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Poincare invariant algebra from instant to light-front quantization
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We present the Poincasdgebra interpolating between instant and light-front time quantizations. The angular
momentum operators satisfyilg®}J(2) algebra are constructed in an arbitrary interpolation angle and shown to
be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and
light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular
mometum and the boost operators is manifest in our newly constructed algebra.
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I. INTRODUCTION positive. In the instant form, however, no sign correlations

_ _ _ for k® andk exist. Such a dramatic difference in the energy-

When hadronic systems are described in terms of quarkgomentum dispersion relation makes the light-front quanti-
and gluons, it is part of nature that the characteristic moyaiion quite distinct from other forms of Hamiltonian dy-
menta are of the same order or even very much larger thahgmics.
the masses of the particles involved. For example, relativistic Light-front quantization[2,5] has already been applied
effects are crucial to describe the low-lying hadrons made oguccessfu"y in the context of current algelf&] and the
u, d, ands quarks and antiquar{d]. It has also been real- parton mode[7] in the past. With the recent advances in the
ized that a parametrization of nuclear reactions in terms ofysmiltonian renormalization progra8,9], light-front dy-
nonrelativistic wave functions must fail. Thus, a relativistic namics (LFD) appears to be even more promising for the
treatment is one of the essential ingredients that should bgativistic treatment of hadrons. In the work of Brodsky
incorporated in developing a successful strong interactiory g. [10], it is demonstrated how to solve the problem of
theory. o o renormalizing light-front Hamiltonian theories while main-

For the relativistic Hamiltonian approach, several formsaining Lorentz symmetry and other symmetries. The genesis
of dynamlcs_ have been sugges{@i3]. Although the point  4f the work presented in Reff10] may be found in Ref[11]
form dynamics has also been explored recefflythe most  5nq additional examples, including the use of LFD methods
popular choices were thus far the equéfllns'_tant form an_d to solve the bound-state problems in field theory, can be
equal r=t+z/c (light-front form) quantizations. A crucial oyung in the recent revieWl2]. These results are indicative
difference between the instant form and the light-frdrf)  of the great potential of LFD for a fundamental description
form may be attributed to their energy-momentum dispersionyt nonperturbative effects in strong interactions. This ap-
relations. When a Parztlclae has the mass and four-  proach may also provide a bridge between the two funda-
momentum k= (k",k*,k% k"), the relativistic energy- mentally different pictures of hadronic matter, i.e., the con-
momentum dispersion relation of the particle at equéd  stityent quark modelor the quark parton modeklosely

given by related to experimental observations and the quantum chro-
_ modynamicgQCD) based on a covariant non-Abelian quan-
ko= Vk?+m?, (1.1)  tum field theory. Again, the key to a possible connection

] ) between the two pictures is the rational energy-momentum
where the energyk0 is conjugate tot and the three- gispersion relation given by Ed1.2) that leads to a rela-
momentum vectok is given byk= (k*,k?k%). However, the tively simple vacuum structure. There is no spontaneous cre-
corresponding energy-momentum dispersion relation aation of massive fermions in the LF quantized vacuum. Thus,
equalr is given by one can immediately obtain a constituent-type pictune,

R which all partons in a hadronic state are connected directly to

B kf+m2 the hadron instead of being simply disconnected excitations

= K 1.2 (or vacuum fluctuationsin a complicated medium. A pos-
sible realization of chiral symmetry breaking in the LF
vacuum has also been discussed in the literdtidig
Furthermore, one of the most popular formulations for the
analysis of exclusive processes involving hadrons exists in

where the light-front energy conjugate tois given byk™

=k°—k® and the light-front moment&™ =k°+k® and k,

=(k,k?) are orthogonal tok~ and form the light-front
three—momentungz(k*,lzi). While the instant form{Eq.

(1.1)] exhibits an irrational energy-momentum relation, the 1tq provide further insight concerning this issue, we have recently
light-front forT [Eq. (1.2)] yields a rational relation and thus introduced an infrared longitudinal cutoff and generated a light-

the_S|gns ofk al’_‘q k™ are correlated; e.g., the momentum front counterterm, which sets a scale for a dynamical mass gap for
k* is always positive when the system evolves to the futurguarks and gluons as well as a string tension in the light-front QCD
direction(i.e., positiver) so that the light-front energy™ is  Hamiltonian[13].
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the framework of light-front quantizatiofl2]. In particular, [, T]=i €Tk, (1.3

the Drell-Yan-West ¢* =q°+ gq®=0) frame has been exten-

sively used in the calculation of various electroweak form

factors and decay proces4d$—17. In this frame[18], one [M,7]=0. (1.4

can derive a first-principle formulation for the exclusive am-

plitudes by choosing judiciously the component of the light-

front current. As an example, only the parton-number-However, in LFD, there are two dynamic equations to solve
conserving(valence Fock state contribution is needed in a

g+ =0 frame when the “good” component of the curreat, . .

