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Gravitational couplings of charged leptons in a medium
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JoséF. Nieves†

Laboratory of Theoretical Physics, Department of Physics, P.O. Box 23343, University of Puerto Rico,
Rı́o Piedras, Puerto Rico 00931-3343

Palash B. Pal‡

Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Calcutta 700064, India
~Received 26 April 2001; published 18 September 2001!

We calculate the leading order matter-induced corrections to the gravitational interactions of charged leptons
and their antiparticles in a medium that contains electrons but not the other charged leptons, such as normal
matter. The gravitational coupling, which is universal at the tree level, is found to be flavor dependent, and also
different for the corresponding antiparticles, when the corrections ofO(a) are taken into account. General
expressions are obtained for the matter-induced corrections to the gravitational mass in a generic matter
background, and explicit formulas for those corrections are given in terms of the macroscopic parameters of the
medium for particular conditions of the background gases.
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I. INTRODUCTION

The gravitational interactions are universal in the se
that the ratio of the inertial and the gravitational masses
any particle is a constant. This fact, expressed in the form
the equivalence principle, is one of the basic axioms of
general theory of relativity. Although this is a feature of t
theory at the classical level, it has been shown by Donogh
Holstein and Robinett~DHR! @1,2#, that the corresponding
linearized quantum theory of gravity respects this ratio,
least toO(a).

However, in the same series of works, it was shown t
this property is lost when the particles are in the presenc
a thermal background rather than the vacuum. To arrive
this idea, the inertial and the gravitational masses mus
defined in the context of quantum field theory. We consi
in Sec. II their precise definition in terms of the partic
propagator and the gravitational vertex, which we will ne
in the subsequent work. For the moment, let us denote th
two quantities byM andM 8 respectively and summarize th
results of Refs.@1,2#. The authors calculated the correctio
for the electron in a background with a temperatureT!me
and zero chemical potential. Thus, the background conta
only photons, but not electrons or any other matter partic
The dispersion relation for an electron with momentumPW in
the rest frame of the medium is given by

Ee~P!5AP21me
21

2

3
apT2 ~1.1!

andMe5Ee(0). Thus, toO(a),
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Me5me1
apT2

3me
. ~1.2!

In the same reference frame, the gravitational mass was
culated to be

Me85MeS 12
2apT2

3Me
2 D . ~1.3!

Using Eq.~1.2! and keeping only terms up toO(a), this can
be rewritten as

Me85me2
apT2

3me
, ~1.4!

which is different from the inertial mass.
Moreover, although in those calculations only the case

the electron was considered explicitly, the above results
equally applicable to other charged fermions, such as
muon. In particular, we note that, for any such fermionf, the
ratio

M f8

M f
512

2apT2

3mf
2 1O~a2! ~1.5!

depends on the mass parametermf . Therefore, not only the
inertial and gravitational masses of a given fermion ceas
be equal when the background effects are taken into acco
but in addition the ratio of these two quantities is no long
the same for all the particles; i.e., universality is lost as w
This happens despite the fact that the background cont
only photons and is therefore flavor neutral. The origin
this difference is that while the background as well as
tree-level gravitational couplings are flavor-independent,
mass terms in the kinetic energy part of the Lagrangian
not. We should not be too surprised by this fact because,
©2001 The American Physical Society04-1
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example, even in the vacuum the anomalous magnetic
ment has different contributions for the muon and the el
tron, though not at the lowest order.

But in a matter background with a non-zero chemical p
tential, such as the Sun or a supernova, there are cont
tions to gravitational mass which are proportional to the el
tron and nucleon densities. These matter contributions
dominate over the photon-background contribution, ev
when T!me , for which the photon contribution become
negligible. Moreover, the matter-induced corrections to
gravitational mass will be different for the various charg
lepton flavors, and will not be the same for the correspond
antiparticles.

Motivated by these considerations, in this work we calc
late the leading matter-induced QED corrections to the gr
tational masses of charged fermions in a medium that c
sists of a photon background and a matter background
electrons and nucleons. These represent the dominant co
tions for charged leptons and antileptons. For strongly in
acting particles such as the quarks, gluon exchange co
tions are expected to be even stronger and our results wil
apply.

Our calculation is based on the one-loop corrections to
gravitational vertex function of the charged lepton in the m
dium. Working in the context of the linearized theory
gravity, we show in detail how the gravitational mass is d
termined from the gravitational vertex function, give gene
expressions for the matter-induced corrections to the gr
tational mass in a generic matter background, and give
plicit formulas for the corrections in terms of the macr
scopic parameters of the background medium for a
special cases of the background gases.

The rest of the paper is organized as follows. In Sec.
we discuss the general procedure for finding the inertial
gravitational masses. In Sec. III, we discuss the self-ene
diagrams for the charged leptons in a medium and find
medium-induced contributions to their inertial masses.
also calculate the wave function normalization factors wh
will be needed in the calculation of the gravitational ma
later. In Sec. IV, we discuss the couplings in the lineariz
theory of gravity and calculate the gravitational vertex of t
leptons. In Sec. V, we use the vertex to find the gravitatio
masses of charged leptons and antileptons in a medium.
terms involving fermion distribution functions cannot b
evaluated exactly. In Sec. VI, we evaluate the correction
two different limits, viz., the classical and the strongly d
generate limit for the electron gas. Section VII contains o
concluding remarks.

II. PRELIMINARIES

A. Inertial mass

The dispersion relations of the modes that propag
through the medium are determined by solving the linear p
of the effective field equation. For fermions that propag
with momentumpm, this equation, in momentum space, is

@p”2mf2S f~p!#j~p!50, ~2.1!

whereS f denotes the background-dependent part of the s
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energy. The dispersion relations of the particle and the a
particle are given by the positive and negative energy so
tions of Eq.~2.1!, and we denote the corresponding spino
by U(p)5j(p) andV(p)5j(2p), respectively.

In an isotropic medium, the most general form ofS f is

S f~p!5ap”1bv”1c, ~2.2!

where we have introduced the vectorvm which represents the
velocity four-vector of the medium. We will perform all ca
culations in the rest frame of the medium, in whichvm has
components

vm5~1,0W !, ~2.3!

and in that frame, we define the components ofpm by writing

pm5~p0,PW !. ~2.4!

In general,a,b,c are functions of the variablesp0 and P,
which we will indicate by writing them asa(p0,P), and
similarly for the other ones, when we need to show it expl
itly. Equation ~2.2! can contain an additional term propo
tional tosmnvmpn in the more general case. However, such
term does not appear at the level of the one-loop calculat
@3# that we are considering in this work, and therefore
omit it.

Requiring Eq.~2.1! to have non-trivial solutions yields th
condition

D~p0,PW !50 ~2.5!

where

D~p0,PW !5@~12a!p2bv#22~mf1c!2. ~2.6!

Equation ~2.5! also determines the poles of the fermio
propagator:

Sf8~p!5
1

p2mf2S f
, ~2.7!

which can be written in the form

Sf85
N~p0 ,PW !

D~p0 ,PW !
, ~2.8!

with

N~p0,PW !5~12a!p”2bv”1~mf1c!. ~2.9!

The condition given in Eq.~2.5! has a positive energy
solution corresponding to the particle, given byp05Ef(P),
and a negative energy solution corresponding to the anti
ticle given byp052Ef̄(P), where

Ef , f̄~P!5AP21S mf1c

12a D 2

6
b

12a
. ~2.10!

These are implicit equations forEf , f̄ as a function ofP.
While solving for Ef , for example, we need to take th
4-2
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quantitiesa,b,c appearing on the right side as functions
Ef andP. The corresponding inertial masses are then defi
as

M f , f̄5Ef , f̄~0!. ~2.11!

Sincea,b,c are ofO(e2), we can solve Eq.~2.10! perturba-
tively by substituting the tree-level valuep056AP21mf

2 in
the right-hand side. It is useful to introduce the notation

Ef , f̄~p0,PW ![~ap•v1b!6c, ~2.12!

which can be expressed concisely in terms ofS f as

Ef , f̄5
1

4
Tr@~v”61!S f #. ~2.13!

To O(e2), the inertial masses are then found to be given

M f5mf1Ef~mf ,0W !,

M f̄5mf2E f̄~2mf ,0W !. ~2.14!

Equation~2.13! is a useful formula that allows us to extra
the matter-induced corrections to the inertial mass dire
from the one-loop expression forS f . As we will see next,
the wave function renormalization factor is determined
terms of the same quantitiesEf andE f̄ .

B. Wave function

We consider in some detail the case of the particles,
summarize at the end the corresponding results for the a
particles. We adopt the normalization of the one-parti
states such that their state vectorsu f (p,s)& satisfy

^ f ~p8,s8!u f ~p,s!&5~2p!3d (3)~PW 2PW 8!ds,s8 . ~2.15!

The one-particle states have associated with them the w
functions defined by the matrix element of the field opera

^0uc~x!u f ~p,s!&5AZf~p!Us~p!e2 ip•x, ~2.16!

whereUs(p) satisfies the Dirac equation

@p”2mf2S f~p!#Us~p!50 ~2.17!

with pm5„Ef(P),PW …. In the rest frame of the medium, th
explicit form of Us(p) can be easily worked out. Adoptin
that frame, and choosing the normalization such that

Us
†~p!Us~p!51, ~2.18!

it then follows that theUs satisfy the spinor sum relation

(
s

Us~p!Ūs~p!5
N~Ef ,PW !

2@~12a!Ef2b#
~2.19!

whereN is defined in Eq.~2.9!. From Eq.~2.17! we obtain
the identity
08500
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Ūs~p!gmUs~p!5F ~12a!pm2bvm

mf1c GŪs~p!Us~p!

~2.20!

which, together with Eq.~2.18!, implies the relations

Ūs~p!Us~p!5
mf1c

~12a!Ef2b
~2.21!

and

Ūs~p!gmUs~p!5
~12a!pm2bvm

~12a!Ef2b
. ~2.22!

In particular, in the frame specified by Eq.~2.3!,

@Ū~p!U~p!#PW 5051,

@Ū~p!gmU~p!#PW 505vm . ~2.23!

The normalization factorZf that appears in Eq.~2.16! is
determined as follows. Near the polep05Ef(P), Eq. ~2.8!
reduces to

Sf8~p!'
N~Ef ,PW !

~p02Ef !S ]D

]p0
D

p05Ef

. ~2.24!

