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Poincaré invariant algebra from instant to light-front quantization

Chueng-Ryong Ji and Chad Mitchell
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 19 April 2001; published 26 September 2001!

We present the Poincare´ algebra interpolating between instant and light-front time quantizations. The angular
momentum operators satisfyingSU(2) algebra are constructed in an arbitrary interpolation angle and shown to
be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and
light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular
mometum and the boost operators is manifest in our newly constructed algebra.
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I. INTRODUCTION

When hadronic systems are described in terms of qu
and gluons, it is part of nature that the characteristic m
menta are of the same order or even very much larger
the masses of the particles involved. For example, relativi
effects are crucial to describe the low-lying hadrons made
u, d, ands quarks and antiquarks@1#. It has also been real
ized that a parametrization of nuclear reactions in terms
nonrelativistic wave functions must fail. Thus, a relativis
treatment is one of the essential ingredients that should
incorporated in developing a successful strong interac
theory.

For the relativistic Hamiltonian approach, several form
of dynamics have been suggested@2,3#. Although the point
form dynamics has also been explored recently@4#, the most
popular choices were thus far the equalt ~instant form! and
equal t5t1z/c ~light-front form! quantizations. A crucial
difference between the instant form and the light-front~LF!
form may be attributed to their energy-momentum dispers
relations. When a particle has the massm and four-
momentum k5(k0,k1,k2,k3), the relativistic energy-
momentum dispersion relation of the particle at equalt is
given by

k05AkW21m2, ~1.1!

where the energyk0 is conjugate to t and the three-
momentum vectorkW is given bykW5(k1,k2,k3). However, the
corresponding energy-momentum dispersion relation
equalt is given by

k25
kW'

2 1m2

k1
, ~1.2!

where the light-front energy conjugate tot is given byk2

5k02k3 and the light-front momentak15k01k3 and kW'

5(k1,k2) are orthogonal tok2 and form the light-front
three-momentumk5(k1,kW'). While the instant form@Eq.
~1.1!# exhibits an irrational energy-momentum relation, t
light-front form @Eq. ~1.2!# yields a rational relation and thu
the signs ofk1 and k2 are correlated; e.g., the momentu
k1 is always positive when the system evolves to the fut
direction~i.e., positivet) so that the light-front energyk2 is
0556-2821/2001/64~8!/085013~11!/$20.00 64 0850
ks
-

an
ic
f

f

be
n

s

n

at

e

positive. In the instant form, however, no sign correlatio

for k0 andkW exist. Such a dramatic difference in the energ
momentum dispersion relation makes the light-front qua
zation quite distinct from other forms of Hamiltonian dy
namics.

Light-front quantization@2,5# has already been applie
successfully in the context of current algebra@6# and the
parton model@7# in the past. With the recent advances in t
Hamiltonian renormalization program@8,9#, light-front dy-
namics ~LFD! appears to be even more promising for t
relativistic treatment of hadrons. In the work of Brodsk
et al. @10#, it is demonstrated how to solve the problem
renormalizing light-front Hamiltonian theories while main
taining Lorentz symmetry and other symmetries. The gen
of the work presented in Ref.@10# may be found in Ref.@11#
and additional examples, including the use of LFD metho
to solve the bound-state problems in field theory, can
found in the recent review@12#. These results are indicativ
of the great potential of LFD for a fundamental descripti
of nonperturbative effects in strong interactions. This a
proach may also provide a bridge between the two fun
mentally different pictures of hadronic matter, i.e., the co
stituent quark model~or the quark parton model! closely
related to experimental observations and the quantum c
modynamics~QCD! based on a covariant non-Abelian qua
tum field theory. Again, the key to a possible connecti
between the two pictures is the rational energy-momen
dispersion relation given by Eq.~1.2! that leads to a rela-
tively simple vacuum structure. There is no spontaneous
ation of massive fermions in the LF quantized vacuum. Th
one can immediately obtain a constituent-type picture,1 in
which all partons in a hadronic state are connected directl
the hadron instead of being simply disconnected excitati
~or vacuum fluctuations! in a complicated medium. A pos
sible realization of chiral symmetry breaking in the L
vacuum has also been discussed in the literature@14#.

