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Many non-Hermitian butPZ-symmetric theories are known to have a real positive spectrum. Since the
action is complex for these theories, Monte Carlo methods do not apply. In this paper the first field-theoretic
method for numerical simulations ¢?7-symmetric Hamiltonians is presented. The method is the complex
Langevin equation, which was used previously to study complex Hamiltonians in statistical physics and in
Minkowski space. We compute the equal-time one- and two-point Green'’s functions in zero and one dimen-
sion, where comparisons to known results can be made. The method should also be applicable in four-
dimensional space-time. Our approach may also give insight into how to formulate a probabilistic interpreta-
tion of P7-symmetric theories.
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[. INTRODUCTION integration for path integrals and, in dimensidr>0, the
boundary conditions in the corresponding Sclinger equa-
Traditionally, only theories with Hermitian Hamiltonians tion.
are studied in quantum mechanics and quantum field theory. Contours of integration and boundary conditions have
This is because Hermiticity guarantees real eigenvalues araeen extensively studied in zero dimension and one dimen-
therefore a unitary time translation and conservation of probsion[1,17]. In zero dimensions one must choose the contour
ability. It was recently observed that quantum mechanicabf integration for the path integral such that it lies in a region
theories whose Hamiltonians are not Hermitian, but are symwhere exg—S(¢)) is damped ag¢|— = and the path
metric under a transformation known 29 symmetry have integral converges. For massless versions of(Ed), these
positive definite spectrfl—16]. A major criticism of these regions are wedges, and are chosen to be analytical continu-
theories is that a consistent probabilistic interpretation hastions of the wedges for the harmonic oscillator, which are
not been formulated. This paper suggests that there is a realentered about the negative and positive real axes and have
Fokker-Planck probability underlying these theories and preangular openingm/2. For arbitraryN>2 the anti-Stokes’
sents a numerical method for calculating #apoint Green’s  lines at the centers of the left and right wedges lie below the
functionsG, of these theories. real axis at the angles:
A P7T-symmetric Lagrangian that has been studied in the

past is defined by the Euclidean Lagrangian (N=2)m
Oen=—m+ |~ |
1 1 g .
Le=5(d¢)*+ sm?¢p?— = (i )", 1.9
2 2 N (N=2)7
Oright= —| — 5y (1.2
A recent paper used Schwinger-Dyson techniques to study 2N

this self-interacting scalar quantum field thepty]. Green'’s ) )
functions G, calculated by this method agreed extremely The opening angle of these wedgesri&2N. _
well with known results. It was argued that these theories Similarly, for one-dimensional versions of EQ..1) with
possess a positive definite spectrum and a nonvanishing=0. the Schrdinger differential equation is
value of G;=(0|¢|0) for all N>2. (i)
Under PT symmetryP sends¢— — ¢ and 7 sendst— o 9 _
—t andi— —i, wheret is time.[Note that in one dimension vi(e) N w($)=Ey($). 1.3
(i.e., quantum mechanicsp represents the position of the
particle andP corresponds to reflection in spat€husLgis  In Ref.[1] it was shown how to continue analytically in the
manifestly P7 symmetric. It is believed that the reality and parameteN away from the harmonic oscillator valié= 2.
positivity of the spectra are a direct consequence of #¥s  This analytical continuation defines the boundary conditions
symmetry. The positivity of the spectra for &ll is an ex- in the complex¢ plane. The regions in the cut compléx-
tremely surprising result; it is not at all obvious, for example,plane in whichy(¢$) vanishes exponentially dg)|— = are
that the LagrangiarCe=(9¢)2/2—g¢*/4 corresponding to once again wedges. These wedges also define the regions in
N=4 andm=0 has a positive spectrum. To understand thiswhich exg—S(¢)) is exponentially damped and the corre-
and other results, we must properly define the contours a$ponding path integrals are convergent in one dimension.
Once again, the wedges fbir>2 were chosen to be analyti-
cal continuations of the wedges for the harmonic oscillator.
*Email address: cb@lump.wustl.edu For arbitraryN>2 the anti-Stokes'’ lines at the centers of the
"Email address: vmsavage@hbar.wustl.edu left and right wedges lie below the real axis at the angles:
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N=2\ 7 tions for massless versions of Ed..1) in zero and one di-
Oret=— T+ N+2/ 2’ mension withN=3 and 4. The results are in good agreement
with those computed by numerical integratiph] and by
N—2\ 7 variational method§14,17). Referencg18] studied complex
Origh= — | 5| 5 (1.4 Hamiltonians using the Langevin approach in higher dimen-
N+2/ 2 sions, and also obtained accurate results. This suggests that

h . | h q - the complex Langevin method is the robust numerical
The opening angle of these wedges is/eN+2). method needed for studyirfgZ-symmetric theories in higher
Consequently, expectation values I-symmetric theo-  gimensions. Consequently, we are currently performing

ries can be understood as path integrals that have been angyq theoretic, numerical simulations foPZ-symmetric

lytically continued inN. This analytical continuation deforms - - iohions'in two space-time dimensions. The current pa-
the contour from t_hehreal ax'? for Ithe har:momc gscn_lator,per also reveals an underlying real Fokker-Planck probability
N=2, to contours in the comple-plane whose end points ¢, these theories. We believe our results represent a signifi-

lie in wed_ges where expS(¢)) is. d.amped ape| o0 and_ cant step toward a physical understandingP@esymmetric
the path integral converges. Defining the complex variablgyqqrias.

