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Quantum dynamical semigroups provide a general framework for studying the evolution of open systems.
Neutrino propagation both in vacuum and in matter can be analyzed using these techniques: They allow a
consistent treatment of nonstandard, dissipative effects that can alter the pattern of neutrino oscillations. In
particular, initially massless neutrinos can give rise to a nonvanishing flavor transition probability, involving in
addition the Majoran&P-violating mixing phase.
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[. INTRODUCTION of fundamental extended objects could effectively generate
at low energies a weakly coupled environment.
Elementary particle systems are usually treated as isolated Similar phenomena have also been described in the
quantum systems: Their dynamics can be modeled by meafi@mework of quantum gravity: Due to the quantum fluctua-
of effective field theories, allowing a coherent interpretationtion ©Of the gravitational field and the appearance of virtual

of the experimental results. Although very general, this2@ck holes, space-time loses its continuum aspect at dis-
. . tances of the order of Planck’s scale and assumes a foamlike

gbehavior[22]. As a consequence, new, nonstandard phenom-

elementary particles; in particular, those leading to irreversga can arise, leading to loss of quantum coherE2@e28.

ibility and dissipation are clearly excluded. Indeed, a more Unfortunately, our present knowledge of string theory
general treatment is needed to properly describe these efoes not allow us to estimate precisely the magnitude of the
fects: It can be physically motivated in the framework of nonstandard, dissipative effects induced on elementary par-
open quantum systeni&—3]. ticle systems; they are nevertheless expected to be very
These systems can be thought of as being subsystems small, being suppressed by at least one inverse power of the
interaction with large environments. The time evolution of Planck mass, as rough dimensional analysis suggests. In
the total system is unitary and follows the rules of ordinarySPite of this, the new effects can affect interference phenom-
quantum mechanics; nevertheless, the dynamics of the sufN@ &nd turn out to be in the reach of future, planned experi-

system alone, obtained by eliminating the environment dements. Indeed, detailed investigations of neutral meson sys-

grees of freedom, shows in general irreversibility and decoxems‘ neutron m_terferometry, and photon propagation using
herence quantum dynamical semigroups have already allowed deriv-

When th initial lati bet bsvst ing order of magnitude limits on some of the phenomeno-
en there are no initial correlations between subsys erTbgical constants parametrizing the new effects, using avail-

and envirqnment and their.mutu'al interaction i; weak, th_eable experimental dafd7,19,29—31
subdynamlcs can be described in a mat_hematlcally Precise | the present work, we shall discuss in detail how non-
way in terms of quantum dynamical semigroups. These argiandard, dissipative phenomena can affect neutrino propaga-
linear evolution maps satisfying general properties that asjon, and in particular neutrino oscillations. We shall limit
sure the consistent physical interpretation of the dynamicssur considerations to the oscillations of two species of neu-
They include the condition of entropy increaseeversibil-  trinos; in this case, the possible dissipative effects can be
ity), forward-in-time composition lawsemigroup properly  described in terms of six phenomenological parameters. A
complete positivity. This framework is very general and canpreliminary investigation, limited to vacuum oscillations, has
be applied to model irreversibility and dissipation in very been reported in Ref18]. There, it has been shown that the
different physical situation§l—11]; in particular, it can be dissipative phenomena modify the transition probabifity
used to study the evolution of elementary particle systemsamong the two neutrino flavors, introducing in particular ex-
treated now as open systefii®—14,15-19 ponential damping factors. In a simplified situation, limits on
The possibility that decoherence phenomena might affeabne of the dissipative parameters have subsequently been
the physics of elementary particles is supported by recensbtained using recent SuperKamiokande dag.
studies on the fundamental dynamics of extended objects In the following, a much more complete discussion will
(strings and brangg20]; indeed, time evolutions described be presented, with detailed analysis of oscillation phenomena
by quantum dynamical semigroups can be the result of then presence of irreversibility, both in vacuum and in matter.
interaction with a gas of quanta obeying infinite statisticsDissipation affects both situations; in particular, the reso-
(e.g., agas oD0 braneg[21]. In other terms, the dynamics nance condition for neutrino propagation in matter turns out
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to be modified, leading to distinctive observable effects.That this extra phase cannot be eliminated by a simple basis
Various approximate expressions for the transition probabilredefinition is a well-known consequence of the reality con-
ity P will be given: They can be useful in fitting experimen- dition for the Majorana neutrinos, and, at least in principle,
tal data. A discussion on a possible physical mechanism thafs presence can be experimentally profgs,39. Neverthe-
could give rise to the nonstandard effects will also be prejess, in the usual approach, this cannot happen via the analy-
sented, although much of the technical analysis will be relsjs of oscillation phenomena alof#0]. As we shall see, the
egated to the Appendix. situation is different in the presence of dissipative effects, so
As a final remark, let us stress that the presence of nonhat in the following we shall keeg nonvanishing unless
standard, dissipative phenomena modify neutrino physics igxplicitly stated.
two important aspects. First, they give the neutrinos an ef- As explained in the introductory remarks, the evolution in
fective mass, so that oscillations are possible even for masgme of any neutrino statp will be described by means of
less neutrinos. Further, contrary to the standard case, the efnear maps,I',:p(0)—p(t), that generalize the standard
pression of the transition probabilify depends in general on  quantum mechanics unitary evolution. Not all generalized
for Majorana neutrinos. This allows us, at least in principle,satisfy very general physical requirements. First, the niaps
to distinguish between Dirac versus Majorana neutrinos inshould transform neutrino states into neutrino states, and
oscillation experiments. We find this possibility as one of theynerefore should map any initial density matg0) into a

most intriguing outcomes of our investigation. density matrixp(t)=T'[ p(0)], for anyt. Furthermore, they
should have the property of obeying the semigroup compo-
Il. NEUTRINOS AS OPEN QUANTUM SYSTEMS sition law, ['[p(t")]=p(t+t"), for t,t'’=0, of increasing

o _ . I : the (von Neuman entropy, S= — Tr[ p(t)In p(t)], of being
The familiar description of neutrino oscillations involves completely positive.

the study of the evolution of neutrinos created in a given It has been proved long ago that evolution m&psatis-

flavor by the weak mter_actlons a_md subsequently detected ting these properties are generated by equations of the fol-
a later time. The traveling neutrinos are usually assumed towing form [1-3]:

be ultrarelativistic, so that the analysis of the transition prob-
ability for the original tagged neutrinos to be found in a
different flavor can be performed using an effective descrip- ap(t)
tion [33-37. — i

For sake of simplicity, in the following we shall limit our at Herp()Hip(OHert LIp(D]. (223
considerations to the mixing of two neutrino specids.this
case, the neutrino system can be effectively modeled by
means of a two-dimensional Hilbert space; the two neutrinalhe first two pieces on the right hand sitRHS) represent
mass eigenstates will be henceforth fixed as the basis in tht§e standard quantum mechanical contributions: They give
space. In the presence of dissipation, the physical neutringse to the traditional description of neutrino oscillations in
states cannot be described in terms of elements of the Hilbeterms of the effectivétime-independentHamiltonianH .
space: A more general formalism is needed that makes use ¥¥e shall neglect effects due to possible neutrino instability:
density matrices. These are Hermitian, positive operators  Het can then be taken to be Hermitian. The additional piece
(i.e., with non-negative eigenvalyesormalized to have unit L[p] is a linear map that encodes possible dissipative, non-
trace. standard effects. It can be written as,

