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Numerical simulations ofPT-symmetric quantum field theories
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Many non-Hermitian butPT-symmetric theories are known to have a real positive spectrum. Since the
action is complex for these theories, Monte Carlo methods do not apply. In this paper the first field-theoretic
method for numerical simulations ofPT-symmetric Hamiltonians is presented. The method is the complex
Langevin equation, which was used previously to study complex Hamiltonians in statistical physics and in
Minkowski space. We compute the equal-time one- and two-point Green’s functions in zero and one dimen-
sion, where comparisons to known results can be made. The method should also be applicable in four-
dimensional space-time. Our approach may also give insight into how to formulate a probabilistic interpreta-
tion of PT-symmetric theories.
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I. INTRODUCTION

Traditionally, only theories with Hermitian Hamiltonian
are studied in quantum mechanics and quantum field the
This is because Hermiticity guarantees real eigenvalues
therefore a unitary time translation and conservation of pr
ability. It was recently observed that quantum mechan
theories whose Hamiltonians are not Hermitian, but are s
metric under a transformation known asPT symmetry have
positive definite spectra@1–16#. A major criticism of these
theories is that a consistent probabilistic interpretation
not been formulated. This paper suggests that there is a
Fokker-Planck probability underlying these theories and p
sents a numerical method for calculating thek-point Green’s
functionsGk of these theories.

A PT-symmetric Lagrangian that has been studied in
past is defined by the Euclidean Lagrangian

LE5
1

2
~]f!21

1

2
m2f22

g

N
~ if!N. ~1.1!

A recent paper used Schwinger-Dyson techniques to s
this self-interacting scalar quantum field theory@17#. Green’s
functions Gk calculated by this method agreed extreme
well with known results. It was argued that these theor
possess a positive definite spectrum and a nonvanis
value ofG15^0ufu0& for all N.2.

Under PT symmetryP sendsf→2f and T sendst→
2t and i→2 i , wheret is time. @Note that in one dimension
~i.e., quantum mechanics! f represents the position of th
particle andP corresponds to reflection in space.# ThusLE is
manifestlyPT symmetric. It is believed that the reality an
positivity of the spectra are a direct consequence of thisPT
symmetry. The positivity of the spectra for allN is an ex-
tremely surprising result; it is not at all obvious, for examp
that the LagrangianLE5(]f)2/22gf4/4 corresponding to
N54 andm50 has a positive spectrum. To understand t
and other results, we must properly define the contours
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integration for path integrals and, in dimensionD.0, the
boundary conditions in the corresponding Schro¨dinger equa-
tion.

Contours of integration and boundary conditions ha
been extensively studied in zero dimension and one dim
sion @1,17#. In zero dimensions one must choose the cont
of integration for the path integral such that it lies in a regi
where exp„2S(f)… is damped asufu→6` and the path
integral converges. For massless versions of Eq.~1.1!, these
regions are wedges, and are chosen to be analytical con
ations of the wedges for the harmonic oscillator, which a
centered about the negative and positive real axes and
angular openingp/2. For arbitraryN.2 the anti-Stokes’
lines at the centers of the left and right wedges lie below
real axis at the angles:

u left52p1S ~N22!p

2N D ,

u right52S ~N22!p

2N D . ~1.2!

The opening angle of these wedges isp/2N.
Similarly, for one-dimensional versions of Eq.~1.1! with

m50, the Schro¨dinger differential equation is

2c9~f!2
g~ if!N

N
c~f!5Ec~f!. ~1.3!

In Ref. @1# it was shown how to continue analytically in th
parameterN away from the harmonic oscillator valueN52.
This analytical continuation defines the boundary conditio
in the complex-f plane. The regions in the cut complex-f
plane in whichc(f) vanishes exponentially asufu→` are
once again wedges. These wedges also define the regio
which exp„2S(f)… is exponentially damped and the corr
sponding path integrals are convergent in one dimens
Once again, the wedges forN.2 were chosen to be analyt
cal continuations of the wedges for the harmonic oscilla
For arbitraryN.2 the anti-Stokes’ lines at the centers of t
left and right wedges lie below the real axis at the angle
©2001 The American Physical Society10-1
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u left52p1S N22

N12D p

2
,

u right52S N22

N12D p

2
. ~1.4!

The opening angle of these wedges is 2p/(N12).
Consequently, expectation values forPT-symmetric theo-

ries can be understood as path integrals that have been
lytically continued inN. This analytical continuation deform
the contour from the real axis for the harmonic oscillat
N52, to contours in the complex-f plane whose end point
lie in wedges where exp„2S(f)… is damped asufu→` and
the path integral converges. Defining the complex varia
fC to follow any contour whose end points lie in the appr
priate wedges,PT-symmetric expectation values of operato
A5A(f) are given by

^0uAu0&

^0u0&
5

E DfC A~fC!e2S(fc)

E DfC e2S(fC)

, ~1.5!

whereS(fC)5*dDX_LE@fC(X)#5*dDX H@fC(X)# is the
Euclidean space action. The most common choice of con
is the one along which exp„2S(f)… is purely damped. This
contour is defined asfC5rexp(iuL),2`<r<0 and fC
5rexp(iuR),0<r<`, whereuL and uR are defined by Eq.
~1.2! or Eq. ~1.4!.

