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Bosonic D-branes at finite temperature with an external field
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Bosonic boundary states at finite temperature are constructed as solutions of boundary conditiobigaat
bosonic open strings with a constant gauge ffelg coupled to the boundary. The construction is done in the
framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to
finite temperature. Boundary states are given in terms of states from the direct product space between the Fock
space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary
states have the interpretation opfbranes at finite temperature. The boundary conditions admit two different
solutions. The entropy of the closed string in p-Drane state is computed and analyzed. It is interpreted as the
entropy of the [Pp-brane at finite temperature.
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[. INTRODUCTION tinues to hold whe a a gauge field is turned dd2-50.
Since the P-brane is written in terms of string operators
There have been various reasons why string theories aicting on the vacuum, one can apply the thermo field method
finite temperature have been considered an interesting sufs1] to construct the boundary states at finite temperature.
ject[1]. In the past, it was suggested[@] that high-energy, Since the states should belong to the physical spectrum of
fixed-angle scattering could give some information about thehe string, the contribution of ghosts should be taken into
physics of string theory such as, for example, the spontaneaccount[55]. The thermo field dynamics was used previ-
ously broken-symmetry group. The properties of an ideal gasusly to study the renormalization of open bosonic strings at
of superstrings were used to model the cosmology of théinite temperature. The renormalizability was proved and the
early universe in Ref§4—-9]. The high-energy behavior of model was showed to be compatible with the thermal Ven-
the thermal ensemble of the supersymmetric string theorgziano amplitude in Ref§52,53. The global phase structure
showed that the underlying degrees of freedom of stringf bosonic-thermal-string ensemble and its connection with
theory are less than known in relativistic field theories andhe thermal string amplitude was described in RB4].
that there is a first-order transition at the Hagedorn tempera- In a previous pap€56], the Bogoliubov transformations
ture in an ideal gas of strind8]. To investigate the behavior of the thermo field were used to construct the bosonic string
of string theory near the Hagedorn temperature, a real-timat finite temperature in a flat Minkowski spacetime and in the
finite-temperature interacting strings technique was devellight-cone gauge. The boundary conditions necessary to de-
oped in Refs[10-12. fine the Dp-branes at finite temperature as states in the Fock
Along another line of development, it was proved that thespace were obtained, and it was shown that the correspond-
Dp-branes belong to the string spectra and couple withng equations admit solutions that can be interpreted as
Ramond-Ramond fieldgl3]. The Dp-branes play a crucial bosonic branes. Some particular solutions that reduce to the
role in understanding string theory and its connection withknown Dp-branes afT=0 were also given. However, the
field theories and gravitj14,15. Also, they have been used analysis was not complete.
to understand the statistical properties of various systems. The aim of this paper is to report on some new solutions
The energy-entropy relation, the Hawking temperature, an@f the bosonic boundary conditions @t 0 and generalize
the Hagedorn transition of extreme, near-extreme, anthe construction to a nontrivial background in which an
Schwarzschild black holes were calculated from the statistic§ O(1,p) photonA? is present on the world volume of the
of the Boltzman gas of free DO-branes and from the countingrane. To keep the program simple, we consider that the
of microstates in certain conformal field theorig6—-32.  photon does not depend on the temperature, although the
However, despite the relative knowledge of strings at finitemost general case can be written down by recalling that the
temperature and the positive results obtained fropakbane  photon belongs to the spectrum of the open strings that ends
ensembles, not much is known about the statistical propertiesn the brane. We also give the solutions of the boundary
of the Dp-branes(but see Refg33-41). conditions that are a superposition of closed string states at
In the absence of background fields, @-bBrane has a finite temperature. By analogy withi=0, we interpret the
microscopic description as a boundary state in the Fockoundary states asfbranes af # 0. Within the framework
space of the perturbative closed string where the brane isf the thermo field, it is possible to compute the entropy as
represented as a particular superposition of some coheretite expectation value of the entropy operator. We compute
states on the boundary of the cylinder. This description conthe value of this entropy in a jpbrane state and we show
that it has the following behavior. In the limit of low tem-
peraturesT— 0, the contribution of the closed string oscilla-
*On leave from Babes-Bolyai University of Cluj. tors diverges and one is left with a series in the powers of the
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(I-F/1+F) whereF is the gauge field. However, in the limit f)a|5>:(ai_yi)|5>:o,