¢ to follow any contour whose end points lie in the appro-
priate wedgesPZ-symmetric expectation values of operators
A=A(¢) are given by

This paper is organized as follows. In Sec. Il we explain
why Monte Carlo techniques cannot be used for these theo-
ries, and review the Langevin equation as a numerical pro-
cedure for quantum field theories. In Sec. Il we review the

J Do A(pe)e o complex Langevin method and use the methods of super-
(0[A|0) _ (1.5) symmetric quantum mechanics to derive the conditions that
J D e e~ S%0) ' ' guarantee convergence for the expectation values. First- and
c second-order algorithms for implementing the Langevin
method are presented in Sec. IV, and the results of numerical
where S(¢¢) = [dPX L[ pc(X)]=SdPX H[pc(X)] is the  simulations are given and shown to be in excellent agree-
Euclidean space action. The most common choice of contounent with known results. Section V contains concluding re-
is the one along which exp S(¢)) is purely damped. This marks concerning the implications of this study in regard to
contour is defined aspc=rexp(f),—»<r<0 and ¢.  probabilty and completeness, and proposes higher-
=rexp(6g),0<r=<«, where §, and 6 are defined by Eq. dimensionaltPZ-symmetric theories to which this numerical
(1.2) or Eq.(1.4). method could be applied.

As mentioned above, another remarkable property of the
Lagrangian in Eq(1.1) is that for allN>2 the expectation
value G;=(0]| ¢|0) of the position operato# in the ground
state is nonzero. This surprising result shows that the theory Since manyPZ-symmetric theories possess a real positive
is not parity symmetric even wheM is even. The violation spectrum and a nonvanishing value f@r, it has been
of parity symmetry is a consequence of the manner in whiclspeculated thaPZ-symmetric theories could be used to de-
the boundary conditions and path integral contours are describe a Higgs boson. A g¢*/4 theory is especially inter-
fined. The boundary conditions require that|gg— the esting as a theory for the Higgs because it has a dimension-
anti-Stokes' lines are in the lower half of the compl¢x- less coupling constant and is asymptotically frEEr].
plane forN>2. While Eq.(1.1) appears to be invariant un- However, the Schwinger-Dyson equations mentioned in Sec.
der a parity transformation, the anti-Stokes’ lines are sent td are too difficult to solve in four-dimensional space-time,
the upper half of the comple#-plane; this corresponds to a where physical quantities must be calculated. Hence a reli-
different set of boundary conditions. Thus the theory is notable numerical method is needed to compute expectation val-
parity symmetric except for the special caseNof 2 where  ues in higher dimensions. In this section we argue that Monte
the anti-Stokes’ lines are the real axis. Note that if we nowCarlo methods are ill suited for these theories, while the
perform a time reversal transformation, complex conjugatiorcomplex Langevin equation provides a robust numerical
sends the anti-Stokes’ lines back down into the complex- technique.
plane, and both Eq(l.1) and the boundary conditions are ~ Most often, Monte Carlo methods are used for numerical
identical to the original formulation of the theory. That is, evaluations of expectation values like those in E#.5
these theories arB7 symmetric, but they are not symmetric where the contour of integration is along the real axis and
underP or 7 separately. As a resulf; is purely imaginary, S(¢) is real. This is achieved by choosing paths weighted
andG; is real. according to the probability distribution, e&pS(¢)). For

The results forPZ-symmetric but non-Hermitian theories the Hamiltonians considered in this papsf¢) is complex,
suggest that these completely new theories may descritend neither a real representation nor a consistent probabilis-
physical processes. Previous studies obtained extensive rie interpretation is known. One approach in using a Monte
sults in zero and one dimensidhe., quantum mechanics Carlo method is to separate the Hamiltonian into real and
but have been unable to perform calculations in higher diimaginary parts and considek(¢)exp(—i Im[S(¢#)]) the
mensions. Here we use the complex Langevin method toperator and exp- R S(¢)]) the probability distribution.
calculate the equal-time one- and two-point Green’s func-There are two problems with this approach. First, the size of