As mentioned above, another remarkable property of
Lagrangian in Eq.~1.1! is that for allN.2 the expectation
valueG15^0ufu0& of the position operatorf in the ground
state is nonzero. This surprising result shows that the the
is not parity symmetric even whenN is even. The violation
of parity symmetry is a consequence of the manner in wh
the boundary conditions and path integral contours are
fined. The boundary conditions require that asufu→` the
anti-Stokes’ lines are in the lower half of the complex-f
plane forN.2. While Eq.~1.1! appears to be invariant un
der a parity transformation, the anti-Stokes’ lines are sen
the upper half of the complex-f plane; this corresponds to
different set of boundary conditions. Thus the theory is
parity symmetric except for the special case ofN52 where
the anti-Stokes’ lines are the real axis. Note that if we n
perform a time reversal transformation, complex conjugat
sends the anti-Stokes’ lines back down into the complexf
plane, and both Eq.~1.1! and the boundary conditions ar
identical to the original formulation of the theory. That i
these theories arePT symmetric, but they are not symmetr
underP or T separately. As a result,G1 is purely imaginary,
andG2 is real.

The results forPT-symmetric but non-Hermitian theorie
suggest that these completely new theories may desc
physical processes. Previous studies obtained extensiv
sults in zero and one dimension~i.e., quantum mechanics!
but have been unable to perform calculations in higher
mensions. Here we use the complex Langevin method
calculate the equal-time one- and two-point Green’s fu
08501
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tions for massless versions of Eq.~1.1! in zero and one di-
mension withN53 and 4. The results are in good agreeme
with those computed by numerical integration@1# and by
variational methods@14,17#. Reference@18# studied complex
Hamiltonians using the Langevin approach in higher dim
sions, and also obtained accurate results. This suggests
the complex Langevin method is the robust numeri
method needed for studyingPT-symmetric theories in highe
dimensions. Consequently, we are currently perform
field-theoretic, numerical simulations forPT-symmetric
Hamiltonians in two space-time dimensions. The current
per also reveals an underlying real Fokker-Planck probab
for these theories. We believe our results represent a sig
cant step toward a physical understanding ofPT-symmetric
theories.

This paper is organized as follows. In Sec. II we expla
why Monte Carlo techniques cannot be used for these th
ries, and review the Langevin equation as a numerical p
cedure for quantum field theories. In Sec. III we review t
complex Langevin method and use the methods of su
symmetric quantum mechanics to derive the conditions
guarantee convergence for the expectation values. First-
second-order algorithms for implementing the Lange
method are presented in Sec. IV, and the results of nume
simulations are given and shown to be in excellent agr
ment with known results. Section V contains concluding
marks concerning the implications of this study in regard
probability and completeness, and proposes high
dimensionalPT-symmetric theories to which this numeric
method could be applied.

II. LANGEVIN METHOD

Since manyPT-symmetric theories possess a real posit
spectrum and a nonvanishing value forG1, it has been
speculated thatPT-symmetric theories could be used to d
scribe a Higgs boson. A2gf4/4 theory is especially inter-
esting as a theory for the Higgs because it has a dimens
less coupling constant and is asymptotically free@17#.
However, the Schwinger-Dyson equations mentioned in S
I are too difficult to solve in four-dimensional space-tim
where physical quantities must be calculated. Hence a
able numerical method is needed to compute expectation
ues in higher dimensions. In this section we argue that Mo
Carlo methods are ill suited for these theories, while
complex Langevin equation provides a robust numeri
technique.

Most often, Monte Carlo methods are used for numeri
evaluations of expectation values like those in Eq.~1.5!
where the contour of integration is along the real axis a
S(f) is real. This is achieved by choosing paths weigh
according to the probability distribution, exp„2S(f)…. For
the Hamiltonians considered in this paper,S(f) is complex,
and neither a real representation nor a consistent probab
tic interpretation is known. One approach in using a Mon
Carlo method is to separate the Hamiltonian into real a
imaginary parts and considerA(f)exp„2 i Im@S(f)#… the
operator and exp„2Re@S(f)#… the probability distribution.
There are two problems with this approach. First, the size
0-2
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Im@S(f)# increases with the size of the lattice, making t
numerator and denominator of Eq.~1.5! very small. Conse-
quently, numerical simulations become very difficult. Se
ond, and more important, in many cases Im@S(f)# contains
more information about which paths are important th
Re@S(f)#. Therefore, the algorithm outlined above nev
samples the important paths and thus fails to converge to
correct answer. Specific examples of this phenomenon
given in Refs.@19–21#. Our studies of zero-dimensional ve
sions of Eq. ~1.1! suggest that this is the case for no
Hermitian butPT-symmetric theories, and that Monte Car
methods are inapplicable.

Another method for numerical calculations in quantu
field theory involves the Langevin equation@22,23#,

]f

]t
52

]S~f!

