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Gravitational couplings of charged leptons in a medium
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We calculate the leading order matter-induced corrections to the gravitational interactions of charged leptons
and their antiparticles in a medium that contains electrons but not the other charged leptons, such as normal
matter. The gravitational coupling, which is universal at the tree level, is found to be flavor dependent, and also
different for the corresponding antiparticles, when the correction®(af) are taken into account. General
expressions are obtained for the matter-induced corrections to the gravitational mass in a generic matter
background, and explicit formulas for those corrections are given in terms of the macroscopic parameters of the
medium for particular conditions of the background gases.
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I. INTRODUCTION anT?
Me=mg+ . 1.2
e e 3me ( )

The gravitational interactions are universal in the sense
that the ratio of the inertial and the gravitational masses ofn the same reference frame, the gravitational mass was cal-
any particle is a constant. This fact, expressed in the form ofylated to be
the equivalence principle, is one of the basic axioms of the
general theory of relativity. Although this is a feature of the , 2amT?
theory at the classical level, it has been shown by Donoghue, Me= Me( 1- W) ' 3
Holstein and RobinettDHR) [1,2], that the corresponding ©

linearized quantum theory of gravity respects this ratio, aUsing Eq.(1.2) and keeping only terms up ©(«), this can

least toO(«). be rewritten as
However, in the same series of works, it was shown that
this property is lost when the particles are in the presence of , amT?
a thermal background rather than the vacuum. To arrive at Me=me— 3m, ' 1.4

this idea, the inertial and the gravitational masses must be

defined in the context of quantum field theory. We considemvhich is different from the inertial mass.

in Sec. Il their precise definition in terms of the particle  Moreover, although in those calculations only the case of
propagator and the gravitational vertex, which we will needthe electron was considered explicitly, the above results are
in the subsequent work. For the moment, let us denote thesgjually applicable to other charged fermions, such as the
two quantities byM andM '’ respectively and summarize the muon. In particular, we note that, for any such fermipthe
results of Refs[1,2]. The authors calculated the corrections ratio

for the electron in a background with a temperattlire¢ m,

and zero chemical potential. Thus, the background contained M B 2amT? )

only photons, but not electrons or any other matter particles. M, 1- 37 +0(a?) (1.5
The dispersion relation for an electron with momentErn

the rest frame of the medium is given by depends on the mass parametgr. Therefore, not only the

inertial and gravitational masses of a given fermion cease to
be equal when the background effects are taken into account,
but in addition the ratio of these two quantities is no longer
the same for all the particles; i.e., universality is lost as well.
andM.=E,(0). Thus, toO(«), This happens despite the fact that the background contains
only photons and is therefore flavor neutral. The origin of
this difference is that while the background as well as the

2 2 2 2
Ee(P)=\/P?+m+ zanT (1.0
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example, even in the vacuum the anomalous magnetic manergy. The dispersion relations of the particle and the anti-

ment has different contributions for the muon and the elecparticle are given by the positive and negative energy solu-

tron, though not at the lowest order. tions of Eqg.(2.1), and we denote the corresponding spinors
But in a matter background with a non-zero chemical po-by U(p)=¢&(p) andV(p)=&(—p), respectively.

tential, such as the Sun or a supernova, there are contribu- In an isotropic medium, the most general formf is

tions to gravitational mass which are proportional to the elec-

tron and nucleon densities. These matter contributions can Si(p)=ap+bi+c, (2.2

dominate over the photon-background contribution, even . .
when T<m,, for which the photon contribution becomes where we have introduced the vectdt which represents the

negligible. Moreover, the matter-induced corrections to theveIOCIty four-vector of the medium. We will perform all cal-

gravitational mass will be different for the various chargedwla’[Ions in the rest frame of the medium, in whigh has

lepton flavors, and will not be the same for the correspondin&Omponents

antiparticles. a2
Motivated by these considerations, in this work we calcu- v#=(10), 23

late the leading matter-induced QED corrections to the gravizng in that frame, we define the componentp/bby writing

tational masses of charged fermions in a medium that con-

sists of a photon background and a matter background of p“=(p°P). (2.4)

electrons and nucleons. These represent the dominant correc-

tions for charged leptons and antileptons. For strongly interin general,a,b,c are functions of the variableg® and P,

acting particles such as the quarks, gluon exchange correeshich we will indicate by writing them as(p° P), and

tions are expected to be even stronger and our results will natimilarly for the other ones, when we need to show it explic-

apply. itly. Equation (2.2) can contain an additional term propor-
Our calculation is based on the one-loop corrections to théional too**v ,p,, in the more general case. However, such a

gravitational vertex function of the charged lepton in the me-term does not appear at the level of the one-loop calculations

dium. Working in the context of the linearized theory of [3] that we are considering in this work, and therefore we

gravity, we show in detail how the gravitational mass is de-omit it.

termined from the gravitational vertex function, give general Requiring Eq(2.1) to have non-trivial solutions yields the

expressions for the matter-induced corrections to the gravieondition

tational mass in a generic matter background, and give ex-

plicit formulas for the corrections in terms of the macro- D(po,ﬁ)zo (2.5
scopic parameters of the background medium for a few
special cases of the background gases. where
The rest of the paper is organized as follows. In Sec. Il, 03 5 5
we discuss the general procedure for finding the inertial and D(p",P)=[(1-a)p—bv]"—(m+c)=. (2.6

gravitational masses. In Sec. lll, we discuss the self-energﬁ . . .
i ) ; : quation (2.5) also determines the poles of the fermion
iagrams for the charged leptons in a medium and find theropagator'

medium-induced contributions to their inertial masses. WéJ
also calculate the wave function normalization factors which

will be needed in the calculation of the gravitational mass St(p)= Pr—— (2.7

later. In Sec. IV, we discuss the couplings in the linearized P= M= 21

theory of gravity and calculate the gravitational vertex of the\yhich can be written in the form

leptons. In Sec. V, we use the vertex to find the gravitational

masses of charged leptons and antileptons in a medium. The N(po,ﬁ)

terms involving fermion distribution functions cannot be =, (2.9

evaluated exactly. In Sec. VI, we evaluate the corrections in D(po.P)

two different limits, viz., the classical and the strongly de-_ .

L . ! with
generate limit for the electron gas. Section VII contains our
concluding remarks. N(p®B)=(1—a)p—bi+(m+c). 2.9
IIl. PRELIMINARIES The condition given in Eq(2.5 has a positive energy

A. Inertial mass solution corresponding to the particle, given pY=E(P),

. . . and a negative energy solution corresponding to the antipar-
The dispersion relations of the modes that propagate .o giveg bypoz—lg%/(P) where P g P

through the medium are determined by solving the linear part

of the effective field equation. For fermions that propagate m+c\2 b
with momentump#, this equation, in momentum space, is E:f(P)= P2+ 1-a ilTa (2.10
[p—mi—=2¢(p)]é(p)=0, (2.7)

These are implicit equations fdE;+ as a function ofP.
where,; denotes the background-dependent part of the selfwhile solving for E;, for example, we need to take the
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guantitiesa,b,c appearing on the right side as functions of _ (1-a)p,—bv,|—
E; andP. The corresponding inertial masses are then defined ~ Us(P) v, Us(p)= TTmetc Us(p)Ug(p)
as (2.20
My r=Eq1(0). (2.19 which, together with Eq(2.18), implies the relations
Sincea,b,c are ofO(e?), we can solve Eq(2.10 perturba- o me+c
tively by substituting the tree-level valy®= + \/P?+m? in Ud(p)Ug(p)= ﬁ (2.21
the right-hand side. It is useful to introduce the notation (1-a)Ey
&%, B)=(ap-v+b)*+c, (212 2and
which can be expressed concisely in termSgfas . _(1-a)p,~bv,
1
Er =7 T E1)X(]. (213 | particular, in the frame specified by E@.3),
To O(€?), the inertial masses are then found to be given by [U(P)U(p)p_0=1,
My=my+&(m;.0), [U(p)7,U(P)]p=0=0, (2.23
My=m;—E(—m;,0). (2.14 The normalization factoZ; that appears in Eq2.16) is

. . determined as follows. Near the pgé=E(P), Eq. (2.8)
Equation(2.13 is a useful formula that allows us to extract reduces to

the matter-induced corrections to the inertial mass directly

from the one-loop expression far;. As we will see next, N(E ﬁ)
the wave function renormalization factor is determined in Si(p)~ i (2.24
terms of the same quantiti€s and & (po—E )<£>

0 f &po DOZEf

B. Wave function

We consider in some detail the case of the partidesy an@n the other hand, we can calculate the One-@rticle contri-
summarize at the end the corresponding results for the antbution to the thermal propagato®; (x) =(T(x)¢(0)) by
particles. We adopt the normalization of the one-particleinserting a complete set of states, and retaining only the ma-
states such that their state vectpiép,s)) satisfy trix elements between the vacuum state and one-particle

.. states. Using Eg2.16), we obtain
(f(p',s)f(p,5))=(2m)26)(P-P")5ss . (2.15

The one-particle states have associated with them the wave Zf(p)zs Us(p)Uy(p)
functions defined by the matrix element of the field operator SH(P)|1- particle™ o (2.25
» P —Ef
(Olg(x)|f(p,5))=VZi(p)Us(p)e” P, (2.16
o _ _ near the same pole. The requirement that the residues of
whereUq(p) satisfies the Dirac equation these two expressions coincide, then yields
[p—mi=3¢(p)JUs(p)=0 (2.17

oD\t
) Zi(p)=12[(1-a)E;—b] 7Po , (2.2
with p#=(E;(P),P). In the rest frame of the medium, the 0 pO=E;

explicit form of U¢(p) can be easily worked out. Adopting

that frame, and choosing the normalization such that where we have used E(.19. To the lowest order ire?,
; and for the particular case=0 in which we are interested,

Us(p)Us(p) =1, (2.18  the expression reduces to
it then follows that theU satisfy the spinor sum relation Zi=1+¢;, (2.27

