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Bosonic D-branes at finite temperature with an external field
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Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions atTÞ0 for
bosonic open strings with a constant gauge fieldFab coupled to the boundary. The construction is done in the
framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to
finite temperature. Boundary states are given in terms of states from the direct product space between the Fock
space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary
states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different
solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the
entropy of the Dp-brane at finite temperature.
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I. INTRODUCTION

There have been various reasons why string theorie
finite temperature have been considered an interesting
ject @1#. In the past, it was suggested in@2# that high-energy,
fixed-angle scattering could give some information about
physics of string theory such as, for example, the sponta
ously broken-symmetry group. The properties of an ideal
of superstrings were used to model the cosmology of
early universe in Refs.@4–9#. The high-energy behavior o
the thermal ensemble of the supersymmetric string the
showed that the underlying degrees of freedom of str
theory are less than known in relativistic field theories a
that there is a first-order transition at the Hagedorn temp
ture in an ideal gas of strings@3#. To investigate the behavio
of string theory near the Hagedorn temperature, a real-t
finite-temperature interacting strings technique was de
oped in Refs.@10–12#.

Along another line of development, it was proved that t
Dp-branes belong to the string spectra and couple w
Ramond-Ramond fields@13#. The Dp-branes play a crucia
role in understanding string theory and its connection w
field theories and gravity@14,15#. Also, they have been use
to understand the statistical properties of various syste
The energy-entropy relation, the Hawking temperature,
the Hagedorn transition of extreme, near-extreme,
Schwarzschild black holes were calculated from the statis
of the Boltzman gas of free D0-branes and from the coun
of microstates in certain conformal field theories@16–32#.
However, despite the relative knowledge of strings at fin
temperature and the positive results obtained from Dp-brane
ensembles, not much is known about the statistical prope
of the Dp-branes~but see Refs.@33–41#!.

In the absence of background fields, a Dp-brane has a
microscopic description as a boundary state in the F
space of the perturbative closed string where the bran
represented as a particular superposition of some cohe
states on the boundary of the cylinder. This description c
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tinues to hold when a a gauge field is turned on@42–50#.
Since the Dp-brane is written in terms of string operato
acting on the vacuum, one can apply the thermo field met
@51# to construct the boundary states at finite temperatu
Since the states should belong to the physical spectrum
the string, the contribution of ghosts should be taken i
account@55#. The thermo field dynamics was used prev
ously to study the renormalization of open bosonic strings
finite temperature. The renormalizability was proved and
model was showed to be compatible with the thermal V
eziano amplitude in Refs.@52,53#. The global phase structur
of bosonic-thermal-string ensemble and its connection w
the thermal string amplitude was described in Ref.@54#.

In a previous paper@56#, the Bogoliubov transformations
of the thermo field were used to construct the bosonic str
at finite temperature in a flat Minkowski spacetime and in
light-cone gauge. The boundary conditions necessary to
fine the Dp-branes at finite temperature as states in the F
space were obtained, and it was shown that the corresp
ing equations admit solutions that can be interpreted
bosonic branes. Some particular solutions that reduce to
known Dp-branes atT50 were also given. However, th
analysis was not complete.

The aim of this paper is to report on some new solutio
of the bosonic boundary conditions atTÞ0 and generalize
the construction to a nontrivial background in which
SO(1,p) photonAa is present on the world volume of th
brane. To keep the program simple, we consider that
photon does not depend on the temperature, although
most general case can be written down by recalling that
photon belongs to the spectrum of the open strings that e
on the brane. We also give the solutions of the bound
conditions that are a superposition of closed string state
finite temperature. By analogy withT50, we interpret the
boundary states as Dp-branes atTÞ0. Within the framework
of the thermo field, it is possible to compute the entropy
the expectation value of the entropy operator. We comp
the value of this entropy in a Dp-brane state and we show
that it has the following behavior. In the limit of low tem
peraturesT→0, the contribution of the closed string oscilla
tors diverges and one is left with a series in the powers of
©2001 The American Physical Society05-1
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(I2F/I1F) whereF is the gauge field. However, in the lim
when T→`, the oscillator contribution is proportional t
log(21) which does not make sense. This might be a con
quence of the fact that above a critical temperature~the
Hagedorn temperature! the notion of temperature break
down in string theory. If this is the case, even if formally w
can construct the boundary states at any temperature, the
not make sense at temperatures where the string m
ceases to make sense. We do not have a good explanati
the general behavior of the entropy. It is premature to s
even if the construction of these states is acceptable, if
behavior of the entropy signals that the bosonic Dp-branes
cannot be described as acceptable states in the Fock spa
closed bosonic string theory. However, before drawing s
of conclusions, deeper study of the model should be p
formed and we refer the reader to Ref.@57# for further dis-
cussions of these problems.

