
PHYSICAL REVIEW D, VOLUME 64, 085015
Massless neutrino oscillations

F. Benatti
Dipartimento di Fisica Teorica, Universita` di Trieste, Strada Costiera 11, 34014 Trieste, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Strada Costiera 11, 34014 Trieste, Italy

R. Floreanini
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Strada Costiera 11, 34014 Trieste, Italy

and Dipartimento di Fisica Teorica, Universita` di Trieste, Strada Costiera 11, 34014 Trieste, Italy
~Received 23 May 2001; published 26 September 2001!

Quantum dynamical semigroups provide a general framework for studying the evolution of open systems.
Neutrino propagation both in vacuum and in matter can be analyzed using these techniques: They allow a
consistent treatment of nonstandard, dissipative effects that can alter the pattern of neutrino oscillations. In
particular, initially massless neutrinos can give rise to a nonvanishing flavor transition probability, involving in
addition the MajoranaCP-violating mixing phase.
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I. INTRODUCTION

Elementary particle systems are usually treated as isol
quantum systems: Their dynamics can be modeled by m
of effective field theories, allowing a coherent interpretati
of the experimental results. Although very general, t
framework cannot accommodate all phenomena involv
elementary particles; in particular, those leading to irreve
ibility and dissipation are clearly excluded. Indeed, a m
general treatment is needed to properly describe these
fects: It can be physically motivated in the framework
open quantum systems@1–3#.

These systems can be thought of as being subsystem
interaction with large environments. The time evolution
the total system is unitary and follows the rules of ordina
quantum mechanics; nevertheless, the dynamics of the
system alone, obtained by eliminating the environment
grees of freedom, shows in general irreversibility and de
herence.

When there are no initial correlations between subsys
and environment and their mutual interaction is weak,
subdynamics can be described in a mathematically pre
way in terms of quantum dynamical semigroups. These
linear evolution maps satisfying general properties that
sure the consistent physical interpretation of the dynam
They include the condition of entropy increase~irreversibil-
ity!, forward-in-time composition law~semigroup property!,
complete positivity. This framework is very general and c
be applied to model irreversibility and dissipation in ve
different physical situations@1–11#; in particular, it can be
used to study the evolution of elementary particle syste
treated now as open systems@12–14,15–19#.

The possibility that decoherence phenomena might af
the physics of elementary particles is supported by rec
studies on the fundamental dynamics of extended obj
~strings and branes! @20#; indeed, time evolutions describe
by quantum dynamical semigroups can be the result of
interaction with a gas of quanta obeying infinite statist
~e.g., a gas ofD0 branes! @21#. In other terms, the dynamic
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of fundamental extended objects could effectively gener
at low energies a weakly coupled environment.

Similar phenomena have also been described in
framework of quantum gravity: Due to the quantum fluctu
tion of the gravitational field and the appearance of virtu
black holes, space-time loses its continuum aspect at
tances of the order of Planck’s scale and assumes a foam
behavior@22#. As a consequence, new, nonstandard phen
ena can arise, leading to loss of quantum coherence@23–28#.

Unfortunately, our present knowledge of string theo
does not allow us to estimate precisely the magnitude of
nonstandard, dissipative effects induced on elementary
ticle systems; they are nevertheless expected to be
small, being suppressed by at least one inverse power o
Planck mass, as rough dimensional analysis suggests
spite of this, the new effects can affect interference pheno
ena and turn out to be in the reach of future, planned exp
ments. Indeed, detailed investigations of neutral meson
tems, neutron interferometry, and photon propagation us
quantum dynamical semigroups have already allowed de
ing order of magnitude limits on some of the phenomen
logical constants parametrizing the new effects, using av
able experimental data@17,19,29–31#.

In the present work, we shall discuss in detail how no
standard, dissipative phenomena can affect neutrino prop
tion, and in particular neutrino oscillations. We shall lim
our considerations to the oscillations of two species of n
trinos; in this case, the possible dissipative effects can
described in terms of six phenomenological parameters
preliminary investigation, limited to vacuum oscillations, h
been reported in Ref.@18#. There, it has been shown that th
dissipative phenomena modify the transition probabilityP
among the two neutrino flavors, introducing in particular e
ponential damping factors. In a simplified situation, limits
one of the dissipative parameters have subsequently b
obtained using recent SuperKamiokande data@32#.

In the following, a much more complete discussion w
be presented, with detailed analysis of oscillation phenom
in presence of irreversibility, both in vacuum and in matt
Dissipation affects both situations; in particular, the res
nance condition for neutrino propagation in matter turns
©2001 The American Physical Society15-1
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to be modified, leading to distinctive observable effec
Various approximate expressions for the transition proba
ity P will be given: They can be useful in fitting experime
tal data. A discussion on a possible physical mechanism
could give rise to the nonstandard effects will also be p
sented, although much of the technical analysis will be
egated to the Appendix.

As a final remark, let us stress that the presence of n
standard, dissipative phenomena modify neutrino physic
two important aspects. First, they give the neutrinos an
fective mass, so that oscillations are possible even for m
less neutrinos. Further, contrary to the standard case, the
pression of the transition probabilityP depends in general o
the CP-violating phase that is present in the mixing mat
for Majorana neutrinos. This allows us, at least in princip
to distinguish between Dirac versus Majorana neutrinos
oscillation experiments. We find this possibility as one of t
most intriguing outcomes of our investigation.

II. NEUTRINOS AS OPEN QUANTUM SYSTEMS

The familiar description of neutrino oscillations involve
the study of the evolution of neutrinos created in a giv
flavor by the weak interactions and subsequently detecte
a later time. The traveling neutrinos are usually assume
be ultrarelativistic, so that the analysis of the transition pr
ability for the original tagged neutrinos to be found in
different flavor can be performed using an effective desc
tion @33–37#.

For sake of simplicity, in the following we shall limit ou
considerations to the mixing of two neutrino species.1 In this
case, the neutrino system can be effectively modeled
means of a two-dimensional Hilbert space; the two neutr
mass eigenstates will be henceforth fixed as the basis in
space. In the presence of dissipation, the physical neut
states cannot be described in terms of elements of the Hi
space: A more general formalism is needed that makes us
density matrices. These are Hermitian, positive operators
~i.e., with non-negative eigenvalues!, normalized to have uni
trace.

With respect to the fixed basis, the two flavor stat
which we shall conventionally callne and nm , are repre-
sented by the following 232 matrices:

rne
5S cos2 u e2 iw cosu sinu

eiw cosu sinu sin2 u D . ~2.1a!

rnm
5S sin2 u 2e2 iw cosu sinu

2eiw cosu sinu cos2 u D[12rne
,

~2.1b!

whereu is the ‘‘vacuum’’ mixing angle, while the additiona
phasew can be nonvanishing for neutrinos of Majorana typ

1The discussion can be generalized to the case of three or m
neutrinos; however, the explicit formulas for the transition pro
abilities would become much more involved and the discuss
less transparent.
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That this extra phase cannot be eliminated by a simple b
redefinition is a well-known consequence of the reality co
dition for the Majorana neutrinos, and, at least in princip
its presence can be experimentally probed@38,39#. Neverthe-
less, in the usual approach, this cannot happen via the an
sis of oscillation phenomena alone@40#. As we shall see, the
situation is different in the presence of dissipative effects,
that in the following we shall keepw nonvanishing unless
explicitly stated.

