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Classification of conformality models based on non-Abelian orbifolds
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A systematic analysis is presented of compactifications of the type IIB superstring on AdS53S5/G whereG
is a non-Abelian discrete group. Every possibleG with orderg<31 is considered. 45 such groups exist but a
majority cannot yield chiral fermions due to a certain theorem that is proved. The lowest order to embrace the
non-SUSY standardSU(3)3SU(2)3U(1) model with three chiral families isG5D43Z3, with g524; this
is the only successful model found in the search. The consequent uniqueness of the successful model arises
primarily from the scalar sector, prescribed by the construction, being sufficient to allow the correct symmetry
breakdown.
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I. INTRODUCTION

In particle phenomenology, the impressive success of
standard theory based onSU(3)3SU(2)3U(1) has natu-
rally led to the question of how to extend the theory to high
energies. One is necessarily led by weaknesses and in
pleteness in the standard theory. If one extrapolates the s
dard theory as it stands one finds~approximate! unification
of the gauge couplings at;1016 GeV. But then there is the
hierarchy problem of how to explain the occurrence of th
tiny dimensionless ratio;10214 of the weak scale to the
unification scale. Inclusion of gravity leads to asuperhierar-
chy problem of the ratio of the weak scale to the Plan
scale,;1019 GeV, to even tinier;10217 dimensionless ra-
tios. Although this is obviously a very important proble
about which conformality in itself is not informative, w
shall first discuss the hierarchy rather than the superhie
chy.

There are four well-defined approaches to the hierar
problem: ~1! supersymmetry,~2! technicolor, ~3! extra di-
mensions, and~4! conformality.

Supersymmetryhas the advantage of rendering the hier
chy technically natural: once the hierarchy is put into t
Lagrangian it need not be retuned in perturbation the
Supersymmetry predicts superpartners of all the known
ticles, and these are predicted to be at or below a TeV s
if supersymmetry is related to the electroweak breaking.
clusion of such hypothetical states improves the gauge c
pling unification. On the negative side, supersymmetry d
not explain the origin of the hierarchy.

Technicolorpostulates that the Higgs boson is a comp
ite of a fermion-antifermion pair bound by a new~techni-
color! strong dynamics at or below the TeV scale. This o
viates the hierarchy problem. On the minus side,
convincing simple model of technicolor has been found.

Extra dimensionscan have a range as large as 1(TeV)21

and the gauge coupling unification can occur quite diff
ently than in only four spacetime dimensions. This repla
the hierarchy problem with a different fine-tuning question
why the extra dimension is restricted to a distance co
0556-2821/2001/64~8!/086007~33!/$20.00 64 0860
e

r
m-
n-

r-

y

-

y.
r-
le
-
u-
s

-

-
o

-
s
f
-

sponding to the weak interaction scale. There is also a
tentially serious problem with the proton lifetime.

Conformality is inspired by superstring duality and a
sumes that the particle spectrum of the standard mode
enriched such that there is a conformal fixed point of
renormalization group at the TeV scale. Above this scale
coupling do not run so the hierarchy is nullified.

Conformality is the approach followed in this paper. W
shall systematically analyze the compactification of a ty
IIB superstring on AdS53S5/G whereG is a discrete non-
Abelian group.

The duality between weak and strong coupling field the
ries, and then between all the different superstring theo
has led to a revolution in our understanding of string
Equally profound, is the AdS conformal field theory~CFT!
duality which is the subject of the present article. This A
CFT duality is between string theory compactified on an
de-Sitter space and conformal field theory.

Until very recently, the possibility of testing string theor
seemed at best remote. The advent of AdS/CFT’s and la
scale string compactification suggest that this point of vi
may be too pessimistic, since both could lead to;100-TeV
evidence of strings. With this thought in mind, we are e
couraged to build AdS/CFT models with realistic fermion
structure, and reduce to the standard model below;1 TeV.

Using AdS/CFT duality, one arrives at a class of gau
field theories of special recent interest. The simplest comp
tification of a ten-dimensional superstring on a product of
AdS space with a five-dimensional spherical manifold lea
to an N54 SU(N) supersymmetric gauge theory, we
known to be conformally invariant@1#. By replacing the
manifold S5 by an orbifoldS5/G, one arrives at less supe
symmetries corresponding toN52, 1 or 0 depending@2# on
whether ~i! G,SU(2), ~ii ! G,SU(3) but G,” SU(2), or
~iii ! G,SU(4) butG,” SU(3) respectively, whereG is in all
cases a subgroup ofSU(4);SO(6), theisometry of theS5

manifold.
It was conjectured in Ref.@3# that suchSU(N) gauge

theories are conformal in theN→` limit. In Ref. @4# it was
conjectured that at least a subset of the resultant nonsu
©2001 The American Physical Society07-1
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symmetricN50 theories are conformal even for finiteN,
and that one of this subsets provides the right extensio
the standard model. Some first steps to check this idea w
made in Ref.@5#. Model building based on an AbelianG was
studied further in Refs.@6–8#, arriving in Ref. @8# at an
SU(3)7 model based onG5Z7 which has three families o
chiral fermions, a correct value for sin2u and a conformal
scale;10 TeV.

The case of non-Abelian orbifolds bases on non-Abel
G has not previously been extensively studied@21#, partially
due to the fact that it is apparently somewhat more ma
ematically sophisticated. However, we shall show here th
can be handled systematically as in the Abelian case,
leads to richer structures and interesting results.

In such constructions, the cancellation of chiral anoma
in the four-dimensional theory, as is necessary in extens
of the standard model~e.g. Refs.@9,10#!, follows from the
fact that the progenitor ten-dimensional superstring the
has a canceling hexagon anomaly@11#.

We consider all non-Abelian discrete groups of orderg
,32. These were described in detail in Refs.@12,15#. There
are exactly 45 such non-Abelian groups. Because the ga
group arrived at in this construction@6# is ^ iSU(Ndi) where
di are the dimensions of the irreducible representations oG,
and one can expect to arrive at models such as the P
SalamSU(4)3SU(2)3SU(2) model @16# by choosingN
52 and combining two singlets and a doublet in the4 of
SU(4). Indeed we shall show that such an accommoda
of the standard model is possible by using a non-AbelianG.

The procedures for building a model within such a co
formality approach are the following:~1! ChooseG. ~2!
Choose a proper embeddingG,SU(4) by assigning the
components of the4 of SU(4) to irreps ofG, while at the
same time ensuring that the6 of SU(4) is real.~3! Choose
N, in the gauge group̂ iSU(Ndi). ~4! Analyze the patterns
of spontaneous symmetry breaking.

In the present study we shall most often chooseN52 and
aim at the gauge groupSU(4)3SU(2)3SU(2). To obtain
chiral fermions, it is necessary@6# that the4 of SU(4) be
complex: 4Þ4* . Actually this condition is not quite suffi-
cient to ensure chirality in the present case because of
pseudoreality ofSU(2). Wemust ensure that the4 is not just
pseudoreal.

This last condition means that many of our 45 candida
for G do not lead to chiral fermions. For example,G
5Q2n,SU(2) has irreps of appropriate dimensionalities f
our purpose, but withN52 it will not sustain chiral fermions
underSU(4)3SU(2)3SU(2) because these irreps are a
like SU(2), pseudoreal.1 Applying the rule that4 must be
neither real nor pseudoreal leaves a total of only 19 poss
non-Abelian discrete groups of orderg<31. The smallest
group which avoids pseudoreality has orderg516 but gives
only two families. The technical details of our systema
search will be given in Secs. V and VI. The simplest int

1Note that were we usingN>3, then a pseudoreal4 would give
chiral fermions.
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esting non-Abelian case hasg524, and gives three chira
families in a Pati-Salam-type model@16#.

Before proceeding to details, it is worth reminding th
reader that the conformal field theory that it exemplifi
should be free of all divergences, even logarithmic ones
the conformality conjecture is correct, and be completely
nite. Further the theory is originating from a superstri
theory in a higher dimension~10! and contains gravity@17–
19# by compactification of the higher-dimensional gravito
already contained in that superstring theory. In the CFT
we derive it, gravity is absent because we have not kept th
graviton modes~of course, their influence on high-energ
physics experiments is generally completely negligible u
less the compactification scale is ‘‘large’’@20#!; here we shall
neglect the effects of gravity.

It is worthwhile noting the degree of constraint impos
on the symmetry and particle content of a model as the n
ber of irrepsNR of the discrete groupG associated with the
choice of orbifold changes. The number of gauge grou
grows linearly in NR , the number of scalar irreps grow
roughly quadratically withNR , and the chiral fermion con-
tent is highlyG dependent. If we require a minimalG that is
large enough for the model generated to contain the ferm
of the standard model and have sufficient scalars to break
symmetry to the level of that of the standard model, thenG
5Q3Z3 appears to be that minimal choice@21#.

Although a decade ago the chances of testing str
theory seemed at best remote, recent progress has give
hope that such tests may indeed be possible in AdS/CF
The model provided here demonstrates that the stan
model can be accommodated in these theories, and sug
the possibility of a rich spectrum of new physics just arou
the TeV corner.

II. NON-ABELIAN GROUPS WITH ORDER gÏ31

From any good textbook on finite groups@12# we may
find a tabulation of the number of finite groups as a funct
of the orderg, the number of elements in the group. Up
order 31 there is a total of 93 different finite groups of whi
slightly over one half~48! are Abelian.

Among finite groups, the non-Abelian examples have
advantage of nonsinglet irreducible representations wh
can be used to interrelate families. Which such group to
lect is based on simplicity: the minimum order and mo
economical use of representations@13–15#.

Let us first dispense with the Abelian groups. These are
made up from the basic unitZp , the orderp group formed
from the pth roots of unity. It is important to note that th
productZpZq is identical toZpq if and only if p andq have
no common prime factor.

If we write the prime factorization ofg as

g5)
i

pi
ki , ~1!

where the product is over primes, it follows that the numb
Na(g) of inequivalent Abelian groups of orderg is given by
7-2
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Na~g!5)
ki

P~ki !, ~2!

where P(x) is the number of unordered partitions ofx.
For example, for orderg514452432 the value would be
Na(144)5P(4)P(2)5532510. Forg<31 it is simple to
evaluateNa(g) by inspection.Na(g)51 unlessg contains
a nontrivial power (ki>2) of a prime. These excep
tions are Na(g54,9,12,18,20,25,28)52, Na(8,24,27)53,
andNa(16)55. This confirms that

(
g51

31

Na~g!548. ~3!

We do not consider the Abelian cases further in this pap
Of the non-Abelian finite groups, the best known are p

haps the permutation groupsSN ~with N>3) of orderN. The
smallest non-Abelian finite group isS3 ([D3), the symme-
try of an equilateral triangle with respect to all rotations in
three dimensional sense. This group initiates two infinite
ries SN and DN . Both have elementary geometrical signi
cance since the symmetric permutation groupSN is the sym-
metry of the N-plex in N dimensions while the dihedra
group DN is the symmetry of the planarN-agon in three
dimensions. As a family symmetry, theSN series becomes
uninteresting rapidly as the order and the dimensions of
representions increase. OnlyS3 andS4 are of any interest as
symmetries associated with the particle spectrum@14#, also
the order~number of elements! of the SN groups grow fac-
torially with N. The order of the dihedral groupsDN are 2N
and so increase only linearly withN, and their irreducible
representations are all one and two dimensional. This
reminiscent of the representations of the electrow
SU(2)L used in nature. EachDN is a subgroup ofO(3) and
has a counterpart double dihedral~also known as dicyclic!
groupQ2N of order 4N, which is a subgroup of the doubl
coveringSU(2) of O(3).

With only the use ofDN , Q2N , SN , and the tetrahedra
groupT ~of order 12, the even permutations subgroup ofS4!
we find ~see Table I! 32 of the 45 non-Abelian groups up t
order 31, either as simple groups or as products of sim
non-Abelian groups with Abelian groups.~Note that D6
.Z23D3 , D10.Z23D5 andD14.Z23D7.! Some of these
groups are familiar from crystallography and chemistry, b
the non-Abelian groups that do not embed inSU(2) are less
likely to have seen wide usage.

There remain 13 other groups formed by twisted produ
of Abelian factors. Only certain such twistings are perm
sible, namely~completing allg<31) those given in Table II.
It can be shown that these 13 groups exhaust the class
tion of all inequivalent finite groups up to order 31@12#.

Of the 45 non-Abelian groups, the dihedrals (DN) and
double dihedrals (Q2N), of order 2N and 4N respectively,
form the simplest sequences. In particular, they fall into s
groups ofO(3) and SU(2) respectively, the two simples
non-Abelian continuous groups.

For DN and Q2N , the multiplication tables, as derivab
from the character tables, are simple to express
08600
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general@15#. DN , for oddN, has two singlet representation
1,18 andm5(N21)/2 doublets 2( j ) (1< j <m). The multi-
plication rules are

1831851, 1832( j )52( j ) , ~4!

2( i )32( j )5d i j ~1118!12(min[ i 1 j ,N2 i 2 j ])

1~12d i j !2(u i 2 j u) . ~5!

For evenN, DN has four singlets 1,18,19,1- and (m
21) doublets 2( j ) (1< j <m21), wherem5N/2 with mul-
tiplication rules

1831851931951-31-51, ~6!

1831951-;1931-518;1-318519,
~7!

1832( j )52( j ) , ~8!

1932( j )51-32( j )52(m2 j ) , ~9!

2( j )32(k)52u j 2ku12(min[ j 1k,N2 j 2k]) ~10!

if kÞ j , (m2 j ),

2( j )32( j )52(min[2 j ,N22 j ])11118 ~11!

TABLE I. The non-Abelian finite groups of order,32 con-
structed from direct products ofZN , DN , Q2N, SN , andT.

g
6 D3[S3

8 D4 ,Q5Q4

10 D5

12 D6 ,Q6 ,T
14 D7

16 D8 ,Q8 ,Z23D4 ,Z23Q
18 D9 ,Z33D3

20 D10,Q10

22 D11

24 D12,Q12,Z23D6 ,Z23Q6 ,Z23T,
Z33D4 ,Z33Q,Z43D3 ,S4

26 D13

28 D14,Q14

30 D15,D53Z3 ,D33Z5

TABLE II. All non-Abelian finite groups of order,32 contain-
ing twisted products of Abelian factors.

g
16 Z23̃Z8 ~two, excludingD8), Z43̃Z4 ,Z23̃(Z23Z4) ~two!