The paper is organized as follows. In Sec. II we constr
the closed string at finite temperature in the thermo fi
approach and give the boundary conditions and the Dp-brane
at TÞ0. In Sec. III we compute the entropy of Dp-brane
states. Section IV is devoted to discussions. The basic r
tions of thermo field dynamics, which have been us
throughout the text, are presented in the Appendix.

II. BOUNDARY STATES AT FINITE TEMPERATURE WITH
AN EXTERNAL FIELD

In this section we construct the boundary states of
bosonic closed strings in the presence of an open st
SO(1,p) vector field at finite temperature. We then give t
solutions of the corresponding equations.

A. Closed strings atTÅ0

Consider the bosonic open string on flat Minkows
spacetime in the presence of a bosonic and rigid Dp-brane
located at the boundarys50 of the world sheet. TheU(1)
charges at the endpoints of the string generate a vector
Aa, that lives on the world volume of the brane. To avo
dealing with ghosts, we choose to work in the light-co
gaugeX06X25. Thena,b, . . . 51, . . . ,p denote the indices
of the tangential coordinates to the world volume. For
transversal coordinate we use the indicesi , j , . . . 5p
11, . . .,24. The spacetime indices are labeled bym,n, . . .
51, . . . ,24. Byinterpreting the one-loop diagram in ope
string amplitude as the tree-level diagram in the closed st
channel, one can give a microscopic description of
Dp-brane as a state in the Fock space of the free clo
string. This state is defined byp11 Neumann boundary con
ditions and 252p Dirichlet boundary conditions acting on
vector of the Fock space. AtT50 and in the presence of th
SO(1,p) photon, the corresponding relations, written
terms of string modes, are given by

@~I1F̂!b
aan

b1~I2F̂!b
ab2n

b #uB&50,

~an
i 2b2n

i !uB&50, ~1!
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p̂auB&5~ q̂i2yi !uB&50,

for any n.0, wherean
a and bn

b are, respectively, the right

and left-moving modes of the closed string.qi and p̂a are
components of the coordinate of the center-of-mass and
momenta, respectively, andyi are the coordinates of th
Dp-brane in the transverse space. For the scaled gauge
we use the notation

F̂ab52pa8Fab , ~2!

whereFab is constant. The state that satisfies the bound
conditions~1! is denoted byuB&. This state belongs to the
bosonic Fock space. In a covariant gauge, one should
into account the ghost contribution, and then the brane s
factorizes in a term that satisfies Eq.~1! and another one tha
contains the ghost contribution. The solution to Eq.~1! is a
superposition of coherent states of the following for
@49,50#:

uB&5expF2 (
n51

`

a2n
m Mmnb2n

n G uB& (0), ~3!

uB& (0)5Npd (d')~ q̂2y!u0&, ~4!

where Np is a normalization constant equal to half of th
brane tension and the delta function localizes the state in
trasverse space in the positionqi . The vacuum state include
a term that is an eigenvector of the momentum operat
which is not written explicitly. The matrix that connects th
right and left modes is given by the following relation:

M n
m5F S I2F

I1FD
b

a

;2d j
i G . ~5!

Our first purpose is to construct the finite-temperatu
counterpart of the boundary states~1!. Since the relations are
expressed in terms of bosonic string operators and states
has to map these objects atTÞ0. A convenient way to do
that is by employing thermo field techniques@51#, which are
suitable for systems that are represented in terms of osc
tors. ~Some basic relations of this construction are presen
in Appendix A.! The thermo field approach was used pre
ously to study strings in Refs.@52–55# and Dp-branes in
Ref. @56#. According to the thermo field dynamics, the the
modynamics of the system is described in an enlarged F
space~which is also true in the path-integral approach! com-
posed by the initial Fock space and an identical copy of
This is what is meant by ‘‘doubling the system.’’ The tot
thermic system is composed by the original string and
copy, denoted bỹ. The two copies are independent and t
Fock space is the direct product of them.

In order to implement this construction for the case of t
bosonic string@56#, we use the oscillator operators for le
and right modes

An
m5

1

An
an

m , An
m†5

1

An
a2n

m , ~6!
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Bn
m5

1

An
bn

m , Bn
m†5

1

An
b2n

m , ~7!

where n.0. Identical operators exist for the copy of th
system. The two algebras are independent

@An
m ,Am

n†#5@Ãn
m ,Ãm

n†#5dn,mhmn, ~8!

@An
m ,Ãm

n #5@An
m ,Ãm

n†#5@An
m ,B̃m

n #5•••50. ~9!

The extended Fock space of the total system is given by
direct product of the two Fock spaces of closed strings

Ĥ5H ^ H̃. ~10!