(0joy

1. LANGEVIN METHOD
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Im[S(¢)] increases with the size of the lattice, making theThat is, whenS(¢) and ¢ are both real, the physical expec-
numerator and denominator of E@..5) very small. Conse- tation values are recovered by taking the unphysical, Lange-
quently, numerical simulations become very difficult. Sec-vin time to infinity

ond, and more important, in many caseg 8y)] contains More generally, an analytically continued version of Eg.
more information about which paths are important than(2.5 often holds as long as the supersymmetric Fokker-
R S(¢)]. Therefore, the algorithm outlined above neverPlanck HamiltonianHgp, formed by takingdS/d¢ as the
samples the important paths and thus fails to converge to thguperpotential, has a spectrum with positive real part and a
correct answer. Specific examples of this phenomenon ar@ound state that is nondegenergt®,24. When S(¢) is
given in Refs[19-21]. Our studies of zero-dimensional ver- complex,Hgp can still have a nondegenerate ground state
sions of Eq.(1.1) suggest that this is the case for non-and a spectrum that is real and positive. As explained in Sec.
Hermitian butPZ-symmetric theories, and that Monte Carlo lll, these criteria are the correct ones to test for convergence

methods are inapplicable. of expectation values for the Hamiltonians studied in this
Another method for numerical calculations in quantumpaper. This is also true for several other cases studied in
field theory involves the Langevin equatipd?2,23, Refs.[25—30. This method was successful in several cases
including statistical mechanics problems with complex

d¢ IS(¢p) chemical potentials, field-theoretic calculations in

91 Tap T (21 Minkowski space, simulations dealing with the many-

fermion problen{31], and even non-Hermitian Hamiltonians

where 7 is an unphysical Langevin timelS(¢)/d¢ gives — With complex eigenvaluegl9]. _
the equations of motion for the Hamiltonian, angr) isa ~ Previous studies involving the complex Langevin equa-
stochastic variable. The functiop(7) is chosen to be a real, tion focused on cases where the physical Hamiltonians were

Gaussian random function that satisfies the conditions either Hermitian, non-Hermitian with a positive real part, or
non-Hermitian with a real part that was negative and an

(9(7))=0, (p(n)p(s))=28(r—1"), (2.2 imaginary part that was small. These cases were studied be-
cause the associated Fokker-Planck Hamiltortgp had
where the averaging is performed with respect to the appreeigenvalues with a positive real part. In contrast,
priately normalized Gaussian probability distribution. Fur-PZ-symmetric Hamiltonians such as Ed..1) often have a
ther, it is well known that whei$(¢) is real, the probability ~real part that is not strictly positive and an imaginary part
distributionP( ¢, 7) associated with Eq2.1) is given by the  that cannot be considered small. However, in the cases we
Fokker-Planck equatiof22,23 have studiedHgp still possesses a spectrum that is purely
real and positive.
IP(¢,7) 9 [ 4  dS(¢) Reference[32] demonstrates that the renormalized mass
T:%(£+ 7% P(¢,7). (23 squared for the anharmonic oscillatdl?=(E;—Eg)?, is
proportional to the first nonzero eigenvalue of the associated
The space-time dependence of all variables andrtthepen- ~ Fokker-Planck Hamiltonian. This suggests that the positive
dence ofS and ¢ are left implicit in the above equations. €@l part of the spectrum dfigp is a consequence of the
These dependencies are only made explicit when relevant ®4rely real spectrum of theseZ-symmetric Hamiltonians.
a calculation. For the zero-dimensiongPZ-symmetric Hamiltonians stud-
It is easy to evolve Eq2.1) numerically in Langevin time  ied in this paper, the eigenvalues of the associated are

7, and find expectation values. For real variables these ex@lways positive and real. We believe thatPd-symmetric
pectation values are expressible as Hamiltonian with real, positive eigenvalues will always lead

to a real positive part for the eigenvaluestdfr. To prove

this would be tantamount to finding the exact conditions nec-
(0|A|0)p f D¢ A(¢)P(,7) essary for a giverPZ-symmetric Hamiltonian to possess a
70[0) = , (2.9 real spectrum, and that is an open problem. Moreover, in
P f D¢ P(¢,7) Ref. [32] and elsewhere, Hermitian Hamiltonians in

Minkowski space often lead to an associatédp that is
non-Hermitian. In contrast, thePZ-symmetric, non-
Hermitian Hamiltonians in this paper always lead to Fokker-
Planck Hamiltonians that maintai®Z symmetry; this is ex-

and one can show that

—S(¢)
P(¢,7)—e T (2.5 plained in Sec. IIl.
Hence
IIl. COMPLEX LANGEVIN EQUATION

f D¢ A(¢)P(p,7) fDqg A(p)e 59 To gain a deeper understanding of when the Langevin
- oo equation works and of its connection to the Hamiltonian be-

~S(4) ing studied, we begin with the complex Fokker-Planck equa-

f D¢ P(¢.7) f Doe tion. Allowing S(¢) and ¢ to be complex, Eq(2.1) can be

(2.6 divided into its real and imaginary parts and written as two
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coupled equations. If one assumes the noise is purely re@(¢$gr—ib+i¢,) can be Taylor expanded about the contour,
and uses the standard methods of stochastic calculus to dé-= ¢g—ib. This allows us to express the expectation val-
rive Ito’s formula for two variableg23], one is led to the ues as

complex Fokker-Planck equation

aP(¢R,¢|;T): iRe{a—S%—ilmV—S} (0]A0)p f D ¢ Dy (€'XA(pc))P(dr, ¢ —b;7)
ar g 10d| dby | (0]0)p ’
2 J'D¢R D¢ P(¢r,¢1—b;7)
+ WR) P(¢r.b137) 33
=Orp(dr.$)P(dr 7). (3.1 Where
where ¢ and ¢, are the real and imaginary parts e X:¢|i- (3.9
respectively andS=S(¢g+i¢,). Equation(3.1) defines a dPr

purely real probability in the comple®- plane, but, apart _ o _ _
from a few simple casef28,29, explicit constructions of Integrating Eq«(3.3) by parts infinitely many times gives
P(¢g, ¢, ;) are unknown.