when T—«, the oscillator contribution is proportional to

log(—1) which does not make sense. This might be a conseor any n>0, wherea? and Bﬁ are, respectively, the right-
quence of the fact that above a critical temperattt®  and left-moving modes of the closed string. and p? are
Hagedorn temperaturethe notion of temperature breaks components of the coordinate of the center-of-mass and its
down in string theory. If this is the case, even if formally we momenta, respectively, ang are the coordinates of the

can construct the boundary states at any temperature, they g prane in the transverse space. For the scaled gauge field
not make sense at temperatures where the string modgle yse the notation

ceases to make sense. We do not have a good explanation of
the general behavior of the entropy. It is premature to say, Fap=2ma'Fyy, 2)
even if the construction of these states is acceptable, if the
behavior of the entropy signals that the bosonje-lanes whereF,, is constant. The state that satisfies the boundary
cannot be described as acceptable states in the Fock spacecohditions(1) is denoted by|B). This state belongs to the
closed bosonic string theory. However, before drawing suclbosonic Fock space. In a covariant gauge, one should take
of conclusions, deeper study of the model should be perinto account the ghost contribution, and then the brane state
formed and we refer the reader to RES7] for further dis-  factorizes in a term that satisfies Ed) and another one that
cussions of these problems. contains the ghost contribution. The solution to Eb.is a

The paper is organized as follows. In Sec. Il we construcsuperposition of coherent states of the following form
the closed string at finite temperature in the thermo field 49,50
approach and give the boundary conditions and thebEane .
at T#0. In Sec. Ill we compute the entropy ofpEbrane ,
states. Section IV is devoted to discussions. The basic rela- |B>=ex;{ _nzl alanwB—an)(o)v ©)
tions of thermo field dynamics, which have been used
throughout the text, are presented in the Appendix.

[B)(?=N, %) (q-y)[0), (4)
Il. BOUNDARY STATES AT FINITE TEMPERATURE WITH where N, i; a normalization constant eqyal to half of _the
AN EXTERNAL FIELD brane tension and the delta function localizes the state in the

trasverse space in the positigh The vacuum state includes
In this section we construct the boundary states of thea term that is an eigenvector of the momentum operators,
bosonic closed strings in the presence of an open string/hich is not written explicitly. The matrix that connects the
SO(1,p) vector field at finite temperature. We then give theright and left modes is given by the following relation:
solutions of the corresponding equations. .
I+F

’—
14

a .
— é‘,} : 5
b

Consider the bosonic open string on flat Minkowski  oyr first purpose is to construct the finite-temperature
spacetime in the presence of a bosonic and rigptitane counterpart of the boundary staiés. Since the relations are
located at the boundary=0 of the world sheet. Th&J(1)  expressed in terms of bosonic string operators and states, one
charges at the endpoints of the string generate a vector fielghs to map these objects Bt 0. A convenient way to do
A?, that lives on the world volume of the _brane. To avoidthat is by employing thermo field techniquisl], which are
dealing with ghosts, we choose to work in the light-conegyjtaple for systems that are represented in terms of oscilla-
gaugeX’=X*. Thena,b, ... =1,... p denote the indices tors. (Some basic relations of this construction are presented
of the tangential coordinates to the world volume. For thein Appendix A) The thermo field approach was used previ-
transversal coordinate we use the indice3,...=p  ously to study strings in Ref§52—55 and Dp-branes in
+1,...,24. The spacetime indices are labeled/by, ...  Ref.[56]. According to the thermo field dynamics, the ther-
=1,...,24. Byinterpreting the one-loop diagram in open modynamics of the system is described in an enlarged Fock
string amplitude as the tree-level diagram in the closed Stfingpace(which is also true in the path-integral appropchm-
channel, one can give a microscopic description of theyosed by the initial Fock space and an identical copy of it.
Dp-brane as a state in the Fock space of the free closefhijs is what is meant by “doubling the system.” The total
string. This state is defined lp/+ 1 Neumann boundary con-  thermic system is composed by the original string and its

ditions and 25- p Dirichlet boundary conditions acting on a copy, denoted by. The two copies are independent and the
vector of the Fock space. At=0 and in the presence of the £, space is the direct product of them.