With respect to the fixed basis, the two flavor states,

which we shall conventionally calb, and v, , are repre-
sented by the following 2 matrices: 1
| L[p]=—§2 (ATAp+pATA)+ > AjpAl,
cos 6 e '¢coshsing ! .
p, = . (2.1 (2.2b
e | e'¢coshsing Sir? 6

sir? 6 —e '%cos@sing where the operatord; must be such thanAj*Aj is a well-
Pv,=\ _ei® coshsing co2 0 =1-p, defined 2<2 matrix (entropy increase can be easily imple-
(2.1 ~ Mented by taking thé; to be Hermitiap. In its absence,
pure statedi.e., states of the forn/)y{) would be trans-
where is the “vacuum” mixing angle, while the additional formed by[I'; into pure states. Only when the extra piece
phasep can be nonvanishing for neutrinos of Majorana type.L[p] is also present dogs(t) become less ordered in time
due to a mixing-enhancing mechanism; it produces irrevers-
ibility and possible loss of quantum coherence.

'The discussion can be generalized to the case of three or more IN the case of two neutrino flavor&[p] can be fully
neutrinos; however, the explicit formulas for the transition prob-parametrized in terms of six, real phenomenological con-
abilities would become much more involved and the discussiorstants,a, b, ¢, «, 8, and v, with a, «, and y non-negative,
less transparent. satisfying the following inequalitiegl,15,18:
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2R=a+y—a=0, U=RS-b?=0, emissior? Then, the time evolution of the staje of the
systemS can be obtained by tracing over the environment

2S=a+y—a=0, V=RT-c2>0, degrees of freedom:

(2.3 —iH

p=p(0)—=p(t)=Trfe Mo (popee'], (2.5

2T=a+a—y=0, Z=ST-3°=0,
In general, the resulting ma@(0)— p(t) turns out to be

X=RST-2bcB—RB%>—SE—Th?*=0. rather involved, developing nonlinearity and memory effects.
Nevertheless, when the interaction betwe&eand € is weak,
an evolution equation forp(t) local in time naturally
gmerges. The technical details are presented in the Appendix.
As discussed there, the environment can be modeled as a gas
Bf quanta, obeying infinite statistics; this description is in
line with the idea that the dissipative effects originate from
the low energy string dynamics at a fundamental sdaje
(e.g., Planck’s magsThen, in the weak coupling limit, i.e.,
when the coupling constagtbecomes very small, the result-

complete discussion, see Rpd1].) . . )
i . - . ing dynamical equation for the subsystem sjatg turns out
The one-parameter family of finite evolutidih generated 10 be precisely of the forni2.2) [1-3.21]

by Ea.(2.2 are_called quantum dynamic_al semigroups; they This result allows a rough estimate of the magnitude of
will be the basis of the phenomenological treatment of th he effects produced by the nonstandard piege]: They

Q|53|pat_|ve effects in the neutrino system. The descr|pt|on_ %hould be proportional to powers of the typical energy of the
irreversible, nonstandard phenomena by means of equations

of the form(2.2) is actually very general and can be applied systems, while suppressed by inverse powers of the charac-

to the study of very different physical systems. Originally teristic energy scale df. In the case of the neutrino system,
developed in the framework of quantum optj&s-7], it has these effects should be very small, since the typical energy

. : o cale of the environment can be assimilated to the fundamen-
also been successfully used in the analysis of statistical mog- . i
; . . X .~ 1al scaleMg. For any fixed neutrino source and observa-
els[1-3], the interaction of a microsystem with a measuring,.

apparatu$8-11], the study of dissipative effects in systems nal cqndltlons, an upper bound on the magnitude of the
: . " . . effects induced byL[p] can be evaluated to be of order
involving elementary particles, and in particular neutral me-_, ; .

E“/Mg, whereE is the average neutrino energy.

sons[15,16,29-31 Although essentially phenomenological As a further outcome of the weak coupling limit proce-
in nature, all these analysis can be supported by phySICac‘Jure, the Hamiltonian part of the evolution equation §¢t)

nsiderations. e ;
considerations _gets modified by the presence of the environment. Indeed,

A general picture in which the quantum dynamical semi . Lo . S
group description of dissipative effects naturally emerges iéhe effective HamiltoniarH ¢« in Eq. (2.2) does not coincide

provided by open systems, i.e., by systems in weak interad general with the starting system Hamiltoni&hin Eq.

tions with a large environment. In the case of elementar)§2'4): Suitable dissipative contributions #d, generated by
particles, these effects are likely to originate from the funda-

the interactionH’, need to be taken into accourit—3,21].
mental dynamics of strings or branes, which is, in genera

IAs we shall see in the following, this fact has interesting
rather complex. Nevertheless, an effective description of thgonsequgnces In neutrino physics: One .can.have oscillations
environment that encodes some of the properties of the u among different flavors induced by dissipative effects even
derlying fundamental dynamics turns out to be adequate for

r masslesgor mass-degenerataeutrinos. In other words,
more physical discussion of evolution equations of typeor'g'nal!y mas_sless neutrinos can get an effective nonzero
2.2) mass via the interaction with the environment.

They are direct a consequence of the property of complet
positivity. In order for the 242 matrix p(t) to represent a
neutrino state, its eigenvalues should be positive for any tim
t; this is crucial for the physical consistency of the whole
formalism. The eigenvalues gf(t) are in fact interpreted as
probabilities. The property of complete positivity precisely
ensures that this holds true in any possible conditior a

Quite in general, the total Hamiltonian of a systeéhin
interaction with an environmerd can be decomposed as I1l. QUANTUM DYNAMICAL SEMIGROUPS
AND NEUTRINO OSCILLATIONS

Ho=H®1+19H:+gH', (2.4 In the case of the neutrino system, much of the consider-

ations and discussions of the previous section about the evo-

whereH is the system Hamiltonian in the absence&pivhile  lution equation(2.2) can be made more transparent and ex-
H¢ drives the internal dynamics of the environment. Theplicit. In particular, both for the effective Hamiltoniaf .5
interaction betweers and £ is described byH’, with g a  and for the extra piecé[p], simple expressions can be
small, dimensionless coupling constant. given.