As explained in the introductory remarks, the evolution
time of any neutrino stater will be described by means o
linear maps,G t :r(0)°r(t), that generalize the standar
quantum mechanics unitary evolution. Not all generaliz
mapsG t turn out to be physically acceptable: They need
satisfy very general physical requirements. First, the mapG t
should transform neutrino states into neutrino states,
therefore should map any initial density matrixr~0! into a
density matrixr(t)[G t@r(0)#, for any t. Furthermore, they
should have the property of obeying the semigroup com
sition law, G t@r(t8)#5r(t1t8), for t,t8>0, of increasing
the ~von Neumann! entropy,S52Tr@r(t)ln r(t)#, of being
completely positive.

It has been proved long ago that evolution mapsG t satis-
fying these properties are generated by equations of the
lowing form @1–3#:

]r~ t !

]t
52 iH eff r~ t !1 ir~ t !Heff1L@r~ t !#. ~2.2a!

The first two pieces on the right hand side~RHS! represent
the standard quantum mechanical contributions: They g
rise to the traditional description of neutrino oscillations
terms of the effective~time-independent! HamiltonianHeff .
We shall neglect effects due to possible neutrino instabil
Heff can then be taken to be Hermitian. The additional pie
L@r# is a linear map that encodes possible dissipative, n
standard effects. It can be written as,

L@r#52
1

2 (
j

~Aj
†Ajr1rAj

†Aj !1(
j

AjrAj
† ,

~2.2b!

where the operatorsAj must be such that( jAj
†Aj is a well-

defined 232 matrix ~entropy increase can be easily impl
mented by taking theAj to be Hermitian!. In its absence,
pure states~i.e., states of the formuc&^cu! would be trans-
formed by G t into pure states. Only when the extra pie
L@r# is also present doesr(t) become less ordered in tim
due to a mixing-enhancing mechanism; it produces irreve
ibility and possible loss of quantum coherence.

In the case of two neutrino flavors,L@r# can be fully
parametrized in terms of six, real phenomenological c
stants,a, b, c, a, b, andg, with a, a, andg non-negative,
satisfying the following inequalities@1,15,16#:

re
-
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MASSLESS NEUTRINO OSCILLATIONS PHYSICAL REVIEW D64 085015
2R[a1g2a>0, U[RS2b2>0,

2S[a1g2a>0, V[RT2c2>0,
~2.3!

2T[a1a2g>0, Z[ST2b2>0,

X[RST22bcb2Rb22Sc22Tb2>0.

They are direct a consequence of the property of comp
positivity. In order for the 232 matrix r(t) to represent a
neutrino state, its eigenvalues should be positive for any t
t; this is crucial for the physical consistency of the who
formalism. The eigenvalues ofr(t) are in fact interpreted a
probabilities. The property of complete positivity precise
ensures that this holds true in any possible condition.~For a
complete discussion, see Ref.@41#.!

The one-parameter family of finite evolutionG t generated
by Eq. ~2.2! are called quantum dynamical semigroups; th
will be the basis of the phenomenological treatment of
dissipative effects in the neutrino system. The description
irreversible, nonstandard phenomena by means of equa
of the form~2.2! is actually very general and can be appli
to the study of very different physical systems. Origina
developed in the framework of quantum optics@5–7#, it has
also been successfully used in the analysis of statistical m
els @1–3#, the interaction of a microsystem with a measuri
apparatus@8–11#, the study of dissipative effects in system
involving elementary particles, and in particular neutral m
sons@15,16,29–31#. Although essentially phenomenologic
in nature, all these analysis can be supported by phys
considerations.

A general picture in which the quantum dynamical sem
group description of dissipative effects naturally emerge
provided by open systems, i.e., by systems in weak inte
tions with a large environment. In the case of element
particles, these effects are likely to originate from the fun
mental dynamics of strings or branes, which is, in gene
rather complex. Nevertheless, an effective description of
environment that encodes some of the properties of the
derlying fundamental dynamics turns out to be adequate f
more physical discussion of evolution equations of ty
~2.2!.

Quite in general, the total Hamiltonian of a systemS in
interaction with an environmentE can be decomposed as

H tot5H ^ 111^ HE1gH8, ~2.4!

whereH is the system Hamiltonian in the absence ofE, while
HE drives the internal dynamics of the environment. T
interaction betweenS and E is described byH8, with g a
small, dimensionless coupling constant.

In many instances, the initial state of the total systemS
1E can be taken to be in factorized form:r tot5r^rE . This
is surely justified in the case of the neutrino system: Si
the mechanism of neutrino production is different from t
one responsible for the dissipative effects, system and e
ronment are surely uncorrelated at the moment of
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emission.2 Then, the time evolution of the stater of the
systemS can be obtained by tracing over the environme
degrees of freedom:

r[r~0!°r~ t !5TrE@e2 iH tott~r ^ rE!eiH tott#, ~2.5!

In general, the resulting mapr(0)→r(t) turns out to be
rather involved, developing nonlinearity and memory effec
Nevertheless, when the interaction betweenS andE is weak,
an evolution equation forr(t) local in time naturally
emerges. The technical details are presented in the Appen
As discussed there, the environment can be modeled as a
of quanta, obeying infinite statistics; this description is
line with the idea that the dissipative effects originate fro
the low energy string dynamics at a fundamental scaleMF
~e.g., Planck’s mass!. Then, in the weak coupling limit, i.e.
when the coupling constantg becomes very small, the resul
ing dynamical equation for the subsystem stater(t) turns out
to be precisely of the form~2.2! @1–3,21#.

This result allows a rough estimate of the magnitude
the effects produced by the nonstandard pieceL@r#: They
should be proportional to powers of the typical energy of
systemS, while suppressed by inverse powers of the char
teristic energy scale ofE. In the case of the neutrino system
these effects should be very small, since the typical ene
scale of the environment can be assimilated to the fundam
tal scaleMF . For any fixed neutrino source and observ
tional conditions, an upper bound on the magnitude of
effects induced byL@r# can be evaluated to be of orde
E2/MF , whereE is the average neutrino energy.

As a further outcome of the weak coupling limit proc
dure, the Hamiltonian part of the evolution equation forr(t)
gets modified by the presence of the environment. Inde
the effective HamiltonianHeff in Eq. ~2.2! does not coincide
in general with the starting system HamiltonianH in Eq.
~2.4!: Suitable dissipative contributions toH, generated by
the interactionH8, need to be taken into account@1–3,21#.
As we shall see in the following, this fact has interesti
consequences in neutrino physics: One can have oscillat
among different flavors induced by dissipative effects ev
for massless~or mass-degenerate! neutrinos. In other words
originally massless neutrinos can get an effective nonz
mass via the interaction with the environment.

III. QUANTUM DYNAMICAL SEMIGROUPS
AND NEUTRINO OSCILLATIONS

In the case of the neutrino system, much of the consid
ations and discussions of the previous section about the
lution equation~2.2! can be made more transparent and e
plicit. In particular, both for the effective HamiltonianHeff
and for the extra pieceL@r#, simple expressions can b
given.

We shall be as general as possible and include in

2Even in presence of an initially correlated total systemS1E, the
factorized approximation becomes a very good approximation w
the short-time correlations have died out@4#.
5-3
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discussion effects due to the propagation of neutrinos i
medium made of ordinary matter. Because of the interacti
of the neutrinos with the particles in the medium, an effe
tive potential can be generated, that has different effects
different flavors. In the case of ordinary matter, the elect
neutrinos interact with the electrons in the medium, so t
their average energy effectively receive an extra contribu
A5&GFne with respect to the energy of the muon neutrin
~GF is the Fermi constant, whilene represents the electro
number density in the medium! @33–37,42#. In the ordinary
case, this contribution can significally change the oscillat
pattern betweenne and nm states@the so-called Mikheyev-
Smirnov-Wolfenstein~MSW! effect# @43,44#. As we shall
see, this phenomenon can be substantially modified by
presence of nonstandard, dissipative effects.