_ N(E;,P) where

ES Us(p)Us(p)= 2[(1-a)E,—b] (2.19
IE¢

whereN is defined in Eq(2.9). From Eq.(2.17) we obtain ff:a_po o (2.28
the identity pH=(m;,0)
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with & given by Eq.(2.12 or Eg. (2.13. From now on (f(p’,s’)|‘AI'A (0)f(p,s))
whenever we omit the dependence &f on p, it is to be P -
understood as the quantity evaluatedat 0. =VZi(P)Z(p")Us (P )T\ ,(P,p")Us(P).
For the case of the antiparticle, similar considerations ap- (2.37)

ply. The wave function for the antiparticles is defined by

_ 0. We perform all our calculations in the linearized theory of
(f(p.9)[¥(X)|0)=VZ(pP)Vs(P)eP ™, (229  gravity. This means that we write

whereV¢(p) satisfies the equation Orp= M, T 2xhy,, (2.38
[p+mi+Z4(=p)IVs(p) =0, (230 ang thenh, , is identified with the graviton field and treated
as a weak fieldx is related to Newton’s consta@® through

with the normalization .
the equation

t _
Vi(p)Ve(p)=1, (2.31 = JBmG (2.39

" = .
andp”=(E{(P),P). The analogy of Eq2.20 in the present to ensure that the graviton field has the correctly normalized

case 1s kinetic energy term in the Lagrangian. We write the complete
_ [1—-a(—p)lp,+b(—pv, vertex function in the form
VS( p) 'Y,uvs( p) == m-+ C( — p) !
Lyp=Vi,tTI5,, (2.40
XV¢(p)Vs(p). 2.3
s(PIVs(p) (232 whereT'}, denotes the 1-loop contribution and,, is the
Writing tree-level vertex function given by,5]
Zi=1+¢, (2.33 1 , ,
P Vap(P.p') = 2T (P+ P+ 7,(P+P )]
the same procedure that led to E2.28 leads to the formula
1
IET _Eﬂxp[(p_mf)+(p,_mf)]- (2.4
= (2.34

op° . | _ _ .
P pr=(—m¢,0) We now consider the scattering of the fermion off a static

gravitational potential, which is produced by a static mass

E iong2.2 2. he f las th ill . - - .
quations(2.28 and(2.34 are the formulas that we will use density p®{(x). Defining the Fourier transform

for the explicit calculations in Sec. IV.

We will denote byug and vg the limiting value of the
spinorsUg and V¢ when the effects of the medium are ne- ¢8X[()z):f
glected. They satisfy the free Dirac equation in the vacuum,
as well as the relations

d3q

( Zw)gdf“«i)eii'i (2.42

with a similar definition forpe"t(ci), the corresponding metric

UgY,Us= FMUSUS (2.39 is such that, in momentum space,
.1 -
—m ho(a)=—¢™(a)(20Mv =), (243
U= g 236 A 7

where we have used the Poisson equatier2q?¢®™
=k%p®™ The formula in Eq.(2.43 is the solution to the
linearized field equation for the metric with the static energy
o momentum tensof **=v"v?p®", wherep®is independent
C. Gravitational mass of time. Under the influence of such an external potential, the
The gravitational mass is a measure of the strength of then-shellf —f transition amplitude is then
coupling of the fermion to the graviton. It can be determined

with similar relations forvs but with the substitutiorp,,—
—p,, in the above equations.

in terms of the fermion’s vertex function for the gravitational St=—ik(2m) 8(Es—E{)VZi(p)Zi(p")
interaction, as follows. _ ..
We denote byl", ,(p,p’) the one-particle irreducible ver- X[Ug(p" )Ty (p.p")Us(p) TN (P—P").
tex function, defined such that the matrix element of the total (2.44)
stress-energy tensor operafb;p(x) between incoming and
outgoing fermion states is given by Substituting Eq(2.43 into Eq. (2.44) yields
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Sii=—i(2m) 8(Es— E{)M(ﬁ IS/)¢ext(|5_ |5,) D. Operational definition at O(e?)
(2.45 Using Egs.(2.40 and(2.27), the formula given by Egs.
(2.46) and(2.47) can be rewritten in the form
where we have defined

M(B.B)=(20"0"~ P NZ(P)Zi(P) Mi=(20"0"=7") lim { [Us(P){Vap(PoP")
P—0
X[Us(p" )T, (PP IUs(P) e -
(2.46 +éfo,,(p,p’)+ZfFLp(p,p’)}Us(p)]E_fr_Ej} :
P'—P
M(IS,IS’) is essentially the off-diagonal element of the Fou- (2.53

rier transform of the mass operator, and the gravitational
mass is simply the value of this quantity when both initial Since(; andF;p areO(e?), in any term that contains either

and final fermions have vanishing 3-momentum, of these factors we substitute the tree level expressions for
. the other quantities. Furthermore, the terms invol
M¢=lim[M(P.,P")]5 5. (247 can be evaluated immediately with the help of the identities
P—0 given in EqQ.(2.23. Remembering thaE{(0)=M;, we fi-

I tain th tional definiti 2):
To justify more fully this identification, notice that the nally obtain the operational definition ©(e”)

mass density operator for the fermiqn(t,i), is determined ' _ Nop_ \p
by writing an effective Lagrangian My =3M¢—2me+&my+ (20707 = 777
Let=—p1(t,%) 6™(x) (2.49 X lim [Us(p’)F;,,(p,p’)us(p)]Efr:Ef ,
P—0 B p
such that Eq.(2.45 is reproduced by taking the S-matrix (2.54
element usingC.+ as the interaction Lagrangian. This gives '

the scattering amplitude
g.amp where we can sef;= P>+ mzf in the last term.

_ The arguments for the case of the antiparticle are similar,
(f(p',S)|f d*x(i Len)[f(p.S)) but the equation corresponding to E8.44) is
=—i278(E{—E)(f(p’,5)|p(0,0)[f(p,s)) Si=(—1)(—ik)(2m) 8(Er—EDVZi(p)Zi(p')
X $=(P=P"). (249 X[V(P)Ty,(~ P~ PIVs(p)) INM(B—B"),
Comparison with Eq(2.45 shows thap; is such that (2.59

(f(p’,s)|ps(0,0)|f(p,s))pr_p=M(P,P’') (2560  Where the extra minus sign is due to the usual fermion ex-
change rule. This leads to an equation that is analogous to
Eqg. (2.53, but with an extra minus sign in front and some
obvious changes in the corresponding symbols, which in turn
lead to theO(e?) formula

with M(P,P’) given in Eq.(2.46). By definition, the gravi-
tational masaVi; is given by

<f(p'73)|J dsxp(o)z)“(p,s» R MfL:3Mf—_2mf+ é«?mf_(zv)\vp_ 7])\P)
P—0
_ 3s3)/Pp_pP’ ’ .
_(277) (S( )(P_P )Mf (25]) X !Im [Us(p)r}'\p(_p!,_p)vs(p/)]E;=Ef )
while, on the other hand, P=0 Br_p
(2.56

’ 3 "
(f(p 'S)|j d*xp(0X)]f(p.5)) For the following discussion, it is useful to indicate explicitly

_ 353)(B_p’ , . the dependence of the vertex functbbp(p,p’) on the vec-
=(2m)*82(P=P")(f(p",9)|p(0,0)f(p.5)). tor v*, and therefore we will write it ak} (p,p’,v). Using
(2.52  the usual relation between the free particle and antiparticle
spinors by means of the charge conjugation ma@jxthe
Comparing Eqgs(2.51) and(2.52), and using Eq(2.50, we  spinor matrix element that appears in Ef.56) can be re-
arrive at the formula given in Eq2.47). written in the form
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vs(PIT}, (=P’ = pw)vs(p') o
=—ug(p)T'5,(=p',—p.v)us(p), (2.57) A(k)
where, for any &4 matrix A, we define é_/\A/L% Y
Ac=C IATC. (2.58 £(p) Up+k) (p) £(p) £(p)
(4) (B)

On the other hand, the following result holds. If the Lagrang-
ian of the theory isC invariant(which in our case it isand FIG. 1. One-loop diagrams for the self-energy of a charged lep-
if the background i€C-symmetric, then the gravitational ver- tonlin a medium.
tex function satisfies the relation
and well-defined way, including those that superficially seem
F;fp(— p',— p,v)=F)'\p(p,p’,v). (2.59 tq be singu!ar, yvithout having to introduce by hand any spe-
cial regularization technique.
This result is obtained by the same techniques that were em-
ployed in Ref[6] to analyze the transformation properties of Ill. SELF-ENERGY
the induced electromagnetic vertex of neutrinos in a matter
background. This result cannot be applied in our case be-
cause we will consider backgrounds which are not particle- The self-energy diagrams are shown in Fig. 1. In the ab-
antiparticle asymmetric. However, as an extension of Eqgsence of a gravitational potential, the contribution from Fig.
(2.59, similar arguments can be used to show that, if thel(B) vanishes because the photon tadpole is zero in an elec-
Lagrangian is C invariant but the background is not trically neutral mediuni8]. In the presence of a gravitational

A. Calculation of &

C-symmetric, then the vertex function satisfies potential, that diagram is not zero by itself because the con-
dition for the vanishing of the photon tadpole, which is
Fgcp(—p’,—p,v)=1“;p(p,p’,—v). (2.60  equivalent to requiring that the medium be electrically neu-

tral, involves other diagrams. This will be discussed in detalil
Using EQ.(2.60 in Eqg. (2.57 and substituting the result in in Sec. IV C. As shown there, the conclusion remains that we
Eg. (2.56, we then obtain the formula need to consider only Fig.(A) to calculate the self-energy.
Therefore, the charged lepton self-energy is given by
M{=3M7—2m¢+ {ime+ (v v” — 7*°) "
—i2.<p>:<ie>2f 23 VISP 7D (K,

X lim § [us(p/)T3, (PP’ = 0)us(P) g g, | - (3.0
P—0

PP whereS (k) andD ,,(k) are the thermal propagators for the
(2.61 internal lines. For a fermion, the propagator is given by

We take the opportunity to emphasize the following point. iS¢(p)=iSk(p) + Sre(p) (3.2
In the calculations that follow, we will find expressions for
the various contributions tﬂp(p,p’), which are given as where
integrals over the propagators and thermal distribution func-
tions. In general, such expressions do not have a unique lim- b+ mg
iting value as we lep’—p in an arbitrary way[7]. More- Srt= 55
over, some of the integrals are ill-defined if the limit is not pT—mitie
taken properly. In our case, the precise order in which the 2 2
various limits must be taken has been dictated by the physi- Sri(p)=—27(p+mg) S(p=—mp) n5(p). (3.4
cal issue at hand. Thus, since we are interested in the inter- ,
action of the particle with a static gravitational potential, theOr the photon, in the Feynman gauge,
quantity that enters id’} (p,p’), evaluated forE¢=E;.