On the other hand, we can calculate the one-particle con
bution to the thermal propagatoriSf8(x)5^Tc(x)c̄(0)& by
inserting a complete set of states, and retaining only the
trix elements between the vacuum state and one-par
states. Using Eq.~2.16!, we obtain

Sf8~p!u12particle'

Zf~p!(
s

Us~p!Ūs~p!

p02Ef

~2.25!

near the same pole. The requirement that the residue
these two expressions coincide, then yields

Zf~p!5H 2@~12a!Ef2b#S ]D

]p0
D 21J

p05Ef

, ~2.26!

where we have used Eq.~2.19!. To the lowest order ine2,
and for the particular casePW 50 in which we are interested
the expression reduces to

Zf511z f , ~2.27!

where

z f5
]E f

]p0U
pm5(mf ,0W )

, ~2.28!
4-3
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with Ef given by Eq. ~2.12! or Eq. ~2.13!. From now on
whenever we omit the dependence ofZf on p, it is to be
understood as the quantity evaluated atPW 50.

For the case of the antiparticle, similar considerations
ply. The wave function for the antiparticles is defined by

^ f̄ ~p,s!uc~x!u0&5AZf̄~p!Vs~p!eip•x, ~2.29!

whereVs(p) satisfies the equation

@p”1mf1S f~2p!#Vs~p!50, ~2.30!

with the normalization

Vs
†~p!Vs~p!51, ~2.31!

andpm5„Ef̄(P),PW …. The analogy of Eq.~2.20! in the present
case is

V̄s~p!gmVs~p!52F @12a~2p!#pm1b~2p!vm

m1c~2p! G
3V̄s~p!Vs~p!. ~2.32!

Writing

Zf̄511z f̄ , ~2.33!

the same procedure that led to Eq.~2.28! leads to the formula

z f̄5
]E f̄

]p0U
pm5(2mf ,0W )

. ~2.34!

Equations~2.28! and~2.34! are the formulas that we will us
for the explicit calculations in Sec. IV.

We will denote byus and vs the limiting value of the
spinorsUs and Vs when the effects of the medium are n
glected. They satisfy the free Dirac equation in the vacuu
as well as the relations

ūsgmus5
pm

mf
ūsus ~2.35!

ūsus5
mf

Ef
, ~2.36!

with similar relations forvs but with the substitutionpm→
2pm in the above equations.

C. Gravitational mass

The gravitational mass is a measure of the strength of
coupling of the fermion to the graviton. It can be determin
in terms of the fermion’s vertex function for the gravitation
interaction, as follows.

We denote byGlr(p,p8) the one-particle irreducible ver
tex function, defined such that the matrix element of the to
stress-energy tensor operatorT̂lr(x) between incoming and
outgoing fermion states is given by
08500
-

,

e
d

l

^ f ~p8,s8!uT̂lr~0!u f ~p,s!&

5AZf~p!Zf~p8!Ūs8~p8!Glr~p,p8!Us~p!.

~2.37!

We perform all our calculations in the linearized theory
gravity. This means that we write

glr5hlr12khlr , ~2.38!

and thenhlr is identified with the graviton field and treate
as a weak field.k is related to Newton’s constantG through
the equation

k5A8pG ~2.39!

to ensure that the graviton field has the correctly normali
kinetic energy term in the Lagrangian. We write the compl
vertex function in the form

Glr5Vlr1Glr8 , ~2.40!

where Glr8 denotes the 1-loop contribution andVlr is the
tree-level vertex function given by@4,5#

Vlr~p,p8!5
1

4
@gl~p1p8!r1gr~p1p8!l#

2
1

2
hlr@~p”2mf !1~p” 82mf !#. ~2.41!

We now consider the scattering of the fermion off a sta
gravitational potential, which is produced by a static ma
densityrext(xW ). Defining the Fourier transform

fext~xW !5E d3q

~2p!3
fext~qW !eiqW •xW, ~2.42!

with a similar definition forrext(qW ), the corresponding metric
is such that, in momentum space,

hlr~qW !5
1

k
fext~qW !~2vlvr2hlr!, ~2.43!

where we have used the Poisson equation22qW 2fext

5k2rext. The formula in Eq.~2.43! is the solution to the
linearized field equation for the metric with the static ener
momentum tensorTlr5vlvrrext, whererext is independent
of time. Under the influence of such an external potential,
on-shell f→ f transition amplitude is then

Sf f52 ik~2p!d~Ef2Ef8!AZf~p!Zf~p8!

3@Ūs~p8!Glr~p,p8!Us~p!#hlr~PW 2PW 8!.

~2.44!

Substituting Eq.~2.43! into Eq. ~2.44! yields
4-4
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Sf f52 i ~2p!d~Ef2Ef8!M~PW ,PW 8!fext~PW 2PW 8!,
~2.45!

where we have defined

M~PW ,PW 8![~2vlvr2hlr!AZf~p!Zf~p8!

3@Ūs~p8!Glr~p,p8!Us~p!#E
f85Ef

.

~2.46!

M(PW ,PW 8) is essentially the off-diagonal element of the Fo
rier transform of the mass operator, and the gravitatio
mass is simply the value of this quantity when both init
and final fermions have vanishing 3-momentum,

M f8[ lim
PW →0

@M~PW ,PW 8!#PW 8→PW . ~2.47!

To justify more fully this identification, notice that th
mass density operator for the fermion,r f(t,xW ), is determined
by writing an effective Lagrangian

Leff52r f~ t,xW !fext~xW ! ~2.48!

such that Eq.~2.45! is reproduced by taking the S-matr
element usingLeff as the interaction Lagrangian. This give
the scattering amplitude

^ f ~p8,s!u E d4x~ iLeff!u f ~p,s!&

52 i2pd~Ef82Ef !^ f ~p8,s!ur~0,0W !u f ~p,s!&

3fext~PW 2PW 8!. ~2.49!

Comparison with Eq.~2.45! shows thatr f is such that

^ f ~p8,s!ur f~0,0W !u f ~p,s!&P85P5M~PW ,PW 8! ~2.50!

with M(PW ,PW 8) given in Eq.~2.46!. By definition, the gravi-
tational massM f8 is given by

F ^ f ~p8,s!u E d3xr~0,xW !u f ~p,s!&G
PW →0

5~2p!3d (3)~PW 2PW 8!M f8 ~2.51!

while, on the other hand,

^ f ~p8,s!u E d3xr~0,xW !u f ~p,s!&

5~2p!3d (3)~PW 2PW 8!^ f ~p8,s!ur~0,0W !u f ~p,s!&.

~2.52!

Comparing Eqs.~2.51! and ~2.52!, and using Eq.~2.50!, we
arrive at the formula given in Eq.~2.47!.
08500
-
al
l

D. Operational definition at O„e2
…

Using Eqs.~2.40! and ~2.27!, the formula given by Eqs
~2.46! and ~2.47! can be rewritten in the form

M f85~2vlvr2hlr! lim
PW →0

H @Ūs~p8!$Vlr~p,p8!

1z fVlr~p,p8!1ZfGlr8 ~p,p8!%Us~p!#E
f85Ef

PW 8→PW
J .

~2.53!

Sincez f andGlr8 areO(e2), in any term that contains eithe
of these factors we substitute the tree level expressions
the other quantities. Furthermore, the terms involvingVlr

can be evaluated immediately with the help of the identit
given in Eq.~2.23!. Remembering thatEf(0)5M f , we fi-
nally obtain the operational definition toO(e2):

M f853M f22mf1z fmf1~2vlvr2hlr!

3 lim
PW →0

H @ ūs~p8!Glr8 ~p,p8!us~p!#E
f85Ef

PW 8→PW
J ,

~2.54!

where we can setEf5AP21mf
2 in the last term.

The arguments for the case of the antiparticle are sim
but the equation corresponding to Eq.~2.44! is

Sf̄ f̄5~21!~2 ik!~2p!d~Ef̄2Ef̄
8!AZf̄~p!Zf̄~p8!

3@V̄s~p!Glr~2p8,2p!Vs~p8!#hlr~PW 2PW 8!,

~2.55!

where the extra minus sign is due to the usual fermion
change rule. This leads to an equation that is analogou
Eq. ~2.53!, but with an extra minus sign in front and som
obvious changes in the corresponding symbols, which in t
lead to theO(e2) formula

M f̄
853M f̄22mf1z f̄mf2~2vlvr2hlr!

3 lim
PW →0

H @ v̄s~p!Glr8 ~2p8,2p!vs~p8!#E
f85Ef

PW 8→PW
J .

~2.56!

For the following discussion, it is useful to indicate explicit
the dependence of the vertex functionGlr8 (p,p8) on the vec-
tor vm, and therefore we will write it asGlr8 (p,p8,v). Using
the usual relation between the free particle and antipart
spinors by means of the charge conjugation matrixC, the
spinor matrix element that appears in Eq.~2.56! can be re-
written in the form
4-5
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v̄s~p!Glr8 ~2p8,2p,v !vs~p8!

52ūs~p8!G8lr
c ~2p8,2p,v !us~p!, ~2.57!

where, for any 434 matrix A, we define

Ac[C21ATC. ~2.58!

On the other hand, the following result holds. If the Lagran
ian of the theory isC invariant ~which in our case it is! and
if the background isC-symmetric, then the gravitational ve
tex function satisfies the relation

G8lr
c ~2p8,2p,v !5Glr8 ~p,p8,v !. ~2.59!

This result is obtained by the same techniques that were
ployed in Ref.@6# to analyze the transformation properties
the induced electromagnetic vertex of neutrinos in a ma
background. This result cannot be applied in our case
cause we will consider backgrounds which are not partic
antiparticle asymmetric. However, as an extension of
~2.59!, similar arguments can be used to show that, if
Lagrangian is C invariant but the background is no
C-symmetric, then the vertex function satisfies

G8lr
c ~2p8,2p,v !5Glr8 ~p,p8,2v !. ~2.60!

Using Eq.~2.60! in Eq. ~2.57! and substituting the result in
Eq. ~2.56!, we then obtain the formula

M f̄
853M f̄22mf1z f̄mf1~2vlvr2hlr!

3 lim
PW →0

H @ ūs~p8!Glr8 ~p,p8,2v !us~p!#E
f85Ef

PW 8→PW
J .

~2.61!

We take the opportunity to emphasize the following poi
In the calculations that follow, we will find expressions f
the various contributions toGlr8 (p,p8), which are given as
integrals over the propagators and thermal distribution fu
tions. In general, such expressions do not have a unique
iting value as we letp8→p in an arbitrary way@7#. More-
over, some of the integrals are ill-defined if the limit is n
taken properly. In our case, the precise order in which
various limits must be taken has been dictated by the ph
cal issue at hand. Thus, since we are interested in the in
action of the particle with a static gravitational potential, t
quantity that enters isGlr8 (p,p8), evaluated forEf85Ef .

Next we setPW 85PW since we actually want the forward sca

tering amplitude, and finally setPW →0 to obtain the coupling
at zero momentum, which determines the gravitational m
This justifies the somewhat cumbersome notation regard
the limits in Eq.~2.54!, but it is meant to indicate precisel
what we have just explained, since failure to follow this p
scription results in ill-defined expressions in some contri
tions. On the other hand, as we will see, this prescript
allowed us to evaluate all the integrals involved, in a uniq
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and well-defined way, including those that superficially se
to be singular, without having to introduce by hand any s
cial regularization technique.