]f
1h~t!, ~2.1!

where t is an unphysical Langevin time,]S(f)/]f gives
the equations of motion for the Hamiltonian, andh(t) is a
stochastic variable. The functionh(t) is chosen to be a rea
Gaussian random function that satisfies the conditions

^h~t!&50, ^h~t!h~t8!&52d~t2t8!, ~2.2!

where the averaging is performed with respect to the ap
priately normalized Gaussian probability distribution. Fu
ther, it is well known that whenS(f) is real, the probability
distributionP(f,t) associated with Eq.~2.1! is given by the
Fokker-Planck equation@22,23#

]P~f,t!

]t
5

]

]f S ]

]f
1

]S~f!

]f D P~f,t!. ~2.3!

The space-time dependence of all variables and thet depen-
dence ofS and f are left implicit in the above equations
These dependencies are only made explicit when releva
a calculation.

It is easy to evolve Eq.~2.1! numerically in Langevin time
t, and find expectation values. For real variables these
pectation values are expressible as

^0uAu0&P

^0u0&P
5

E Df A~f!P~f,t!

E Df P~f,t!

, ~2.4!

and one can show that

P~f,t!→e2S(f), t→`. ~2.5!

Hence

E Df A~f!P~f,t!

E Df P~f,t!

→
E Df A~f!e2S(f)

E Df e2S(f)

, t→`.

~2.6!
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That is, whenS(f) andf are both real, the physical expec
tation values are recovered by taking the unphysical, Lan
vin time to infinity

More generally, an analytically continued version of E
~2.5! often holds as long as the supersymmetric Fokk
Planck HamiltonianHFP , formed by taking]S/]f as the
superpotential, has a spectrum with positive real part an
ground state that is nondegenerate@18,24#. When S(f) is
complex,HFP can still have a nondegenerate ground st
and a spectrum that is real and positive. As explained in S
III, these criteria are the correct ones to test for converge
of expectation values for the Hamiltonians studied in t
paper. This is also true for several other cases studie
Refs. @25–30#. This method was successful in several ca
including statistical mechanics problems with compl
chemical potentials, field-theoretic calculations
Minkowski space, simulations dealing with the man
fermion problem@31#, and even non-Hermitian Hamiltonian
with complex eigenvalues@19#.

Previous studies involving the complex Langevin equ
tion focused on cases where the physical Hamiltonians w
either Hermitian, non-Hermitian with a positive real part,
non-Hermitian with a real part that was negative and
imaginary part that was small. These cases were studied
cause the associated Fokker-Planck HamiltonianHFP had
eigenvalues with a positive real part. In contra
PT-symmetric Hamiltonians such as Eq.~1.1! often have a
real part that is not strictly positive and an imaginary p
that cannot be considered small. However, in the cases
have studied,HFP still possesses a spectrum that is pure
real and positive.

Reference@32# demonstrates that the renormalized ma
squared for the anharmonic oscillator,M1

25(E12E0)2, is
proportional to the first nonzero eigenvalue of the associa
Fokker-Planck Hamiltonian. This suggests that the posit
real part of the spectrum ofHFP is a consequence of th
purely real spectrum of thesePT-symmetric Hamiltonians.
For the zero-dimensionalPT-symmetric Hamiltonians stud
ied in this paper, the eigenvalues of the associatedHFP are
always positive and real. We believe that aPT-symmetric
Hamiltonian with real, positive eigenvalues will always lea
to a real positive part for the eigenvalues ofHFP . To prove
this would be tantamount to finding the exact conditions n
essary for a givenPT-symmetric Hamiltonian to possess
real spectrum, and that is an open problem. Moreover
Ref. @32# and elsewhere, Hermitian Hamiltonians
Minkowski space often lead to an associatedHFP that is
non-Hermitian. In contrast, thePT-symmetric, non-
Hermitian Hamiltonians in this paper always lead to Fokk
Planck Hamiltonians that maintainPT symmetry; this is ex-
plained in Sec. III.

III. COMPLEX LANGEVIN EQUATION

To gain a deeper understanding of when the Lange
equation works and of its connection to the Hamiltonian b
ing studied, we begin with the complex Fokker-Planck eq
tion. Allowing S(f) andf to be complex, Eq.~2.1! can be
divided into its real and imaginary parts and written as t
0-3
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CLAUDE BERNARD AND VAN M. SAVAGE PHYSICAL REVIEW D 64 085010
coupled equations. If one assumes the noise is purely
and uses the standard methods of stochastic calculus to
rive Ito’s formula for two variables@23#, one is led to the
complex Fokker-Planck equation

]P~fR ,f I ;t!

]t
5S ]

]fR
ReF ]S

]fG1
]

]f I
ImF ]S

]fG
1

]2

]fR
2 D P~fR ,f I ;t!

[OFP~fR ,f I !P~fR ,f I ;t!, ~3.1!

where fR and f I are the real and imaginary parts off,
respectively andS5S(fR1 if I). Equation ~3.1! defines a
purely real probability in the complex-f plane, but, apart
from a few simple cases@28,29#, explicit constructions of
P(fR ,f I ;t) are unknown.

Now that we are evolving the Langevin equation in t
complex plane, Eq.~2.4! must be modified. The average ov
the Langevin probability must be taken as an area integra
the complex plane given by

^0uAu0&P

^0u0&P
5

E DfR Df I A~fR1 if I !P~fR ,f I ;t!