or J, =(J.Jy), is used for the spacelike electromagnetic J?H;p*pl)=Su(Sy+1)[H;p",p?) (1.9
form factor calculation of pseudoscalar mesons. One does
not need to suffer from complicated vacuum fluctuations in
the equals formulation once again due to the rational dis- and
persion relation. The zero-mode contribution may also be
avoided in a Drell-Yan-West frame by using the plus compo-
nent of currenf19]. However, caution is needed in applying

the established Drell-Yan-West formalism to other frames

becguse the current components do mix under the transfo\g\-/here the total angular momentufar spin and the mass
mation of the reference frani€Q].

eigenvalues of the hadrofH) are given byS, and m.

In LFD, a Fock-space expansion of bound states is madery s it is not a trivial matter to specify the total angular

The wave functiony,(x; ki ,\;) describes the component momentum of a specific hadron state.

with n constituents, with longitudinal momentum fractign As a step towards understanding the conversion of the
perpendicular momenturk, and helicity\;, i=1,...n.  dynamical problem from boost to rotation, in this work we
It is the aim of LFD to determine those wave functions andconstruct the Poincaralgebra interpolating between instant
use them in conjunction with hard scattering amplitudes taand light-front time quantizations. We use an orthogonal co-
describe the properties of hadrons and their response to elegrdinate system, which interpolates smoothly between the
troweak probes. Important steps were taken towards a reatqual-time and the light-front quantization hypersurfaces.
ization of this goal[10]. However, at present there are no Thus, our interpolating coordinate system has a nice feature
realistic results available for wave functions of hadronsof tracing the fate of the Poincasdgebra at equal time as the
based on QCD alone. In order to calculate the response difypersurface approaches to the light-front limit. The same
hadrons to external probes, one might resort to the use ahethod of interpolating hypersurfaces has been used by
model wave functions. This method of estimating matrix el-Hornboste[35].? In an arbitrary interpolation angle, we find
ements has been presented in much literdi2ite-31]. Espe- the transformation that allows not only the simultaneous as-
cially, the variational principle enabled the solution of asignments of mass and angular momentum, but also SU(2)
QCD-motivated effective Hamiltonian, and the constructedalgebra among the angular momentum operators. Approach-
LF quark model provided a good description of the availableing the light-front limit, we verify that the LFD has one more
experimental data spanning various meson propef8a§ kinematic operator than the dynamics with any other inter-
The same reasons that make LFD so attractive to solvpolation angle. Also, we find that the roles of angular mo-
bound-state problems in field theory, also make it useful fomentum and boost are smoothly exchanged as the interpola-
a relativistic description of nuclear systems. LF methodgion angle moves front to 7. We also obtain a general
have the advantage that they are formally similar to time-definition of 7, and [J; at an arbitrary interpolation angle
ordered many-body theories, yet provide relativistically in-and show that it is consistent with the result obtained by
variant observables. Leutwyler and Stern in the light-front limit.

On the other hand, the Poincaatgebra in the ordinary In Sec. I, we present the PoinCaatgebra interpolating
equalt quantization is drastically changed in the light-front between equat and equalr. In Sec. Ill, we construct the
equals quantization. Although the maximum number angular momenta that satisfy the SU(2) spin algebra in any
(seven of the ten Poincargenerators are kinematig¢.e., interpolation angle and present the two dynamic equations to
interaction independentand they leave the state at=t be solved simultaneously in an arbitrary interpolation angle.
+2z/c=0 unchanged33], rotation becomes a dynamical Discussion of results and conclusions follow in Sec. IV. In
problem in the light-front quantization. Because the quanti-Appendix A, we summarize the 45 commutation relations for
zation surfacer = 0 is not invariant under the transverse the Poincargenerators with an arbitrary interpolation angle.
rotation whose direction is perpendicular to the direction ofin Appendix B, we provide explicit representations of the
the quantization axig at equalr [34], the transverse angular helicity operator and the spin-1 and spin-1/2 polarization
momentum operator involves the interaction that changes theectors with an arbitrary interpolation angle.
particle number. Leutwyler and Stern showed that the angu-
lar momentum operators can be redefined to satisfy them—

SU(2) spin algebra and the commutation relation between Application to the axial anomaly in the Schwinger model has
mass operator and spin operatf3$ also been presentd86].