Now that we are evolving the Langevin equation in the
complex plane, Eq2.4) must be modified. The average over (0]A|0)p D ér Alde)Peri(be.7)
the Langevin probability must be taken as an area integral in (0]0)p = ' (3.9
the complex plane given by f D ¢r Peif(dc,7)

(0]A[0)p j D¢r Dy A(prtid))P(dr, by ;7) where

(0]0)p ' .
i JD¢R D P(dr. by ;7) Peff(¢c,7)=f D¢ e XP(¢g, b —b;7). (3.6
(3.2

) ) i ) _ ) We assume tha® vanishes at infinity rapidly enough so that
Note thatA(¢pr+i¢) is an analytic function, bueis notin  a|| of the boundary terms from the integration by parts are
general. Understanding how Ed8.5) and(2.6) are satisfied  zero.[In the denominator of Eq3.3), exp(~ix) can be in-
is now much more complicated, because in the limit>  {roduced for free because all but the zeroth order terng in
one must show how an area integral becomes a path integrgltegrate to zerd.Note thatP.y; is an analytic function of
and that a real, nonanalytical functid?, generates the com- be=dr—ib, not a function ofpr andb separately. We see
plex, analytic function ex- S(¢)). This can be achieved in this py using exptix)P(dr,d —b;7)=P(dg—id ,d—b:7)
a formal manner by following the approach introduced ingnq then shifting the integration variabfg— ¢, + b, so that

Refs.[25,27]. P.i:= D¢, P(po—i ;7). As a result, Eq(3.5 can
For the case offg ¢>/3 in zero dimensions witm=0, the béffeql{i\,jénﬂ(fv\c,rittjr: ’a(i,l 7) - FAE9

path integral converges when &xpS(¢)) is exponentially
damped. Expressing the complex variable in polar coordi- w—ib
nates,p=rexp(d), the Stokes’ regions that are traditionally J
chosen forP7-symmetric theories are m<6<-—2x/3 and <O|A|O>P: —ed
—m/3<6<0, as discussed in Sec. |. These wedges are de- (0]0)p w—ib
picted in Fig. 1. Moreover, analytical calculations for these f ide’C Peri(¢c,7)

theories are most easily done along the contour where there

IS puré exp_onentlal dgmplng defmec_i Bf__SW/G and ¢ We now derive a pseudo Fokker-Planck equation for
= — /6. This contour is the dashed line in Fig. 1. However, 5 (ée,7). From Egs.(3.6) and (3.1)

any contour whose end points lie in the appropriate Stokes® ™" ¢ "/ e o

edges is acceptable. For purposes of proving convergence
W g | p pU p p VI g Vi g O”Peff((ﬁc,’T)_f D¢ e*iXaP((bR’d)l_b;T)
| AR T

bD¢c A(pc)Petil e, )

(3.7)

— o —

for the Langevin expectation values, the easiest contour to —_¢"7~'77

use is¢= ¢pr—ib, whereb is any finite constant. Along this ar ar
contour, exp—S(¢))=exp(—ig¢®3)~ (oscillatory term)
xexp(—g¢§b), and is therefore damped @s— *o0. This zf D ¢, Oﬁge*iXP(qSR,qS,—b;r),
contour is the solid line in Fig. 1.
The larger behavior of the expectation values given by (3.9

Eq. (3.2 is discovered by shifting integration variables,
— ¢, —b. This shift does not affect the end points of integra—whereOﬁfFfE exp(—ix)Orp(dr,d—b)exply). Using the rela-
tion and has a Jacobian of one. Any analytical functiontions
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oy

FIG. 1. Stokes’ wedges for a massless, zero-dimensigngt/3 theory. The shaded areas are the regions within which the path integral
for this theory converges because €x(3(¢)) is exponentially damped. The usual path of integration is represented by the dashed line, and
extends from— to the origin along the ray defined W= —5/6, and then from the origin te along the ray defined by, = — /6.

Along this contour exp-S(¢)) is purely exponentially damped. In order to prove that the Langevin expectation values have the desired
behavior asr— =, it is easiest to use the smooth contour represented by the solid line. The solid line contour is defiredasib, and
extends from—o —ib—ow—ib.