E DfR Df I P~fR ,f I ;t!

.

~3.2!

Note thatA(fR1 if I) is an analytic function, butP is not in
general. Understanding how Eqs.~2.5! and~2.6! are satisfied
is now much more complicated, because in the limitt→`
one must show how an area integral becomes a path inte
and that a real, nonanalytical function,P, generates the com
plex, analytic function exp„2S(f)…. This can be achieved in
a formal manner by following the approach introduced
Refs.@25,27#.

For the case ofigf3/3 in zero dimensions withm50, the
path integral converges when exp„2S(f)… is exponentially
damped. Expressing the complex variable in polar coo
nates,f5rexp(iu), the Stokes’ regions that are traditional
chosen forPT-symmetric theories are2p,u,22p/3 and
2p/3,u,0, as discussed in Sec. I. These wedges are
picted in Fig. 1. Moreover, analytical calculations for the
theories are most easily done along the contour where t
is pure exponential damping defined byu525p/6 and u
52p/6. This contour is the dashed line in Fig. 1. Howev
any contour whose end points lie in the appropriate Sto
wedges is acceptable. For purposes of proving converge
for the Langevin expectation values, the easiest contou
use isf5fR2 ib, whereb is any finite constant. Along this
contour, exp„2S(f)…5exp(2igf3/3);(oscillatory term)
3exp(2gfR

2b), and is therefore damped asfR→6`. This
contour is the solid line in Fig. 1.

The larget behavior of the expectation values given
Eq. ~3.2! is discovered by shifting integration variables,f I
→f I2b. This shift does not affect the end points of integr
tion and has a Jacobian of one. Any analytical funct
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A(fR2 ib1 if I) can be Taylor expanded about the conto
fC5fR2 ib. This allows us to express the expectation v
ues as

^0uAu0&P

^0u0&P
5

E DfR Df I~eixA~fC!!P~fR ,f I2b;t!

E DfR Df I P~fR ,f I2b;t!

,

~3.3!

where

x5f I

]

]fR
. ~3.4!

Integrating Eq.~3.3! by parts infinitely many times gives

^0uAu0&P

^0u0&P
5

E DfR A~fC!Pe f f~fC ,t!

E DfR Pe f f~fC ,t!

, ~3.5!

where

Pe f f~fC ,t!5E Df I e2 ixP~fR ,f I2b;t!. ~3.6!

We assume thatP vanishes at infinity rapidly enough so th
all of the boundary terms from the integration by parts a
zero. @In the denominator of Eq.~3.3!, exp(2ix) can be in-
troduced for free because all but the zeroth order term ix
integrate to zero.# Note thatPe f f is an analytic function of
fC5fR2 ib, not a function offR andb separately. We see
this by using exp(2ix)P(fR,fI2b;t)5P(fR2ifI ,fI2b;t)
and then shifting the integration variablef I→f I1b, so that
Pe f f5*Df I P(fC2 if I ,f I ;t). As a result, Eq.~3.5! can
be equivalently written as

^0uAu0&P

^0u0&P
5

E
2`2 ib

`2 ib

DfC A~fC!Pe f f~fC ,t!

E
2`2 ib

`2 ib

DfC Pe f f~fC ,t!

. ~3.7!

We now derive a pseudo Fokker-Planck equation
Pe f f(fC ,t). From Eqs.~3.6! and ~3.1!,

]Pe f f~fC ,t!

]t
5E Df I e2 ix

]P~fR ,f I2b;t!

]t

5E Df I OFP
e f fe2 ixP~fR ,f I2b;t!,

~3.8!

whereOFP
e f f[exp(2ix)OFP(fR,fI2b)exp(ix). Using the rela-

tions
0-4
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FIG. 1. Stokes’ wedges for a massless, zero-dimensionaligf3/3 theory. The shaded areas are the regions within which the path int
for this theory converges because exp„2S(f)… is exponentially damped. The usual path of integration is represented by the dashed lin
extends from2` to the origin along the ray defined byuR525p/6, and then from the origin tò along the ray defined byuL52p/6.
Along this contour exp„2S(f)… is purely exponentially damped. In order to prove that the Langevin expectation values have the
behavior ast→`, it is easiest to use the smooth contour represented by the solid line. The solid line contour is defined asf5fR2 ib, and
extends from2`2 ib→`2 ib.
-

de-

al

the
e2 ix
]

]fR
eix5

]

]fR
,

e2 ix
]

]f I
eix5

]

]f I
1 i

]

]fR
,

e2 ixF~fC1 if I !e
ix5F~fC!, ~3.9!

it is straightforward to show that

OFP
e f f5

]

]fR
S ]

]fR
1

]S~fR2 ib !

]fR
D

1
]

]f I
e2 ixImF]S~fR2 ib1 if I !

]f Geix. ~3.10!

The last term of Eq.~3.10! is a total derivative inf I , and
therefore, disappears from the right side of Eq.~3.8!, again
08501
assuming thatP vanishes rapidly at infinity. Since the re
maining terms ofOFP

e f f do not depend onf I , they can be
pulled out in front of the integral overDf I . Using the fact
that ]/]fR5]/]fC on an analytical function offC , Eq.
~3.8! becomes Eq. ~2.3! with f5fC and P(f,t)
5Pe f f(fC ,t):

]Pe f f~fC ,t!