Furthermore, one of the most popular formulations for t
analysis of exclusive processes involving hadrons exists

1To provide further insight concerning this issue, we have rece
introduced an infrared longitudinal cutoff and generated a lig
front counterterm, which sets a scale for a dynamical mass gap
quarks and gluons as well as a string tension in the light-front Q
Hamiltonian@13#.
©2001 The American Physical Society13-1
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CHUENG-RYONG JI AND CHAD MITCHELL PHYSICAL REVIEW D64 085013
the framework of light-front quantization@12#. In particular,
the Drell-Yan-West (q15q01q350) frame has been exten
sively used in the calculation of various electroweak fo
factors and decay processes@15–17#. In this frame@18#, one
can derive a first-principle formulation for the exclusive a
plitudes by choosing judiciously the component of the lig
front current. As an example, only the parton-numb
conserving~valence! Fock state contribution is needed in
q150 frame when the ‘‘good’’ component of the current,J1

or J'5(Jx ,Jy), is used for the spacelike electromagne
form factor calculation of pseudoscalar mesons. One d
not need to suffer from complicated vacuum fluctuations
the equal-t formulation once again due to the rational d
persion relation. The zero-mode contribution may also
avoided in a Drell-Yan-West frame by using the plus comp
nent of current@19#. However, caution is needed in applyin
the established Drell-Yan-West formalism to other fram
because the current components do mix under the tran
mation of the reference frame@20#.

In LFD, a Fock-space expansion of bound states is ma
The wave functioncn(xi ,ki

' ,l i) describes the componen
with n constituents, with longitudinal momentum fractionxi ,
perpendicular momentumki

' , and helicityl i , i 51, . . . ,n.
It is the aim of LFD to determine those wave functions a
use them in conjunction with hard scattering amplitudes
describe the properties of hadrons and their response to
troweak probes. Important steps were taken towards a r
ization of this goal@10#. However, at present there are n
realistic results available for wave functions of hadro
based on QCD alone. In order to calculate the respons
hadrons to external probes, one might resort to the us
model wave functions. This method of estimating matrix
ements has been presented in much literature@21–31#. Espe-
cially, the variational principle enabled the solution of
QCD-motivated effective Hamiltonian, and the construc
LF quark model provided a good description of the availa
experimental data spanning various meson properties@32#.
The same reasons that make LFD so attractive to s
bound-state problems in field theory, also make it useful
a relativistic description of nuclear systems. LF metho
have the advantage that they are formally similar to tim
ordered many-body theories, yet provide relativistically
variant observables.

On the other hand, the Poincare´ algebra in the ordinary
equal-t quantization is drastically changed in the light-fro
equal-t quantization. Although the maximum numb
~seven! of the ten Poincare´ generators are kinematic~i.e.,
interaction independent! and they leave the state att5t
1z/c50 unchanged@33#, rotation becomes a dynamica
problem in the light-front quantization. Because the qua
zation surfacet 5 0 is not invariant under the transvers
rotation whose direction is perpendicular to the direction
the quantization axisz at equalt @34#, the transverse angula
momentum operator involves the interaction that changes
particle number. Leutwyler and Stern showed that the an
lar momentum operators can be redefined to satisfy
SU(2) spin algebra and the commutation relation betw
mass operator and spin operators@3#,
08501
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@Ji ,Jj #5 i e i jkJk , ~1.3!

@M ,JW #50. ~1.4!

However, in LFD, there are two dynamic equations to so

J 2uH;p1,pW'
2 &5SH~SH11!uH;p1,pW'

2 & ~1.5!

and

M2uH;p1,pW'
2 &5mH

2 uH;p1,pW'
2 &, ~1.6!

where the total angular momentum~or spin! and the mass
eigenvalues of the hadron~H! are given bySH and mH .
Thus, it is not a trivial matter to specify the total angul
momentum of a specific hadron state.

As a step towards understanding the conversion of
dynamical problem from boost to rotation, in this work w
construct the Poincare´ algebra interpolating between insta
and light-front time quantizations. We use an orthogonal
ordinate system, which interpolates smoothly between
equal-time and the light-front quantization hypersurfac
Thus, our interpolating coordinate system has a nice fea
of tracing the fate of the Poincare´ algebra at equal time as th
hypersurface approaches to the light-front limit. The sa
method of interpolating hypersurfaces has been used
Hornbostel@35#.2 In an arbitrary interpolation angle, we fin
the transformation that allows not only the simultaneous
signments of mass and angular momentum, but also SU
algebra among the angular momentum operators. Appro
ing the light-front limit, we verify that the LFD has one mor
kinematic operator than the dynamics with any other int
polation angle. Also, we find that the roles of angular m
mentum and boost are smoothly exchanged as the interp
tion angle moves fromt to t. We also obtain a genera
definition of J' and J3 at an arbitrary interpolation angl
and show that it is consistent with the result obtained
Leutwyler and Stern in the light-front limit.

In Sec. II, we present the Poincare´ algebra interpolating
between equalt and equalt. In Sec. III, we construct the
angular momenta that satisfy the SU(2) spin algebra in
interpolation angle and present the two dynamic equation
be solved simultaneously in an arbitrary interpolation ang
Discussion of results and conclusions follow in Sec. IV.
Appendix A, we summarize the 45 commutation relations
the Poincare´ generators with an arbitrary interpolation ang
In Appendix B, we provide explicit representations of th
helicity operator and the spin-1 and spin-1/2 polarizat
vectors with an arbitrary interpolation angle.