SQ(1p) photon, the corresponding relations, written in- 5 order to implement this construction for the case of the
terms of string modes, are given by bosonic string[56], we use the oscillator operators for left

A ~ H h
[(1+P)2a2+ (1-F)28° 1|BY=0, and right modes

A. Closed strings atT#0

1
Ab=—=ak, AN=—ao" (6)

(an—pB,)|B)=0, (1) Jn Jn
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1 Un(Br)=(1—e Fron) =12 17
I
\/ﬁ,Bfny (7)

M 1 M ut
Br=— B =

Vo

where n>0. Identical operators exist for the copy of the
system. The two algebras are independent

vn(Br)=(efTn—1)" 12 (18

Let us look at the properties of the Bogoliubov operators.
From the definitiong14) and (15) it is easy to see that they
are Hermitian

[A# ’Ar]q] = [A/ﬁt ,A;]T] = 5n,m77'uva (8)
A A B GH'=Gh. (GP'=6y, 19
(A% Anl=[Af As=[AL Brl=---=0. (9 (Gn) (GR) (19

o and that for negativa the following relation holds:
The extended Fock space of the total system is given by the

direct product of the two Fock spaces of closed strings Gitj=—G",. (20)

H=H®H. (10 since the right- and left-moving modes are independent, the

. correspondings operators commute among themselves
A state fromH is denoted by )). The vacuum states of the

left and right sectors are direct products of the vacuum states [GY ,an]:[(gﬁ ,Gﬁ] =[G? ,Gﬁ,]:O. (21)
of the string and tilde string

A simple algebra gives the rest of the commutation relations

10))a=10),®[0),=]0,0),, (1)  among theG operators and the oscillators
10))5=10)42[0),=10,04. 120 [Gy.ARl=—i6,(BnAL, [Gh.BE]=—i0,(Br)BL

and the following expressions are equal among them

10))=10))4/0)) 5= (10)[0)) (0} 4[0) 5)

[GE AL =—i6,(BDAY, [GE,BE=—i6,(B1)BY,

(G Al]=—i0,(BnALT, [GFBE]=—i6,(B1)BLT,

=(10)4/0) ) ([0)[0)), (13 L o
[Gh AR ]=—i6n(BrAL, [GR.BR']1=—16n(B7)BY.
where the last equality is a consequence of the fact that the (22
original string and the tilde string are independent. The first
line in Eq.(13) shows explicitly the doubling of each oscil- Let us proceed to the construction of the vacuum state and

lator, while the second one shows the string-tilde-stringcreation and annihilation operators B0 following Ref.
structure of the vacuum state. In order to obtain the fundal51]. By acting on the right and left vacuua Bt 0 with any
mental state of the enlarged system, we have to multiply Eqef the Bogoliubov operator§l4) and (15), the new states,

(13) by |p)|p). which depend explicitly on the temperature, are obtained:
The extended system represents the general framework

for studing the thermal properties of the initial one. The finite |q _ e~ iGn0)) = 0 23

temperature is introduced by a set of Bogoliubov unitary 10(BT))) nl;[o 10))e nl;[0| (B @3

operators acting on the states, as well as on the operators of

the extended system. These operators are constructed for B

each of the oscillating modes of the two copies, and accord-|0(ﬁT)>>B:nI>Io e "‘|O>>ﬁ:£[0 [0(Br)n))p- (24
ing to the thermo field construction, their form in the right

and left sectors is given by the following relations: Since theG operators do not mix the left- and right-moving

states, one can construct a direct product of the states above

[0(B1)))=10(B1)))al0(B1))) 5. (25

. _ The Bogoliubov transformations acting on the oscillator op-
Here, B+=(kgT) *, wherekg is the Boltzmann’s constant erators{AT,A,"AT,K} and{BT,B,ET,E} map them to some

and ¢ is a parameter depending on the temperature hypegew operators that depend on temperature
bolically as

Gr=—i0(B7)(AA—ATAD, (14)

Gf=—i6(B7)(B,B,~BIB). (15

c0ShBn( B1) = Un( ). (16 An(Br)=e 'SnAfe®n,  Bfi(Br)=e '©nBfen, -
whereu,(B7) is related to the statistics of the modes. For 3 e e
bosonic oscillators, two hyperbolic trigonometric functions AL(Br)=e CnAlelCn,  BX(Br)=e 'CnBHe/Cn,
are definedsee the Appendix (27)
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From the propertie§l9)—(22) one can see that the oscillator struction, at least on shell. Since we are dealing with two
operators at finite temperature, can be cast in the followingopies of the same system, all that was said above is true for

form the tilde string. However, note that at finite temperature the
_ notions of string at tilde string are slightly different since
Al(Br)=Un(Br)AL—v,(B)ALT, both of them mix the operators of string and tilde string as
they were defined initially af =0. In this sense, the tilde
B(Br)=Un(Br)BL—vn(B)BLT, symbol just reminds us that the operators were obtained from

the copy of the original system.
A’:]L(BT) = un(ﬂT)A'rL:_ Un(IBT)A'uT )
B. Boundary conditions at T#0