M2[H;p*,p2)=m3|H;p*,p?), (1.6
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IIl. INTERPOLATION ANGLE DEPENDENT POINCARE A=C cosé+Ssins,
ALGEBRA
We begin by introducing an interpolating parameter B=Csiné—Scosé. (2.6
Previous author$35] have used the parameter2< o<

Similarly the momentum vector isP(_ ,P,) where P_
=SP"'—CP =-BP°+AP3. The transverse rotation op-

0 0 erators can be read fropM#”] to beF, andF,. As in both
<x+) Sin§ COSE xo) the equal-time and light-front cases, transverse rotations are

such that

N (2.1  chosen to commute with the Hamiltonigr; ,P. ]=0. Fi-
0 0 \x nally, the transverse boost operators for an arbitrary interpo-
o5 sy lation front areE; and E,. Again as in both the equal-time
and light-front cases, transverse boosts are chosen to com-

. (2.2

sind —coss/ |\ x®

coss  sinéd ) ( x0

Herex™ plays the role of “time” andx ™ is the longitudinal mute with the longitudinal momenturfE; ,P_]=0. Note
coordinate as defined on an arbitrary interpolation front. Inthat the longitudinal angular momentum and longitudinal
this work we defined= w/2— 0/2 so that boost operators are essentially unaffected by the transforma-
. tion to an arbitrary interpolation front.
X Other commutation relations among the ten generators
(x‘) N may be obtained from the wusual rulefM??,P#]
=—i(g""P’—g*°P?) and [M% MP7]=—i(gP"M*"
This parameter is easily visualized and ranges fa0 on  —ghPM*7+g*’MA7—g**M#P?). A comprehensive list of
the equal-time instank®=0 to §=m/4 on the light-front the 45 commutation relations among the contravariant com-
xt= 1/\/§(x°+x3) =0. In this new basis the metric becomes ponents of the Poincamgenerators is presented in Appendix
A. This algebra is consistent with the equal-time algebra for

c 0 0 s 6=0; it is also consistent with the light-front algebra fér
0O -1 0 0 =7l4.
[9u0]= 0 0 -1 ol (2.3 Next we investigate the algebraic structure of the Poincare
group on an arbitrary interpolation front. The stability group
S 0 0o -C of the initial surfacex*=0 is the set of operators, which

generate Poincareansformations that leave this surface in-
where C=cos %, S=sin25, and g, ,=C. Similarly, we  yariant. Following the literature, we describe such operators
transform the Poincarmatrix to this new basis, so that as kinematical. In physical terms, kinematical operators are
0 KI k2 K3 those operators that do not change the direction of the time

(x*) axis. To clarify the distinction between kinematic and

, -K! 0 32 =72 dynamic operators, we define an alternate set of Poincare
[M#]=| K2 -3 0 Jt genarators by transforming the Poincareatrix M,p
k3 2 -1 o =04,95,M*", so that
o E' E? -K? 0 D D K
_ 3 _
-E! 0 ¥ -F! M, ]= by 0 Tk 2.7
-l _ E2 —J3 0 o Fz ' (24) ap _Dz _JB 0 _IC2
K3 Fl F2 0 _K3 ]Cl ICZ 0
where we introduce the operators where the new generators are defined as follows:
El=J2sins+K!coss, K1=CF,—SH,
E2=KZ2coss—J'sins, K,=CF,-SE,
Fl=K!sins—J%coss, D,=-SF,—CE,,
F?=J'coss+K?sins (2.5 D,=—-SF,—CE,. (2.9
on an arbitrary interpolation front. It can be seen thatiC; ,P*]=0, and therefore each transfor-

The ten generators of the Poincaralgebra are matione '“%i leaves the®™ operator invariant. Thus the"
P.,P_,P{,Py,E{,Es,F{,F5,Ks, andJ;, where each Poin-  eigenvalue for a given momentum state is invariant under
care generator is defined on the interpolation front as fol-e™'“M. It follows that the+ component of any four vector is
lows. The Hamiltonian becomeB,=CP"+SP =AP° invariant undere '“"i, and therefore '“%i|x*)~|x*). As
+BP3, where the instantx " =0 is unalteredC; and/C, are kinematic.
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TABLE |. Kinematic and dynamic generators on an arbitrary interpolation front.