2Application to the axial anomaly in the Schwinger model h
also been presented@36#.
3-2
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POINCARÉINVARIANT ALGEBRA FROM INSTANT TO . . . PHYSICAL REVIEW D 64 085013
II. INTERPOLATION ANGLE DEPENDENT POINCARE ´

ALGEBRA

We begin by introducing an interpolating parameterd.
Previous authors@35# have used the parameterp/2<u<p
such that

S x1

x2D 5S sin
u

2
cos

u

2

cos
u

2
2sin

u

2

D S x0

x3D . ~2.1!

Herex1 plays the role of ‘‘time’’ andx2 is the longitudinal
coordinate as defined on an arbitrary interpolation front.
this work we defined5p/22u/2 so that

S x1

x2D 5S cosd sind

sind 2cosd D S x0

x3D . ~2.2!

This parameter is easily visualized and ranges fromd50 on
the equal-time instantx050 to d5p/4 on the light-front
x151/A2(x01x3)50. In this new basis the metric becom

@gmn#5S C 0 0 S

0 21 0 0

0 0 21 0

S 0 0 2C

D , ~2.3!

where C5cos 2d, S5sin 2d, and g115C. Similarly, we
transform the Poincare´ matrix to this new basis, so that

@Mmn#5S 0 K1 K2 K3

2K1 0 J3 2J2

2K2 2J3 0 J1

2K3 J2 2J1 0

D
→S 0 E1 E2 2K3

2E1 0 J3 2F1

2E2 2J3 0 2F2

K3 F1 F2 0

D , ~2.4!

where we introduce the operators

E15J2 sind1K1 cosd,

E25K2 cosd2J1 sind,

F15K1 sind2J2 cosd,

F25J1 cosd1K2 sind ~2.5!

on an arbitrary interpolation front.
The ten generators of the Poincare´ algebra are

P1 ,P2 ,P1 ,P2 ,E1 ,E2 ,F1 ,F2 ,K3, andJ3, where each Poin-
caré generator is defined on the interpolation front as f
lows. The Hamiltonian becomesP15CP11SP25AP0

1BP3, where
08501
n

-

A5C cosd1Ssind,

B5C sind2Scosd. ~2.6!

Similarly the momentum vector is (P2 ,P') where P2

5SP12CP252BP01AP3. The transverse rotation op
erators can be read from@Mmn# to beF1 andF2. As in both
the equal-time and light-front cases, transverse rotations
chosen to commute with the Hamiltonian,@Fi ,P1#50. Fi-
nally, the transverse boost operators for an arbitrary inter
lation front areE1 andE2. Again as in both the equal-time
and light-front cases, transverse boosts are chosen to c
mute with the longitudinal momentum@Ei ,P2#50. Note
that the longitudinal angular momentum and longitudin
boost operators are essentially unaffected by the transfor
tion to an arbitrary interpolation front.

Other commutation relations among the ten genera
may be obtained from the usual rules@M rs,Pm#
52 i (gmrPs2gmsPr) and @Mab,M rs#52 i (gbsMar

2gbrMas1garMbs2gasMbr). A comprehensive list of
the 45 commutation relations among the contravariant co
ponents of the Poincare´ generators is presented in Append
A. This algebra is consistent with the equal-time algebra
d50; it is also consistent with the light-front algebra ford
5p/4.

Next we investigate the algebraic structure of the Poinc´
group on an arbitrary interpolation front. The stability grou
of the initial surfacex150 is the set of operators, whic
generate Poincare´ transformations that leave this surface i
variant. Following the literature, we describe such operat
as kinematical. In physical terms, kinematical operators
those operators that do not change the direction of the t
(x1) axis. To clarify the distinction between kinematic an
dynamic operators, we define an alternate set of Poinc´
genarators by transforming the Poincare´ matrix Mab
5gamgbnMmn, so that

@Mab#5S 0 D1 D2 K3

2D1 0 J3 2K1

2D2 2J3 0 2K2

2K3 K1 K2 0

D , ~2.7!

where the new generators are defined as follows:

K15CF12SE1,

K25CF22SE2 ,

D152SF12CE1 ,

D252SF22CE2 . ~2.8!

It can be seen that@Ki ,P1#50, and therefore each transfo
matione2 ivKi leaves theP1 operator invariant. Thus thep1

eigenvalue for a given momentum state is invariant un
e2 ivKi. It follows that the1 component of any four vector is
invariant undere2 ivKi, and thereforee2 ivK iux1&;ux1&. As
the instantx150 is unaltered,K1 andK2 are kinematic.
3-3
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TABLE I. Kinematic and dynamic generators on an arbitrary interpolation front.