18 Z23̃(Z33Z3)
20 Z43̃Z5

21 Z33̃Z7

24 Z33̃Q,Z33̃Z8 ,Z33̃D4

27 Z93̃Z3 ,Z33̃(Z33Z3)
7-3
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if j Þm/2,

2( j )32(m2 j )52um22 j u11911- ~12!

and

2m/232m/25111811911-. ~13!

This last is possible only ifm is even and hence ifN is
divisible by 4.

For Q2N , there are four singlets~1, 18, 19, and 1-) and
(N21) doublets 2( j ) @1< j <(N21)#. The singlets have
multiplication rules

13151831851, ~14!

1931951-31-518, ~15!

1831951-, 1-318519 ~16!

for N5(2k11), but are identical to those forDN when N
52k. The products involving the 2( j ) are identical to those
given for DN (N even! above.

This completes the multiplication rules for 19 of the 4
groups. As they are not available in the literature, and so
what tedious to work out, we have provided complete m
tiplication tables for all the non-Abelian groups with ord
g<31 in the Appendix.

III. MATHEMATICAL THEOREM

Theorem: A pseudoreal4 of SU(4) cannot yield chiral
fermions. In Ref. @6# it was proved that if the embedding i
SU(4) is such that4 is real,454* , then the resultant fermi
ons are always nonchiral. It was implied there that the c
verse holds, that if4 is complex,4Þ4* , then the resulting
fermions are necessarily chiral. Actually forG,SU(2) one
encounters the intermediate possibility that the4 is pseu-
doreal. In the present section we shall show that if4 is pseu-
doreal then the resultant fermions are necessarily nonch
The converse now holds: if the4 is neither real nor pseu
doreal then the resultant fermions are chiral.

For G,SU(2) it is important that the embedding be co
sistent with the chainG,SU(2),SU(4); otherwise the em-
bedding is not a consistent one. One way to see the inc
sistency is to check the reality of65(4^ 4)antisymmetric. If
6Þ6* then the embedding is clearly improper. To avoid th
inconsistency, it is sufficient to include only complete irr
ducible representations ofSU(2) in the4 of SU(4).

An explicit example will best illustrate this propriety con
straint on embeddings. Let us considerG5Q6, the dicyclic
group of orderg512. This group has six inequivalent irre
ducible representations 1, 18, 19, 1-, 21 , and 22 . 1, 18, and
21 are real. 19 and 1- are a complex conjugate pair, and 22
is pseudoreal. To embedG5Q6,SU(4) we must choose
from the special combinations which are complete irred
ible representations ofSU(2) namely 1, 2522 , 3518121
and 451911-122. In this way the embedding eithe
makes the4 of SU(4) real, e.g., 451118121, in which
case the theorem of Ref.@6# applies, and non-chirality re
08600
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sults; or else4 is pseudoreal, e.g., 4522122. In this case
one can check that the embedding is consistent becaus4
^ 4…antisymmetric is real. But it is equally easy to check tha
the product of this pseudoreal4 with the complete set of
irreducible representations ofQ6 is again real and that the
resultant fermions are nonchiral.

The lesson is contained in the following theorem:To ob-
tain chiral fermions from compactification onAdS53S5 /G,
the embedding ofG in SU(4) must be such that the 4 o
SU(4) is neither real nor pseudoreal.

IV. CHIRAL FERMIONS FOR ALL NON-ABELIAN gÏ31

Looking at the full list of non-Abelian discrete groups o
orderg<31 as given explicitly in Ref.@15# we see that of the
45 such groups 32 are simple groups or semidirect prod
thereof; these 32 are listed in the table on page 4691 of R
@15#, and reproduced in Sec. II above. The remaining 13
formed as semidirect product groups~SDPG’s! and are listed
in the Table on page 4692 of Ref.@15# and in Sec. II. We
shall follow this classification closely.

Using the pseudoreality considerations of Sec. III, we c
pare down the full list of 45 to only 19 which include 1
SDPG’s. The lowest order non-Abelian groupG which can
lead to chiral fermions isg516. The only possible order
g<31 are the seven valuesg516(5@5SDPGs#),
18(2@1SDPG#), 20(1@1SDPG#), 21(1@1SDPG#),
24(6@3SDPGs#), 27(2@2SDPGs#), and 30(2@0SDPG#).
In parentheses we show the number of groups at orderg, and
the number of these that are SDPG’s is in square brack
they add to~19@13 SDPG’s#!. We shall proceed with the
analysis systematically, in progressively increasing mag
tudes ofg.

g516. The nonpseudoreal groups number five, and all
SDPG’s. In the notation of Thomas and Wood@12#, which
we shall follow for definiteness both here and in the Appe
dix, they are 16/8, 9, 10, 11, and 13. So we now treat thes
the order they are enumerated by Thomas and Wood. Ag
the relevant multiplication tables are collected in the Appe
dix.

Group 16/8; also designated(Z43Z2)3̃Z2. This group
has eight singlets 11 ,12 , . . . ,18 and two doublets 21 and 22.
In the embedding of 16/8 inSU(4) we must avoid the sin-

TABLE III. Chiral fermions for 16/8 with45(21 ,21).

11 12 13 14 15 16 17 18 21 22

11 33

12 33

13 33

14 33

15 33

16 33

17 33

18 33

21 33 33 33 33

22 33 33 33 33
7-4
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glet 11; otherwise there will be a residual supersymme
with N>1. Consider the embedding defined by45(21 ,21).
To find the surviving chiral fermions we need to product4
with all ten of the irreps of 16/8. The results are given
Table III.

If we choose N52, the gauge group isSU(2)8

3SU(4)2, and the entries in Table III correspond to bifu
damental representations of this group@e.g., the entry neares
the top right corner at the position (11 ,21) is the represen-
tation 2(2,1,1,1,1,1,1,1;4,̄1)]. If we identify the diagonal
subgroup of the first fourSU(2)’s asSU(2)L , that of the
second four asSU(2)R , and that of the twoSU(4)’s as
color SU(4), the result is nonchiral due to the symmet
about the main diagonal of the above table.

On the other hand, if we identify41 with 4̄2 there are
potentially eight chiral families

8@~2,1,4!1~1,2,4̄!# ~17!

underSU(2)L3SU(2)R3SU(4). This is the maximum to-
tal chirality for this orbifold, but, as we will see in Sec. V, th
allowed chirality at any stage is as usual determined by sp
taneous symmetry breaking~SSB! generated in the scala
sector. In this section we give the maximum chirality f
each orbifold; in Sec. V we study SSB for those models w
sufficient chirality to accommodate at least three families

TABLE IV. Chiral fermions for 16/8 with45(12,15 ,21).

11 12 13 14 15 16 17 18 21 22

11 3 3 3

12 3 3 3

13 3 3 3

14 3 3 3

15 3 3 3

16 3 3 3

17 3 3 3

18 3 3 3

21 3 3 3 3 3 3

22 3 3 3 3 3 3
08600
n-
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Because 21522* form a complex conjugate pair, the em
bedding45(21 ,22) is pseudoreal,4[4* and the fermions
are nonchiral as is easily confirmed. For this embedding,

result is nonchiral for either of the cases41[42 or 41[4̄2.
~In the future, we shall not even consider such trivially re
nonchiral embeddings.!

Finally, for 16/8, consider the embedding45(12,15 ,21);
see Table IV.@In general there will be many equivalent em
beddings. We will give one member of each equivalen
class. Cases that are obviously nonchiral~vectorlike! will, in
general, be ignored, except for a few instructive example
order 16 and 18.# These examples of embeddings forG
516/8 clearly show how the number of chiral families d
pends critically on the choice of embeddingG,SU(4). To
actually achieve a model that is phenomenologically viab
we must study the possible routes through SSB for e
chiral model. We postpone this until we find all models
potential interest.

Group 16/9; also designated@(Z43Z2)3̃Z2#8. This
group has irreps which comprise eight singlets 11 , . . . ,18

and two doublets 21 ,22. With the embedding45(21 ,22)
and using the multiplication table from the Appendix, w
arrive at the fermion bilinears. These are nonchiral and
model has no families. This was the only potentially chi
embedding. In what follows, nonchiral models will not b
displayed, however, as the unification scale can be rather
in AdS/CFT models, it would also be interesting to inves
gate vectorlike models of this class.

Group 16/10; also designated Z43̃Z4. The multiplication
table is identical to that for 16/9, as mentioned in the Appe
dix; thus the model building for 16/10 is also identical
16/9 and merits no additional discussion.

Group 16/11; also designated Z83̃Z2. Again there are
eight singlets and two doublets. The singlets 11,3,5,7 are real
while the other singlets fall into two conjugate pairs 12

514* and 16518* . The doublets are complex: 21522* .
The multiplication table in the Appendix includes th

products 11,3,5,7321,2521,2 and 12,4,6,8321,2522,1. Also
21321522322512114116118, while 21322511113
115117. This means that there are no interesting~legiti-
mate and chiral! embeddings of the type 11112 or 212.
TABLE V. Chiral fermions for 16/11 with45(12 ,12 ,12 ,12).

11 12 13 14 15 16 17 18 21 22

11 (3)4

12 (3)4

13 (3)4

14 (3)4

15 (3)4

16 (3)4

17 (3)4

18 (3)4

21 (3)4

22 (3)4
7-5
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TABLE VI. Chiral fermions for 16/11 with45(12 ,12 ,12 ,14).

11 12 13 14 15 16 17 18 21 22

11 333 3

12 3 333

13 3 333

14 333 3

15 333 3

16 3 333

17 3 333

18 333 3

21 3333

22 3333
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The most chiral possibility is the embedding4
5(12 ,12 ,12 ,12) which leads to the fermions in Table V.@In
this table, (3)4[(3333).# This gives rise to twelve chi-
ral families if we setN53 and identify and 31534535
538 , 32536 and 33537. UnderSU(3)3 the chiral fermions
are

8@~3,3̄,1!1~1,3,3̄!1~ 3̄,3,1!# ~18!

together with real nonchiral representations. In Sec.
where we discuss spontaneous symmetry breaking, we
see if this type of unification is possible.

With the different embedding45(12 ,12 ,12 ,14) the
model changes to a less chiral but still interesting ferm
configuration given in Table VI. If we can identifySU(3)’s
as 31[34[35[38 , 32[36 and 33[37 this embedding
gives just four chiral families:

4@~3,3̄,1!1~1,3,3̄!1~ 3̄,3,1!# ~19!

underSU(3)3 together with real representations. To che
consistency, we have verified that real and legitimate emb
dings for 16/11 like45(13 ,13 ,13 ,13) and45(21 ,22) give
no chiral fermions.

Group 16/13; also designated@Z83̃Z2#9. Of the five non-
pseudorealg516 non-AbelianG ’s, 16/13 is unique in having
only four inequivalent singlets 11 , 12 , 13, and 14 but three
doublets 21 , 22, and 23.

TABLE VII. Chiral fermions for 16/13 with45(13 ,14 ,21).

11 12 13 14 21 22 23

11 3 3 3

12 3 3 3

13 3 3 3

14 3 3 3

21 3 3 3 3 3

22 3 33 3

23 3 3 3 3 3
08600
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All four singlets are real: 1i51i* . The three doublets
comprise a conjugate complex pair 21523* Þ21* and the real
22522* .

With the embedding45(13 ,14 ,21) the resultant mode
has the chiral fermion of Table VII. ForN52 if we identify
SU(2)L with the diagonal subgroup of the first and four
SU(2)’s, and SU(2)R with the diagonal subgroup of th
second and thirdSU(2)’s, then there are four chiral familie
if we embed41[4̄3 and breakSU(4)2 completely.

For 16/13 with45(21 ,21) the chiral fermions are given
in Table VIII. With 41[4̄3 there are potentially eight chira
families. A similar result occurs, of course, for45(23 ,23).
But the embedding45(21 ,23) is manifestly nonchiral be-
cause of the symmetry of the table, as can be shown from
embedding as follows: Even though 21 and 23 are complex,
21523* , so 4* 5(21,23)* 5(23,21). We can rotate this
within SU(4) to 45(21,23). Therefore, the 4 is pseudore
and the fermions are vectorlike as expected. Also the emb
ding 45(22 ,22) in 16/13 gives rise to no chirality and henc
to zero families. Finally, the embedding45(21 ,22) of 16/13
leads to the intermediate situation shown in Table IX. T
gives rise to four potential chiral families with the identifi
cation41[4̄3.

To summarize the ‘‘double doublet’’ embeddings4
5(2i ,2j ) of 16/13: for equivalent embeddings (i , j )5(1,1)
or (3,3), there are up to eight chiral families; for the oth
mutually equivalent cases (i , j )5(1,2), (3,2), (2,3), or
(2,1) there are up to four chiral families; finally for the pse
doreal cases (i , j )5(1,3), (3,1) and the real case (2,2) the

TABLE VIII. Chiral fermions for 16/13 with45(21 ,21).

11 12 13 14 21 22 23

11 33

12 33

13 33

14 33

21 33 33 33

22 33 33

23 33 33 33
7-6
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are, because of the mathematical theorem~and as we have
now verified by direct calculation!, no chiral fermions.

g518. The nonpseudoreal groups number two, and on
a SDPG. In the notation of Thomas and Wood@12# they are
18/3 and 18/5. We now treat these in the order they w
enumerated by Thomas and Wood.

Group 18/3; also designated D33Z3. This group has ir-
reps which fall into six singlets 1, 18, 1a, 18a, 1a2, and
18a2 and three doublets 2, 2a, and 2a2. Using theD3 mul-
tiplication table from the Appendix, the embedding4
5(1a,18,2a) yields the fermions of Table X. WhenN52
there is sufficient chirality to provide three families but w
will find the spontaneous symmetry breaking difficult
carry out.