A state fromĤ is denoted byu &&. The vacuum states of th
left and right sectors are direct products of the vacuum st
of the string and tilde string

u0&&a5u0&a ^ u0&̃a5u0,0&a , ~11!

u0&&b5u0&b ^ u0&̃b5u0,0&b , ~12!

and the following expressions are equal among them

u0&&5u0&&au0&&b5~ u0&au0̃&a)~ u0&bu0̃&b)

5~ u0&au0&b)~ u0̃&au0̃&b), ~13!

where the last equality is a consequence of the fact that
original string and the tilde string are independent. The fi
line in Eq. ~13! shows explicitly the doubling of each osci
lator, while the second one shows the string-tilde-str
structure of the vacuum state. In order to obtain the fun
mental state of the enlarged system, we have to multiply
~13! by up&u p̃&.

The extended system represents the general framew
for studing the thermal properties of the initial one. The fin
temperature is introduced by a set of Bogoliubov unita
operators acting on the states, as well as on the operato
the extended system. These operators are constructe
each of the oscillating modes of the two copies, and acco
ing to the thermo field construction, their form in the rig
and left sectors is given by the following relations:

Gn
a52 iu~bT!~AnÃn2An

†Ãn
†!, ~14!

Gn
b52 iu~bT!~BnB̃n2Bn

†B̃n
†!. ~15!

Here, bT5(kBT)21, wherekB is the Boltzmann’s constan
and u is a parameter depending on the temperature hy
bolically as

coshun~bT!5un~bT!, ~16!

whereun(bT) is related to the statistics of the modes. F
bosonic oscillators, two hyperbolic trigonometric functio
are defined~see the Appendix!:
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un~bT!5~12e2bTvn!21/2, ~17!

vn~bT!5~ebTvn21!21/2. ~18!

Let us look at the properties of the Bogoliubov operato
From the definitions~14! and ~15! it is easy to see that the
are Hermitian

~Gn
a!†5Gn

a , ~Gn
b!†5Gn

b , ~19!

and that for negativen the following relation holds:

Gunu
a 52G2n

a . ~20!

Since the right- and left-moving modes are independent,
correspondingG operators commute among themselves

@Gn
a ,Gm

a #5@Gn
b ,Gm

b #5@Gn
a ,Gm

b #50. ~21!

A simple algebra gives the rest of the commutation relatio
among theG operators and the oscillators

@Gn
a ,An

m#52 iun~bT!Ãn
m† , @Gn

a ,Bn
m#52 iun~bT!B̃n

m† ,

@Gn
a ,An

m†#52 iun~bT!Ãn
m , @Gn

a ,Bn
m†#52 iun~bT!B̃n

m ,

@Gn
a ,Ãn

m#52 iun~bT!An
m† , @Gn

a ,B̃n
m#52 iun~bT!Bn

m† ,

@Gn
a ,Ãn

m†#52 iun~bT!An
m , @Gn

a ,B̃n
m†#52 iun~bT!Bn

m .
~22!

Let us proceed to the construction of the vacuum state
creation and annihilation operators atTÞ0 following Ref.
@51#. By acting on the right and left vacuua atT50 with any
of the Bogoliubov operators~14! and ~15!, the new states
which depend explicitly on the temperature, are obtained

u0~bT!&&a5 )
n.0

e2 iGn
a
u0&&a5 )

n.0
u0~bT!n&&a , ~23!

u0~bT!&&b5 )
m.0

e2 iGm
b
u0&&b5 )

n.0
u0~bT!n&&b . ~24!

Since theG operators do not mix the left- and right-movin
states, one can construct a direct product of the states a

u0~bT!&&5u0~bT!&&au0~bT!&&b . ~25!

The Bogoliubov transformations acting on the oscillator o
erators$A†,A,Ã†,Ã% and $B†,B,B̃†,B̃% map them to some
new operators that depend on temperature

An
m~bT!5e2 iGn

a
An

meiGn
a
, Bn

m~bT!5e2 iGn
a
Bn

meiGn
a
,

~26!

Ãn
m~bT!5e2 iGn

a
Ãn

meiGn
a
, B̃n

m~bT!5e2 iGn
a
B̃n

meiGn
a
.

~27!
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From the properties~19!–~22! one can see that the oscillato
operators at finite temperature, can be cast in the follow
form

An
m~bT!5un~bT!An

m2vn~b!Ãn
m† ,

Bn
m~bT!5un~bT!Bn

m2vn~b!B̃n
m† ,

Ãn
m~bT!5un~bT!Ãn

m2vn~bT!An
m† ,

B̃n
m~bT!5un~bT!B̃n

m2vn~bT!Bn
m† . ~28!