III. SELF-ENERGY

A. Calculation of El

The self-energy diagrams are shown in Fig. 1. In the
sence of a gravitational potential, the contribution from F
1~B! vanishes because the photon tadpole is zero in an e
trically neutral medium@8#. In the presence of a gravitationa
potential, that diagram is not zero by itself because the c
dition for the vanishing of the photon tadpole, which
equivalent to requiring that the medium be electrically ne
tral, involves other diagrams. This will be discussed in de
in Sec. IV C. As shown there, the conclusion remains that
need to consider only Fig. 1~A! to calculate the self-energy

Therefore, the charged lepton self-energy is given by

2 iS l~p!5~ ie!2E d4k

~2p!4 gmiSl~p1k!gniD mn~k!,

~3.1!

whereSl(k) andDmn(k) are the thermal propagators for th
internal lines. For a fermion, the propagator is given by

iSf~p!5 iSF f~p!1ST f~p! ~3.2!

where

SF f5
p”1mf

p22mf
21 i e

, ~3.3!

ST f~p!522p~p”1mf !d~p22mf
2!h f~p!. ~3.4!

For the photon, in the Feynman gauge,

iD lr~k!52hlr@ iDF~k!1DT~k!#, ~3.5!

where

DF~k!5
1

k21 i e
, ~3.6!

DT~k!52pd~k2!hg~k!. ~3.7!

We have introduced the notation

FIG. 1. One-loop diagrams for the self-energy of a charged l
ton l in a medium.
4-6
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h f~p!5
u~p•v !

eb(p•v2m f )11
1

u~2p•v !

e2b(p•v2m f )11
, ~3.8!

hg~k!5
1

ebuk•vu21
, ~3.9!

whereb51/T is the inverse temperature of the backgrou
andm f the chemical potential.

When Eqs.~3.2! and ~3.5! are substituted into Eq.~3.1!,
four terms are produced. Since we are interested in the b
ground induced contributions only, we disregard the te
involving bothSFl andDF . Among the other three, the on
involving bothSTl andDT contributes only to the absorptiv
part of the self-energy—i.e., to the imaginary part of t
coefficientsa,b,c in Eq. ~2.2!—and therefore does not con
tribute to the mass. The contributions to the real part of
coefficients arise from the remaining two terms, which c
be written in the form

S l8~p!5S l18 ~p!1S l28 ~p!, ~3.10!

where

S l18 ~p!52e2E d4k

~2p!3d~k2!hg~k!
p”1k”22ml

p212k•p2ml
2

~3.11!

S l28 ~p!522e2E d4k

~2p!3d~k22ml
2!h l~k!

k”22ml

p222k•p1ml
2

.

Using Eq.~2.13!, and according to the decomposition give
in Eq. ~3.10!, we write

El5El11El2 , ~3.12!

where

El152e2E d4k

~2p!3
d~k2!hg~k!

p•v1k•v22ml

p212k•p2ml
2

,

~3.13!

El2522e2E d4k

~2p!3
d~k22ml

2!h l~k!
k•v22ml

p222k•p1ml
2

.

~3.14!

We can make a similar decomposition ofE l̄ . The quantities
E l̄ 1 andE l̄ 2 are obtained fromEl1 andEl2 by replacingml by
2ml .

B. Inertial mass

The inertial mass is determined by applying Eq.~2.14!
and, according to the decomposition given in Eq.~3.12! we
write it as

Ml5ml1ml11ml2 , ~3.15!
08500
k-

e
n

and similarly for the anti-leptons. Substitutingpm5(ml ,0W )
in Eq. ~3.13!, and using the fact that the terms in the int
grand that are odd ink yield zero, we obtain

ml1[El1~ml ,0W !5
e2

ml
E d4k

~2p!3
d~k2!hg~k!

5
e2T2

12ml
. ~3.16!

This is the contribution to the inertial mass from the photo
in the background, in agreement with the result quoted in
~1.2!, and it is non-zero for any of the charged leptons pro
gating through the medium. In a similar fashion we find

ml̄ 1[2E l̄ 1~2ml ,0W !5
e2T2

12ml
, ~3.17!

and therefore the photon contribution for the anti-particle
the same as for the corresponding particles.

The term given in Eq.~3.14! is due to the fermions in the
background. Therefore in a background that contains e
trons but not the other charged leptons, the distribution fu
tions for the muon and the tau vanish. As a result,

mm25mt25mm̄25mt̄250. ~3.18!

For the electron, we obtain

me2[Ee2~me ,0W !5
e2

me
E d4k

~2p!3
d~k22me

2!he~k!Fk022me

k02me
G .

~3.19!

Performing the integrations overk0 and the angular vari-
ables, we obtain

me25
e2

2p2me
E

0

`

dK
K2

2EK
F S EK22me

EK2me
D f e~EK!

1S EK12me

EK1me
D f ē~EK!G , ~3.20!

where we have put

km5~EK ,KW !, EK[AK21me
2, ~3.21!

and the distribution functions for a fermion and antifermi
are given by the usual formulas

f f , f̄~E!5
1

eb(E7m f )11
, ~3.22!

respectively. Similarly,
4-7
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mē2[2Eē2~2me ,0W !

5
e2

2p2me
E

0

`

dK
K2

2EK
F S EK12me

EK1me
D f e~EK!

1S EK22me

EK2me
D f ē~EK!G . ~3.23!

The integration overK can be performed only when th
momentum distribution functions are specified, and we w
consider some examples in Sec. VI. Here we only note t
as it is expected on the basis ofCPT-symmetry consider-
ations, the inertial mass correction is the same for part
and anti-particle if the medium has zero chemical potent
but not otherwise.

C. Calculation of Zl

We decompose

z l5z l11z l2 ~3.24!

with a similar decomposition for the anti-leptons, where

z l i 5
]E l i

]p0 U
pm5(ml ,0W )

for i 51,2, ~3.25!

FIG. 2. One-loop diagrams for the gravitational vertex
charged leptons in a background of electrons. The braided line
resents the graviton.
08500
ll
t,

le
l,

and

z l̄ i5
]E l̄ i

]p0 U
pm5(2ml ,0W )

for i 51,2. ~3.26!

Taking the derivative in Eq.~3.13! and then settingpm

5(6ml ,0W ), we obtain

]E l1

]p0 U
pm5(ml ,0W )

5
]E l̄ 1

]p0 U
pm5(2ml ,0W )

52
e2

ml
2E d3K

~2p!3

f g~K !

K S 12
ml

2

K2D ,

~3.27!

which implies

z l15z l̄ 152
e2T2

12ml
2 1

e2

2p2E
0

`dK

K
f g~K !, ~3.28!

where we have introduced the photon momentum distri
tion function

f g~K !5
1

ebK21
. ~3.29!

The integral in Eq.~3.28! is infrared divergent, and it will
cancel a similarly divergent term in the gravitational vert
contribution to the gravitational mass@see Eq.~5.5!#.

Since the electron background terms do not contribute
the self-energy of the muon or the tau, it follows that

zm25zt25zm̄25zt̄250. ~3.30!

For the electron, Eq.~3.14! implies

]E e2

]p0 U
pm5(me ,0W )

52
Ee~me ,0W !

me

~3.31!
]E ē2

]p0 U
pm5(2me ,0W )

5
Eē~2me ,0W !

me
,

which yield

p-
-
d
ns.
FIG. 3. Diagrams for the one-loop contribu
tion to the gravitational vertex of any charge
lepton in a background of electrons and nucleo
4-8
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ze252
me2

me

~3.32!

z ē252
mē2

me
,

with me2 and mē2 given in Eqs.~3.20! and ~3.23!, respec-
tively.

IV. GRAVITATIONAL VERTEX

A. Irreducible diagrams and couplings

The irreducible one-loop diagrams for the vertex functi
are given in Figs. 2 and 3.

We adopt the convention thatq is the momentum of the
outgoing graviton, so that

q5p2p8, ~4.1!

and we calculate only the terms that contribute to the disp
sive part of the vertex function, which satisfies the condit

Glr~p,p8!5g0Glr
† ~p8,p!g0 . ~4.2!

The absorptive part contributes to the fermion damping, w
which we are not concerned in the present work.

When the formulas given in Eqs.~3.2! and ~3.5! for the
propagators are substituted in the expressions correspon
to the diagrams, we obtain terms of a different kind. One
them is independent of the background medium, in which
are not interested. Those involving two factors of the therm
part of the propagators contribute to the absorptive par
the vertex, while those involving three factors of the therm
part vanish because of the variousd-functions appearing in
it. Thus, the background induced contribution to the disp
sive part of the vertex, to be denoted byGlr8 , contains the
thermal part of only one of the propagators, and they are
only kind of term that we retain.

We have omitted the one-particle reducible diagrams
which the graviton line comes out from one of the exter
fermion legs, because they do not contribute toGlr . The
proper way to take them into account in the calculation of
amplitude for any given process, is by choosing the exte
spinor to be the solution of the effective Dirac equation
the propagating fermion mode in the medium, instead of
spinor representing the free-particle solution of the equa
in the vacuum, with the normalization determined by t
self-energy of the fermion, as discussed in Sec. II B.

The various graviton couplings that are needed for
evaluation of these diagrams have appeared in the litera
For completeness we summarize here the relevant formu
For fermions, the Feynman rule for the graviton-fermio
fermion vertex is2 ikVlr(p,p8), whereVlr is given in Eq.
~2.41!, wherep andp8 are the momenta of the incoming an
the outgoing fermions@4#. The interaction involving the
graviton, a photonAm and a pair of charged fermions
represented by the Feynman rule@9,5# iekamnlrgn, where
08500
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amnlr5hmnhlr2
1

2
~hmlhnr1hnlhmr!. ~4.3!

In addition, there is also a photon-photon-graviton vert
For an incoming photonAm(k) and an outgoing oneAn(k8),
the Feynman rule for this vertex is2 ikCmnlr(k,k8), with
@9#

Cmnlr~k,k8!5hlr~hmnk•k82km8 kn!2hmn~klkr81kl8kr!

1kn~hlmkr81hrmkl8 !1km8 ~hlnkr1hrnkl!

2k•k8~hlmhrn1hlnhrm!. ~4.4!

B. Diagrams in Fig. 2

1. Diagram 2(A)

The amplitude of the diagram in Fig. 2~A! can be written
as

2 ikGlr
(A)~p,p8!5E d4k

~2p!4iega iSl~k8!~2 ik!Vlr~k,k8!

3 iSl~k!iegb iD ab~k2p!, ~4.5!

where

k8[k2q. ~4.6!