Kinematic Dynamic

d50 K152J2 , K25J1 , J3 , P1,P2,P3 D152K1 , D252K2 , K3 , P0

0<d,p/4 K1 , K2 , J3 , P1,P2,P2 D1 , D2 , K3 , P1

d5p/4 K152E1 , K252E2 , J3 , K3 , P1, P2, P1 D152F1 , D252F2 , P2
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The sets of kinematic and dynamic generators are
sented in Table I.

There are two key features to be noted in this algebra.
first is the appearance of the longitudinal boost operato
the stability group on the light front. The number of kin
matic generators remains unchanged until we reach the li
front quantization, where the operatorK3 becomes kine-
matic. To understand this, note that@P1,K3#5 iP2

5 i (SP12CP2)→ iP1 as d→p/4. Similarly we have
@x1,K3#5 ix25 i (Sx12Cx2)→ ix1 as d→p/4. Therefore
the instant defined byx150 becomes invariant under long
tudinal boosts as we move to the light front. Besides this n
feature, the operators in each group change continuous
we move from the equal-time quantization to the light fro

The second feature to note is the smooth exchange o
roles of transverse boosts and rotations. In the equal-t
case (d50), rotations are kinematic and boosts are dynam
On the light front, however, transverse rotations are dyna
and transverse boosts are kinematic. In the interpola
case, the kinematic generatorsK1 and K2 are mixtures of
boosts (E1 ,E2) and rotations (F1 ,F2). The dynamic genera
torsD1 andD2 are also mixtures of boosts and rotations. T
mixing coefficients are smooth functions of the interpolati
angle, as displayed in Fig. 1.

We now construct the form for an arbitrary kinema
transformation on a fixed interpolation front. In general w
have

T5e2 ib3K3
e2 i (b1K11b2K2), ~2.9!
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whereb1 , b2, andb3 are free parameters. Under what co
ditions isT kinematic? Use of the Baker-Hausdorff theore
reveals that

T†P1T5P1 coshb31P2 sinhb3 . ~2.10!

It follows that x1→x1coshb31x2sinhb3 under T. Note
that x1 coshb31x2 sinhb35x1 coshb31(x1S2x2C)sinhb3.
Now T is kinematic, if and only if the instantx150 is in-
variant underT. This requires that2x2C sinhb350. This
can occur only ifC50 or b350. Thus we find thatT is
kinematic ifd5p/4 or b350. FordÞp/4, then,b350 and
the kinematic transformationT has two free parameters. O
the light front,b3 may take on any value andT has three free
parameters.

III. SU „2… SPIN ALGEBRA AND DYNAMIC EQUATIONS
IN AN ARBITRARY INTERPOLATION ANGLE

In this section we construct the SU(2) spin algebra in
arbitrary interpolation angle. That is, we wish to constru
operatorsJi satisfying the criteria

@Ji ,Jj #5 i e i jkJk , ~3.1!

@Ji ,M #50,

whereM is the mass operator. We also require thatJW com-
mutes with every kinematic generator exceptJ3. We will see
of
ts
FIG. 1. The smooth exchange of the roles
rotation and boost is displayed. The coefficien
of rotation Fi and boostEi in the dynamic gen-
eratorDi are plotted versus interpolation angled.
3-4
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that such operators cannot be defined, in general, on the
tire Hilbert space. Instead, we define a relevant subspac
which these operators are well defined. Note that the s
operators constructed in this work are valid only for mass
particles.3

A. Kinematic subspace

Consider the set of momentum states that can be rea
from rest by a kinematic transformation. We define this se
states to be the kinematic subspace for a fixed interpola
angle.

In general, kinematic transformations take the form giv
in Eq. ~2.9!, whereb350. We find that momentum operato
transform underT as follows:

T†P2T5P2 cosa1
sina

a
C~b1P11b2P2!,

T†P1T5P12b1

sina

a
P21

cosa21

a2
Cb1

3~b1P11b2P2!,

T†P2T5P22b2

sina

a
P21

cosa21

a2

3Cb2~b1P11b2P2!, ~3.2!

where a5AC(b1
21b2

2). This determines how momentum
eigenvalues transform underT. At any interpolating angle
the rest state has momentum eigenvaluesP15P250 and
P252MB. It follows that any state that can be reach
from rest must have a three-momentum of the form

~P2 ,P1,P2!5S 2MB cosa,b1MB
sina

a
,b2MB

sina

a D .

~3.3!

Suppose we have a momentum state of the form gi
above. Then

P'
2 5P1

21P2
25S MB

sina

a D 2

~b1
21b2

2! ~3.4!

and therefore

P2
2 5M2B22CP'

2 . ~3.5!