The notation for the state~25! is now justified. Indeed, this
state is annihilated by the finite-temperature operators
both the left and right sectors, and for the string and its co

An
m~bT!u0~bT!&&a5Ãn

m~b!u0~bT!&&a50, ~29!

Bn
m~bT!u0~bT!&&b5B̃n

m~b!u0~bT!&&b50, ~30!

which shows that Eq.~25! has the properties of the vacuu
state.

The finite-temperature operators statisfy the oscillator
gebra for each mode, in each sector and for both copie
the original string and all these algebras are independ
Therefore, the states of the system at finite temperature
obtained by acting on the thermal vacuum~25! with the cre-
ation and annihilation operators. These states belong to
total Fock space. The Bogoliubov transformations ha
picked up another vacuum and other oscillators. Howe
we should note that the thermal vacuum contains infinit
many quanta of zero temperature operators of all types du
the form of the Bogoliubov operators. By creating a qua
of, say,A type, one ofÃ type is destroyed which sugges
that the second copy of the system be interpreted as a
mal reservatoire@51#.

An important question is whether the thermo field co
struction presented above gives a string theory atTÞ0 or
maps it into something else. If we plug the finite temperat
operators into a solution of the equations of motion of clos
bosonic string, one obtains another solution which depe
on T but whichmixes the original string and the tilde-strin
in an obvious way.1 One can show that all the properties
the bosonic string at zero temperature are satisfied. In
ticular, one can construct, from the solutions of the equati
of motion, the energy-momentum tensor that has the s
form as the one atT50. Then the following operators

Lm
a ~bT!5

1

2 (
kPZ

a2k~bT!ak1m~bT!, ~31!

satisfy the Virasoro algebra, as can be shown by using
properties of the Bogoliubov operators~19!–~22!. Therefore,
the conformal symmetry is not broken by the present c

1This results from the definition ofG operators, which do no
affect the world-sheet waves but only the Fourier coefficients. T
new Fourier coefficients determine a new solution.
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struction, at least on shell. Since we are dealing with t
copies of the same system, all that was said above is true
the tilde string. However, note that at finite temperature
notions of string at tilde string are slightly different sinc
both of them mix the operators of string and tilde string
they were defined initially atT50. In this sense, the tilde
symbol just reminds us that the operators were obtained f
the copy of the original system.

B. Boundary conditions at TÅ0

To define the Dp-branes atTÞ0, we have to construct the
counterpart of the boundary conditions~1! at finite tempera-
ture for both, the string and the tilde string. We have th
possibilities to do that: first, to map the operators that
scribe the relations~1! at finite TÞ0, second, to map the
operators and the states, or third, to map the states at fi
temperature while keeping the operators atT50. The first
two alternatives give the solutions at finite temperature. T
last one gives no new information since its solutions sho
be among the solutions at zero temperature. This remind
of the different pictures in quantum mechanics, and it wo
be interesting to see the relation between all these repre
tations. In what follows we will map the operators atT50
using the Bogoliubov transformation; it will turn out that th
states that satisfy these boundary conditions depend ex
itly on T @56#. It is possible to formally derive the boundar
conditions from an action. Since the properties of t
bosonic string are satisfied, the string equations can be
tained from a formal string action, which mimics the zer
temperature action and depends implicitly on the param
bT . Its form is given by the following relation:

S~bT!5
1

4pa8
E dtE ds$]aXm~bT!]aXm~bT!

2$d~s!Ẋm~bT!Am@X~bT!#%%, ~32!

which is the action of a open string that couples with aU(1)
field on a Dp-brane located ats50 on the world sheet. We
assume that the gauge field is nonzero along the direct
parallel to the world volume of the brane andAi@X(bT)#
5const. Moreover, we do not consider any explicit depe
dence on the temperature of the gauge field. Then the bo
ary conditions in the closed string sector take the usual fo

@]tXa~bT!1Fba]sXb~bT!#ut5050, ~33!

Xi~bT!2yi ut5050. ~34!

Since the solutions of the equations of motion that enter
~34! have the form of a closed string solution with the osc
lator operators replaced by the operators atTÞ0, one can
express Eq.~34! in terms of creation and annihilation oper
tors

e

5-4
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~I1F!b
aAn

b~bT!1~I2F!b
aBn

b†~bT!50,

~I1F!b
aAn

b†~bT!1~I2F!b
aBn

b~bT!50,

An
i ~bT!2Bn

i†~bT!50,

An
i†~bT!2Bn

i ~bT!50, ~35!

for anyn.0, which are supplemented by the boundary co
ditions for the position of the center-of-mass of string and
conjugate momenta

pa50, ~36!

qi2yi50. ~37!