As already explained, to determine the contribution to
dispersive part of the vertex function we need to retain
terms that contain the thermal part of only one of the pro
gators. Any of them contain some combination of the for

Llr~k1 ,k2![ga~k” 21ml !Vlr~k1 ,k2!~k” 11ml !g
a.

~4.7!

After some straightforward algebra, this can be written a

Llr~k1 ,k2!52
1

2
@~k11k2!r~k” 1glk” 21ml

2gl!

1~k11k2!l~k” 1grk” 21ml
2gr!#

1hlr@~k1
22ml

2!~k” 222ml !1~k2
22ml

2!

3~k” 122ml !#12ml~k11k2!l~k11k2!r .

~4.8!

For the sake of convenience, we divide the total contrib
tion into two parts

G8lr
(A)~p,p8!5G8lr

(A1)~p,p8!1G8lr
(A2)~p,p8!, ~4.9!

whereGlr
(8A1) contains the distribution function of the photo

and therefore contributes to the gravitational vertex for

charged leptons, andGlr
(8A2) contains the distribution function

of the electrons and contributes only to the vertex for
electrons. Changing the integration variable fromk to k1p,
we obtain
4-9
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Glr8(A1)~p,p8!

52e2E d4k

~2p!3

d~k2!hg~k!

@~k1p8!22ml
2#@~k1p!22ml

2#

3Llr~k1p,k1p8!, ~4.10!

and similarly,

Glr8(A2)~p,p8!5e2E d4k

~2p!3 d~k22ml
2!h l~k!

3S Llr~k,k2q!

@~k2q!22ml
2#~k2p!2

1
Llr~k1q,k!

@~k1q!22ml
2#~k2p8!2D . ~4.11!

2. Diagram 2(B)

For this diagram

2 ikGlr
(B)~p,p8!5E d4k

~2p!4iegaiSl~p2k!iegb~2 ik!

3Cmnlr~k,k8!iD na~k!iD mb~k8!,

~4.12!

and we decompose it in analogy with Eq.~4.9!. The part that
contains the photon distribution function is

Glr8(B1)~p,p8!5e2E d4k

~2p!4gnSFl~p2k!gmCmnlr~k,k8!

3@DF~k!DT~k8!1DF~k8!DT~k!#. ~4.13!

Making a change of the integration variable in one of t
terms, this can be written as

Glr8(B1)~p,p8!5e2E d4k

~2p!3 d~k2!hg~k!

3Fgn~p” 82k”1ml !g
mCmnlr~k1q,k!

@~p82k!22ml
2#~k1q!2

1
gn~p”2k”1ml !g

mCmnlr~k,k2q!

@~p2k!22ml
2#~k2q!2 G ,

~4.14!

while

Glr8(B2)~p,p8!5e2E d4k

~2p!4gnSTl~k!gmCmnlr~p2k,p82k!

3DF~p2k!DF~p82k!

52e2E d4k

~2p!3 d~k22ml
2!h l~k!gn~k”1ml !

3gm
Cmnlr~p2k,p82k!

~p2k!2~p82k!2
~4.15!
08500
gives the lepton background part.

3. Diagrams 2(C) and 2(D)

For these two diagrams the manipulations are similar a
omitting the details, the results are

Glr8(C11D1)~p,p8!52e2amnlrE d4k

~2p!3 d~k2!hg~k!

3Fgm~k”1p” 81ml !g
n

~k1p8!22ml
2

1
gn~k”1p”1ml !g

m

~k1p!22ml
2 G , ~4.16!

and

Glr8(C21D2)~p,p8!5e2amnlrE d4k

~2p!3 d~k22ml
2!h l~k!

3Fgm~k”1ml !g
n

~k2p8!2
1

gn~k”1ml !g
m

~k2p!2 G .

~4.17!

C. Diagrams in Fig. 3

1. The question of the photon tadpole

We are calculating the effective action given by the tre
level terms, plus theO(e2) corrections that arise from th
diagrams in Figs. 1, 2 and 3. Some of the diagrams cont
ute to the bilinear~or kinetic! part of the effective action,
from which we identify the inertial mass and the wave fun
tion renormalization, while others contribute to the intera
tion with the gravitational potential, from which we identif
the gravitational mass.

It is important to recall at this point that we are conside
ing a medium that is electrically neutral, which requires th
the parameters that characterize the composition of the
dium be such that the net contribution to the photon tadp
vanishes.

The diagrams that contribute to the photon tadpole at
one-loop level, in the presence of a static and homogene
gravitational potential, are shown in Fig. 4, where the gra
ton line represents theq50 background field. In the absenc

FIG. 4. One-loop diagrams contributing to the photon tadpole
a medium in the presence of a gravitational field. The fermion lo
involves a sum over all species of fermions present in the medi
4-10
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of the background field, only the diagram 4~A! contributes to
the photon tadpole. In that case, the requirement that
tadpole vanishes yields the familiar condition

Q (4A)[(
f

QfF2E d3K

~2p!3
@ f f~EK!2 f f̄~EK!#G50

~4.18!

wheref f and f f̄ are given by Eq.~3.22!, and the sum is ove
all species of fermions in the medium, the charge of e
species being denoted byQf with the convention thatQe5
21. In this case, the quantityQ (4A) is identified with the
total charge of the medium. However, in the presence of
background field, and to the order that we are calculating,
have to take into account the contributions of the diagra
4~B! and 4~C! to the photon tadpole or, equivalently, to th
total charge of the system. If we denote them byQ (4B) and
Q (4C) respectively, it is the sumQ (4A)1Q (4B)1Q (4C) that
must be zero for the photon tadpole to vanish. Physica
this means that the number density of the particles is
determined by their free distribution functions. The partic
distributions rearrange themselves in a way that depend
the background gravitational field.

This has the following implication for our calculation
Firstly, the unadorned tadpole of Fig. 4~A! is now itself of
orderk because of the charge neutrality condition. Since
diagrams 3~C! and 3~D! contain an explicit factor ofk apart
from the unadorned tadpole, their contribution is actually
order k2 and therefore we can neglect them. Secondly,
diagram shown in Fig. 1~B! cancels theq-independent con-
tributions from the diagrams 3~A! and 3~B!. Since the loop in
diagram 3~B! in independent ofq, this diagram is totally
canceled.

In summary, the only contribution from the diagram
shown in Fig. 3 arises from theq2-dependent part of the
tadpole subdiagram of Fig. 3~A!. When multiplied by the
photon propagator, it gives zero for thed(q2) part in the
propagator while its linear term inq2 cancels the 1/q2 in the
other part. This latter contribution will be labeled by th
letter ‘‘X’’ in order not to confuse it with the contributions o
Fig. 2~A!.

2. The non-vanishing contribution

We denote the vertex contribution coming from Fig. 3~A!
by

Glr
(X)~p,p8!5

e2ga

q2 Xlra~q!, ~4.19!

whereXlra(q) is the photon-graviton mixing diagram wit
external momentumq

Xlra~q!5(
f
E d4k

~2p!4Tr@Vlr~k,k8!iSf~k!iQfgaiSf~k8!#.

~4.20!

Then, taking the above discussion into account, the quan
which will appear in the expression for the gravitation
mass is given by
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G̃lr
(X)~p,p8!5

e2ga

q2 @Xlra~q!2Xlra~0!#. ~4.21!

As already mentioned, the sum in Eq.~4.20! is over all spe-
cies of fermions in the medium, the charge of each spe
being denoted byQf with the convention thatQe521. The
medium-dependent contribution toXlra(q) can be written as

Xlra~q!5(
f

QfE d4k

~2p!3 d~k22mf
2!h f~k!

3FAlra~k,k2q!

q222k•q
1

Alra~k1q,k!

q212k•q
G ,

~4.22!

where, for arbitrary 4-momentak1 andk2,

Alra~k1 ,k2!5Tr@Vlr~k1 ,k2!~k” 11mf !ga~k” 21mf !#

5@~2k1lk1r1k1lk2r1k2lk1r!k2a

1~mf
22k1•k2!~hlak1r1hrak1l!

22hlr~k1
22mf

2!k2a#1@k1↔k2#. ~4.23!

Puttingk25mf
2 , we obtain

Alra~k,k2q!5@8klkr24~klqr1krql!12qlqr#ka

2@4klkr2~klqr1krql!#qa

1k•q@hla~2k2q!r1hra~2k2q!l#

22hlr~q222k•q!ka . ~4.24!

Since Alra(k1 ,k2)5Alra(k2 ,k1) by definition, Alra(k
1q,k) is obtained by changing the sign ofq in this expres-
sion.

Finally, we mention that the complete one-loop vert
function satisfies the transversality condition, which is im
plied by the gravitational gauge invariance of the theo
This is shown in Appendix A.

V. CALCULATION OF THE GRAVITATIONAL MASS

As seen in Eq.~2.54!, there are three types ofO(e2)
corrections to the gravitational mass. One of them is prop
tional to the inertial mass that was calculated in Sec. III, a
another one involves the wave function renormalization f
tor derived in Sec. II B. In this section we find the contrib
tions from the one-loop vertex diagrams. Since the expr
sions for those already have an explicit factor ofe2 outside
the integral, to evaluate them we can use the tree-level va
for the dispersion relation and the spinors associated with
external lepton.

A. Terms with the photon distribution from Fig. 2

We first evaluate those terms obtained in Sec. IV t
contain the photon distribution function. In fact, if the tem
perature of the ambient medium is low (T!me) and the
4-11
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chemical potential of the background electrons is zero, th
are the only terms that contribute and they are precisely
ones that were calculated in Ref.@1#. Since we have per
formed the calculations in a different way, using 1-partic
irreducible diagrams only, the following results serve as
good checkpoint between the earlier calculations of Ref.@1#
and ours.

1. Contribution (A1)

From the formula for the gravitational mass given in E
~2.54!, it follows that we need to calculate the vertex only f
p5p8, in which case

Glr8(A1)~p,p!52e2E d4k

~2p!3

d~k2!hg~k!

4~k•p!2 Llr~k1p,k1p!.

~5.1!

From Eq.~4.8! it follows that, for any 4-vectorym,

Llr~y,y!524ylyr~y”22ml !1~y22ml
2!

3@~glyr1gryl!12hlr~y”22ml !#, ~5.2!

which leads to

ūs~p!Glr8(A1)~p,p!us~p!

52e2E d4k

~2p!3

d~k2!hg~k!

~k•p!2

3ūs~p!F2
k•p

ml
klpr1ml~klkr1plpr!

1
~k•p!2

ml
hlrGus~p!, ~5.3!

where we have used Eq.~2.35! and omitted the terms odd i
k, which integrate to zero. Using the notation

m(A1)8 5~2vlvr2hlr!@ ūs~p!Glr8(A1)~p,p!us~p!#pm5(ml ,0W ) ,
~5.4!

we obtain

m(A1)8 5e2E d3K

~2p!3 f g~K !F 1

mlK
2

ml

K3G
5

e2T2

12ml
2

e2ml

2p2 E
0

`dK

K
f g~K !. ~5.5!