Bl (Br)=Un(Br)B —vn(B)BLT. (28) ,
To define the P-branes af # 0, we have to construct the
The notation for the staté5) is now justified. Indeed, this counterpart of the boundary conditioffs at finite tempera-
state is annihilated by the finite-temperature operators inure for both, the string and the tilde string. We have three
both the left and right sectors, and for the string and its copypossibilities to do that: first, to map the operators that de-
scribe the relationgl) at finite T#0, second, to map the

AX(BT)|0(B1)))o=A(B)|O(BT)))a=0, (29 operators and the states, or third, to map the states at finite
~ temperature while keeping the operatorsTat0. The first
B/ (B1)10(B71)))s=BH(B)|0(B71))) =0, (300  two alternatives give the solutions at finite temperature. The

last one gives no new information since its solutions should

which shows that Eq(25) has the properties of the vacuum be among the solutions at zero temperature. This reminds us
state. of the different pictures in quantum mechanics, and it would

The finite-temperature operators statisfy the oscillator albe interesting to see the relation between all these represen-
gebra for each mode, in each sector and for both copies @htions. In what follows we will map the operators &t 0
the original string and all these algebras are independentsing the Bogoliubov transformation; it will turn out that the
Therefore, the states of the system at finite temperature argates that satisfy these boundary conditions depend explic-
obtained by acting on the thermal vacui®b) with the cre-  itly on T [56]. It is possible to formally derive the boundary
ation and annihilation operators. These states belong to thebnditions from an action. Since the properties of the
total Fock space. The Bogoliubov transformations havehosonic string are satisfied, the string equations can be ob-
picked up another vacuum and other oscillators. Howeverained from a formal string action, which mimics the zero-
we should note that the thermal vacuum contains infiniteltemperature action and depends implicitly on the parameter
many quanta of zero temperature operators of all types due 1@, . Its form is given by the following relation:
the form of the Bogoliubov operators. By creating a quanta
of, say,A type, one ofA type is destroyed which suggests 1 o
that the second copy of the system be interpreted as a ther- (A7) = 4170[,] de do{a*XH(Br)daX u(Br)
mal reservatoir¢51].

An. important question is yvhether the thermo field con- —{8(a) XM BrALX(BD T (32
struction presented above gives a string theory &0 or
maps it into something else. If we plug the finite temperature
operators into a solution of the equations of motion of closedvhich is the action of a open string that couples withl @)
bosonic string, one obtains another solution which dependfeld on a Dp-brane located at=0 on the world sheet. We
on T but whichmixes the original string and the tilde-string assume that the gauge field is nonzero along the directions
in an obvious way.One can show that all the properties of parallel to the world volume of the brane add[X(5)]
the bosonic string at zero temperature are satisfied. In par=const. Moreover, we do not consider any explicit depen-
ticular, one can construct, from the solutions of the equationgience on the temperature of the gauge field. Then the bound-
of motion, the energy-momentum tensor that has the samgry conditions in the closed string sector take the usual form
form as the one at =0. Then the following operators

« 1 9.X +Fpad XP =0, 33
Lm(BT) = E kEZ a*k(BT)ak+m(,8T)y (31) [ a(BT) ba (BT)]| 0 (33
satisfy the Virasoro algebra, as can be shown by using the X' (Br)—y'|,—o=0. (34)

properties of the Bogoliubov operatdik9)—(22). Therefore,
the conformal symmetry is not broken by the present con-
Since the solutions of the equations of motion that enter Eq.
(34) have the form of a closed string solution with the oscil-
This results from the definition o6 operators, which do not lator operators replaced by the operatorsTs0, one can
affect the world-sheet waves but only the Fourier coefficients. Theexpress Eq(34) in terms of creation and annihilation opera-
new Fourier coefficients determine a new solution. tors
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(1+1)2AN A1) + (I-F)EBET(Br) =0, IB(B1))=Ny(F,B7) 89 (q-y)