Kinematic Dynamic
5=0 Ki=-3,, Ky=31, 33, PL,P2,P? D;=—Ky, Dy=—Ky, Kg, P°
0<é<ml4 K1, Ky, J5, PLP2P_ Dy, Dy, Kg, P,
S=ml4 Ki=—E1, K;=—E,, J3, K3, P, P?, P* Dy=—Fy, D,=—F,, P~

The sets of kinematic and dynamic generators are prewhereB,, B,, andB; are free parameters. Under what con-
sented in Table I. ditions is T kinematic? Use of the Baker-Hausdorff theorem
There are two key features to be noted in this algebra. Thesveals that
first is the appearance of the longitudinal boost operator in
the stability group on the light front. The number of kine- T'P*T=P" coshB;+P_ sinhg;. (2.10
matic generators remains unchanged until we reach the light-
front quantization, where the operaté® becomes kine- It follows that x*—x"coshB;+x_sinhB; under T. Note
matic. To understand this, note thdtP* K3]=iP_  thatx" coshBs+x_sinhBz=x" coshBs+(x"S—x C)sinhps.
=i(SP*—CP7)—iP* as 6—m/4. Similarly we have Now T is kinematic, if and only if the instant™ =0 is in-
[x*,K3]=ix_=i(Sx' —Cx )—ix* as §— /4. Therefore variant underT. This requires that-x" C sinhB;=0. This
the instant defined by™ =0 becomes invariant under longi- ¢an occur only ifC=0 or 3=0. Thus we find thafl is
tudinal boosts as we move to the light front. Besides this neviKinematic if 5= /4 or g3=0. For 6§+ /4, then,3=0 and
feature, the Operators in each group Change Continuous|y ége kinematic transformatiof has two free parameters. On
we move from the equal-time quantization to the light front.the light front, 33 may take on any value aridhas three free
The second feature to note is the smooth exchange of tHgarameters.
roles of transverse boosts and rotations. In the equal-time

case ¢=0), rotations are kinematic and boosts are dynamic. |1I. SU (2) SPIN ALGEBRA AND DYNAMIC EQUATIONS

On the light front, however, transverse rotations are dynamic IN AN ARBITRARY INTERPOLATION ANGLE
and transverse boosts are kinematic. In the interpolating ) ) ) )
case, the kinematic generatdy and K, are mixtures of In this section we construct the SU(2) spin algebra in an

boosts E;,E,) and rotations F; ,F.). The dynamic genera- arbitrary interpolation angle. That is, we wish to construct
tors D, andD, are also mixtures of boosts and rotations. ThePPerators’; satisfying the criteria
mixing coefficients are smooth functions of the interpolating

angle, as displayed in Fig. 1. [ 7 Ti1=T ik (3.3)
We now construct the form for an arbitrary kinematic

transformation on a fixed interpolation front. In general we [Ji,M]=0,

have

L whereM is the mass operator. We also require thatom-
T=e Pk g Byt Bok2), (2.9  mutes with every kinematic generator excéptWe will see

Boost (E)

0.9

o
©
T

e
~
T

<
(2]
T

FIG. 1. The smooth exchange of the roles of
rotation and boost is displayed. The coefficients
of rotation F; and boostE; in the dynamic gen-
eratorD; are plotted versus interpolation angle
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that such operators cannot be defined, in general, on the en- In the equal-time caseC=cos2=1, B=0, and P_

tire Hilbert space. Instead, we define a relevant subspace caP?. Thus (P%)?=—P? and P?=0. The kinematic sub-
which these operators are well defined. Note that the spigpace in the equal-time case contains only the rest state. For
operators constructed in this work are valid only for massivea general interpolating angle, the kinematic subspace is a

particles? paraboloid in momentum space containing the origin. As we
move to the light-front limit,C=0, B=—(1/y2), andP_
A. Kinematic subspace =P*. ThereforeP"=(M/\2). In equal-time momentum

Consider the set of momentum states that can be reaché ace,z this is the set of states on the parat_x_)IB?d
from rest by a kinematic transformation. We define this set of~ — (P1/2M). If we allow 8370, however, the addition of
states to be the kinematic subspace for a fixed interpolatinlpngitudinal boost to the transformatidnallows us to move
angle. v_ertlc_ally off of this paraboloid, to a state Wlth ar_bltrary lon-