(3.3

o eners iD,,(K) == LI AR(K) +Ar(K)], (35
Next we setP’ =P since we actually want the forward scat- M R T

tering amplitude, and finally s@®—0 to obtain the coupling where

at zero momentum, which determines the gravitational mass.

This justifies the somewhat cumbersome notation regarding An(k) = 3.6
the limits in Eq.(2.54), but it is meant to indicate precisely F K°+ie’ '

what we have just explained, since failure to follow this pre-

scription results in ill-defined expressions in some contribu- A1(k)=2m8(k?) 7,(k). 3.7
tions. On the other hand, as we will see, this prescription

allowed us to evaluate all the integrals involved, in a unigué/Ne have introduced the notation
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6(p-v) 6(—p-v) and similarly for the anti-leptons. Substitutinmg‘=(m, ,6)
. in Eq. (3.13, and using the fact that the terms in the inte-
(3.8 i (3.13, and using the fact that th in the i
grand that are odd ik yield zero, we obtain

7(P)= efPv-m)i1 e APv-ryy’

_ 2 d*
7y (K)= o, (3.9 =& (m )= — f S (K
ehlk-vl_q 11=&1(m;,0) m ) (2m? (k%) 17,(k)
where 8=1/T is the inverse temperature of the background o
and u the chemical potential. eT (3.16

When Egs.(3.2) and (3.5 are substituted into Ed3.1), 12m;’
four terms are produced. Since we are interested in the back-
ground induced contributions only, we disregard the ternThis is the contribution to the inertial mass from the photons
involving both S andAg. Among the other three, the one in the background, in agreement with the result quoted in Eq.
involving bothSy; andA+ contributes only to the absorptive (1.2), and it is non-zero for any of the charged leptons propa-
part of the self-energy—i.e., to the imaginary part of thegating through the medium. In a similar fashion we find
coefficientsa,b,c in Eq. (2.2—and therefore does not con-
tribute to the mass. The contributions to the real part of the _e?T2
coefficients arise from the remaining two terms, which can mp=-—&1(—m, ,0)=m, (3.17)
be written in the form !

(P =21(P)+2(5(p), (310  and therefore the photon contribution for the anti-particle is
the same as for the corresponding particles.
The term given in Eq(3.14) is due to the fermions in the
background. Therefore in a background that contains elec-
44k p+K—2m trons but not the other charged Iept_ons, the distribution func-
s/ (p):2e2f 8(k?) 7.,(K) ! tions for the muon and the tau vanish. As a result,
11 (2,”_)3 b% P

where

24 2k-p—m?
(31]) mlu2=m72=m;2=nﬁ.2=0. (31&
S7(p) ) Zf d*k 51— 1m2) (k) k—2m,
=—2e -m —_—. i
12(P (2m)° R/l p2— 2k p+ m? For the electron, we obtain
Using EQ.(2.13, and according to the decomposition given M= E.p(M 6):e_2f d*k S(k2—m2) na(K) Ko—2m,
in Eq. (3.10, we write 62 Ce2lllle: me) (2m)2 e) e Kog— Mg
3.1
§=En+ &, (3.12 (319
Performing the integrations ové(, and the angular vari-
where ables, we obtain
d*k -v+k-v—2m
=26 | o a0 DR ma= [k | B2 e
(2m) p*+2K-p—m; 513 2 omm o 2Eg|| Ex—me | &K
Ex+2mg
4%k K-v—2m, Eoom | B |, (3.20
5|2=—2e2f S(K—m?) (k) 5—————. e
(2m)3 p?—2k-p+m;
(3.14) where we have put
We can make a similar decomposition&f. The quantities kt=(Ex,K), Ex=vKZ+m? (3.20)
& and&p, are obtained frong,; andé&;, by replacingm, by « « ¢
-m.

and the distribution functions for a fermion and antifermion

are given by the usual formulas
B. Inertial mass

The inertial mass is determined by applying E3.14)
and, according to the decomposition given in E312 we fef(E)=
write it as

eBEFu) 4 1’ (322

M, =m;+m;;+my,, (3.15  respectively. Similarly,
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g and
v o .
ap _ =
pt=(—m,0)
Uy) tk-q Uk) L) “4p) to—k) ) Taking the derivative in Eq(3.13 and then settingp”
4 (A) (B) =(xm;,0), we obtain
9E 1 T
Y 7 0 0
{N\/Lé ;ﬂ\,\jl PP Ve 6y 7P ey 6
e? [ d°K f(K) m?
(") £(k) £(p) ) £(k) £(p) =—— 3 1-—|,
m?J) (2m)® K K?
© D)
4 § (3:27
FIG. 2. One-loop diagrams for the gravitational vertex of Which implies
charged leptons in a background of electrons. The braided line rep- 272 ) "
resents the graviton. € e (-
fi={n=- 1_2m|2+ ﬁjo « K, (328
Me2= — Eea(— Mg, 0) _ o
where we have introduced the photon momentum distribu-
2 (= KZ[[Eg+2m, tion function
= dK fo(Ek)
2m°melo  2Ex[| Extme .
Ex—2m f(K)= : (3.29
+(EKfm) fa(Ex) | (3.23 -1
kK~ Me

. _ The integral in Eq(3.28 is infrared divergent, and it will
The integration oveK can be performed only when the c4ncel a similarly divergent term in the gravitational vertex
momentum distribution functions are specified, and we will . hiripution to the gravitational magsee Eq.(5.5)].
consider some examples in Sec. VI. Here we only note that, gjnce the electron background terms do not contribute to

as it is expected on the basis 6fP T-symmetry consider- he self-energy of the muon or the tau, it follows that
ations, the inertial mass correction is the same for particle

and anti-partic!e if the medium has zero chemical potential, {uo=Lmo= L= (=0, (3.30
but not otherwise.
For the electron, Eq3.14) implies
C. Calculation of Z,

We decompose I e2 — Ee(Me,0)
ap° " m
b=01t 42 (3.29 P Tpr=im,.0 °
(3.3)
with a similar decomposition for the anti-leptons, where 0w E(—m,,0)
0 . - m !
21 . TP i (=mq 6) ¢
fi=—% for i=1,2, (3.25
d - . .
P pr=(m,0) which yield
f(k) f(k) f(®)
fk—a) f(&) FIG. 3. Diagrams for the one-loop contribu-
tion to the gravitational vertex of any charged
,Y y 7 y lepton in a background of electrons and nucleons.

W M) ) M) ) ) ) )
(A) (B) © (D)
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Meo 1
§92: - E ap,v)\p: Nuvp™— E( M un 77vp+ /N 77/.Lp) (43)
(3.32 . . :
e In addition, there is also a photon-photon-graviton vertex.
lor="— _e2, For an incoming photoa (k) and an outgoing ona”(k’),
Me the Feynman rule for this vertex isi«C,,,,(k,K"), with
[9]
with mg, and mg, given in Egs.(3.20 and (3.23, respec-
tively' C,U,V)\p(klk’)z 77)\p( 77,u,vk k' — k;’/,kv)_ nyv(k)\k;,)+ k),\kp)
+k, kK'+9,,k)+k! (n,K,+ 7,k
IV. GRAVITATIONAL VERTEX (ki 7o)+ K kot mp000)
—k- kl(’]x;ﬂ]py"" 77)\1/77;)/1,)' (44)

A. Irreducible diagrams and couplings

The irreducible one-loop diagrams for the vertex function
are given in Figs. 2 and 3.

We adopt the convention thagtis the momentum of the 1. Diagram 2(A)
outgoing graviton, so that

a=p—p’, 4 8s

B. Diagrams in Fig. 2

The amplitude of the diagram in Fig(&) can be written

4
and we calculate only the terms that contribute to the disper- —i Kl“(@)(p,p’): f d—k4ieya iS(K")(—ir)Vy,(k,K")
sive part of the vertex function, which satisfies the condition (2m)
xiSy(k)ieyziD*A(k—p), (4.5
Trp(P.P") =%l \,(P".P) Yo. (4.2
where
The absorptive part contributes to the fermion damping, with
which we are not concerned in the present work.

When the formulas given in Eq$3.2) and (3.5 for the
propagators are substituted in the expressions correspondi
to the diagrams, we obtain terms of a different kind. One o
them is independent of the background medium, in which w
are not interested. Those involving two factors of the therma
part of the propagators contribute to the absorptive part of = a
the vertex, while those involving three factors of the thermal Arslla k)= 7alket mIVy, (ke k) Ryt m) ™ .7
part vanish because of the vario@igunctions appearing in
it. Thus, the background induced contribution to the disperAfter some straightforward algebra, this can be written as
sive part of the vertex, to be denoted by, , contains the

k'=k—q. (4.6)

As already explained, to determine the contribution to the

persive part of the vertex function we need to retain the

erms that contain the thermal part of only one of the propa-
ators. Any of them contain some combination of the form

thermal part of only one of the propagators, and they are the 1 2

only kind of term that we retain. Ap(k kg)=— E“kﬁkﬂp(klhkﬁm' iy
We have omitted the one-particle reducible diagrams in 5

which the graviton line comes out from one of the external + (Kt ko) (Kyy ko +miy,)]

fermion legs, because they do not contributel'tg,. The

2 2 o 2 .2
proper way to take them into account in the calculation of the + L (k= mp) (Ko —2my) + (kp— mj)

amplitude for any given process, is by choosing the external X (ki—2m)]+2m(ky+Ky) (K1t Ks), .
spinor to be the solution of the effective Dirac equation for g
the propagating fermion mode in the medium, instead of the (4.9

spinor representing the free-particle solution of the equation
in the vacuum, with the normalization determined by the
self-energy of the fermion, as discussed in Sec. Il B.