Group 18/5; also designated(Z33Z3)3̃Z2. This group
has two singlets 1 and 18 and four doublets 21 , 22 ,23, and
24. Using the multiplication table from the Appendix w
compute the models corresponding to the three inequiva
embeddings45(18,18,21), 45(21 ,21) and 45(21 ,22);
however, all three turn out to be vectorlike. This is easy
understand when one realizes that all of the irreducible r
resentations of 18/5 are individually either real or pseudo
@12#, making a complex embedding of4 impossible.

g520. There is one nonpseudoreal group, a SDPG. In
notation of Thomas and Wood@12# it is 20/5.

Group 20/5; also designated Z53̃Z4. The group has four
singlets 11 , 12 , 13 , and 14 and a 4. The singlets 11 and 13
are real, and the other two form a complex conjugate p
12514* . 6, which is the antisymmetric product65(4
34)a , must be real for a legitimate embedding. The tw

TABLE IX. Chiral fermions for 16/13 with45(21 ,22).

11 12 13 14 21 22 23

11 3 3

12 3 3

13 3 3

14 3 3

21 3 3 3 3 3

22 3 3 3 3 3 3

23 3 3 3 3 3

TABLE X. Chiral fermions for 18/3 with45(1a,18,2a).

1 18 2 1a 18a 2a 1a2 18a2 2a2

1 3 3 3

18 3 3 3

2 3 3 3 33

1a 3 3 3

18a 3 3 3

2a 3 3 3 33

1a2 3 3 3

18a2 3 3 3

2a2 3 3 33 3
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inequivalent choices, bearing in mind the multiplication tab
provided in the Appendix are45(12 ,12 ,12 ,12) and 4
5(12 ,12 ,12 ,14).

The first 45(12 ,12 ,12 ,12) yields the chiral fermions in
Table XI. PuttingN53 this embedding gives four chira
families when we identifySU(3)3[SU(3)4 and drop real
representations, giving

4@~3,3̄,1!1~1,3,3̄!1~ 3̄,1,3!# ~20!

underSU(3)3SU(3)3SU(3). This possibility for the 20/5
non-Abelian orbifold certainly merits further study. The sym
metry breaking for this model will be investigated in Sec.

The second inequivalent embedding45(12 ,12 ,12 ,14)
gives rise to the fermions in Table XII. IdentifyingSU(3)3
[SU(3)4 as before forN53 this is less chiral and gives ris
to just two chiral families

2@~3,3̄,1!1~1,3,3̄!1~ 3̄,1,3!# ~21!

underSU(3)3SU(3)3SU(3).
g521. One nonpseudoreal group exists in this case

SDPG. In the notation of Thomas and Wood@12#, it is 21/2.
Group 21/2; also designated Z73̃Z3. This group has ir-

reps which comprise three singlets 11 , 12 , and 13 and two
triplets 31 and 32. With the embedding45(12 ,31) ~recall
that 11 must be avoided to obtainN50), the resultant fer-
mions are given in Table XIII.

Putting N52, the gauge group isSU(2)33SU(6)2.
Clearly the model is chiral, as seen in the asymmetry of
table. For example, putSU(2)L[SU(2)1 and SU(2)R

[SU(2)2, breakSU(2)3 entirely, and use61→4,62→4̄ to
find two chiral families.

g524. The nonpseudoreal groups number six, and th
are SDPG’s. In the notation of Thomas and Wood@12# they
are 24/7, 8, 9, 13, 14, and 15. So we now treat these in
order they were enumerated by Thomas and Wood.

TABLE XI. Chiral fermions for 20/5 with45(12 ,12 ,12 ,12).

11 12 13 14 4

11 3333

12 3333

13 3333

14 3333

4 33333

TABLE XII. Chiral fermions for 20/5 with45(12 ,12 ,12 ,14).

11 12 13 14 4

11 333 3

12 3 333

13 3 333

14 333 3

4 33333
7-7
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Group 24/7; also designated D43Z3. This group has 12
singlets 11a i , 12a i , 13a i , and 14a i ( i 50 –2) and three
doublets 2a i ( i 50 –2); herea5exp(ip/3). The embedding
45(11a,12 ,2a) was studied in detail in our previous pap
@21# where it was shown how it can lead to precisely thr
chiral families in the standard model. For completeness
include the chiral fermions in Table XIV~it was presented in
a different equivalent way in Ref.@21#!.

By identifying SU(4) with the diagonal subgroup o
SU(4)2,3, breaking SU(4)1 to SU(2)L83SU(2)R8 , then
identifying SU(2)L with the diagonal subgroup o
SU(2)6,7,8 andSU(2)L8 andSU(2)R with the diagonal sub-
group of SU(2)10,11,12and SU(2)R8 , we are led to a three
family model as explained already in Ref.@21#.

It is convenient to represent the chiral fermions in
quiver diagram@22# as shown in Fig. 1. This model is esp
cially interesting because, uniquely among the large num
of models examined in this study, the prescribed scalars
sufficient to break the gauge symmetry to that of the stand
model.

Group 24/8; also designated Q3Z3. The multiplication
tables ofD4 and Q and hence the multiplication tables o
24/7 and 24/8 are identical. Model building for 24/8 is the
fore the same as 24/7 and merits no additional discussio

Group 24/9; also designated D33Z4. This group gener-
ates one of the richest sets of chiral models in the clas

TABLE XIII. Chiral fermions for 21/2 with45(12 ,31).

11 12 13 31 32

11 3 3

12 3 3

13 3 3

31 33 33

32 3 3 3 3 33
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models discussed in this paper. The group has, as irr
eight singlets (11a j ,12a j ) and four doublets 2a j ( j
50,1,2,3), wherea5exp(ip/4).

The embedding45(11aa1,12aa2,2aa3) must satisfya1
Þ0 ~for N50) anda11a2522a3 ~mod 4! @to ensure the
reality of 65(434)a#. There are several interesting poss
bilities including (11a,12a,2a), (11a,12a3,2a2),
(11a2,12 ,2a3), (11a2,12 ,2a), and (11a2,12a2,2). The
third and fourth cases are equivalent, as can be seen by
ting a go to a21, and the last case has only real fermio
sincea2521, i.e., the fermions for45(11a

2,12a2,2) are
vectorlike.

For 24/9 with 45(11a,12a
3,2a2) we find the fermions

are chiral and fall into the irreps as displayed in Table X

FIG. 1. Quiver diagram for chiral fermions in the 24/7 mode
TABLE XIV. Chiral fermions for 24/7 with45(11a,12 ,2a).

11 12 13 14 2 11a 12a 13a 14a 2a 11a2 12a2 13a2 14a2 2a2

11 3 3 3

12 3 3 3

13 3 3 3

14 3 3 3

2 3 3 3 3 3 3

11a 3 3 3

12a 3 3 3

13a 3 3 3

14a 3 3 3

2a 3 3 3 3 3 3

11a2 3 3 3

12a2 3 3 3

13a2 3 3 3

14a2 3 3 3

2a2 3 3 3 3 3 3
7-8
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TABLE XV. Chiral fermions for 24/9 with45(11a,12a
3,2a2).

11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 3 3 3

12 3 3 3

2 3 3 3 3 3

11a 3 3 3

12a 3 3 3

2a 3 3 3 3 3

11a2 3 3 3

12a2 3 3 3

2a2 3 3 3 3 3

11a3 3 3 3

11a3 3 3 3

2a3 3 3 3 3 3

TABLE XVI. Chiral fermions for 24/9 with45(11a,12a,2a).

11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 3 3 3

12 3 3 3

2 3 3 333

11a 3 3 3

12a 3 3 3

2a 3 3 333

11a2 3 3 3

12a2 3 3 3

2a2 3 3 333

11a3 3 3 3

12a3 3 3 3

2a3 3 3 333

TABLE XVII. Chiral fermions for 24/9 with45(11a2,12 ,2a).

11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 3 3 3

12 3 3 3

2 3 3 3 3 3

11a 3 3 3

12a 3 3 3

2a 3 3 3 3 3

11a2 3 3 3

12a2 3 3 3

2a2 3 3 3 3 3

11a3 3 3 3

12a3 3 3 3

2a3 3 3 3 3 3
086007-9
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TABLE XVIII. Chiral fermions for 24/9 with45(2a,2a).

11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 33
12 33
2 33 33 33

11a 33
12a 33
2a 33 33 33

11a2 33
12a2 33
2a2 33 33 33

11a3 33
12a3 33
2a3 33 33 33
.
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With the embedding45(11a,12a,2a), the chiral fermions
are given in Table XVI. IdentifyingSU(2)L with the diago-
nal subgroup ofSU(2)1,2,3,4, SU(2)R with the diagonal sub-
group of SU(2)5,6,7,8 and the4 of SU(4) with the 4 of
SU(4)2,3 and the4̄ of SU(4)1,4 leads to eight chiral families

Taking the embedding45(11a2,12 ,2a) gives as chiral
fermions of Table XVII. We identifySU(2)L and SU(2)R
with the diagonal subgroups ofSU(2)1,2 andSU(2)3,4, re-
spectively, and completely breakSU(2)5,6,7,8. The general-
ized color embedding4[41Æ42[4̄3[4̄4 leads to four chiral
families. This can be reduced to three families by furth
symmetry breaking using the same idea as in Ref.@21#. An
even more interesting embedding for 24/9 is to set4
5(2a,2a) which gives a real6 as required~sincea2521
is real!. See Table XVIII for the corresponding fermion
Identifying SU(2)L with the diagonal subgroup o
SU(2)1,3,5,7, SU(2)R with the diagonal subgroup o
SU(2)2,4,6,8, breakingSU(4)1,3, and keeping the unbroke
SU(4) which is the diagonal subgroup ofSU(4)2,4 gives rise
to eight chiral families:

8@~2,1,4̄!1~1,2,4!#. ~22!

The possibility of achieving the relevant symmetry break
will be examined below in Sec. V.

Group 24/13; also designated Q3̃Z3. This group has
three singlets 11 , 12 , and 13 , three doublets 21 , 22 , and 23 ,
and one triplet 3. ForN52 the gauge group is therefor
SU(2)33SU(4)33SU(6).

With the embedding45(21 ,22) the chiral fermions are
those of Table XIX. If we identify SU(2)L[SU(2)3 ,
SU(2)R[SU(2)2, and breakSU(2)1 there are two chiral
families for 4[41[4̄2[4̄3 . However, for N53 or larger
there is more chirality~the total number of chiral states in
creases! when we increaseN, and therefore the opportunitie
for model building increase. While we ignore these possib
ties here, they are straightforward to investigate since
tables of fermions we display are independent onN. This is
also why we display the fermions when theN52 case leads
08600
r

-
e

to less than three families. If, instead, we embed4
5(22 ,23) the fermions are manifestly nonchiral.

Group 24/14; also designated Z83̃Z3. There are eight
singlets and four doublets, with multiplication table as in t
Appendix. With the embedding45(22 ,24) one arrives at an
arrangement with no chiral families.

A chiral embedding occurs at45(21 ,22) giving rise to
the fermions of Table XX. ForN52, if we identify SU(2)L
as the diagonal subgroup ofSU(2)1,2,5,6 andSU(2)R as the
diagonal subgroup ofSU(2)3,4,7,8, then identify the4 of
SU(4) with the 4 of SU(4)2,3 and the4̄ of SU(4)1,4, this
model has eight chiral families underSU(2)L3SU(2)R
3SU(4).

Group 24/15; also designated D43̃Z3. The group 24/15
has nine inequivalent irreducible representations, four s
glets and five doublets. With the embedding45(23 ,25), the
fermions are shown in Table XXI.

Identifying SU(2)L[SU(2)1,3 and SU(2)R[SU(2)2,4
gives rise to two chiral families forN52. Another chiral
embedding is45(12 ,13 ,23) which gives the chiral fermions
of Table XXII.

Identifying SU(2)L with the diagonal subgroup of 11 and
13 , SU(2)R with 12 and 14, then identifying 2354 and 24

54̄, and finally breaking the other threeSU(4)’s gives rise
to six chiral families forN52.

As an alternative 24/15 model we can embed4
5(23 ,23) and obtain the fermions of Table XXIII. With

TABLE XIX. Chiral fermions for 24/13 with45(21 ,22).

11 12 13 21 22 23 3

11 3 3
12 3 3
13 3 3

21 3 3 33
22 3 3 33
23 3 3 33

3 33 33 33
7-10
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TABLE XX. Chiral fermions for 24/14 with45(21 ,22).

11 12 13 14 15 16 17 18 21 22 23 24

11 3 3

12 3 3

13 3 3

14 3 3

15 3 3

16 3 3

17 3 3

18 3 3

21 3 3 3 3 3 3

22 3 3 3 3 3 3

23 3 3 3 3 3 3

24 3 3 3 3 3 3

TABLE XXI. Chiral fermions for 24/15 with45(23 ,25).

11 12 13 14 21 22 23 24 25

11 3 3

12 3 3

13 3 3

14 3 3

21 3 33 3

22 33 3 3

23 3 3 33 3

24 3 3 3 33

25 3 3 3 3 3 3

TABLE XXII. Chiral fermions for 24/15 with45(12 ,13 ,23).

11 12 13 14 21 22 23 24 25

11 3 3 3

12 3 3 3

13 3 3 3

14 3 3 3

21 3 3 3 3

22 3 3 3 3

23 3 3 3 3 3

24 3 3 3 3 3

25 3 3 33
08600
SU(2)L and SU(2)R as diagonal subgroups ofSU(2)1
3SU(2)3 andSU(2)23SU(2)4 respectively, and breaking
SU(4)4 completely, this leads to four chiral families whe
N52 .

g527. The non-pseudoreal groups number two and b
are SDPG’s. In the notation of Thomas and Wood@12# they
are 27/4 and 27/5, and we treat them in that order.

Group 27/4; also designated Z93̃Z3. 27/4 has nine sin-
glet 11 , . . . ,19 and two triplet 31 and 32 irreducible repre-
sentations. We may choose the embedding 45(12 ,31) for
which the chiral fermions become those listed in Tab
XXIV.

Putting N52, the gauge group isSU(2)93SU(6)1
3SU(6)2 and the chiral fermions are

S (
i 51

i 59

2i ,6̄1D 1„61 ,6̄113~ 6̄2!…1S 62 ,(
i 51

i 59

2i D 1~62 ,6̄2!.

~23!

Though asymmetric in representations, this result is anom
free with respect to bothSU(6)1 andSU(6)2.