In many instances, the initial state of the total sysit8m We shall be as general as possible and include in our
+ & can be taken to be in factorized formy,=p®pc. This
is surely justified in the case of the neutrino system: Since
the mechanism of neutrino production is different from the 2Even in presence of an initially correlated total systs#é, the
one responsible for the dissipative effects, system and enviactorized approximation becomes a very good approximation when
ronment are surely uncorrelated at the moment of thehe short-time correlations have died ¢dt.
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discussion effects due to the propagation of neutrinos in approximate a nonhomogeneous medium by a collection of
medium made of ordinary matter. Because of the interactionmedia, each with a constant density, while having different
of the neutrinos with the particles in the medium, an effec-thickness; in view of this, in the following we shall assume
tive potential can be generated, that has different effects fathe parameteA be a constantsee also the discussion in Sec.
different flavors. In the case of ordinary matter, the electronV).
neutrinos interact with the electrons in the medium, so that As mentioned before, although the effective Hamiltonian
their average energy effectively receive an extra contributiord .4 gets also dissipative contributions, only when the addi-
A=v2Ggn, with respect to the energy of the muon neutrinostional piecelL[p] in the evolution equatioii2.2) is nonvan-
(Gg is the Fermi constant, whila, represents the electron ishing, irreversibility and mixing enhancing effects are pos-
number density in the mediyni33-37,42. In the ordinary  sible. In the present case, its explicit expression in terms of
case, this contribution can significally change the oscillatiorthe six phenomenological constaat®, ¢, «, B, andyin Eq.
pattern between,, and v, states[the so-called Mikheyev- (2.3) can be most simply given by expanding th& 2 ma-
Smirnov-Wolfenstein(MSW) effect] [43,44. As we shall trix p in terms of the Pauli matrices;, i=1,2,3, and the
see, this phenomenon can be substantially modified by thielentity o:
presence of nonstandard, dissipative effects. s

On the basis introduced in the previous section, the N
2X 2 matrix representing the effective Hamiltonian can be pP=2 E:O PuOu-
taken to be of the form .

(3.2

In this way, the linear map acting onp can be represented

H :(E_wo_‘”3 w1~ 1wy by the following, symmetric 44 matrix[L,,], acting on
eff witiow, E+towgtos the four-vector of componentpg,p1,p2,p3):
A[l+cos29 e '¢sin26 0 0 0O O
2\ €e'?sin20 1-cos29 b ¢
. . . [Lp.v]: -2 0 b (33)
In the first piece E represents the average neutrino energy, a B
while wy=Am?/4E takes into account the square mass dif- 0 c B vy

ferenceAm? of the two mass eigenstates; these are the usual

contributions that give rise to the standard oscillation pattern The form of the evolution equatiof2.2) can be further

in vacuum. The extra real parameters, w,, andws are the  simplified by recalling that it is trace preserving. From the

consequence of the interaction with the environment; as exnitial normalization condition Tip(0)]=1, one immedi-

plained in the previous sectidand discussed in detail in the ately obtains that the componentt) along the identity is

Appendi¥, they represent the contribution of the dissipativeequal to one for all times. Then, the evolution equation for

phenomena to the system Hamiltonian. the remaining three componentsgqft) can be rewritten in a
Both wg and w4, w,, w3 contribute to the level splitting Schralinger-like form:

w=[(wo+ w3)?+ w?+ w3]"? between the two mass eigen-

states, so that they all contribute to the oscillation phenom-

ena in vacuum. Therefore, even for initially degenerate mass

eigenstates\m?=0, vacuum oscillations can occur between

the two flavors due to the dissipative effects induced by thavhere the three-vectofp) has components pg,p,,p3),

fundamental dynamics at the large scMe . Although in  while

general all three parameteis, w,, andws are nonvanish-

P
Silp(0)=—2H]|p(1)), (3.9

ing, in the following, in order to simplify the treatment, we a b+ p c—vsing
fshaII assumeml=w2bTO;c this IWorkinhgI asksumption allft?ws . H= b—u a B+vcose |, (3.5
or more manageable formulas, while keeping unaffecte . B
their physical meaning and implicatiofs. ctvsing B-vcose Y
The final contribution toH¢ in Eq. (3.1) takes into ac-
count the interaction of the propagating neutrinos with ordi-
nary matter; it would be diagonal in the flavor bagimly A A
electron neutrinos are affectedut assumes a more compli- m= ECOS 26-w, v= ESIH 20. (3.6)

cated expression involving the mixing anglend the phase

¢ in the chosen basis. Since the coefficivis proportional - The solution of Eq(3.4) involves the formal exponentiation
to the density of electrons in the mean, for propagation inyf the matrix:

nonhomogeneous mattel.s will in general be a function of

the position of the neutrinos. Nevertheless, one can always [p(1))=M(1)|p(0)), M(t)=e 2", 3.7

As discussed in Ref.18], expressions for the entries of

SWhenAm?=0, this is no longer an assumption: In this case, oneM(t) can always be obtained by solving the eigenvalue
can always choose to work in a basis for whishand w, vanish.  problem for the 33 matrix in Eq.(3.5):
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Hlo®y=A®0[p®)  k=1,23. (3.9 Let us assume that &0 the neutrinos are generated to
be of typeve. In the formalism of density matrices, the

The three eigenvalues’™), A, \ ) satisfy the cubic equa- probability of having a transition into neutrinos of typg at
tion: time t is given by

3
A3+rA2+sh+w=0, 3.9 1 P
B P =T 0, )= 5 1 3, pLMpLeMijm},

with real coefficients: (3.12

r=-(ANY+N@+\C)=—(a+a+y), (3.108 wherep, (1) is the solution of Eq(2.2) with the initial con-
dition given by the matrixp, (0)=p, , while p\ ,p! i,j
s=ADND L N D\B L\ @)\ B3) —1,2,3 are the components of the tﬁree-vectpﬁg), 0, )
—aa+ay+ay—b?—c?2—p2+u2+12 (3.10n  corresponding to the density matrices in E21). Using the
explicit expressions for these components, one finds
w=—\D)@)\®)

1 .
:a(BZ_ V2 CO§ (P)+ a(CZ_ V2 S|n2 ¢) 'P"e_”’p.(t) = E(l_cog 26’M33(t)—S|n2 20{M11(t)00§ @

+ y(b%?— u?)—aay—2bcB—br?sin2¢ + Moy(1)SIrP @+ [ M(t) + Myy(1)]
—2uv(Bsing+ccosy). (3.100 X sing cose}— cos 20 sin 26

The solutions are either real, or one is real and the remaining X{[Mya(t) + May(t) Jcose

two are complex conjugate, according to the sign of the as- +[ Moa(t) + May(t) Jsing}). (3.13

sociated discriminant: D=p3+q?, p=s/3—(r/3)?, q

=(r/3)°—rs/6+w/2 (degenerate, real solutions occur when  one of the interesting features of this formula is its ex-

D=0) [45]. Then, recalling that the matrik itself satisfies pjicit dependence on the phagein the presence of dissipa-

Eq. (3.9), one can derive the following expression for the tive effects, it is therefore possible, at least in principle, to

entries of M(t): distinguish between Dirac and Majorana neutrinos by study-
ing the oscillation pattern in Eq3.13). This peculiarity dis-

> PO appears when the nonstandard, dissipative pieces if2E).
Mii(t):g1 e are absent; indeed, in that case, one has
NP A ® 1 6) 8 + (N )V +H2 sin 2wy t 2 sif oyt .
G ATRAUS AL TRLT My(0)= 8= — = Hy+— o Hj 1j=123,
3NN+ 2rAW+s ’ . . Wy . Wiy N
(3.19
i,j=1,2,3.(3.1)

where’H is now as in Eq(3.5) with a, b, ¢, a, 8, andy all
equal to zero, whilavy = Ju?+ 1%, and Eq.(3.13 reduces

to the well-known standard expression for the oscillation
probability in an homogeneous mediy88-37,42:

Although rather formal, this formula allows a general dis-
cussion on the behavior o¥1(t). For u=v=0, due to the
inequalities in Eq(2.3), the matrixH results are real, sym-
metric, and non-negative; its eigenvalues are all real and
non-negative. Only wheju| and|v| are sufficiently large can
complex eigenvalues appear, although with a non-negative

PO (t)=sir? 20y sir oy t,
e

real part, since in general the evolution generated by Eq. 2 . Sin? 26

(2.2) is bounded for anyt [46]. In this case an oscillatory S| 20M_(A/2w—COS 20)2+sirf 26° (319
behavior is possible, while for small, v, the damping terms

prevail and dissipation is the dominant phenomena. Another distinctive characteristic of the transition prob-

In particular, since generically d&t=—w+0, in pres- ability in the presence of dissipation given in £g8.13 is its
ence of dissipation the real part of) A2 \(®) are all asymptotic behavior for large times, which turns out to be
strictly positive; thereforeM(t) asymptotically vanishes for independent from the mixing ang® the phasep and the
large enough time$This has clearly dramatic consequencesmatter coefficient:
in the study of neutrino flavor transitions.

e M oo

“In the presence of vanishing eigenvalues, this decoherence effect . ) ) o
is only partial[18]; however, note that having d&t=0 requires a  This result is a direct consequence of the vanishing of the
unnatural fine-tuning among the parameters in BcL00. matrix M(t) in Eq. (3.7). Nevertheless, as discussed below,
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In absence of dissipatiom,=b= 3=0, the factor in front
of the sine term in Eq(4.1) becomes parametrized as in Eq.
(3.19, with a modified mixing angled,, . When the matter
parameterA is close toAgr=2w cos %, the transition prob-
. N _ ability gets enhanced, and oscillations between the two neu-
The general expressid8.13 for the transition probabil-  trino species is possible even when the original mixing angle
ity is rather involved and is not particularly useful for study- ¢ js small. This phenomenon is at the root of the so-called
ing in more detail its physical properties. Therefore, in thepisw effect[42—44.
present and following sections we shall discuss various ap- |n the presence of dissipation, however, the physical con-
proximations in whichP, ., (t) assumes a more manage- sequences of this effect are in general much more modest. In
able form. These simplified expressions, besides being ajthis case, one cannot parametr'ﬂé’geﬂ (t) in terms of a

propriate for theoretical analysis, could also be used to ﬁFnodified mixing angle; in spite of this, the expression in Eq.

actual experimental_ da{é§2_,4ﬂ. (4.2) as a function of, at fixed time, has a critical point for
As already mentioned in Sec. Il, the values of the con—A_A Thi e . fop2= B2 d indeed
stantsa, b, ¢, a, 8, and y parametrizing the nonstandard 2= #Ar- This pointis a maximum for“= 4%, and indeed as

H .2
effects are expected to be very small, with an upper bound df @PProachediz an enhancement 'erwﬂ(t) occurs:

orderE?/Mg=10""° GeV for E=1GeV and forMe, the  —732)/02,>1; however, the exponentially damping factors
Planck mass. Nevertheless, this estimate is not farzfrom thg Eq. (4.1) greatly reduce in practice its effectiveness. Fur-
values that the gtandard _oscnlatlon parameige= Am /4_E thermore, wherii2<732, the probability?, (1) in Eq.
assumes for typical neutrino sources. Indeed, the ratia, of e,

b, ¢, @, B, andy with w, can be evaluated to be at most of (4.2) is maximally sgppressed at the critical point: It is domi-
order 10 1%E3/Am?, with E expressed in MeV and the neu- nated by the damping factors.

trino mass differenc&m? in eV? this ratio turns out to be ~ This discussion might appear spoiled by the initial as-
about 16 for atmospheric neutrinos, of order one for solarSUmption of a constant matter paramefefThe occurrence
neutrinos, while for accelerator neutrinos it can be as smaff the MSW effect requires a medium with(slowly) vary-

as 102 Therefore, the effects induced by dissipation can"d density. As already pointed out, the assumption of a con-
interfere with those producing oscillations via a nonvanish-StantA is not really a limitation: One can always approxi-
ing w,, resulting in observable modifications of the oscilla- Mate, with arbitrary accuracy, the traveling of neutrinos
tion pattern. Present and, most likely, future dedicated neuthrough varying density matter as the propagation in a series
trino experiments should be able to detect these&f media with different constant densities and different thick-

modifications, or at least put stringent limits on the magni-N€ss. The total time evolution will be given by the composi-
tude of the nonstandard phenomena. tion of the evolutions in the various matter slices, so that the

Let us first consider the case in which the dissipative paMatrix M in Eq. (3.7) becomes
rametersa, b, ¢, a, B, andy are of the same order or larger  Aq(t)= M, (t,) - Mo(ty) My(ty), t=tj+to+--+t,,
than the remaining constants in E§.1). In this case a very (4.4
useful approximation is to assunae= a=y andc=0, con-
ditions perfectly compatible with the inequalitié®.3), pro- ~ where,ty ,t,,... t, are the total times spent by the neutrinos
vided a?=b?+ B2, For simplicity, we further assume the in the various media, while\;, i=1, ... n are the corre-
extra phasep to be vanishingly small. A manageable expres-sponding propagation matrices.

sion for the transition probability can then be derived: As an example, let us consider the case of an initial elec-
tron neutrino traveling for a timé; into a medium with

the regime of validity of this asymptotic limit can seldom be
reached in practical experimental conditions.

IV. TRANSITION PROBABILITY IN MATTER

1 72— 2 matter parametef, which is then detected in vacuum at a
Py (D= 5(1—6_2“t)+ 02 e 2 sir(Qyt), later timet=t,+t,; this situation can roughly represent a
M solar neutrino model. Using E¢4.4), the probability of de-
4.1 : L o PR
tecting the originalv, as a muon neutrino is given by
where ~
Q :[ 2+ VZ_bZ_B2]1/2 (4 2) P (t): E 1—e7a(tl+t2)—e*a(t1+t2) ?2—182
M M ’ . ve— v, 2 Q(Z)
T=wsin20, B=pcos26+bsin 26. 4.3 402, — A(A+2b+ 2w cos 26)
X 2
The oscillating behavior in Eq4.1) depends on the magni- O
tude of the combination u?+ v°=(A/2— w cos X)? X SinP(Qyty)Sirt(Qot,)
+w?sir? 20 with respect tob?+ B2; in regions for which
b2+ B2= u?+ v?, the frequency),, becomes purely imagi- Qo . .
nary andP,  (t) contains only exponential terms. Any- Qu Sin(2Quty)sin(20otz) — 2 sirf({oty)
way, thea-depéndent damping terms in E@.1) dominate 02
) - ' 5 .
fec:relc?rge times, and the asymptotic lint8.16) is thus recov- _Zg_fﬂsmz(ﬂ'\"tl) ] (4.5)
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whereQ o= Jw?—b?— B2, while Q,, is as in Eq(4.2. One the constants, b, c, @, 8, andy. If at least one of these three
can check that, with the appropriate choice of parameterparameters is found to be nonzero, it would clearly signal the
(see the previous discussjorthe probability?,  (t) can  presence of dissipative effects in neutrino physics; this is