Conversely, any state satisfying Eq.~3.5! can be reached by
a kinematic transformation. This condition also implies th
P15AM.

3In the case of massless particles, the transverse spin operato
be redefined asMJi to satisfy theE(2)-like algebra given by
@MJ1 ,MJ2#50 and@J3 ,MJi #5 i e i j MJj . The light-front limit of
the transverse spin operators for massless particles has bee
cussed in Ref.@37#.
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In the equal-time case,C5cos 2d51, B50, and P2

5P3. Thus (P3)252P'
2 and P250. The kinematic sub-

space in the equal-time case contains only the rest state
a general interpolating angle, the kinematic subspace
paraboloid in momentum space containing the origin. As
move to the light-front limit,C50, B52(1/A2), andP2

5P1. ThereforeP15(M /A2). In equal-time momentum
space, this is the set of states on the paraboloidP3

52(P'
2 /2M ). If we allow b3Þ0, however, the addition o

longitudinal boost to the transformationT allows us to move
vertically off of this paraboloid, to a state with arbitrary lon
gitudinal momentum. It follows that the kinematic subspa
on the light-front is identical to the entire momentum spa
This is a unique feature ofd5p/4.

For 0,d,p/4 andP'Þ0, uP2u,2MB and we can in-
vert Eq.~3.3! to find the parametersb1 andb2:

a5arccosS 2
P2

MBD ,

b152arccosS 2
P2

MBD P1

AM2B22P2
2

,

52arcsinSACuP'u
2MB D P1

uP'uAC
,

b252arccosS 2
P2

MBD P2

AM2B22P2
2

,

52arcsinSACuP'u
2MB D P2

uP'uAC
. ~3.6!

B. Construction of SU„2… algebra

Following the procedure of Leutwyler and Stern@3#, we
now define the spin operatorsJi through the use of a kine
matic transformation. Within the kinematic subspace we
fine T such thatTun&5up,n&.4 We defineJ within the sub-
space such that

Ji up,n&5TJi un&. ~3.7!

That is,Ji5TJiT
† on all momentum eigenstates within th

subspace. Then the operators satisfy the necessary S
algebra

can

dis-

4In the equal-time case, the kinematic subspace contains only
rest state. Thus we haveTun&5un&. Since rotations are kinematic in
this case and form an invariant subgroup,T is not well defined and
may be an arbitrary rotation. Our goal, however, is to define helic
in terms ofJ3 eigenstatesuh&. Thus we requireTuh,n&5uh,n&, and
this forcesT to be the identity. Note that this ambiguity occurs on
in the equal-time case.
3-5
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FIG. 2. Three-dimensional plot of momentum
states for fixedb1 ,b2. Paths parametrized byd
begin at the rest state and end on a paraboloid
the light front.
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@Ji ,Jj #up,n&5TJiJjT
†up,n&2TJjJiT

†up,n&

5T@Ji ,Jj #T
†up,n&,

5 i e i jkTJkT
†up,n&,

5 i e i jkJkup,n&. ~3.8!

Note that the mass operator is defined byM25P1P1

1P2P22P'
2 . Some manipulation reveals that@Ki ,M2#

50, so@T,M2#50 and

@Ji ,M #up,n&5TJiT
†M up,n&2MTJiT

†up,n&

5TJiMT†up,n&2TMJiT
†up,n&

5T~JiM2MJi !T
†up,n&

5T~JiM2MJi !un&

5T~Ji P
02P0Ji !un&

5T@Ji ,P0#un&

50. ~3.9!

These operators then allow us to define simultaneous ei
states of mass and spin.

Finally, each spin operator commutes withT andT†:

@Ji ,T†#5J iT
†up,n&2T†Ji up,n&

5Ji un&2T†TJi un&

5Ji un&2Ji un&50. ~3.10!

It follows that Ji commutes with the generatorsK1 andK2.
Also, since the action of the spin operators is defined
08501
n-

n

momentum eigenstates, it is clear that simultaneous eig
states of spin and momentum exist. ThusJi commutes with
all three components of the momentum operator. Thus,
spin operators commute with all generators of the stabi
group exceptJ3, as required.

For a given interpolation angle, we find the angular m
mentum operators in terms of the parametersb1 , b2 to be

J35J3 cosa1~b2K12b1K2!
sina

a
,

J15J11~b1AJ32b2BK3!
sina

a
1@b1

2AK22b2
2BE2

2b1b2~AK11BE1!#
cosa21

a2
,

J25J21~b2AJ31b1BK3!
sina

a
1@2b2

2AK11b1
2BE1

1b1b2~AK21BE2!#
cosa21

a2
, ~3.11!

where

a5AC~b1
21b2

2!,

A5C cosd1Ssind,

B5C sind2Scosd. ~3.12!