Group 27/5; also designated(Z33Z3)3̃Z3. The multipli-
cation tables, and hence the model building, are identical
27/4 and 27/5. The group 27/5 merits no separate furt
discussion.

TABLE XXIII. Chiral fermions for 24/15 with45(23 ,23).

11 12 13 14 21 22 23 24 25

11 33

12 33

13 33

14 33

21 33 33

22 33 33

23 33 33 33

24 33 33 33

25 33 33

TABLE XXIV. Chiral fermions for 27/4 with45(12 ,31).

11 12 13 14 15 16 17 18 19 31 32

11 3 3

12 3 3

13 3 3

14 3 3

15 3 3

16 3 3

17 3 3

18 3 3

19 3 3

31 3 333

32 3 3 3 3 3 3 3 3 3 3
7-11
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TABLE XXV. Chiral fermions for 30/2 with45(1a,18,2a).

1 18 2 28a 1a 18a 2a 28a 1a2 18a2 2a2 28a2

1 3 3 3

18 3 3 3

2 3 3 3 3 3

28 3 3 33

1a 3 3 3

18a 3 3 3

2a 3 3 3 3 3

28a 3 3 33

1a2 3 3 3

18a2 3 3 3

2a2 3 3 3 3 3

28a2 3 33 3
e

at

f

an

e of

-

-

f

g530. The nonpseudoreal groups number two, and n
ther is a SDPG. In the notation of@12#, they are 30/2 and
30/3. We now treat these in the order they are enumer
by Thomas and Wood.

Group 30/2; also designated D53Z3. 30/2 has six sin-
glets 1a i ,18a i and six doublets 2a i , 28a i with a
5exp(ip/3) and i 50,1,2. Choosing45(1a,18,2a) yields
the fermions of Table XXV.

Identifying SU(2)L with the diagonal subgroup o
SU(2)13SU(2)2 ~associated with 1,18) and SU(2)R with
the diagonal subgroup ofSU(2)53SU(2)6 ~associated with
1a2,18a2), we break theSU(4)’s associated with 2 and
2a2 to arrive at two chiral families whenN52.

Group 30/3; also designated D33Z5. This group has ir-
reps which comprise ten singlets and five doublets
yields, forN52, the gauge groupSU(2)103SU(4)5. As we
have encountered for groupsD33Zp ~with g56p), the em-
08600
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bedding 45(1aa1,18aa2,2aa3) must satisfy a11a2
522a3 ~modp! for consistency, as well asa1Þ0 to ensure
N50. There are several interesting such examples, on
which is 45(1a,18,2a2) where Table XXVI displays the
fermions.

In an obvious notation, the chiral fermions are

~21122 ,4̄3144!1~23124 ,4̄4145!1~25126 ,4̄5141!

1~27128 ,4̄1142!1~291210,4̄2143!. ~24!

Identifying, for example~there are equivalent cyclic permu
tations!, SU(2)L as the diagonal subgroup ofSU(2)1
3SU(2)23SU(2)73SU(2)8 , SU(2)R as the diagonal sub
group of SU(2)53SU(2)63SU(2)93SU(2)10, and the
generalized colorSU(4) as the diagonal subgroup o
TABLE XXVI. Chiral fermions for 30/3 with45(1a,18,2a2).

1 18 2 1a 18a 2a 1a2 18a2 2a2 1a3 18a3 2a3 1a4 18a4 2a4

1 3 3 3

18 3 3 3

2 3 3 3 3 3

1a 3 3 3

18a 3 3 3

2a 3 3 3 3 3

1a2 3 3 3

18a2 3 3 3

2a2 3 3 3 3 3

1a3 3 3 3

18a3 3 3 3

2a3 3 3 3 3 3

1a4 3 3 3

18a4 3 3 3

2a4 3 3 3 3 3
7-12
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SU(4)13SU(4)3, and completely breakingSU(4)2,4,5,
gives rise to four chiral families.

We can examine the infinite seriesD33Zp for p>3 ~as
necessary for nonpseudoreality!. The order isg56p. By
generalizing the above discussions of 18/3 (D33Z3), 24/9
(D33Z4) and 30/3 (D33Z5) we find that with the same
type of embedding one arrives at a maximal number
2@p/2# chiral families where@x# is the largest integer no
greater thanx. For example, withp53,4,5,6,7,8,9,10, . . .
one obtains 2,4,4,6,6,8,8,10 . . . chiral families respectively.
This is an example of accessing the more difficult no
Abelian G with g>32 at least for ordersg56p>36.

That completes the analysis of the occurrence of ch
fermions forG with g<31. For the cases where there are>3
chiral families, it remains to check whether the spectrum
complex scalars is sufficient to allow spontaneous symm
breaking to the standard model gauge group. This is the
ject of Secs. V and VI.

V. SCALAR SECTOR

In order to carry out spontaneous symmetry breaking
the chiral models we found in Sec. IV, we must first extra
the scalar sector from Eq.~5!, where6 is obtained from the
embedding of (434)A , which in turn follows from the em-
bedding of4. We only consider models of phenomenologic
interest, i.e., those which potentially have three or m
families, but preferably three. With this perspective in mi
we first collect the following models:

16/8 with 45~21 ,21! and x528 with N52.

16/8 with 45~12 ,15 ,21! and x527 with N52.

16/11 with 45~12 ,12 ,12 ,12! and x5432 with N53.

16/11 with 45~12 ,12 ,12 ,14! and x5216 with N53.

16/13 with 45~13 ,14 ,21! and x526 with N52.

16/13 with 45~21 ,22! and x526 with N52.

16/13 with 45~21 ,21! and x527 with N52.

18/3 with 45~1a,18,2a! and x5192 with N52.

20/5 with 45~12 ,12 ,12 ,12! and x5144 with N53.

20/5 with 45~12 ,12 ,12 ,14! and x572 with N53.

21/2 with 45~12 ,31! and x5108 with N52.

24/7 with 45~1a,18,2a! and x5240 with N52.

24/9 with 45~11a,12a3,2a2! and x5320 with N52.

24/9 with 45~11a,12a,2a! and x5320 with N52.
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24/9 with 45~11a2,12 ,2a! and x5192 with N52.

24/9 with 45~2a,2a! and x5384 with N52.

24/13 with 45~21 ,22! and x548 with N52.

24/14 with 45~21 ,22! and x5192 with N52.

24/15 with 45~12 ,13 ,23! and x527 with N52.

24/15 with 45~23 ,25! and x527 with N52.

24/15 with 45~23 ,23! and x528 with N52.

27/4 with 45~12 ,31! and x5324 with N52.

30/2 with 45~1a,18,2a! and x5336 with N52.

30/3 with 45~1a,18,2a2! and x5320 with N52.

First we consider16/8 with 45(12 ,12 ,21), where we
have included this example to demonstrate improper emb
ding. This representation is complex and would be expec
to lead to chiral fermions, but65(434)A51112(21121)
1(15116117118)A is complex~for any choice of singlet in
the last parenthetical expression!, and therefore the embed
ding 45(12 ,12 ,21) is improper and we need not consid
this or other such models further.

Let us define the chirality measurex of a model as the
number of chiral fermion states. This variable applies to a
irreps and provides a somewhat finer measure of chira
than the number of families. As spontaneous symme
breaking proceeds,x decreased~except under unusual cir
cumstances!. For instance, the standard model and minim
SU(5) both initially havex545. By the time the symmetry
is broken toSU(3)3UEM(1), x53 since the neutrino’s
cannot acquire mass due to globalB-L symmetry. On the
other hand, three familySO(10) andE6 models start with
x548 and 81 respectively but both break tox50.

In model building with AdS/CFT’s we are faced with
number of choices. If we require the initial model be chir
before SSB, then we needx>45 initially. However, since
the scale of SSBMAdS in these models can be relatively lo
~a few tens of TeV!, vectorlike models are more appealin
than usual, and we could allow an initialx50 without re-
sorting to incredibly detailed fine tunings. Our prejudice is
still require a chiral model withx>45 initially in order to
gain some control in model building, but we want to make
clear that, even though we have not displayed them exp
itly, the entire class of vectorlike model based on the no
Abelian orbifold classification given here would be worth
of detailed study. There are also models~chiral or vectorlike!
that break fromGAdS to SU(3)3UEM(1) but without going
through SU(3)3SU(2)3U(1) directly. As MAdS may be
not far aboveMZ , there may be models in this class th
could be in agreement with current data, but again we res
most of our discussion to chiral models that break throu
7-13
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TABLE XXVII. The scalars for 16/8 with45(21 ,21), which fixes the6 to be 653(15)116117118.
~Below we give only the embedding of the4 in the table captions, as it fixes the6 and hence the scalars.!

^ 11 12 13 14 15 16 17 18 2 28

11 333 3 3 3

12 3 3 3 3

13 3 3 3 3

14 3 3 3 333

15 333 3 3 3

16 3 3 3 3

17 3 3 3 3

18 3 3 3 333

2 333

333

28 333

333

TABLE XXVIII. The scalars for 16/8 with45(12 ,141 i ,21).

^ 11 12 13 14 15 16 17 18 2 28

11 3(5) ~6! 3 3

12 ~6! 3(5) 3 3

13 3(5) ~6! 3 3

14 ~6! 3(5) 3 3

15 3(5) ~6! 3 3

16 ~6! 3(5) 3 3

17 3(5) ~6! 3 3

18 ~6! 3(5) 3 3

2 3 3 3 3 3 3 3 3 33

28 3 3 3 3 3 3 3 3 33

TABLE XXIX. The scalars for 16/11 with45(12 ,12 ,12 ,12).

^ 11 12 13 14 15 16 17 18 2 28

11 (3)6

12 (3)6

13 (3)6

14 (3)6

15 (3)6

16 (3)6

17 (3)6

18 (3)6

2 (3)6

28 (3)6
086007-14
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TABLE XXX. The scalars for 16/11 with45(12 ,12 ,12 ,14).

^ 11 12 13 14 15 16 17 18 2 28

11 (3)3 (3)3

12 (3)6

13 (3)3 (3)3

14 (3)6

15 (3)3 (3)3

16 (3)6

17 (3)3 (3)3

18 (3)6

2 (3)6

28 (3)6
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the standard model. What is encouraging is the fact that
bifold AdS/CFT’s provide such a wealth of potentially inte
esting models.

16/8 with45(21 ,21). Here653(15)116117118 which
is real so the embedding is proper and the scalar secto
given in Table XXVII.

16/8 with 45(12 ,141 i ,21) and 65@1x( i ) ,2,28,(15116
117118)A#, wherex56, 5, 8, or 7 fori 51, 2, 3, and 4.
The fermionic sectors of these models are identical up
permutation, but there are two potential types of scalar s
tors, depending on whether1x( i ) is the same as or differen
from the antisymmetric product (21321)A . Let us relabel
the singlets so (21321)A516 , and then choose1x( i ) to be
either15 or 16 . Now the two inequivalent scalar sectors@in
this instance, it is easier to analyze both models and s
that neither phenomenology is interesting, rather than
tangle the correct antisymmetric singlet in (21321)A ; see
Sec. VI# are shown in Table XXVIII. Here~5! is replaced by
an ‘‘3 ’’ and ~6! by a blank if 1x( i )515, and vice versa if
1x( i )516.

For 16/11 with 45(12 ,12 ,12 ,12) and 6
5(13 ,13 ,13 ,13 ,13 ,13) we find the scalar of Table
XXIX. The other interesting case for 16/11 is where4
5(12 ,12 ,12 ,14) and65(11 ,11 ,11 ,13 ,13 ,13) which leads to
the scalars of Table XXX.

Moving on to 16/13 there are three cases of interest.
first is when 45(13 ,14 ,21) and 65(12 ,1c ,21 ,23), where
1c5(21321)A and we have1c is either12 or 13 ~unresolved
here, but see Sec. VI! giving the scalars of Table XXXI.

Next, for 16/13, where45(21 ,22) has65(1a ,1b ,21 ,23),
and where 1a5(21321)A5(12113122)A and 1b5(22

TABLE XXXI. The scalars for 16/13 with45(13 ,14 ,21).

^ 11 12 13 14 21 22 23

11 3(2) ~3! 3 3

12 3(2) ~3! 3 3

13 ~3! 3(2) 3 3

14 ~3! 3(2) 3 3

21 3 3 3 3 33 33

22 33 33 33

23 3 3 3 3 33 33
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322)A1(11112113114)A , we find the scalars in Table
XXXII. Here we insert3 ’s at the locations in parenthese
when the singlets are chosen properly from the antisymm
ric products of the doublets. There are three inequival
choices: either~i! put 33 at location~2!, ~ii ! put an3 at ~2!
and one at~3!, or ~iii ! put 3 at ~2! and 3 at ~1!. All other
choices lead to equivalent models. Thus without a deta
knowledge of the antisymmetric products, we can still redu
the analysis to the consideration of these three cases.

Finally for 16/13 with 45(21 ,21) and 6
5(12 ,12 ,12 ,13 ,22) @which is equivalent to 6
5(12 ,13 ,13 ,13 ,22) for SSB up to a relabeling of irreps# the
scalar are given in Table XXXIII.

Moving on to 18/3 there is only one case of interest wh
45(18a,18,2a) and65(18a,2a,2a2,18a2) and the scalars
are in Table XXXIV.

Proceeding to 20/5 there are two interesting cases;
first has45(12 ,12 ,12 ,12) and65(13 ,13 ,13 ,13 ,13 ,13) with
the scalars shown in Table XXXV and is very much like t
16/11 model with similar embedding. Note that a VEV f
any of these scalars renders the entire fermion sector ve
like. The second example is 20/5 with45(12 ,12 ,12 ,14) and
65(11 ,11 ,11 ,13 ,13 ,13) where we have the scalars of Tab
XXXVI.

Again at order 21 there is only one chiral set of models
is 21/2 with45(12 ,31) and6531132 which is real so the
embedding is proper, and where the scalar sector is show
Table XXXVII. ~All other embeddings of the4 with chiral
fermions andN50 supersymmetry permutations are equiv
lent to this model.!

TABLE XXXII. The scalars for 16/13 with45(21,22).