The last two relations are a consequence of the fact tha

operatorsp̂, X̂, p̂̃, andX̂̃ commute with all oscillator opera
tors. Therefore, they are not affected by the Bogoliub
transformations. If we construct the zero modeG operators,
as we did for the oscillators, we see that the momenta c
mute with them. Thus, we can take the position and mome
operators of both, the string and the tilde string, to be inv
ant under the transformations above. Also the correspon
eigenstates of the momenta operators are taken to be in
ant.

Some comments are in order now. We note that the ab
construction should be applied to the tilde string as w
Thus, we will have two boundary conditions, where the s
ond one is identical to Eq.~35! with all the operators re-
placed by the corresponding tilde operators. These boun
conditions can be constructed with the same mapping
from a formal action of the form~32!. It is not possible to
construct the boundary conditions from a Lagrangian at fin
temperature since that is not the basic object in thermo fi
dynamics, which only deals with a Lagrangian that depe
on the fields atT50 of the formL2L̃, where the first term
contains information about the string and the second term
the Lagrangian of the tilde string@51#. Then the boundary
conditions should be imposed as we have already c
mented at the beginning of this paragraph, i.e., by mapp
them to finite temperature. We could have started from
thermo field Lagrangian to obtain the boundary conditions
T50, which are just our conditions since the two terms
the thermo field Lagrangian are independent, and then
each of them atTÞ0. Therefore, solving the boundary co
ditions within the thermo field framework is equivalent
solving them directly from the Lagrangian~32! and its copy.

C. Boundary states atTÅ0

Our next goal is to solve the equations~35! and the cor-
responding ones for the tilde fields. To this end, we note
Eq. ~35! has the same form as Eq.~1!. Moreover, the opera
tors atTÞ0 and the thermal vacuum have the same prop
ties as the ones atT50. Therefore, the solutions to th
boundary conditions~35! are given by
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uB~bT!&&5Np~F,bT!d (d')~ q̂2y!

3exp@2(n51
` Am†~bT!MmnBn†~bT!#u0~bT!&&,

~38!

whereNp(F,bT) is the normalization constant atTÞ0. An
eigenstate of the momentum of the center-of-mass is
cluded in the thermal vacuum. In a similar manner one c
write the solution to the other boundary condition for t
tilde string. The total solution will be a product of them, an
it is given by the following formula:

uB~bT!&&15Np
2~F,bT!d (d')~ q̂2y!d (d')~ q̃̂2 ỹ!

3e@2(n51
` An

†~bT!MBn
†~bT!#

3exp@2(n51
` Ãn

†~bT!MB̃n
†~bT!#u0~bT!&&.

~39!

Here, the normalization constants for the two solutions w
taken to be equal because we deal with identical copie
the system. To compute it, we should calculate the scatte
amplitude in the closed string channel and in the open st
channel and compare the results. However, since the s
tions are formally identical to the ones atT50, one can set
Np(F,bT)5Np(F) which is known to be proportional to th
Born-Infeld action@49,50#

Np~F,bT!5Np~F !5A2det~d1F̂ !. ~40!

The solution~39! was obtained using just the algebra of t
operatorsAbT

, BbT
, ÃbT

, andB̃bT
and theG operators. Since

their action on the vacuum is similar to that atT50, Eq.~39!
has formally the same form as the boundary state at z
temperature~4!. The difference is that the new solutions co
tain an explicit dependence on the temperature.

Another solution can be obtained observing that
boundary condition~35! can be written as

~I1F!b
ae2 iGn

a
An

beiGn
a
1~I2F!b

ae2 iGn
b
Bn

b†eiGn
b
50,

~I1F!b
ae2 iGn

a
An

†beiGn
a
1~I2F!b

ae2 iGn
b
Bn

beiGn
b
50,

e2 iGn
a
An

i eiGn
a
2e2 iGn

b
Bn

i†eiGn
b
50,

e2 iGn
a
An

i†eiGn
a
1e2 iGn

b
Bn

beiGn
b
50,

~41!

for anyn.0. Similar equations can be written for the boun
ary of the tilde string with tilde operators instead. Then o
can see that there is a solution to the equations~41! of the
form

uB~bT!&&25Np~bT!)
n51

`

e2 iGn
a

)
m51

`

e2 iGm
b
uB&, ~42!
5-5
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whereuB& is the boundary state atT50 given in Eq.~4!. A
similar expression can be found for the tilde operators
the second solution to the boundary conditions atTÞ0 has
the form

uB~bT!&&25uB&uB~bT!&̃. ~43!

Note that the solutions~39! and~43! are different because th
exponential contains different operators. They have a nat
degeneracy due to the fact that we work in a doubled F
space and they are physical solutions in the light-cone ga
In a conformal gauge, the contributions of ghosts at fin
temperature@55# should be taken into account in order
eliminate the unphysical degrees of freedom of closed str
In what follows, we study the solution~39!. Solution ~43!
represents the mapping of the boundary state atT50 at finite
temperature via Bogoliubov operators.