- surely the most simple experimental check on the general-
H’éed evolution equatiol2.2) that can be performed with ac-
0cllelerator neutrino beams.

indeed get an enhancement fdrclose to the critical point;
the effect is, however, modest and further suppressed by t
damping factors. Nevertheless, with the appropriate values
A t;, andt,, the expressiori4.5 can be used to fit solar
neutrino data; the total flight timeis large, so that a good V. ADIABATIC APPROXIMATION
sensitivity at least on the dissipative parameteis surely

attainqble. L . the appropriate way to follow neutrino propagation in a me-
A d'ﬁefe.”t approxw_n_anon of the full expre.ssmjﬁ.lsﬁ for dium is through the successive applications of the finite evo-
the transition probablllt)ﬂ?,,eﬂ# can be obtained when the i, matricesM(t) to the initial statelp(0)), as shown in
dissipative parametegs b, ¢, a, 8, andy can be considered Eg. (4.4). In more traditional approaches, one usually adopts
small with respect to the level-splitting ter@) as mentioned a different approximation, based on the assumptiofadfa-
before, this typically occur for neutrino beams generated abatic) slowly varying matter density. This approximation can
accelerators. In this case the additional telfrp] in the  be easily discussed also in the framework of density matrices
evolution equatior(2.2) can be treated as a perturbation. Toand quantum dynamical semigroups.
first order in the small parameters, explicit expressions for Let us consider the case of a neutrino, created=dl in
the entries of the evolution matri%1(t) in Eq. (3.7 can be  matter of high densityi.e., in the core of the sunpropagat-
easily obtained; then, using E(.12), one finds ing towards regions of smaller density. In this case, the ef-
fective Hamiltonian(3.1) is no longer constant, and the

For time evolutions with a semigroup composition law,

~2 ~2
I R P v propagating matrixM(t) involves a time-ordered exponen-
P"eﬁm(t) wfﬂ)e te wfﬂ cos2wyt) tiation of . Nevertheless, at any instant of time, th& 3
N matrix H can be diagonalized by a similarity transformation:
+ Zﬁ) sin(2ayt) |, (4.6) H=TDT L. (5.2
wherewy = \/,u2+ »2 as in the previous section, while Using this decomposition in EJ3.4), one can derive the

evolution equation for the transformed three-vectij)

a _ . S ,
L= COS 20+ v sin 26= 5 wCoS 20, (4.7 Tlp); explicitly, one finds

d JT
— e 1)~
D=1 c0s 20— u sin 26=w sin 20; (4.79 S 1P(0)==2| D+ =T )|P(t)>- (5.2
the parameters;, \,, andN contain the dependence on the

o paia The adiabatic approximation amounts to neglecting the last
dissipative constants:

term in this equation; this is justified when the matter density

— (a2t v u?) w2 _ parameterA is sIowa. varying. In Fhis approxima_tion, the
M=(@vit2euvt yps)l oy, (4.89 neutrino state essentially evolves in time as an eigenstate of
_ 2_ 2y, 2 H.
No=at(ap =2cuvtyriloy, (4.8 In order to make the discussion more explicit, as in the
52 previous section, we shall take=a=vy and c=0, while
N=—=[a—a—rv(3ar+ ZCM)/wa] +3v¥(a—y)cos 20 neglecting the extra phageand the dissipative contributions
2 w1, wy to H. With these choices, one has
+c(2u’v— oy, Sin40)/ w?). (4.80 N
In expression(4.6), we have reconstructed the exponential D=-2 a+iQy , (5.3

factors by consistently putting together the terms lineat in

Notice that the result in Eq$4.8) is in agreement with the

discussion in Sec. Il concerning the eigenvalues of the m

trix H. In this case the algebraic equati@h9) has one real,

A1, and two complex conjugate solutiony,>3=\g

i\, ; within our approximationAV=\;, 2\g=X\,, S0 VI(B+v) btup btpu

that the first condition in Eq(3.10 is satisfied, while the i i

remaining two fix the imaginary pan, . 0 iQy  —iQu . (5.4
The expressiori4.6) for the transition probability can be —V2(b—wn) B-v B-v

used to fit experimental data. With respect to the standard

case, it contains three additional parametgis,\,, andN,  The entries ofT can be parametrized in terms of two real

that signal the presence of nonstandard phenomena, throughriablesé and { and an anglep, that could be complex:

a—iQM

Apith Qu as in Eq.(4.2), while the transformation matriX
takes the form

T=
Va0,
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*v
a - +(e*¢cos 20'sin 2¢p+ e* ¢ sin 26 cos 2p),
M
(5.5
b= _ _
Q ’_ +(e"¢sin26sin2¢—e ¢ cos 20 cos 2p);
M

(5.5b

PHYSICAL REVIEW D 64 085015

Using a compact vector notation, the transition probability
P, ., inEq.(3.12 can now be written as

Pve"”ﬂ(t) = %{1+ <pVM|Tf : MD(tf !ti) : Ti_1|pve>}i
(5.6

for later convenience, an explicit dependence on the mixing

angle 6 has been extracted from the entriesTof

Mp(ts tj)=e 2

while T, and T; are the matrices that diagonali2¢ at the

initial time t;=0 and final timet;=t; they can be written as
in Eq. (5.4), with parameters; ,; ,¢; andé;,{;, ¢¢, respec-
tively. Explicitly, one finds

et % cos 2 COS 2

1
—_ _ A= 2at
,PVeHV/_L(t)_ 2[1 €

+e 474 sin 2¢5; Sin 2¢;

t
XCOS(ZJOdTQM(T))

In absence of dissipatior;={;=¢&;={,;=0, a=b=8=0,

] . (5.9

ex;{ —2i f;dTQM(T))

where

(5.7)

ex;{ 2i fthQM(T))
0

to be the most general>33 unitary matrix, which preserves
appropriate consistent conditions: They assure the reality of
the transition probability. Taking into account these condi-
tions, A can be parametrized in terms of two complex num-
bersu andv, such thaju|?+|v|?=1:

lul>=|v|®> v2uv V2uv
A=| —V2uv W —0u? (5.10
—v2uv —v? u?

The explicit expression for the probability in E.9) is now
rather involved; however, it simplifies when neglecting the
fast oscillating terms:

one recovers the familiar expression for the adiabatic transi-
tion probability.

When the adiabatic approximation ceases to be valid, the
previous treatment needs to be generalized. Indeed, in this
case, the neutrino state no longer remains in a specific eigen-

(Pyy (D)= H{1-e 2l 61

—2|v|?)cos 2p cos 2¢;}.  (5.11)

state of’H for the whole time evolution; rather, it can mix
with the remaining eigenstates. In order to take into accou
this possibility, the expression for the transition probability .