^ 11 12 13 14 21 22 23

11 ~1! ~2! ~3! ~4! 3 3

12 ~2! ~1! ~4! ~3! 3 3

13 ~3! ~4! ~1! ~2! 3 3

14 ~4! ~3! ~2! ~1! 3 3

21 3 3 3 3 ~1!~4! 33 ~2!~3!

22 33
(1)(2)

(3)(4)
33

23 3 3 3 3 ~2!~3! 33 ~1!~4!
7-15
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TABLE XXXIII. The scalars for 16/13 with45(21 ,21).

^ 11 12 13 14 21 22 23

11 333 3 3

12 333 3

13 3 333 3

14 333 3

21 3 33

333
22 3 3 3 3 33

33
23

33

333
3

TABLE XXXIV. The scalars for 18/3 with 45(18a,18,2a).

^ 1 18 2 1a 18a 2a 1a2 18a2 2a2

1 3 3 3 3

18 3 3 3 3

2 3 3 33 3 3 33

1a 3 3 3 3

18a 3 3 3 3

2a 3 3 33 3 3 33

1a2 3 3 3 3

18a2 3 3 3 3

2a2 3 3 33 3 3 33

TABLE XXXV. The scalars for 20/5 with45(12 ,12 ,12 ,12).

^ 11 12 13 14 4

11 (3)6

12 (3)6

13 (3)6

14 (3)6

4

TABLE XXXVI. The scalars for 20/5 with45(12 ,12 ,12 ,14).

^ 11 12 13 14 4

11 333 333

12 333 333

13 333 333

14 333 333

4 (3)6
08600
For 24/7~or equivalently 24/8 since they have isomorph
irrep product tables! we have the model of Ref.@21# where
45(11a,12 ,2a) and 65(12a,12a2,2a,2a2), and the sca-
lars are given by Table XXXVIII.

The next group of interest at order 24 is 24/9 where fi
we study the case with45(11a,12a

3,2a2) and 6
5(12 ,12 ,2a,2a3) where the scalars are shown in Tab
XXXIX. Next the scalars for 24/9 are given in Table XL
when 45(11a,12a,2a) and 65(12a,2,12a,2a2). Proceed-
ing to 24/9 with 45(11a,12 ,2a) and 6
5(12a2,2a,2a21,12a22) where a451, Table XLI pro-
vides the scalar sector. Finally there is the 24/9 case inv
ing only doublets where45(2a,2a) and 653(12a2)
111a212a2, and the scalars are collected in Table XLII.

The next example of interest is 24/13 with45(21 ,22) and
651111211313 where Table XLIII lists the scalars.

There are two inequivalent models to investigate for
group 24/15: they are 45(12 ,13 ,23) where 6514112[4]
123124 with the two choices of scalars.~For a discussion
of the two possibilities, see the analysis in Sec. VI.! If ( 23
323)A514 the scalars are those of Table XLIV, but if (23
323)A512 then the top 434 changes in Table XLIV and is
replaced with Table XLV. The other24/15 case has4
5(23 ,23) where653(12)114121 and the scalars are~this
time swapping12 and14 gives equivalent models! given in
Table XLVI.

The next model to evaluate is27/4 with 45(12 ,31),
where 6531132 is real, and the scalar sector is given
Table XLVII.

Finally, at order 30 we have30/2with 45(1a,18,2a) and
65(18a12a12a21118a21) where a351. The scalar
sector is shown in Table XLVIII.

The other possibility at order 30 is30/3 with 4
5(1a,18,2a2) where 6518a12a212a3118a4 and a5

51, and where the scalars are provided by Table XLIX. T
possible patterns of spontaneous symmetry breaking fo
these models will be discussed in Sec. VI.

VI. SPONTANEOUS SYMMETRY BREAKING

We are now in a position to carry out spontaneous sy
metry breaking for the models with fermions and scal
given in Secs. IV and V. We restrict ourselves to chiral mo
els with the potential of at least three families (x>45) and
for the most part consider only models withN52, although
we have included twoN53 models. Again, we move pro
gressively through the models of increasing order ofG. The
model is completely fixed byG, the embedding of4 in G,
and the choice ofN.

TABLE XXXVII. The scalars for 21/2 with45(12 ,31).

^ 11 12 13 31 32

11 3 3

12 3 3

13 3 3

31 3 3 3 33 333

32 3 3 3 333 33
7-16
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TABLE XXXVIII. The scalars for 24/7 with45(11a,12 ,2a).

^ 11 12 13 14 2 11a 12a 13a 14a 2a 11a2 12a2 13a2 14a2 2a2

11 3 3 3 3

12 3 3 3 3

13 3 3 3 3

14 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3

11a 3 3 3 3

12a 3 3 3 3

13a 3 3 3 3

14a 3 3 3 3

2a 3 3 3 3 3 3 3 3 3 3

11a2 3 3 3 3

12a2 3 3 3 3

13a2 3 3 3 3

14a2 3 3 3 3

2a2 3 3 3 3 3 3 3 3 3 3

TABLE XXXIX. The scalars for 24/9 with45(11a,12a3,2a2).

^ 11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 33 3 3

12 33 3 3

2 33 3 3 3 3 3 3

11a 3 33 3

12a 3 33 3

2a 3 3 3 33 3 3 3

11a2 3 33 3

12a2 3 33 3

2a2 3 3 3 33 3 3 3

11a3 3 3 33

11a3 3 3 33

2a3 3 3 3 3 3 3 33

TABLE XL. The scalars for 24/9 with45(11a,12a,2a).

^ 11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 33 33

12 33 33

2 33 33 33

33
11a 33 33

12a 33 33

2a 33 33 33

33
11a2 33 33

12a2 33 33

2a2 33 33 33

33
11a3 33 33

11a3 33 33

2a3 33 33 33

33
086007-17
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The first relevant model is16/8 with45(21,21) and N52. The chiral fermions are

2[(2,1,1,1,1,1,1,1;4,1)1(1,1,1,1,2,1,1,1;1,4)1(1,2,1,1,1,1,1,1;4,1)1(1,1,1,1,1,2,1,1;1,4)1(1,1,2,1,1,1,1,1;4,1)

1~1,1,1,1,1,1,2,1;1,4!1~1,1,1,2,1,1,1,1;4,1!1~1,1,1,1,1,1,1,2;1,4!1~2,1,1,1,1,1,1,1;1,4!̄1~1,1,1,1,2,1,1,1;4̄,1!

1~1,2,1,1,1,1,1,1;1,4!̄1~1,1,1,1,1,2,1,1;4̄,1!1~1,1,2,1,1,1,1,1;1,4!̄1~1,1,1,1,1,1,2,1;4̄,1!1~1,1,1,2,1,1,1,1;1,4!̄

1~1,1,1,1,1,1,1,2;4̄,1!]

TABLE XLI. The scalars for 24/9 with45(11a,12 ,2a).

^ 11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 3 33 3

12 3 33 3

2 3 3 3 33 3 3 3

11a 3 3 33

12a 3 3 33

2a 3 3 3 3 3 3 33

11a2 33 3 3

12a2 33 3 3

2a2 33 3 3 3 3 3 3

11a3 3 33 3

12a3 3 33 3

2a3 3 3 3 33 3 3 3
d

of

e,
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e

andx528. From the table of scalars for this model, we fin
that if we breakSU(4)3SU(4) to the diagonalSUD(4),
then the model becomes vectorlike.

All scalars that are nontrivial in theSU(4)’s are of the
form (1,1,1,1,1,1,1,1;4,4)̄1H.c., and a VEV for any one can
be rotated such that the unbroken symmetry isSUD(4). All
other scalars areSUi(2)3SUj (2) bilinears; hence we
cannot break to a Pati-Salam~PS! model or any standard
type chiral model.
08600
16/8 with 45(12,14¿i ,21) and N52, where 6
5@1x( i) ,21,22,(15,16,17,18)A# with x56,5,8,7 for i
51,2,3,4. These models have only half the initial chirality
the previous model (x527), and the chiral fermions are
given above if the overall factor of 2 is removed. As abov
we need to break oneSU(4), either will do. We choose
SU2(4). For thescalars shown, we can do this with, sa
(1,1,1,2,1,1,1,1;1,4)̄ and (1,1,1,1,1,1,1,2;1,4) VEV’s. Th
remaining chiral fermion sector is
TABLE XLII. The scalars for 24/9 with45(2a,2a).

^ 11 12 2 11a 12a 2a 11a2 12a2 2a2 11a3 12a3 2a3

11 3 333 33

12 333 3 33

2 33 33 333

333
11a 3 333 33

12a 333 3 33

2a 33 33 333

333
11a2 3 333 33

12a2 333 3 33

2a2 33 33 333

333
11a3 3 333 33

12a3 333 3 33

2a3 33 33 333

333
7-18
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~2,1,1,1,1,1;4!1~1,1,1,2,1,1;4̄!1~1,2,1,1,1,1;4!

1~1,1,1,1,2,1;4̄!1~1,1,2,1,1,1;4!1~1,1,1,1,1,2;4̄!

for G5)kSUk(2)3SU(4), with k51, 2, 3, 5, 6, and 7.
There are onlySUi(2)3SUj (2) bilinear scalars of the

form (2i ,2j ) where i 51, 2, or 3 andj 54, 5, or 6, whose
VEV’s reduce chirality further, so we cannot reach a thre
family PS model.

Note that what one would need is bilinears that wou
allow one to breakSU1(2)3SU2(2)3SU3(2) to a diagonal
subgroup SUL(2), and similarly for SU4(2)3SU5(2)
3SU6(2) to SUR(2). This would then have been a thre
family PS model.

16/11 with 45(12 ,12 ,12 ,12) and N53. This model is
highly chiral, withx5432, and the chiral fermions are

6@~3,3̄,1,1,1,1,1,1;1,1!1~1,1,1,1,3,3̄,1,1;1,1!

1~1,3,3̄,1,1,1,1,1;1,1!1~1,1,1,1,1,3,3̄,1;1,1!

1~1,1,3,3̄,1,1,1,1;1,1!1~1,1,1,1,1,1,3,3̄;1,1!

1~ 3̄,1,1,3,1,1,1,1;1,1!1~1,1,1,1,3̄,1,1,3;1,1!#.

We can ignore theSU(6)3SU(6) sector, since it can be
broken completely without affecting the chirality. If w
then give VEV’s to (1,1,1,8,1,1,1,1) and (1,1,1,1,1,1,1
representations of SU(3)8, we arrive at 6@(3,3̄,1)
1(1,3,3̄)1(1,1,3)1(3̄,1,1)# in the SUi 11(3)3SUi 12(3)
3SUi 13(3) sector for bothi 50 andi 51. The i 50 sector
can be broken completely with (1,1,1,1,8,1)-type VEV’s pl
(1,1,1,3,1,3̄)-type VEV’s. The remaining fermions falling
nearly into sixE6→SU(3)3SU(3)3SU(3)-type families.
While close, this model is still unsuccessful.

16/11 with 45(12 ,12 ,12 ,14) and N53. The chiral fer-
mion sector is exactly half the previous case. Again we br
SU(6)3SU(6) completely. Then breaking) j 54

8 SUj (3)
completely withSUj (3) octet VEV’s finally gives us a chira
fermion sector 3@(3,3̄,1)1(1,3,3̄)1(1,1,3)1(3̄,1,1)#. This
is tantalizingly close to the three-family model we seek.

16/13: There are three potential models for this grou
First consider the case with45(21,21) and N52. Here 6
5(12,12,12,13,22) and the chiral fermions are

TABLE XLIII. The scalars for 24/13 with45(21 ,22).

^ 11 12 13 21 22 23 3

11 3 3 3 3

12 3 3 3 3

13 3 3 3 3

21 33 33 33

22 33 33 33

23 33 33 33

3 3 3 3 33
08600
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2@~2,1,1,1;4,1,1!1~1,2,1,1;1,1,4!1~1,1,2,1;1,1,4!

1~1,1,1,2;4,1,1!1~2,1,1,1;1,1,4̄!1~1,2,1,1;4̄,1,1!

1~1,1,2,1;4̄,1,1!1~1,1,1,2;1,1,4̄!#.

VEV’s of the form ^42 ,4̄2& etc., can breakSU2(4) com-
pletely @this group is irrelevant, since there are no chi
fermions with SU2(4) quantum numbers#. VEV’s for
(41 ,4̄3) scalars then breakSU1(4)3SU3(4) to SUD(4),
such that the fermions become vectorlike. On the other ha
VEV’s for (24 ,42)1H.c. reduce the chiral sector to

2@~2,1,1;1,4!1~1,2,1;4,1!1~1,1,2;4,1!12~1,1,1;1,4!

1~2,1,1;4̄,1!12~1,1,1;4̄,1!1~1,2,1;1,4̄!

1~1,1,2;1,4̄!#,

and then a VEV for (23 ,42)1H.c. reduces this further to
2@(2,1;1,4)1(1,2;4,1)1(1,2;1,4̄)1(2,1;4̄,1)#.

As above, a VEV for (41 ,4̄3) scalars would render the
model vectorlike, while just breakingSU3(4) would give a
one-family model. However, this needs VEV’s for (21 ,24)
and (22 ,23), but no scalars of this type exist in the mode
We conclude that the model has no Pati-Salam type phen
enology.

Next consider16Õ13 with 45(21,22) and N52. This time
6 is as given in Sec. V, but undetermined up to the ident
cation of antisymmetric singlets in (2i32i)A with i 51 and 2.
The chiral fermions are as in the45(21 ,21) case, but with
the overall factor of 2 deleted. A useful strategy is to perfo
a generic spontaneous symmetry breaking analysis to tr
obtain a realistic Pati-Salam type phenomenology; then

TABLE XLIV. The scalars for 24/15 with45(12 ,13 ,23) if
(23323)A514.

^ 11 12 13 14 21 22 23 24 25

11 33 3 3

12 33 3 3

13 33 3 3

14 33 3 3

21 33 3 3 33

22 33 3 3 33

23 3 3 3 3 3 3 33

24 3 3 3 3 3 3 33

25 33 33 33

TABLE XLV. The scalars in the top left 434 for 24/15 with
45(12 ,13 ,23) if ( 23323)A512.

3 3

3 3

3 3

3 3
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TABLE XLVI. The scalars for 24/15 with45(23 ,23).