The various graviton couplings that are needed for the
evaluation of these diagrams have appeared in the literature.
For completeness we summarize here the relevant formulas. ('A1) ) o )
For fermions, the Feynman rule for the graviton-fermion-Wherel'y ™" contains the distribution function of the photon
fermion vertex is—ixV, (p,p’), whereV, , is given in Eq. and therefore contnb,utes to the gravitational vertex for all
(2.41), wherep andp’ are the momenta of the incoming and charged leptons, ariﬂ(MAZ) contains the distribution function
the outgoing fermiong4]. The interaction involving the of the electrons and contributes only to the vertex for the
graviton, a photonA* and a pair of charged fermions is electrons. Changing the integration variable frno k+p,
represented by the Feynman ri#&5] iexa,,,,y", where we obtain

For the sake of convenience, we divide the total contribu-
tion into two parts

r'®p,p)=C"E(p,p )+ ED(p,p), (4.9
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I (p,p")
L[ 9% 8(k?) 77,,(K)
- (2m)° [(k+p’)?—m?][(k+p)2—m?]
XA\, (k+p,k+p"), (4.10
and similarly,
d*k
F)’\E}AZ)(p’p'):eZJ\ (277)3 5(k2_m|2) 7]|(k)
X( Ay, (kk—Q)
[(k—a)>=m?](k—p)?
AM,(k+q k)
(4.11
nk+qﬁ mZ](k—p’)?

2. Diagram 2(B)
For this diagram
—j ['(B) — LAK' aj —K)ievB(—i
<3, (p.p")= f(27)4lev ISi(p—k)iey"(—ix)
XCMVAp(k,k’)iD”“(k)iD“B(k’),
(4.12

and we decompose it in analogy with £4.9). The part that

contains the photon distribution function is

1(B1) ’ 2 d4k v ’
F)\p (p!p ):e (277)4')’ SFI(p_k)’y'uC,uv)\p(kvk )

X[Ar(K)A7(k") +Ap(k)AT(K)]. (4.13

Making a change of the integration variable in one of the

terms, this can be written as

d*k
i (p.p)=¢? f 23 2K,k
7V(pl —k+ ml)‘yﬂcuv)\p(k—f_qak)
[(p'—k)2—m{](k+q)?

,yv(p_ K+ ml)yﬂcﬂv)\p(k!k_q)
[(p—k)2—m?l(k—q)?

(4.14

while
4

1(B2) ’ 2 dk v yn ’
F)\p (pip ):e (277_)47 STI(k)’y C/.LV}\p(p_k’p _k)

XAe(p—=K)Ap(p'—k)

d*k
— - [ a0y m 0y ke m)

C,uv}\p(p_kip, _k)
(p—k)*(p'—k)?

(4.15

PHYSICAL REVIEW D64 085004
f(&) f&) f&) 1K) f&) 1K)

(A) (B) (©)

FIG. 4. One-loop diagrams contributing to the photon tadpole in
a medium in the presence of a gravitational field. The fermion loop
involves a sum over all species of fermions present in the medium.

gives the lepton background part.

3. Diagrams 2(C) and 2(D)

For these two diagrams the manipulations are similar and,
omitting the details, the results are

d*k
DEH O p,p1) =~ 0, | 538K (k)

YHK+p +my)y”
(k+p")2—m?

Y(k+p+m,) y*
+7( p+m)y

(k+p)2—m? |’ (419

and

I;(e2+P2)p p)= eauvwf(z 23 S0 m) (k)

yH(k+mp)y”
(k=p")?

v (k+my) y*
(k—p)?

(4.17

C. Diagrams in Fig. 3
1. The question of the photon tadpole

We are calculating the effective action given by the tree-
level terms, plus th@(e?) corrections that arise from the
diagrams in Figs. 1, 2 and 3. Some of the diagrams contrib-
ute to the bilinear(or kinetic) part of the effective action,
from which we identify the inertial mass and the wave func-
tion renormalization, while others contribute to the interac-
tion with the gravitational potential, from which we identify
the gravitational mass.

It is important to recall at this point that we are consider-
ing a medium that is electrically neutral, which requires that
the parameters that characterize the composition of the me-
dium be such that the net contribution to the photon tadpole
vanishes.

The diagrams that contribute to the photon tadpole at the
one-loop level, in the presence of a static and homogeneous
gravitational potential, are shown in Fig. 4, where the gravi-
ton line represents theg=0 background field. In the absence
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of the background field, only the diagrart®} contributes to = (x e’y
the photon tadpole. In that case, the requirement that the Fg\p)(P,p')=—q2—[xxpa(Q)_Xxpa(o)]- (429

tadpole vanishes yields the familiar condition
3 As already mentioned, the sum in Eg.20 is over all spe-
Zf d°K [f(Ex)—fr(Ex)]| =0 cies of fermions in the medium, the charge of each species
feK K being denoted by; with the convention tha®.=—1. The
(4.18 medium-dependent contribution }q,,(d) can be written as

Q (4A)E 2 Qf
f

71_3

wheref; andf; are given by Eq(3.22, and the sum is over d*k 5

all species of fermions in the medium, the charge of each Xxpa(Q)ZZ fo Wts(kz—mf)m(k)
species being denoted [y; with the convention thaf.=
—1. In this case, the quantit@ ") is identified with the Arpa(kk=0) Ay, a(k+0.K)
total charge of the medium. However, in the presence of the X > t—

background field, and to the order that we are calculating, we q°—2k-q q°+2k-q

have to take into account the contributions of the diagrams (4.22
4(B) and 4C) to the photon tadpole or, equivalently, to the

total charge of the system. If we denote them®¥*®) and  where, for arbitrary 4-momente, andk,,

0 (49 respectively, it is the sun® A+ Q (4B 4 9 (4C) that

must be zero for the photon tadpole to vanish. Physically,  Axpa(K1,K2) =TIV, (K1, Ko) (ki +me) ya(Ko+my)]
this means that the number density of the particles is not _

determined by their free distribution functions. The particle =[(2kanky, +kinka, Tkarksp)kza

distributions rearrange themselves in a way that depends on +(m§_kl. ko) (75 oK1yt 7,0K10)
the background gravitational field. .
This has the following implication for our calculation. —2n,(kKI—mf)kaa] +[kio ko] (4.23

Firstly, the unadorned tadpole of Fig(A) is now itself of

order x because of the charge neutrality condition. Since théPuttingk?=m?, we obtain

diagrams 8C) and 3D) contain an explicit factor ok apart

from the unadorned tadpole, their contribution is actually of ~ Axpa(K.K—a)=[8kyk, —4(k\q,+k,ay) +20)0,]Ks

order k? and therefore we can neglect them. Secondly, the _ _

diagram shown in Fig. (B) cancels theg-independent con- L4k, = (kG k) e

tributions from the diagrams(8) and 3B). Since the loop in +K-a[ 7)o(2K— Q) ,+ 7,0(2k—0),\ ]
diagram 3B) in independent ofg, this diagram is totally )

canceled. —2m,(a" = 2k-Q)k, - (4.24

In summary, the only contribution from the diagrams
shown in Fig. 3 arises from thg?-dependent part of the
tadpole subdiagram of Fig.(8). When multiplied by the
photon propagator, it gives zero for th#%qg?) part in the
propagator while its linear term ig? cancels the 3 in the
other part. This latter contribution will be labeled by the
letter “X” in order not to confuse it with the contributions of

Since A, ,.(Ki,kp)=A),q(Kz,k1) by definition, A, ,,(k
+q,k) is obtained by changing the sign qfin this expres-
sion.

Finally, we mention that the complete one-loop vertex
function satisfies the transversality condition, which is im-
plied by the gravitational gauge invariance of the theory.
This is shown in Appendix A.

Fig. 2(A).
2. The non-vanishing contribution V. CALCULATION OF THE GRAVITATIONAL MASS
We denote the vertex contribution coming from FigAB As seen in Eq.2.54), there are three types @(e?)
by corrections to the gravitational mass. One of them is propor-

tional to the inertial mass that was calculated in Sec. Ill, and
(4.19 anothe_r one involves the wave funption renormalization_ fac-

tor derived in Sec. Il B. In this section we find the contribu-

tions from the one-loop vertex diagrams. Since the expres-
whereX, ,,(q) is the photon-graviton mixing diagram with sjons for those already have an explicit factoredfoutside
external momentung the integral, to evaluate them we can use the tree-level values
for the dispersion relation and the spinors associated with the

d*k
Xxpa(Q)=2f JWTr[V}\p(kik/)iSf(k)iQf'yaiSf(k,)]. external lepton.

e2 ,ya/

q2

Fgﬁ)(pvp’): X)\pa(q)i

(4.20 A. Terms with the photon distribution from Fig. 2

Then, taking the above discussion into account, the quantity We first evaluate those terms obtained in Sec. IV that
which will appear in the expression for the gravitational contain the photon distribution function. In fact, if the tem-
mass is given by perature of the ambient medium is low€m,) and the
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chemical potential of the background electrons is zero, thesever, a careful evaluation of this term, following the proce-
are the only terms that contribute and they are precisely thdure indicated in Eq(2.54), shows that the limit exists.
ones that were calculated in Ré¢fl]. Since we have per- Denoting
formed the calculations in a different way, using 1-particle
irreducible diagrams only, the following results serve as a  m/,,,=(2v*v”— 7*?)

