 1, 1 1 3 3,
1, 1, 15 1, 1s 1 1, 1 1 1, 3 3,
1, 15 1, 1, 1 1, 1 1 1, 1 3 3,
1, 1, 1 1 1, 1 1 1, 1, 1, 3 3,
1s 15 1 1, 1 1 1, 1, 15 1, 3 3,
1 1 1, 1s 1 1, 1 15 1, 1, 3 3,
1, 1, 1 1 1, 1, 15 1, 15 1 3 3,
1g 1 1 1, 1, 15 1, 15 1 1, 3 3,
1 1 1, 1g 15 1, 1, 1 1, 1s 3 3,

3, 3 3, 3, 3, 3, 3, 3, 3 3, 3%3, =21
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, =91 3x3,

TABLE LXXVI. The group ZgX Z3,27/5 [note that this table is the same as f@ K Z3) X Z3].

® 1, 1, 1, 1, 1s 1s 1, 1g 1, 3 3,
1, 1, 1, 1, 1, 1s 1s 1, 1g 1, 3; 3,
1, 1, 1, 1, 15 1s 1, 1g 1q 1, 3; 3,
1, 1, 1, 1, 1s 1, 15 1, 1, 1g 3; 3,
1, 1, 1s 1s 1, 1g 1q 1, 1, 1, 3, 3,
1g 1 1 1, 1g 1, 1, 1, 1, 1, 3 3,
1g 1 1, 1s 1, 1, 1g 1, 1, 1, 3 3,
1, 1, 1g 1 1, 1, 1, 1, 1s 1e 3 3,
1g 1g 1, 1, 1, 1, 1, 1s 1g 1, 3; 3,
1e 1, 1, 1g 1, 1, 1, 1g 1, 15 3; 3,
3 3 3 3 3, 3 3 3, 3, 3, 3%3, =01
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, DEINT 3x3,
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TABLE LXXVII. The group Dq,, 28/3.

® 1, 1, 15 1, 2, 2, 2, 2, 25 2
1, 1, 1, 15 1, 2 2, 2, 2, 25 2

1, 1, 1, 1, 1; 2 2, 25 2, 25 2

1, 1; 1, 1, 1, 26 25 2, 25 2, 2,

1, 1, 1; 1, 1, 26 25 2, 25 2, 2,

2, 21 25 2 2 1,+1,+2, 2,42, 2,12, 2+ 25 2,425 13+1,+25
2, 2, 2, 25 25 29+25 141,42, 2,425 2,425 13+1,425 2,42
2, 25 25 2, 24 2,42, 20425 13+1,425 la+1,42, 2,42 25+ 25
2 24 24 23 25  23+2s 2,425 131442 1,+1,425 2,42 2,42,
25 25 25 2, 2, 2,425 la+14425 2,42 2,425 1,+1,42, 2,42,
2 2 25 21 2, Lg+1,425 2,42 25+ 25 2,+2, 2,425  1,+1,+2,

TABLE LXXVIIl. The group DsX Z5, 30/2.

® 1, 1, 13 1, 15 1 2, 2, 25 2, 25 26
1, 1, 1, 13 1, 15 1g 2 2, 25 2, 25 26

1L, 1, 13 1, 15 1 1, 25 26 2, 2, 25 2,

1, 13 1, 1s 1 1, 1, 2, 2, 25 2 2 2,

1, 1, 1s 15 1, 1, 1g 2, 2, 2, 2, 25 2

s 1s 1 1; 1, 13 1, 25 2 2 2, 25 2,

16 1 1, 1, 13 1, 1s 2, 2, 25 2 2 2,

2, 2, 2 25 2, 25 25 1,+1,+2, 2,+2, 13+ 16+2, 2542, 1,415+ 2 25+ 26
2, 2, 2 2, 2, 2 2, 2,+2, 1,+1,+2, 2542, 13+ 16+ 25 25+ 26 1+ 15+ 25
2, 25 2, 25 25 21 25 l3+1g+2, 2542, 1+ 15+ 2 25+ 26 1,+1,+2, 2,+2,
2, 2, 2, 2 2, 2, 2 2542, T4+ 1g+2, 25+ 26 1,415+ 25 2,+2, 1,+1,+2;
25 25 25 21 25 25 27 l,+1g+2 25+ 26 1,+1,+2, 2,+2, 13+ 1g+2, 2542,
26 2 2, 2, 2 2, 2, 25+ 26 1,415+ 25 2,42, 1,+15+2, 2542, 13+ 1+ 24

TABLE LXXIX. The group D;s, 30/4.

® 1 1 2 2, 25 2, 25 26 2,
1 1 1 2, 2, 23 2, 25 26 2,
17 1 1 2 2, 25 2, 25 26 2,

2, 2, 2, 14142, 2,42, 2,+2, 25+ 25 24+ 26 25+2; 26+2;
2, 2, 2, 2,425 1+1'+2, 2,42 2,426 2542, 2,+2; 25+ 26
2, 25 25 2,42, 2,425 1+1'+2¢  2,+2, 2,42, 25+ 26 24+ 25
2, 24 2, 2442 2,426 2,42,  1+1'+2,  2,+2 2,425 2542,
25 25 25 2,42 2542, 2,42, 2,425 1+1'+25 2,42, 2,425
26 2 2 25+2; 2,42, 25+ 26 2,425 2,42, 1+1'+2, 2,+2,
2, 2, 2, 24+2; 25+ 26 24+ 25 2;+2, 2,+2; 2,+2, 1+1'+2,
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