The remaining integral is infrared divergent, but its contrib
tion to the gravitational mass is canceled by a similar te
that arises from the wave function renormalization, as
already noted in Eq.~3.28!.

2. Contribution (B1)

This term has to be treated carefully because the deno
nators in the integrand of Eq.~4.14! vanish forq50. How-
08500
se
e

a

.

-

e

i-

ever, a careful evaluation of this term, following the proc
dure indicated in Eq.~2.54!, shows that the limit exists
Denoting

m(B1)8 [~2vlvr2hlr!

3 lim
PW →0

H @ ūs~p8!Glr8(B1)~p,p8!us~p!#E
l85El

PW 8→PW
J ,

~5.6!

the result is

m(B1)8 52
e2T2

3ml
. ~5.7!

The details of the derivation of this result are given in A
pendix B.

3. Contributions (C1¿D1)

We can proceed as in the evaluation ofm(A1)8 above. Thus,
from Eq. ~4.16!,

ūs~p!Glr8(C11D1)~p,p!us~p!

52 e2amnlrE d4k

~2p!3

d~k2!hg~k!

k•p
@ ūs~p!gmk”gnus~p!#,

~5.8!

using the fact thatamnlr is symmetric in the indicesm,n.
Then using

~2vlvr2hlr!amnlr52hmn22vmvn ~5.9!

it follows that

m(C11D1)8 [~2vlvr2hlr!

3@ ūs~p!Glr8(C11D1)~p,p!us~p!#pm5(ml ,0W )

50. ~5.10!

B. Terms with the electron distribution from Fig. 2

These terms contribute only to the vertex involving ele
trons and positrons. The integration overk0 and the angular
variables can be done exactly. The remaining integral can
evaluated analytically only for special cases of the distrib
tion functions, some of which we consider afterwards.

1. Contribution (A2)

As can be seen from Eq.~4.11!, the denominators of the
integrand of this term vanish asq→0. Consequently, the
prescription indicated in Eq.~2.54! has to be followed care
fully in this case. As we show in detail in Appendix B 2
defining
4-12
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m(A2)8 [~2vlvr2hlr!

3 lim
PW →0

H @ ūs~p8!Glr8(A2)~p,p8!us~p!#E
l85El

PW 8→PW
J ,

~5.11!

the final result for this term is

m(A2)8 5
e2

me
E d3K

~2p!32EK
H 2EK

2 2me
2

EK

3S EK22me

EK2me

] f e

]EK
1

EK12me

EK1me

] f ē

]EK
D

1
2EK

4 2EK
3 me25EK

2 me
212EKme

322me
4

meEK
2 ~EK2me!

f e

2
2EK

4 1EK
3 me25EK

2 me
222EKme

322me
4

meEK
2 ~EK1me!

f ēJ ,

~5.12!

whereEK is defined in Eq.~3.21!.

2. Contribution (B2)

From Eq.~4.15! it is seen that the integrand is not singul
in the limit q→0. Therefore we can evaluate directly

Glr8(B2)~p,p!52e2E d4k

~2p!3 d~k22me
2!he~k!gn~k”1me!

3gm
Cmnlr~p2k,p2k!

~p2k!4
, ~5.13!

and the contribution to the gravitational mass is given by

m(B2)8 5~2vlvr2hlr!@ ūs~p!Glr8(B2)~p,p!us~p!#pm5(me ,0W ) .
~5.14!

In the expression forCmnlr , any term having a factor o
(p2k)m or (p2k)n does not contribute to the integral. Th
is because, within the spinors, we can write

gn~k”1me!g
m~p2k!m5gn~k”1me!~me2k” !5gn~me

22k2!,
~5.15!

which vanishes because of thed-function. The argument is
similar for (p2k)n . Thus,

~2vlvr2hlr!ūs~p!gn~k”1me!g
mCmnlr~p2k,p2k!us~p!

5ūs~p!$8~k”22me!~p•v2k•v !2

14~me22k•vv” !~p2k!2%us~p!, ~5.16!

ignoring all terms which have a factor ofk22me
2 . Using

Eqs.~2.35! and ~2.36!, we then obtain
08500
m(B2)8 52
2e2

me
2 E d4k

~2p!3 d~k22me
2!he~k!S k01

me
2

k02me
D

52
e2

me
2E d3K

~2p!3 ~ f e2 f ē!

2
e2

2p2E dK
K2

EK
F f e~EK!

EK2me
2

f ē~EK!

EK1me
G . ~5.17!

3. Contributions (C2¿D2)

Similarly, for this term we can evaluate directly

m(C21D2)8 5~2vlvr2hlr!

3@ ūs~p!Glr8(C21D2)~p,p!us~p!#pm5(me ,0W ) ,

~5.18!

with

Glr8(C21D2)~p,p!52e2amnlrE d4k

~2p!3 d~k22me
2!

3he~k!
gm~k”1me!g

n

~k2p!2
. ~5.19!

By straightforward algebra

~2vlvr2hlr!amnlrgm~k”1me!g
n54k”26me24k•vv” ,

~5.20!

and using Eqs.~2.35! and ~2.36!,

m(C21D2)8 56e2E d4k

~2p!3 d~k22me
2!he~k!

1

k02me

5
3e2

2p2E dK
K2

EK
F f e~EK!

EK2me
2

f ē~EK!

EK1me
G .

~5.21!

C. Terms from Fig. 3

The contribution to the gravitational mass due to this te
is

m(X)8 [~2vlvr2hlr! lim
PW →0

H @ ūs~p8!G̃lr
(X)~p,p8!us~p!#q050

QW →0W
J ,

~5.22!

where, from Eq.~4.21!,

G̃lr
(X)~p,p8!uq05052

e2ga

Q2 @Xlra~q!uq0502Xlra~0!#.

~5.23!

Using the expression forAlra from Eq. ~4.24! we obtain
4-13
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~2vlvr2hlr!Xlra~q!uq050

58(
f

QfE d4k

~2p!3 d~k22mf
2!h f~k!k0va

3F S 2k0
22mf

22
1

2
Q2D S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D G ,

~5.24!

where we have omitted the terms that vanish by symme
integration overKW , as well as all those terms that are ind
pendent ofq, because they drop out of Eq.~5.23!, and in
addition all the terms that are proportional toqa , because in
Eq. ~5.22! they yield a factor ofq” which vanishes betwee
spinors. Performing the integration overk0,

~2vlvr2hlr!Xlra~q!uq050

54va(
f

QfE d3K

~2p!3 ~ f f2 f f̄ !S 2EK
2 2mf

22
1

2
Q2D

3S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D . ~5.25!

For the term that contains an explicit factor ofQ2 in the
numerator we use the angular integration formula of E
~B9!, which yields

~2vlvr2hlr!Xlra~q!uq050

5va(
f

QfF Q2

2p2E dK ~ f f2 f f̄ !14E d3K

~2p!3 ~ f f2 f f̄ !

3~2EK
2 2mf

2!S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D G . ~5.26!

The evaluation of the rest of the integral is presented in A
pendix B 3. Substituting the results into Eq.~5.23!, the con-
tribution of this diagram to the gravitational mass is found
be given by

m(X)8 52e2(
f

Q f

6p2E dK

3F ~ f f2 f f̄ !2
2EK

2 2mf
2

2EK

]

]EK
~ f f2 f f̄ !G . ~5.27!

D. Summary

Starting from Eq.~2.54!, the total contribution to the
gravitational mass of charged leptons can be written in
form

Ml85ml1ml18 1ml28 1m(X)8 , ~5.28!

wherem(X)8 is the contribution from Eq.~5.27!, which is the
same for all charged leptons,ml18 represents the terms tha
08500
ic
-

.

-

e

contain the photon distribution function, andml28 contains the
terms that depend on the electron distribution function. Th
are given as follows.

Substituting into Eq.~2.54! the results given in Eqs.~5.5!,
~5.7! and ~5.10!, and using the expression for the wav
function normalization and the correction to the inertial ma
given in Eqs.~3.28! and ~3.16!, we find

ml18 52
e2T2

12ml
, ~5.29!

in agreement with the DHR result@1#, quoted in Eq.~1.4!.
Notice that the infrared divergence contained in them(A1)8
term cancels with a similar one that arises from the wa
function renormalization correctionz l1.

The terms from the diagrams in Fig. 2 that involve t
fermion distribution function contribute only to the gravita
tional mass of the electron, and therefore

mm28 5mt28 50. ~5.30!

The individual contributions of this type to the electro
gravitational mass appear in Eqs.~5.12!, ~5.17! and ~5.21!.
Substituting those results into Eq.~2.54!, and using the re-
sults for the inertial mass and the wave-function normali
tion factor, given in Eqs.~3.20! and ~3.32! respectively, we
obtain

me28 5
e2

p2me
E

0

`

dK
K2

2EK
H S 3

2
1

me
2

EK
2 2

me

EK2me
D f e~EK!

1S 3

2
1

me
2

EK
2 1

me

EK1me
D f ē~EK!

1
2EK

2 2me
2

2EK
S EK22me

EK2me

] f e

]EK
1

EK12me

EK1me

] f ē

]EK
D J .

~5.31!

The corresponding formulas for the antileptons are
tained by making the substitutionvm→2vm, as indicated in
Eq. ~2.61!. Since the dependence ofGlr8 on vm arises only
through the factorsh f andhg defined in Eqs.~3.8! and~3.9!,
the substitutionvm→2vm is equivalent to the prescription

m f→2m f , ~5.32!

or equivalently,

f f↔ f f̄ . ~5.33!

Thus,

M l̄
85ml1ml18 1ml̄ 2

8 2mX8 , ~5.34!

where

mm̄2
8 5mt̄2

8 50, ~5.35!

while the result formē2
8 is obtained from Eq.~5.31! by mak-

ing the substitutionf e↔ f ē .
4-14
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VI. RESULTS FOR PARTICULAR CASES

In contrast with theml1 andml18 terms, which depend on
the photon momentum distribution,me2 , mē2 , me28 , mē2

8 and
m(X)8 depend on the fermion distribution functions and can
be evaluated exactly in the general case. Therefore, for il
tration, we consider in detail their calculation for the spec
situation in which the background is composed of no
relativistic protons and electrons. In this case we can set~for
f 5e,p)

f f̄~E!'0 ~6.1!

and

EK'mf1
K2

2mf
. ~6.2!

We consider in detail two cases separately, according
whether the electron gas is classical or degenerate.