I 9 assuming thaP vanishes rapidly at infinity. Since the re-
e 'Xme”(:m, maining terms ofO2H do not depend orp,, they can be
pulled out in front of the integral oveD ¢, . Using the fact
9 P P that 9/ d¢pgr=3d/dpc on an analytical function oy, EQ.
e"Xﬁe')eﬁJriW, (3.8 becomes Eq.(2.3) with ¢=¢c and P(o,7)
! : R =Pet(dc,7):
e XF(potig)er=F(¢c), (3.9

aPeff((ﬁCaT): d (i+05(¢c)
it is straightforward to show that ar dc\ ddc ddc

_ / d +aS(¢R—ib))
PP g\ ddbr PR

) Pett( b, 7).
(3.11)

That is, there is a pseudo-Fokker-Planck equation that de-
o fines a complex analytical functio®.; that is just the ana-
IS(pr—ib+ig)) lytical continuation of the Fokker-Planck equation for real
do variables.
For cases wher&l>3 in Eq. (1.1), a similar derivation
The last term of Eq(3.10 is a total derivative ing,, and  gives the same result. The only subtlety is in choosing the
therefore, disappears from the right side of E28), again  correct contour. For anil a contour with finite end points

e'x. (3.10

1 i
—e XIm
)
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oy

Ox

FIG. 2. Typical example of Stokes’ wedges for a massless, zero-dimensiafalp) /N theory. The shaded areas are the regions within
which the path integral for a giveN converges because €xpS(¢)) is exponentially damped. The usual path of integration, even for a
finite contour, is represented by the dashed line, and extends froim (b cotd ) to the origin, and then from the origin to
(—b,b cotag), whered, and 6y are given in Eq(1.2). In order to prove that the Langevin expectation values have the desired behavior as
T—o0, it iS most convenient to use the smooth contour represented by the solid line. The solid line contour is defireflzasib, and
extends from b, —b cotd )—(—b,bcotby).

(—b,—bcoth) and (—b,b cotéy), as defined by Eq.1.2), =P.{(pc,7eXp(S(¢p)/2), we obtain the Schatinger equa-
can be deformed into the contogi= ¢g—ib, as shown in  tion

Fig. 2. Consequently, using the methods above, an area inte-

gral over the strip—b cotf <¢gg<bcotby;—co<p<x is —ap(d¢,7) g 1 9S d
expressible as a path integral over the contgyr= ¢pg—ib a0y HFPD(d’CaT)E( T ide +3 <9¢>c) ( The
plus boundary terms involving derivatives Bf As b grows
larger, the area integral approaches an integral over the entire

complex plane. We expect the boundary terms to approach +§ % P(¢c,7). 312
zero because the probability of finding a particle fate
should go to zero. This is seen in Fig(Sec. IV). Following
the derivation forig /3, we are again led to Eq3.11).

Thus the problem of understanding the>o behavior of
expectation values has been reduced to one that is formal
identical to that for real variables. We now use the methods
of Parisi and Sourlag33], who first discovered the hidden
supersymmetry in classical stochastic equations.

If we express Eq.(3.1) in terms of p(¢c,7)

As claimed,Hgp is the supersymmetric Hamiltonian formed
from the superpotentiadS/d¢c. SinceSis P7 symmetric,
S/d¢c is antisP7 symmetric, andH p is P7 symmetric, as

aimed in Sec. I[34]. Expanding Eq(3.12 yields

oo 9 1azs+1(as)2 (313

PP 09T 20¢% 4\ddc) '
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+ o+ W + + . FIG. 3. Plot of the fieldg in
+ the complex plane for the poten-
05 . tial —g¢*/4 with e=0.3 using the
; second-order algorithm. Each
point corresponds to the value of
¢ for a value of the fictitious time
At . ' ; 7. The absolute magnitude ap
? was restricted to be less than 19 in
order avoid numerical instabili-
ties. (For simulations of—g¢*/4
- in one dimension, this restriction
+ was unnecessajyThe first 10 000
points are plotted. The field
7 started at the point (0.5,0.1),
and then followed a path towards
the imaginary axis. It then trav-
eled from side to side forming a
cloud of points that averaged to

35 L L L L L L the value—1.1687.
3 2 - 0 1 2 3 4

25

If the time-independent version of E(.12), Eqg. (3.17, the Langevin method should work as a calcula-
p o tional procedure. Explicitly, we have shown that analytic
HepWi (dc) =NV (de), (3.14  continuations of Eqs(2.5 and (2.6), with P replaced by

P ffs
is well posed and the eigenfunctioﬁ':fp(gbc) are complete, ¢
then Per(¢pc, 1) —e X%, 7w (3.19

* and
p(be,m)= go AV (g e ™ (3.19

f Dor D) A(prtic))P(dr, b 7)

Note thatW5P(¢c)=exp(—#c)/2) is an eigenfunction of

Hep with Ay=0. Therefore, Eq(3.15 becomes f D¢r Dy P(dr,dby i 7)

=Ce (M2)S(¢c) FP —N\gT w—ib
p(¢c.7)=Ce O+ 2, Al (go)e f,x,-de’C Albe)Puri( be.7)
(3.16 - 'ﬂb

Moreover, if the spectrum dfip is such that fﬁwibD‘ﬁC Peti(¢c.7)
ReN]>0, k>0, (3.17 w—ib

e f Dec Alge 90

it follows that _ ’x’;{ib s, (3.20
-5
p(qﬁC,T)HCe_(l/Z)s((ﬁc)' T30, (3.18 J'fxfide)C e S(¢c)