_y® T vt
(JH' Jl“‘)gAng(,BT) + (ﬂ_ JF)gBE(,BT) = 01 X EXF[ EnzlA'u (BT)MIMVB (BT)]'O(ET)>>1
(38)
i it _
An(B1) ~ Br (Br) =0, whereN,(F,B7) is the normalization constant @t=0. An
it i B eigenstate of the momentum of the center-of-mass is in-
An (B1)—Bn(B1)=0, (39) cluded in the thermal vacuum. In a similar manner one can
write the solution to the other boundary condition for the
for anyn>0, which are supplemented by the boundary con-ilde string. The total solution will be a product of them, and
ditions for the position of the center-of-mass of string and itsit is given by the following formula:
conjugate momenta

IB(B1)))1=N2(F,B1) 89 (q—y) 84 (q-V)
xe[—=7_ Al(BrIMB(B7)]

X expl = Z_ 1AL BIMB(B)]|0(B1))-
The last two relations are a consequence of the fact that the (39

operatorsﬁ, X, f) andX commute with all oscillator opera- o ]
tors. Therefore, they are not affected by the BogoliubovHere’ the normalization constants for the two solutions were

transformations. If we construct the zero ma@8eperators, ~taken to be equal because we deal with identical copies of
as we did for the oscillators, we see that the momenta confhe system. To compute it, we should calculate the scattering
mute with them. Thus, we can take the position and moment@MPplitude in the closed string channel and in the open string
operators of both, the string and the tilde string, to be invarihannel and compare the results. However, since the solu-
ant under the transformations above. Also the correspondinfiens are formally identical to the ones B0, one can set
eigenstates of the momenta operators are taken to be invafs(F.871) =Ny(F) which is known to be proportional to the

p?=0, (36)

q'-y'=0. (37

ant. Born-Infeld action[49,50)
Some comments are in order now. We note that the above
construction should be applied to the tilde string as well. Np(F,B1)=Np(F) =\ —de( 5+F). (40)

Thus, we will have two boundary conditions, where the sec-

ond one is identical to Eq35) with all the operators re- The solution(39) was obtained using just the algebra of the

place_o_l by the corresponding tilde operators. These bo_unda'iyperatorsﬁxﬁT, By, Z\BT’ a”dEBT and theG operators. Since
conditions can be constructed with the same mapping or

from a formal action of the forni32). It is not possible to their action on the vacuum is similar to thatfat 0, Eq.(39)

construct the boundary conditions from a Lagrangian at ﬁnitJ‘as forrrt1ally4th_|e_hsa(;r_1f(re form ast;h? tEoundary ISt?te at zero
temperature since that is not the basic object in thermo fielempera uré4). The difference is that the new solutions con-

; ; : ; ain an explicit dependence on the temperature.
dynimfsl, dWhICh_()and:alfS with a~LagLang|arr]1 t?_at depend:ts Another solution can be obtained observing that the
on the fields aff =0 of the form£— £, where the first term boundary conditior(35) can be written as

contains information about the string and the second term is
the Lagrangian of the tilde strinp1]. Then the boundary
conditions should be imposed as we have already com-
mented at the beginning of this paragraph, i.e., by mapping
them to finite temperature. We could have started from the (HF)gefiGﬁAlbeiGﬁjL(H_F)gefiGﬁBQeinzol
thermo field Lagrangian to obtain the boundary conditions at
T=0, which are just our conditions since the two terms in
the thermo field Lagrangian are independent, and then map
each of them aT #0. Therefore, solving the boundary con-

(I+ F)Ze 'CrAReCi+ (- F) e CnBE e!Ch=0,

_iG% A0 LiGY _eBoit ik
e |GnAlne|Gn_e 'GnBlnTGIGHZO,

ditions within the thermo field framework is equivalent to e iGnAitaiGh 4 o iGhBPEIGh—
. . . . n n '
solving them directly from the LagrangidB2) and its copy. (41)
C. Boundary states atT#0 for anyn>0. Similar equations can be written for the bound-

ary of the tilde string with tilde operators instead. Then one

Our next goal is to solve the equatio(&) and the cor- can see that there is a solution to the equati@is of the

responding ones for the tilde fields. To this end, we note th

Eq. (35 has the same form as E.). Moreover, the opera-

tors atT+#0 and the thermal vacuum have the same proper- ® o

ties as the ones af=0. Therefore, the solutions to the IB(B1)))2=N (BT)H efinfH efiGﬁlB% (42)
boundary condition$35) are given by P n=1 m=1
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where|B) is the boundary state dt=0 given in Eq.(4). A 1{(B(B1)|KIB(B)))1
similar expression can be found for the tilde operators and
the second solution to the boundary condition§ &0 has

the form

1<<0(5T)|9FTKGF|0(BT)>>1
{(0(B7)|eF e Clo(B1)))1
+1((0(Bp) e eK|O(B)) 1, (48

here we are using the notation

IB(B1))).=B)[B(B7). (43)