; . . (B1) Y
good checkpoint between the earlier calculations of Réf.

and ours. ) — L (B1) ,
xlim § [us(p") Iy, (P, P )Us(P) Iy ¢,
1. Contribution (A1) P—0 Pr_.p

From the formula for the gravitational mass given in Eq. (5.6
(2.54), it follows that we need to calculate the vertex only for
p=p’, in which case the result is

d*k (k%) 5.(K) 272

1 (A1) —_ @2 Y ) eT

F)\p (p!p) € (2’7T)3 4(kp)2 A)\p(k+pnk+p) m(Bl):_s_rnl (57)

(5.9

The details of the derivation of this result are given in Ap-

From Eqg.(4.8) it follows that, for any 4-vectoy*, X
a.(4.8 y y pendix B.

Ay (y,y)=—4 —2m) +(y?—m?
}‘p(y y) yxyp(X/ Rhat i) 3. Contributions (CHD1)
XLnYpt vpya) +2m,(y=2m)l. (5.9 We can proceed as in the evaluatiomaff;, above. Thus,

which leads to from Eq. (4.16),

uy(p)I Y (p, p)uy(p) us (PTG P (p.p)us(p)
d*k 8(k2) 7.(K) _ d*k  S(k?H)7m,(k) — ,
2_92 (277)3 (kp)yz eza,uv}\pf (277_)3 kp [Us(p))’“kﬁ’ Us(p)],

(5.9

X us(p){ - Wk)\pp—'—ml(k)\kp_’_ p)\pp)

using the fact that is symmetric in the indiceg,v.

) mVNp
(k-p)? Then using
T e |Us(P), (5.3
! (20 0P = PP)a, 0= — 14— 20,0, (5.9
where we have used E.35 and omitted the terms odd in
k, which integrate to zero. Using the notation it follows that
M(a1)= (2007 = 7*")[us(P)T} M (P, p)Us(P) Tpi— (m, 5 » Mic1+p1)=(20 0" = 7*")
54 — ,
6.9 X[U(PITLE*PD(p,p) gl ) ot
we obtain -0 (5.10

, _ZJd3Kf o L _m
Man =€ | Gmz K mk ~ k3
242 2 These terms contribute only to the vertex involving elec-

eT- em [=dK . i .

- _ZJ —f,(K). (5.5 trons and positrons. The integration O\k@r_a_nd t_he angular
12m 2w K variables can be done exactly. The remaining integral can be

evaluated analytically only for special cases of the distribu-

The remaining integral is infrared divergent, but its contribu-tion functions, some of which we consider afterwards.

tion to the gravitational mass is canceled by a similar term

that arises from the wave function renormalization, as we 1. Contribution (A2)

already noted in Eq(3.29.

B. Terms with the electron distribution from Fig. 2

0

As can be seen from Eg4.11), the denominators of the

2. Contribution (B1) integrand of this term vanish ag—0. Consequently, the

' prescription indicated in Eq2.54 has to be followed care-

This term has to be treated carefully because the denomfully in this case. As we show in detail in Appendix B2,
nators in the integrand of E@¢4.14) vanish forg=0. How-  defining
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mEAz)E(Zv)‘Up_ 7°) ,
Mig2)=

P—0

x [im[[us<p )F"“)(p.p’)us(p)]E,f-El]-
P'—P

(5.1)

the final result for this term is

e? f d®k  [2E
M(a2)= (2m32E¢|  Eq

[ ok
2m2) T Ey

PHYSICAL REVIEW D 64 085004

2e? [ d*k -
) @ )5(k

mZ) 7¢(k)

2
Mg
ko * I(0 - me)

e? ( d’K

(ZT):J,(fe_ fo)
fe(Ex)  felEx)

Ex—me Ex+mg|

(5.17

3. Contributions (C2D2)

Similarly, for this term we can evaluate directly

Ex—2m, df, Ex+2m, dfg
Ex—m, dEx  Ex+m, JEx M(co+p2y= (200" = 7?)
, 2Bk Ekme— SERmC+ 2Eqm—2me X[ug(P)T}E2 P2 (p,p)ug(p) Jpu- (m, .6)
MeER (Ex —Me) ¢ (5.18
with

2Eg+Egme—5EgmZ—2E¢m3—2m¢ |
MeE (Ex+me) |’
(5.12

whereEy is defined in Eq(3.21).

2. Contribution (B2)
From Eq.(4.15 it is seen that the integrand is not singular
in the limit g— 0. Therefore we can evaluate directly

d*k

r2(p.p)=- f 23 20— melk) Y (K me)

C;LV)\p(p_ k!p_ k)
(p—k)*

Xyt

: (5.13

and the contribution to the gravitational mass is given by
Mig2)= (200" = 7)) [ug(P) T} P2 (P, p)Us(P) o= (m, .6) -
(5.19

In the expression foC,,,,, any term having a factor of
(p—k), or (p—k), does not contribute to the integral. This
is because, within the spinors, we can write

Y (k+me) y“(p—K) , = v (k+me)(me—K) = y"(mi—k?), s
(5.15

which vanishes because of tl#efunction. The argument is
similar for (p—K), . Thus,

(200" = 7*")ug(p) ¥ (k+mg) y*C 5 (P~ k. p—K)ug(p)
=Ug(p){8(k—2m¢)(p-v—k-v)?

+4(me—2k-vd)(p—K)?}ug(p), (5.16

ignoring all terms which have a factor dxfz—mg. Using
Egs.(2.395 and(2.36, we then obtain
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T (p.p")|go—0=—

F,(C2+D2)(p p) 2e a',uv)\pf (2 )35(k2 e)

(5.19
(k—p)?

X ne(K)

By straightforward algebra

(2vM0P = YAy, , v (K+mg) "= 4k—6me—4K- v,

(5.20

and using Eqgs(2.35 and(2.36),

, o [ d% 2 2 1
M(co4p2y= 6€ f(ZW)S O(k“—=mg) ne(K) Kg—m

fe(Ex)

Ex+mg|

fo(Ex)
EK_me

—SeZJdKKZ
272 Ex

(5.21

C. Terms from Fig. 3

The contribution to the gravitational mass due to this term

M= (200" = 7*) lim | [us(p" )T (p,p")us(p) o=},

where, from Eq(4.21),

P—0 Q—0
(5.22
e2,ya
?[X)\pa(QHqO:O_ X)\pa(o)] .

(5.23

Using the expression fok, ,, from Eq. (4.24 we obtain
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(2vMvP— 77“’)Xxpa(q)|qo:0 contain the photon distribution functi_on,_ amgjz contains the
4K terms that depend on the electron distribution function. They
_ 2_ 2 are given as follows.
82 ij (2m)3 Sk =me) 7i(K)kov Substituting into Eq(2.54) the results given in Eq$5.5),

(5.7 and (5.10, and using the expression for the wave-

5 , 1 ) 1 1 function normalization and the correction to the inertial mass
2kg—mi—5Q KO- 2K-0+0Q? given in Eqs.(3.28 and(3.16), we find
(5.24) ,__ eT
my=- l—zrnl, (529)

where we have omitted the terms that vanish by symmetric

integration overK, as well as all those terms that are inde-in agreement with the DHR resuit], quoted in Eq.(1.4).
pendent ofq, because they drop out of E¢6.23, and in  Notice that the infrared divergence contained in thg,
addition all the terms that are proportionaldg, because in term_cancels W'th. a _S|m|Iar one that arises from the wave
Eq. (5.22 they yield a factor off which vanishes between function renormalization correctio.

spinors. Performing the integration ovef, The terms from the diagrams in Fig. 2 that involve the
fermion distribution function contribute only to the gravita-
(2vMvP— 17“’)XM,a(q)|qo=0 tional mass of the electron, and therefore

3 ' —
:4va2 fo (:—K)3(ff_ff_)<2Eﬁ_mf2—%Q2) m,u2 m7-2 0. (53@
f T The individual contributions of this type to the electron
1 1 gravitational mass appear in Eds.12), (5.17 and (5.21).
x( S— _ ) (5.25 Substituting those results into E(R.54), and using the re-
2K-Q-Q% 2K-Q+Q? sults for the inertial mass and the wave-function normaliza-

tion factor, given in Eqs(3.20 and(3.32 respectively, we
For the term that contains an explicit factor @ in the  gbtain

numerator we use the angular integration formula of Eg.
(B9), which yields e? fw K? ((3 m32 Me
e

SRy (TP SRS f it
Me2 =72 2E¢ |27 B2 Ex-me
m2

) fe(Ex)
(ZUAUP_ 7’])\p)x)\poz(q)|qo=0

:UaEf Qf

+ o+

2 E2 T Ecrm. EK+m Fe(Ex)

Q? d3K
mj dK(ff_f?)+4f W(ff_ff_)

2EK—me(EK—2me dfe  Ex+2m, ﬁfg)]

+ +

(52@ 2EK EK_me &EK EK+me (?EK
(5.3

The evaluation of the rest of the integral is presented in Ap- The corresponding formulas for the antileptons are ob-

pendix B 3. Substituting the results into E§.23), the con-  tained by making the substitutiart— —v*, as indicated in
tribution of this diagram to the gravitational mass is found togq, (2.61). Since the dependence Bf, on v* arises only

X (2E§—m?)

1 1 )
2K-0-0Q? 2K.0+Q?) |

be given by through the factors;; and ., defined in Eqs(3 8 and(3.9),
0 the substitutiorv*— —v* is equivalent to the prescription
I _ A2 _f
Mpy=~¢€ Ef GWZJ dK M = s (5.32
2E2 f 9 or equivalently,
x| (fe— —_— fi—fn|. 6.2
(fi—fH— aEK( i—fo]. (5.2 fofr (5.33
D. Summary Thus,
Starting from Eq.(2.54), the total contribution to the M= m;+m/;+m-—my, (5.34
gravitational mass of charged leptons can be written in the
form where
M |, = m| + m|/1+ m|,2+ m(,x) y (52& m* W O (535)

wheremyy, is the contribution from Eq(5.27), which is the ~ while the result form(;—2 is obtained from Eq(5.31) by mak-
same for all charged leptons)/;, represents the terms that ing the substitutiorf o f.
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VI. RESULTS FOR PARTICULAR CASES where we have used the charge-neutrality condition which,
neglecting term®(«), is simply Z;9¢n¢=0. Applying the
- ) ] same procedure in Ed5.31), the leading contribution, in
the photon momentum distributiome,, Mgz, Mg, Mg, and  powers of T/m,, comes from thef ./ JE term in that equa-
m(xy depend on the fermion distribution functions and cannotion, and leads to
be evaluated exactly in the general case. Therefore, for illus-
tration, we consider in detail their calculation for the specific
situation in which the background is composed of non-

relativistic protons and electrons. In this case we cartfeet

In contrast with them;; andm/; terms, which depend on

. e’ng
me2=_2+o(ne/Tme)-

>T (6.9

f=e,p)
f7(E)~0 (6.2)
and
K2
Ex~m;+ 2m (6.2

By the substitution indicated in E¢6.33, the corresponding
result for the positron is

, 3e?n, )
me,=— sm.T +0O(ne/mg).