The 7 dependence gb(¢c,7) has disappeared in this imit. 516w if Hep, has a nondegenerate ground state, wave func-

This impliesdPe/d7=0 and signals that the system hasjons that are complete, and a spectrum with positive real
reached equilibrium. ExpressinBqsi(¢c,7) In terms of part.

p(¢c,7) and taking the limitr— o gives analytically con-
tinued versions of Eq¢(2.5), and thus Eq(2.6), in terms of
Peti. As a result, Langevin expectation values are shown to
converge to the right side of E(L.5) as7—oo. This result is In this section we apply the complex Langevin method to
true for our zero-dimension&7Z-symmetric theories as long massless versions of E¢l.1) in zero and one dimension,
as the ground state is nondegenerate. There is no evidenaad calculate the same time one- and two-point disconnected
that P7-symmetric theories possess a degenerate groun@reen’s functions for the cas#é=3 and 4. We begin by
state, so for the purposes of this paper, we will not consideproving (under certain assumptionthat Eq.(3.17) holds in
this a possibility. zero dimensions, and explaining the algorithms we have used
Thus if the supersymmetric HamiltoniaHgp formed to implement simulations. We then extend these results to
from the superpotentiadS/d¢c has a spectrum satisfying their one-dimensional analogs.

IV. NUMERICAL METHODS AND RESULTS
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A. Zero-dimensional theories -0.825 ———— LB BN A B

A recent paper by Doreyetal. [16] showed that
‘P7-symmetric Hamiltonians of the form

H=—(3¢)*—(i¢p)*M—a(igp)" 1, 4.1 -0.830

whereM and « are real and boundary conditions have been
chosen as in Sec. |, have a real positive spectrum if the

conditions a<M and M=1 are both satisfied16]. (We >
have set=0 in the Hamiltonian given by Doregt al) This = —0.835
proves (for «a=0, M=N/2) that massless versions of Eq. !
(1.1) have a positive real spectrum.
In zero-dimensional studies of E¢L.1) with m=0, Eq.
(3.13 gives -0.840
# g(N-1) . g° _
Hep=—5gz =5 (190" 2= Zig0)™™Y,
4.2
( ) _0.845 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1
0.00 0.01 0.02 0.03 0.04

where the contou is within the Stokes’ wedges explained
in Sec. | and used by Doregt al. Making the change of €
variables¢—>(2/g)1’N¢, Eq. (4.2) becomes Eq(4'1)_With_ FIG. 4. Plot of values for-iG; for a real time spacing o&
a=N-1andM=N-1. Thusa=M, and, as explained in  _ 5 ys the square of the fictitious time spacifgfor a —ga*/4
Ref.[16], this implies that théip given in Eq.(4.2 hasone  potential in one dimension. The solid line is a fit that is a linear plus
zero eigenvalue, which we have already demonstrated, angadratic ine for values computed using Euler's methédia-
that all of the remaining eigenvalues are real and positivemonds. The dashed line is a cubic fit ie, without a term that is
Consequently, Eq(3.17) holds forN=2, and this implies Jinear in ¢, for values computed using the second-order algorithm
that the complex Langevin method will work. (squareg Similar fits were performed for each valueashown in
Further, the large behavior of the wave functions for the Fig. 5.
eigenvalue problems defined by E4.2) must have the form

2
qf<¢,>~epr do - G (i)Y

by the WKB approximation. Apart from a factor of 2, the

asymptotic form of thf wave fun%tions has exactly the SaMGrder algorithm given below, there are numerical instabilities
form as exi—S(¢))=expg(i#)"/N). Thus the Stokes’ (o |arge values ofs. The worst instabilities arise when the
wedges that define regions of convergence for the path 'ntep'otential is— g4, For —g?l4, it was necessary to re-
gral are exactly the same as those that demBdt <) =0.  gyict the absolute magnitude of in order to avoid these

This is equivalent to noting that Ed1.4), with N—2(N  jysiapilities. A typical plot of the path followed by in the
—1), is identical to Eq(1.2). That is, the wedges of conver- complex plane is shown in Fig. 3.

gence for the path integrals defined by €xi$(¢)) are pre- One must then take— 0. Limiting values were obtained
served by the boundary. con_dmons for the wave functions ogy fitting the data with second and third-degree polynomials
the Fokker-Planck Hamiltonian. _ o in e. These fits are similar to those seen in Fig. 4, which is
The most general form of the Langevin equation is for the one-dimensional case. Errors are calculated by col-
9 lecting the simulation data in bins of a given size and com-
— =F((7)+ 5(7). (4.4  puting the standard deviation of the means of the bins. The
ar maximum error as a function of bin size is taken to be the
error for the simulation. In Table | the numerical results ob-
tained using Euler’'s method are compared with exact values
given in Ref.[17]. The parts of the one- and two-point dis-
: YT . ST g 2 . connected Green’s functions that are known to variesh.
¢(1+1)= (DTG +7()]= )+ F (b)) R4 G;]) have errors larger than their magnitudeeasO.
+en'(j), (4.5 Euler's method is expected to converge linearlyeiras
e—0. Therefore, a more accurate second ordes method
wherej is an index for a Langevin time stepjs the spacing is desirable. A second-order Runge-Kutta algorithm that led
in Langevin time,e= \/h; and theh dependence of(7) has  to good results in previous studies and was first developed in
been made explicit: Ref.[35] is