The action of each spin operator is determined by
three parametersd, b1, andb2. We first investigate the ac
tion of J by fixing (b1 ,b2) and varyingd. This traces a path
in momentum space that begins at the rest state and end
the surfaceP352(P'

2 /2M ), as in Fig. 2. Here three distinc
3-6
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paths are visible, corresponding to different values
(b1 ,b2). Along each path, the form ofJ is fixed and the
coefficient of each generator depends continuously on
interpolation angle. A path thus connects states from e
kinematic subspace for which the equations of motion hav
fixed form, and allows us to trace the fate of these equati
as we move between interpolation angles.

In Fig. 3, five paths are plotted in the plane (P' ,P3) with
increasingb15b2. Connecting the points on each path p
rametrized by the same value ofd, we find a parabola tha
represents the kinematic subspace for the interpolation a
d. As d increases, the parabola opens and becomes wide
the light front, the endpoints of these paths trace out
parabolaP352(P'

2 /2M ).
We now investigate the action ofJ by fixing d. For a

fixed interpolation angle, we have defined a kinematic s
space that is parametrized byb1 ,b2. The action of the spin
operators is defined everywhere on the subspace in term
these two parameters. The representation ofJ at a fixedd
requires that we defineb1 ,b2 in terms of momentum opera
tors. Using Eq.~3.6! we find

J35
21

MB
~J3P22K1P21K 2P1!,

JW'5J'1
1

MB
FP'AS J32

ẑ•~P'3KW'!

MB2P2
D

1~ ẑ3P'!BS K32
P'•E'

MB2P2
D G , ~3.13!

where we may writeJ'52 ẑ3(AKW'1BDW'). It is straight-
forward to show that the operatorJ3 commutes with every
member of the stability group. We defineJ3 to be the helic-
ity operator. Its simple form allows us to trace the fate
helicity states from equal time to the light front. The helici

FIG. 3. Momentum states for a fixedb15b2 are plotted in
momentum space. Each path begins at the rest state and
through a single point on the kinematic subspace.
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operator can be written in terms of the Pauli-Lubanski o
eratorWm5 1

2 emnabPnMab asJ352W1/MB.
It is important to note that helicity on any quantizatio

front is, in general, frame dependent. The above prope
however, guarantees that helicities are identical in any
frames that are kinematically connected. On the light fro
for example, the Drell-Yan-West and Breit (q150) frames
are kinematically connected. Thus, helicities must be ide
cal in these two frames as demonstrated in Ref.@20#. For
convenience, we present in Appendix B, spin-1 and spin-
representations for the helicity operator on an arbitrary in
polation front, as well as spin-1 polarization vectors a
Dirac spinors.

The transverse component of spin carries quite dist
information. The operatorJW' , for example, is dynamica
and depends on interactions. Phenomenological implicat
and renormalization aspects of transverse spin in the l
front have been discussed in Ref.@38#.

C. Limiting cases

In Eq. ~3.6!, it is clear that problems arise whend50,
d5p/4, or P'50. We now investigate these problem poin
and discuss the equal-time and light-front limits. First, co
sider b1 ,b2 as functions of momentum. Definex
5ACuP'u/(2MB), so 0<x<1. We expandb1 ,b2 in pow-
ers ofx. For x!1 we keep the first term to find

b152
xP1

uP'uAC
5

P1

MB
,

b252
xP2

uP'uAC
5

P2

MB
. ~3.14!

For dÞ0, we findb i→0 asuP'u→0. On the rest state, then
the action ofJi is identical to the action of the equal-tim
angular momentumJi . It follows thatb1 ,b2 can be defined
as continuous functions of momentum everywhere on
kinematic subspace.

Now let us consider the spin operators on the light fro
Recall that our construction of a general kinematic transf
mation T required thatb350, which is necessary for 0<d
,p/4. In the special case of the light front, however, t
appearance ofK3 as a kinematic operator allows us to defi
a general kinematic transformation withb3Þ0. Since the
entire momentum space may be parametrized byb1 ,b2 ,b3,
the kinematic subspace becomes the entire momentum sp
This is a unique and important feature of the light-fro
quantizationd5p/4.

It follows that the action of the spin operators can
defined on any momentum eigenstate. The operators ma
obtained as before, now using the kinematic transformatioT
with b35 ln(P1A2/M ), b' i52(Pi /P1) @3#. The resulting
spin operators, valid for any momentum state, are given
terms ofb1 ,b2 ,b3:

uts
3-7
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J35J31b1E22b2E1 ,

J15
1

A2
H Fb1J31b2K31

1

2
~b1

22b2
2!E2

1b1b2E1Geb32E2e2b31F2eb3J ,

J25
1

A2
H Fb2J32b1K31

1

2
~b2

22b1
2!E2

2b1b2E1Geb32E2e2b31F2eb3J . ~3.15!