On the basis introduced in the previous section,
232 matrix representing the effective Hamiltonian can
taken to be of the form

Heff5S E2v02v3 v12 iv2

v11 iv2 E1v01v3
D

1
A

2 S 11cos 2u e2 iw sin 2u

eiw sin 2u 12cos 2u D . ~3.1!

In the first piece,E represents the average neutrino ener
while v05Dm2/4E takes into account the square mass d
ferenceDm2 of the two mass eigenstates; these are the u
contributions that give rise to the standard oscillation patt
in vacuum. The extra real parametersv1 , v2 , andv3 are the
consequence of the interaction with the environment; as
plained in the previous section~and discussed in detail in th
Appendix!, they represent the contribution of the dissipati
phenomena to the system Hamiltonian.

Both v0 andv1 , v2 , v3 contribute to the level splitting
v5@(v01v3)21v1

21v2
2#1/2 between the two mass eigen

states, so that they all contribute to the oscillation pheno
ena in vacuum. Therefore, even for initially degenerate m
eigenstates,Dm250, vacuum oscillations can occur betwe
the two flavors due to the dissipative effects induced by
fundamental dynamics at the large scaleMF . Although in
general all three parametersv1 , v2 , andv3 are nonvanish-
ing, in the following, in order to simplify the treatment, w
shall assumev15v250; this working assumption allow
for more manageable formulas, while keeping unaffec
their physical meaning and implications.3

The final contribution toHeff in Eq. ~3.1! takes into ac-
count the interaction of the propagating neutrinos with or
nary matter; it would be diagonal in the flavor basis~only
electron neutrinos are affected!, but assumes a more compl
cated expression involving the mixing angleu and the phase
w in the chosen basis. Since the coefficientA is proportional
to the density of electrons in the mean, for propagation
nonhomogeneous matterHeff will in general be a function of
the position of the neutrinos. Nevertheless, one can alw

3WhenDm250, this is no longer an assumption: In this case, o
can always choose to work in a basis for whichv1 andv2 vanish.
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approximate a nonhomogeneous medium by a collection
media, each with a constant density, while having differ
thickness; in view of this, in the following we shall assum
the parameterA be a constant~see also the discussion in Se
IV !.

As mentioned before, although the effective Hamiltoni
Heff gets also dissipative contributions, only when the ad
tional pieceL@r# in the evolution equation~2.2! is nonvan-
ishing, irreversibility and mixing enhancing effects are po
sible. In the present case, its explicit expression in terms
the six phenomenological constantsa, b, c, a, b, andg in Eq.
~2.3! can be most simply given by expanding the 232 ma-
trix r in terms of the Pauli matricess i , i 51,2,3, and the
identity s0 :

r5 1
2 (

m50

3

rmsm . ~3.2!

In this way, the linear mapL acting onr can be represente
by the following, symmetric 434 matrix @Lmn#, acting on
the four-vector of components (r0 ,r1 ,r2 ,r3):

@Lmn#522S 0 0 0 0

0 a b c

0 b a b

0 c b g

D . ~3.3!

The form of the evolution equation~2.2! can be further
simplified by recalling that it is trace preserving. From t
initial normalization condition Tr@r(0)#51, one immedi-
ately obtains that the component ofr(t) along the identity is
equal to one for all times. Then, the evolution equation
the remaining three components ofr(t) can be rewritten in a
Schrödinger-like form:

]

]t
ur~ t !&522Hur~ t !&, ~3.4!

where the three-vectorur& has components (r1 ,r2 ,r3),
while

H5S a b1m c2n sinw

b2m a b1n cosw

c1n sinw b2n cosw g
D , ~3.5!

with

m5
A

2
cos 2u2v, n5

A

2
sin 2u. ~3.6!

The solution of Eq.~3.4! involves the formal exponentiation
of the matrixH:

ur~ t !&5M~ t !ur~0!&, M~ t !5e22Ht. ~3.7!

As discussed in Ref.@18#, expressions for the entries o
M(t) can always be obtained by solving the eigenva
problem for the 333 matrix in Eq.~3.5!:

e

5-4
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MASSLESS NEUTRINO OSCILLATIONS PHYSICAL REVIEW D64 085015
Huv ~k!&5l~k!uv ~k!&, k51,2,3. ~3.8!

The three eigenvaluesl (1), l (2), l (3) satisfy the cubic equa
tion:

l31rl21sl1w50, ~3.9!

with real coefficients:

r[2~l~1!1l~2!1l~3!!52~a1a1g!, ~3.10a!

s[l~1!l~2!1l~1!l~3!1l~2!l~3!

5aa1ag1ag2b22c22b21m21n2, ~3.10b!

w[2l~1!l~2!l~3!

5a~b22n2 cos2 w!1a~c22n2 sin2 w!

1g~b22m2!2aag22bcb2bn2 sin 2w

22mn~b sinw1c cosw!. ~3.10c!

The solutions are either real, or one is real and the remain
two are complex conjugate, according to the sign of the
sociated discriminant: D5p31q2, p5s/32(r /3)2, q
5(r /3)32rs/61w/2 ~degenerate, real solutions occur wh
D50! @45#. Then, recalling that the matrixH itself satisfies
Eq. ~3.9!, one can derive the following expression for th
entries ofM(t):

Mi j ~ t !5 (
k51

3

e22l~k!t

3F ~@l~k!#21rl~k!1s!d i j 1~l~k!1r !Hi j 1Hi j
2

3@l~k!#212rl~k!1s G ,
i , j 51,2,3. ~3.11!

Although rather formal, this formula allows a general d
cussion on the behavior ofM(t). For m5n50, due to the
inequalities in Eq.~2.3!, the matrixH results are real, sym
metric, and non-negative; its eigenvalues are all real
non-negative. Only whenumu andunu are sufficiently large can
complex eigenvalues appear, although with a non-nega
real part, since in general the evolution generated by
~2.2! is bounded for anyt @46#. In this case an oscillatory
behavior is possible, while for smallm, n, the damping terms
prevail and dissipation is the dominant phenomena.

In particular, since generically detH[2wÞ0, in pres-
ence of dissipation the real part ofl (1),l (2),l (3) are all
strictly positive; thereforeM(t) asymptotically vanishes fo
large enough times.4 This has clearly dramatic consequenc
in the study of neutrino flavor transitions.

4In the presence of vanishing eigenvalues, this decoherence e
is only partial@18#; however, note that having detH50 requires a
unnatural fine-tuning among the parameters in Eq.~3.10c!.
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Let us assume that att50 the neutrinos are generated
be of type ne . In the formalism of density matrices, th
probability of having a transition into neutrinos of typenm at
time t is given by

Pne→nm
~ t ![Tr@rne

~ t !rnm
#5

1

2 F11 (
i , j 51

3

rnm

i rne

j Mi j ~ t !G ,

~3.12!

whererne
(t) is the solution of Eq.~2.2! with the initial con-

dition given by the matrixrne
(0)[rne

, while rne

i ,rnm

j ,i , j

51,2,3 are the components of the three-vectorsurne
&, urnm

&
corresponding to the density matrices in Eq.~2.1!. Using the
explicit expressions for these components, one finds

Pne→nm
~ t !5

1

2
„12cos2 2u M33~ t !2sin2 2u$M11~ t !cos2 w

1M22~ t !sin2 w1@M12~ t !1M21~ t !#

3sinw cosw%2cos 2u sin 2u

3$@M13~ t !1M31~ t !#cosw

1@M23~ t !1M32~ t !#sinw%…. ~3.13!