(5.6) needs to be modified:
P (D
=3{1+(p,, [T Ma(ty te)- A- Mop(te t) - Ti Hp,, )},
(5.9

In practical applications, the interesting case occurs when

r{tge neutrinos are generated in a medium with very large mat-

r densitye ™ ¢ cos 25=—1, while detected at a later tinte

in vacuum,&=0, ¢;= 6. In this case, one finds

(Prgrr, (D)= 3(1—e 29 +e 2 cog §—|v|?cos 29].
(5.12

This is the most simple form that the transition probability
formula takes in the presence of dissipative and matter ef-

fects: With respect to the familiar expression, it contains ex-
wheret, is the time at which the neutrino crosses the criticalponential damping factors. Taking into account that neutrinos
region, whileA is the mixing matrix that encodes the pos- are relativistic, the flight time between emission and detec-
sible hopping between the instantaneous eigenstates of thien is with very good approximation the same as the dis-
effective Hamiltonian. For simplicity, we are not taking into tancel between source and detector. One can then use Eq.
account the possibility of hoppings induced by dissipative(5.12 to derive a rough order of magnitude limits on the
effects: They can be considered to be negligible with respeatonstandard parameter The best bounds are expected from
to the matter induced ones. As a consequeaasn be taken  solar neutrinos, where [1tan be as low as 1G’GeV.
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VI. TRANSITION PROBABILITY IN VACUUM

2 2
1+ —'E;—sinz(Qot)>c032 26

1
—2at
Py, (D= {1 e 02

One of the most interesting properties of the quantum
dynamical semigroup approach to neutrino propagation is the 232
possibility of probing the nature of the neutrinos by studying +sir? 26| cog2Q,t) — 0z Si(Qot)cos ¢
their oscillation pattern. Indeed, the transition probability
P, ., inEq.(3.13 explicitly depends on the extra phasge b . i 2B

e M . . . . - +
which can be nonvanishing for Majorana neutrinos. In this QOSIn(ZQOt)Sm 2¢ QOCOSMSWQOU
section we shall discuss to what extent the phasman be b
extracted fror.nPVeﬂlf. With in mlnq p_ossble ap_pllcat_lons Q—Sin(Qot)COS(p—COS{QOI)Sian) ]
to atmospheric neutrinos, we shall limit our considerations to 0
oscillations in vacuum, and present various explicit formulas (6.3
for the transition probability in different approximations.

As a working assumption, let us first take the dissipative
parameters and g in Eq. (3.5 to be much smaller than whereQ,= \/w?—b?— B2 as before. In this case, the depen-
the remaining constants. To lowest order, a closed formyence ofPV - (t) on time is significally altered by the
for the entries of the evolution matrid1(t) in Eq. (3.8 presence of a nonvanlshqug

can then be obtained. Using the general forn8la3, one Atmospheric neutrino data are the most suitable for

X

finds an experimental study of Ed6.3), since in this case the
time dependence can actually be probed. Nevertheless,
it should be stressed that the expression in(BE@) contains
four additional parameters besides the standard owes,

P,,e_,vu(t)z% 1-e ?cog260—e @Tgir 20 and 6, so that the fitting procedure might turn out to

be difficult in practice. In order to simplify the analysis,
B one can further assume one of the two nonstandard

x| cod2Q0t) + 5o sin(2Qt)cod g+ 2<P)“ parametersp or 3, to be zero, but not both: Here again,
when « is the only nonvanishing dissipative parameter, the

(6.1 dependence orp in Pye_,vﬂ(t) disappears. Despite these

difficulties, the amount of data on atmospheric neutrinos is

) . constantly growing, so that at least some information on the
where B=a—a+2ib=|Ble'’® and O=\w*~[B[*/4. In  presence of a nonvanishing, together with some of the
this case the dependence on the phase very mild, and  djissipative parameters, will surely be attainable in the near
cannot be extracted by studyiﬂge_w# alone: An indepen- future.
dent determination of the combinati@is necessary.

The situation is even worse when=0; in this case, the

inequalities(2.3) automatically guarantee= =0 and fur- VII. DISCUSSION

ther imposeb=0, a=a. In this casep completely disap- Th dv of b f d [
ears from the expression of the transition probability, which © Sicy 0 OPEn Sysiems DY Tieans o duantum cyram:-
Eeduces m i ; cal semigroups offers a physically consistent, general ap-

proach to the discussion of phenomena leading to irrevers-
ibility and dissipation. When this formalism is applied to the
analysis of the propagation of neutrinos, both in vacuum and
1 in matter, it gives precise predictions on the pattern of oscil-
P, ., ()==siP26[1—e 2*'cog2wt)]. (6.2 lation phenomena: The new, nonstandard effects manifest
e 2 themselves through a set of phenomenological parameters,
w1, wy, andws; (the Hamiltonian onesa, b, ¢, «, B, andy
(the purely dissipative ongsTheir presence allows oscillat-
In view of this, analysis of the experimental data based onng phenomena even for mass-degenerate neutrinos, accom-
Eq. (6.2 along the lines of Ref.32] is totally insensitive to  panied by possibl&€P-violating effects. Further, these pre-
¢; a fit with more than one nonvanishing dissipative paramdictions can be experimentally probed. Indeed, fits of
eters is in general needed, although this condition is certainlgxperimental data along the lines discussed in [B] can
not enough, as shown by E(.1). be repeated for the more complete expressions of the transi-
In this respect, a more interesting situation occurstion probability P,, —, (t) presented in the previous sec-
when ¢c=0 and a=a=1v, as considered in the previous tions.

sections. All the entries of the evolution matri¥1(t) For sure, the fitting procedure will be more difficult and
are now nonvanishing, and the transition probability can beincertain than in the standard case, due to the presence of
written as more unknown parameters. Furthermore, one has to take into
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account that the effects induced by the presence of the new The description of neutrino propagation in terms of quan-
parameters are expected to be small. By viewing the neutrium dynamical semigroups automatically guarantees the ful-
nos as an open system in weak interaction with an envirorfillment of basic physical requirements, as forward in time
ment generated by a fundamental “stringy” dynamics, thecomposition, entropy increasgreversibility), and complete
effects of irreversibility and dissipation can be roughly esti-positivity. This is a clear advantage over alternative formu-
mated to be proportional to the square of the average neuations. Based on ideas originally presented in R&3], gen-
trino energy, divided by the characteristic energy scale of theralized dynamics for the neutrino system incorporating
environment. Assimilating this scale to the Planck mass prosome of these properties have been discussed bé&er
duces estimates of order 18 GeV for solar neutrinos, Refs.[50-54). However, those dynamics do not satisfy the
while larger values are expected for more energetic neutricondition of complete positivity; as already mentioned, this
nos. Despite these difficulties, a new generation of dedicatedould lead to serious inconsistencies that can be avoided in
neutrino experiments are currently collecting data or willall situations only by adopting evolutions of the fori2.2)
shortly start construction, so that stringent bounds on thé41].

dissipative effects can surely be expected in the future. Nonlinear dynamics in the description of the neutrino sys-