The light-front spin operators are therefore

J35J31
1

P1
~P2E12P1E2!,

J15
1

M
~P1F22P2E22P2K32P1J3!,

J25
1

M
~P2E12P1F11P1K32P2J3!. ~3.16!

These are the spin operators presented in Appendix B of
@39#, where the operatorsP1, Ei , andFi do not contain our
normalization factor of 1/A2. It is important to compare this
general light-front result with our interpolating spin oper
tors.

Consider the light-front limit of the spin operators give
in Eq. ~3.11!. In the light-front limit C→0, and using the
previous expansion, we find that b1→P1/MB
52(P1A2/M ). The spin operators become

J35J31
A2

M
~P2E12P1E2!,

J15
1

A2
~F22E2!2

1

M
~P1J31P2K3!

2
1

M2A2
$@2~P1!21~P2!2#E212P1P2E1%,

J25
1

A2
~E12F1!2

1

M
~P2J32P1K3!

2
1

M2A2
$@2~P1!21~P2!2#E122P1P2E2%.

~3.17!
08501
ef.

Recall that in the light-front limit,J is defined on the sub
spaceA2P15M . Within this subspace, Eq.~3.17! coincides
with Eq. ~3.16!. It follows that our interpolating spin opera
tors are consistent with the light-front spin operators with
the subspace on which they are defined.

Now let us consider the equal-time limit. In the equa
time limit the kinematic subspace contains only the rest st
and T becomes a rotation. Since any sequence of rotati
leaves the rest state invariant, the parametersb1 ,b2 may
take on any value~see footnote 3!. The spin operators be
come

J35J3 cosa1~2b2J22b1J1!
sina

a
,

J15J11b1J3

sina

a
1~b1

2J11b1b2J2!
cosa21

a2
,

J25J21b2J3

sina

a
1~b2

2J21b1b2J1!
cosa21

a2
,

~3.18!

wherea5Ab1
21b2

2. If we setb150, then

J35J3 cosb22J2 sinb2 ,

J15J1 ,

J25J2 cosb21J3 sinb2 . ~3.19!

These are rotated about thex axis. Similarly if we setb2
50, then

J35J3 cosb12J1 sinb1 ,

J15J1 cosb11J3 sinb1 ,

J25J2 . ~3.20!

These are rotated about they axis. Thus the spin operator
are angular momentum operatorsJ1 ,J2 ,J3, about rotated
axes, as we should expect. When we restrictT to be the
identity transformation, eachb i50, and we recover the or
dinary equal-time angular momentum operators. These
the equal-time spin operators restricted to the rest state.

This construction is a special case of the more gen
formal construction of the spin operator in equal time for
arbitrary reference frame. In a general moving frame,
spin operator given by@40#

SW 5JW
P0

M
2KW 3

P

M
2

JW•P

M1P0

P

M
~3.21!
3-8
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can be obtained by using the full transformationT in Eq.
~2.9!, without takingb350. From Eq.~3.21!, we can obtain
the equal-time helicity operator as

SW •P

uPu
5

JW•P

uPu
. ~3.22!

This takes a similar form as ourJ3, becauseJ3 in Eq. ~3.13!
becomes

J352
1

MB
JW•P ~3.23!

in the equal-time limit, andMB5uPu50 in the rest frame.
Since the boost operator does not appear after projecting
spin operatorSW to the momentumP, as shown in Eq.~3.22!,
the helicity operator is kinematical. This is also consist
with our interpolatingJ3.

IV. DISCUSSION AND CONCLUSION

In this work, we constructed the Poincare´ algebra valid
for any interpolation angle between the instant limit and
light-front limit. We found that the light-front limitd5p/4 is
a special angle that adds a new kinematic operatorK3. The
conversion of the dynamical operator between boost and
tation is quite smooth, as shown in Fig. 1. The general re
of J in the instant limit agrees with the ordinary angul
momentumJW , while it agrees with the LFJ obtained by
Leutwyler and Stern in the light-front limit with operation t
the parabolic subspace shown in Fig. 2. It is interesting
note that the subspace is limited to only the rest frame in
instant limit while it can expand to an arbitrary frame in t
light-front limit. We have also presented the helicity opera
in an arbitrary interpolation angle. Explicit verification fo
the correct helicity eigenvalues can be given by the repre
tations summarized in Appendix B. Since our results
model independent, they can play the role of testing a
suggested hadron model. Our results indicate that the in
polation method preserving the orthogonal coordinate sys
is useful in tracing the fate of interesting results obtained
one form of Hamiltonian dynamics in the other end of t
interpolation angle. Applications to other nonperturbat
analyses, such as the BCS vacuum and the mass gap
tion, are under consideration.
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APPENDIX A: POINCARÉ ALGEBRA ON AN ARBITRARY
INTERPOLATING FRONT