One of the interesting features of this formula is its e
plicit dependence on the phasew; in the presence of dissipa
tive effects, it is therefore possible, at least in principle,
distinguish between Dirac and Majorana neutrinos by stu
ing the oscillation pattern in Eq.~3.13!. This peculiarity dis-
appears when the nonstandard, dissipative pieces in Eq.~2.2!
are absent; indeed, in that case, one has

Mi j ~ t !5d i j 2
sin 2vM t

vM
Hi j 1

2 sin2 vM t

vM
2 Hi j

2 i , j 51,2,3,

~3.14!

whereH is now as in Eq.~3.5! with a, b, c, a, b, andg all
equal to zero, whilevM5Am21n2, and Eq.~3.13! reduces
to the well-known standard expression for the oscillati
probability in an homogeneous medium@33–37,42#:

Pne→nm

~0! ~ t !5sin2 2uM sin2 vM t,

sin2 2uM5
sin2 2u

~A/2v2cos 2u!21sin2 2u
. ~3.15!

Another distinctive characteristic of the transition pro
ability in the presence of dissipation given in Eq.~3.13! is its
asymptotic behavior for large times, which turns out to
independent from the mixing angleu, the phasew and the
matter coefficientA:

Pne→nm
~ t ! ;

t→`

1
2 . ~3.16!

This result is a direct consequence of the vanishing of
matrix M(t) in Eq. ~3.7!. Nevertheless, as discussed belo

ect
5-5
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the regime of validity of this asymptotic limit can seldom b
reached in practical experimental conditions.

IV. TRANSITION PROBABILITY IN MATTER

The general expression~3.13! for the transition probabil-
ity is rather involved and is not particularly useful for stud
ing in more detail its physical properties. Therefore, in t
present and following sections we shall discuss various
proximations in whichPne→nm

(t) assumes a more manag
able form. These simplified expressions, besides being
propriate for theoretical analysis, could also be used to
actual experimental data@32,47#.

As already mentioned in Sec. II, the values of the co
stantsa, b, c, a, b, and g parametrizing the nonstandar
effects are expected to be very small, with an upper boun
order E2/MF.10219 GeV for E.1 GeV and forMF , the
Planck mass. Nevertheless, this estimate is not far from
values that the standard oscillation parameterv05Dm2/4E
assumes for typical neutrino sources. Indeed, the ratio oa,
b, c, a, b, andg with v0 can be evaluated to be at most
order 10210E3/Dm2, with E expressed in MeV and the neu
trino mass differenceDm2 in eV2; this ratio turns out to be
about 102 for atmospheric neutrinos, of order one for so
neutrinos, while for accelerator neutrinos it can be as sm
as 1022. Therefore, the effects induced by dissipation c
interfere with those producing oscillations via a nonvani
ing v0 , resulting in observable modifications of the oscill
tion pattern. Present and, most likely, future dedicated n
trino experiments should be able to detect the
modifications, or at least put stringent limits on the mag
tude of the nonstandard phenomena.

Let us first consider the case in which the dissipative
rametersa, b, c, a, b, andg are of the same order or large
than the remaining constants in Eq.~3.1!. In this case a very
useful approximation is to assumea5a5g andc50, con-
ditions perfectly compatible with the inequalities~2.3!, pro-
vided a2>b21b2. For simplicity, we further assume th
extra phasew to be vanishingly small. A manageable expre
sion for the transition probability can then be derived:

Pne→nm
~ t !5

1

2
~12e22at!1F ñ22b̃2

VM
2 Ge22at sin2~VMt !,

~4.1!

where

VM5@m21n22b22b2#1/2, ~4.2!

ñ5v sin 2u, b̃5b cos 2u1b sin 2u. ~4.3!

The oscillating behavior in Eq.~4.1! depends on the magn
tude of the combination m21n25(A/22v cos 2u)2

1v2 sin2 2u with respect tob21b2; in regions for which
b21b2>m21n2, the frequencyVM becomes purely imagi
nary andPne→nm

(t) contains only exponential terms. Any

way, thea-dependent damping terms in Eq.~4.1! dominate
for large times, and the asymptotic limit~3.16! is thus recov-
ered.
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In absence of dissipation,a5b5b50, the factor in front
of the sine term in Eq.~4.1! becomes parametrized as in E
~3.15!, with a modified mixing angleuM . When the matter
parameterA is close toAR[2v cos 2u, the transition prob-
ability gets enhanced, and oscillations between the two n
trino species is possible even when the original mixing an
u is small. This phenomenon is at the root of the so-cal
MSW effect @42–44#.

In the presence of dissipation, however, the physical c
sequences of this effect are in general much more modes
this case, one cannot parametrizePne→nm

(t) in terms of a

modified mixing angle; in spite of this, the expression in E
~4.1! as a function ofA, at fixed time, has a critical point fo
A5AR . This point is a maximum forñ2>b̃2, and indeed as
A approachesAR an enhancement inPne→nm

(t) occurs: (ñ2

2b̃2)/VM
2 .1; however, the exponentially damping facto

in Eq. ~4.1! greatly reduce in practice its effectiveness. F
thermore, whenñ2,b̃2, the probabilityPne→nm

(t) in Eq.

~4.1! is maximally suppressed at the critical point: It is dom
nated by the damping factors.

This discussion might appear spoiled by the initial a
sumption of a constant matter parameterA: The occurrence
of the MSW effect requires a medium with a~slowly! vary-
ing density. As already pointed out, the assumption of a c
stantA is not really a limitation: One can always approx
mate, with arbitrary accuracy, the traveling of neutrin
through varying density matter as the propagation in a se
of media with different constant densities and different thic
ness. The total time evolution will be given by the compo
tion of the evolutions in the various matter slices, so that
matrix M in Eq. ~3.7! becomes

M~ t !5Mn~ tn!¯M2~ t2!M1~ t1!, t5t11t21¯1tn ,
~4.4!

where,t1 ,t2 ,...,tn are the total times spent by the neutrin
in the various media, whileMi , i 51, . . . ,n are the corre-
sponding propagation matrices.

As an example, let us consider the case of an initial el
tron neutrino traveling for a timet1 into a medium with
matter parameterA, which is then detected in vacuum at
later time t5t11t2 ; this situation can roughly represent
solar neutrino model. Using Eq.~4.4!, the probability of de-
tecting the originalne as a muon neutrino is given by

Pne→nm
~ t !5

1

2 H 12e2a~ t11t2!2e2a~ t11t2!S ñ22b̃2

V0
2 D

3F4VM
2 2A~A12b12v cos 2u!

VM
2

3sin2~VMt1!sin2~V0t2!

2
V0

VM
sin~2VMt1!sin~2V0t2!22 sin2~V0t2!

22
V0

2

VM
2 sin2~VMt1!G J , ~4.5!
5-6
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whereV05Av22b22b2, while VM is as in Eq.~4.2!. One
can check that, with the appropriate choice of parame
~see the previous discussion!, the probabilityPne→nm

(t) can

indeed get an enhancement forA close to the critical point;
the effect is, however, modest and further suppressed by
damping factors. Nevertheless, with the appropriate value
A, t1 , and t2 , the expression~4.5! can be used to fit sola
neutrino data; the total flight timet is large, so that a good
sensitivity at least on the dissipative parametera is surely
attainable.