]t
5

]

]fC
S ]

]fC
1

]S~fC!

]fC
D Pe f f~fC ,t!.

~3.11!

That is, there is a pseudo-Fokker-Planck equation that
fines a complex analytical functionPe f f that is just the ana-
lytical continuation of the Fokker-Planck equation for re
variables.

For cases whereN.3 in Eq. ~1.1!, a similar derivation
gives the same result. The only subtlety is in choosing
correct contour. For anyN a contour with finite end points
0-5



hin
r a

ior as

CLAUDE BERNARD AND VAN M. SAVAGE PHYSICAL REVIEW D 64 085010
FIG. 2. Typical example of Stokes’ wedges for a massless, zero-dimensional2g( if)N/N theory. The shaded areas are the regions wit
which the path integral for a givenN converges because exp„2S(f)… is exponentially damped. The usual path of integration, even fo
finite contour, is represented by the dashed line, and extends from (2b,2b cotuL) to the origin, and then from the origin to
(2b,b cotuR), whereuL anduR are given in Eq.~1.2!. In order to prove that the Langevin expectation values have the desired behav
t→`, it is most convenient to use the smooth contour represented by the solid line. The solid line contour is defined asf5fR2 ib, and
extends from (2b,2b cotuL)→(2b,b cotuR).
in
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(2b,2b cotuL) and (2b,b cotuR), as defined by Eq.~1.2!,
can be deformed into the contourfC5fR2 ib, as shown in
Fig. 2. Consequently, using the methods above, an area
gral over the strip2b cotuL<fR<bcotuR;2`<fI<` is
expressible as a path integral over the contourfC5fR2 ib
plus boundary terms involving derivatives ofP. As b grows
larger, the area integral approaches an integral over the e
complex plane. We expect the boundary terms to appro
zero because the probability of finding a particle at6`
should go to zero. This is seen in Fig. 3~Sec. IV!. Following
the derivation forigf3/3, we are again led to Eq.~3.11!.

Thus the problem of understanding thet→` behavior of
expectation values has been reduced to one that is form
identical to that for real variables. We now use the meth
of Parisi and Sourlas@33#, who first discovered the hidde
supersymmetry in classical stochastic equations.

If we express Eq. ~3.11! in terms of p(fC ,t)
08501
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[Pef f(fC ,t)exp„S(f)/2…, we obtain the Schro¨dinger equa-
tion

2]p~fC ,t!

]t
5HFPp~fC ,t![S 2

]

]fC
1

1

2

]S

]fC
D S ]

]fC

1
1

2

]S

]fC
D p~fC ,t!. ~3.12!

As claimed,HFP is the supersymmetric Hamiltonian forme
from the superpotential]S/]fC . SinceS is PT symmetric,
]S/]fC is anti-PT symmetric, andHFP is PT symmetric, as
claimed in Sec. II@34#. Expanding Eq.~3.12! yields

HFP52
]2

]fC
2 2

1

2

]2S

]fC
2 1

1

4 S ]S

]fC
D 2

. ~3.13!
0-6
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FIG. 3. Plot of the fieldf in
the complex plane for the poten
tial 2gf4/4 with e50.3 using the
second-order algorithm. Eac
point corresponds to the value o
f for a value of the fictitious time
t. The absolute magnitude off
was restricted to be less than 19
order avoid numerical instabili-
ties. ~For simulations of2gf4/4
in one dimension, this restriction
was unnecessary.! The first 10 000
points are plotted. The field
started at the point (0.5,20.1),
and then followed a path toward
the imaginary axis. It then trav-
eled from side to side forming a
cloud of points that averaged t
the value21.1687.
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If the time-independent version of Eq.~3.12!,

HFPCk
FP~fC!5lkCk

FP~fC!, ~3.14!

is well posed and the eigenfunctionsCk
FP(fC) are complete,

then

p~fC ,t!5 (
k50

`

akCk
FP~fC!e2lkt. ~3.15!

Note thatC0
FP(fC)[exp(2S(fC)/2) is an eigenfunction of

HFP with l050. Therefore, Eq.~3.15! becomes

p~fC ,t!5Ce2(1/2)S(fC)1 (
k51

`

akCk
FP~fC!e2lkt.

~3.16!

Moreover, if the spectrum ofHFP is such that

Re@lk#.0, k.0, ~3.17!

it follows that

p~fC ,t!→Ce2(1/2)S(fC), t→`. ~3.18!

The t dependence ofp(fC ,t) has disappeared in this limit
This implies dPe f f /dt50 and signals that the system h
reached equilibrium. ExpressingPe f f(fC ,t) in terms of
p(fC ,t) and taking the limitt→` gives analytically con-
tinued versions of Eq.~2.5!, and thus Eq.~2.6!, in terms of
Pe f f . As a result, Langevin expectation values are shown
converge to the right side of Eq.~1.5! ast→`. This result is
true for our zero-dimensionalPT-symmetric theories as lon
as the ground state is nondegenerate. There is no evid
that PT-symmetric theories possess a degenerate gro
state, so for the purposes of this paper, we will not cons
this a possibility.