^ 11 12 13 14 21 22 23 24 25

11 333 3 3
12 333 3 3
13 3 333 3
14 3 333

21 3 3 3 33

33
22 3 33

33
3

23
333

33
3

24
333

33
3

25 3 3 33

33
y

fy
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e
e
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de
successful, one asks whether the scalars required to carr
the breaking are included in the model. As above,SU2(4)
is irrelevant and can be ignored. If we identi
SU1(2)3SU4(2) with SUL(2) and SU2(2)3SU3(2)
with SUR(2), we find 2@(2,1;1,4)1(1,2;4,1)1(1,2;1,4̄)
1(2,1;4̄,1)#. Now breaking one of the remainingSU(4)’s
completely gives two families, and this is the best one c
do. Hence independent of what scalars are available, the
no chance to obtain a model with three or more families

The remaining16/13 case is45(13,14,21) with N52.
Now 65(12,21,23,1c), but the chiral fermions are in th
same representations as in the previous model, and so w
immediately conclude on general grounds that there is
viable phenomenology for this case.

18Õ3: Now consider18/3 with45(1a,18;2a) and N53.
This model hasx5192 and chiral fermions

~2,1,1,1,1,1;1,4,1!1~1,2,1,1,1,1;1,4,1!1~1,1,2,1,1,1;4̄,1,1!

1~1,1,1,2,1,1;4̄,1,1!1~1,1,2,1,1,1;1,1,4!

1~1,1,1,2,1,1;1,1,4!1~1,1,1,1,2,1;1,4̄,1!

1~1,1,1,1,1,2;1,4̄,1!1~1,1,1,1,2,1;4,1,1!

1~1,1,1,1,1,2;4,1,1!1~2,1,1,1,1,1;1,1,4̄!

1~1,2,1,1,1,1;1,1,4̄!12@~1,1,1,1,1,1;4̄,4,1!

1~1,1,1,1,1,1;1,4̄,4!1~1,1,1,1,1,1;4,1,4̄!#.

Breaking SU6(2) to a single diagonalSU(2) with all six
(2i ,2j ) type VEV’s of SUi(2)3SUj (2), and then further
VEV’s of the types(2;4,1,1), (2;1,4,1), and(2;1,1,4) to
break theSU(4)’s to SU(3)’s leads to the set of remainin
chiral fermions:

2@~3,3̄,1!1~1,3,3̄!1~ 3̄,1,3!#.

Thus this route leads to two families.
08600
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If instead we seek a Pati-Salam model, there are sev
spontaneous symmetry breaking routes we need to inv
gate. If we break with (1,1,1,1,1,1;4,̄4,1) scalars to
SU6(2)3SUD(4)3SU3(4) we find the fermions remaining
chiral are

~2,1,1,1,1,1;4,1!1~1,2,1,1,1,1;4,1!1~1,1,2,1,1,1;1,4!

1~1,1,1,2,1,1;1,4!1~1,1,2,1,1,1;4̄,1!

1~1,1,1,2,1,1;4̄,1!1~2,1,1,1,1,1;1,4̄!

1~1,2,1,1,1,1;1,4̄!.

Now breaking with a (41 ,4̄3) or (42 ,4̄3) VEV would
render the model vectorlike, so we avoid this and inste
give VEV’s to (25,41) and (26,41) to break SUD(4) to
SU8(2). However, this yields at most two families.

We must try another route. If we avoid (4,̄4) type VEV’s
and give VEV’s only to (2,4) type scalars, we can proceed
follows: ^21 ,42&, ^22 ,42&, ^23 ,4̄1&, and ^24 ,4̄1& VEV’s
break SU6(2)3SU3(4) down to SU5(2)3SU6(2)
3SU8(2)3SU9(2)3SU(4). Some fermions remain chira
but they are insufficient to construct families. We conclu
that this model will not provide viable phenomenology.

TABLE XLVII. The scalars for 27/4 with45(12 ,31).

^ 11 12 13 14 15 16 17 18 19 31 32

11 3 3
12 3 3
13 3 3
14 3 3
15 3 3
16 3 3
17 3 3
18 3 3
19 3 3
31 3 3 3 3 3 3 3 3 3 333
32 3 3 3 3 3 3 3 3 3 333
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TABLE XLVIII. The scalars for 30/2 with45(1a,18,2a).

^ 1 18 2 28 1a 18a 2a 28a 1a2 18a2 2a2 28a2

1 3 3 3 3

18 3 3 3 3

2 3 3 3 3 3 3 3 3

28 3 33 3 33

1a 3 3 3 3

18a 3 3 3 3

2a 3 3 3 3 3 3 3 3

28a 3 33 3 33

1a2 3 3 3 3

18a2 3 3 3 3

2a2 3 3 3 3 3 3 3 3

28a2 3 33 3 33
-
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20/5 with45(12,12,12,12) andN53. The chiralSU4(3)

fermions are 4@(3,3̄,1,1)1(1,3,3̄,1)1(1,1,3,3̄)1(3̄,1,1,3)#.
@The SU(6) fermion does not participate, and will be ig

nored.# The only scalars are in representations (3,1,3,̄1)

1H.c. and (1,3,1,3̄)1H.c. A VEV to, say, the first of these
would breakSU1(3)3SU3(3) to a diagonalSUD(3), and

the fermions would become 4@(3,3̄,1)1(3̄,3,1)1(3,1,3̄)

1(3̄,1,3)# underSUD(3)3SU2(3)3SU4(3), which is vec-
torlike. Hence any allowed VEV’s immediately render th
model vectorlike.

We get no farther with45(12 ,12 ,12 ,14) and N53,
where 65(13 ,13 ,13 ,11 ,11 ,11), since this model has only
half the chirality content of the previous case, and ag
VEV’s will render it vectorlike.

21/2 with 45(12,31) and N52. Now 65(31 ,32). ~Other
embeddings of4 with N50 supersymmetry are permutatio
of the representations of this model and therefore all equ
lent.! The fermions havex5108 and are
08600
n

a-

~2,1,1;6,1!1~1,2,1;6,1!1~1,1,2;6,1!1~2,1,1;1,6̄!

1~1,2,1;1,6̄!1~1,1,2;1,6̄!1~1,1,1;6̄,6! .

A VEV for a (6̄,6) scalar renders the model vectorlike. O
only other option is to give (2,6) type VEV’s.̂2,1,1;6,1&
breaks the gauge group toSU2(2)3SU3(2)3SU(5)
3SU(6) with chiral fermions 2(1,1;5,1)1(1,2;5,1)
1(2,1;5,1)1(1,1;1,6̄)1(2,1;1,6̄)1(1,2;1,6̄)1(1,1,1;5̄,6).
There is insufficient fermion content for a three family Pa
Salam model if we identifySU2(2)3SU3(2) with SUL(2)
3SUR(2). Our only other choice is to obtain one of thes
SU(2)’s from SU(5)3SU(6). For instance â 22 ,5& VEV
breaks the gauge group toSU3(2)3SU(4)3SU(6) but the
remaining chiral fermions are 4(1,4,1)1(2,4,1)13(1,1,6̄)
1(2,1,6̄)1(1,2;1,6̄)1(1,1,6)1(1,4̄,6). We cannot identify
SU(4) with SUPS(4), sothis group can only be inSU(6).
BreakingSU(6) with an adjoint toSU(2)3SU(4) leaves
TABLE XLIX. The scalars for 30/3 with45(1a,18,2a2).

^ 1 18 2 1a 18a 2a 1a2 18a2 2a2 1a3 18a3 2a3 1a4 18a4 2a4

1 3 3 3 3

18 3 3 3 3

2 3 3 3 3 3 3 3 3

1a 3 3 3 3

18a 3 3 3 3

2a 3 3 3 3 3 3 3 3

1a2 3 3 3 3

18a2 3 3 3 3

2a2 3 3 3 3 3 3 3 3

1a3 3 3 3 3

18a3 3 3 3 3

2a3 3 3 3 3 3 3 3 3

1a4 3 3 3 3

18a4 3 3 3 3

2a4 3 3 3 3 3 3 3 3
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us with SU(2)3SU(4)3SU(2)3SU(4) fermions that are
again insufficient for a three family Pati-Salam model.

24/7 with45(1a,18,2a) for N52. This model, the only
successful one in the present broad search, was discuss
detail in Ref.@21#, but for completeness we repeat the de
vation here.

The original gauge group at the conformality scale
SU(4)33SU(2)12, with chiral fermions as given in Sec. IV
and complex scalars as given in Sec. V above. If we br
the threeSU(4)’s to a single diagonalSU(4) subgroup,
chirality is lost. To avoid this we breakSU(4)1 completely
and then breakSU(4)a3SU(4)a2 to its diagonal subgroup
SU(4)D . The appropriate VEV’s are available a
@(41 ,2bak)1H.c.# with b ~b runs from 1 to 4! arbitrary but
k51 or k52. The second step requires anSU(4)D singlet
VEV from (4̄a ,4a2) and/or (4a ,4̄a2). Once a choice is mad
for b ~we takeb54), the remaining fermions are, in an in
tuitive notation,

(
a51

a53

@~2aa,1,4D!1~1,2aa21,4̄D!#, ~25!

which has the same content as a three family Pati-Sa
model, though with a separateSU(2)L3SU(2)R per family.

To further reduce the symmetry we must arrange to br
to a singleSU(2)L and a singleSU(2)R . This is achieved by
modifying step one whereSU(4)1 was broken. Consider th
block diagonal decomposition ofSU(4)1 into SU(2)1L
3SU(2)1R . The representations (2aa,41) and (2aa21,41)
decompose as (2aa,41)→(2aa,2,1)1(2aa,1,2) and
(2aa21,41)→(2aa21,2,1)1(2a

21 ,1,2). Now if we give
VEV’s of equal magnitude to (2aa,2,1), a51, 2, and 3, and
equal magnitude VEV’s to (2aa21,1,2), a51, 2, and 3, we
breakSU(2)1L3Pa51

a53SU(2aa) to a singleSU(2)L and we
breakSU(2)1R3Pa51

a53SU(2aa21) to a singleSU(2)R . Fi-
nally, VEV’s for (24a,2,1) and (24a,1,2) as well as
(24a21,2,1) and (24a21,1,2) ensure that bothSU(24a)
andSU(24a21) are broken and that only three families r
main chiral. The final set of chiral fermions is the
3@(2,1,4)1(1,2,4̄)# with gauge symmetry SU(2)L
3SU(2)R3SU(4)D . To achieve the final reduction to th
standard model, an adjoint VEV from (4ā ,4a2) and/or
(4a ,4̄a2) is used to breakSU(4)D to SU(3)3U(1), and a
right-handed doublet is used to breakSU(2)R .

24/9 with 45(11a,12a
3,2a2) for N52. The original

gauge group at the conformality scale isSU(4)43SU(2)8,
with chiral fermions as given in Sec. IV and complex scal
as given in Sec. V above.

Achievement of chiral families under the Pati-Salam su
group SU(4)3SU(2)L3SU(2)R requires the identifica-
tions SU(2)11

5SU(2)12
5SU(2)11a5SU(2)12a5SU(2)L

and SU(2)11a35SU(2)12a25SU(2)11a35SU(2)12a3

5SU(2)R , while, for example,SU(4)25SU(4)2a54̄ of
SU(4) andSU(4)2a25SU(4)2a354 of SU(4), where here
and below this simplified notation implies diagonal su
groups.
08600
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However, the scalars tabulated for this case in Sec. V
insufficient to allow this pattern of spontaneous symme
breaking, and hence no interesting model emerges.

24/9 with45(11a,12a,2a) for N52. The original gauge
group at the conformality scale isSU(4)43SU(2)8 with
chiral fermions as given in Sec. IV and complex scalars
given in Sec. V above.

Achievement of chiral families under the Pati-Salam su
group SU(4)3SU(2)L3SU(2)R requires the identificat-
ions SU(2)11

5SU(2)12
5SU(2)11a5SU(2)12a5SU(2)L

and SU(2)11a35SU(2)12a25SU(2)11a35SU(2)12a3

5SU(2)R ; while, for example,SU(4)25SU(4)2a354̄ of
SU(4) and SU(4)2a5SU(4)2a254 of SU(4). However,
the scalars tabulated for this case in Sec. V are insufficien
allow this pattern of spontaneous symmetry breaking, a
hence no interesting model emerges.

24/9 with45(11a
2,12,2a) for N52. The original gauge

group at the conformality scale isSU(4)43SU(2)8, with
chiral fermions as given in Sec. IV and complex scalars
given in Sec. V above.

Achievement of chiral families under the Pati-Salam su
group SU(4)3SU(2)L3SU(2)R requires the identifica-
tions SU(2)11

5SU(2)12
5SU(2)11a5SU(2)12a5SU(2)L

and SU(2)11a35SU(2)12a25SU(2)11a35SU(2)12a3

5SU(2)R ; while, for example,SU(4)25SU(4)2a354̄ of
SU(4) and SU(4)2a5SU(4)2a254 of SU(4). But again
the scalars tabulated for this case in Sec. V are insufficien
allow this pattern of spontaneous symmetry breaking, a
hence no interesting model emerges.

24/9 with45(2a,2a) for N52. The original gauge group
at the conformality scale isSU(4)43SU(2)8, with chiral
fermions as given in Sec. IV and complex scalars as give
Sec. V above.

Achievement of chiral families under the Pati-Sala
subgroupSU(4)3SU(2)L3SU(2)R requires the identifica-
tions SU(2)11

5SU(2)11a5SU(2)11a25SU(2)11a3

5SU(2)L and SU(2)12a5SU(2)12a5SU(2)12a2

5SU(2)12a35SU(2)R ; while, for example, SU(4)2a

5SU(4)2a354 of SU(4), andSU(4)2 and SU(4)2a2 are
broken. However, the scalars tabulated for this case in Se
are insufficient to allow this pattern of spontaneous symm
try breaking, and hence no interesting model emerges.

24/13 with45(21,22) for N52. The original gauge group
at the conformality scale isSU(6)3SU(4)33SU(2)3 with
chiral fermions as given in Sec. IV and complex scalars
given in Sec. V above. According to the analysis in Sec.
this orbifold permits only two chiral families and is therefo
not of phenomenological interest.