Note that the solution&39) and(43) are different because the
exponential contains different operators. They have a naturé’Y
degeneracy due to the fact that we work in a doubled Fock o

space and they are physical solutions in the light-cone gauge. F=F(B7)= ex;{ - > Al(BrMB!(B7) (49
In a conformal gauge, the contributions of ghosts at finite n=1

temperaturg 55] should be taken into account in order to

eliminate the unphysical degrees of freedom of closed stringz.ind
In what follows, we study the solutio(89). Solution (43) C=[K,F]. (50)
represents the mapping of the boundary stale=af at finite
temperature via Bogoliubov operators. To compute the terms in E¢48) we should work with the
operators defined either at finite temperature or at zero tem-
. ENTROPY OF D-BRANES perature, since the action of these operators on the corre-

sponding vacua is known. The two ways of doing computa-

It is interesting to investigate now the thermal propertiestions are completely equivalent. The following relations are
of the boundary states obtained in the previous section. SinGgsefyl:

we are working with closed string, we are going to compute
its entropy in the boundary sta(89). UnART (BT)AR(B)0(B7))) =0,
According to the thermo field dynami¢51], the entropy

operators for the bosonic closed string in terms of string UmUmAﬁqT(ﬁT)z\%T(BT)|0(,3T)>>=Umvm|(1m)”7’;0:/3T>>,
oscillators and irkg units, are given by the following rela-

tions: Unt mAR( Br)AL(B1)]0(B1))) =0,

K=> > [(A“'AL+BETB#)logsinité, vEAR(BOAL (B1)[0(B)))=vhl0(BD))), (5D
o n

where we have used the shorthand notation
— (A“ALT+ BB~ log cosiRa,], (44)

for the string, and [(L)P?;0; 1)) =1 1;m,m; B))oP|0(B1))) s, (52)

and
R:% Z [(A#TA®+BHTBE)log sintf 6, |1, m,m; ght))r
— (A“AL +B#BElog cosii 6, ] (45) =10,...,1,...,0;0,.. 51....0;...m, ...;
for the tilde string, respectively. Using tli& operators alge- Soom, ;BT>)Z7’. (53

bra, it is easy to show that 5
Here, the indicep and p indicate that the state has one

[K-K,G*]=0, [K-K,G”]=0, (46)  quanta in theX? direction of space time. The space time is
the same for the string as well as for the tilde string since
where the operator&* and G* are defined as doubling the system does not mean doubling the space time.

The tilde over the index just indicates that there is a state, for
Ge=S Ge GP=S GP 47) the tilde string in that direction, that should be taken into
< ' T4 Pne account. The first 1 on the right-hand side of E58) means
that the quanta is of string type, in theh direction. Zero

In order to compute the entropy, one has to find the expecstands for the other directions. Thendeans that one quanta
tation value of the operatofd4) in the state(39). In the  of tilde string exists in that state and in the same direction
thermo field dynamics it is postulated that the physical propand there are no other quanta in the other directions of space
erties of the system should be given in terms of operatorime. mis the mode of the string quanta, whiteis the mode
without the tilde[51]. Therefore, we do not compute the of the tilde-string quanta. The modes that are on the right-

expectation value of thE operator. moving sectors of the closed string and tilde string are de-
It is useful to write the expectation value of the entropynoted by the indext. Since the oscillators are independent in
operator in the following form: all directions and for all different modes, the orthogonality
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relations among these states are easy to write down. We al$fe contribution of the oscillator behaves as ledj. This

assume that the states are orthonormal.
Using the properties o& operators and the relatioris1)

might be an indication that the notion of temperature breaks
down for arbitrary large temperature due to a similar phe-

we can write the action of the entropy operator on the boundnomenon that occurs in string theory at Hagedorn tempera-

ary state at finite temperature under the form

KeF|O(/8T)>>l
24

le =
24

X 21 log tanH’-HmE1 (Ut ml (1)7;0;81))]
m= p=

+48v?2 log tantf 6,,— log cosi 0m]|0(ﬁT)>>] . (59

The first term can be written in terms of the statg3) as

o

_\k
2 %[Aff*(ﬁﬂ]k[MWJK[Bz*wT)]k

o 24
X(— )m§=:l log tanhzamzl [umvm|(1m)p;0;,8T>>]J

.,00,...71....,0
BT
®]0,...,0,...k ...,0,0,...,0,....,0;

SN BT (55)

The relationg54) and (55) are important for computing the
second term in Eq48) while the first term can be shown to

be of the following form:

1<<0(BT>|eF*eFC|0<BT>>>1

Zﬁ H H E uz(Br)

=1 pu=1rv=1

( )2k+1 2k+2

k! (k+ 1;? (56)

After some tedious algebra one obtains from E&&) and

ture. We do not have a good explanation for this behavior.