Thus if the supersymmetric HamiltonianHFP formed
from the superpotential]S/]fC has a spectrum satisfyin
08501
o

ce
nd
r

Eq. ~3.17!, the Langevin method should work as a calcu
tional procedure. Explicitly, we have shown that analy
continuations of Eqs.~2.5! and ~2.6!, with P replaced by
Pe f f ,

Pe f f~fC ,t!→e2S(fC), t→` ~3.19!

and

E DfR Df I A~fR1 if I !P~fR ,f I ;t!

E DfR Df I P~fR ,f I ;t!

5

E
2`2 ib

`2 ib

DfC A~fC!Pe f f~fC ,t!

E
2`2 ib

`2 ib

DfC Pe f f~fC ,t!

→
E

2`2 ib

`2 ib

DfC A~fC!e2S(fC)

E
2`2 ib

`2 ib

DfC e2S(fC)

, t→`, ~3.20!

follow if HFP has a nondegenerate ground state, wave fu
tions that are complete, and a spectrum with positive r
part.

IV. NUMERICAL METHODS AND RESULTS

In this section we apply the complex Langevin method
massless versions of Eq.~1.1! in zero and one dimension
and calculate the same time one- and two-point disconne
Green’s functions for the casesN53 and 4. We begin by
proving ~under certain assumptions! that Eq.~3.17! holds in
zero dimensions, and explaining the algorithms we have u
to implement simulations. We then extend these results
their one-dimensional analogs.
0-7
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A. Zero-dimensional theories

A recent paper by Doreyet al. @16# showed that
PT-symmetric Hamiltonians of the form

H52~]f!22~ if!2M2a~ if!M21, ~4.1!

whereM anda are real and boundary conditions have be
chosen as in Sec. I, have a real positive spectrum if
conditions a,M and M>1 are both satisfied@16#. ~We
have setl 50 in the Hamiltonian given by Doreyet al.! This
proves ~for a50, M5N/2) that massless versions of E
~1.1! have a positive real spectrum.

In zero-dimensional studies of Eq.~1.1! with m50, Eq.
~3.13! gives

HFP52
]2

]fC
2 2

g~N21!

2
~ ifC!N222

g2

4
~ ifC!2(N21),

~4.2!

where the contourfC is within the Stokes’ wedges explaine
in Sec. I and used by Doreyet al. Making the change of
variablesf→(2/g)1/Nf, Eq. ~4.2! becomes Eq.~4.1! with
a5N21 andM5N21. Thusa5M , and, as explained in
Ref. @16#, this implies that theHFP given in Eq.~4.2! has one
zero eigenvalue, which we have already demonstrated,
that all of the remaining eigenvalues are real and posit
Consequently, Eq.~3.17! holds for N>2, and this implies
that the complex Langevin method will work.

Further, the largef behavior of the wave functions for th
eigenvalue problems defined by Eq.~4.2! must have the form

C~f!;expF E dfA2
g2

4
~ if!2(N21)G;expF g

2N
~ if!NG ,

~4.3!

by the WKB approximation. Apart from a factor of 2, th
asymptotic form of the wave functions has exactly the sa
form as exp„2S(f)…5exp„g( if)N/N…. Thus the Stokes
wedges that define regions of convergence for the path i
gral are exactly the same as those that demandC(6`)50.
This is equivalent to noting that Eq.~1.4!, with N→2(N
21), is identical to Eq.~1.2!. That is, the wedges of conve
gence for the path integrals defined by exp„2S(f)… are pre-
served by the boundary conditions for the wave functions
the Fokker-Planck Hamiltonian.

The most general form of the Langevin equation is

]f

]t
5F„f~t!…1h~t!. ~4.4!

The simplest discretization of this is Euler’s method~a first-
order algorithm!, and is explicitly given by

f~ j 11!5f~ j !1h@F„f~ j !…1h~ j !#5f~ j !1e2F„f~ j !…

1eh8~ j !, ~4.5!

wherej is an index for a Langevin time step;h is the spacing
in Langevin time,e5Ah; and theh dependence ofh(t) has
been made explicit:
08501
n
e
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f

h8~ j !5eh~ j !, ^h8~ j !h8~k!&52d j ,k . ~4.6!

This form for h8(t) follows from the the normalization o
the Gaussian probability distribution because Eq.~2.2! im-
pliesh2(t);d(0);1/h on a lattice. For this and the secon
order algorithm given below, there are numerical instabilit
for large values off. The worst instabilities arise when th
potential is2gf4/4. For 2gf4/4, it was necessary to re
strict the absolute magnitude off in order to avoid these
instabilities. A typical plot of the path followed byf in the
complex plane is shown in Fig. 3.

One must then takee→0. Limiting values were obtained
by fitting the data with second and third-degree polynomi
in e. These fits are similar to those seen in Fig. 4, which
for the one-dimensional case. Errors are calculated by
lecting the simulation data in bins of a given size and co
puting the standard deviation of the means of the bins. T
maximum error as a function of bin size is taken to be
error for the simulation. In Table I the numerical results o
tained using Euler’s method are compared with exact val
given in Ref.@17#. The parts of the one- and two-point dis
connected Green’s functions that are known to vanish~e.g.
Re@G1#) have errors larger than their magnitude ase→0.