@P2,P1#50, @P2,P2#50, @P2,P1#50,

@P2,E2#5 iP2S, @P2,E1#5 iP1S, @P2,J3#50,

@P2,F1#52 iP1C, @P2,F2#52 iP2C,

@P2,K3#52 iP1 , @P1,P2#50, @P1,P1#50,

@P1,E2#50, @P1,E1#5 iP1, @P1,J3#52 iP2,

@P1,F1#5 iP2, @P1,F2#50, @P1,K3#50,

@P2,P1#50, @P2,E2#5 iP1, @P2,E1#50,

@P2,J3#5 iP1, @P2,F1#50, @P2,F2#5 iP2,

@P2,K3#50, @P1,E2#5 iP2C, @P1,E1#5 iP1C,

@P1,J3#50, @P1,F1#5 iP1S, @P1,F2#5 iP2S,

@P1,K3#5 iP2 , @E2 ,E1#5 iJ3C, @E2 ,J3#5 iE1 ,

@E2 ,F1#5 iJ3S, @E2 ,F2#52 iK 3,

@E2 ,K3#52 iK2 , @E1 ,J3#52 iE2 ,

@E1 ,F1#52 iK 3, @E1 ,F2#52 iJ3S,

@E1 ,K3#52 iK 1, @J3,F1#5 iF 2 ,

@J3,F2#52 iF 1 , @J3,K3#50, @F1 ,F2#5 iJ3C,

@F1 ,K3#5 iD 1, @F2 ,K3#5 iD 2.

APPENDIX B: HELICITIES ON AN ARBITRARY
INTERPOLATION FRONT

The helicity operator may be represented for spin-
states as follows:

@J3#1/252
1

MB S P2 APL 0 BPL

APR 2P2 2BPR 0

0 BPL P2 APL

2BPR 0 APR 2P2

D .

~B1!

Here PR5P11 iP2 and PL5P12 iP2. We found the spin-
1/2 eigenstates of helicity by diagonalizing this matr
These spinors are the solutions of the Dirac equation for
arbitrary interpolation angle:

u~p,11!52
1

AB~MB2P2! S MB2P2

2APR

0

BPR

D ,

u~p,21!52
1

AB~MB2P2! S APL

MB2P2

BPL

0

D . ~B2!

In addition, these spin-1/2 eigenstates are antiparticle
lutions to the Dirac equation for an arbitrary angle:
3-9



in
r-

e

or

al

CHUENG-RYONG JI AND CHAD MITCHELL PHYSICAL REVIEW D64 085013
v~p,11!5
1

AB~MB2P2! S BPL

0

APL

MB2P2

D ,

v~p,21!52
1

AB~MB2P2! S 0

BPR

MB2P2

2APR

D . ~B3!

These spinors satisfy the following constraints:

~P” 2m!u~p,l!50,

~P” 1m!v~p,l!50,

ū~p,l!u~p,l8!52mdll852 v̄~p,l8!v~p,l!,

(
l

u~p,l!ū~p,l!5P” 1M ,

(
l

v~p,l!v̄~p,l!5P” 2M . ~B4!

Similarly, for spin-1 states we have the representation

@J3#15
i

MB S 0 2BP2 BP1 0

2BP2 0 2P2 AP2

BP1 P2 0 2AP1

0 2AP2 AP1 0

D .

~B5!

We found the spin-1 eigenstates of helicity by diagonaliz
this matrix. After proper normalization, we obtain the pola
ization vectors given by
-

08501
g

e~p,0!52
A

MB S P12
M2

P1
,P2 ,P1,P2D ,

e~p,11!5
1

A2MB
S SuP'u,

2CuP'u,
P2P12 iMBP2

uP'u
,
P2P21 iMBP1

uP'u D ,

e~p,21!5
1

A2MB
S SuP'u,

2CuP'u,
P2P11 iMBP2

uP'u
,
P2P22 iMBP1

uP'u D ,

~B6!

where e(p,l) is written in the form e(p,l)
5(e1 ,e2 ,e1 ,e2 ). These polarization vectors satisfy th
constraints

e~p,l!•p50,

e* ~p,l!•e~p,l8!52dll8 ,

(
l

em~p,l!en~p,l!52gmn1
pnpm

M2
. ~B7!

It is also clear that the longitudinal polarization vect
e(p,0) is ‘‘parallel’’ to the three-momentumP, since
(e2 ,e1 ,e2);(P2 ,P1 ,P2). This is a feature of both light-
front and traditional equal-time definitions of longitudin
helicity (h50).
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