IV. SUMMARY AND DISCUSSIONS

In this paper we constructed the bosonic boundary states
at finite temperature, which were obtained by solving the
boundary conditions of the bosonic closed string. The bound-
ary conditions afl #0 were obtained by mapping the corre-
sponding boundary conditions at=0 with thermal Bogo-
liubov transformations. Since the statesTat0 have the
interpretation of [p-branes, we interpret the solutions we
have found as pP-branes at finite temperature. The construc-
tion was done in the framework of the thermo field dynamics
[51]. We reproduced the states obtained in a previous work
[56] given by EQq.(39) and corrected some misprints in that
paper and also, we obtained a new solutié8), which rep-
resents the Bogoliubov map of thepEbranes at zero tem-
perature.

The crucial point in our construction was to map the
boundary conditions at#0. We have adopted the point of
view that the dependence on the temperature should be en-
coded in the operators, which are in agreement with thermo
field dynamics. In this way we have obtained two sets of
boundary conditions, one for the original string and another
one for its copy. In Ref[56] another solution of one set of
boundary conditions was discussed. Since the total Fock
space is a direct product of two copies of the Fock space of
a bosonic closed string, a linear combinations of boundary
states described by the following operators can be given

0,5= Np(F.ﬁT)( [T e ABDMBLBIx 121
=1

~t =T
X ]'_'[1 eAn(ﬁT)MBn(ﬁT)> , (59)
ne

where an implicit delta function that localizes the center-of-
mass of the string and the tilde string are assumed to exist.
The operatorg58) act on the thermal vacuum. We note that

(56) the following value for the entropy of the closed string the vectors constructed with Eq58) satisfy one set of

in the boundary state at finite temperature:

KDp: 1<<B(ﬁT)|K| B(,BT)>>1
= 4821 [log sint 6,,— sint?6,,, log tantf 6,,]

( )2k+2M2k+2

Ki(k+1)! &7

oo 24 24
+211 II II X cosRe,
m=1 4=1 »=1 k=0

boundary conditions, say, for the string, but do not satisfy the
boundary conditions for the tilde string.

For the Dp-brane(39) which has the same form as the
Dp-brane atT=0, the entropy was given in E457). We
found that in the limitT—0, the contribution of the oscilla-
tors diverges. If this is subtracted from the total value of the
entropy, what is left is a series of positive terms with a
slower increment than the exponential function. When the
limit T—oo is taken, the oscillator contribution breaks down
since it involves the logarithm of negative unity. One pos-

The first two terms obtained above do not depend on thgible explanation is that using bosonic strings is inappro-

gauge fieldF ;. It is easy to see that in thE—0 limit the

contribution of the oscillators t&, diverges. If we subtract

the infinity we are left with the last term that may converge 2These solutions were obtained in RE36]. There the operators

but towards a positive number only. However, in the>«,

should be read at#0.
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priate for describing P-branes at high temperatures since |n,51>:|n>®|fﬁ>_ (A5)
the phase transition of string theory around the Hagedorn

temperature makes the statistics of strings unfeaf#jleand  The temperature dependent vacuum can be written as
consequently the boundary states. The tachyons, the gravi-
tons, and the dilaton are responsible for this phenomenon. In
the present case only physical modes have been considered
since we have worked in the light-cone gauge. Nevertheless,
the contributions of the massless modes can induce a baghd it is called “thermal vacuum.”

behavior for the entropy. It is worthwhile to investigate the  One simple system for which the above construction is
contributions that can be obtained from the fermionic part instraightforward is the single bosonic oscillator

the case of superbranes. Another possibility would be that

Dp-branes at finite temperature are not acceptable boundary H=wa'a, (AT)
states for closed string theory @t 0. However, to give a ]

definitive answer to these problems, further investigations ofvith the known algebra

the thermal properties of the boundary states should be per-

formed. We hope to report on these topics in a future work [a'.a]=1; [aa]=[a",a"]=0, (A8)

|0(,3T)>>:Z_1/2(,3T); e (M2AEnm),  (A6)