Euler’s method is expected to converge linearly ine as
e→0. Therefore, a more accurate second order ine method
is desirable. A second-order Runge-Kutta algorithm that
to good results in previous studies and was first develope
Ref. @35# is

FIG. 4. Plot of values for2 iG1 for a real time spacing ofa
50.5 vs the square of the fictitious time spacinge2 for a 2gf4/4
potential in one dimension. The solid line is a fit that is a linear p
quadratic ine for values computed using Euler’s method~dia-
monds!. The dashed line is a cubic fit ine, without a term that is
linear in e, for values computed using the second-order algorit
~squares!. Similar fits were performed for each value ofa shown in
Fig. 5.
0-8
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TABLE I. Numerically determined values ofiG15 i ^0ufu0&/^0u0& and 2G252^0uf2u0&/^0u0& using
Euler’s method and a second-order method for zero-dimensionaligf3/3 and2gf4/4 theories withg51/2.
These limiting values were determined by fitting the simulated data to polynomials of second and
degree ine. For the second-order algorithm, the term linear ine is set to zero. Exact results are listed to fo
significant digits in the first column. Note that the values listed for the second-order algorithm are i
more precise than the results using Euler’s method.

N iG1
exact iG1

Euler iG1
2nd order 2G2

exact 2G2
Euler 2G2

2nd order

3 0.9185 0.9198~14! 0.9194~7! 0 – –
4 1.163 1.166~3! 1.164~1! 0.9560 0.9623~51! 0.9595~14!
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f̃~ j !5f~ j !1e2F„f~ j !…1eh8~ j !

f~ j 11!5f~ j !1
1

2
e2@F„f~ j !…1F„f̃~ j !…#1eh8~ j !.

~4.7!

In our studies this method is more stable numerically th
Euler’s method, and therefore, allows the inclusion of m
data. Limiting values were obtained by fitting the data w
second and third degree polynomials ine with the linear
term set equal to zero.~These fits are similar to those seen
Fig. 4 for the one-dimensional case.! The results obtained
using this algorithm are compared with exact values and
result of Euler’s method in Table I. There is good agreeme

It should be noted that for the caseN54, f(0) has to be
chosen in the lower half of the complex-f plane or else the
numerical simulations are unstable. This is in accord with
WKB wedges needed to properly define the boundary c
ditions, as explained in Sec. I. This restriction also holds
one dimension for the initial configuration att50.

B. One-dimensional theories

In this section we apply the complex Langevin method
massless versions of Eq.~1.1! in one dimension withN53
and 4. The potentials are the same as those discussed in
IV A, but now there is a second derivative in physical tim
2]2f(t,t)/]t2, present in all of the equations, andh(t)
becomest dependent. Thus the eigenvalue problem forHFP
becomes a partial differential equation. The spectra of eig
value problems forPT-symmetric partial differential equa
tions has not been studied, and we do not have a proof
they are real. But, following the examples of zer
dimensional theories, we assume the spectrum ofHFP has a
positive real part. The results of our simulations support t
assumption.

These one-dimensional theories are more computation
expensive because they give rise to Langevin equations
are partial differential equations. Consequently, the seco
order algorithm in the last section is useful. For numeri
simulations of one-dimensional theories, we have to int
duce a physical time lattice and2]2f(t,t)/]t2 becomes

2
„f~ j ,l 11!22f~ j ,l !1f~ j ,l 21!…

a2
, ~4.8!
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where l is an index for real time anda is the spacing in
physical time. The algorithms used in Sec. IV A are app
cable here as well, but their form has changed slightly. T
algorithms now contain Eq.~4.8! as part ofF, and the ex-
plicit lattice dependence ofh(t,t) is such that

h8~ j ,l !5Ahah~ j ,l !, ^h8~ j ,l !h8~k,m!&52d j ,kd l ,m .

~4.9!

Further, in these algorithms there is always ane2 associated
with Eq. ~4.8!, and thus the simulation is unstable unlesse
!a. However, there are no instabilities similar to those e
countered for2gf4/4 in the zero dimensional case. Fo
fixed values ofa, we compute at various values ofe and take
the limit e→0, giving the expectation values as a function
a. A typical fit for this process is shown in Fig. 4. We the
take a→0, and obtain the expectation values in the co
tinuum limit. A fit used to extrapolate the value of2 iG1 for
the potential2gf4/4 is shown in Fig. 5. In Table II the
numerical results for the expectation values are compa

FIG. 5. Extrapolated values of2 iG1 vs real time spacinga2 for
a 2gf4/4 potential in one dimension. Lattice expectation valu
for these theories only depend upon even powers ofa, so fits are
done in powers ofa2. Both fits shown here are linear plus quadra
in a2. Diamonds show values computed using Euler’s method,
the solid line is a fit for them. Squares show the results from
second-order algorithm; the dashed line is the fit to them. The c
tinuum limit values obtained from these plots are given in Table
Similar fits were performed for all of the data in Table II.
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with numerically integrated quantum-mechanical valu
given in Ref. @14#. We have choseng such that Eq.~1.1!
corresponds with the Hamiltonians in Ref.@14#. The agree-
ment of our results with previous work is excellent.