In general, kinematic transformations take the form givengltudmal momentum. It follows that the kinematic subspace

in Eq. (2.9), whereB;=0. We find that momentum operators " the light-front is identical to the entire momentum space.
transform undefT as follows: This is a unique feature a¥= /4.
For 0< é</4 andP, #0, |P_|<—MB and we can in-

sin vert Eq.(3.3) to find the parameterg8; and 3,:
TP_T=P_ COSa+—aaC(,81Pl+,82P2), a P Ba andp,

sina cosa—1 MB
T'PIT=P1-p, P_+ B1
a o’
P_ pl
X(IBIP1+B2P2)1 ﬂ1=—arCCO£—m>m,
Ttp2T_ p2 sinaP JrCOSa—l
N P a a? . \/6|PJ_|) Pt
= —arcsi ,
X CBa(BiP+ B2P), (3.2 ~MBJip,|yC
where az\/C(IB21+,822). This determines how momentum p p2
eigenvalues transform undd@r At any interpolating angle, Bo= —arcco% - —_)—
the rest state has momentum eigenval@és- P?=0 and MB/m?B*- P2
P_=—MB. It follows that any state that can be reached
from rest must have a three-momentum of the form r( \/a Pﬂ) p2 a6
= —arcsi . .
ina sina —MB /|p,|JC

S
(P_ ,Pl,PZ):( —MBcosa, f1MB——,5,MB

3.3 B. Construction of SU(2) algebra

Suppose we have a momentum state of the form given Following the procedure of Leutwyler and Stdig], we
above. Then now define the spin operatofg through the use of a kine-
matic transformation. Within the kinematic subspace we de-

sina\? fine T such thatT|n)=|p,n).* We define.7 within the sub-
2_ 52, p2_ Stha 2, o2 ,
Pi=P1+P3= ( MB— ) (B1tB2) (34 gpace such that
and therefore Jilp.n)=TJ[n). 3.7
P2=M2B%-CF?. (3.5  Thatis,Z,=TJT' on all momentum eigenstates within the

subspace. Then the operators satisfy the necessary SU(2)
Conversely, any state satisfying H8.5) can be reached by algebra
a kinematic transformation. This condition also implies that
PT=AM.
“In the equal-time case, the kinematic subspace contains only the
rest state. Thus we havén)=|n). Since rotations are kinematic in
3In the case of massless particles, the transverse spin operators dhis case and form an invariant subgroiligs not well defined and
be redefined adM 7, to satisfy theE(2)-like algebra given by may be an arbitrary rotation. Our goal, however, is to define helicity
[MJ,M7,]=0 and[ J3,M 7 ]=i€'M J; . The light-front limit of  in terms ofJ® eigenstate¢h). Thus we requird|h,n)=|h,n), and
the transverse spin operators for massless particles has been dilis forcesT to be the identity. Note that this ambiguity occurs only
cussed in Refl37]. in the equal-time case.
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Paths in Momentum Space
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momentum eigenstates, it is clear that simultaneous eigen-
states of spin and momentum exist. Thjscommutes with
all three components of the momentum operator. Thus, the
spin operators commute with all generators of the stability
group exceptl;, as required.

For a given interpolation angle, we find the angular mo-
=i€jJilp,n). (3.8 mentum operators in terms of the paramejys 3, to be

(7. J1lp.ny=T33; T p,n) =TI T p,n)
=T[J,.9]]T"p.n),

=i THT |p.n),

Note that the mass operator is defined Mf=P" P, sina
+P"P_—P?. Some manipulation reveals th&tC,,M?] J3=J3cosa+(BK1~ B1K3)
=0, so[T,M?]=0 and

1
o

sin
[ 7 M]|p,ny=TJTM|p,n)—=MTJT'|p,n) jlle+(,glAJs—,BZBKs)Ta+[3§A/C2—ﬁ§BE2

=TIMT|p,n)—TMJ; T p,n)
=T(IM—=MJ)Tp,n)

:T(JiM_MJi)|n>

a—1

COS
—B1B2(AK,+B El)]T,

sin

@ 2 2
+[ = B3AK + B1BE,

Jo=J2+(B2AJ3+ B1BKj3)

=T(J;P°—P°J)|n) @

_ 0 cosa—1

=T[J;,P]In) +B1B2AK, +BEy) | —7F—, (3.11
o

=0. (3.9

where

These operators then allow us to define simultaneous eigen-
states of mass and spin.
Finally, each spin operator commutes wittand T

[, T=7T"p.n) =T Flp.n)

a=+\/C(BI+B3),

A=C cosd+Ssind,

B=C sin§— Scosé. (3.12
=JInm=TTJn) . . _ .
The action of each spin operator is determined by the
=J;|ny—J|n)y=0. (3.10 three parameters, B;, and B,. We first investigate the ac-

tion of 7 by fixing (81,8,) and varyingé. This traces a path
It follows that 7, commutes with the generatok$, andX,.  in momentum space that begins at the rest state and ends on
Also, since the action of the spin operators is defined orthe surfaceP3=—(Pf/2M), as in Fig. 2. Here three distinct
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0.00

operator can be written in terms of the Pauli-Lubanski op-
eratorW, =3 €,,,5P"M“? as J3= —W"/MB.