A. Classical electron gas and classical proton gas

In this situation we can set

f f~E!5e2b(E2m f ) ~6.3!

for both f 5e,p. This implies the relation

] f f

]E
52b f f , ~6.4!

as well as the integration formula

E dK K2r f f52p3/2GS r 1
1

2D S b

2mf
D 12r

nf , ~6.5!

wherenf is the number density, given by

nf52E d3K

~2p!3 f f~E!'2S mf

2pb D 3/2

e2b(mf2m f ). ~6.6!

Let us considerme2 and mē2, given in Eqs.~3.20! and
~3.23!, respectively. Settingf ē50 and using Eq.~6.2! to ex-
pand the coefficients off e in the integrands in powers ofK,
the remaining integrals are evaluated by means of Eq.~6.5!
to yield

me252
e2ne

2meT
1O~ne /me

2!,

~6.7!

mē25
3e2ne

8me
2

1O~neT
2/me

4!.

Similarly, from Eq.~5.27! we obtain for this case

m(X)8 52
7e2

24T (
f 5e,p

Qfnf

mf
1O~neT/me

3!

'
7e2ne

24meT
, ~6.8!
08500
t
s-

-

to

where we have used the charge-neutrality condition wh
neglecting termsO(k), is simply ( fQfnf50. Applying the
same procedure in Eq.~5.31!, the leading contribution, in
powers ofT/me , comes from the] f e /]EK term in that equa-
tion, and leads to

me28 5
e2ne

2T2 1O~ne /Tme!. ~6.9!

By the substitution indicated in Eq.~5.33!, the corresponding
result for the positron is

mē2
8 52

3e2ne

8meT
1O~ne /me

2!. ~6.10!

Therefore, using Eqs.~3.15!, ~5.28! and ~5.34!, the inertial
and gravitational masses for charged leptonsl other than the
electron are obtained as

M l̄ 5Ml5ml1
e2T2

12ml
,

~6.11!

Ml , l̄
8 5ml2

e2T2

12ml
6

7e2ne

24meT
,

where the upper sign corresponds to the leptons and
lower one to the anti-leptons. The corresponding formu
for the electron are

Me5me1
e2T2

12me
2

e2ne

2meT
,

~6.12!

Me85me2
e2T2

12me
1

e2ne

2T2 ,

and for the positron they are

Mē5me1
e2T2

12me
1

3e2ne

8me
2 ,

~6.13!

Mē
85me2

e2T2

12me
2

2e2ne

3meT
.

We now estimate how large these corrections could be
the electron. Those due to the photon background were
mated by DHR@1# and were found to be extremely sma
Therefore, neglecting that contribution, the fractional chan
in the inertial and gravitational mass is given by

UMe2me

me
U5 e2ne

2me
2T

~6.14!

UMe82me

me
U5 e2ne

2meT
2 . ~6.15!

Although it may seem that the effects are more noticeable
the temperature decreases, they are bounded by the cond
that the electron gas is non-degenerate and non-interac
which requires that@10#
4-15
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T.
ne

2/3

me
~6.16!

and

T.
e2

r av
;e2ne

1/3, ~6.17!

sincer av;ne
21/3. Using the fact thatnp5ne , it follows that

the corresponding conditions for the proton gas do not im
further restrictions, because they are automatically satis
whenever Eqs.~6.16! and ~6.17! hold.

By writing the right-hand side of Eq.~6.14! in the alter-
native forms

e2ne

2me
2T

5S e2ne
1/3

T D S ne
2/3

2me
2D

5S ne
2/3

meT
D 2S T

2me
D S e2me

ne
1/3 D , ~6.18!

it is seen that

UMe2me

me
U,H e4/2 if ne

1/3,e2me ,

T/2me if ne
1/3.e2me .

~6.19!

Similarly, writing

e2ne

2meT
2
5

1

2 S ne
1/3

e2me
D S e2ne

1/3

T D 2

5
1

2 S ne
2/3

meT
D 2S e2me

ne
1/3 D , ~6.20!

it follows that

UMe82me

me
U,1

2
~6.21!

in either case. Therefore, while the fractional correction
the electron’s inertial mass is likely to be small in most si
ations with the conditions that we are presently consider
the fractional change in the gravitational mass could be s
stantial. For example, if we use the temperature and den
at the solar core, i.e.,T51.573107 K, ne59.531025 cm23,
we obtain

UMe2me

me
U59.831025,

~6.22!

UMe82me

me
U53.531022,

which shows that the correction to the gravitational mass
the electron can at least be appreciable in realistic phys
situations.
08500
y
d

o
-
g,
b-
ity

f
al

B. Degenerate electron gas and classical proton gas

In this case

T!
ne

2/3

me
;

KF
2

me
, ~6.23!

whereKF is the Fermi momentum of the electron gas. W
assume

KF!me ~6.24!

so that the electrons are non-relativistic, and

KF.e2me , ~6.25!

which implies that the average kinetic energy of an elect
is larger than the average Coulomb interaction ene
;e2ne

1/3;e2KF , and therefore the electron gas can
treated as an ideal gas. Under these conditions, the pro
can be treated as a weakly coupled Boltzmann gas if
assume that the weak coupling condition

T@e2np
1/3;e2KF ~6.26!

is satisfied@11#. Remembering thatKF!me!mp , this in
turn implies the non-degeneracy condition

T@
KF

2

mp
;

np
2/3

mp
. ~6.27!

Therefore, Eq.~6.3! applies to the proton, while for the elec
tron

f e5Q~KF2K ! ~6.28!

with

KF5~3p2ne!
1/3, ~6.29!

which in turn imply the relation

d fe

dK
52d~KF2K !. ~6.30!

We repeat the calculation of the quantitie
me2 ,mē2 ,me28 ,mē2

8 andmX8 for this case, neglecting the term
that are a factor;O(KF

2/me
2) smaller than the ones that w

retain. From Eqs.~3.20! and ~3.23!, setting f ē50 and using
Eq. ~6.2!, we obtain

me252
e2KF

2p2
,

~6.31!

mē25
e2KF

3

8p2me
2

.

From Eq.~5.27!,
4-16
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m(X)8 5
e2

6p2E dKF f e2S K1
me

2

2K Dd fe

dKG2
7e2

24T

np

mp
,

~6.32!

where we have borrowed the result for the proton contri
tion from Eq. ~6.8!, while in the electron term we have ex
pressedEK in terms ofK and used

d

dEK
5

EK

K

d

dK
~6.33!

for any function ofEK . Using Eqs.~6.28! and ~6.30! this
finally yields

m(X)8 5
e2me

2

12p2KF

. ~6.34!

Here we have neglected the proton contribution because
;e2KF

3/(Tmp)!e2KF from Eq. ~6.27!. In a similar fashion,
from Eq. ~5.31!,

me28 5
e2me

2

2p2KF

, ~6.35!

and by the substitution indicated in Eq.~5.33!, the corre-
sponding result for the positron is

mē2
8 52

3e2KF

8p2
. ~6.36!

Thus, substituting these results into Eqs.~3.15!, ~5.28!
and~5.34!, we obtain the following expressions for the ine
tial and gravitational masses, retaining only the leading te
in powers ofKF /me . For the charged leptonsl other than the
electron,

M l̄ 5Ml5ml1
e2T2

12ml

~6.37!

Ml , l̄
8 5ml2

e2T2

12ml
6

e2me
2

12p2KF

,

with the upper sign corresponding to the leptons and
lower one to the anti-leptons, while for the electron

Me5me1
e2T2

12me
2

e2KF

2p2 ,

~6.38!

Me85me2
e2T2

12me
1

7e2me
2

12p2KF

,

and for the positron
08500
-

is

s

e

Mē5me1
e2T2

12me
1

e2KF
3

8p2me
2 ,

~6.39!

Mē
85me2

e2T2

12me
2

e2me
2

12p2KF

.

It is interesting to note that Eqs.~6.23! and ~6.24! imply
that the photon contributions in Eqs.~6.37!–~6.39! are much
smaller than the contribution due to the electron backgro
in each case. In fact, using Eq.~6.25!, we see that the frac
tional corrections to the gravitational mass can be as larg
about 7/12p2 for the electron and 1/12p2 for the positron
and the other leptons.

VII. CONCLUSIONS

In this work we derived a general operational formula th
expresses the gravitational mass of a fermion in terms of
gravitational vertex function. Using that formula as the sta
ing point, we have studied theO(e2) corrections to the
gravitational interactions of a charged lepton in the prese
of a matter background. This calculation extends a
complements previous calculations along similar lines,
various useful ways.

From a technical point of view, the calculations that w
have presented have employed various finite-temperat
field-theory techniques that can be useful also in other c
texts. For example, we have shown in detail how a care
treatment of the wave function renormalization factor, whi
arises from considering the one-particle reducible diagra
in the proper way, is instrumental in the cancellation of
infrared divergent contribution that arises from the phot
contribution to the proper vertex function.

On the other hand, a well known problem that arises
this type of calculation is the ambiguity of the finite temper
ture Green functions when they are evaluated at zero
mentum@7#. This property is usually due to the fact that th
different mathematical limits correspond to different physic
situations, so in those cases the resolution of the appa
paradox lies in recognizing the appropriate corresponde
with the physical situation at hand@12#. The calculations that
we have presented have illustrated this in a particularly c
vincing way. The operational formula for the gravitation
mass given in Eq.~2.54! indicates the precise order in whic
the various limits must be taken, according to the physi
situation that we considered. As we have shown, the car
application of that prescription has allowed us to evaluate
the integrals involved, in a unique and well-defined wa
including those that superficially seem to be singular, with
having to introduce by hand any special regularization te
nique.

The calculations and the results are also important from
phenomenological point of view. As we have indicated, in
matter background with a non-zero chemical potential s
as the Sun, the matter contributions to the gravitational m
are proportional to the electron and nucleon densities and
magnitude can be appreciable. These matter contribut
dominate over the photon-background contribution, es
4-17
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cially in those situations in whichT!me , for which the
photon contribution becomes negligible. Moreover, t
matter-induced corrections to the gravitational mass are
ferent for the various charged lepton flavors, and are not
same for the corresponding antiparticles. There are situat
in which mass differences, intrinsic or induced, have imp
tant physical implications, such as the neutron-proton m
difference in the context of the nucleosynthesis calculati
in the Early Universe. Although our work has focused in t
case of the charged leptons, similar considerations can
applied to the other fermions as well. The question of
possible implications of this type of mass correction in s
cific situations is an important one, but is outside the sc
of the present work. Nevertheless, our calculations have
vided a necessary ingredient for being able to consider th
in a systematic manner, and set the stage for their fur
study on a firm basis.
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APPENDIX A: TRANSVERSALITY OF THE VERTEX

It is useful to verify that the complete vertex function
O(e2), obtained in Sec. IV, satisfies the transversality con
tions

qlŪs~p8!Glr~p,p8!Us~p!5qrŪs~p8!Glr~p,p8!Us~p!50
~A1!

to this order. Since the vertex is symmetric in the Lore
indicesl,r, either of these relations guarantees the other
order to simplify the notation, in the remainder of this a
pendix we omit the subscripts in the spinors.