V. CONCLUSIONS AND SPECULATIONS

This paper and Ref.@17# have shown thatPT-symmetric
theories are amenable to the methods of quantum fi
theory. The previously used Schwinger-Dyson method
very accurate but is difficult to apply to higher-dimension
theories. Here we show how a numerical method based
the complex Langevin equation can be used to obtain pre
results. We believe that this numerical method can be app
to higher-dimensional theories, and plan to use it for fut
calculations. This work represents an important step towa
test of the physical applicability ofPT-symmetric Hamilto-
nians.

An interesting implication of this study concerns the pro
ability and completeness ofPT-symmetric theories. The ar
gument for the success of the complex Langevin metho
Sec. III crucially depends upon the eigenfunctions ofHFP
being complete@Eq. ~3.15!#. Similarly, extremely accurate
results in Ref.@13# crucially depend on the completeness
PT-symmetric eigenfunctions. The possible connection
tween the eigenvalues of the Fokker-Planck Hamiltoni
and the Hamiltonians being simulated suggests a poss
connection between the eigenfunctions as well. Perh
proving completeness for one of these sets of eigenfunct
would imply the completeness of the other set.

Perhaps the most important implication forPT-symmetric
theories is that there is an implicit probability distributio
defined by Eq.~3.1! and seen in Fig. 3. Moreover, this stud
suggests that expectation values must be interpreted as

TABLE II. Numerically determined values of iG1

5 i ^0ufu0&/^0u0& and 2G252^0uf2u0&/^0u0& using Euler’s
method and a second-order method for one-dimensio
2g( if)N/N theories withN53 and 4. In order to compare ou
results with Lagrangians used in previous studies, we have sg
5N/2. These continuum limit values were determined by fitting
simulated data to third-degree polynomials ine for a givena ~for
the second-order algorithm, the term linear ine is set to zero!, and
then fitting the results of those fits with second-degree polynom
in a2. Exact results obtained by direct numerical integration of
quantum mechanical problem are listed to four significant digits
the first column. The exact value of2G2 for N54 has never been
directly calculated, so instead we list the results of the variatio
calculation given in Ref.@14#. Note that the values listed for th
second-order algorithm are indeed more precise than the re
using Euler’s method.

N iG1
exact iG1

Euler iG1
2nd order 2G2

var 2G2
Euler 2G2

2nd order

3 0.5901 0.5890~5! 0.5898~2! 0 – –
4 0.8669 0.8654~6! 0.8670~3! 0.5182 0.5171~9! 0.5183~4!
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integrals of observables weighted by this real probability d
tribution. Previous studies of the zeros of eigenfunctions
PT-symmetric theories suggest that the zeros interlace
become dense in a narrow band in the complex-f plane@36#.
Hence it was conjectured that completeness may have t
defined in terms of area integrals. We suspect a strong c
nection between the two results, and speculate that a co
tent probabilistic formulation ofPT-symmetric theories can
only be achieved in terms of area integrals. A probabilis
interpretation ofPT-symmetric theories would be a majo
advance.

A recent study of the complex Langevin equation demo
strates that problems with convergence arise when expe
tion values are complex but the fixed points of the Lange
equation lie on the real axis, and as a result, the field spe
most of its time on the real axis and away from the corr
average value@31#. It was demonstrated there that this pro
lem could be avoided by moving the fixed points into t
complex plane. In the present study the expectation va
are purely real or purely imaginary. The fixed point of th
Langevin equation is zero, which is on the real axis, but
simulations converged without moving the fixed point in
the complex plane. This seems to be because the path o
deterministic equation (h50) is given by

f~t!5
2 i

@~N22!~t1C!#1/~N22!
, ~5.1!

whereC is an arbitrary constant given by the initial cond
tion. The field is attracted to the imaginary axis even thou
the fixed point is on the real axis. Thus, it appears to
crucial that the deterministic path to~or between! the fixed
points is in the complex plane, but not that the fixed poi
themselves lie in the complex plane. The simulations
PT-symmetric theories work in a straightforward mann
the fixed points do not need to be adjusted. We believe
the complex Langevin equation works so nicely f
PT-symmetric theories because these theories are inhere
complex. As a result, it seems thatPT-symmetric theories
may provide a class of toy models with new and interest
properties that are especially well suited for probing the
tricacies of the complex Langevin equation.

The most exciting proposed application of these no
Hermitian theories is to Higgs theories. We believe that
numerical method presented in this paper should allow
to compute the mass of the Higgs particle in fou
dimensional versions of these theories. Before this can
done, however, renormalization must be thoroughly und
stood. Studies of field theories in fewer than four physi
dimensions represent a simpler alternative. In particular,
act results for the scaling exponents of anigf3/3 theory in
two and three dimensions can be obtained by relating th
to the Lee-Yang edge singularity in one and two dimensio
respectively@37,38#. Evaluation of these exponents by th
methods introduced here are in progress.
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