A different approximation of the full expression~3.13! for
the transition probabilityPne→nm

can be obtained when th

dissipative parametersa, b, c, a, b, andg can be considered
small with respect to the level-splitting termv; as mentioned
before, this typically occur for neutrino beams generated
accelerators. In this case the additional termL@r# in the
evolution equation~2.2! can be treated as a perturbation.
first order in the small parameters, explicit expressions
the entries of the evolution matrixM(t) in Eq. ~3.7! can be
easily obtained; then, using Eq.~3.12!, one finds

Pne→nm
~ t !5S m̃2

vM
2 De22l1t1e2l2tF S ñ2

vM
2 D cos~2vMt !

1S N

vM
2 D sin~2vMt !G , ~4.6!

wherevM5Am21n2 as in the previous section, while

m̃5m cos 2u1n sin 2u5
a

2
2v cos 2u, ~4.7a!

ñ5n cos 2u2m sin 2u5v sin 2u; ~4.7b!

the parametersl1 , l2 , andN contain the dependence on th
dissipative constants:

l15~an212cmn1gm2!/vM
2 , ~4.8a!

l25a1~am222cmn1gn2!/vM
2 , ~4.8b!

N5
ñ2

2
@a2a2n~3an12cm!/vM

2 #13nñ~a2g!cos 2u

1c~2mm̃2n2vM
4 sin 4u!/vM

2 . ~4.8c!

In expression~4.6!, we have reconstructed the exponent
factors by consistently putting together the terms linear it.
Notice that the result in Eqs.~4.8! is in agreement with the
discussion in Sec. III concerning the eigenvalues of the m
trix H. In this case the algebraic equation~3.9! has one real,
l (1), and two complex conjugate solutions,l (2,3)5lR

6 il I ; within our approximation,l (1)5l1 , 2lR5l2 , so
that the first condition in Eq.~3.10! is satisfied, while the
remaining two fix the imaginary partl I .

The expression~4.6! for the transition probability can be
used to fit experimental data. With respect to the stand
case, it contains three additional parameters,l1 , l2 , andN,
that signal the presence of nonstandard phenomena, thr
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the constantsa, b, c, a, b, andg. If at least one of these thre
parameters is found to be nonzero, it would clearly signal
presence of dissipative effects in neutrino physics; this
surely the most simple experimental check on the gene
ized evolution equation~2.2! that can be performed with ac
celerator neutrino beams.

V. ADIABATIC APPROXIMATION

For time evolutions with a semigroup composition la
the appropriate way to follow neutrino propagation in a m
dium is through the successive applications of the finite e
lution matricesM(t) to the initial stateur~0!&, as shown in
Eq. ~4.4!. In more traditional approaches, one usually ado
a different approximation, based on the assumption of~adia-
batic! slowly varying matter density. This approximation ca
be easily discussed also in the framework of density matr
and quantum dynamical semigroups.

Let us consider the case of a neutrino, created att50 in
matter of high density~i.e., in the core of the sun!, propagat-
ing towards regions of smaller density. In this case, the
fective Hamiltonian ~3.1! is no longer constant, and th
propagating matrixM(t) involves a time-ordered exponen
tiation of H. Nevertheless, at any instant of time, the 333
matrix H can be diagonalized by a similarity transformatio

H5TDT21. ~5.1!

Using this decomposition in Eq.~3.4!, one can derive the
evolution equation for the transformed three-vector,ur̃&
5Tur&; explicitly, one finds

]

]t
ur̃~ t !&522S D1

]T

]t
T21D ur̃~ t !&. ~5.2!

The adiabatic approximation amounts to neglecting the
term in this equation; this is justified when the matter dens
parameterA is slowly varying. In this approximation, the
neutrino state essentially evolves in time as an eigenstat
H.

In order to make the discussion more explicit, as in t
previous section, we shall takea5a5g and c50, while
neglecting the extra phasew and the dissipative contribution
v1 , v2 to H. With these choices, one has

D522S a

a1 iVM

a2 iVM

D , ~5.3!

with VM as in Eq.~4.2!, while the transformation matrixT
takes the form

T5
1

&VM
S &~b1n! b1m b1m

0 iVM 2 iVM

2&~b2m! b2n b2n
D . ~5.4!

The entries ofT can be parametrized in terms of two re
variablesj andz and an anglef, that could be complex:
5-7
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b6n

VM
56~e6z cos 2u sin 2f1e6j sin 2u cos 2f!,

~5.5a!

b6m

VM
56~e7z sin 2u sin 2f2e7j cos 2u cos 2f!;

~5.5b!

for later convenience, an explicit dependence on the mix
angleu has been extracted from the entries ofT.
ns

th
th

ge
x
u
ity

ca
s-
f
to
iv
e

08501
g

Using a compact vector notation, the transition probabi
Pne→nm

in Eq. ~3.12! can now be written as

Pne→nm
~ t !5 1

2 $11^rnm
uTf•MD~ t f ,t i !•Ti

21urne
&%,

~5.6!

where
MD~ t f ,t i !5e22atS 1

expS 22i E
0

t

dtVM~t! D
expS 2i E

0

t

dtVM~t! D D ~5.7!
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while Ti and Tf are the matrices that diagonalizeH at the
initial time t i50 and final timet f5t; they can be written as
in Eq. ~5.4!, with parametersj i ,z i ,f i andj f ,z f ,f f , respec-
tively. Explicitly, one finds

Pne→nm
~ t !5

1

2 H 12e22atFej f2j i cos 2f f cos 2f i

1e2~z f2z i ! sin 2f f sin 2f i

3cosS 2E
0

t

dt VM~t! D G J . ~5.8!

In absence of dissipation,j i5z i5j f5z f50, a5b5b50,
one recovers the familiar expression for the adiabatic tra
tion probability.

When the adiabatic approximation ceases to be valid,
previous treatment needs to be generalized. Indeed, in
case, the neutrino state no longer remains in a specific ei
state ofH for the whole time evolution; rather, it can mi
with the remaining eigenstates. In order to take into acco
this possibility, the expression for the transition probabil
~5.6! needs to be modified:

Pne→nm
~ t !

5 1
2 $11^rnm

uTf•MD~ t f ,tc!•D•MD~ tc ,t i !•Ti
21urne

&%,

~5.9!

wheretc is the time at which the neutrino crosses the criti
region, whileD is the mixing matrix that encodes the po
sible hopping between the instantaneous eigenstates o
effective Hamiltonian. For simplicity, we are not taking in
account the possibility of hoppings induced by dissipat
effects: They can be considered to be negligible with resp
to the matter induced ones. As a consequence,D can be taken
i-

e
is
n-

nt

l

the

e
ct

to be the most general 333 unitary matrix, which preserve
appropriate consistent conditions: They assure the realit
the transition probability. Taking into account these con
tions,D can be parametrized in terms of two complex nu
bersu andv, such thatuuu21uvu251:

D5S uuu22uvu2 &ūv &uv̄

2&ūv̄ ū2 2 v̄2

2&uv 2v2 u2
D . ~5.10!

The explicit expression for the probability in Eq.~5.9! is now
rather involved; however, it simplifies when neglecting t
fast oscillating terms:

^Pne→nm
~ t !&5 1

2 $12e22atej f2j i~1

22uvu2!cos 2f f cos 2f i%. ~5.11!

In practical applications, the interesting case occurs w
the neutrinos are generated in a medium with very large m
ter density,e2j i cos 2fi.21, while detected at a later timet
in vacuum,j f.0, f f5u. In this case, one finds

^Pne→nm
~ t !&5 1

2 ~12e22at!1e22at@cos2 u2uvu2cos 2u#.
~5.12!