It is important to note that helicity on any quantization
front is, in general, frame dependent. The above property,
however, guarantees that helicities are identical in any two
frames that are kinematically connected. On the light front,
for example, the Drell-Yan-West and Breif {=0) frames
are kinematically connected. Thus, helicities must be identi-
cal in these two frames as demonstrated in R2€]. For
convenience, we present in Appendix B, spin-1 and spin-1/2
representations for the helicity operator on an arbitrary inter-
polation front, as well as spin-1 polarization vectors and
Dirac spinors.

The transverse component of spin carries quite distinct

-0.50 ‘ : . : information. The operatoti, for example, is dynamical
0.0 0.2 0.4 0.6 0.8 1.0 dd d int " Ph logical imolicati
Transverse Momentum and depends on interactions. Phenomenological implications
and renormalization aspects of transverse spin in the light
FIG. 3. Momentum states for a fixed;= 3, are plotted in  front have been discussed in RE38].
momentum space. Each path begins at the rest state and cuts
through a single point on the kinematic subspace.

-0.10

-0.20

-0.30

Longitudinal Momentum

-0.40

C. Limiting cases

paths are visible, corresponding to different values for In E o :
- g. (3.6), it is clear that problems arise whet=0,
(B1.5,). Along each path, the form oFis fixed and the 5 w4, or P, =0. We now investigate these problem points

coefficient of each generator depends continuously on thEnd discuss the equal-time and light-front limits. First, con-

|r_1terpola_1t|0n angle. A path thus connects states _from each oy B1.B, as functions of momentum. Definex
kinematic subspace for which the equations of motion have a \/E|P /(= MB), s0 0<x=1. We expand3 in DOW-
fixed form, and allows us to trace the fate of these equationgrs ofoForx<1 \,/ve kee :he. first terpm o flm'gz P
as we move between interpolation angles. : P

In Fig. 3, five paths are plotted in the plar®e,(,P%) with Pl pl
increasingB; = B,. Connecting the points on each path pa- B1=— =,
rametrized by the same value 6f we find a parabola that P, | Jc MB

represents the kinematic subspace for the interpolation angle

8. As é increases, the parabola opens and becomes wider. On

the light front, the endpoints of these paths trace out the x P2 p2

parabolaP®= — (P?/2M). B=— T ="Ng" (3.19
We now investigate the action @f by fixing 4. For a |PL|\/E

fixed interpolation angle, we have defined a kinematic sub-

space that is parametrized I8y ,8,. The action of the spin ]

operators is defined everywhere on the subspace in terms 5P 970, we findg;—0 as|P,[—0. On the rest state, then,

these two parameters. The representatio/ait a fixed 8 the action ofJ; is identical to the action of the equal-time

tors. Using Eq(3.6) we find as continuous functions of momentum everywhere on the

kinematic subspace.
Now let us consider the spin operators on the light front.

To= ——=(J3P_— K, P2+ K ,PY), Recall that our construction of a general kinematic transfor-
MB mation T required thatB;=0, which is necessary for6
<l4. In the special case of the light front, however, the
R 1 z-(P,XK,) appearance df; as a kinematic operator allows us to define
jinier P A %—w a general kinematic transformation wiigs+#0. Since the

entire momentum space may be parametrize@by3,, 83,

the kinematic subspace becomes the entire momentum space.

, (3.13  This is a unique and important feature of the light-front
quantizationd= /4.