III. ENTROPY OF D-BRANES

It is interesting to investigate now the thermal propert
of the boundary states obtained in the previous section. S
we are working with closed string, we are going to comp
its entropy in the boundary state~39!.

According to the thermo field dynamics@51#, the entropy
operators for the bosonic closed string in terms of str
oscillators and inkB units, are given by the following rela
tions:

K5(
m

(
n

@~An
m†An

m1Bn
m†Bn

m!log sinh2un

2~An
mAn

m†1Bn
mBn

m†!log cosh2un#, ~44!

for the string, and

K̃5(
m

(
n

@~Ãn
m†Ãn

m1B̃n
m†B̃n

m!log sinh2un

2~Ãn
mÃn

m†1B̃n
mB̃n

m†!log cosh2un# ~45!

for the tilde string, respectively. Using theG-operators alge-
bra, it is easy to show that

@K2K̃,Ga#50, @K2K̃,Gb#50, ~46!

where the operatorsGa andGb are defined as

Ga5(
n

Gn
a , Gb5(

n
Gn

b . ~47!

In order to compute the entropy, one has to find the exp
tation value of the operator~44! in the state~39!. In the
thermo field dynamics it is postulated that the physical pr
erties of the system should be given in terms of opera
without the tilde @51#. Therefore, we do not compute th
expectation value of theK̃ operator.

It is useful to write the expectation value of the entro
operator in the following form:
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1^^B~bT!uKuB~bT!&&1

5 1^^0~bT!ueF†
KeFu0~bT!&&1

5 1^^0~bT!ueF†
eFCu0~bT!&&1

1 1^^0~bT!ueF†
eFKu0~bT!&&1 , ~48!

where we are using the notation

F5F~bT!5expF2 (
n51

`

An
†~bT!MBn

†~bT!G ~49!

and

C5@K,F#. ~50!

To compute the terms in Eq.~48! we should work with the
operators defined either at finite temperature or at zero t
perature, since the action of these operators on the co
sponding vacua is known. The two ways of doing compu
tions are completely equivalent. The following relations a
useful:

um
2 Am

r†~bT!Am
r ~b!u0~bT!&&50,

umvmAm
r†~bT!Ãm

r†~bT!u0~bT!&&5umvmu~1m!rr̃;0;bT&&,

umvmÃm
r ~bT!Am

r ~bT!u0~bT!&&50,

vm
2 Ãm

r ~bT!Ãm
r†~bT!u0~b!&&5vm

2 u0~bT!&&, ~51!

where we have used the shorthand notation

u~1m!rr̃;0;bT&&5u1,1̃;m,m̃;bT&&a
rr̃u0~bT!&&b , ~52!

and

u1,1̃;m,m̃;bTht&&a
rr̃

5u0, . . . ,1, . . . ,0;0, . . . ,1˜ , . . . ,0; . . . ,m, . . . ;

. . . ,m̃, . . . ;bT&&a
rr̃ . ~53!

Here, the indicesr and r̃ indicate that the state has on
quanta in theXr direction of space time. The space time
the same for the string as well as for the tilde string sin
doubling the system does not mean doubling the space t
The tilde over the index just indicates that there is a state,
the tilde string in that direction, that should be taken in
account. The first 1 on the right-hand side of Eq.~53! means
that the quanta is of string type, in therth direction. Zero
stands for the other directions. The 1˜ means that one quant
of tilde string exists in that state and in the same directior
and there are no other quanta in the other directions of sp
time.m is the mode of the string quanta, whilem̃ is the mode
of the tilde-string quanta. The modes that are on the rig
moving sectors of the closed string and tilde string are
noted by the indexa. Since the oscillators are independent
all directions and for all different modes, the orthogonal
5-6
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relations among these states are easy to write down. We
assume that the states are orthonormal.

Using the properties ofG operators and the relations~51!
we can write the action of the entropy operator on the bou
ary state at finite temperature under the form

KeFu0~bT!&&1

52 (
m,n51

24

(
k51

`
~2 !k

k!
@An

m†~bT!MmnBn
n†~bT!#k

3 (
m51

` H log tanh2um(
r51

24

@umvmu~1m!r;0;bT&&#

148@vm
2 log tanh2um2 log cosh2um#u0~bT!&&J . ~54!