This is the most simple form that the transition probabil
formula takes in the presence of dissipative and matter
fects: With respect to the familiar expression, it contains
ponential damping factors. Taking into account that neutrin
are relativistic, the flight time between emission and det
tion is with very good approximation the same as the d
tancel between source and detector. One can then use
~5.12! to derive a rough order of magnitude limits on th
nonstandard parametera. The best bounds are expected fro
solar neutrinos, where 1/l can be as low as 10227GeV.
5-8
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VI. TRANSITION PROBABILITY IN VACUUM

One of the most interesting properties of the quant
dynamical semigroup approach to neutrino propagation is
possibility of probing the nature of the neutrinos by studyi
their oscillation pattern. Indeed, the transition probabil
Pne→nm

in Eq. ~3.13! explicitly depends on the extra phasew,

which can be nonvanishing for Majorana neutrinos. In t
section we shall discuss to what extent the phasew can be
extracted fromPne→nm

. With in mind possible applications

to atmospheric neutrinos, we shall limit our considerations
oscillations in vacuum, and present various explicit formu
for the transition probability in different approximations.

As a working assumption, let us first take the dissipat
parametersc and b in Eq. ~3.5! to be much smaller than
the remaining constants. To lowest order, a closed fo
for the entries of the evolution matrixM(t) in Eq. ~3.8!
can then be obtained. Using the general formula~3.13!, one
finds

Pne→nm
~ t !5 1

2 H 12e22gt cos2 2u2e2~a1a!t sin2 2u

3Fcos~2Vt !1
uBu
2V

sin~2Vt !cos~fB12w!G J ,

~6.1!

where B5a2a12ib[uBueifB and V5Av22uBu2/4. In
this case the dependence on the phasew is very mild, and
cannot be extracted by studyingPne→nm

alone: An indepen-

dent determination of the combinationB is necessary.
The situation is even worse wheng50; in this case, the

inequalities~2.3! automatically guaranteec5b50 and fur-
ther imposeb50, a5a. In this case,w completely disap-
pears from the expression of the transition probability, wh
reduces to@18#

Pne→nm
~ t !5

1

2
sin2 2u@12e22at cos~2vt !#. ~6.2!

In view of this, analysis of the experimental data based
Eq. ~6.2! along the lines of Ref.@32# is totally insensitive to
w; a fit with more than one nonvanishing dissipative para
eters is in general needed, although this condition is certa
not enough, as shown by Eq.~6.1!.

In this respect, a more interesting situation occ
when c50 and a5a5g, as considered in the previou
sections. All the entries of the evolution matrixM(t)
are now nonvanishing, and the transition probability can
written as
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Pne→nm
~ t !5

1

2 H 12e22atF S 11
2b2

V0
2 sin2~V0t ! D cos2 2u

1sin2 2uS cos~2V0t !2
2b2

V0
2 sin2~V0t !cos2 w

2
b

V0
sin~2V0t !sin 2w D 1

2b

V0
cos 4u sin~V0t !

3S b

V0
sin~V0t !cosw2cos~V0t !sinw D G J ,

~6.3!

whereV05Av22b22b2 as before. In this case, the depe
dence ofPne→nm

(t) on time is significally altered by the

presence of a nonvanishingw.
Atmospheric neutrino data are the most suitable

an experimental study of Eq.~6.3!, since in this case the
time dependence can actually be probed. Neverthel
it should be stressed that the expression in Eq.~6.3! contains
four additional parameters besides the standard onesv
and u, so that the fitting procedure might turn out
be difficult in practice. In order to simplify the analysi
one can further assume one of the two nonstand
parameters,b or b, to be zero, but not both: Here agai
when a is the only nonvanishing dissipative parameter, t
dependence onw in Pne→nm

(t) disappears. Despite thes
difficulties, the amount of data on atmospheric neutrinos
constantly growing, so that at least some information on
presence of a nonvanishingw, together with some of the
dissipative parameters, will surely be attainable in the n
future.

VII. DISCUSSION

The study of open systems by means of quantum dyna
cal semigroups offers a physically consistent, general
proach to the discussion of phenomena leading to irrev
ibility and dissipation. When this formalism is applied to th
analysis of the propagation of neutrinos, both in vacuum a
in matter, it gives precise predictions on the pattern of os
lation phenomena: The new, nonstandard effects man
themselves through a set of phenomenological parame
v1 , v2 , andv3 ~the Hamiltonian ones!, a, b, c, a, b, andg
~the purely dissipative ones!. Their presence allows oscillat
ing phenomena even for mass-degenerate neutrinos, ac
panied by possibleCP-violating effects. Further, these pre
dictions can be experimentally probed. Indeed, fits
experimental data along the lines discussed in Ref.@32# can
be repeated for the more complete expressions of the tra
tion probability Pne→nm

(t) presented in the previous se
tions.

For sure, the fitting procedure will be more difficult an
uncertain than in the standard case, due to the presenc
more unknown parameters. Furthermore, one has to take
5-9



ne
ut
o
he
ti
e
th
ro

tr
te
il
th

a
al
it
th
te
e
rm
n
he

g
an
o
up

al
vo

in
e

em

tio
n

ro
ar
t
-
m
i

ge

t

n
av
ex
h
e

e
t

n-
ful-
e

u-

ing

he
is

d in

ys-
ou-
ed.
nd

on-
cat-

nd-
ted,
ing
es
ns

-
ns
is-
this
fied
her

ther
is-

me
n

lting
the
y

a
ding
nt:
in

the

can
ns.
the
in

n;
form
on
se
he
the
the
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account that the effects induced by the presence of the
parameters are expected to be small. By viewing the ne
nos as an open system in weak interaction with an envir
ment generated by a fundamental ‘‘stringy’’ dynamics, t
effects of irreversibility and dissipation can be roughly es
mated to be proportional to the square of the average n
trino energy, divided by the characteristic energy scale of
environment. Assimilating this scale to the Planck mass p
duces estimates of order 10227 GeV for solar neutrinos,
while larger values are expected for more energetic neu
nos. Despite these difficulties, a new generation of dedica
neutrino experiments are currently collecting data or w
shortly start construction, so that stringent bounds on
dissipative effects can surely be expected in the future.

The above estimate on the magnitude of the nonstand
dissipative effects is based on very general and physic
motivated considerations about open systems; therefore,
rather robust and quite independent from the details of
microscopic, fundamental dynamics responsible for the in
action between the neutrino subsystem and the environm
Nevertheless, it has been questioned on the basis of a fo
similarity of a particular, simplified version of the evolutio
equation~2.2! with those describing the phenomenon of t
so-called dynamical reduction of the wave packet@48#. The
analogy is rather superficial: The physical process leadin
dissipation and the reduction process are quite distinct
act at different energy scales. Furthermore, as a more c
plete analysis would reveal, quantum dynamical semigro
generated by equations of the form~2.2! are unable to prop-
erly describe dynamical reduction processes@9#.

A different criticism on the use of quantum dynamic
semigroups for the description of dissipative effects ad
cates the use of nonlinear evolution equations@49#. Once
more the general theory of open systems offers a clarify
discussion on this point~for further technical details, see th
Appendix!.

As pointed out in Sec. II, the dynamics of a small syst
S in interaction with a large environmentE is in general very
complex and cannot be described by means of evolu
equations that are linear in time: Possible initial correlatio
and the continuous exchange of energy as well as ent
betweenS and E produces memory effects and nonline
phenomena. Nevertheless, when the typical time scale in
evolution of the subsystemS is much larger than the charac
teristic time correlations in the environment, the subdyna
ics simplifies and a mathematically precise description
terms of quantum dynamical semigroups naturally emer
@1–3,21#.