24/14 with45(21,22) for N52. The original gauge group
at the conformality scale isSU(4)43SU(2)8 with chiral
fermions as given in Sec. IV and complex scalars as give
Sec. V above.

Achievement of chiral families under the Pati-Salam su
group SU(4)3SU(2)L3SU(2)R requires the identifica-
tions SU(2)11

5SU(2)12
5SU(2)15

5SU(2)16
5SU(2)L
7-22
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and SU(2)13
5SU(2)14

5SU(2)15
5SU(2)16

5SU(2)R ;

while, for example,SU(4)22
5SU(4)23

54 of SU(4) and

SU(4)21
5SU(4)24

54̄ of SU(4) where by this simplified
notation we again imply diagonal subgroups. However,
scalars tabulated for this case in Sec. V are insufficien
allow this pattern of spontaneous symmetry breaking,
hence no interesting model emerges.

24/15 with 45(12,13,23) for N52. The original gauge
group at the conformality scale isSU(4)53SU(2)4 with
chiral fermions as given in Sec. IV and complex scalars
given in Sec. V above.

Achievement of chiral families under the Pati-Salam su
groupSU(4)3SU(2)L3SU(2)R requires the identifications
SU(2)11

5SU(2)13
5SU(2)L and SU(2)12

5SU(2)14

5SU(2)R ; while, for example,SU(4)23
5SU(4)24

54 of

SU(4). However, the scalars tabulated for this case in Sec
are insufficient to allow this pattern of spontaneous symm
try breaking, and hence no interesting model emerges.

24/15 with45(23,25) for N52. The original gauge group
at the conformality scale isSU(4)53SU(2)4, with chiral
fermions as given in Sec. IV and complex scalars as give
Sec. V above. According to the analysis in Sec. IV this or
fold permits only two chiral families and is hence not ph
nomenologically interesting.

24/15 with45(23,23) for N52. The original gauge group
at the conformality scale isSU(4)53SU(2)4 with chiral
fermions as given in Sec. IV and complex scalars as give
Sec. V above.

Achievement of chiral families under the Pati-Salam su
groupSU(4)3SU(2)L3SU(2)R requires the identifications
SU(2)11

5SU(2)13
5SU(2)L and SU(2)12

5SU(2)14

5SU(2)R ; while, for example,SU(4)23
5SU(4)24

54 of

SU(4). However, the scalars tabulated for this case in Sec
08600
e
to
d

s

-

V
-

in
-
-

in

-

V

are insufficient to allow this pattern of spontaneous symm
try breaking, and hence no interesting model emerges.

27/4 with45(12,31) with N52. Here65(31 ,32) and the
chiral fermions are given in Sec. IV and all scalars are

type (2i ,6̄1),(2i ,62) or (61 ,6̄2) for i 51,2, . . . ,9. A VEV for

the (61 ,6̄2)1H.c. scalar breaksSU1(6)3SU2(6) to
SUD(6), and themodel becomes vectorlike. Hence we mu
break only with (2,6) type scalars if there is any hope o
viable model. We give VEV’s to (2i ,61) scalars for i
51,2, . . . ,5 to break SU1(6) completely, and VEV’s to
(2 j ,62) for j 56,7 to breakSU2(6) to SU(4). Then the re-
maining unbroken gauge group isSU8(2)3SU9(2)

3SU(4) with fermions (2,1,4)1(1,2,4)14(1,1,4̄), which
are chiral but not of the correct form.

A more successful variation is obtained with (2i ,61) sca-
lar VEV’s for i 51, 2, 3 and 4 to break the gauge grou
to SU5(2)3SU6(2)3SU7(2)3SU8(2)3SU9(2)
3SU8(2)3SU(6) and then VEV’s for (25,62) and (26,62)
to break toSU7(2)3SU8(2)3SU9(2)3SU8(2)3SU(4)
which has chiral fermions (2,1,1,1,4)1(1,2,1,1,4)
1(1,1,2,1,4)13(1,1,1,2,4̄). If we could break SU7(2)
3SU8(2)3SU9(2) to a diagonalSU(2) subgroup, we
would have a three-family Pati-Salam model. However,
scalars to accomplish this are not in the spectrum. If
could give VEV’s to (2i ,61) scalars fori 57,8,9 to break
SU7(2)3SU8(2)3SU9(2) to a UY(1) without disturbing
theSU8(2) subgroup ofSU1(6), and afurther (2j ,62) VEV,
say (21,62), to breakSU(4) to SUC(3), then we would have
a true three family standard@i.e., UY(1)3SUEW(2)
3SUC(3)] model upon identifyingSU8(2) with SUEW(2).

30/2 with 45(11a,12 ,2a) and N52. Here 6
5(12a,12a2,2a,2a2), and the gauge group isSU6(2)
3SU6(4). This group has chiral fermions
ried out
~2,1,1,1,1,1;1,1,4,1,1,1!1~1,2,1,1,1,1;1,1,4,1,1,1!1~1,1,2,1,1,1;4̄,1,1,1,1,1!1~1,1,1,2,1,1;4̄,1,1,1,1,1!

1~1,1,1,1,1,1;1,4̄,4,1,1,1!1~1,1,1,1,1,1;4̄,1,4,1,1,1!12~1,1,1,1,1,1;1,4̄,1,4,1,1!1~1,1,1,1,1,1;4̄,1,1,4,1,1!

1~1,1,2,1,1,1;1,1,1,1,4,1!1~1,1,1,2,1,1;1,1,1,1,4,1!1~1,1,1,1,2,1;1,1,4̄,1,1,1!1~1,1,1,1,1,2;1,1,4̄,1,1,1!

1~1,1,1,1,1,1;1,1,1,4,̄4,1!1~1,1,1,1,1,1;1,1,4̄,1,4,1!12~1,1,1,1,1,1;1,1,1,4,̄1,4!1~1,1,1,1,1,1;1,1,4̄,1,1,4!

1~1,1,1,1,2,1;4,1,1,1,1,1!1~1,1,1,1,1,2;4,1,1,1,1,1!1~2,1,1,1,1,1;1,1,1,1,4,̄1!1~1,2,1,1,1,1;1,1,1,1,4,̄1!

1~1,1,1,1,1,1;4,1,1,1,4,̄1!1~1,1,1,1,1,1;4,1,1,1,1,4!̄12~1,1,1,1,1,1;1,4,1,1,1,4!̄1~1,1,1,1,1,1;1,4,1,1,4,̄1!.

The spontaneous symmetry breaking analysis for this model is quite unwieldy, but for the most part can be car
systematically. For example, breaking with (1,1,1,1,1,1;1,4,̄1,4,1,1), (1,1,1,1,1,1,4,̄1,1,4,1,1), (1,1,1,1,1,1;4,1,1,1,4,̄1) and
(1,1,1,1,1,1;1,1,4̄,1,1,4) VEV’s reducesSU6(4) to SU1(4)3SUD(4), with fermions remaining chiral in representations:
7-23
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~2,1,1,1,1,1;1,4!1~1,2,1,1,1,1;1,4!1~1,1,2,1,1,1;4̄,1!

1~1,1,1,2,1,1;4̄,1!1~1,1,2,1,1,1;1,4!1~1,1,1,2,1,1;1,4!

1~1,1,1,1,2,1;1,4̄!1~1,1,1,1,1,2;1,4̄!

1~1,1,1,1,2,1;4,1!1~1,1,1,1,1,2;4,1!1~2,1,1,1,1,1;1,4̄!

1~1,2,1,1,1,1;1,4̄!.

Now (1,1,1,1,2,1;4,1) and (1,1,1,1,1,2;4,1) VEV’s bre
SU5(2)3SU6(2)3SU1(4) to SU8(2) with fermions re-
maining chiral in the representations

~2,1,1,1;4!1~1,2,1,1;4!1~1,1,2,1;4!1~1,1,1,2;4!

12~1,1,1,1;4̄!12~1,1,1,1;4̄!1~2,1,1,1;4̄!

1~1,2,1,1;4̄!,

which is already insufficient to provide three normal fam
lies. Other analyses of spontaneous symmetry breaking
ward constructing a Pati-Salam model starting with this 3
model are similarly unsuccessful.

An alternative is to seek a trinification model. To this en
consider only theSU6(4) fermion sector
t

n
d
ak
th
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~1,4̄,4,1,1,1!1~ 4̄,1,4,1,1,1!12~1,4̄,1,4,1,1!

1~ 4̄,1,1,4,1,1!1~1,1,1,4̄,4,1!1~1,1,4̄,1,4,1!

12~1,1,1,4̄,1,4!1~1,1,4̄,1,1,4!1~4,1,1,1,4̄,1!

12~4,1,1,1,1,4̄!12~1,4,1,1,1,4̄!1~1,4,1,1,4̄,1!.

Identifying SU1(4) with SU2(4), SU3(4) with SU4(4)
andSU5(4) with SU6(4) would lead to five families of the
form 5@(4̄,4,1)1(1,4̄,4)1(4,1,4̄)#; however, there are no
scalars of the type needed to carry this out.

This analysis is not exhaustive and there may be mod
whereSUL(2) or SUR(2) or both are contained inSU6(4).
Since we are starting with a group of rank 24, and seek
standard model of rank 4 or a unified model thereof of ra
5 or 6, and since there are 66 Higgs representations in
theory, the spontaneous symmetry breaking possibilities
rather complex. TheN53 case is obviously even more com
plicated, with initial rank 42, and one could try to automa
the search for phenomenological models, although we h
not attempted to do so.

30/3 with 45(11a,12 ,2a2) and N52. We now have6
5(12a,12a4,2a3,2a2) wherea551.

The chiralSU10(2)3SU5(4) fermions are
~110;4̄,4,1,1,1!1~110;4̄,1,4,1,1!1~14,2,15;4̄,1,1,1,1!1~15,2,14;4̄,1,1,1,1!1~110;1,4̄,4,1,1!

1~110;1,4̄,1,4,1!1~16,2,13;1,4̄,1,1,1!1~17,2,12;1,4̄,1,1,1!1~110;1,1,4̄,4,1!1~110;1,1,4̄,1,4!

1~18,2,11;1,1,4̄,1,1!1~19,2;1,1,4̄,1,1!1~110;1,1,1,4̄,4!1~110;4,1,1,4̄,1!

1~2,19;1,1,1,4̄,1!1~11,2,18;1,1,1,4̄,1!1~110;4,1,1,1,4̄!1~110;1,4,1,1,4̄!1~12,2,17;1,1,1,1,4̄!

1~13,2,16;1,1,1,1,4̄!.
r

ent

ei-
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Consider the bifundamentals only. VEV’s for (1,1,1,4,̄4) and

(1,4̄,4,1,1) scalars reduce the chiral fermion sector

2@(4̄,4,1)1(1,4̄,4)1(4,1,4̄)#, which provides at most a two
family model.

If instead we try to construct a Pati-Salam model, a
note that there are 20(2;4) type fermions, and that we nee
six appropriate ones of these for three families, we must t
care in the spontaneous symmetry breaking to preserve
much chirality. If we~i! breakSU2(4)3SU4(4)3SU5(4)
completely and~ii ! break SU1(4)3SU3(4) to SUPS(4),
while ~iii ! equating SU5(2), SU6(2), SU9(2) and ~iv!
equating SU10(2) with SUL(2), and SU1(2), SU2(2),
o

d

e
is

SU7(2) and SU8(2) with SUR(2), and ~v! breaking
SU3(2)3SU4(2) completely, we would be left with a fou
family Pati-Salam model. Can we do this?~ii ! is accom-
plished with ~a! (110;4̄,1,4,1,1); then ~i! requires ~b!

(110;1,4̄,1,4,1) and~c! (110;1,4̄,1,1,4) to obtain aSUD(4).
Breaking this to nothing, we assume that VEV’s~a! and ~b!
allow no freedom to rotate the~c! VEV to diagonal form.
Now, at this point, we are stymied, as there are insuffici
(2i ,2j ) representations ofSUi(2)3SUj (2) to accomplish
~v!.

Finally, one can imagine that there exist models with
ther SUL(2) or SUR(2) or both coming fromSU5(4), but
we see no obvious way to carry this out. On the other ha
7-24
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since there are 60 Higgs representations we are unab
categorically eliminate this possibility.

VII. SUMMARY

We have shown how AdS/CFT duality leads to a lar
class of models which can provide interesting extension
the standard model of particle phenomenology. The natur
occurring N54 extended supersymmetry was complet
broken to N50 by choice of orbifoldsS5/G such that
G,” SU(3).

In the present work, we systematically studied
such non-AbelianG’s with order g<31. We have seen
how chiral fermions require that the embedding ofG be
neither real nor pseudoreal. This dramatically redu
the number of possibilities to obtain chiral fermion
Nevertheless, many candidates for models which contain
chiral fermions of the three-family standard model we
found.

However, the requirement that the spontaneous symm
breaking down to the correct gauge symmetry of the stand
model be permitted by the prescribed scalar representa
eliminates most of the surviving models. We found only o
allowed model based on theG5D43Z3 orbifold. We ini-
tially expected to find more examples in our search. T
moral for model building is interesting. Without the rigi
framework of string duality the scalar sector would be ar
trarily chosen to permit the required spontaneous symm
breaking. This is the normal practice in the standard mo
in grand unification, in supersymmetry and so on. With str
duality, the scalar sector is prescribed by the construction
only in one very special case does it permit the requi
symmetry breaking. This leads us to give more credenc
theG5D43Z3 example that does work, and to encourage
further study to check whether it can have any connectio
the real world.
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APPENDIX

The following Tables L–LXXIX are the irreducible rep
resentation muliplication tables for non-Abelian groups w
g<31:
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TABLE L. The groupD35S3, 6/2.

^ 1 18 2

1 1 18 2
18 18 1 2
2 2 2 111812

TABLE LI. The groupD4, 8/4.

^ 11 12 13 14 2

11 11 12 13 14 2
12 12 11 14 13 2
13 13 14 11 12 2
14 14 13 12 11 2
2 2 2 2 2 11112113114

TABLE LII. The groupQ, 8/5.

^ 11 12 13 14 2

11 11 12 13 14 2
12 12 11 14 13 2
13 13 14 11 12 2
14 14 13 12 11 2
2 2 2 2 2 11112113114

TABLE LIII. The group D5, 10/2.