The first term can be written in terms of the states~53! as

(
k51

`
~2 !k

k!
@An

m†~bT!#k@Mmn#k@Bn
n†~bT!#k

3~2 ! (
m51

` H log tanh2um(
r51

24

@umvmu~1m!r;0;bT&&#J
5u0, . . . ,1, . . . ,k, . . . ,0;0, . . . ,1˜ , . . . ,0;

. . . ,m, . . . ,n, . . . ; . . . ,m̃, . . . ;bT&&a
rr̃m

^ u0, . . . ,0, . . . ,k, . . . ,0;0, . . . ,0, . . . ,0;

. . . ,n, . . . ; . . . ;bT&&b
n . ~55!

The relations~54! and ~55! are important for computing the
second term in Eq.~48! while the first term can be shown t
be of the following form:

1^^0~bT!ueF†
eFCu0~bT!&&1

52 )
m51

`

)
m51

24

)
n51

24

(
k50

`

um
2 ~bT!

~2 !2k11Mmn
2k12

k! ~k11!!
~56!

After some tedious algebra one obtains from Eqs.~55! and
~56! the following value for the entropy of the closed strin
in the boundary state at finite temperature:

KDp51^^B~bT!uKuB~bT!&&1

548(
m51

`

@ log sinh2um2sinh2um log tanh2um#

12 )
m51

`

)
m51

24

)
n51

24

(
k50

`

cosh2um

~2 !2k12Mmn
2k12

k! ~k11!!
. ~57!

The first two terms obtained above do not depend on
gauge fieldFab . It is easy to see that in theT→0 limit the
contribution of the oscillators toKDp diverges. If we subtrac
the infinity we are left with the last term that may conver
but towards a positive number only. However, in theT→`,
08600
lso

-

e

the contribution of the oscillator behaves as log(21). This
might be an indication that the notion of temperature bre
down for arbitrary large temperature due to a similar ph
nomenon that occurs in string theory at Hagedorn temp
ture. We do not have a good explanation for this behavio

IV. SUMMARY AND DISCUSSIONS

In this paper we constructed the bosonic boundary st
at finite temperature, which were obtained by solving t
boundary conditions of the bosonic closed string. The bou
ary conditions atTÞ0 were obtained by mapping the corr
sponding boundary conditions atT50 with thermal Bogo-
liubov transformations. Since the states atT50 have the
interpretation of Dp-branes, we interpret the solutions w
have found as Dp-branes at finite temperature. The constru
tion was done in the framework of the thermo field dynam
@51#. We reproduced the states obtained in a previous w
@56# given by Eq.~39! and corrected some misprints in th
paper and also, we obtained a new solution~43!, which rep-
resents the Bogoliubov map of the Dp-branes at zero tem
perature.

The crucial point in our construction was to map t
boundary conditions atTÞ0. We have adopted the point o
view that the dependence on the temperature should be
coded in the operators, which are in agreement with ther
field dynamics. In this way we have obtained two sets
boundary conditions, one for the original string and anot
one for its copy. In Ref.@56# another solution of one set o
boundary conditions was discussed. Since the total F
space is a direct product of two copies of the Fock space
a bosonic closed string, a linear combinations of bound
states described by the following operators can be given2

Ô2,35Np~F,bT!S )
n51

`

e2An
†(bT)MBn

†(bT)3161

3 )
n51

`

e2Ãn
†(bT)MB̃n

†(bT)D , ~58!

where an implicit delta function that localizes the center-
mass of the string and the tilde string are assumed to e
The operators~58! act on the thermal vacuum. We note th
the vectors constructed with Eq.~58! satisfy one set of
boundary conditions, say, for the string, but do not satisfy
boundary conditions for the tilde string.

For the Dp-brane~39! which has the same form as th
Dp-brane atT50, the entropy was given in Eq.~57!. We
found that in the limitT→0, the contribution of the oscilla-
tors diverges. If this is subtracted from the total value of t
entropy, what is left is a series of positive terms with
slower increment than the exponential function. When
limit T→` is taken, the oscillator contribution breaks dow
since it involves the logarithm of negative unity. One po
sible explanation is that using bosonic strings is inapp

2These solutions were obtained in Ref.@56#. There the operators
should be read atTÞ0.
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priate for describing Dp-branes at high temperatures sin
the phase transition of string theory around the Haged
temperature makes the statistics of strings unfeasible@3#, and
consequently the boundary states. The tachyons, the g
tons, and the dilaton are responsible for this phenomenon
the present case only physical modes have been consid
since we have worked in the light-cone gauge. Neverthel
the contributions of the massless modes can induce a
behavior for the entropy. It is worthwhile to investigate t
contributions that can be obtained from the fermionic par
the case of superbranes. Another possibility would be
Dp-branes at finite temperature are not acceptable boun
states for closed string theory atTÞ0. However, to give a
definitive answer to these problems, further investigations
the thermal properties of the boundary states should be
formed. We hope to report on these topics in a future w
@57#.
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APPENDIX A

In this appendix we review some basic relations of ther
field theory with focus in the bosonic harmonic oscillato
We closely follow Ref.@51#.