In order to verify this relation, the important point is th
we must include all the terms up toO(e2). Since the one-
loop terms in the induced vertex are alreadyO(e2), for them
we can adopt the tree-level definition of the spinors, i.e.

p”u~p!5mu~p!, ū~p8!p” 85mū~p!, ~A2!

as well as the tree-level on-shell conditions

p25p825m2. ~A3!

In the Appendixes, we use the tree level massm without any
subscript, implyingml , me or mf which should be under
stood from the context. Also note that the photon distribut
function as well as the associatedd-function are even ink,
and therefore those terms which are odd ink in the rest of the
integrand do not contribute.

We first show that the vertex contribution from Fig. 3~A!
is transverse by itself. From Eq.~4.24!,

qlAlra~k,k2q!52~q222k•q!~4krka1k•qhra!,
~A4!
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where we omit the terms that are proportional toqa because,
in Eq. ~4.19!, they will yield q” which vanishes between th
spinors. Changing the sign ofq in the last equation yields

qlAlra~k1q,k!5~q212k•q!~4krka2k•qhra!,
~A5!

and as a resultqlū(p8)Glr
(X)(p,p8)u(p) turns out to be pro-

portional to( fQf(nf2nf̄), which is zero to this order.
As for the other diagrams, straightforward algebra giv

the following results:

qlū~p8!Glr8(A1)~p,p8!u~p!

52
e2

4 E d4k

~2p!3d~k2!hg~k!

3ū~p8!F4mkr2~p15p8!rk”12k•pgr

k•p8
2~p↔p8!G

3u~p!

qlū~p8!Glr8(A2)~p,p8!u~p!

5
e2

4 E d4k

~2p!3 d~k22m2!hF~k!

3ū~p8!F4~k”22m!kr1k” ~p1p8!r22k•p8gr

m22k•p

2~p↔p8!Gu~p!,

qlū~p8!Glr8(B1)~p,p8!u~p!

5e2E d4k

~2p!3d~k2!hg~k!

3ū~p8!Fmkr2k”pr8

k•p8
2

mkr2k”pr

k•p Gu~p!

qlū~p8!Glr8(B2)~p,p8!u~p!

52e2E d4k

~2p!3 d~k22m2!hF~k!

3ū~p8!F ~k”22m!kr1mpr

m22k•p
2

~k”22m!kr1mpr8

m22k•p8
Gu~p!,

qlū~p8!Glr8(C11D1)~p,p8!u~p!

5
e2

2 E d4k

~2p!3d~k2!hg~k!S 1

k•p8
1

1

k•pD
3ū~p8!@k”qr1k•qgr#u~p!,
4-18
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qlū~p8!Glr8(C21D2)~p,p8!u~p!

52
e2

2 E d4k

~2p!3 d~k22m2!hF~k!S 1

m22k•p8

1
1

m22k•pD ū~p8!@~k”23m!qr1k•qgr#u~p!. ~A6!

Therefore, adding all the one-loop contributions to the v
tex, we obtain

qlū~p8!Glr8(1)~p,p8!u~p!

5
e2

4 E d4k

~2p!3 d~k2!hg~k!ū~p8!

3F k”

k•p8
~3pr2pr8!2~p↔p8!Gu~p!, ~A7!

qlū~p8!Glr8(2)~p,p8!u~p!

5
e2

4 E d4k

~2p!3d~k22m2!hF~k!ū~p8!

3F ~k”22m!~3pr82pr!22k•pgr

m22k•p
2~p↔p8!Gu~p!.

~A8!

We need to add to these the tree-level contribution to
gravitational vertex that appears in Eq.~2.41!. In this case,
we must include theO(e2) corrections to the equation fo
the spinors, which arise from the self-energy diagrams
Sec. III. Thus, for this part, using Eq.~2.17! and its Hermit-
ian conjugate

Ū~p8!@p” 82m2S~p8!#50, ~A9!

we obtain

Ū~p8!q”U~p!5Ū~p8!@S8~p!2S8~p8!#U~p!,
~A10!

which in turn yields

qlŪ~p8!Vlr~p,p8!U~p!

5
1

4
Ū~p8!@~3p82p!rS8~p!1p2gr2~p↔p8!#U~p!.

~A11!

This can be cast in a different form by multiplying Eq.~2.17!
from the left byŪ(p8)gr(p”1m) and Eq.~A9! from the right
by (p” 81m)grU(p) and taking the difference of the resultin
equations. This gives
08500
-

e

f

~p22p82!Ū~p8!grU~p!

5Ū~p8!@gr~p”1m!S8~p!2S8~p8!~p” 81m!gr#U~p!,

~A12!

and substituting this result into Eq.~A11!, we obtain

qlŪ~p8!Vlr~p,p8!U~p!

5
1

4
Ū~p8!@~3p82p!rS8~p!2~3p2p8!rS8~p8!

1gr~p”1m!S8~p!2S8~p8!~p” 81m!gr#U~p!.

~A13!

SinceS8 is explicitly of O(e2) while we are interested in
results toO(e2) only, we can use the tree-level spinors o
the right-hand side. Using Eq.~A3! in Eq. ~3.11!, we can
write the self-energy contribution involving the photon di
tribution function as

S18~p!5e2E d4k

~2p!3 d~k2!hg~k!
k”

k•p
, ~A14!

disregarding terms odd ink. Similarly, from Eq.~3.11!, the
part containing the Fermi distribution function can be writt
as

S28~p!52e2E d4k

~2p!3 d~k22m2!hF~k!
k”22m

m22k•p
.

~A15!

Substituting these forms into Eq.~A13! and using the iden-
tities

ū~p8!gr~p”1m!k”u~p!52k•pū~p8!gru~p!

~A16!

ū~p8!k” ~p” 81m!gru~p!52k•p8 ū~p8!gru~p!,

we see that Eq.~A13! cancels the contribution from the loo
diagrams given in Eqs.~A7! and ~A8! to this order. This
proves the transversality of the effective vertex.

APPENDIX B: APPARENTLY SINGULAR
CONTRIBUTIONS

1. The B1 contribution

We start from the formula given in Eq.~4.14!, from which
it follows that
4-19
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Glr8(B1)~p,p!52
e2

2
lim
QW →0

E d4k

~2p!3
d~k2!hg~k!

3Fgn~p”2k”1m!gmCmnlr~k,k2q!

k•p~2KW •QW 2Q2!

2
gn~p”2k”2q”1m!gmCmnlr~k1q,k!

~k•p1KW •QW !~2KW •QW 1Q2!
G ,

~B1!

where we have put

qm5~0,QW ! km5~k0,KW !. ~B2!

In order to take the limitQW →0, our strategy is to expand th
coefficients of the factors 1/(2KW •QW 6Q2) in powers ofQW . Of
the resulting terms in the coefficients, those which are q
dratic inQW do not contribute in theQW →0 limit and therefore
we need to keep only the terms that are at most linear inQW .

Using the propertyCmnlr(k1q,k)5Cnmlr(k,k1q), we
can write

Cmnlr~k,k2q!5Cmnlr~k,k!2Cmnlr8 ~k,q!

~B3!

Cmnlr~k1q,k!5Cmnlr~k,k!1Cnmlr8 ~k,q!,

where

Cmnlr8 ~k,q!5hlr~hmnk•q2qmkn!2hmn~klqr1qlkr!

1kn~hlmqr1hrmql!1qm~hlnkr1hrnkl!

2k•q~hlmhrn1hlnhrm!. ~B4!

To first order inQ, we can also put

1

k•p1KW •QW
5

1

k•p
2

KW •QW

~k•p!2
. ~B5!

This enables us to decomposeGlr8(B1)(p,p) in the following
four terms:

Glr8(B1a)~p!52
e2

2
lim

QW →0

E d4k

~2p!3 d~k2!hg~k!

3
Cmnlr~k,k!gn~p”2k”1m!gm

k•p

3F 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2G

08500
a-

Glr8(B1b)~p!52
e2

2
lim

QW →0

E d4k

~2p!3
d~k2!hg~k!

3
Cmnlr~k,k!gnq”gm

k•p~2KW •Q1Q2!

~B6!

Glr8(B1c)~p!52
e2

2
lim

QW →0

E d4k

~2p!3 d~k2!hg~k!

3
Cmnlr~k,k!gn~p”2k”1m!gm

~k•p!2 F KW •QW

2KW •QW 1Q2G
Glr8(B1d)~p!52

e2

2
lim

QW →0

E d4k

~2p!3
d~k2!hg~k!

3
gn~p”2k”1m!gm

k•p

3F2
Cmnlr8 ~k,q!

2KW •QW 2Q2
2

Cnmlr8 ~k,q!

2KW •QW 1Q2G .

We carry out these integrals one by one.
Eliminating the manifestlyk-odd terms from the integrand

and performing thek0-integration, we obtain

Glr8(B1a)~p!5e2 lim
QW →0

E d3K

~2p!32K
f g~K !

4klkrk”

k•p

3F 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2G , ~B7!

using k250. The expression within the square brackets
finite for Q→0. Therefore, in the spinors we can setp5p8,
and using Eq.~2.35! we then obtain

m(B1a)8 5
4e2

m
lim
QW →0

E d3K

~2p!3
f g~K !K

3F 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2G . ~B8!

We can perform the integration over the angular variables
KW , the integral being understood, as usual, in terms of
principal value part. That gives

E dV
1

2KW •QW 2Q2
52E dV

1

2KW •QW 1Q2
52

p

K2
1O~Q2!,

~B9!

so that

m(B1a)8 52
e2

p2mE dK fg~K !K52
e2T2

6m
. ~B10!
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As for the next contribution, it is straightforward to verif
that

~2vlvr2hlr!gnq”gmCmnlr~k,k!54KW •QW ~k”22k•vv” !,
~B11!

usingq•v5q050. So

~2vlvr2hlr!Glr8(B1b)~p!5e2E d4k

~2p!3
d~k2!hg~k!

3
~2k”12k•vv” !

k•p
. ~B12!

Now using Eqs.~2.35! and ~2.36!, carrying out the integra
over k0, and finally puttingP50, we get

m(B1b)8 5
2e2

m E d3K

~2p!32K
f g~K !5

e2T2

12m
. ~B13!

Similarly,
e-

08500
Glr8(B1c)~p!52
e2

2 E d3K

~2p!32K
f g~K !gn~p”1m!

3gmCmnlr~k,k!
1

~k•p!2
, ~B14!

and

~2vlvr2hlr!Glr8(B1c)~p!

52
2e2

m E d3K

~2p!32K
f g~K !