(6.10

Therefore, using Eq93.15), (5.28 and (5.34), the inertial
and gravitational masses for charged leptbather than the
electron are obtained as

We consider in detail two cases separately, according to

whether the electron gas is classical or degenerate.

A. Classical electron gas and classical proton gas

In this situation we can set

ff(E):e*B(E*#f) (6.3

for both f =e,p. This implies the relation
M g 6.4
(?_E - B f ( . )

as well as the integration formula

1 1-r
('B) ng, (6.5

r+=/| =
2mf

f dK K2 =273 3

wheren; is the number density, given by

B d3K N ( m
nf—ZJ'—(zﬂ_)3ff(E)~2 m

Let us considem,, and mg,, given in EQgs.(3.20 and
(3.23, respectively. Setting=0 and using Eq(6.2) to ex-
pand the coefficients df, in the integrands in powers ¢,
the remaining integrals are evaluated by means of(&&)
to yield

3/2

e Ami—ri) (6.6

2ne

e
m —
2T 2mgT

+0(ng/m3),
(6.7)
3e?n,

2
me

Mey= +0(neT?/md).

Similarly, from Eq.(5.27) we obtain for this case

7e? Qg

o= 3
Mixy= 24Tf§,p n +0(n T/mY)

7e’n,
© 24m,T’

(6.9

e2T2
M|= M|=m|+ rm,
(6.11)
M/ e2T2+ 7e’n,
L= ™ 1om, T 24m T

where the upper sign corresponds to the leptons and the
lower one to the anti-leptons. The corresponding formulas
for the electron are

M o—m e’T?  en,
e=Me™ 1om. ~ 2m.T’
(6.12
e e’T? . e’n,
e=Me™ 1om, " 272"
and for the positron they are
Mot eT? . 3e’n,
e~ M 12m, " BmZ
(6.13
M e’T?  2e’n,
e~ Me” Tom. 3m.T

We now estimate how large these corrections could be for
the electron. Those due to the photon background were esti-
mated by DHR[1] and were found to be extremely small.
Therefore, neglecting that contribution, the fractional change
in the inertial and gravitational mass is given by

Me—mg  eng

= 6.1
Me 2mzT 619
Mi—mg  e?n,
Me | 2meT? (6.19

Although it may seem that the effects are more noticeable as

the temperature decreases, they are bounded by the condition
that the electron gas is non-degenerate and non-interacting,
which requires thaf10]
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r15/3 B. Degenerate electron gas and classical proton gas
T>_e (6.16 In this case
213 2
n K
and T<—2 - F (6.23
2 me me
T2 _e2nis (6.17) i '
av e ' where K¢ is the Fermi momentum of the electron gas. We
assume
sincer 5~ n, %. Using the fact thah,=n, it follows that
the corresponding conditions for the proton gas do not imply Ke<me (6.29
further restrictions, because they are automatically satisfied S
whenever Eqgs(6.16 and(6.17) hold. so that the electrons are non-relativistic, and
By writing the right-hand side of Eq6.14) in the alter- )
native forms Ke=>eme, (6.29
2 2,.1/3 213 which implies that the average kinetic energy of an electron
en., |[eng ng . ; )
:< ) ) is larger than the average Coulomb interaction energy
2m2T T 2m? ~e?nl®~e?K;, and therefore the electron gas can be
231 2 5 treated as an ideal gas. Under these conditions, the protons
_ Ne T \[eme 6.189 can be treated as a weakly coupled Boltzmann gas if we
meT/ \2me/| nl? ' ' assume that the weak coupling condition
it is seen that T>eny*~e?Ke (6.26
M.—mg [e%2 ifnl<e’m, is satisfied[11]. Remembering thaKg<me<m,, this in
e . 6.19 turn implies the non-degeneracy condition
Me T/2m, if n*>e’m,. 619 P g 4
2 23
Similarly, writing Ts Ke_ ni (6.27
m, mp
2 13 2,.1/3) 2
ne 1/ n en . .
€Ne - Me ( e ) Therefore, Eq(6.3) applies to the proton, while for the elec-
2m,T? 2\ e’m, tron
/
_1(ng®| %/ e’m, (6.20 f=O(Ke—K) (6.28
2\m.T nis |’ '
€ with
it follows that
Ke=(37%ne)"?, (6.29
M¢—mg| 1 L _ _
<z (6.2)  which in turn imply the relation
Mg 2
in either case. Therefore, while the fractional correction to %: —8(Kg—K). (6.30
the electron’s inertial mass is likely to be small in most situ- dK

ations with the conditions that we are presently considering, ) -

the fractional change in the gravitational mass could be sub- We repeat —the — calculation —of the quantities

stantial. For example, if we use the temperature and densitflez,Mez, Mg, , M, andmy for this case, neglecting the terms

at the solar core, i.eT=1.57x10" K, n,=9.5x10" cm 3,  that are a factor-O(KZ/mZ) smaller than the ones that we

we obtain retain. From Eqgs(3.20 and(3.23), settingfz=0 and using
Eq. (6.2), we obtain

Me—m
‘ * —°1=9.8x105, X
me e“Kg
(6.22 Me2=" "5 2
M.—m
‘ ¢ %=35x107, (6.31)
Mg eng
. . i Me2= —— -
which shows that the correction to the gravitational mass of 8 mg
the electron can at least be appreciable in realistic physical
situations. From Eq.(5.27),
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o e 8

where we have borrowed the result for the proton contribu
tion from Eq.(6.8), while in the electron term we have ex-
pressedE in terms ofK and used

eZ

672

m;
2K

df,
dK

2
_reny

24T my’
(6.32

K+

4 —
My =

(6.33

for any function ofEx . Using Egs.(6.28 and (6.30 this
finally yields

22
e‘m;

Ml = ————. (6.34
X 1072k

Here we have neglected the proton contribution because it
~e2K,§/(Tmp)<e2KF from Eq.(6.27). In a similar fashion,
from Eq. (5.31),

e’m?

22K,

!
Mgz

(6.39

and by the substitution indicated in E¢p.33, the corre-
sponding result for the positron is

3e’Kg

8m?

M=

(6.36

Thus, substituting these results into E@3.15, (5.28
and(5.34), we obtain the following expressions for the iner-

PHYSICAL REVIEW D 64 085004

B e’T2 k3
Me=mg+ Tom, + 877—2m§
(6.39
, e’T2  e’m?
- M-=m

e F 12me  124%K.

It is interesting to note that Eq$6.23 and (6.24) imply
that the photon contributions in Eq$.37)—(6.39 are much
smaller than the contribution due to the electron background
in each case. In fact, using E@.25, we see that the frac-
tional corrections to the gravitational mass can be as large as
about 7/12 for the electron and 1/%2 for the positron
and the other leptons.

VII. CONCLUSIONS

In this work we derived a general operational formula that
expresses the gravitational mass of a fermion in terms of the
igravitational vertex function. Using that formula as the start-
ing point, we have studied th®(e?) corrections to the
gravitational interactions of a charged lepton in the presence
of a matter background. This calculation extends and
complements previous calculations along similar lines, in
various useful ways.

From a technical point of view, the calculations that we
have presented have employed various finite-temperature-
field-theory techniques that can be useful also in other con-
texts. For example, we have shown in detail how a careful
treatment of the wave function renormalization factor, which
arises from considering the one-particle reducible diagrams
in the proper way, is instrumental in the cancellation of an
infrared divergent contribution that arises from the photon
contribution to the proper vertex function.

On the other hand, a well known problem that arises in
this type of calculation is the ambiguity of the finite tempera-

tial and gravitational masses, retaining Only the Ieading termﬁ”e Green functions when they are evaluated at zero mo-

in powers ofK /m,. For the charged leptoh®ther than the
electron,

eZTZ
M=M,=m+ Tom,
(6.37
) e?T2  e’m?
M= Tom, 127K

with the upper sign corresponding to the leptons and th
lower one to the anti-leptons, while for the electron

e’T?  e’Kg
Me™Me™ Tom, ™ 247
(6.39
e’T2  7€’m:
M¢=me

— _|_ ,
12me  127%K ¢

and for the positron

mentum[7]. This property is usually due to the fact that the
different mathematical limits correspond to different physical
situations, so in those cases the resolution of the apparent
paradox lies in recognizing the appropriate correspondence
with the physical situation at harjd2]. The calculations that
we have presented have illustrated this in a particularly con-
vincing way. The operational formula for the gravitational
mass given in Eq(2.54) indicates the precise order in which
the various limits must be taken, according to the physical
situation that we considered. As we have shown, the careful
@pplication of that prescription has allowed us to evaluate all
the integrals involved, in a unique and well-defined way,
including those that superficially seem to be singular, without
having to introduce by hand any special regularization tech-
nigue.