^ 1 18 2 28

1 1 18 19 28
18 18 1 1 28
2 2 2 1118128 2128
28 28 28 2128 111812

TABLE LIV. The groupT, 12/4.

^ 1 18 19 3

1 1 18 19 3
18 18 19 1 3
19 19 1 18 3
3 3 3 3 11181191313

TABLE LV. The groupD6, 12/3.

^ 11 12 13 14 2 28

11 11 12 13 14 2 28
12 12 11 14 13 28 2
13 13 14 11 12 28 2
14 14 13 12 11 2 28
2 2 28 28 2 11114128 1211312
28 28 2 2 28 1211312 11114128
7-25
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TABLE LVI. The groupQ6, 12/5.

^ 11 12 13 14 2 28

11 11 12 13 14 2 28
12 12 13 14 11 28 2
13 13 14 11 12 2 28
14 14 11 12 13 28 2
2 2 28 2 28 11113128 1211412
28 28 2 28 2 1211412 11112128

TABLE LVII. The group D7, 14/2.

^ 1 18 21 22 23

1 11 18 21 22 23

18 18 1 21 22 23

21 21 21 1118122 21123 22123

22 22 22 21123 1118123 21122

23 23 23 22123 21122 1118121

TABLE LVIII. The group (Z43Z2)3̃Z2 , 16/8.

^ 11 12 13 14 15 16 17 18 2 28

11 11 12 13 14 15 16 17 18 2 28
12 12 11 14 13 16 15 18 17 2 28
13 13 14 11 12 17 18 15 16 2 28
14 14 13 12 11 18 17 16 15 2 28
15 15 16 17 18 11 12 13 14 28 2
16 16 15 18 17 12 11 14 13 28 2
17 17 18 15 16 13 14 11 12 28 2
18 18 17 16 15 14 13 12 11 28 2
2 2 2 2 2 28 28 28 28 15116117118 11112113114

28 28 28 28 28 2 2 2 2 11112113114 15116117118

TABLE LIX. The groupZ43̃Z4 , 16/10.

^ 11 12 13 14 15 16 17 18 2 28

11 11 12 13 14 15 16 17 18 2 28
12 12 13 14 11 16 17 18 15 28 2
13 13 14 11 12 17 18 15 16 2 28
14 14 11 12 13 18 15 16 17 28 2
15 15 16 17 18 11 12 13 14 2 28
16 16 17 18 15 12 13 14 11 28 2
17 17 18 15 16 13 14 11 12 2 28
18 18 15 16 17 14 11 12 13 28 2
2 2 28 2 28 2 28 2 28 11113115117 12114116118

28 28 2 28 2 28 2 2 8 2 12114116118 11113115117
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TABLE LX. The groupZ83̃Z2 , 16/11.

^ 11 12 13 14 15 16 17 18 2 28

11 11 12 13 14 15 16 17 18 2 28
12 12 13 14 11 16 17 18 15 28 2
13 13 14 11 12 17 18 15 16 2 28
14 14 11 12 13 18 15 16 17 28 2
15 15 16 17 18 11 12 13 14 2 28
16 16 17 18 15 12 13 14 11 28 2
17 17 18 15 16 13 14 11 12 2 28
18 18 15 16 17 14 11 12 13 28 2
2 2 28 2 28 2 28 2 28 12114116118 11113115117

28 28 2 28 2 28 2 2 8 2 11113115117 12114116118

TABLE LXI. The groupD8 , (Z83̃Z2)8, 16/12 (Q8 , 16/14, has the same table!.

^ 11 12 13 14 21 22 23

11 11 12 13 14 21 22 23

12 12 11 14 13 23 22 21

13 13 14 11 12 21 22 23

14 14 13 12 11 23 22 21

21 21 23 21 23 11113122 21123 12114122

22 22 22 22 22 21123 11112113114 21123

23 23 21 23 21 12114122 21123 11113122

TABLE LXII. The group (Z83̃Z2)9, 16/13.

^ 11 12 13 14 21 22 23

11 11 12 13 14 21 22 23

12 12 11 14 13 23 22 21

13 13 14 11 12 23 22 21

14 14 13 12 11 21 22 23

21 21 23 23 21 12113122 21123 11114122

22 22 22 22 22 21123 11112113114 21123

23 23 21 21 23 11114122 21123 12113122

TABLE LXIII. The group D9 , 18/4.

^ 1 18 21 22 23 24

1 1 18 21 22 23 24

18 18 1 21 22 23 24

21 21 21 1118122 21123 22124 23124

22 22 22 21123 1118124 21124 22123

23 23 23 22124 21124 1118123 21122

24 24 24 23124 22123 21122 1118121
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TABLE LXIV. The group (Z33Z3)3̃Z2 , 18/5.

^ 1 18 21 22 23 24

1 1 18 21 22 23 24

18 18 1 21 22 23 24

21 21 21 1118121 23124 22124 22123

22 22 22 23124 1118122 21124 21123

23 23 23 22124 21124 1118123 21122

24 24 24 22123 21123 21122 1118124

TABLE LXV. The groupD10, 20/3.

^ 11 12 13 14 21 22 23 24

11 11 12 13 14 21 22 23 24

12 12 11 14 13 24 23 21 21

13 13 14 11 12 21 22 23 24

14 14 13 12 11 24 23 21 21

21 21 24 21 24 11113122 21123 22124 12114123

22 22 23 22 23 21123 11113124 21123 22124

23 23 22 23 22 22124 21123 11113124 21123

24 24 21 24 21 12114123 22124 21123 11113122

TABLE LXVI. The group Z53̃Z4 , 20/5.

^ 11 12 13 14 4

11 11 12 13 14 4
12 12 13 14 11 4
13 13 14 11 12 4
14 14 11 12 13 4
4 4 4 4 4 111121131141334

TABLE LXVII. The group Z73̃Z3 , 21/2.

^ 11 12 13 31 32

11 11 12 13 31 32

12 12 13 11 31 32

13 13 11 12 31 32

31 31 31 31 31132132 11112113131132

32 32 32 32 11112113131132 31131132
086007-28
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TABLE LXVIII. The group D11, 22/2.

^ 1 18 21 22 23 24 25

1 1 18 21 22 23 24 25

18 18 1 21 22 23 24 25

21 21 21 1118122 21123 21124 23125 24125

22 22 22 21123 1118124 21125 22125 23124

23 23 23 21124 21125 1118125 21124 22123

24 24 24 23125 22125 21124 1118123 21122

25 25 25 24125 23124 22123 21122 1118121

TABLE LXIX. The group D12, 24/10.

^ 11 12 13 14 21 22 23 24 25

11 11 12 13 14 21 22 23 24 25

12 12 11 14 13 21 22 23 24 25

13 13 14 11 12 25 24 23 22 21

14 14 13 12 11 25 24 23 22 21

21 21 21 25 25 11112122 21123 22124 23125 23125

22 22 22 24 24 21123 11112124 21125 13114124 23125

23 23 23 23 23 22124 21125 11112113114 21125 22124

24 24 24 22 22 23125 13114124 21125 11112124 21123

25 25 25 21 21 23125 23125 22124 21123 11112122

TABLE LXX. The groupS4 , 24/12.

^ 1 18 2 3 38

1 1 18 2 3 38

18 18 1 2 38 3

2 2 2 111812 3138 3138

3 3 38 3138 11213138 181213138

38 38 32 3138 181213138 11213138
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TABLE LXXI. The group SL2(F3), Q3̃Z3 , 24/13.

^ 11 12 13 21 22 23 3

11 11 12 13 21 22 23 3
12 12 13 11 22 23 21 3
13 13 11 12 23 21 22 3
21 21 22 23 113 1813 1913 21122123

22 22 23 21 1813 1913 113 21122123

23 23 21 22 1913 113 1813 21122123

3 3 3 3 21122123 21122123 21122123 111121131313

TABLE LXXII. The group Z83̃Z3 , 24/14.

^ 11 12 13 14 15 16 17 18 21 22 23 24

11 11 12 13 14 15 16 17 18 21 22 23 24

12 12 13 14 15 16 17 18 11 22 23 24 21

13 13 14 15 16 17 18 11 12 23 24 21 22

14 14 15 16 17 18 11 12 13 24 21 22 23

15 15 16 17 18 11 12 13 14 21 22 23 24

16 16 17 18 11 12 13 14 15 22 23 24 21

17 17 18 11 12 13 14 15 16 23 24 21 22

18 18 11 12 13 14 15 16 17 24 21 22 23

21 21 22 23 24 21 22 23 24 11115121 12116122 13117123 14118124

22 22 23 24 21 22 23 24 21 12116122 13117123 14118124 11115121

23 23 24 21 22 23 24 21 22 13117123 14118124 11115121 12116122

24 24 21 22 23 24 21 22 23 14118124 11115121 12116122 13117123

TABLE LXXIII. The group D43̃Z3 , 24/15.

^ 11 12 13 14 21 22 23 24 25

11 11 12 13 14 21 22 23 24 25

12 12 11 14 13 22 21 24 23 25

13 13 14 11 12 21 22 23 24 25

14 14 13 12 11 22 21 24 23 25

21 21 22 21 22 11113121 12114122 24125 23125 23124

22 22 21 22 21 12114122 11113121 23125 24125 23124

23 23 24 23 24 24125 23125 12114121 11113122 21122

24 24 23 24 23 23125 24125 11113122 12114121 21122

25 25 25 25 25 23124 23124 21122 21122 11112113114
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TABLE LXXIV. The group D13, 26/2.

^ 1 18 21 22 23 24 25 26

1 1 18 21 22 23 24 25 26

18 18 1 21 22 23 24 2 5 26

21 21 21 1118122 21123 21124 23125 24126 25126

22 22 22 21123 1118124 21125 22126 23126 24125

23 23 23 21124 21125 1118126 21126 22125 23124

24 24 24 23125 22126 21126 1118125 21124 22123

25 25 25 24126 23126 22125 21124 1118123 21122

26 26 26 25126 24125 23124 22123 21122 1118121

TABLE LXXV. The group (Z33Z3)3̃Z3, 27/4.

^ 11 12 13 14 15 16 17 18 19 31 32

11 11 12 13 14 15 16 17 18 19 31 32

12 12 13 11 15 16 14 18 19 17 31 32

13 13 11 12 16 14 15 19 17 18 31 32

14 14 15 16 17 18 19 11 12 13 31 32

15 15 16 14 18 19 17 12 13 11 31 32

16 16 14 15 19 17 18 13 11 12 31 32

17 17 18 19 11 12 13 14 15 16 31 32

18 18 19 17 12 13 11 15 16 14 31 32

19 19 17 18 13 11 12 16 14 15 31 32

31 31 31 31 31 31 31 31 31 31 3332 ( i 51
9 1i

32 32 32 32 32 32 32 32 32 32 ( i 51
9 1i 3331

TABLE LXXVI. The group Z93̃Z3,27/5 @note that this table is the same as for (Z33Z3)3̃Z3].

^ 11 12 13 14 15 16 17 18 19 31 32

11 11 12 13 14 15 16 17 18 19 31 32

12 12 13 11 15 16 14 18 19 17 31 32

13 13 11 12 16 14 15 19 17 18 31 32

14 14 15 16 17 18 19 11 12 13 31 32

15 15 16 14 18 19 17 12 13 11 31 32

16 16 14 15 19 17 18 13 11 12 31 32

17 17 18 19 11 12 13 14 15 16 31 32

18 18 19 17 12 13 11 15 16 14 31 32

19 19 17 18 13 11 12 16 14 15 31 32

31 31 31 31 31 31 31 31 31 31 3332 ( i 51
9 1i

32 32 32 32 32 32 32 32 32 32 ( i 51
9 1i 3331
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TABLE LXXVII. The group D14, 28/3.

^ 11 12 13 14 21 22 23 24 25 26

11 11 12 13 14 21 22 23 24 25 26

12 12 11 14 13 21 22 23 24 25 26

13 13 14 11 12 26 25 24 23 22 21

14 14 13 12 11 26 25 24 23 22 21

21 21 21 26 26 11112122 21123 22124 23125 24126 13114125

22 22 22 25 25 21123 11112124 21125 22126 13114123 24126

23 23 23 24 24 22124 21125 11112126 13114121 22126 23125

24 24 24 23 23 23125 22126 13114121 11112126 21125 22124

25 25 25 22 22 24126 13114123 22126 21125 11112124 21123

26 26 26 21 21 13114125 24126 23125 22124 21123 11112122

TABLE LXXVIII. The group D53Z3 , 30/2.

^ 11 12 13 14 15 16 21 22 23 24 25 26

11 11 12 13 14 15 16 21 22 23 24 25 26

12 12 13 14 15 16 11 25 26 21 22 23 24

13 13 14 15 16 11 12 23 24 25 26 21 22

14 14 15 16 11 12 13 21 22 23 24 25 26

15 15 16 11 12 13 14 25 26 21 22 23 24

16 16 11 12 13 14 15 23 24 25 26 21 22

21 21 25 23 21 25 23 11114121 21122 13116124 23124 12115126 25126

22 22 26 24 22 26 24 21121 11114122 23124 13116123 25126 12115125

23 23 21 25 23 21 25 13116124 23124 12115126 25126 11114122 21121

24 24 22 26 24 22 26 23124 13116123 25126 12115125 21122 11114121

25 25 23 21 25 23 21 12115126 25126 11114122 21122 13116124 23124

26 26 24 22 26 24 22 25126 12115125 21122 11115121 23124 13116123

TABLE LXXIX. The group D15, 30/4.

^ 1 18 21 22 23 24 25 26 27

1 1 18 21 22 23 24 25 26 27

18 18 1 21 22 23 24 25 26 27

21 21 21 1118122 21123 21124 23125 24126 25127 26127

22 22 22 21123 1118124 21125 22126 23127 24127 25126

23 23 23 21124 21125 1118126 21127 22127 23126 24125

24 24 24 23125 22126 21127 1118127 21126 22125 23124

25 25 25 24126 23127 22127 21126 1118125 21124 22123

26 26 26 25127 24127 23126 22125 21124 1118123 21122

27 27 27 26127 25126 24125 23124 22123 21122 1118121
086007-32
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