1

~k•p!2

3@2~k•p!222m2~k•v !214~k•p!~k•v !~p•v !#

~B15!

so that

m(B1c)8 52
2e2

m E d3K

~2p!32K
f g~K !52

e2T2

12m
. ~B16!

For Glr8(B1d) we first perform the integral overk0. Remem-
bering that in the remaining integral we can changeKW to
2KW and using the fact thatCmnlr8 (2k,q)52Cmnlr8 (k,q),
we obtain
Glr8(B1d)~p!5
e2

2
lim

QW →0

E d3K

~2p!32K
f g~K !S 1

k•pD H gn~p”1m!gmF 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2G @Cmnlr8 ~k,q!2Cnmlr8 ~k,q!#

1gn~2k” !gmF 1

2KW •QW 2Q2
1

1

2KW •QW 1Q2G @Cmnlr8 ~k,q!1Cnmlr8 ~k,q!#J
52

e2

2
lim
QW →0

E d3K

~2p!32K
f g~K !

1

k•p H gnk”gm

KW •QW
@Cmnlr8 ~k,q!1Cnmlr8 ~k,q!#1O~Q!J . ~B17!
We now use

~2vlvr2hlr!gnk”gm@Cmnlr8 ~k,q!1Cnmlr8 ~k,q!#

58~k•v !~KW •QW !v” . ~B18!

Then, using Eq.~2.35! and puttingPW 50, we get

m(B2d)8 52
4e2

m E d3K

~2p!32K
f g~K !52

e2T2

6m
. ~B19!

Adding the results given in Eqs.~B10!, ~B13!, ~B16! and
~B19!, we get the total contribution from the B1 term pr
sented in Eq.~5.7!.

2. The A2 contribution

For this contribution, we start from Eq.~4.11!. Using Eq.
~B2!, we can write it as
Glr8(A2)~p,p!5
e2

2
lim
QW →0

E d4k

~2p!3 d~k22m2!hF~k!

3F Llr~k,k2q!

~2KW •QW 2Q2!~m22k•p!

2
Llr~k1q,k!

~2KW •QW 1Q2!~m22k•p8!
G . ~B20!

Following the strategy stated below Eq.~B2!, let us now
write

Llr~k,k2q!5Llr~k,k!1Llr8 ~k,q!,
~B21!

Llr~k1q,k!5Llr~k,k!1Llr9 ~k,q!,

and, in the denominator, expandm22k•p8 in powers ofQW :
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1

m22k•p8
5

1

m22k•p
1

KW •QW

~m22k•p!2
1O~Q2!.

~B22!

Then we can decomposeGlr8(A2)(p,p) into the following
terms, omitting higher powers ofQ which anyway will not
contribute:

Glr8(A2a)~p,p!5
e2

2
lim

QW →0

E d4k

~2p!3 d~k22m2!hF~k!

3
Llr~k,k!

m22k•p
S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D ,

Glr8(A2b)~p,p!52
e2

4 E d4k

~2p!3 d~k22m2!

3hF~k!
Llr~k,k!

~m22k•p!2
,

Glr8(A2c)~p,p!5
e2

2
lim
QW →0

E d4k

~2p!3 d~k22m2!hF~k!

3
1

m22k•pS Llr8 ~k,q!

2KW •QW 2Q2
2

Llr9 ~k,q!

2KW •QW 1Q2D .

~B23!

We discuss these contributions one by one.

The A2a contribution

Using Eq.~5.2! and thed-function appearing in the inte
grand, we can write

Glr8(A2a)~p,p!522e2 lim
QW →0

E d4k

~2p!3 d~k22m2!hF~k!

3
klkr~k”22m!

m22k•p

3S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D . ~B24!

As argued before Eq.~B8!, we can putQW 50 in the spinors,
and use Eq.~2.35!. Performing thek0-integration, we obtain

~2vlvr2hlr!Glr
(A2a)~p!5

2e2

m
lim
QW →0

E d3K

~2p!3 F~KW !

3S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D ,

~B25!

where the expression on the left is understood to equal
one on the right only between the spinors, and
08500
e

F~KW !5
2EK

2 2m2

2EK
F S 11

m2

m22k•pD f e1S 11
m2

m21k•pD f ēG ,
~B26!

with k05EK . Since the integrand containsKW •PW , and we
must setPW 50 only after taking the limitQ→0, the angular
integrations cannot be performed using Eq.~B9!. So we shift
the integration variable toKW 6 1

2 QW in the terms having 2KW

•QW 7Q2 in the denominator. This gives

~2vlvr2hlr!Glr
(A2a)~p!5

2e2

m
lim
QW →0

E d3K

~2p!3

QW •¹W KF

2KW •QW
.

~B27!

Clearly the magnitude ofQW now cancels out. The derivativ
with respect toKW can be taken easily, using

¹W KEK5
KW

EK
,

~B28!

¹W KS 1

m26k•p
D 5

71

~m26k•p!2 S EP

KW

EK
2PW D .

The term proportional toPW from the last derivative does no
contribute because it multiplies a factor whose integrand
odd inKW at PW 50. PuttingPW 50 in the other terms, we obtain
the contribution to the gravitational mass:

m(A2a)8 5
2e2

m E d3K

~2p!32EK
H 2EK

2 2m2

2EK

3S EK22m

EK2m

] f e

]EK
1

EK12m

EK1m

] f ē

]EK
D

1
2EK

2 2m2

2EK
S m

~EK2m!2 f e2
m

~EK1m!2 f ēD
1

2EK
2 1m2

2EK
2 S EK22m

EK2m
f e1

EK12m

EK1m
f ēD J .

~B29!

The A2b contribution

The integral in the~A2b! term is independent ofQ. So, in
a straightforward way, we obtain

m(A2b)8 5
e2

m2E d3K

~2p!32EK
~2EK

2 2m2!

3F EK22m

~EK2m!2 f e~EK!2
EK12m

~EK1m!2 f ē~EK!G .
~B30!
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The A2c contribution

For the~A2c! contribution, first we use the expression f
Llr from Eq. ~4.8! to find

Llr8 ~k,q!5hlr~q222k•q!~k”22m!1~klqr1krql!

3~k”24m!1klk”grq”1krk”glq” ,
~B31!

Llr9 ~k,q!5hlr~q212k•q!~k”22m!2~klqr1krql!

3~k”24m!2klq”grk”2krq”glk” ,

dropping irrelevantO(q2)-terms and usingk25m2. In the
hlr terms, the integrand becomes independent ofq. Thus,
these terms give a regular contribution. Let us denote it
~A2r!:

m(A2r )8 5
2e2

m E d3K

~2p!32EK
FEK22m

EK2m
f e~EK!

1
EK12m

EK1m
f ē~EK!G . ~B32!

The terms which appear next will be called~A2s!. For
these, we use the fact that

~2vlvr2hlr!~klqr1krql!522k•q52KW •QW ,
~B33!

usingq•v5q050. TheQ→0 limit can then be taken easily
and we obtain

m(A2s)8 52
e2

mE d3K

~2p!32EK
FEK24m

EK2m
f e~EK!

1
EK14m

EK1m
f ē~EK!G . ~B34!

Finally, we come to the terms with threeg-matrices,
which we denote by~A2t!. For these, first we note that

~2vlvr2hlr!~klk”grq”1krk”glq” !54k•vk”v”q”22m2q” ,
~B35!

and a similar expression with the other term. Since theq”
term vanishes between the spinors, we can write

m(A2t)8 52e2 lim
P→0

lim
Q→0

E d4k

~2p!3 d~k22m2!hF~k!

3
k0

m22k•p

1

2KW •QW
ū~p8!~k”v”q”1q”v” k” !u~p!,

~B36!

omitting theQ2 terms in the denominator since they will n
contribute forQ→0. Using the identity
08500
y

gkgmgn5hkmgn1hmngk2hkngm2 i«kmnagag5 ,
~B37!

we obtain

k”v”q”1q”v” k”52KW •QW v” ~B38!

between the spinors, sinceq•v50 andq” terms vanish. Put-
ting this back into Eq.~B36! and using Eqs.~2.35! and
~2.36!, we obtain

m(A2t)8 52
2e2

m E d3K

~2p!32EK
F EK

EK2m
f e~EK!

1
EK

EK1m
f ē~EK!G . ~B39!

The sum of Eqs.~B29!, ~B30!, ~B32!, ~B34! and~B39! gives
the total contribution of the A2 term, given in Eq.~5.12! in
the text.

3. The X contribution

The part of the integral from Eq.~5.26! that we consider
here is given by

I ( f )~Q!5E d3K

~2p!3 F~EK!S 1

2KW •QW 2Q2
2

1

2KW •QW 1Q2D ,

~B40!

where

F~E![@ f f~E!2 f f̄~E!#~2E22m2!. ~B41!

Shifting the variables, the integral can be written as

I ( f )~Q!5E d3K

~2p!3

F~EKW 1QW /2!2F~EKW 2QW /2!

2KW •QW
. ~B42!

We have to expand the numerator toO(Q3) in order to ob-
tain the integral toO(Q2). Writing ] i to denote a partial
derivative with respect toKi ,

F~EKW 6(1/2)QW !5F~E!6
1

2
Qi] iF1

1

2 S 1

4
QiQj D ] i] jF

6
1

3! S 1

8
QiQjQl D ] i] j] lF. ~B43!

The derivatives we need to use are

] iF5Ki S 1

E

]

]EDF,

] i] j] lF5~d i j Kl1d i l K j1d j l Ki !S 1

E

]

]ED 2

F

1KiK jKl S 1

E

]

]ED 3

F. ~B44!

Using
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KiK j→ 1

3
K2d i j ~B45!

within the integrand, we have

I ( f )~Q!5E d3K

~2p!3F1

2 S 1

E

]

]EDF1
1

3!

Q2

8 H 3S 1

E

]

]ED 2

F

1
1

3
K2S 1

E

]

]ED 3

FJ G . ~B46!

Therefore, the quantity that we must substitute in Eq.~5.23!
is

I ( f )~Q!2I ( f )~Q→0!5
1

3!

Q2

8 E d3K

~2p!3H 3S 1

E

]

]ED 2

F

1
K2

3 S 1

E

]

]ED 3

FJ . ~B47!
e

e

C
a,

08500
We now use the identity

E
0

`

dK KnS 1

E

]

]ED n

F52~n21!E
0

`

dK Kn22S 1

E

]

]ED n21

F,

~B48!

which holds forn>2, so that the surface term vanishes. It
obtained by using Eq.~6.33! and performing a partial inte
gration. Using it repeatedly, we can rewrite Eq.~B47! as

I ( f )~Q!2I ( f )~Q→0!52
Q2

48p2E0

`

dK S 1

E

]

]EDF.

~B49!

Putting this back into Eq.~5.26!, we obtain the total X con-
tribution given in Eq.~5.27!.
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