2

n'(D=en(j), (7' (0" (K)=26. (4.6

g - N
ex;{m(l (,25)
4.3 This form for »'(7) follows from the the normalization of

the Gaussian probability distribution because Efj2) im-
lies »?(7)~ 8(0)~ 1/ on a lattice. For this and the second

The simplest discretization of this is Euler’s meth@adfirst-
order algorithm, and is explicitly given by

085010-8
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TABLE I. Numerically determined values &6 ,=i(0|¢|0)/{0]|0) and — G,= —(0| $?|0)/{0|0) using
Euler’s method and a second-order method for zero-dimensige¥3 and — g¢*/4 theories withg=1/2.
These limiting values were determined by fitting the simulated data to polynomials of second and third
degree ine. For the second-order algorithm, the term lineat iis set to zero. Exact results are listed to four
significant digits in the first column. Note that the values listed for the second-order algorithm are indeed
more precise than the results using Euler’s method.

N iGixaCt iG Euler iG ind order _ ngact _ Gguler _ ngd order

3 0.9185 0.91984) 0.91947) 0 - -

4 1.163 1.1663) 1.1641) 0.9560 0.962%1) 0.959514)

()=o) +eF(p())+en'(j) wherel is an index for real time ana is the spacing in

physical time. The algorithms used in Sec. IV A are appli-
L cable here as well, but their form has changed slightly. The
. . . ~ . L algorithms now contain Eq4.8) as part ofF, and the ex-
p(j+D=a0)+ EEZ[F(d’(J))Jr F(@()]+en' (). plicit lattice dependence of(r,t) is such that
4.7
7' (1) =vhan(j.h), (7'(.D7' (km)=25; k8 m.
In our studies this method is more stable numerically than 4.9
Euler's method, and therefore, allows the inclusion of more . i ) .
data. Limiting values were obtained by fitting the data with Further, in these algorithms there is alwaysedrassociated
second and third degree polynomials énwith the linear ~ With Eq. (4.8), and thus the simulation is unstable unless
term set equal to zer¢These fits are similar to those seen in <&. However, there are no InStabllltl_es Slmllar to those en-
Fig. 4 for the one-dimensional caséthe results obtained countered for—g#“/4 in the zero dimensional case. For
using this algorithm are compared with exact values and théixed values of, we compute at various values ©ind take
result of Euler's method in Table I. There is good agreementthe limit e—0, giving the expectation values as a function of
It should be noted that for the cale=4, ¢(0) has to be @ A typical fit for this process is shown in Fig. 4. We then
Chosen in the |ower half Of the Comp|@(_p|ane or e|Se the take a%o, and obtain the eXpeCtation values in the con-
numerical simulations are unstable. This is in accord with thdinuum limit. A fit used to extrapolate the value 6fiG, for
WKB wedges needed to properly define the boundary conthe potential—g¢?/4 is shown in Fig. 5. In Table II the
ditions, as explained in Sec. I. This restriction also holds innumerical results for the expectation values are compared
one dimension for the initial configuration at0.

_'7 T 11t [T TV V1 vrrrfrrrrrrrrr
076 | | | |

B. One-dimensional theories
-0.78

In this section we apply the complex Langevin method to
massless versions of E(L.1) in one dimension witiN=3 —0.80
and 4. The potentials are the same as those discussed in Sec.

IV A, but now there is a second derivative in physical time, 5

—9?¢(7,t)/9t?, present in all of the equations, ang(7) T —082

becomeg dependent. Thus the eigenvalue problemHei

becomes a partial differential equation. The spectra of eigen- —0.84

value problems forPZ-symmetric partial differential equa-

tions has not been studied, and we do not have a proof that -0.86 .
they are real. But, following the examples of zero- ]
dimensional theories, we assume the spectrutd gf has a Y| NI I IS B .
positive real part. The results of our simulations support this 0.0 0.2 0.4 0.6 0.8 1.0
assumption. as

These one-dimensional theories are more computationally _ _ L
expensive because they give rise to Langevin equations that F|G-4 5. Extrapolated values 6fiG, vs real time spacing” for
are partial differential equations. Consequently, the second® —9¢"/4 potential in one dimension. Lattice expectation values
order algorithm in the last section is useful. For numericaffor these theories only depend upon even powera, ao fits are

simulations of one-dimensional theories, we have to Ir]tro_‘done in powers o&°. Both fits shown here are linear plus quadratic

duce a physical time lattice and&qu(r t)/atz becomes in a. Diamonds show values computed using Euler’s method, and
' the solid line is a fit for them. Squares show the results from the

: : : second-order algorithm; the dashed line is the fit to them. The con-
+1)— + - '
- (1T D) =2¢G.0+ (.17 1)) (4.8 tinuum limit values obtained from these plots are given in Table II.
Similar fits were performed for all of the data in Table II.