The calculations and the results are also important from a
phenomenological point of view. As we have indicated, in a
matter background with a non-zero chemical potential such
as the Sun, the matter contributions to the gravitational mass
are proportional to the electron and nucleon densities and its
magnitude can be appreciable. These matter contributions
dominate over the photon-background contribution, espe-
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cially in those situations in whiclT<m,, for which the where we omit the terms that are proportionatjfobecause,
photon contribution becomes negligible. Moreover, thein Eq. (4.19, they will yield ¢ which vanishes between the
matter-induced corrections to the gravitational mass are difspinors. Changing the sign dfin the last equation yields
ferent for the various charged lepton flavors, and are not the

same for the cor_respondlng.anfupqrhcle_s. There are squatlons q*A}\pa(k+q,k)=(q2+2k~ ) (4K K= K- q7p0),

in which mass differences, intrinsic or induced, have impor- (A5)
tant physical implications, such as the neutron-proton mass

difference in the context of the nucleosynthesis calculationgnd as a resuh;“U(p’)ng)(p,p')u(p) turns out to be pro-

. P - p

in the Early Universe. Although our work ha_s focgsed in theportional toQ;(n;—Ny), which is zero to this order.

case of the charged leptons, similar considerations can be ag for the other diagrams, straightforward algebra gives
applied to the other fermions as well. The question of thene following results:

possible implications of this type of mass correction in spe-

cific situations is an important one, but is outside the scope "= e (AD)
of the present work. Nevertheless, our calculations have prdd u(p" )"y,
vided a necessary ingredient for being able to consider them
in a systematic manner, and set the stage for their further
study on a firm basis.

(p,p")u(p)

e’ d%
=- Zf (27)35('(2) 7,(K)
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APPENDIX A: TRANSVERSALITY OF THE VERTEX q”U(p’)F)’\E)AZ)(p,p’)u(p)
It is useful to verify that the complete vertex function to ) .
O(e?), obtained in Sec. IV, satisfies the transversality condi- _ € dk S(k2—m2) pe(K)
tions 4] (2m)° F
— ) — ) — A4(k—=2m)k,+k(p+p'),—2k-p’y
q*Us(p )T, (P,P ) Us(P) =G Ug(p')T,(P,p")U(p)=0 xu(p’) — s s
(A1) m°—k-p

to this order. Since the vertex is symmetric in the Lorentz ,
indices\, p, either of these relations guarantees the other. In ~ —(P<=>P’) |u(p),
order to simplify the notation, in the remainder of this ap-
pendix we omit the subscrigin the spinors. N7 (B1) ,

In order to verify this relation, the important point is that 9 Y(P) T\, (P.p")u(p)
we must include all the terms up ©(e?). Since the one- 4%k

. . 2

loop terms in the induced verte>§ are alre&ife ),_for thgm :ezj 2_35( k?) 7,(K)
we can adopt the tree-level definition of the spinors, i.e. (2m)

_ _ — mk,—kp, mk,—k
pu(p)=mu(p), u(p’)p’=mu(p), (A2) XU(D'){ T:p, L kﬁ,ppp]um)

as well as the tree-level on-shell conditions — , ,
q*u(p )T (p,p ) u(p)

pP=p'?=m? (A3)
ezf

d*k

(277)3 5(k2_ mZ) 77F(k)

In the Appendixes, we use the tree level massithout any

subscript, implyingm;, m, or m; which should be under- _

stood from the context. Also note that the photon distribution xu(p')

function as well as the associatéefunction are even irk,

and therefore those terms which are od# in the rest of the N1 1er (C14D1) ,

integrand do not contribute. qru(p")Iy, (p,p")u(p)
We first show that the vertex contribution from FigA3

is transverse by itself. From E@.24),

(k—2m)k,+mp, (k—2m)k,+mp,

u(p),

m?—k-p m?—k-p’

e? [ d* ) 1 1
~2) il ot e
q}\A)\pa(kik_Q):_(q2_2k'q)(4kpka+k'qnpa)r —

(A4) xu(p')[ka,+k-qy,lu(p),
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q*u(p)T' %P2 (p,p")u(p)

e d*k

2 1
B 2J<2 j o(¢—m

m? k
) 7e(K) m2—k~p

!

1 _
+ mz——kp) u(p”)[(k=3m)q,+k-qy,Ju(p). (A6)

Therefore, adding all the one-loop contributions to the ver-

tex, we obtain
q*u(p)T;M(p,p"u(p)

e _
= ZJ W&(kz)m(k)u(p’)

(A7)

k

q*u(p’ )r'<2>(p p’)u(p)

I

X (k_zm)(gp;_ pp)_2k p')/p
_k, p

2n )35<k2 m?) 7(K)u(p’)

—(pHp’)lU(p)-

(A8)

PHYSICAL REVIEW D 64 085004

(p2—p'2)U(p")7,U(p)
=U(p")[y,(p+m)Z'(p)—='(p")(p’ +m)y,]U(p),
(A12)

and substituting this result into EGA11), we obtain

A*U(P" )V, (P.P)U(P)
1
=2V (PILEP" = p), 2 (P) = (3p—p"),2"(p")

+y(BHME (p) =2 (p") (B +m)y,]U(p).
(A13)

SinceX’ is explicitly of O(e?) while we are interested in
results toO(e?) only, we can use the tree-level spinors on
the right-hand side. Using E4A3) in Eq. (3.11), we can
write the self-energy contribution involving the photon dis-
tribution function as

Ei(p)=e2f

disregarding terms odd ik. Similarly, from Eq.(3.11), the
part containing the Fermi distribution function can be written

4K Kk
2 K) — (A14)

We need to add to these the tree-level contribution to the

gravitational vertex that appears in Eg.41). In this case,
we must include the(e?) corrections to the equation for

the spinors, which arise from the self-energy diagrams of

Sec. lll. Thus, for this part, using E¢R.17) and its Hermit-
ian conjugate
U(p")[p’ —m—X(p")]=0, (A9)

we obtain

U(p)4u(p)=U(p)[2'(p)—3"(p")]U(p),
(A10)

which in turn yields
q*U(p")V,,(p,p )U(p)
1
=ZU(p’)[(3p’—p)pE’(p)+pzvp—(pHpU]U(p)-
(A11)

This can be cas_tin a different form by multiplying E&.17)
from the left byU(p”’) y,(p+m) and Eq.(A9) from the right
by (p"+m)y,U(p) and taking the difference of the resulting
equations. This gives

k—2m

—k-p’
(A15)

o(k

2) 77F(k)

as
o[ 2

Substituting these forms into E¢A13) and using the iden-
tities

(27 )3

u(p’)y,(p+mku(p)=2k-pu(p’) y,u(p)
(A16)

u(p’)K(p’+m)y,u(p)=2k-p’ u(p’)y,u(p),

we see that EqIA13) cancels the contribution from the loop
diagrams given in Eqs(A7) and (A8) to this order. This
proves the transversality of the effective vertex.

APPENDIX B: APPARENTLY SINGULAR
CONTRIBUTIONS

1. The B1 contribution

We start from the formula given in E4.14), from which
it follows that
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e? d*k
K== im | o

,yl/(p_ K+ m) yMCMV)\p(kvk_Q)
k-p(2K-Q—Q?)

_ 'Yv(lb_ k—q+ m) YMC;LVAp(k+q’k)

(k-p+K-Q)(2K-Q+Q?)

(B1)

where we have put

9“=(0Q) k*=(k°K). (B2)

In order to take the limi©—0, our strategy is to expand the

coefficients of the factors 1/2- Q= Q3?) in powers ofQ. Of

PHYSICAL REVIEW D64 085004

e d*k

C,uv)\p(kl k) ,yvq 7”
k-p(2K-Q+Q?)

(B6)
’<Bl°><p>———nmf(2 3 0k (k)
Cump(kK)y"(P—k+m)y*|  K-Q
(k-p)? 2K-Q+Q?

o2 d*k
F;\E)Bld)(p):_ §|Im f 2 )35(k2)777(k)

Q0" 14T
Y (p—K+m)y*
x—
k-p

the resulting terms in the coefficients, those which are qua-

dratic inQ do not contribute in th€—0 limit and therefore

we need to keep only the terms that are at most line&.in
Using the propertyC,,,,,(k+a,k)=C, ) ,(k.k+q), we

can write

;Lv)\p(k k— q) C,uv)\p(k k) C/.LV)\p(k1q)

(B3)
Mv)\p(k+q k) C,u,v)\p(k k)+Cv,u)\p(kaq):
where
/,LV}\p(k q) 77)\p( ny,vkq_qy,kv)_ nuv(k)\qp+q)\kp)
+ kv( 77>\qu+ 77p,uq)\) + qp,( 7])\Vkp+ npvk)\)
_k’Q(ﬂmﬂpV"‘ 77}\V77plu,)' (B4)
To first order inQ, we can also put
1 1 K-Q
——= ———Q. (B5)
k-p+K-Q kP (k-p)?

This enables us to decompoB&™"(p,p) in the following
four terms:

/(Bla)(p)___“mf(z )35(k ) 17,(K)

C,uv)\p(kik) yv(p_k+m) Y
k-p
1 1
2K-Q—Q? 2K-Q+Q?