The above estimate on the magnitude of the nonstandartem naturally emerge when the requirement of weak cou-
dissipative effects is based on very general and physicallpling between neutrinos and environment is not satisfied.
motivated considerations about open systems; therefore, it iBhis typically happens in extreme conditions, as those found
rather robust and quite independent from the details of thén the core of a supernova or the early universe; more con-
microscopic, fundamental dynamics responsible for the interventional dissipative phenomena then arise due to the scat-
action between the neutrino subsystem and the environmertering and absorption processes in the medj68+-55. In
Nevertheless, it has been questioned on the basis of a formatder to properly deal with these situations, a second-
similarity of a particular, simplified version of the evolution quantized, field-theoretical formalism has been constructed,
equation(2.2) with those describing the phenomenon of theusing specific effective interaction Hamiltonians as starting
so-called dynamical reduction of the wave padigd|. The  point. Although derived using techniques similar to the ones
analogy is rather superficial: The physical process leading tdescribed before, the resulting kinetic evolution equations
dissipation and the reduction process are quite distinct andre quite distinct from Eq(2.2); they give rise to decoher-
act at different energy scales. Furthermore, as a more conence effects that modify the pattern of neutrino oscillations
plete analysis would reveal, quantum dynamical semigroupi a very different way with respect to the expressions dis-
generated by equations of the fof212) are unable to prop- cussed in the previous sections. Nevertheless, also in this
erly describe dynamical reduction procesgels case the condition of complete positivity needs to be satisfied

A different criticism on the use of quantum dynamical for consistency, and this requirement might produce further
semigroups for the description of dissipative effects advoconstraints on the modified dynamics.
cates the use of nonlinear evolution equatip48]. Once Decoherence effects in neutrino physics have been further
more the general theory of open systems offers a clarifyingliscussed in connection with the uncertainties in the emis-
discussion on this poir{for further technical details, see the sion and detection procesgesb]. By smearing the familiar
Appendix). expression for the transition probability over energy and time

As pointed out in Sec. Il, the dynamics of a small system(or position) with an appropriate Gaussian distribution, an
S in interaction with a large environmeftis in general very  exponential damping factor is generated, so that the resulting
complex and cannot be described by means of evolutioexpression for the averaged probability looks similar to the
equations that are linear in time: Possible initial correlationsone presented in Eq6.2). The analogy is once more only
and the continuous exchange of energy as well as entropsuperficial, since the transition probabilit§.2) [and more
betweenS and £ produces memory effects and nonlinear generally the expression in E¢B.13] has an explicit time
phenomena. Nevertheless, when the typical time scale in th@osition dependence that cannot be reproduced via a
evolution of the subsyste$i is much larger than the charac- Gaussian average. Further, the physical mechanisms leading
teristic time correlations in the environment, the subdynamito the modified probability expressions are clearly different:
ics simplifies and a mathematically precise description inthe detector “noise” in one case, a fundamental dynamics in
terms of quantum dynamical semigroups naturally emergethe other. In turn, this leads to a different dependence of the
[1-3,21. damping factors on the average neutrino energy.

This limiting procedure is general and can be applied to As mentioned before, quantum dynamical semigroups can
all physical situations for which the interaction betweg€n be employed to model a large variety of physical situations.
and & is weak and for not-too-short times, so that the non-lt is not a surprise that they have been used to study the
linear disturbances due to possible initial correlations haveffects of density waves in the propagation of neutrinos in
died out[4]. These are precisely the conditions that are exfluctuating media, in particular, in the interior of the sun;
pected to be fulfilled in the case of neutrino systems: Theahese phenomena are also described by equations of the form
characteristic time correlations in the environment, induced2.2) and induce modifications on the neutrino oscillation
by the fundamentalgravitational or stringy dynamics, is  probabilities[57]. However, it should be stressed that these
certainly much smaller than the neutrino propagation timedensity fluctuations have their origin in the dynamics of the
while the interaction between neutrinos and environment isun and operate at energy scales quite different from the
surely weak. Planck mass; therefore, they can be easily isolated from the
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dissipative effects discussed before, which are not expected The choice between these two limiting procedures clearly

to be influenced by long-range phenomena. depends on specific physical considerations about the system
As a final remark, let us point out that several unconvenunder study. In the case of the neutrino system, both limits

tional phenomena affecting neutrino propagation have beeappear physically acceptable. Since the singular coupling

discussed in the literature. They include neutrino decaylimit has been presented elsewhg2é], in the following we

flavor-changing neutral currents, violation of Lorentz invari- shall concentrate on the discussion of the weak coupling

ance, or the equivalent principle.g., see Refd58-64). limit. In this case, following the steps presented in Red],

All these phenomena lead to modifications of the standardtom the finite time evolution{A3) one can derive a differ-

oscillation pattern; however, the resulting transition probabil-ential equation fop(t) local in time; it is of the form(2.23,

ity Pveﬂﬂ(t) has a dependence on tirf@ path lengthand

neutrino energy that differ from the one discussed in the ap(t) . .

previous secti%):]s. gt - HeOFip(HF LIp(D], (A4)
Indeed, the dependence of the observalb,lgﬂﬂ(t) on

the phenomenological parametetd, ¢, a, 3, andyis very  With

distinctive of the presence of dissipative phenomena and

cannot be mimicked by other unconventional mechanisms. _ i 1 (7 d °°d

This further strengthens the possibility of identifying the dis- Llp]=~ lim 2T ) ¢ S o t

sipative contributions from the analysis of experimental data,

quite independently from other effects. XTrg{ethots[eiHotH'e*iHot,[H',p®p5]]e*iHrotS},

(A5)

T—x

APPENDIX: THE WEAK COUPLING LIMIT

For a neutrino system in interaction with an environmentVhereHo represents the limit oH, for a vanishing cou-

&, the total Hamiltonian can be decomposed as in@q): ~ Pling constang. N _
The general form of the additional tergjp] in Eq. (A5)

Ho=H®1+1@H+gH’, (A1) does not actually depend very much on the details of the
environment dynamics; an effective description that takes
where, neglecting for simplicity matter effects, the systeminto account its most fundamental characteristic properties is
HamiltonianH can be taken to be of the form enough to allow an explicit evaluation of the integrals in Eqg.
(A5). Following the idea that the dissipative effects are low-
E—wq 0 energy phenomena that originate from the fundamental

H=< 0 Etow (A2)  gravitational or stringy dynamics at some large sddle,

0 we shall model the environment as a gas of quanta, obeying
infinite statistics, in thermodynamic equilibrium at inverse
temperaturg8g=1/Mg .°

Further, taking into account that the interaction between
the neutrino system and the environment is weak, we shall
p—=>pt)=Trde Mot(pep.)etot], (A3)  assume the interaction Hamiltoni&f to be linear both in
the neutrino and the environment dynamical variables:
This evolution map is in general very complicated, develop- 5
ing irreversibility and memory effects. However, it simplifies , _
when the interaction between the neutrino subsystem and the H'= E:o 0u®B,; (AB)
environment is weak. g
There are essentially two different ways of implementing
in practice this conditiofl1—3]: They correspond to the two
ways of making the ratiar/ 7o large. Herer is the typical
variation time ofp(t), while 7. represents the typical decay
time of the correlations in the environment. Only when
> 7., one expects the memory effects in H42) to be
negligible, and a local in time evolution for the staté) to

Assuming no initial correlations between the two systems
the evolution in time of the neutrino stat€t) follows the
general rulg(2.5):

an explicit expression for the environmental operatBis
will be discussed below.