It follows that the action of the spin operators can be
where we may write), = —2><(AIQ+ Bﬁl). It is straight-  defined on any momentum eigenstate. The operators may be
forward to show that the operatgf; commutes with every obtained as before, now using the kinematic transformation
member of the stability group. We defigg to be the helic-  with Bz=In(P*\2/M), B,;=—(P'/P*) [3]. The resulting
ity operator. Its simple form allows us to trace the fate ofspin operators, valid for any momentum state, are given in
helicity states from equal time to the light front. The helicity terms of 3,85, 83:

N P -E,
+(zX PL)B Ksz— m

085013-7
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TJz=J3+ B1E,— B,E;, Recall that in the light-front limit,7 is defined on the sub-
spacey2P " =M. Within this subspace, E¢3.17) coincides
with Eq. (3.16). It follows that our interpolating spin opera-

1 1 tors are consistent with the light-front spin operators within
Ji= \/f( {,3133+ BKst35 (Bi—B5E, the subspace on which they are defined.
Now let us consider the equal-time limit. In the equal-
time limit the kinematic subspace contains only the rest state,
+ B1B,E; |eP3—E,e Pa+ er/’B], and T becomes a rotation. Since any sequence of rotations

leaves the rest state invariant, the paramefrss, may
take on any valudsee footnote B The spin operators be-
1 H 1 5 5 come
Jo=— Ji— K3+ = - B7)E
> N B2dz— B1K3 2(:32 BIE> N
o
53233C05a+(_3232_,3131)—a ,
— B1B2E1

efs—E,e Pa+ F2e53] . (3.1

The light-front spin operators are therefore 5 cosa—1
«71—31"‘3133 +(,8131+31,323 )T,

1 1
J3=J3+ —(P°E;—P°Ey),

P ) cosa—1
u72—~]2+ﬁ2~]3 +(,82~]2+51,32~] )7,

1 3.1
u71:M(P+F2_P7E2_P2K3_Pl«73)' (318
wherea= \/le+,822. If we setB,=0, then
1
Jo= 17 (P E1- P'F,+PK;—P2 7). (3.16 Jz=1J3c08B,—J,Sin By,
These are the spin operators presented in Appendix B of Ref. Ji=31,
[39], where the operato®*, E;, andF; do not contain our
normalization factor of /2. It is important to compare this B .
general light-front result with our interpolating spin opera- J2=J2C08B,+ J3SINp,. (3.19

tors.

Consider the light-front limit of the spin operators given These are rotated about tixeaxis. Similarly if we sets,

in Eqg. (3.11. In the light-front limit C—0, and using the =0, then
previous expansion, we find that 8,—PYMB
= —(P*/2/M). The spin operators become Jz=J3cosp1—Jysinfy,
\/E j1:J1COSB1+J3SinB1,
J3=J3+ V(PzEl_ P'E,),
J2=13J;. (3.20
1 . .
(Fo—Ep)— — (PY3+ P?K,) These are rotated about tiyeaxis. Thus the spin operators
V2 M are angular momentum operataisg,J,,J;, about rotated
axes, as we should expect. When we restficio be the
1 [=(PYH2+ (P?)2]E,+ 2PP2E,} identity transformation, eac3;=0, and we recover the or-
M2\2 2 w dinary equal-time angular momentum operators. These are

the equal-time spin operators restricted to the rest state.

This construction is a special case of the more general

o= (E1—Fy)— 1o (P23~ Py
2 \/E 1~ 37 3

spin operator given bj40]

1
— ——{[—(PY2+(P??]E,— 2P'P’E,}. -
(3.17 M M M+pP°

(VD)

(3.21

Z| U

085013-8

formal construction of the spin operator in equal time for an
arbitrary reference frame. In a general moving frame, the
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can be obtained by using the full transformatidnn Eq.
(2.9), without takingB;=0. From Eq.(3.21), we can obtain
the equal-time helicity operator as

PHYSICAL REVIEW D 64 085013

APPENDIX A: POINCARE ALGEBRA ON AN ARBITRARY
INTERPOLATING FRONT

[P,P']=0, [P~,P?]=0, [P~,PT]=0,
ip ip [P,E,]=iP%S, [P ,E{]=iP'S, [P7,3°]=0,
ICREEE (322 [P ,F]=-iPC, [P ,F,]=-iP?%C,
[P K3]=—iP,., [PYP?]=0, [PLP]=0,
[P1E,]=0, [PLE ]=iP", [PL,3%]=—iP?,
This takes a similar form as ouf;, becausg/; in Eq. (3.13 L 3
becomes [PYFi]=iP~, [PLF,]=0, [PK%]=0,
[P?,PT]=0, [P?,E,]=iP™, [P?E,]=0,
1 [P2,33]=iP1, [P2,F1]=0, [P%,F,]=iP,
J="we’ P @23 [p2K3=0, [P.Ej]=iP2C,  [P*E]=iP'C,
[P*,J%]=0, [P*,F]=iP'S,  [P*,F,]=iP?S,
+ w31—ji —i13 31—
in the equal-time limit, andB=|P|=0 in the rest frame. [PT.KA=iP_, [E2,E4]=10°C, [E2,J]=1E,,
Since the boost operator does not appear after projecting tH&,,F1]=iJ°S, [E,,Fpl=—iK?,
spin operatoS to the momentun®, as shown in Eq(3.22), [E, K3]=—iK,, [E;J%]=—iE,,
the helicity operator is kinematical. This is also consisten 3 _ a3
with our interpolating7;. t[El’Fl]_ K% [EFp]=—107S,
[E1,K3]=—iK?t,  [JPF]=iF,,
[J3F]=—iF;,  [J}K%]=0, [F1,F,]=iJ%C,
IV. DISCUSSION AND CONCLUSION
[F1,K3=iDY,  [F,K%=iD2