The basic idea of thermo field dynamics is to constr
statistical averages of some operatorA in terms of expecta-
tion values in a vacuum that presents a dependence with
temperature:

^A&[Z21~bT!Tr@e2bTHA#5^^0~bT!uAu0~bT!&&,
~A1!

wherebT5(kBT)21 is the Botzmann’s constant and

Hun&5Enun&. ~A2!

The eigenstates of the HamiltonianH of the system are sup
posed to be orthonormal. The partition function is defined
the usual relation

Z~bT!5Tr@e2bTH#. ~A3!

It is possible to realize such of idea if a duplication of t
physical Hilbert space is performed, i.e., if one considers
Hilbert space as a direct product of two spaces: the orig
one and a nonphysical copy of it. The nonphysical or au
iary subspace is represented by a tilde and it is acted on
copy of the operators of the original system, e.g.,

H̃uñ&5Enuñ&. ~A4!

As a consequence any state in the total Hilbert space ha
following form:
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un,m̃&5un& ^ um̃&. ~A5!

The temperature dependent vacuum can be written as

u0~bT!&&5Z21/2~bT!(
n

e2~1/2!bTEnun,m̃&, ~A6!

and it is called ‘‘thermal vacuum.’’
One simple system for which the above construction

straightforward is the single bosonic oscillator

H5va†a, ~A7!

with the known algebra

@a†,a#51; @a,a#5@a†,a†#50, ~A8!

and the Fock space spanned by the following states

un&5
~a†!n

An!
u0&, ~A9!

for all positive integersn. The tilde oscillator has identica
properties

H̃5vã†ã, ~A10!

and

@ ã†,ã#51; @ ã,ã#5@ ã†,ã†#50. ~A11!

It is independent of the first oscillator, i.e., the two Hilbe
spaces are completely orthogonal:

@a,ã#5@a,ã†#5@a†,ã†#5@a†,ã#50. ~A12!

The duplicated vacuum is defined by

au0&&5ãu0&&, ~A13!

which has a solution in terms of the two vacua

u0&&[u0,0̃&5u0& ^ u0&̃. ~A14!

The Hamiltonian of the total system is defined by the follo
ing relation:

Ĥ5H2H̃. ~A15!

A simple algebra shows that the thermal vacuum can be w
ten in terms of a coherent state

u0~bT!&&5
1

u~bT!
expFv~bT!

u~bT!
a†ã†G u0&&. ~A16!

The partition function of the oscillator is given by

Z~bT!5
1

12e2bTv
, ~A17!
5-8
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ensuring that the thermal vacuum has unit norm. Also,
temperature-dependent coefficients are defined by the
tions

u~bT![~12e2bTv!21/25coshu~bT!, ~A18!

v~bT![~ebTv21!21/25sinhu~bT!. ~A19!

If we consider unitary Bogoliubov operators having the fo

GB[2 iu~bT!~aã2a†ã†!, ~A20!

it is easy to show that the thermal vacuum is obtained fr
the total vacuum atT50 by a simple Bogoliubov transfor
mation

u0~bT!&&5e2 iGBu0&&. ~A21!

The operators at finite temperature are also generated b
Bogoliubov operators

a~bT!5e2 iGba eiGb5u~bT!a2v~bT!ã†, ~A22!

ã~bT!5e2 iGbã eiGb5u~bT!ã2v~bT!a†,
~A23!

and they act on the thermal vacuum~justifying its name! as

a~bT!u0~bT!&&5ã~bT!u0~bT!&&50. ~A24!

With this construction, the Fock space is spanned by
vectors

u0~bT!&&, a†~bTu0~bT!&&, ã†~bT!u0~bT!&&, . . .
08600
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the
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1

Am!
@a†~bT!#n@ ã†~bT!#mu0~bT!&&, . . . .

~A25!

The commutation relation between the temperatu
dependent operators are the same as for the duplicated
tem at zero temperature. It is easy to show that theG opera-
tor is a constant of motion:

@G,Ĥ#5@G,H2H̃#50. ~A26!

The construction presented above can be straightforw
extended to a set of infinite free bosonic oscillators. In t
case the Bogoliubov operator is given by

GB[2 i(
n

u~bT!~anãn2an
†ãn

†!, ~A27!

and the thermal vacuum can be expressed as

u0~bT!&&5e21/2K expH(
n

an
†ãn

†J u0&&, ~A28!

where

K52(
n

$an
†an log sinh2un2anan

† log cosh2un%.

~A29!

K is called the entropy operator. This interpretation com
from the fact that the vacuum expectation value ofK times
the Boltzmann constantkB is the entropy of the physica
system.
ys.
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