In order to proceed further, it is convenient to introduce a
spectral decomposition, and use the auxiliary matriegs,
A=-1,0,1[1],

U’E?):P:LO'#P]_JF P20'IU'P2., U,(LL+):P10-,U-P2’

be valid.
When 7, becomes small, whiler remains finite, one ~
speaks of “singular coupling limit,” since the typical time o) =P0,P1, (A7)

correlations of the environment approach function. In the

other case, it ig that becomes large, while: remains finite:  with

One then works in the framework of the “weak coupling

limit.” In practice, this is obtained by suitably rescaling the

time variablet—t/g?, and by sending the coupling constant SFor a motivation of this choice in terms of the dynamics of ex-
g to zero(van Hove limij [1-3]. tended object$D0 brane}, see Refs[21] and[65—67.
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10 00 . 2 J d" 'k
Pi= 0 0/ Py= 0o 1/ (A8) ;4() M(n 12 [2(277 n le(k)]llz
ah —ie(k)t t ie(k)t
Then, the limit in Eq.(A5) can be explicitly performed and XfAk)xu TAs(K)e eI A (k).
the result expressed in terms of the following 4 Hermit- (A14)
ian matrices:

ab “amped” the n-dimensional environ-

The coefficientsy;,
N ot ment modes into the effective two-dimensional neutrino Hil-
a,,=¢ f_wdt e “M0(B,(1)B,), (A93)  pert space, whild?(k) are appropriate test functions neces-
sary to make the operatd8, and its correlations well-
. defined; it can be taken to be of the formk|(M ) ™2g3(k),
bM) =jg2 J dte 2Meo(B (1)B,) for some positive integem, with g?(k) of Gaussian form.
mr 0 peo For sake of definiteness, in the following we shall use
. g3(k) =g3(Q) e~ 7°**2, with g3(Q) depending only on the
—J dtezix‘“O‘(BMBV(t»], (A9b) angle variables and; a real constant. The functioa(k)
0 gives the dispersion relation obeyed by the environment
modes; for simplicity we shall adopt an ultrarelativistic law:
involving thermal correlations of the environment operators (k) =|k|=¢. The powers oMg, characterizing the energy
g, scale of the environment, are necessary to @yethe right
e °F dimension of energy.
(Bu()B,)=TrdBL(1)B,pel,  pe= Tro(e Peile)- We assume an indefinite statistics for these modes, so that
(A10) the creation and annihilation operators obey generalized
commutation relations:
Explicitly, one finds
Aa(KAJ(K") = GAS(K)Ax(K) = 850" P (k—K');

Llpl=i[p.HI+L[p], (A11) (A15)

the real parametar determines the mode statistics: The case
where g=1 corresponds to standard bosons, while detrO one
obtains the degenerate algebra discussed in R&8s.67, in
[ 3 connection withDO branes and black holes. Without loss of
1

.]2:1 ai(x [20 PU. —(T(MU(MP generality, we shall assung<1. Furthermore, the single-

Llpl=% X

rel0=1) mode Hamiltonian can be taken to be proportional to the

corresponding number operator, so that the total environment
—pffi(x)tff}‘)] , (A12) HamiltonianH ¢ satisfies the relation

[He, AL(K)]=2(K)ALK),  [HeAx(k)]=—2(k)Aq(K),
and (A16)

3 implicit in the time dependence of EGA14).
{ > bMNeMg ] E (a)—ad)o;. The thermal correlations involved in the definitions in Eq.
MV ,u, = Oi i0 I | . .
Ae{0x1} (puv=0 = (A9) can now be readily computed. For instance, one explic-
(A13) itly gets

The first term on the RHS ofAll) is of Hamiltonian N 1 o it [ s -
form. This is a general feature of the reduced dynamics: & :Wj,xdte 0 fo de e [Xij(e)e
Even in the absence of an initial system dynamics, a non- F
trivial Hamiltonian contribution is always generated by the o 1
dissipative piece, EQA5). This mechanism has deep conse- +Xji(g)e 1?1 HIAR] P g’ (A17)
guences in neutrino physics: As remarked in the text, it al- q
lows oscillation phenomena even in case of initially masslesgpere

neutrinos.
Further information on the coefficient matricag) and 1, ab. cbc
b(” in Eq. (A9) can be obtained by studying the behavior of Xij(e)= e f 2 )n 1 97 (k) xi " x; 97 (k)
the environment correlations in EGA10). The operator8,,
can be taken to be a general linear expression in the environ— =e~ ”Zszxij(O) (A18)

ment variables; these are the creatiéj(k), and annihila-
tion, A,(k), operators for the quanta representing the enviinvolves the integration over the angle variables; notice that
ronment modes, living in an abstrasdimensional space:  X;(e) is a real, symmetric matrix.
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This matrix is not generic: It turns out that in order to H=pQ A20
. . . . 0303, ( )
satisfy the condition of entropy increase for finge, X;;(¢)
must vanish foti,j =1,2. With this choice, one finds that the where
nonvanishing contributions th[ p] in Eq. (A12) can come .
only from the coefficieny, providedm=3-n. Explic- boa =9*MXo3(0)G(Be /7). (A21)

itly, one obtains
y and

m - &
a5 = 7= "M Xl 0). (A19) 1-e Fr )

_ oo oo . 782772

G(Be!7) fo dtJ'0 de sinste (—1—qe‘5F8

The dimensionless coupling constgghould be expressible (A22)

in terms of the relevant energy scales, i.e., the average neu- o . )

trino energyE and the mas#l, characteristic of the envi- In the case of infinite statisticg,= 0, the functionG can be
ronment. Sincey is small, it must be at most of ord&rM . explicitly evaluated in terms of generalized hypergeometric
As a consequence, it turns out that the dissipative paramet&fnctions:

afy) must scale a&*/ M. As mentioned in the text, this is a = 13 %2 2 2

general prediction of the open system approach to dissipa- G(x)=—x ;F; 5; E; il Zze 1,1;—,2;2 .

fi 2 2
ion. A23)
Using the expansiop=ZX,p,0,/2 as in the text, one (

immediateiy finds that the dissipative contrié)utihﬁp] in The operator in Eq(A20) contributes via the parameter
Eq. (A12) is of the form (3.3, with a=a=af andb=c w3=hb{ to the effective Hamiltoniai o in Eq. (3.1): Even
=p=y=0. In the weak coupling limit a special form of the i, the apsence of the standard piesg, the quantityws,
matrix (3.3) is then selected: It is expressible in terms of only\yoyid still generate a level splitting between the two neu-
one nonstandard parameter. This situation does not hold afyno mass eigenstates, making possible oscillation phenom-
more in the case of the singular coupling limit. In that casegpg.
all six parameters, b, ¢, a, B, andy are in general nonva-  Ag a further remark, notice that although both generated
nishing (for details, see Ref21]). o via the interaction with the environment, the magnitude of
In a similar way, the Hamiltonian contribution in EQ. the Hamiltonian contributioms could differ from the dissi-
(A13) can be explicitly computed. Taking into account the hative one in Eq(A19), since their ratio involves the func-
results obtained in the evaluation of the coefficiea¥,  tion G. Although in a different context, this phenomenon has
one sees that theX22 matrixH becomes diagonal: also been observed in R¢b7].
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