[57]. and the Fock space spanned by the following states
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useful discussions. I. V. V. also acknowledges M. A. De An-for all positive integers. The tilde oscillator has identical
drade and J. A. Helayel-Neto for hospitality at GFT-UCP, properties
where part of this work was done. This work was supported

by FAPESP(1.V.V.) and CAPESA.L.G.). H=wa'a, (A10)
APPENDIX A and
In this appendix we review some basic relations of thermo [afa]=1; [a,a]=[af,a']=0. (A11)
field theory with focus in the bosonic harmonic oscillator.
We closely follow Ref[51]. It is independent of the first oscillator, i.e., the two Hilbert

The basic idea of thermo field dynamics is to constructspaces are completely orthogonal:
statistical averages of some operafoin terms of expecta-
tion values in a vacuum that presents a dependence with the [a,E]=[a,ﬁ*]z[a*,ﬁ*]z[a*,ﬁ]zo. (A12)
temperature:

1 —B-H The duplicated vacuum is defined by
(A)=Z"Y(Bn)Trle FTAT=((0(BD|AlO(BD)), (AL

al0))=2al0)), (A13)

where 8= (kgT) "1 is the Botzmann’s constant and . L
Pr=(keT) which has a solution in terms of the two vacua

H[n)=Ex[n). (A2) ~ .
0))=10,0)=|0)|0). (A14)
The eigenstates of the Hamiltoni&hof the system are sup-

posed to be orthonormal. The partition function is defined byThe Hamiltonian of the total system is defined by the follow-
the usual relation ing relation:

Z(Br)=Ti{e F], (A3) A=H-H. (A15)

It is possible to realize such of idea if a duplication of the A simple algebra shows that the thermal vacuum can be writ-
physical Hilbert space is performed, i.e., if one considers thgap, in terms of a coherent state

Hilbert space as a direct product of two spaces: the original
one and a nonphysical copy of it. The nonphysical or auxil- 1 v(B7)
iary subspace is represented by a tilde and it is acted on by a |0(B7)))= u(B7) eX%U(BT)

copy of the operators of the original system, e.g.,
The partition function of the oscillator is given by

aTE\T

0)).  (A16)

Hny=E,[n). (A4)

As a consequence any state in the total Hilbert space has the Z(Br)=

— (A17)
following form: 1—e Bro
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ensuring that the thermal vacuum has unit norm. Also, the 1 B
temperature-dependent coefficients are defined by the rela- — —[a'(8p)]Ma"(B1)IM0(B7))), ... .
Vnt m!

tions
(A25)

u(Br)=(1—e #1°)~Y2=coshd(B7), A18
(Br)=( ) () (A18) The commutation relation between the temperature-

v(Br)=(ePr*—1)"Y2=sinh6(By). (A19)  dependent operators are the same as for the duplicated sys-
tem at zero temperature. It is easy to show thatGhepera-
If we consider unitary Bogoliubov operators having the formtor is a constant of motion:

Gg=—i0(By)(aa—a'ah), (A20) [G.H]=[G,H-H]=0. (A26)

it is easy to show that the thermal vacuum is obtained from The construction presented above can be straightforward
the total vacuum alT=0 by a simple Bogoliubov transfor- €xtended to a set of infinite free bosonic oscillators. In that

mation case the Bogoliubov operator is given by

0 =e'C8|0)). A21 : ~

0By =e o) (A2 Ge=—13 0(pn(ad-aal),  (A2D
The operators at finite temperature are also generated by the
Bogoliubov operators and the thermal vacuum can be expressed as

a(IBT):eiiGba eiGb:u(ﬁT)a—U(BT)aT, (A22) |O(ﬁ_|_)>>:e—1/2KeXp<2 aT’éT]|0>>, (AZS)

a(pBr)=e ®va eCv=u(Bra—v(py)a’,
(A23)  Where

and they act on the thermal vacuujustifying its name as K=_ E {a;an log sink?an—ana; log cosR, ).
n

a(Br)|0(B1)))=a(B)|0(B)))=0.  (A24) (A29)
With this construction, the Fock space is spanned by th& is called the entropy operator. This interpretation comes
vectors from the fact that the vacuum expectation valuekofimes
_ the Boltzmann constaritg is the entropy of the physical
0(81))),  al(Bl0(BD)), a'(Bnl0(B)). - - system.
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