X

,LLV)\p(k q) C;m\p(ka)
2K 0-Q2 2K-Q+Q?|

We carry out these integrals one by one.
Eliminating the manifestlk-odd terms from the integrand
and performing thé,-integration, we obtain

d3K 4k, k Kk

(B1a) =e2Iimf VAP

o (P) o) @mpiax »(K) K-p
X ! (B7)

2K-Q-Q? 2K-Q+Q?|

using k?=0. The expression within the square brackets is
finite for Q—0. Therefore, in the spinors we can getp’,
and using Eq(2.35 we then obtain

4e2| J—dsK f(K)K
m/ m
(Bla) ™ Q o (271_)3 Y

y 1 1
2K-Q-Q? 2K-0+Q?|

(B8)

We can perform the integration over the angular variables in

K, the integral being understood, as usual, in terms of the
principal value part. That gives

f‘m fdﬂ e =—1+O<Q2>,
2K-Q+ K?2
(B9)
so that
e? 272
m(,Bla)z_TdeKfy(K)Kz_m. (B10)
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As for the next contribution, it is straightforward to verify

that

(20™0P = )y 4y*C 0, (K K) = 4K - Q(K—2k- v1),

(B11)
usingg-v=qy=0. So

4
(ZU}\Up_ nkp)r;\(Blb)(p):ezf d*k
. (2m)*

8(k?) (k)

( k+2k-vd)

o (B12)

Now using Eqgs(2.35 and(2.36), carrying out the integral
overk®, and finally puttingP=0, we get

PHYSICAL REVIEW D 64 085004

F/(Blc)(p

XYEC L p(K,K) (B14)

1
(k-p)?’
and

(20*vP = )T B9 (p)

:_Zif d*K FK) 1

m J (2m)%2K 7 (k. p)2

X[=(k-p)?=2m?(k-v)?+4(k-p)(k-v)(p-v)]
(B15

so that
2T2

12m”

d3K

2e
m(Blc):_mefy(K):_ (B16)

292 d3K eZTZ 7 (B1d) . .
Migy=— | ————F (K)= . (B13) ForI'y we first perform the integral ovée®. Remem-
(B1b) ™ "y 232K 7 12m . L . . >
(27) berlng that in the remaining integral we can chagéo
—K and using the fact that,,,, ,(—k,q)=—C, ,,(k,q),
Similarly, we obtain
r"B“”(p)— JL fy(K )(i) y'(p+m)y* =1 (KD =l (k)]
e (2m)32k 7 \k-p 2K.-0-Q2 2K.0+Q2| #ie vihpt
, B 1 1 ,
+7 (_k)y K-Q—Q2+2K~Q+Q2 [Cﬂyxp(k-Q)"‘Cym\p(k,Q)]
& J d*K Y e kay+Cl (k)]0 B1
__?le m 7( )k p ->Q->[ /.LV)\p( lq)+ V/.L)\p( lq)]+ (Q) . ( 7)
|
We now use
F;‘p“)(p,p)——nm f Zn )35(k2 m?) 7(K)
(2007 = 1) y"Ky*[C}, (K, A) +C o (K,0)]
=8(k-v)(K-Q)3. (B18) y Ayp(kk—0)
: I (2K-Q-Q*)(m*~k-p)
Then, using Eq(2.35 and puttingP=0, we get
2 3 272 Ayplktak) (B20)
4e d°K eT T ok . AL O 2 N
U B - (2K-Q+Q%)(m"—k-p")
Mez) =~ " f (2w)32Kf7(K) om -~ (B19

Adding the results given in Eq$B10), (B13), (B16) and

(B19), we get the total contribution from the B1 term pre-

sented in Eq(5.7).

2. The A2 contribution

For this contribution, we start from E.11). Using Eq.
(B2), we can write it as

Following the strategy stated below E@2), let us now

write

Aok k=a) = Ay, (kK K) + Ay, (k)
(B21)
A)\p(k+q!k):A)\p(kvk) +A;ip(k:q):

and, in the denominator, expantf—k-p’ in powers ofQ:
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1 1 K-Q . 2E;— mz[ m? 2
+ m? M

= 2 F(K)= 1
m2—k-p’ ”“2—|<-|0+(m2—k-|o)2 0(QY, 0="2g, T ke k-p }
(B22) (B26)

fot

Then we can decomposk;*?(p,p) into the following

can de _ . with ko=E, . Since the integrand contairé- P, and we
terms, omitting higher powers @ which anyway will not

must setP=0 only after taking the limiQ— 0, the angular

contribute: integrations cannot be performed using E8P). So we shift
/(A2a) e? d*k 2 thia integration variable t&i%@ in the terms having R
I\ (p.p)= —I|m (2m)3 8(k?—=m?) (k) -Q¥Q? in the denominator. This gives
2 3 A.%
AM,(k k) 1 1 ' (20h0— }\P)[‘(Aza)(p)— 2e m f d°K Q VKF
m?—k-p | 2K-Q— Q2 2K-Q+Q2 ms (2m)® 2K-Q
(B27)
[529)(p,p) = f e m?) )
(27m) Clearly the magnitude o now cancels out. The derivative
Ay (k,K) with respect toK can be taken easily, using
X 7 ( )m,
i VEx= K
1 (A2¢) e d*k 2_ .2 R
DV (p,p)=7[|mJW5(k —m?) 7e(K) (B28)
Q—0

1) 71 (E K 5)
! / Afp(ak’q) - Af‘{k'q) _ m2+k-p/ (mPzk-p)?\ "Ex )
Pl2K-3—Q2 2K.O+Q2

(B23)  The term proportional t® from the last derivative does not
contribute because it multiplies a factor whose integrand is
odd inK atP=0. PuttingP=0 in the other terms, we obtain
the contribution to the gravitational mass:

We discuss these contributions one by one.

The A2a contribution

Using Eq.(5.2) and thes-function appearing in the inte-

3 2
grand, we can write - 2e? f d*K [ZEK
d%k (e (2m)*2E¢ | 2Bk
032 (p,p)=—2¢?lim f 27 S(k?—m?) (k) o [Ex=2m dfe  Eq+2m afe
QHO EK_m (9EK EK+m &EK
<2 et m o om
m2_k.p + 2E. (EK_m)z e_(EK+m)2 e
r 1 (824 2EZ+m? (Eq—2m . Eg+2m
2K-Q-Q2? 2K-Q+Q? 2E2 | Ex—m ¢ Ex+m ¢

As argued before EqB8), we can putQ=0 in the spinors, (29

and use EQq(2.35. Performing theky-integration, we obtain The A2b contribution
2e? d3K The integral in theA2b) term is independent @. So, in

N, p_ N (A2a) ==
(20t ="M, (p) = m (I;m (27 )3F(K) a straightforward way, we obtain

-

1
>< > > - = , ! = — 2_ 2
(2K-Q—Q2 2K-Q+Q? Miaze) mzf (2m)%2E, 2Bk~

(B25) Ex—2m Ey+2m
X ﬁfe(EK) mf_(EK)

where the expression on the left is understood to equal the
one on the right only between the spinors, and (B30)
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The A2c contribution

For the(A2c) contribution, first we use the expression for

A,, from Eq.(4.8) to find

77)\p(q2_ 2k- Q)(k_ Zm) + (k)\qp+ kpq)\)
X (k=4m)+k,ky,4+k Ky,4,

Asp(ka)=

(B31)
A} (K, @)= 7,,(9%+ 2K- ) (k—2m) — (kyq,+ K, dy)

X (K—4m)—k,qy,k—Kk,4v,\K,

dropping irrelevantO(g?)-terms and usin®=m?. In the
7, terms, the integrand becomes independent.ofhus,

these terms give a regular contribution. Let us denote it by

(A2r):
2e d°K  [Ex—2m .
m(A2r) (277)32EK E -m e( K)
EK+2mf E B32
Ecrm (Ex) |- (B32)

The terms which appear next will be calléd2s). For
these, we use the fact that

—2k-q=2K-Q,
(B33)

(zvkvp_ nxp)(k)\qp*— kpq)\) =

usingq-v=(y=0. TheQ—0 limit can then be taken easily,

and we obtain

e? d3K

. Ex— 4m
Ma29= "1 ] (27)32E«

2 Te(Ew)

Ex+4m

+ = Ecrm (B34)

f_(EK)}

Finally, we come to the terms with threg-matrices,
which we denote byA2t). For these, first we note that

(2vMvP— n)‘p)(kxkypﬂﬁ+ K Ky\@)=4k-vkig— 2m?d,
(B35)

and a similar expression with the other term. Since dhe
term vanishes between the spinors, we can write

S(K?—

M(azny =26 lim lim m?) ne(K)

d4
P—»OQ—»OJ (2m)°

Ko 1
X—m———=—=
m=—k-p 2K.Q

u(p’) (ks d+gskyu(p),

(B36)

omitting theQ? terms in the denominator since they will not

contribute forQ— 0. Using the identity
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H o
SK,uvay V5

YeVuVv=
(B37)

DY T Dun Y™ Micv Y~ |

we obtain

kb d+ db k=2K - Q¥ (B38)
between the spinors, sincev =0 andg terms vanish. Put-
ting this back into Eq.(B36) and using Eqgs(2.35 and
(2.36), we obtain

. 2ezf d’K B . &
Ma20™ " " | (2m)%2E | Ee—m o)
= +mf1EK)} (B39)

The sum of Eqs(B29), (B30), (B32), (B34) and(B39) gives
the total contribution of the A2 term, given in E.12) in
the text.

3. The X contribution

The part of the integral from Ed5.26) that we consider
here is given by

d3K
I(f)(Q):f(ZT)SF(EK) RO

where
F(E)=[f¢(E)—ff(E)](2EZ—m?).

Shifting the variables, the integral can be written as

(B41)

d°K F(Egi62) — F(ER-G2)
(2m)* 2K-Q '

10(Q)= f (B42

We have to expand the numerator@§Q?) in order to ob-
tain the integral toO(Q?) . Writing ¢; to denote a partial
derivative with respect té&',

F(ER+(12)0) = (E)+ Q5F+ ( QQ')O'“?F

+l<l i~
37 gQQQ

3,9, 0/F. (B43)

The derivatives we need to use are

(1 9
(?iF=K' e

E JE F.

a 2
300 F=(8"K' +5"K'+5”K)(E (?E) F

3
+K'KIK! 17 F. (B44)
E 9E

Using
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o1 . We
K'KJ—>§K25” (B45)
within the integrand, we have fx
0
(01— d®K [1({1 ¢ F+1Q231(9 2F
Q=] z3z\EE/TFare | BlEE
1K2 LJ 3F B46
3K EE F) (B46)
Therefore, the quantity that we must substitute in G&R23
is
1 Q% d3K 19\
MOV = 1N(0-0)=— = -2
Q) =17(Q~0) 3! sf(zw)S(g(E aE) F
K1 2 3F B4
T3 EE (B47)

PHYSICAL REVIEW D64 085004

now use the identity
dK K" ! VF— 1 fdeK”—Z ! HF
A EE o

(B48)

which holds forn=2, so that the surface term vanishes. It is
obtained by using Eq6.33 and performing a partial inte-
gration. Using it repeatedly, we can rewrite EB47) as

% g
0(0)—1N(0_0)= —
10(Q-10(Q-0 =~ - | "aK

T

(B49)

Putting this back into Eq(5.26), we obtain the total X con-
tribution given in Eq.(5.27).
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