This limiting procedure is general and can be applied
all physical situations for which the interaction betweenS
and E is weak and for not-too-short times, so that the no
linear disturbances due to possible initial correlations h
died out@4#. These are precisely the conditions that are
pected to be fulfilled in the case of neutrino systems: T
characteristic time correlations in the environment, induc
by the fundamental~gravitational or stringy! dynamics, is
certainly much smaller than the neutrino propagation tim
while the interaction between neutrinos and environmen
surely weak.
08501
w
ri-
n-

-
u-
e
-

i-
d

l
e

rd,
ly
is
e
r-
nt.
al

to
d

m-
s

-

g

n
s
py

he

-
n
s

o

-
e
-
e
d

,
is

The description of neutrino propagation in terms of qua
tum dynamical semigroups automatically guarantees the
fillment of basic physical requirements, as forward in tim
composition, entropy increase~irreversibility!, and complete
positivity. This is a clear advantage over alternative form
lations. Based on ideas originally presented in Ref.@23#, gen-
eralized dynamics for the neutrino system incorporat
some of these properties have been discussed before~see
Refs.@50–52#!. However, those dynamics do not satisfy t
condition of complete positivity; as already mentioned, th
could lead to serious inconsistencies that can be avoide
all situations only by adopting evolutions of the form~2.2!
@41#.

Nonlinear dynamics in the description of the neutrino s
tem naturally emerge when the requirement of weak c
pling between neutrinos and environment is not satisfi
This typically happens in extreme conditions, as those fou
in the core of a supernova or the early universe; more c
ventional dissipative phenomena then arise due to the s
tering and absorption processes in the medium@53–55#. In
order to properly deal with these situations, a seco
quantized, field-theoretical formalism has been construc
using specific effective interaction Hamiltonians as start
point. Although derived using techniques similar to the on
described before, the resulting kinetic evolution equatio
are quite distinct from Eq.~2.2!; they give rise to decoher
ence effects that modify the pattern of neutrino oscillatio
in a very different way with respect to the expressions d
cussed in the previous sections. Nevertheless, also in
case the condition of complete positivity needs to be satis
for consistency, and this requirement might produce furt
constraints on the modified dynamics.

Decoherence effects in neutrino physics have been fur
discussed in connection with the uncertainties in the em
sion and detection processes@56#. By smearing the familiar
expression for the transition probability over energy and ti
~or position! with an appropriate Gaussian distribution, a
exponential damping factor is generated, so that the resu
expression for the averaged probability looks similar to
one presented in Eq.~6.2!. The analogy is once more onl
superficial, since the transition probability~6.2! @and more
generally the expression in Eq.~3.13!# has an explicit time
~position! dependence that cannot be reproduced via
Gaussian average. Further, the physical mechanisms lea
to the modified probability expressions are clearly differe
the detector ‘‘noise’’ in one case, a fundamental dynamics
the other. In turn, this leads to a different dependence of
damping factors on the average neutrino energy.

As mentioned before, quantum dynamical semigroups
be employed to model a large variety of physical situatio
It is not a surprise that they have been used to study
effects of density waves in the propagation of neutrinos
fluctuating media, in particular, in the interior of the su
these phenomena are also described by equations of the
~2.2! and induce modifications on the neutrino oscillati
probabilities@57#. However, it should be stressed that the
density fluctuations have their origin in the dynamics of t
sun and operate at energy scales quite different from
Planck mass; therefore, they can be easily isolated from
5-10
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dissipative effects discussed before, which are not expe
to be influenced by long-range phenomena.

As a final remark, let us point out that several unconv
tional phenomena affecting neutrino propagation have b
discussed in the literature. They include neutrino dec
flavor-changing neutral currents, violation of Lorentz inva
ance, or the equivalent principle~e.g., see Refs.@58–64#!.
All these phenomena lead to modifications of the stand
oscillation pattern; however, the resulting transition proba
ity Pne→nm

(t) has a dependence on time~or path length! and
neutrino energy that differ from the one discussed in
previous sections.

Indeed, the dependence of the observablePne→nm
(t) on

the phenomenological parametersa, b, c, a, b, andg is very
distinctive of the presence of dissipative phenomena
cannot be mimicked by other unconventional mechanis
This further strengthens the possibility of identifying the d
sipative contributions from the analysis of experimental da
quite independently from other effects.

APPENDIX: THE WEAK COUPLING LIMIT

For a neutrino system in interaction with an environme
E, the total Hamiltonian can be decomposed as in Eq.~2.4!:

H tot5H ^ 111^ HE1gH8, ~A1!

where, neglecting for simplicity matter effects, the syst
HamiltonianH can be taken to be of the form

H5S E2v0 0

0 E1v0
D . ~A2!

Assuming no initial correlations between the two system
the evolution in time of the neutrino stater(t) follows the
general rule~2.5!:

r°r~ t !5TrE@e2 iH tott~r ^ rE!eiH tott#, ~A3!

This evolution map is in general very complicated, develo
ing irreversibility and memory effects. However, it simplifie
when the interaction between the neutrino subsystem and
environment is weak.

There are essentially two different ways of implementi
in practice this condition@1–3#: They correspond to the two
ways of making the ratiot/tE large. Heret is the typical
variation time ofr(t), while tE represents the typical deca
time of the correlations in the environment. Only whent
@tE , one expects the memory effects in Eq.~A2! to be
negligible, and a local in time evolution for the stater(t) to
be valid.

When tE becomes small, whilet remains finite, one
speaks of ‘‘singular coupling limit,’’ since the typical tim
correlations of the environment approach ad function. In the
other case, it ist that becomes large, whiletE remains finite:
One then works in the framework of the ‘‘weak couplin
limit.’’ In practice, this is obtained by suitably rescaling th
time variable,t→t/g2, and by sending the coupling consta
g to zero~van Hove limit! @1–3#.
08501
ed

-
en
y,

rd
l-

e

d
s.
-
,

t

,

-

he

The choice between these two limiting procedures clea
depends on specific physical considerations about the sy
under study. In the case of the neutrino system, both lim
appear physically acceptable. Since the singular coup
limit has been presented elsewhere@21#, in the following we
shall concentrate on the discussion of the weak coup
limit. In this case, following the steps presented in Ref.@21#,
from the finite time evolution~A3! one can derive a differ-
ential equation forr(t) local in time; it is of the form~2.2a!,

]r~ t !

]t
52 iHr~ t !1 ir~ t !H1L@r~ t !#, ~A4!

with

L@r#52 lim
T→`

1

2T E
2T

T

dsE
0

`

dt

3TrE$eiH tots
†eiH 0tH8e2 iH 0t,@H8,r ^ rE#‡e2 iH tots%,

~A5!

whereH0 represents the limit ofH tot for a vanishing cou-
pling constantg.

The general form of the additional termL@r# in Eq. ~A5!
does not actually depend very much on the details of
environment dynamics; an effective description that ta
into account its most fundamental characteristic propertie
enough to allow an explicit evaluation of the integrals in E
~A5!. Following the idea that the dissipative effects are lo
energy phenomena that originate from the fundame
gravitational or stringy dynamics at some large scaleMF ,
we shall model the environment as a gas of quanta, obe
infinite statistics, in thermodynamic equilibrium at inver
temperaturebF51/MF .5

Further, taking into account that the interaction betwe
the neutrino system and the environment is weak, we s
assume the interaction HamiltonianH8 to be linear both in
the neutrino and the environment dynamical variables:

H85 (
m50

3

sm ^ Bm ; ~A6!

an explicit expression for the environmental operatorsBm
will be discussed below.