aZ
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TABLE Il.  Numerically determined values ofiG; integrals of observables weighted by this real probability dis-
=i(0|¢[0)/(0[0) and —G,=—(0|4$%0)/(0[0) using Euler's tribution. Previous studies of the zeros of eigenfunctions of
method and a second-order method for one-dimensionap7-symmetric theories suggest that the zeros interlace and
—g(i»)N/N theories withN=3 and 4. In order to compare our become dense in a narrow band in the compleptane[36].
results with Lagrangians used in previous studies, we havg set Hence it was conjectured that completeness may have to be
=N/2. These continuum limit values were determined by fitting the yafined in terms of area integrals. We suspect a strong con-
simulated data to third-degree polynomialseirior a givena (for | otion between the two results. and speculate that a consis-
the second-order algorithm, the term lineareiis set to zery and tent probabilistic formulation oP,T-symmetric theories can

then fitting the results of those fits with second-degree polynomialy, o 2 chieved in terms of area integrals. A probabilistic
in a°. Exact results obtained by direct numerical integration of the.

quantum mechanical problem are listed to four significant digits inlnterpretatlon ofP7-symmetric theories would be a major

the first column. The exact value efG, for N=4 has never been advance. dv of th | . ion d
directly calculated, so instead we list the results of the variational A recent study of the complex Langevin gquatlon emon-
calculation given in Ref[14]. Note that the values listed for the Strates that problems with convergence arise when expecta-

second-order algorithm are indeed more precise than the resulin values are complex but the fixed points of the Langevin
using Euler’s method. equation lie on the real axis, and as a result, the field spends
most of its time on the real axis and away from the correct
N gt jgfuer jg2ndoder _gvar _gPuer _g2ndoder  gyerage valug3l]. It was demonstrated there that this prob-
lem could be avoided by moving the fixed points into the
3 0.5901 0.589() 0.58982) 0 - - complex plane. In the present study the expectation values
4 0.8669 0.865%) 0.867Q3) 0.5182 0.517M) 0.51834)  gre purely real or purely imaginary. The fixed point of the
Langevin equation is zero, which is on the real axis, but the
simulations converged without moving the fixed point into

with numerically integrated quantum-mechanical valueshe complex plane. This seems to be because the path of the
given in Ref.[14]. We have choselgy such that Eq.(1.1) deterministic equation=0) is given by
corresponds with the Hamiltonians in R¢14]. The agree-

ment of our results with previous work is excellent.

&(7)

= , (5.1
_ 1/(N—-2)
V. CONCLUSIONS AND SPECULATIONS [(N=2)(7+C)]

This paper and Ref17] have shown thaP7-symmetric  whereC is an arbitrary constant given by the initial condi-
theories are amenable to the methods of quantum fieltlon. The field is attracted to the imaginary axis even though
theory. The previously used Schwinger-Dyson method ighe fixed point is on the real axis. Thus, it appears to be
very accurate but is difficult to apply to higher-dimensionalcrucial that the deterministic path tor between the fixed
theories. Here we show how a numerical method based opoints is in the complex plane, but not that the fixed points
the complex Langevin equation can be used to obtain precighemselves lie in the complex plane. The simulations for
results. We believe that this numerical method can be applie@®Z-symmetric theories work in a straightforward manner;
to higher-dimensional theories, and plan to use it for futurehe fixed points do not need to be adjusted. We believe that
calculations. This work represents an important step toward the complex Langevin equation works so nicely for
test of the physical applicability oPZ-symmetric Hamilto- P7-symmetric theories because these theories are inherently
nians. complex. As a result, it seems th@7-symmetric theories

An interesting implication of this study concerns the prob-may provide a class of toy models with new and interesting
ability and completeness g?7-symmetric theories. The ar- properties that are especially well suited for probing the in-
gument for the success of the complex Langevin method ittricacies of the complex Langevin equation.

Sec. Il crucially depends upon the eigenfunctionsHafp The most exciting proposed application of these non-
being completd Eq. (3.15]. Similarly, extremely accurate Hermitian theories is to Higgs theories. We believe that the
results in Ref[13] crucially depend on the completeness of numerical method presented in this paper should allow one
P7-symmetric eigenfunctions. The possible connection beto compute the mass of the Higgs particle in four-
tween the eigenvalues of the Fokker-Planck Hamiltonianglimensional versions of these theories. Before this can be
and the Hamiltonians being simulated suggests a possibigone, however, renormalization must be thoroughly under-
connection between the eigenfunctions as well. Perhapstood. Studies of field theories in fewer than four physical
proving completeness for one of these sets of eigenfunctiondimensions represent a simpler alternative. In particular, ex-
would imply the completeness of the other set. act results for the scaling exponents ofigrb®/3 theory in

Perhaps the most important implication 87-symmetric  two and three dimensions can be obtained by relating them
theories is that there is an implicit probability distribution to the Lee-Yang edge singularity in one and two dimensions
defined by Eq(3.1) and seen in Fig. 3. Moreover, this study respectively[37,38. Evaluation of these exponents by the
suggests that expectation values must be interpreted as amethods introduced here are in progress.
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