In this work, we constructed the Poincaatgebra valid
for any interpolation angle between the instant limit and the
light-front limit. We found that the light-front limio= =/4 is
a special angle that adds a new kinematic opendtprThe
conversion of the dynamical operator between boost and ro- The helicity operator may be represented for spin-1/2
tation is quite smooth, as shown in Fig. 1. The general resultates as follows:
of J in the instant limit agrees with the ordinary angular

APPENDIX B: HELICITIES ON AN ARBITRARY
INTERPOLATION FRONT

momentumJ, while it agrees with the LK7 obtained by P- APL 0 BPL
Leutwyler and Stern in the light-front limit with operation to APr —P_ —BPg 0
the parabolic subspace shown in Fig. 2. It is interesting to [T3lu2=— MB 0 BP p AP
note that the subspace is limited to only the rest frame in the - R -
instant limit while it can expand to an arbitrary frame in the —-BPr O APg  —P_

light-front limit. We have also presented the helicity operator (B1)

in an arbitrary interpolation angle. Explicit verification for Here Pr=P+iP2 and P, =P~ iP2. We found the spin-

the correct helicity eigenvalues can be given by the represen), eigenstates of helicity by diagonalizing this matrix.

tations summarized in Appendix B. Since our results ACrhese spinors are the solutions of the Dirac equation for an

model independent, they can play the role of testing any. , - . , .
suggested hadron model. Our results indicate that the intef’l-rbltrary interpolation angle:

polation method preserving the orthogonal coordinate system

MB—-P_
is useful in tracing the fate of interesting results obtained by
one form of Hamiltonian dynamics in the other end of the T = — 1 —APg
interpolation angle. Applications to other nonperturbative u(p,+1)= B(MB—P_) 0 '
analyses, such as the BCS vacuum and the mass gap equa- BP
tion, are under consideration. R
AP.
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BP,
1 0
U(P,+1)=m AP, |
MB—-P_
0
1 BPgr
U(p,—l):—m MB—P_ (B3)
— APy

These spinors satisfy the following constraints:
(P—mju(p,A)=0,
(P+mv(p,\)=0,

u(p,Mu(p,N)=2mdy, = —v(p,\ v (p,\),

> u(p,M)u(p\)=P+M,
A

> v(p,M)u(p,\)=P—M. (B4)

N

Similarly, for spin-1 states we have the representation

0 -BP? BP! 0

i | -BP> 0 —P_ AP?

[ Bh=\| et P, 0 —aP
0 —AP? AP! 0

(B5)

PHYSICAL REVIEW D64 085013

A M?2 -
E(pvo):_m P+_F1P71P 1P ]
1
e(p,+1)=ﬁMB SIP. |,
clp P_P'~iMBP? P_P?+iMBP!
B T R T

1
f(p,—l):m(ﬂpﬁ,

clp.| P_Pl+iMBP? PP2—iMBP1>

Py [Py ’
(B6)
where €(p,\) is written in the form e(p,\)

=(€e,,e_,€1,€65). These polarization vectors satisfy the
constraints

é(p,)\) pZO,
€ (p,N)-€(p,\")=—3d\r,

v
> e“(p,N)e"(pN)=—grr+ P P2 _
' M

(B7)

It is also clear that the longitudinal polarization vector
e(p,0) is “parallel” to the three-momentumP, since

We found the spin-1 eigenstates of helicity by diagonalizing(e_ ,e1,€5)~(P_,P1,P5). This is a feature of both light-
this matrix. After proper normalization, we obtain the polar-front and traditional equal-time definitions of longitudinal

ization vectors given by

helicity (h=0).
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