In order to proceed further, it is convenient to introduce
spectral decomposition, and use the auxiliary matricessm

(l) ,
l521,0,1 @1#,

sm
~0!5P1smP11P2smP2 , sm

~1 !5P1smP2 ,

sm
~2 !5P2smP1 , ~A7!

with

5For a motivation of this choice in terms of the dynamics of e
tended objects~D0 branes!, see Refs.@21# and @65–67#.
5-11
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P15S 1 0

0 0D , P25S 0 0

0 1D . ~A8!

Then, the limit in Eq.~A5! can be explicitly performed and
the result expressed in terms of the following 434 Hermit-
ian matrices:

amn
~l!5g2E

2`

`

dt e22ilv0t^Bm~ t !Bn&, ~A9a!

bmn
~l!5 ig2H E

0

`

dt e22ilv0t^Bm~ t !Bn&

2E
0

`

dt e2ilv0t^BmBn~ t !&J , ~A9b!

involving thermal correlations of the environment operato

^Bm~ t !Bn&5TrE@Bm~ t !BnrE#, rE5
e2bFHE

TrE~e2bFHE!
.

~A10!

Explicitly, one finds

L@r#5 i @r,H̃#1L@r#, ~A11!

where

L@r#5 1
2 (

lP$0,61%
H (

i , j 51

3

ai j
~l!@2s j

~l!rs i
~l!2s i

~l!s j
~l!r

2rs i
~l!s j

~l!#J , ~A12!

and

H̃5 1
2 (

lP$0,61%
H (

m,n50

3

bmn
~l!sm

~l!sn
~l!J 1 i(

i 51

3

~a0i
~0!2ai0

~0!!s i .

~A13!

The first term on the RHS of~A11! is of Hamiltonian
form. This is a general feature of the reduced dynam
Even in the absence of an initial system dynamics, a n
trivial Hamiltonian contribution is always generated by t
dissipative piece, Eq.~A5!. This mechanism has deep cons
quences in neutrino physics: As remarked in the text, it
lows oscillation phenomena even in case of initially massl
neutrinos.

Further information on the coefficient matricesamn
(l) and

bmn
(l) in Eq. ~A9! can be obtained by studying the behavior

the environment correlations in Eq.~A10!. The operatorsBm
can be taken to be a general linear expression in the env
ment variables; these are the creation,Aa

†(k), and annihila-
tion, Aa(k), operators for the quanta representing the en
ronment modes, living in an abstractn-dimensional space:
08501
,

s:
n-

-
l-
s

f

n-

i-

Bm~ t !5
1

MF
~n24!/2 (

a,b
E dn21k

@2~2p!n21«~k!#1/2

3 f a~k!xm
ab@Ab~k!e2 i«~k!t1Ab

†~k!ei«~k!t#.

~A14!

The coefficientsxm
ab ‘‘embed’’ the n-dimensional environ-

ment modes into the effective two-dimensional neutrino H
bert space, whilef a(k) are appropriate test functions nece
sary to make the operatorBm and its correlations well-
defined; it can be taken to be of the form (uku/MF)m/2ga(k),
for some positive integerm, with ga(k) of Gaussian form.
For sake of definiteness, in the following we shall u
ga(k)5ga(V)e2h2«2/2, with ga(V) depending only on the
angle variables andh a real constant. The function«(k)
gives the dispersion relation obeyed by the environm
modes; for simplicity we shall adopt an ultrarelativistic law
«(k)5uku[«. The powers ofMF , characterizing the energ
scale of the environment, are necessary to giveBm the right
dimension of energy.

We assume an indefinite statistics for these modes, so
the creation and annihilation operators obey generali
commutation relations:

Aa~k!Ab
†~k8!2qAb

†~k8!Aa~k!5dabd
~n21!~k2k8!;

~A15!

the real parameterq determines the mode statistics: The ca
q51 corresponds to standard bosons, while forq50 one
obtains the degenerate algebra discussed in Refs.@65–67#, in
connection withD0 branes and black holes. Without loss
generality, we shall assumeq,1. Furthermore, the single
mode Hamiltonian can be taken to be proportional to
corresponding number operator, so that the total environm
HamiltonianHE satisfies the relation

@HE ,Aa
†~k!#5«~k!Aa

†~k!, @HE ,Aa~k!#52«~k!Aa~k!,
~A16!

implicit in the time dependence of Eq.~A14!.
The thermal correlations involved in the definitions in E

~A9! can now be readily computed. For instance, one exp
itly gets

ai j
~l!5

1

2MF
m1n24 E

2`

`

dt e22ilv0tE
0

`

d« «m1n23@Xi j ~«!ei«t

1Xji ~«!e2 i«~ t1 ibF!#
1

ebF«2q
, ~A17!

where

Xi j ~«!5 (
a,b,c

F E dVn21

~2p!n21 ga~k!x i
abx j

cbgc~k!G
[e2h2«2

Xi j ~0! ~A18!

involves the integration over the angle variables; notice t
Xi j («) is a real, symmetric matrix.
5-12
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This matrix is not generic: It turns out that in order
satisfy the condition of entropy increase for finitebF , Xi j («)
must vanish fori , j 51,2. With this choice, one finds that th
nonvanishing contributions toL@r# in Eq. ~A12! can come
only from the coefficienta33

(0) , providedm532n. Explic-
itly, one obtains

a33
~0!5

p

12q
g2MFX33~0!. ~A19!

The dimensionless coupling constantg should be expressible
in terms of the relevant energy scales, i.e., the average
trino energyE and the massMF characteristic of the envi
ronment. Sinceg is small, it must be at most of orderE/MF .
As a consequence, it turns out that the dissipative param
a33

(0) must scale asE2/MF . As mentioned in the text, this is
general prediction of the open system approach to diss
tion.

Using the expansionr5(mrmsm/2 as in the text, one
immediately finds that the dissipative contributionL@r# in
Eq. ~A12! is of the form ~3.3!, with a5a5a33

(0) and b5c
5b5g50. In the weak coupling limit a special form of th
matrix ~3.3! is then selected: It is expressible in terms of on
one nonstandard parameter. This situation does not hold
more in the case of the singular coupling limit. In that ca
all six parametersa, b, c, a, b, andg are in general nonva
nishing ~for details, see Ref.@21#!.

In a similar way, the Hamiltonian contribution in Eq
~A13! can be explicitly computed. Taking into account t
results obtained in the evaluation of the coefficientsai j

(l) ,

one sees that the 232 matrix H̃ becomes diagonal:
d

.

n

. B

s

08501
u-

ter

a-

ny
,

H̃5b03
~0!s3 , ~A20!

where

b03
~0!5g2MFX03~0!G~bF /h!, ~A21!

and

G~bF /h!5E
0

`

dtE
0

`

d« sin«t e2«2h2S 12e2bF«

12qe2bF«D .

~A22!

In the case of infinite statistics,q50, the functionG can be
explicitly evaluated in terms of generalized hypergeome
functions:

G~x!5
Ap

2
x 1F1S 1

2
;
3

2
;
x2

4 D2
x2

4 2F2S 1,1;
3

2
,2;

x2

4 D .

~A23!

The operator in Eq.~A20! contributes via the paramete
v35b03

(0) to the effective HamiltonianHeff in Eq. ~3.1!: Even
in the absence of the standard piecev0 , the quantityv3
would still generate a level splitting between the two ne
trino mass eigenstates, making possible oscillation phen
ena.

As a further remark, notice that although both genera
via the interaction with the environment, the magnitude
the Hamiltonian contributionv3 could differ from the dissi-
pative one in Eq.~A19!, since their ratio involves the func
tion G. Although in a different context, this phenomenon h
also been observed in Ref.@57#.
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